Package 'CompositionalSR'

October 23, 2025

Type Package				
Title Spatial Regression Models with Compositional Data				
Version 1.0				
Date 2025-10-17				
Author Michail Tsagris [aut, cre]				
Maintainer Michail Tsagris <mtsagris@uoc.gr></mtsagris@uoc.gr>				
Depends R (>= 4.0)				
Imports blockCV, Compositional, doParallel, foreach, minpack.lm, parallel, Rfast, sf, stats				
Suggests Rfast2				
Description Spatial regression models with compositional responses using the alphatransformation. Relevant papers include: Tsagris M. (2025), <doi:10.48550 arxiv.2510.12663="">, Tsagris M. (2015), <https: 02="" 06="" chjs="" soche.cl="" tsagris(2015).pdf="" volumes="">, Tsagris M.T., Preston S. and Wood A.T.A. (2011), <doi:10.48550 arxiv.1106.1451="">.</doi:10.48550></https:></doi:10.48550>				
License GPL (>= 2)				
LazyData true				
NeedsCompilation no				
Repository CRAN				
Date/Publication 2025-10-23 13:50:08 UTC				
Contents				
CompositionalSR-package Computation of the contiguity matrix W fadn Leave-one-out cross-validation for the alpha-SLX model Leave-one-out cross-validation for the GWalphaR model Marginal effects for the alpha-regression model Marginal effects for the alpha-SLX model Marginal effects for the GWalphaR model				

	Prediction with the GWalphaR model	12
	Regression with compositional data using the alpha-transformation	14
	Spatial k-folds	10
	The alpha-SLX model	17
	The GWalphaR model	19
	Tuning the value of alpha in the alpha-regression	20
Index		22

CompositionalSR-package

Spatial Regression Models with Compositional Data

Description

Spatial regression models with compositional responses using the α -transformation. The models includes are the α -regression (not spatial), the α -spatially lagged X (α -SLX) model and the geographically weighted α -regression (GW α R) model.

Details

Package: CompositionalSR

Type: Package Version: 1.0

Date: 2025-10-17 License: GPL-2

Maintainers

Michail Tsagris <mtsagris@uoc.gr>

Author(s)

Michail Tsagris <mtsagris@uoc.gr>.

References

Tsagris M. (2025). The α -regression for compositional data: a unified framework for standard, spatially-lagged, and geographically-weighted regression models. https://arxiv.org/pdf/2510.12663

Tsagris M. (2015). Regression analysis with compositional data containing zero values. Chilean Journal of Statistics, 6(2): 47-57. https://arxiv.org/pdf/1508.01913v1.pdf

Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf

Computation of the contiguity matrix W $Computation \ of \ the \ contiguity \ matrix \ W$

Description

Computation of the contiguity matrix W.

Usage

```
contiguity(coords, k = 10)
```

Arguments

coords A matrix with the coordinates of the locations. The first column is the latitude

and the second is the longitude.

k The number of nearest neighbours to consider for the contiguity matrix.

Value

The contiguity matrix W. A square matrix with row standardised values (the elements of each row sum to 1).

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

See Also

```
alfa.slx, cv.alfaslx, me.aslx
```

```
data(fadn)
W <- contiguity(fadn[, 1:2])</pre>
```

4 fadn

fadn

FADN dataset

Description

A matrix with 11 columns. The first two are the locations (latitude and longitude), the next five contain the compositional data (percentages of cultivated area of five crops), Y1.1: cereals, Y2.1: cotton, Y3.1: tree crops, Y4.1: other annual crops and pasture and Y5.1: grapes and wine. The next four columns contain the covariates, G1: Human Influence Index, G2: soil pH, G3: topsoil organic carbon content and G7: erosion.

Usage

fadn

Format

A matrix with 168 rows and 11 columns.

Source

Clark and Dixon (2021), available at https://github.com/nick3703/Chicago-Data.

References

Clark, N. J. and P. M. Dixon (2021). A class of spatially correlated self-exciting statistical models. *Spatial Statistics*, 43, 1–18.

