CRE 0.2.5 (2024-4-21)
Added
- A copy of inTrees package source code.
Removed
- The inTrees package dependency
CRE 0.2.5 (2023-12-6)
Added
- Add (vanilla) Stability Selection (without Error Control).
max_rules hyper parameters for max rules
filtering.
- Uncertainty Quantification in estimation by bootstrapping.
B hyper-parameter,
subsample hyper-parameter.
rules(implicit form) in cre() function return.
- predict() function for ITE estimation via CRE.
Changed
- Type
stability_selection binary -> string
(‘no’,‘vanilla’,‘error_control’).
- Unify
ntrees_gbm hyper-parameter and
ntrees_gbm hyper-parameter in ntrees
hyper-parameter.
- In rules generation retrieve decision rules also from internal
nodes, and not just from terminal nodes.
ite_method_dis, ite_method_inf
method-parameter -> ite_method.
ps_method_dis, ps_method_inf
method-parameter -> learner_ps.
oreg_method_dis, oreg_method_inf
method-parameter -> learner_y.
Removed
max_nodes hyper-parameter.
- Remove rules generation by Generalized Boosted Regression.
replace hyper-parameter.
penalty_rl hyper-parameter.
t_pvalue hyper-parameter.
ite_pred from cre() function return.
Bug fixes
- Error saving covariates name in CRE result when using
intervention_vars.
CRE 0.2.4 (2023-6-14)
Changed
- Method paper description is updated.
CRE 0.2.3 (2023-4-27)
Removed
- Bayesian Causal Forest (
bcf) ITE estimator is not
supported.
CRE 0.2.2 (2023-4-17)
Changed
- Fixed failing unit tests on specific operating systems.
CRE 0.2.1 (2023-3-17)
Changed
- Replace BATE with ATE in CATE Linear Decomposition.
- Update
plot() function (remove ATE, old BATE, and
explicit AATEs).
Added
Removed
- Causal Tree benchmark in functional tests.
Bug fixes
- Rank-Deficient Rule Matrix Issue (redundant rules).
- Intervention Variables Filtering (ordered filtering).
CRE 0.2.0 (2023-1-19)
Changed
offset method-parameter -> hyper-parameter
estimate_ite_poisson function ->
estimate_ite_tpoisson
max_dacay hyper-parameter ->
t_decay.
interpret_select_rules function ->
interpret_rules.
generate_causal_rules function ->
discover_rules.
discover_causal_rules function
->select_rules.
offset_name method parameter ->
offset.
- Hyper and method parameters are no more required arguments for
cre.
cre object: added parameters and ite estimation.
Added
- Synthetic data set with 1 or 3 rules
(
generate_cre_dataset).
- S-Learner (
slearner) method for ITE estimation.
- T-Learner (
tlearner) method for ITE estimation.
- X-Learner (
xlearner) method for ITE estimation.
- Rules Selection description in
summary.cre.
verbose parameter in summary.cre.
ite, additional cre input parameter to use
personalized ite estimations.
- Default values for hyper parameters.
- Default values for method parameters.
- Simulation experiments for estimation
(
estimation.R).
- Simulation experiments for discovery
(
discovery.R).
extract_effect_modifiers function (utility for
performance evaluation).
evaluate function for discovery evaluation.
confounding parameter in
generate_cre_dataset to set confounding type.
ite_pred and model in CRE results.
binary_covariates parameter in
generate_cre_dataset to set covariates domain.
Removed
include_ps_inf method-parameter.
include_ps_dis method-parameter.
oreg method for ITE estimation.
ipw method for ITE estimation.
sipw method for ITE estimation.
- ITE standard deviation estimation.
type_decay hyper-parameter.
- Keep only
linreg for CATE estimation (remove
cate_method and cate_SL_library
parameters).
method_params and hyper_params additional
parameters in summary.cre.
- ite standardization for Rules Generation.
random_state parameter.
include_offset method parameter.
Bug fixes
- Rules Generation Issue (set rules length and fix
bootstrapping).
