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• Unix applications depend on
libraries and configuration files.

• Kernel isolates processes from
each other using virtual memory.

• Compromise is contained to a
single process.

• Privilege escalation by flaws in the
system call API (568 in
sys/syscall.h).
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Hypervisor
- Resource management
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Emulated Hardware and assigned resources

vmm.ko

Kernel

• The hypervisor manages the
resources, and splits them across
virtual machines. Hardware is
emulated.

• Scheduling is done by the
hypervisor (VMs) and by each
virtual machines (processes).

• The hypervisor isolates virtual
machines from each other.
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Memory corruption issues are the root-cause of 68% of listed CVEs.

Ben Hawkes analysed 108 CVE since start of Google’s Project Zero in 2014, 0day "In
the Wild" https://googleprojectzero.blogspot.com/p/0day.html (published
2019-05-15)
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Goals

• Reducing attack vectors (memory safety),
• Reducing attack surface,
• Reducing run-time complexity,
• Reducing the carbon footprint.
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MirageOS unikernel - library operating system

• Each service (i.e. DNS resolver, web server) is a separate MirageOS unikernel
• Functional programming language OCaml with automated memory management
• Only the libraries needed are compiled into the binary
• Libraries are developed independently and reused across unikernels
• Cooperative tasks, no interrupts
• Single address space, single core, single process
• No user management, no process management, no file system, no virtual memory
• Executed as virtual machine
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MirageOS Hypervisor integration
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VM VM
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MirageOS

Virtio Virtiohypercall

Hardware (CPU, disk, NIC, memory)

• Custom solo5-hvt monitor process in the
host system

• Sets up memory, loads unikernel image,
sets up VCPU

• Boot: jmp 0x100000
• Hypercalls: main, yield, argv, clock,
console, block device, network interface
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MirageOS unikernel in detail

OCaml runtime

lwt

tender: solo5-hvt

Hypercalls

libmnolibc
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net-solo5

crypto

ASN.1

X.509

TLSRNG

libgmp

Application code

solo5-bindings

C code in a MirageOS unikernel
• OCaml runtime: ~25 kloc
• nolibc: malloc, strcmp, . . . : ~8 kloc
• solo5-bindings: ~2 kloc
• libm: openlibm ~22 kloc

9 / 37



Solo5 - sandboxed execution environment for unikernels

• Resources (memory, network interface, block devices) are allocated statically
• Minimalist hypercall interface (14 functions)
• Bindings for various targets (KVM, Genode, Virtio, seccomp)
• Sandboxed host system tender where applicable
• https://github.com/solo5/solo5
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Solo5 - compared to virtual machine and container
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Solo5 - hardware virtualised tender and sandboxed process tender
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Solo5 - separation kernel Muen

• Muen is a tiny separation kernel developed in Ada
• Using SPARK to guarantee memory isolation
• Static resource management (communication
channels, memory, devices)
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Perfection is achieved, not when there is nothing more to add, but when there
is nothing left to take away.

Antoine de Saint-Exupery (1900 - 1944)
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Programming language OCaml

• Multi-paradigm programming language initially released in 1996
• Declarative code is the goal
• Focus on the problem, do not distract with boilerplate
• Abstractions (variables, functions, higher order functions)
• Expressive static type system spots violations at build time
• Type inference allows concise code
• Types are erased during compilation
• Compiles to native machine code
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OCaml module system

• Each value is defined in a module (e.g. filename or explicit module)
• Each module has an interface, its signature
• Functors are compile-time functions from module to module, and allow
parametrization, i.e. Map.Make(String)

• In MirageOS, each resource (network interface) has a signature, and target-specific
(virtio, xen, spt) implementations
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MirageOS OCaml style

• Using immutable data whenever sensible
• Value passing style: state and data in, state and reply out
• Errors are explicitly declared in the API, and have to be handled by the caller
• Concurrent programming with promises
• Ability to express strong invariants (read-only buffer) in the type system
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Case study Bitcoin Piñata

18 / 37



Case study Bitcoin Piñata

• Marketing of our from-scratch TLS
implementation

• Transparent and self-serving security bait
• Web server which contains a private key for
a Bitcoin wallet

• If a peer authenticates (using TLS and
client certificates), it sends the private key

• Online since February 2015 with 10 BTC
until March 2018

• The Piñata was not hacked, the BTC were
only borrowed and reused in other projects

• See http://ownme.ipredator.se
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Size of Bitcoin Piñata unikernel vs openssl on Linux
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Performance analysis of nqsb-TLS (2015, on a laptop)

• Throughput

• Handshakes (number per second)

nqsb OpenSSL Polar
RSA 698 723 672
DHE-RSA 601 515 367
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Case study CalDAV server