See Also

```
alfa.slx, gwar, alfa.reg
```

```
data(fadn)
y <- fadn[, 3:7]
x <- fadn[, 8:11]
mod <- alfa.reg(y, x, a = 0.1)</pre>
```

Leave-one-out cross-validation for the alpha-SLX model $Leave-one-out\ cross-validation\ for\ the\ \alpha\text{-}SLX\ model$

Description

Leave-one-out cross-validation for the α -SLX model

Usage

```
cv.alfaslx(y, x, a = seq(0.1, 1, by = 0.1), coords, k = 2:15, nfolds = 10, folds = NULL)
```

Arguments

У	A matrix with compositional data. zero values are allowed.
x	A matrix with the continuous predictor variables or a data frame including categorical predictor variables.
a	The value of the power transformation, it has to be between -1 and 1. If zero values are present it has to be greater than 0. If $\alpha=0$ the isometric log-ratio transformation is applied.
coords	A matrix with the coordinates of the locations. The first column is the latitude and the second is the longitude.
k	A vector with the nearest neighbours to consider for the contiguity matrix.
nfolds	The number of folds to split the data.
folds	If you have the list with the folds supply it here. You can also leave it NULL and it will create folds.

Details

The α -transformation is applied to the compositional data and the numerical optimisation is performed for the regression, unless $\alpha = 0$, where the coefficients are available in closed form.

Value

A list including:

runtime The runtime required by the cross-validation.

perf A vector with the Kullback-Leibler divergence of the observed from the fitted

values. Every value corresponds to a value of α .

opt A vector with the minimum Kullback-Leibler divergence, the optimal value of

 α and k.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

Tsagris M. (2025). The α -regression for compositional data: a unified framework for standard, spatially-lagged, and geographically-weighted regression models. https://arxiv.org/pdf/2510.12663

Tsagris M. (2015). Regression analysis with compositional data containing zero values. Chilean Journal of Statistics, 6(2): 47-57. https://arxiv.org/pdf/1508.01913v1.pdf

Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf

See Also

```
alfa.slx, cv.gwar cv.alfareg
```

Examples

```
data(fadn)
coords <- fadn[1:100, 1:2]
y <- fadn[1:100, 3:7]
x <- fadn[1:100, 8]
mod <- cv.alfaslx(y, x, a = 0.5, coords, k = 2)</pre>
```

Leave-one-out cross-validation for the GWalphaR model $Leave-one-out\ cross-validation\ for\ the\ GW\alpha R\ model$

Description

Leave-one-out cross-validation for the $GW\alpha R$ model

Usage

```
cv.gwar(y, x, a = c(0.1, 0.25, 0.5, 0.75, 1), coords, h, nfolds = 10, folds = NULL)
```

Arguments

У	A matrix with compositional data. zero values are allowed.
x	A matrix with the continuous predictor variables or a data frame including categorical predictor variables.
a	The value of the power transformation, it has to be between -1 and 1. If zero values are present it has to be greater than 0. If $\alpha=0$ the isometric log-ratio transformation is applied.
coords	A matrix with the coordinates of the locations. The first column is the latitude and the second is the longitude.
h	A vector with bandwith values.
nfolds	The number of folds to split the data.
folds	If you have the list with the folds supply it here. You can also leave it NULL and it will create folds.

Details

The α -transformation is applied to the compositional data and the numerical optimisation is performed for the regression, unless $\alpha = 0$, where the coefficients are available in closed form.

Value

A list including:

runtime The runtime required by the cross-validation.

perf A matrix with the Kullback-Leibler divergence of the observed from the fitted

values. Each row corresponds to a value of α and each column to a value of h.

opt A vector with the minimum Kullback-Leibler divergance, the optimal value of

 α and h.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

Tsagris M. (2025). The α -regression for compositional data: a unified framework for standard, spatially-lagged, and geographically-weighted regression models. https://arxiv.org/pdf/2510.12663

Tsagris M. (2015). Regression analysis with compositional data containing zero values. Chilean Journal of Statistics, 6(2): 47-57. https://arxiv.org/pdf/1508.01913v1.pdf

Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf

See Also

```
gwar, me.gwar cv.alfaslx
```

```
data(fadn)
coords <- fadn[, 1:2]
y <- fadn[, 3:7]
x <- fadn[, 8]
mod <- gwar(y, x, a = 1, coords, h = 0.001)</pre>
```

Marginal effects for the alpha-regression model ${\it Marginal\ effects\ for\ the\ } \alpha\text{-}{\it regression\ model}$

Description

Marginal effects for the α -regression model.

