
Scaling the
Wiki beyond 

1 Million

[[Edit This Page]]

21c3  2004-12-27



What's a Wiki?

● Quick!
● Let wackos edit your site
● With luck, good wackos outnumber bad



First, there was Nupedia

● Limited 
contributions

● Slow review 
process

● ~28 good 
articles in 
one year



Enter Wikipedia

● Low barriers to 
participation

● Experimentation 
encouraged

● Exponential 
growth





Who's Who



In the beginning

● UseMod
● Perl-based
● Filesystem 

storage



New backend

● Custom wiki
● PHP-based
● MySQL storage
● Fulltext search
● Ad-hoc queries



Exponential growth?



Exponential growth!?



High load,
High load times.



Why so difficult?

● Pages may change at any time
● Edits impact other pages
● User options
● User-to-user message notification

● Client must check back
● Output pages per-user



Where to go?

● Do less work
● Do more work at once
● Do work faster



PHP slowwwww

● Stock PHP recompiles 
source to bytecode on 
every invocation

● Up to 83% of runtime 
spent on compilation

● Turck MMCache 
rumored to cure cancer, 
remove overhead.



Squid reverse proxy

● Most hits are from anonymous visitors
● Squid serves cached pages faster than 

PHP ever could
Explicit purge on 

changes:
Skip the slow PHP 

code when no 
change.



Do more work at once

● Add more 
servers!

● Costs $$$
● DB bottleneck





Do work faster

● Pruning code
● Database rearrangement
● Alternate hard and soft layers



Boring optimization

● Move loop invariants
● Avoid redundant text parsing
● Delay initialization of unneeded code
● Increased speed for many operations 

by up to 100% from 1.3 to 1.4



Database structure

title+metadata+text
title+metadata+text

title+metadata+text

title+metadata+text

title+metadata+text

title+metadata+text

.

.

.

Current revision of page

Previous revisions

✗ Text may be tens or 
hundreds of KB

✗ Data must be 
moved from table 
to table on edit

✗ Heavy I/O usage on 
joins that don't 
need the text

✗ Duplication of 
information causes 
slow updates



Refactoring

title+metadata

.

.

.

page

revision

✗ Smaller metadata 
records reduce I/O 
on updates

✗ Metadata queries 
don't require 
reading large text

✗ Avoid special 
merging to see all 
revisions

metadata text

metadata text

metadata text

metadata text

metadata text



Alternate hard and soft layers

● PHP – compatibility
● C/C++/Java extensions

– Subprocess (shell out)
● LaTeX

– PHP extensions
● diff, Unicode

– Server process sockets/IPC
● Lucene search



Wikipedia: Edit This Page

Differential Storage

Tim Starling



Wikipedia Growth

• Wikipedia and related projects have been 
growing at a phenomenal rate

• Database size doubles every 16 weeks

DB backup size (MB, bzip2 compressed)

100

1000

10000

100000

Nov-02 May-03 Nov-03 May-04 Nov-04



MediaWiki Design

• Based on the principle that 
hard drive space is cheap

• Minimal development time

• Each revision stored separately
– Completely uncompressed until January 2004

– Revisions now compressed with gzip for 50% saving

• Everything stored in MySQL – copy of every 
revision on every master or slave machine



Hardware Requirements
• Master DB server: ariel

• Worth $12,000

• Dual Opteron, 6x73GB 15K SCA 
SCSI drives: 4 RAID 1+0 (146GB), 
2 RAID 1 (72GB)

Effective capacity 200 GB

Database size 171 GB

• No more drive bays available

• Only a week of growth left



Differential Storage

• Why not store diffs, instead of complete 
revisions?

• Canonical example: RCS

1.71 1.70

Current revision 
stored in full

1.69

…Diff Diff

Other revisions 
calculated on demand



Differential Storage

• RCS:

– is designed to store code

– has a simple ASCII data format

• We want the best possible compression ratio

• No need for readability

• Can we do better than RCS?



Wiki Compared to Code

• Wikipedia articles have long lines, many 
minor changes are made

⇒Better if we don’t have to duplicate the whole 
line



Wiki Compared to Code

• Some articles have lengthy “edit wars”, where 
the article alternates between two significantly 
different versions.

• Can we store this efficiently?



Efficient Differential Storage

• What if someone moves a paragraph from 
one location to another? An ordinary diff won’t 
store that efficiently.

12,13d11
< [[Image:AndalusQuran.JPG|thumb|right|280px|[[12th 
century]] [[Andalusia]]n Qur'an]]
<
17a16,17
> [[Image:AndalusQuran.JPG|thumb|right|280px|[[12th 
century]] [[Andalusia]]n Qur'an]]
>



The LZ Connection

• What we need is an algorithm which will 
recognise arbitrary sequences of bytes in one 
revision which are repeated in another 
revision, and then encode them such that we 
only store the sequence once.

• This just happens to be what compression 
algorithms such as LZ77 do.



New Storage Scheme

• Concatenate a number of consecutive 
revisions

• Compress the resulting “chunk”

• A good compression algorithm will take 
advantage of the similarity between revisions, 
and achieve very high compression ratios



Proof of Principle

• We compressed history of three articles: 
– [[Atheism]], an article with lots of edit wars

– [[Wikipedia:Cleanup]], a discussion page which is 
incrementally expanded

– [[Physics]], a typical article with a long revision 
history

• Because all these articles have a very long 
revision history, we would expect better than 
average compression ratios



Proof of Principle

gzip bzip2 diff

Atheism 2.5% 2.3% 15.5%

Cleanup 2.5% 2.5% 1.1%

Physics 2.2% 2.4% 6.9%

Size of the compressed text compared to the 
original text:

• As expected, diffs performed poorly in the edit 
war case, but very well for incremental 
addition of text

• Compression methods always performed well



Gzip, Bzip2 and Diff

• Other tests showed bzip2 to give better 
compression than gzip, but at a much slower 
speed

• Ratio for diff could have been improved by 
choosing the most similar revision to take a 
diff against

• Diff much faster than gzip or bzip2

• Diff-based compression is harder to 
implement



Implementation

• We implemented a gzip method in MediaWiki 
1.4

• Compression is taking place as I speak

• Expected effects:
– Better utilisation of kernel cache

– Higher I/O bandwidth for uncached revisions

– Smaller DB size

• Average compressed size: ~15% of original

• Higher than the tests because the tests used 
articles with many revisions



Future Directions

• More detailed evaluation of diff-based 
methods

• Other ways to solve the space problem:

– Application-level splitting across distinct MySQL 
instances

– Distributed filesystems, e.g. GFS


