Version: | 1.0.0 |
Date: | 2025-08-15 |
Title: | Extremal Dependence Models |
Author: | Boris Beranger [aut], Simone Padoan [cre, aut], Giulia Marcon [aut], Steven G. Johnson [ctb] (Author of included cubature fragments), Rudolf Schuerer [ctb] (Author of included cubature fragments), Brian Gough [ctb] (Author of included cubature fragments), Alec G. Stephenson [ctb], Anne Sabourin [ctb] (Author of included BMAmevt fragments), Philippe Naveau [ctb] (Author of PAMfmado function) |
Maintainer: | Simone Padoan <simone.padoan@unibocconi.it> |
Imports: | numDeriv, evd, sn, quadprog, copula, nloptr, gtools, mvtnorm, fda, parallel, doParallel, foreach, cluster, methods |
Suggests: | fields, extraDistr |
BugReports: | https://github.com/borisberanger/ExtremalDep/issues |
Description: | A set of procedures for parametric and non-parametric modelling of the dependence structure of multivariate extreme-values is provided. The statistical inference is performed with non-parametric estimators, likelihood-based estimators and Bayesian techniques. It adapts the methodologies of Beranger and Padoan (2015) <doi:10.48550/arXiv.1508.05561>, Marcon et al. (2016) <doi:10.1214/16-EJS1162>, Marcon et al. (2017) <doi:10.1002/sta4.145>, Marcon et al. (2017) <doi:10.1016/j.jspi.2016.10.004> and Beranger et al. (2021) <doi:10.1007/s10687-019-00364-0>. This package also allows for the modelling of spatial extremes using flexible max-stable processes. It provides simulation algorithms and fitting procedures relying on the Stephenson-Tawn likelihood as per Beranger at al. (2021) <doi:10.1007/s10687-020-00376-1>. |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
LazyData: | yes |
NeedsCompilation: | yes |
Repository: | CRAN |
Repository/R-Forge/Project: | extremaldep |
Repository/R-Forge/Revision: | 107 |
Repository/R-Forge/DateTimeStamp: | 2019-08-12 22:22:37 |
Date/Publication: | 2025-08-21 11:40:02 UTC |
Packaged: | 2025-08-21 00:01:36 UTC; borisberanger |
Depends: | R (≥ 3.5.0) |
URL: | https://faculty.unibocconi.it/simonepadoan/ |
Univariate Extreme Quantile
Description
Computes the extreme-quantiles of a univariate random variable corresponding to some exceedance probabilities.
Usage
ExtQ(
P = NULL,
method = "Frequentist",
pU = NULL,
cov = NULL,
param = NULL,
param_post = NULL
)
Arguments
P |
A vector with values in |
method |
A character string indicating the estimation method.
Takes value |
pU |
A value in |
cov |
A |
param |
A |
param_post |
A |
Details
The first column of cov
is a vector of 1s corresponding to the
intercept.
When pU
is NULL
(default), then it is assumed that a
block maxima approach was taken and quantiles are computed using the
qGEV
function. When pU
is provided, it is assumed
that a threshold exceedances approach is taken and the quantiles are
computed as
\mu + \sigma \left(\left(\frac{pU}{P}\right)^\xi - 1\right) \frac{1}{\xi}
Value
When method == "frequentist"
, the function returns a vector
of length length(P)
if ncol(cov) = 1
(constant mean)
or a (length(P) x nrow(cov))
matrix if ncol(cov) > 1
.
When method == "bayesian"
, the function returns a
(length(param_post) x length(P))
matrix if ncol(cov) = 1
or a list of ncol(cov)
elements each taking a
(length(param_post) x length(P))
matrix if ncol(cov) > 1
.
Author(s)
Simone Padoan, simone.padoan@unibocconi.it, https://faculty.unibocconi.it/simonepadoan/; Boris Beranger, borisberanger@gmail.com https://www.borisberanger.com
References
Beranger, B., Padoan, S. A. and Sisson, S. A. (2021). Estimation and uncertainty quantification for extreme quantile regions. Extremes, 24, 349-375.
