
Leaving legacy behind
Reducing carbon footprint of network services with MirageOS unikernels

Hannes Mehnert, https://hannes.nqsb.io

36c3, 27th December 2019, Leipzig

1 / 37

https://hannes.nqsb.io


Stack

SchedulerFile system

Process
Management

Network

Hardware
Drivers

User
Management

Hardware (CPU, disk, NIC, memory)

System calls, Sockets API

System libraries (libc)

Programming language runtime

Application Binary

Crypto (libssl)

Configuration Files

• Unix applications depend on
libraries and configuration files.

• Kernel isolates processes from
each other using virtual memory.

• Compromise is contained to a
single process.

• Privilege escalation by flaws in the
system call API (568 in
sys/syscall.h).

2 / 37



Hypervisor stack

SchedulerFile system

Process
Management

Network

Hardware
Drivers

User
Management

Hardware (CPU, disk, NIC, memory)

System calls, Sockets API

System libraries (libc)

Programming language runtime

Application Binary

Crypto (libssl)

Configuration Files

Hypervisor
- Resource management

- Scheduling of VMs

Emulated Hardware and assigned resources

vmm.ko

Kernel

• The hypervisor manages the
resources, and splits them across
virtual machines. Hardware is
emulated.

• Scheduling is done by the
hypervisor (VMs) and by each
virtual machines (processes).

• The hypervisor isolates virtual
machines from each other.

3 / 37



.

4 / 37



.

Memory corruption issues are the root-cause of 68% of listed CVEs.

Ben Hawkes analysed 108 CVE since start of Google’s Project Zero in 2014, 0day "In
the Wild" https://googleprojectzero.blogspot.com/p/0day.html (published
2019-05-15)

5 / 37

https://googleprojectzero.blogspot.com/p/0day.html


Goals

• Reducing attack vectors (memory safety),
• Reducing attack surface,
• Reducing run-time complexity,
• Reducing the carbon footprint.

6 / 37



MirageOS unikernel - library operating system

• Each service (i.e. DNS resolver, web server) is a separate MirageOS unikernel
• Functional programming language OCaml with automated memory management
• Only the libraries needed are compiled into the binary
• Libraries are developed independently and reused across unikernels
• Cooperative tasks, no interrupts
• Single address space, single core, single process
• No user management, no process management, no file system, no virtual memory
• Executed as virtual machine

7 / 37



MirageOS Hypervisor integration

SchedulerFile system

Process
Management

Network

Hardware
Drivers

User
Management

System calls, Sockets API

Hypervisor
- Resource management

- Scheduling of VMs

vmm.ko

KVM/qemu KVM/qemusolo5-hvt

VM VM

App App

MirageOS

Virtio Virtiohypercall

Hardware (CPU, disk, NIC, memory)

• Custom solo5-hvt monitor process in the
host system

• Sets up memory, loads unikernel image,
sets up VCPU

• Boot: jmp 0x100000
• Hypercalls: main, yield, argv, clock,
console, block device, network interface

8 / 37



MirageOS unikernel in detail

OCaml runtime

lwt

tender: solo5-hvt

Hypercalls

libmnolibc

TCP/IP

net-solo5

crypto

ASN.1

X.509

TLSRNG

libgmp

Application code

solo5-bindings

C code in a MirageOS unikernel
• OCaml runtime: ~25 kloc
• nolibc: malloc, strcmp, . . . : ~8 kloc
• solo5-bindings: ~2 kloc
• libm: openlibm ~22 kloc

9 / 37



Solo5 - sandboxed execution environment for unikernels

• Resources (memory, network interface, block devices) are allocated statically
• Minimalist hypercall interface (14 functions)
• Bindings for various targets (KVM, Genode, Virtio, seccomp)
• Sandboxed host system tender where applicable
• https://github.com/solo5/solo5

10 / 37

https://github.com/solo5/solo5


Solo5 - compared to virtual machine and container

11 / 37



Solo5 - hardware virtualised tender and sandboxed process tender

12 / 37



Solo5 - separation kernel Muen

• Muen is a tiny separation kernel developed in Ada
• Using SPARK to guarantee memory isolation
• Static resource management (communication
channels, memory, devices)

13 / 37



.

Perfection is achieved, not when there is nothing more to add, but when there
is nothing left to take away.