CRE 0.1.1 (2022-10-18)
Changed
binary parameter in generate_cre_dataset
-> binary_outcome .
filter_cate hyper-parameter ->
t_pvalue.
t_anom hyper-parameter -> t_ext.
effect_modifier hyper-parameter ->
intervention_vars.
lasso_rules_filter function ->
discover_causal_rules.
split_data function ->
honest_splitting.
prune_rules function ->
`filter_irrelevant_rules.
discard_correlated_rules function ->
filter_correlated_rules.
discard_anomalous_rules function ->
filter_extreme_rules.
Added
- Weighted LASSO for Causal Rules Discovery (by
penalty_rl hyper-parameter).
CRE 0.1.0 (2022-10-17)
Changed
- Update examples and tests for all functions.
q hyper-parameter -> cutoff.
pfer_val hyper-parameter -> pfer.
select_causal_rules function ->
lasso_rules_filter.
t hyper-parameter -> t_anom.
- Separate standardization, and remove filtering from
generate_rules_matrix function.
summary.cre function to describe results.
min_nodes hyper-parameter -> node_size
(randomForest convention).
cre returns an S3 object.
Added
- Examples and tests for all functions.
prune_rules function to discard un-predictive
rules.
discard_anomalous_rules function to discard anomalous
rules (see t_corr hyper-parameter.).
discard_correlated_rules function to discard correlated
rules (see t_anom hyper-parameter).
effect_modifiers parameter in
generate_rules function for covariates filtering.
generate_causal_rules function.
- Helper function with
SuperLearner package for
propensity score estimation in estimate_ite_xyz.
- Five methods for CATE estimation (
poisson,
DRLearner, bart-baggr, cf-means,
linreg) in estimate_cate function.
- (
ps_method_dis, ps_method_inf,
or_method_dis, or_method_inf,
cate_SL_library) method-parameters to complement
SuperLearner package.
cate_method method-parameter to select CATE estimation
method.
filter_cate method-parameter for estimation
filtering.
p parameter (in generate_cre_dataset
function) to set the number of covariates.
replace parameter (in generate_rules
function) to allow bootstrapping.
cre.print generic function to print cre S3
object results.
cre.summary generic functions to summarize
cre S3 object Results.
check_input function to isolate input checks.
estimate_ite_aipw function for augmented inverse
propensity weighting.
plot.cre generic function to plot cre S3
object results.
test-cre_functional.R to test the functionality of the
package.
stability_selection function for causal rules
selection.
Removed
estimate_ite_blp function.
take1() function.
Bug fixes
- Undesired ‘All’ Decision Rule Issue.
- No Causal Rule Selected Issue.
CRE 0.0.1 (2021-10-20)
Changed
estimate_cate include two methods for estimating the
CATE values.
cre added initial checks for binary outcome and whether
to include the propensity score in the ITE estimation.
estimate_ite_xyz conduct propensity score estimation
using helper function.
Added
- Example for
generate_cre_dataset.
set_logger and get_logger.
check_input_data function.
generate_cre_dataset function to generate synthetic
data for testing the package.
test-generate_cre_dataset function test.
estimate_ps function to estimate the propensity
score.
estimate_ite_xbart function to generate ITE estimates
using accelerated BART.
estimate_ite_xbcf function to generate ITE estimates
using accelerated BCF.
analyze_sensitivity function to conduct sensitivity
analysis for unmeasured confounding.
cre function to perform the entire Causal Rule Ensemble
method.
estimate_cate function to generate CATE estimates from
the ITE estimates and select rules.
estimate_ite function to generate ITE estimates using
the user-specified method (calls the other estimate_ite_xyz
functions).
estimate_ite_bart function to generate ITE estimates
using BART.
estimate_ite_bcf function to generate ITE estimates
using Bayesian Causal Forests.
estimate_ite_cf function to generate ITE estimates
using Causal Forests.
estimate_ite_ipw function to generate ITE estimates
using IPW.
estimate_ite_or function to generate ITE estimates
using Outcome Regression.
estimate_ite_sipw function to generate ITE estimates
using SIPW.
extract_rules function to extract a list of causal
rules from randomForest and GBM models.
generate_rules function to generate causal rule models
using randomForest and GBM methods.
generate_rules_matrix function to convert a list of
causal rules into a matrix.
select_causal_rules function to apply penalized
regression to causal rules. to select only the most important ones.
split_data function to split input data into discovery
and inference subsamples.
take1 function to create a subsample of indices.
Removed
seed argument in generate_cre_datase
function.