See Also
Examples
##################################################
### Example - Pollution levels in Milan, Italy ###
##################################################
## Not run:
data(MilanPollution)
# Frequentist estimation
fit <- fGEV(Milan.winter$PM10)
fit$est
q1 <- ExtQ(
P = 1 / c(600, 1200, 2400),
method = "Frequentist",
param = fit$est
)
q1
# Bayesian estimation with high threshold
cov <- cbind(
rep(1, nrow(Milan.winter)),
Milan.winter$MaxTemp,
Milan.winter$MaxTemp^2
)
u <- quantile(Milan.winter$PM10, prob = 0.9, type = 3, na.rm = TRUE)
fit2 <- fGEV(
data = Milan.winter$PM10,
par.start = c(50, 0, 0, 20, 1),
method = "Bayesian",
u = u,
cov = cov,
sig0 = 0.1,
nsim = 5e+4
)
r <- range(Milan.winter$MaxTemp, na.rm = TRUE)
t <- seq(from = r[1], to = r[2], length = 50)
pU <- mean(Milan.winter$PM10 > u, na.rm = TRUE)
q2 <- ExtQ(
P = 1 / c(600, 1200, 2400),
method = "Bayesian",
pU = pU,
cov = cbind(rep(1, 50), t, t^2),
param_post = fit2$param_post[-c(1:3e+4), ]
)
R <- c(min(unlist(q2)), 800)
qseq <- seq(from = R[1], to = R[2], length = 512)
Xl <- "Max Temperature"
Yl <- expression(PM[10])
for (i in seq_along(q2)) {
K_q2 <- apply(q2[[i]], 2, function(x) density(x, from = R[1], to = R[2])$y)
D <- cbind(expand.grid(t, qseq), as.vector(t(K_q2)))
colnames(D) <- c("x", "y", "z")
fields::image.plot(
x = t, y = qseq, z = matrix(D$z, 50, 512),
xlim = r, ylim = R, xlab = Xl, ylab = Yl
)
}
## End(Not run)
##########################################################
### Example - Simulated data from Frechet distribution ###
##########################################################
if (interactive()) {
set.seed(999)
data <- extraDistr::rfrechet(n = 1500, mu = 3, sigma = 1, lambda = 1/3)
u <- quantile(data, probs = 0.9, type = 3)
fit3 <- fGEV(
data = data,
par.start = c(1, 2, 1),
method = "Bayesian",
u = u,
sig0 = 1,
nsim = 5e+4
)
pU <- mean(data > u)
P <- 1 / c(750, 1500, 3000)
q3 <- ExtQ(
P = P,
method = "Bayesian",
pU = pU,
param_post = fit3$param_post[-c(1:3e+4), ]
)
### Illustration
# Tail index estimation
ti_true <- 3
ti_ps <- fit3$param_post[-c(1:3e+4), 3]
K_ti <- density(ti_ps) # KDE of the tail index
H_ti <- hist(
ti_ps, prob = TRUE, col = "lightgrey",
ylim = range(K_ti$y), main = "", xlab = "Tail Index",
cex.lab = 1.8, cex.axis = 1.8, lwd = 2
)
ti_ic <- quantile(ti_ps, probs = c(0.025, 0.975))
points(x = ti_ic, y = c(0, 0), pch = 4, lwd = 4)
lines(K_ti, lwd = 2, col = "dimgrey")
abline(v = ti_true, lwd = 2)
abline(v = mean(ti_ps), lwd = 2, lty = 2)
# Quantile estimation
q3_true <- extraDistr::qfrechet(
p = P, mu = 3, sigma = 1, lambda = 1/3, lower.tail = FALSE
)
ci <- apply(log(q3), 2, function(x) quantile(x, probs = c(0.025, 0.975)))
K_q3 <- apply(log(q3), 2, density)
R <- range(log(c(q3_true, q3, data)))
Xlim <- c(log(quantile(data, 0.95)), R[2])
Ylim <- c(0, max(K_q3[[1]]$y, K_q3[[2]]$y, K_q3[[3]]$y))
plot(
0, main = "", xlim = Xlim, ylim = Ylim,
xlab = expression(log(x)), ylab = "Density",
cex.lab = 1.8, cex.axis = 1.8, lwd = 2
)
cval <- c(211, 169, 105)
for (j in seq_along(P)) {
col <- rgb(cval[j], cval[j], cval[j], 0.8 * 255, maxColorValue = 255)
col2 <- rgb(cval[j], cval[j], cval[j], 255, maxColorValue = 255)
polygon(K_q3[[j]], col = col, border = col2, lwd = 4)
}
points(log(data), rep(0, n), pch = 16)
# add posterior means
abline(v = apply(log(q3), 2, mean), lwd = 2, col = 2:4)
# add credible intervals
abline(v = ci[1, ], lwd = 2, lty = 3, col = 2:4)
abline(v = ci[2, ], lwd = 2, lty = 3, col = 2:4)
}
Pollution data for summer and winter months in Milan, Italy
Description
Two datasets, Milan.summer
and Milan.winter
, each containing
5 air pollutants (daily maximum of NO2, NO, O3 and SO2, daily mean of PM10)
and 6 meteorological covariates (maximum precipitation, maximum temperature,
maximum humidity, mean precipitation, mean temperature and mean humidity).
Format
A 1968 \times 12
data frame and a
1924 \times 12
data frame.
Details
The summer period corresponds to 30 April-30 August between 2003 and 2017,
giving 1968
observations. The winter period corresponds to
1 November-27(28) February. The records start from 31 December 2001 until
30 December 2017, giving 1924
observations.
Clustering of maxima
Description
Performs clustering of time series of maxima using the pam
algorithm
tailored for the F-madogram distance.
Usage
PAMfmado(x, K, J = 0, threshold = 0.99, max.min = 0)
Arguments
x |
A matrix of maxima. For example, for weekly maxima of precipitation,
the number of stations is |
K |
Number of clusters. |
J |
Number of resamplings for which the stations are randomly moved to break
the dependence. By default, |
threshold |
Quantile level used for the resampling threshold.
The corresponding quantile is printed (when |
max.min |
A lower threshold to remove very small values.
For example, some rain gauges cannot go below 2 mm. Default is |
Value
An object of class "pam"
representing the clustering.
See pam.object
for details.
Author(s)
Philippe Naveau
References
Bernard, E., Naveau, P., Vrac, M. and Mestre, O. (2013). Clustering of maxima: Spatial dependencies among heavy rainfall in France. Journal of Climate 26, 7929–7937.
Naveau, P., Guillou, A., Cooley, D. and Diebolt, J. (2009). Modeling pairwise dependence of maxima in space. Biometrika 96(1).
Cooley, D., Naveau, P. and Poncet, P. (2006). Variograms for spatial max-stable random fields. In: Bertail, P., Soulier, P., Doukhan, P. (eds) Dependence in Probability and Statistics. Lecture Notes in Statistics, vol 187. Springer, New York, NY.
Reynolds, A., Richards, G., de la Iglesia, B. and Rayward-Smith, V. (1992). Clustering rules: A comparison of partitioning and hierarchical clustering algorithms. Journal of Mathematical Modelling and Algorithms 5, 475–504.
See Also
Examples
data(PrecipFrance)
PAMmado <- PAMfmado(PrecipFrance$precip, 7)
Weekly maxima of hourly rainfall in France
Description
A list containing the weekly maxima of hourly rainfall during the fall
season from 1993 to 2011, recorded at 92 stations across France
(precip
). Coordinates of the monitoring stations are provided in
lat
and lon
.