• Developed in 2018 with a grant from Prototypefund
• Interoperable with widely used clients (Android, Linux, macOS)
• Stores data in a remote git repository
• Image size ~10MB (HTTP server, WebDAV, CalDAV, ics, git, IP stack)
• CalDavZAP integration, a calendar in JavaScript
• Demo server at https://calendar.robur.coop (data repository
https://git.robur.io/?p=calendar-data.git)

• Source https://github.com/roburio/caldav
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Resource consumption
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CPU consumption
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Case study authoritative DNS server

• Domain Name System, used for translating hostnames into Internet addresses
• Authoritative server replies to DNS requests
• Data (zone) is kept in memory, no block device
• Storage in a git remote in zone file format
• Configuration (ip address, git remote, syslog, ..) via boot arguments

• Modification via git commit and push, sending a notify (RFC 1996) to server
• Or DNS update (RFC 2136), authenticated with DNS-TSIG (RFC 2845)
• Successful nsupdate will git push by the server to the repository
• Other servers are notified on update, and start zone transfer (AXFR RFC 5936,
incremental IXFR RFC 1995)

• Image size ~9MB (IP stack, DNS, git, ssh)
• Let’s encrypt integration, signing requests and certificates stored in DNS
• https://hannes.nqsb.io/Posts/DnsServer
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Case study QubesOS firewall

• QubesOS is a "reasonable secure operating system"
• Uses Xen for isolation of workspaces and applications (i.e. pdf
reader)

• Qubes-Mirage-firewall is a small replacement for the
Linux-based firewall in OCaml

• Instead of 300MB, only consumes 32MB resident memory
• Support for dynamic rules for Qubes 4.0 is under review
• https://github.com/mirage/qubes-mirage-firewall
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MirageOS libraries

• https://github.com/mirage
• https://github.com/roburio
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More MirageOS unikernels

• A picture viewer https://github.com/cfcs/eye-of-mirage
• ssh-agent for Qubes https://github.com/reynir/qubes-mirage-ssh-agent
• Web sites: https://mirage.io, https://nqsb.io
• Canopy serves markdown content from a git repository as website,
https://github.com/Engil/Canopy

• DHCP server https://github.com/mirage/charrua
• OpenVPN client and server https://github.com/roburio/openvpn
• Pastebin clone https://github.com/dinosaure/pasteur
• Pong game https://github.com/cfcs/PongOS
• Z machine (Zork) via telnet https://github.com/mato/flathead
• https://github.com/roburio/unikernels
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Reproducible builds

• Goal: compile the source multiple times should produce
bit-wise identical output

• Temporary files names, timestamps, etc. may cause
issues

• Our tested MirageOS unikernels are reproducible now
• And we have tooling to check reproducibility
• https://hannes.nqsb.io/Posts/ReproducibleOPAM
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Supply chain security (wip)

• OCaml package authors should sign their releases
• A quorum of repository maintainers can delegate a package to
authors

• Key compromise impact is contained to the delegated packages
of the author

• Rollback, mix-and-match attacks mitigated by snapshot service
• Freeze, slow retrieval attacks mitigated by timestamp service
• Using update framework (Cappos NYU) with augmentation
proposal TAP8

• See https://github.com/hannesm/jackline-opam
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Deployment

Conventional orchestration systems
• Lack decent integration of
MirageOS

• mirage generates a libvirt.xml
for each unikernel

• Also .xl and .xe for Xen
unikernels

Albatross
• Minimal orchestration system for
MirageOS unikernels, with optional
remote deployment

• Metrics, console access, multi-tenant
supported (resource policies in CA chain)

• A unikernel image stored in a TLS client
certificate can be deployed remotely

• https://hannes.nqsb.io/Posts/VMM
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Community

• Research at University of Cambridge since
2008 (ongoing student projects, etc.)

• Bi-annual hack retreats
http://retreat.mirage.io

• Dogfooding our unikernels (DHCP, DNS)
• Open source contributors from all over the
world

• Docker for Mac and Docker for Windows
use MirageOS libraries
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Rome ne s’est pas faite en un jour (Rome wasn’t built in a day)

Li Proverbe au Vilain, around 1190
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Conclusion

• Radical approach to operating system development
• Security from the ground up (25x - 100x less code)
• Drastically reduced carbon footprint (10x less CPU, 25x less memory)
• Reasonable performance, boots in milliseconds
• Thanks to everybody involved working on this technology stack :D
• We at https://robur.coop develop full-stack MirageOS unikernels
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Selected related talks

• At radical networks 2019 about QubesOS firewall by Stefanie Schirmer
https://livestream.com/internetsociety/radnets19/videos/197991963

• At FOSDEM 2019 about Solo5 by Martin Lucina
https://fosdem.org/2019/schedule/event/solo5_unikernels/

• At Lambda World 2018 by Romain Calascibetta
https://www.youtube.com/watch?v=urG5BjvjW18
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