Usage

```
me.ar(be, mu, x, cov_be = NULL)
```

Arguments

be A matrix with the beta regression coefficients of the α -regression model. The fitted values of the α -regression.

x A matrix with the continuous predictor variables or a data frame. Categorical

predictor variables are not suited here.

cov_be The covariance matrix of the beta regression coefficients. If you pass this argu-

ment, then the standard error of the average marginal effects will be returned.

Details

The α -transformation is applied to the compositional data first and then the α -regression model is applied.

Value

A list including:

me An array with the marginal effects of each component for each predictor vari-

able.

ame The average marginal effects of each component for each predictor variable.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

Tsagris M. (2015). Regression analysis with compositional data containing zero values. Chilean Journal of Statistics, 6(2): 47-57. https://arxiv.org/pdf/1508.01913v1.pdf

Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf

See Also

```
me.aslx, me.gwar, alfa.reg
```

Examples

```
data(fadn)
y <- fadn[, 3:7]
x <- fadn[, 8]
mod <- alfa.reg(y, x, 0.2, xnew = x)
me <- me.ar(mod$be, mod$est, x)</pre>
```

Marginal effects for the alpha-SLX model ${\it Marginal\ effects\ for\ the\ } \alpha\text{-}{\it SLX\ model}$

Description

Marginal effects for the α -SLX model.

Usage

```
me.aslx(be, gama, mu, x, coords, k = 10, cov_theta = NULL)
```

Arguments

be	A matrix with the beta coefficients of the α -SLX model.
gama	A matrix with the gamma coefficients of the α -SLX model.
mu	The fitted values of the α -SLX model.
х	A matrix with the continuous predictor variables or a data frame. Categorical predictor variables are not suited here.
coords	A matrix with the coordinates of the locations. The first column is the latitude and the second is the longitude.
k	The number of nearest neighbours to consider for the contiguity matrix.
cov_theta	The covariance matrix of the beta and gamma regression coefficients. If you pass this argument, then the standard error of the average marginal effects will be returned.

Details

The α -transformation is applied to the compositional data first and then the α -SLX model is applied.

Value

	1.			
Δ	lict	inc	ludin	α .
Γ	1131	1110	ıuuııı	۲.

me.dir	An array with the direct marginal effects of each component for each predictor variable.
me.indir	An array with the indirect marginal effects of each component for each predictor variable.
me.total	An array with the total marginal effects of each component for each predictor variable.
ame.dir	An array with the average direct marginal effects of each component for each predictor variable.
ame.indir	An array with the average indirect marginal effects of each component for each predictor variable.
ame.total	An array with the aerage total marginal effects of each component for each predictor variable.
se.amedir	An array with the standard errors of the average direct marginal effects of each component for each predictor variable. This is returned if you supply the covariance matrix cov_theta.
se.ameindir	An array with the standard errors of the average indirect marginal effects of each component for each predictor variable. This is returned if you supply the covariance matrix cov_theta.
se.ametotal	An array with the standard errors of the average total marginal effects of each component for each predictor variable. This is returned if you supply the covariance matrix cov_theta.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

Tsagris M. (2025). The α -regression for compositional data: a unified framework for standard, spatially-lagged, and geographically-weighted regression models. https://arxiv.org/pdf/2510.12663

Tsagris M. (2015). Regression analysis with compositional data containing zero values. Chilean Journal of Statistics, 6(2): 47-57. https://arxiv.org/pdf/1508.01913v1.pdf

Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf

See Also

```
me.gwar, me.ar, alfa.slx
```

Examples

```
 \begin{array}{l} \mbox{data(fadn)} \\ \mbox{coords} <- \mbox{fadn[, 1:2]} \\ \mbox{y} <- \mbox{fadn[, 3:7]} \\ \mbox{x} <- \mbox{fadn[, 8]} \\ \mbox{mod} <- \mbox{alfa.slx(y, x, a = 0.5, coords, k = 10, xnew = x, coordsnew = coords)} \\ \mbox{me} <- \mbox{me.aslx(mod$be, mod$gama, mod$est, x, coords, k = 10)} \\ \end{array}
```

```
Marginal effects for the GWalphaR model 
 {\it Marginal\ effects\ for\ the\ GW} \alpha {\it R\ model}
```

Description

Marginal effects for the $GW\alpha R$ model.

Usage

```
me.gwar(be, mu, x)
```

Arguments

be A matrix with the beta regression coefficients of the α -regression model.

mu The fitted values of the α -regression.

x A matrix with the continuous predictor variables or a data frame. Categorical

predictor variables are not suited here.

Details

The location-specific marginal effects for the GW α R model are computed.

Value

A list including:

me An array with the location-specific marginal effects of each component for each

predictor variable.

ame The average location-specific marginal effects of each component for each pre-

dictor variable.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

Tsagris M. (2025). The α -regression for compositional data: a unified framework for standard, spatially-lagged, and geographically-weighted regression models. https://arxiv.org/pdf/2510.12663

Tsagris M. (2015). Regression analysis with compositional data containing zero values. Chilean Journal of Statistics, 6(2): 47-57. https://arxiv.org/pdf/1508.01913v1.pdf

Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf

See Also

```
gwar, me.aslx, me.ar
```

Examples

```
data(fadn)
coords <- fadn[, 1:2]
y <- fadn[, 3:7]
x <- fadn[, 8]
mod <- gwar(y, x, a = 1, coords, h = 0.001)
me <- me.gwar(mod$be, mod$est, x)</pre>
```

Prediction with the GWalphaR model

Prediction with the GW α R model

Description

Prediction with $GW\alpha R$ model.

Usage

```
gwar.pred(y, x, a, coords, h, xnew, coordsnew)
```

Arguments

У	A matrix with the compositional data.
Х	A matrix with the continuous predictor variables or a data frame including categorical predictor variables.
a	A vector with values for the power transformation, it has to be between -1 and 1.
coords	A matrix with the coordinates of the locations. The first column is the latitude and the second is the longitude.
h	A vector with bandwith values.
xnew	The new data.
coordsnew	A matrix with the coordinates of the new locations. The first column is the

latitude and the second is the longitude.

Details

The α -transformation is applied to the compositional data first and then the GW α R model is applied and predictions are given for each observation.

Value

A list including:

runtime The time required by the regression.

est A list with the fitted values, for each combination of α and h.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

Tsagris M. (2025). The α -regression for compositional data: a unified framework for standard, spatially-lagged, and geographically-weighted regression models. https://arxiv.org/pdf/2510.12663

Tsagris M. (2015). Regression analysis with compositional data containing zero values. Chilean Journal of Statistics, 6(2): 47-57. https://arxiv.org/pdf/1508.01913v1.pdf

Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf

See Also

```
cv.gwar, me.gwar, alfa.slx, alfa.reg
```

```
data(fadn)
coords <- fadn[-c(1:10), 1:2]
y <- fadn[-c(1:10), 3:7]
x <- fadn[-c(1:10), 8]
xnew <- fadn[1:10, 8]
coordsnew <- fadn[1:10, 1:2]
mod <- gwar.pred(y, x, a = c(0.25, 0.5, 1), coords,
h = c(0.002, 0.006), xnew = xnew, coordsnew = coordsnew)</pre>
```

Regression with compositional data using the alpha-transformation Regression with compositional data using the α -transformation

Description

Regression with compositional data using the α -transformation.