Format
A list containing:
-
precip
: a228 \times 92
matrix of weekly maxima of hourly rainfall. -
lat
: a numeric vector of length92
giving the station latitudes. -
lon
: a numeric vector of length92
giving the station longitudes.
Details
The fall season corresponds to the September–November (SON) period. The
data cover a 12-week period over 19
years, yielding a sample of
228
observations (rows) and 92
stations (columns).
Extract the standard errors of estimated parameters
Description
This function extracts the standard errors of estimated parameters from a fitted object.
Usage
StdErr(x, digits = 3)
Arguments
x |
An object of class |
digits |
Integer indicating the number of decimal places to report. Default is 3. |
Value
A numeric vector containing the standard errors of the estimated parameters.
Author(s)
Simone Padoan, simone.padoan@unibocconi.it, https://faculty.unibocconi.it/simonepadoan/; Boris Beranger, borisberanger@gmail.com, https://www.borisberanger.com;
See Also
Examples
data(pollution)
f.hr <- fExtDep(
x = PNS,
method = "PPP",
model = "HR",
par.start = rep(0.5, 3),
trace = 2
)
StdErr(f.hr)
Weekly Maximum Wind Speed Data Across 4 Stations in Oklahoma, USA (March-May, 1996-2012)
Description
Four datasets of weekly maximum wind speed for each triplet of locations:
CLOU.CLAY.SALL
, CLOU.CLAY.PAUL
, CLAY.SALL.PAUL
, and CLOU.SALL.PAUL
.
Details
CLOU.CLAY.SALL
is a data.frame
with 3
columns and 212
rows.
CLOU.CLAY.PAUL
is a data.frame
with 3
columns and 217
rows.
CLAY.SALL.PAUL
is a data.frame
with 3
columns and 211
rows.
CLOU.SALL.PAUL
is a data.frame
with 3
columns and 217
rows.
Missing observations have been discarded for each triplet.
References
Beranger, B., Padoan, S. A., & Sisson, S. A. (2017). Models for extremal dependence derived from skew-symmetric families. Scandinavian Journal of Statistics, 44(1), 21-45.
Hourly Wind Gust, Wind Speed, and Air Pressure at Lingen (GER), Ossendorf (GER), and Parcay-Meslay (FRA)
Description
Three data.frame
objects, one for each location.
Details
Each object contains the following columns:
- WS:
Hourly wind speed in metres per second (m/s).
- WG:
Hourly wind gust in metres per second (m/s).
- DP:
Hourly air pressure at sea level in millibars.
Details for each object:
- Lingen:
data.frame
with1083
rows and4
columns. Measurements recorded between January 1982 and June 2003.- Ossendorf:
data.frame
with676
rows and4
columns. Measurements recorded between March 1982 and August 1995.- ParcayMeslay:
data.frame
with2140
rows and4
columns. Measurements recorded between November 1984 and July 2013.
References
Marcon, G., Naveau, P., & Padoan, S.A. (2017). A semi-parametric stochastic generator for bivariate extreme events. Stat, 6, 184-201.
Estimation of the angular density, angular measure, and random generation from the angular distribution
Description
Empirical estimation of the Pickands dependence function, the angular density, the angular measure, and random generation of samples from the estimated angular density.
Usage
angular(data, model, n, dep, asy, alpha, beta, df, seed, k, nsim,
plot = TRUE, nw = 100)
Arguments
data |
The dataset in vector form. |
model |
A character string specifying the model. Must be one of:
|
n |
The number of random generations from the |
dep |
The dependence parameter for the |
asy |
A vector of length two for asymmetry parameters, required for
asymmetric logistic ( |
alpha , beta |
Parameters for the bilogistic, negative bilogistic, Coles-Tawn, and asymmetric mixed models. |
df |
The degrees of freedom for the Extremal-t model. |
seed |
Seed for data generation. Required if |
k |
The polynomial order. |
nsim |
The number of generations from the estimated angular density. |
plot |
Logical; if |
nw |
The number of points at which the estimated functions are evaluated. |
Details
See Marcon et al. (2017) for details.
Value
A list containing:
- model
The specified model.
- n
Number of random generations.
- dep
Dependence parameter.
- data
Input dataset.
- Aest
Estimated Pickands dependence function.
- hest
Estimated angular density.
- Hest
Estimated angular measure.
- p0,p1
Point masses at the edge of the simplex.
- wsim
Simulated sample from the angular density.
- Atrue,htrue
True Pickands dependence function and angular density, if
model
is specified.
Author(s)
Simone Padoan, simone.padoan@unibocconi.it, https://faculty.unibocconi.it/simonepadoan/; Boris Beranger, borisberanger@gmail.com, https://www.borisberanger.com; Giulia Marcon, giuliamarcongm@gmail.com
References
Marcon, G., Naveau, P. and Padoan, S. A. (2017). A semi-parametric stochastic generator for bivariate extreme events, Stat 6(1), 184–201.
Examples
################################################
# The following examples correspond to left panels
# of Figures 1, 2 & 3 from Marcon et al. (2017)
################################################
## Figure 1 - symmetric logistic
# Strong dependence
a <- angular(model = 'log', n = 50, dep = 0.3,
seed = 4321, k = 20, nsim = 10000)
# Mild dependence
b <- angular(model = 'log', n = 50, dep = 0.6,
seed = 212, k = 10, nsim = 10000)
# Weak dependence
c <- angular(model = 'log', n = 50, dep = 0.9,
seed = 4334, k = 6, nsim = 10000)
## Figure 2 - asymmetric logistic
# Strong dependence
d <- angular(model = 'alog', n = 25, dep = 0.3,
asy = c(0.3,0.8), seed = 43121465, k = 20, nsim = 10000)
# Mild dependence
e <- angular(model = 'alog', n = 25, dep = 0.6,
asy = c(0.3,0.8), seed = 1890, k = 10, nsim = 10000)
# Weak dependence
f <- angular(model = 'alog', n = 25, dep = 0.9,
asy = c(0.3,0.8), seed = 2043, k = 5, nsim = 10000)
Angular density plot.