Antoine de Saint-Exupery (1900 - 1944)

14 / 37



Programming language OCaml

• Multi-paradigm programming language initially released in 1996
• Declarative code is the goal
• Focus on the problem, do not distract with boilerplate
• Abstractions (variables, functions, higher order functions)
• Expressive static type system spots violations at build time
• Type inference allows concise code
• Types are erased during compilation
• Compiles to native machine code

15 / 37



OCaml module system

• Each value is defined in a module (e.g. filename or explicit module)
• Each module has an interface, its signature
• Functors are compile-time functions from module to module, and allow
parametrization, i.e. Map.Make(String)

• In MirageOS, each resource (network interface) has a signature, and target-specific
(virtio, xen, spt) implementations

16 / 37



MirageOS OCaml style

• Using immutable data whenever sensible
• Value passing style: state and data in, state and reply out
• Errors are explicitly declared in the API, and have to be handled by the caller
• Concurrent programming with promises
• Ability to express strong invariants (read-only buffer) in the type system

17 / 37



Case study Bitcoin Piñata

18 / 37



Case study Bitcoin Piñata

• Marketing of our from-scratch TLS
implementation

• Transparent and self-serving security bait
• Web server which contains a private key for
a Bitcoin wallet

• If a peer authenticates (using TLS and
client certificates), it sends the private key

• Online since February 2015 with 10 BTC
until March 2018

• The Piñata was not hacked, the BTC were
only borrowed and reused in other projects

• See http://ownme.ipredator.se

19 / 37

http://ownme.ipredator.se


Size of Bitcoin Piñata unikernel vs openssl on Linux

20 / 37



Performance analysis of nqsb-TLS (2015, on a laptop)

• Throughput

• Handshakes (number per second)

nqsb OpenSSL Polar
RSA 698 723 672
DHE-RSA 601 515 367

21 / 37



Case study CalDAV server

• Developed in 2018 with a grant from Prototypefund
• Interoperable with widely used clients (Android, Linux, macOS)
• Stores data in a remote git repository
• Image size ~10MB (HTTP server, WebDAV, CalDAV, ics, git, IP stack)
• CalDavZAP integration, a calendar in JavaScript
• Demo server at https://calendar.robur.coop (data repository
https://git.robur.io/?p=calendar-data.git)

• Source https://github.com/roburio/caldav

22 / 37

https://calendar.robur.coop
https://git.robur.io/?p=calendar-data.git
https://github.com/roburio/caldav


Resource consumption

23 / 37



CPU consumption

24 / 37



Case study authoritative DNS server

• Domain Name System, used for translating hostnames into Internet addresses
• Authoritative server replies to DNS requests
• Data (zone) is kept in memory, no block device
• Storage in a git remote in zone file format
• Configuration (ip address, git remote, syslog, ..) via boot arguments

• Modification via git commit and push, sending a notify (RFC 1996) to server
• Or DNS update (RFC 2136), authenticated with DNS-TSIG (RFC 2845)
• Successful nsupdate will git push by the server to the repository
• Other servers are notified on update, and start zone transfer (AXFR RFC 5936,
incremental IXFR RFC 1995)

• Image size ~9MB (IP stack, DNS, git, ssh)
• Let’s encrypt integration, signing requests and certificates stored in DNS
• https://hannes.nqsb.io/Posts/DnsServer

25 / 37

https://hannes.nqsb.io/Posts/DnsServer


Case study authoritative DNS server

• Domain Name System, used for translating hostnames into Internet addresses
• Authoritative server replies to DNS requests
• Data (zone) is kept in memory, no block device
• Storage in a git remote in zone file format
• Configuration (ip address, git remote, syslog, ..) via boot arguments

• Modification via git commit and push, sending a notify (RFC 1996) to server
• Or DNS update (RFC 2136), authenticated with DNS-TSIG (RFC 2845)
• Successful nsupdate will git push by the server to the repository
• Other servers are notified on update, and start zone transfer (AXFR RFC 5936,
incremental IXFR RFC 1995)

• Image size ~9MB (IP stack, DNS, git, ssh)
• Let’s encrypt integration, signing requests and certificates stored in DNS
• https://hannes.nqsb.io/Posts/DnsServer

26 / 37

https://hannes.nqsb.io/Posts/DnsServer


Case study authoritative DNS server

• Domain Name System, used for translating hostnames into Internet addresses
• Authoritative server replies to DNS requests
• Data (zone) is kept in memory, no block device
• Storage in a git remote in zone file format
• Configuration (ip address, git remote, syslog, ..) via boot arguments

• Modification via git commit and push, sending a notify (RFC 1996) to server
• Or DNS update (RFC 2136), authenticated with DNS-TSIG (RFC 2845)
• Successful nsupdate will git push by the server to the repository
• Other servers are notified on update, and start zone transfer (AXFR RFC 5936,
incremental IXFR RFC 1995)

• Image size ~9MB (IP stack, DNS, git, ssh)
• Let’s encrypt integration, signing requests and certificates stored in DNS
• https://hannes.nqsb.io/Posts/DnsServer