Usage

```
alfa.reg(y, x, a, covb = FALSE, xnew = NULL, yb = NULL)
alfa.reg2(y, x, a, xnew = NULL)
```

Arguments

y A matrix with the compositional data.

x A matrix with the continuous predictor variables or a data frame including cate-

gorical predictor variables.

a The value of the power transformation, it has to be between -1 and 1. If zero

values are present it has to be greater than 0. If $\alpha=0$ the isometric log-ratio transformation is applied and the solution exists in a closed form, since it the classical mutivariate regression. For the alfa.reg2() this should be a vector of α values and the function call repeatedly the alfa.reg() function. For the alfa.reg3() function it should be a vector with two values, the endpoints of the interval of α . This function searches for the optimal value of α that minimizes the sum of squares of the errors. Using the optimize function it searches for the optimal value of α . Instead of choosing the value of α using cv.alfareg (that uses

cross-validation) one can select it this way.

covb If this is FALSE, the covariance matrix of the coefficients will not be returned.

If however you set it equal to TRUE and the covariance matrix is not returned it

means it was singular.

xnew If you have new data use it, otherwise leave it NULL.

If you have already transformed the data using the α -transformation with the

same α as given in the argument "a", put it here. Othewrise leave it NULL.

This is intended to be used in the function cv.alfareg in order to speed up the process. The time difference in that function is small for small samples. But, if you have a few thousands and or a few more components, there will be bigger

differences.

Details

yb

The α -transformation is applied to the compositional data first and then multivariate regression is applied. This involves numerical optimisation. The alfa.reg2() function accepts a vector with many values of α , while the the alfa.reg3() function searches for the value of α that minimizes the Kulback-Leibler divergence between the observed and the fitted compositional values. The functions are highly optimized.

Value

For the alfa.reg() function a list including:

runtime The time required by the regression.

be The beta coefficients.

covb The covariance matrix of the beta coefficients, or NULL if it is singular.

est The fitted values for xnew if xnew is not NULL.

For the alfa.reg2() function a list with as many sublists as the number of values of α . Each element (sublist) of the list contains the beta coefficients and the fitted values.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

Tsagris M. (2015). Regression analysis with compositional data containing zero values. Chilean Journal of Statistics, 6(2): 47-57. https://arxiv.org/pdf/1508.01913v1.pdf

Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf

Mardia K.V., Kent J.T., and Bibby J.M. (1979). Multivariate analysis. Academic press.

Aitchison J. (1986). The statistical analysis of compositional data. Chapman & Hall.

See Also

```
cv.alfareg, alfa.slx
```

```
data(fadn)
y <- fadn[, 3:7]
x <- fadn[, 8]
mod <- alfa.reg(y, x, 0.2)</pre>
```

Spatial k-folds

Spatial k-folds

Spatial k-folds

Description

Spatial k-folds.

Usage

```
spat.folds(coords, nfolds = 10)
```

Arguments

coords A matrix with the coordinates of the locations. The first column is the latitude

and the second is the longitude.

nfolds The number of spatial folds to create.

Details

Folds of data are created based on their coordinates. For more information see the package block CV.

Value

A list with nfolds elements. Each elements contains a list with two elements, the first is the indices of the training set and the second contains the indices of the test set.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

See Also

```
cv.alfaslx, me.aslx, gwar, alfa.reg
```

```
data(fadn)
coords <- fadn[, 1:2]
folds <- spat.folds(coords, nfolds = 10)</pre>
```

The alpha-SLX model $The \ \alpha\text{-}SLX \ model$

Description

The $\alpha\text{-}\mathrm{SLX}$ model.