Description
This function displays the angular density for bivariate and trivariate extreme values models.
Usage
angular.plot(model, par, log, contour, labels, cex.lab, cex.cont, ...)
Arguments
model |
A string with the name of the model considered. Takes value |
par |
A vector representing the parameters of the model. |
log |
A logical value specifying if the log density is computed (default is |
contour |
A logical value; if |
labels |
A vector of character strings indicating the labels. Must be of length |
cex.lab |
A positive real indicating the size of the labels. |
cex.cont |
A positive real indicating the size of the contour labels. |
... |
Additional graphical arguments for the |
Details
The angular density is computed using the function dExtDep
with arguments method = "Parametric"
and angular = TRUE
.
When contours are displayed, levels are chosen to be the deciles.
Author(s)
Simone Padoan, simone.padoan@unibocconi.it, https://faculty.unibocconi.it/simonepadoan/; Boris Beranger, borisberanger@gmail.com https://www.borisberanger.com;
See Also
Examples
angular.plot(model = "HR", par = 0.6)
## Not run:
angular.plot(mode = "ET", par = c(0.6, 0.2, 0.5, 2))
## End(Not run)
Bernstein Polynomials Based Estimation of Extremal Dependence
Description
Estimates the Pickands dependence function corresponding to multivariate data on the basis of a Bernstein polynomials approximation.
Usage
beed(data, x, d = 3, est = c("ht", "cfg", "md", "pick"),
margin = c("emp", "est", "exp", "frechet", "gumbel"),
k = 13, y = NULL, beta = NULL, plot = FALSE)
Arguments
data |
|
x |
|
d |
positive integer greater than or equal to two indicating the number of variables ( |
est |
string, indicating the estimation method ( |
margin |
string, denoting the type marginal distributions ( |
k |
postive integer, indicating the order of Bernstein
polynomials ( |
y |
numeric vector (of size |
beta |
vector of polynomial coefficients (see Details). |
plot |
logical; if |
Details
The routine returns an estimate of the Pickands dependence function using the Bernstein polynomials approximation
proposed in Marcon et al. (2017).
The method is based on a preliminary empirical estimate of the Pickands dependence function.
If you do not provide such an estimate, this is computed by the routine. In this case, you can select one of the empirical methods
available. est = 'ht'
refers to the Hall-Tajvidi estimator (Hall and Tajvidi 2000).
With est = 'cfg'
the method proposed by Caperaa et al. (1997) is considered. Note that in the multivariate case the adjusted version of Gudendorf and Segers (2011) is used. Finally, with est = 'md'
the estimate is based on the madogram defined in Marcon et al. (2017).
Each row of the (m \times d)
design matrix x
is a point in the unit d
-dimensional simplex,
S_d := \left\{ (w_1,\ldots, w_d) \in [0,1]^{d}: \sum_{i=1}^{d} w_i = 1 \right\}.
With this "regularization"" method, the final estimate satisfies the neccessary conditions in order to be a Pickands dependence function.
A(\bold{w}) = \sum_{\bold{\alpha} \in \Gamma_k} \beta_{\bold{\alpha}} b_{\bold{\alpha}} (\bold{w};k).
The estimates are obtained by solving an optimization quadratic problem subject to the constraints. The latter are represented
by the following conditions:
A(e_i)=1; \max(w_i)\leq A(w) \leq 1; \forall i=1,\ldots,d;
(convexity).
The order of polynomial k
controls the smoothness of the estimate. The higher k
is, the smoother the final estimate is.
Higher values are better with strong dependence (e. g. k = 23
), whereas small values (e.g. k = 6
or k = 10
) are enough with mild or weak dependence.
An empirical transformation of the marginals is performed when margin = "emp"
. A max-likelihood fitting of the GEV distributions is implemented when margin="est"
. Otherwise it refers to marginal parametric GEV theorethical distributions (margin = "exp", "frechet", "gumbel"
).
Value
beta |
vector of polynomial coefficients |
A |
numeric vector of the estimated Pickands dependence function |
Anonconvex |
preliminary non-convex function |
extind |
extremal index |
Note
The number of coefficients depends on both the order of polynomial k
and the dimension d
. The number of parameters is explained in Marcon et al. (2017).
The size of the vector beta
must be compatible with the polynomial order k
chosen.
With the estimated polynomial coefficients, the extremal coefficient, i.e. d*A(1/d,\ldots,1/d)
is computed.
Author(s)
Simone Padoan, simone.padoan@unibocconi.it, https://faculty.unibocconi.it/simonepadoan/; Boris Beranger, borisberanger@gmail.com https://www.borisberanger.com; Giulia Marcon, giuliamarcongm@gmail.com
References
Marcon, G., Padoan, S.A., Naveau, P., Muliere, P. and Segers, J. (2017) Multivariate Nonparametric Estimation of the Pickands Dependence Function using Bernstein Polynomials. Journal of Statistical Planning and Inference, 183, 1-17.