27 / 37

https://hannes.nqsb.io/Posts/DnsServer


Case study QubesOS firewall

• QubesOS is a "reasonable secure operating system"
• Uses Xen for isolation of workspaces and applications (i.e. pdf
reader)

• Qubes-Mirage-firewall is a small replacement for the
Linux-based firewall in OCaml

• Instead of 300MB, only consumes 32MB resident memory
• Support for dynamic rules for Qubes 4.0 is under review
• https://github.com/mirage/qubes-mirage-firewall

28 / 37

https://github.com/mirage/qubes-mirage-firewall


MirageOS libraries

• https://github.com/mirage
• https://github.com/roburio

29 / 37

https://github.com/mirage
https://github.com/roburio


More MirageOS unikernels

• A picture viewer https://github.com/cfcs/eye-of-mirage
• ssh-agent for Qubes https://github.com/reynir/qubes-mirage-ssh-agent
• Web sites: https://mirage.io, https://nqsb.io
• Canopy serves markdown content from a git repository as website,
https://github.com/Engil/Canopy

• DHCP server https://github.com/mirage/charrua
• OpenVPN client and server https://github.com/roburio/openvpn
• Pastebin clone https://github.com/dinosaure/pasteur
• Pong game https://github.com/cfcs/PongOS
• Z machine (Zork) via telnet https://github.com/mato/flathead
• https://github.com/roburio/unikernels

30 / 37

https://github.com/cfcs/eye-of-mirage
https://github.com/reynir/qubes-mirage-ssh-agent
https://mirage.io
https://nqsb.io
https://github.com/Engil/Canopy
https://github.com/mirage/charrua
https://github.com/roburio/openvpn
https://github.com/dinosaure/pasteur
https://github.com/cfcs/PongOS
https://github.com/mato/flathead
https://github.com/roburio/unikernels


Reproducible builds

• Goal: compile the source multiple times should produce
bit-wise identical output

• Temporary files names, timestamps, etc. may cause
issues

• Our tested MirageOS unikernels are reproducible now
• And we have tooling to check reproducibility
• https://hannes.nqsb.io/Posts/ReproducibleOPAM

31 / 37

https://hannes.nqsb.io/Posts/ReproducibleOPAM


Supply chain security (wip)

• OCaml package authors should sign their releases
• A quorum of repository maintainers can delegate a package to
authors

• Key compromise impact is contained to the delegated packages
of the author

• Rollback, mix-and-match attacks mitigated by snapshot service
• Freeze, slow retrieval attacks mitigated by timestamp service
• Using update framework (Cappos NYU) with augmentation
proposal TAP8

• See https://github.com/hannesm/jackline-opam

32 / 37

https://github.com/hannesm/jackline-opam


Deployment

Conventional orchestration systems
• Lack decent integration of
MirageOS

• mirage generates a libvirt.xml
for each unikernel

• Also .xl and .xe for Xen
unikernels

Albatross
• Minimal orchestration system for
MirageOS unikernels, with optional
remote deployment

• Metrics, console access, multi-tenant
supported (resource policies in CA chain)

• A unikernel image stored in a TLS client
certificate can be deployed remotely

• https://hannes.nqsb.io/Posts/VMM

33 / 37

https://hannes.nqsb.io/Posts/VMM


Community

• Research at University of Cambridge since
2008 (ongoing student projects, etc.)

• Bi-annual hack retreats
http://retreat.mirage.io

• Dogfooding our unikernels (DHCP, DNS)
• Open source contributors from all over the
world

• Docker for Mac and Docker for Windows
use MirageOS libraries

34 / 37

http://retreat.mirage.io


.

Rome ne s’est pas faite en un jour (Rome wasn’t built in a day)

Li Proverbe au Vilain, around 1190

35 / 37



Conclusion

• Radical approach to operating system development
• Security from the ground up (25x - 100x less code)
• Drastically reduced carbon footprint (10x less CPU, 25x less memory)
• Reasonable performance, boots in milliseconds
• Thanks to everybody involved working on this technology stack :D
• We at https://robur.coop develop full-stack MirageOS unikernels

36 / 37

https://robur.coop


Selected related talks

• At radical networks 2019 about QubesOS firewall by Stefanie Schirmer
https://livestream.com/internetsociety/radnets19/videos/197991963

• At FOSDEM 2019 about Solo5 by Martin Lucina
https://fosdem.org/2019/schedule/event/solo5_unikernels/

• At Lambda World 2018 by Romain Calascibetta
https://www.youtube.com/watch?v=urG5BjvjW18

37 / 37

https://livestream.com/internetsociety/radnets19/videos/197991963
https://fosdem.org/2019/schedule/event/solo5_unikernels/
https://www.youtube.com/watch?v=urG5BjvjW18