Usage

```
alfa.slx(y, x, a, coords, k = 10, covb = FALSE, xnew = NULL, coordsnew, yb = NULL)
```

Arguments

8	
У	A matrix with the compositional data.
x	A matrix with the continuous predictor variables or a data frame including categorical predictor variables.
a	The value of the power transformation, it has to be between -1 and 1. If zero values are present it has to be greater than 0. If $\alpha=0$ the isometric log-ratio transformation is applied and the solution exists in a closed form, since it the classical mutivariate regression.
coords	A matrix with the coordinates of the locations. The first column is the latitude and the second is the longitude.
k	The number of nearest neighbours to consider for the contiguity matrix.
covb	If this is FALSE, the covariance matrix of the coefficients will not be returned. If however you set it equal to TRUE and the covariance matrix is not returned it means it was singular.
xnew	If you have new data use it, otherwise leave it NULL.
coordsnew	A matrix with the coordinates of the new locations. The first column is the latitude and the second is the longitude. If you do not have new data to make predictions leave this NULL.
yb	If you have already transformed the data using the α -transformation with the same α as given in the argument "a", put it here. Othewrise leave it NULL.
	This is intended to be used in the function cv.alfareg in order to speed up the process. The time difference in that function is small for small samples. But, if you have a few thousands and or a few more components, there will be bigger differences.

Details

The α -transformation is applied to the compositional data first and then the spatially lagged X (SLX) model is applied.

Value

A list including:

runtime The time required by the regression.

be The beta coefficients.

gama The gamma coefficients.

covb The covariance matrix of the beta coefficients, or NULL if it is singular. If it

is returned, the upper left block is the covariance matrix of the beta coefficients and the lower right block is the covariance matrix of the gama coefficients. It is in this way so as to pass it on to the marginal effects function me.aslx, if

necessary.

est The fitted values for xnew if xnew is not NULL.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

Tsagris M. (2025). The α -regression for compositional data: a unified framework for standard, spatially-lagged, and geographically-weighted regression models. https://arxiv.org/pdf/2510.12663

Tsagris M. (2015). Regression analysis with compositional data containing zero values. Chilean Journal of Statistics, 6(2): 47-57. https://arxiv.org/pdf/1508.01913v1.pdf

Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf

See Also

```
cv.alfaslx, me.aslx, gwar, alfa.reg
```

```
data(fadn)
coords <- fadn[, 1:2]
y <- fadn[, 3:7]
x <- fadn[, 8]
mod <- alfa.slx(y, x, a = 0.5, coords, k = 10)</pre>
```

The GWalphaR model 19

The GWalphaR	model	The $GW \alpha R$ model
--------------	-------	-------------------------

Description

The GW α R model.

Usage

```
gwar(y, x, a, coords, h, yb = NULL, nc = 1)
```

Arguments

у	A matrix with the compositional data.
X	A matrix with the continuous predictor variables or a data frame including categorical predictor variables.
а	The value of the power transformation, it has to be between -1 and 1.
coords	A matrix with the coordinates of the locations. The first column is the latitude and the second is the longitude.
h	The bandwith value.
yb	If you have already transformed the data using the α -transformation with the same α as given in the argument "a", put it here. Othewrise leave it NULL.
nc	The number of cores to use. IF you have a multicore computer it is advisable to use more than 1. It makes the procedure faster. It is advisable to use it if you have many observations and or many variables, otherwise it will slow down th process.

Details

The α -transformation is applied to the compositional data first and then the GW α R model is applied.

Value

A list including:

runtime The time required by the regression.

be The beta coefficients.
est The fitted values.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

Tsagris M. (2025). The α -regression for compositional data: a unified framework for standard, spatially-lagged, and geographically-weighted regression models. https://arxiv.org/pdf/2510.12663

Tsagris M. (2015). Regression analysis with compositional data containing zero values. Chilean Journal of Statistics, 6(2): 47-57. https://arxiv.org/pdf/1508.01913v1.pdf

Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf

See Also

```
cv.gwar, me.gwar, alfa.slx, alfa.reg
```

Examples

```
data(fadn)
coords <- fadn[, 1:2]
y <- fadn[, 3:7]
x <- fadn[, 8]
mod <- gwar(y, x, a = 1, coords, h = 0.001)</pre>
```

Tuning the value of alpha in the alpha-regression Tuning the value of α in the α -regression

Description

Tuning the value of α in the α -regression.