See Also
Examples
x <- simplex(2)
data <- evd::rbvevd(50, dep = 0.4, model = "log", mar1 = c(1, 1, 1))
Amd <- beed(data, x, 2, "md", "emp", 20, plot = TRUE)
Acfg <- beed(data, x, 2, "cfg", "emp", 20)
Aht <- beed(data, x, 2, "ht", "emp", 20)
lines(x[,1], Aht$A, lty = 1, col = 3)
lines(x[,1], Acfg$A, lty = 1, col = 2)
##################################
# Trivariate case
##################################
x <- simplex(3)
data <- evd::rmvevd(50, dep = 0.8, model = "log", d = 3, mar = c(1, 1, 1))
op <- par(mfrow=c(1, 3))
Amd <- beed(data, x, 3, "md", "emp", 18, plot = TRUE)
Acfg <- beed(data, x, 3, "cfg", "emp", 18, plot = TRUE)
Aht <- beed(data, x, 3, "ht", "emp", 18, plot = TRUE)
par(op)
Bootstrap Resampling and Bernstein Estimation of Extremal Dependence
Description
Computes nboot
estimates of the Pickands dependence function for multivariate data (using the Bernstein polynomials approximation method) on the basis of the bootstrap resampling of the data.
Usage
beed.boot(data, x, d = 3, est = c("ht", "md", "cfg", "pick"),
margin = c("emp", "est", "exp", "frechet", "gumbel"), k = 13,
nboot = 500, y = NULL, print = FALSE)
Arguments
data |
|
x |
|
d |
postive integer (greater than or equal to two) indicating the number of variables ( |
est |
string denoting the preliminary estimation method (see Details). |
margin |
string denoting the type marginal distributions (see Details). |
k |
postive integer denoting the order of the Bernstein polynomial ( |
nboot |
postive integer indicating the number of bootstrap replicates ( |
y |
numeric vector (of size |
print |
logical; |
Details
Standard bootstrap is performed, in particular estimates of the Pickands dependence function are provided for each data resampling.
Most of the settings are the same as in the function beed
.
An empirical transformation of the marginals is performed when margin = "emp"
. A max-likelihood fitting of the GEV distributions is implemented when margin = "est"
. Otherwise it refers to marginal parametric GEV theorethical distributions (margin = "exp", "frechet", "gumbel"
).
Value
A |
numeric vector of the estimated Pickands dependence function. |
bootA |
matrix with |
beta |
matrix of estimated polynomial coefficients. Each column corresponds to a data resampling. |
Author(s)
Simone Padoan, simone.padoan@unibocconi.it, https://faculty.unibocconi.it/simonepadoan/; Boris Beranger, borisberanger@gmail.com https://www.borisberanger.com; Giulia Marcon, giuliamarcongm@gmail.com
References
Marcon, G., Padoan, S.A., Naveau, P., Muliere, P. and Segers, J. (2017) Multivariate Nonparametric Estimation of the Pickands Dependence Function using Bernstein Polynomials. Journal of Statistical Planning and Inference, 183, 1-17.
See Also
Examples
x <- simplex(2)
data <- evd::rbvevd(50, dep = 0.4, model = "log", mar1 = c(1, 1, 1))
boot <- beed.boot(data, x, 2, "md", "emp", 20, 500)
Nonparametric Bootstrap Confidence Intervals
Description
Computes nonparametric bootstrap (1-\alpha)\%
confidence bands for the Pickands dependence function.
Usage
beed.confband(data, x, d = 3, est = c("ht", "md", "cfg", "pick"),
margin = c("emp", "est", "exp", "frechet", "gumbel"), k = 13,
nboot = 500, y = NULL, conf = 0.95, plot = FALSE, print = FALSE)
Arguments
data |
|
x |
|
d |
postive integer (greater than or equal to two) indicating the number of variables ( |
est |
string denoting the estimation method (see Details). |
margin |
string denoting the type marginal distributions (see Details). |
k |
postive integer denoting the order of the Bernstein polynomial ( |
nboot |
postive integer indicating the number of bootstrap replicates. |
y |
numeric vector (of size |
conf |
real value in |
plot |
logical; |
print |
logical; |
Details
Two methods for computing bootstrap (1-\alpha)\%
point-wise and simultaneous confidence bands for the Pickands dependence function are used.
The first method derives the confidence bands computing the point-wise \alpha/2
and 1-\alpha/2
quantiles of the bootstrap sample distribution of the Pickands dependence Bernstein based estimator.
The second method derives the confidence bands, first computing the point-wise \alpha/2
and 1-\alpha/2
quantiles of the bootstrap sample distribution of polynomial coefficient estimators, and then the Pickands dependence is computed using the Bernstein polynomial representation. See Marcon et al. (2017) for details.
Most of the settings are the same as in the function beed
.
Value
A |
numeric vector of the Pickands dependence function estimated. |
bootA |
matrix with |
A.up.beta/A.low.beta |
vectors of upper and lower bands of the Pickands dependence function obtained using the bootstrap sampling distribution of the polynomial coefficients estimator. |
A.up.pointwise/A.low.pointwise |
vectors of upper and lower bands of the Pickands dependence function obtained using the bootstrap sampling distribution of the Pickands dependence function estimator. |
up.beta/low.beta |
vectors of upper and lower bounds of the bootstrap sampling distribution of the polynomial coefficients estimator. |
Note
This routine relies on the bootstrap routine (see beed.boot
).
Author(s)
Simone Padoan, simone.padoan@unibocconi.it, https://faculty.unibocconi.it/simonepadoan/; Boris Beranger, borisberanger@gmail.com https://www.borisberanger.com; Giulia Marcon, giuliamarcongm@gmail.com
References
Marcon, G., Padoan, S.A., Naveau, P., Muliere, P. and Segers, J. (2017) Multivariate Nonparametric Estimation of the Pickands Dependence Function using Bernstein Polynomials. Journal of Statistical Planning and Inference, 183, 1-17.
See Also
Examples
x <- simplex(2)
data <- evd::rbvevd(50, dep = 0.4, model = "log", mar1 = c(1, 1, 1))
# Note you should consider 500 bootstrap replications.
# In order to obtain fastest results we used 50!
cb <- beed.confband(data, x, 2, "md", "emp", 20, 50, plot = TRUE)
Extract the Bayesian Information Criterion
Description
This function extract the BIC value from a fitted object..
Usage
bic(x, digits = 3)
Arguments
x |
An object of class |
digits |
Integer indicating the number of decimal places to be reported. |
Value
A vector.
Author(s)
Simone Padoan, simone.padoan@unibocconi.it, https://faculty.unibocconi.it/simonepadoan/; Boris Beranger, borisberanger@gmail.com https://www.borisberanger.com;
See Also
Examples
## Not run:
data(pollution)
Hpar.hr <- list(mean.lambda = 0, sd.lambda = 3)
PNS.hr <- fExtDep(x = PNS, method = "BayesianPPP", model = "HR",
Nsim = 5e+4, Nbin = 3e+4, Hpar = Hpar.hr,
MCpar = 0.35, seed = 14342)
bic(PNS.hr)
## End(Not run)
Parametric and non-parametric density of Extremal Dependence
Description
This function calculates the density of parametric multivariate extreme distributions and corresponding angular density, or the non-parametric angular density represented through Bernstein polynomials.
Usage
dExtDep(x, method = "Parametric", model, par, angular = TRUE, log = FALSE,
c = NULL, vectorial = TRUE, mixture = FALSE)
Arguments
x |
A vector or a matrix. The value at which the density is evaluated. |
method |
A character string taking value |
model |
A string with the name of the model: |
par |
A vector representing the parameters of the (parametric or non-parametric) model. |
angular |
A logical value specifying if the angular density is computed. |
log |
A logical value specifying if the log density is computed. |
c |
A real value in |
vectorial |
A logical value; if |
mixture |
A logical value specifying if the Bernstein polynomial representation of distribution should be expressed as a mixture. If |
Details
Note that when method = "Parametric"
and angular = FALSE
, the density is only available in 2 dimensions.
When method = "Parametric"
and angular = TRUE
, the models "AL"
, "ET"
and "EST"
are limited to 3 dimensions. This is because of the existence of mass on the subspaces on the simplex (and therefore the need to specify c
).
For the parametric models, the appropriate length of the parameter vector can be obtained from the dim_ExtDep
function and are summarized as follows.
When model = "HR"
, the parameter vector is of length choose(dim, 2)
.
When model = "PB"
or model = "Extremalt"
, the parameter vector is of length choose(dim, 2) + 1
.
When model = "EST"
, the parameter vector is of length choose(dim, 2) + dim + 1
.
When model = "TD"
, the parameter vector is of length dim
.
When model = "AL"
, the parameter vector is of length 2^(dim - 1) * (dim + 2) - (2 * dim + 1)
.
Value
If x
is a matrix and vectorial = TRUE
, a vector of length nrow(x)
, otherwise a scalar.
Author(s)
Simone Padoan, simone.padoan@unibocconi.it, https://faculty.unibocconi.it/simonepadoan/; Boris Beranger, borisberanger@gmail.com https://www.borisberanger.com;
References
Beranger, B. and Padoan, S. A. (2015). Extreme dependence models, chapater of the book Extreme Value Modeling and Risk Analysis: Methods and Applications, Chapman Hall/CRC.
Beranger, B., Padoan, S. A. and Sisson, S. A. (2017). Models for extremal dependence derived from skew-symmetric families. Scandinavian Journal of Statistics, 44(1), 21-45.
Coles, S. G., and Tawn, J. A. (1991), Modelling Extreme Multivariate Events, Journal of the Royal Statistical Society, Series B (Methodological), 53, 377–392.
Cooley, D., Davis, R. A., and Naveau, P. (2010). The pairwise beta distribution: a flexible parametric multivariate model for extremes. Journal of Multivariate Analysis, 101, 2103–2117.
Engelke, S., Malinowski, A., Kabluchko, Z., and Schlather, M. (2015), Estimation of Husler-Reiss distributions and Brown-Resnick processes, Journal of the Royal Statistical Society, Series B (Methodological), 77, 239–265.
Husler, J. and Reiss, R.-D. (1989), Maxima of normal random vectors: between independence and complete dependence, Statistics and Probability Letters, 7, 283–286.
Marcon, G., Padoan, S. A., Naveau, P., Muliere, P. and Segers, J. (2017) Multivariate Nonparametric Estimation of the Pickands Dependence Function using Bernstein Polynomials. Journal of Statistical Planning and Inference, 183, 1-17.
Nikoloulopoulos, A. K., Joe, H., and Li, H. (2009) Extreme value properties of t copulas. Extremes, 12, 129–148.
Opitz, T. (2013) Extremal t processes: Elliptical domain of attraction and a spectral representation. Jounal of Multivariate Analysis, 122, 409–413.
Tawn, J. A. (1990), Modelling Multivariate Extreme Value Distributions, Biometrika, 77, 245–253.
See Also
pExtDep
, rExtDep
, fExtDep
, fExtDep.np
Examples
# Example of PB on the 4-dimensional simplex
dExtDep(x = rbind(c(0.1, 0.3, 0.3, 0.3), c(0.1, 0.2, 0.3, 0.4)),
method = "Parametric", model = "PB",
par = c(2, 2, 2, 1, 0.5, 3, 4), log = FALSE)
# Example of EST in 2 dimensions
dExtDep(x = c(1.2, 2.3), method = "Parametric", model = "EST",
par = c(0.6, 1, 2, 3), angular = FALSE, log = TRUE)
# Example of non-parametric angular density
beta <- c(1.0000000, 0.8714286, 0.7671560, 0.7569398,
0.7771908, 0.8031573, 0.8857143, 1.0000000)
dExtDep(x = rbind(c(0.1, 0.9), c(0.2, 0.8)), method = "NonParametric", par = beta)
The Generalized Extreme Value Distribution
Description
Density, distribution and quantile function for the Generalized Extreme Value (GEV) distribution.