Usage

```
cv.alfareg(y, x, a = seq(0.1, 1, by = 0.1), nfolds = 10, folds = NULL, nc = 1, seed = NULL)
```

Arguments

у	A matrix with compositional data. zero values are allowed.
х	A matrix with the continuous predictor variables or a data frame including categorical predictor variables.
a	The value of the power transformation, it has to be between -1 and 1. If zero values are present it has to be greater than 0. If $\alpha=0$ the isometric log-ratio transformation is applied.
nfolds	The number of folds to split the data.
folds	If you have the list with the folds supply it here. You can also leave it NULL and it will create folds.

nc The number of cores to use. IF you have a multicore computer it is advisable to

use more than 1. It makes the procedure faster. It is advisable to use it if you have many observations and or many variables, otherwise it will slow down th

process.

seed You can specify your own seed number here or leave it NULL.

Details

Tuning the value of α in the α -regression takes place using k-fold cross-validation.

Value

A list including:

runtime The runtime required by the cross-validation.

perf A vector with the Kullback-Leibler divergence of the observed from the fitted

values. Every value corresponds to a value of α .

opt A vector with the minimum Kullback-Leibler divergence and the optimal value

of α .

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

Tsagris M. (2025). The α -regression for compositional data: a unified framework for standard, spatially-lagged, and geographically-weighted regression models. https://arxiv.org/pdf/2510.12663

Tsagris M. (2015). Regression analysis with compositional data containing zero values. Chilean Journal of Statistics, 6(2): 47-57. https://arxiv.org/pdf/1508.01913v1.pdf

Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf

See Also

```
alfa.reg, cv.alfaslx, cv.gwar, me.ar
```

```
data(fadn)
y <- fadn[, 3:7]
x <- fadn[, 8]
mod <- cv.alfareg(y, x, a = c(0.5, 1))</pre>
```

Index

```
alfa.reg, 4, 9, 13, 16, 18, 20, 21
                                                Marginal effects for the alpha-SLX
alfa.reg(Regression with
                                                        model, 9
        compositional data using the
                                                Marginal effects for the GWalphaR
        alpha-transformation), 14
                                                        model, 11
                                                me.ar, 10, 12, 21
alfa.reg2(Regression with
        compositional data using the
                                                me.ar (Marginal effects for the
        alpha-transformation), 14
                                                        alpha-regression model), 8
alfa.slx, 3, 4, 6, 10, 13, 15, 20
                                                me.aslx, 3, 9, 12, 16, 18
alfa.slx (The alpha-SLX model), 17
                                                me.aslx(Marginal effects for the
                                                        alpha-SLX model), 9
CompositionalSR-package, 2
                                                me.gwar, 7, 9, 10, 13, 20
Computation of the contiguity matrix
                                                me.gwar (Marginal effects for the
                                                        GWalphaR model), 11
contiguity (Computation of the
        contiguity matrix W), 3
                                                optimize, 14
cv.alfareg, 6, 14, 15, 17
                                                Prediction with the GWalphaR model, 12
cv.alfareg(Tuning the value of alpha
        in the alpha-regression), 20
                                                Regression with compositional data
cv.alfaslx, 3, 7, 16, 18, 21
                                                        using the
cv.alfaslx(Leave-one-out
                                                        alpha-transformation, 14
        cross-validation for the
        alpha-SLX model), 5
                                                spat.folds (Spatial k-folds), 16
cv.gwar, 6, 13, 20, 21
                                                Spatial k-folds, 16
cv.gwar (Leave-one-out
        cross-validation for the
                                                The alpha-SLX model, 17
        GWalphaR model), 6
                                                The GWalphaR model, 19
                                                Tuning the value of alpha in the
fadn, 4
                                                        alpha-regression, 20
gwar, 4, 7, 12, 16, 18
gwar (The GWalphaR model), 19
gwar.pred(Prediction with the
        GWalphaR model), 12
Leave-one-out cross-validation for the
        alpha-SLX model, 5
Leave-one-out cross-validation for the
        GWalphaR model, 6
Marginal effects for the
        alpha-regression model, 8
```