Usage
dGEV(x, loc, scale, shape, log = FALSE)
pGEV(q, loc, scale, shape, lower.tail = TRUE)
qGEV(p, loc, scale, shape)
Arguments
x , q |
Vector of quantiles. |
p |
Vector of probabilities. |
loc |
Vector of locations. |
scale |
Vector of scales. |
shape |
Vector of shapes. |
log |
Logical; if |
lower.tail |
Logical; if |
Details
The GEV distribution has density
f(x; \mu, \sigma, \xi) =
\exp \left\{ -\left[ 1 + \xi \left( \frac{x-\mu}{\sigma} \right)\right]_+^{-1/\xi}\right\}
Value
Density (dGEV
), distribution function (pGEV
) and quantile
function (qGEV
) from the Generalized Extreme Value distribution with
given location
, scale
and shape
.
Author(s)
Simone Padoan, simone.padoan@unibocconi.it, https://faculty.unibocconi.it/simonepadoan/; Boris Beranger, borisberanger@gmail.com, https://www.borisberanger.com.
See Also
Examples
# Densities
dGEV(x = 1, loc = 1, scale = 1, shape = 1)
dGEV(x = c(0.2, 0.5), loc = 1, scale = 1, shape = c(0, 0.3))
# Probabilities
pGEV(q = 1, loc = 1, scale = 1, shape = 1, lower.tail = FALSE)
pGEV(q = c(0.2, 0.5), loc = 1, scale = 1, shape = c(0, 0.3))
# Quantiles
qGEV(p = 0.5, loc = 1, scale = 1, shape = 1)
qGEV(p = c(0.2, 0.5), loc = 1, scale = 1, shape = c(0, 0.3))
Univariate extended skew-normal distribution
Description
Density function, distribution function for the univariate extended skew-normal (ESN) distribution.
Usage
desn(x, location = 0, scale = 1, shape = 0, extended = 0)
pesn(x, location = 0, scale = 1, shape = 0, extended = 0)
Arguments
x |
quantile. |
location |
location parameter. |
scale |
scale parameter; must be positive. |
shape |
skewness parameter. |
extended |
extension parameter. |
Value
density (desn
), probability (pesn
) from the extended skew-normal distribution with given
location
, scale
, shape
and extended
parameters or from the skew-normal if extended = 0
.
If shape = 0
and extended = 0
then the normal distribution is recovered.
Author(s)
Simone Padoan, simone.padoan@unibocconi.it, https://faculty.unibocconi.it/simonepadoan/; Boris Beranger, borisberanger@gmail.com https://www.borisberanger.com;
References
Azzalini, A. (1985). A class of distributions which includes the normal ones. Scand. J. Statist. 12, 171-178.
Azzalini, A. with the collaboration of Capitanio, A. (2014). The Skew-Normal and Related Families. Cambridge University Press, IMS Monographs series.
Examples
dens1 <- desn(x = 1, shape = 3, extended = 2)
dens2 <- desn(x = 1, shape = 3)
dens3 <- desn(x = 1)
dens4 <- dnorm(x = 1)
prob1 <- pesn(x = 1, shape = 3, extended = 2)
prob2 <- pesn(x = 1, shape = 3)
prob3 <- pesn(x = 1)
prob4 <- pnorm(q = 1)
Univariate extended skew-t distribution
Description
Density function, distribution function for the univariate extended skew-t (EST) distribution.
Usage
dest(x, location = 0, scale = 1, shape = 0, extended = 0, df = Inf)
pest(x, location = 0, scale = 1, shape = 0, extended = 0, df = Inf)
Arguments
x |
quantile. |
location |
location parameter. |
scale |
scale parameter; must be positive. |
shape |
skewness parameter. |
extended |
extension parameter. |
df |
a single positive value representing the degrees of freedom;
it can be non-integer. Default value is |
Value
density (dest
), probability (pest
) from the extended skew-t distribution with given
location
, scale
, shape
, extended
and df
parameters or from the skew-t if extended = 0
.
If shape = 0
and extended = 0
then the t distribution is recovered.
Author(s)
Simone Padoan, simone.padoan@unibocconi.it, https://faculty.unibocconi.it/simonepadoan/; Boris Beranger, borisberanger@gmail.com https://www.borisberanger.com;
References
Azzalini, A. and Capitanio, A. (2003). Distributions generated by perturbation of symmetry with emphasis on a multivariate skew-t distribution. J.Roy. Statist. Soc. B 65, 367–389.
Azzalini, A. with the collaboration of Capitanio, A. (2014). The Skew-normal and Related Families. Cambridge University Press, IMS Monographs series.
Examples
dens1 <- dest(x = 1, shape = 3, extended = 2, df = 1)
dens2 <- dest(x = 1, shape = 3, df = 1)
dens3 <- dest(x = 1, df = 1)
dens4 <- dt(x = 1, df = 1)
prob1 <- pest(x = 1, shape = 3, extended = 2, df = 1)
prob2 <- pest(x = 1, shape = 3, df = 1)
prob3 <- pest(x = 1, df = 1)
prob4 <- pt(q = 1, df = 1)
Diagnostics plots for MCMC algorithm
Description
This function displays traceplots of the scaling parameter from the proposal distribution of the adaptive MCMC scheme and the associated acceptance probability.
Usage
diagnostics(mcmc)
Arguments
mcmc |
An output of the |
Details
When mcmc
is the output of fGEV
, this corresponds to a
marginal estimation. In this case, diagnostics
displays:
A trace plot of
\tau
, the scaling parameter in the multivariate normal proposal, which directly affects the acceptance rate.A trace plot of the acceptance probabilities of the proposal parameter values.
When mcmc
is the output of fExtDep.np
, this corresponds
to an estimation of the dependence structure following Algorithm 1 in
Beranger et al. (2021).
If the margins are jointly estimated with the dependence (steps 1 and 2),
diagnostics
provides trace plots of the corresponding scaling parameters (\tau_1, \tau_2
) and acceptance probabilities.For the dependence structure (step 3), a trace plot of the polynomial order
\kappa
is displayed, along with the associated acceptance probability.
Value
A graph of traceplots of the scaling parameter from the proposal distribution of the adaptive MCMC scheme and the associated acceptance probability.
Author(s)
Simone Padoan, simone.padoan@unibocconi.it, https://faculty.unibocconi.it/simonepadoan/; Boris Beranger, borisberanger@gmail.com, https://www.borisberanger.com; Giulia Marcon, giuliamarcongm@gmail.com
References
Beranger, B., Padoan, S. A. and Sisson, S. A. (2021). Estimation and uncertainty quantification for extreme quantile regions. Extremes, 24, 349–375.
See Also
Examples
##################################################
### Example - Pollution levels in Milan, Italy ###
##################################################
## Not run:
# Dependence structure only
data(MilanPollution)
data <- Milan.winter[, c("NO2", "SO2")]
data <- as.matrix(data[complete.cases(data), ])
# Threshold
u <- apply(data, 2, function(x) quantile(x, prob = 0.9, type = 3))
# Hyperparameters
hyperparam <- list(mu.nbinom = 6, var.nbinom = 8, a.unif = 0, b.unif = 0.2)
# Standardise data to univariate Frechet margins
f1 <- fGEV(data = data[, 1], method = "Bayesian", sig0 = 0.1, nsim = 5e4)
diagnostics(f1)
burn1 <- 1:30000
gev.pars1 <- apply(f1$param_post[-burn1, ], 2, mean)
sdata1 <- trans2UFrechet(data = data[, 1], pars = gev.pars1, type = "GEV")
f2 <- fGEV(data = data[, 2], method = "Bayesian", sig0 = 0.1, nsim = 5e4)
diagnostics(f2)
burn2 <- 1:30000
gev.pars2 <- apply(f2$param_post[-burn2, ], 2, mean)
sdata2 <- trans2UFrechet(data = data[, 2], pars = gev.pars2, type = "GEV")
sdata <- cbind(sdata1, sdata2)
# Bayesian estimation using Bernstein polynomials
pollut1 <- fExtDep.np(method = "Bayesian", data = sdata,
u = TRUE, mar.fit = FALSE, k0 = 5,
hyperparam = hyperparam, nsim = 5e4)
diagnostics(pollut1)
## End(Not run)
Dimensions calculations for parametric extremal dependence models
Description
This function calculates the dimensions of an extremal dependence model for a given set of parameters, the dimension of the parameter vector for a given dimension and verifies the adequacy between model dimension and length of parameter vector when both are provided.
Usage
dim_ExtDep(model, par = NULL, dim = NULL)
Arguments
model |
A string with the name of the model: |
par |
A vector representing the parameters of the model. |
dim |
An integer representing the dimension of the model. |
Details
One of par
or dim
needs to be provided. If par
is
provided, the dimension of the model is calculated. If dim
is provided,
the length of the parameter vector is calculated. If both par
and
dim
are provided, the adequacy between the dimension of the model and
the length of the parameter vector is checked.
For model = "HR"
, the parameter vector is of length choose(dim,
2)
. For model = "PB"
or model = "ET"
, the parameter vector is
of length choose(dim, 2) + 1
. For model = "EST"
, the parameter
vector is of length choose(dim, 2) + dim + 1
. For model = "TD"
,
the parameter vector is of length dim
. For model = "AL"
, the
parameter vector is of length 2^(dim - 1) * (dim + 2) - (2 * dim + 1)
.
Value
If par
is not provided and dim
is provided: returns an integer
indicating the length of the parameter vector. If par
is provided and
dim
is not provided: returns an integer indicating the dimension of the
model. If par
and dim
are provided: returns a
TRUE/FALSE
statement indicating whether the length of the parameter and
the dimension match.
Author(s)
Simone Padoan, simone.padoan@unibocconi.it, https://faculty.unibocconi.it/simonepadoan/; Boris Beranger, borisberanger@gmail.com https://www.borisberanger.com;
Examples
dim_ExtDep(model = "EST", dim = 3)
dim_ExtDep(model = "AL", dim = 3)
dim_ExtDep(model = "PB", par = rep(0.5, choose(4, 2) + 1))
dim_ExtDep(model = "TD", par = rep(1, 5))
dim_ExtDep(model = "EST", dim = 2, par = c(0.5, 1, 1, 1))
dim_ExtDep(model = "PB", dim = 4, par = rep(0.5, choose(4, 2) + 1))
Bivariate and Trivariate Extended Skew-Normal Distribution
Description
Density function and distribution function for the bivariate and trivariate extended skew-normal (ESN) distribution.
Usage
dmesn(
x = c(0, 0),
location = rep(0, length(x)),
scale = diag(length(x)),
shape = rep(0, length(x)),
extended = 0
)
pmesn(
x = c(0, 0),
location = rep(0, length(x)),
scale = diag(length(x)),
shape = rep(0, length(x)),
extended = 0
)
Arguments
x |
Quantile vector of length |
location |
A numeric location vector of length |
scale |
A symmetric positive-definite scale matrix of dimension |
shape |
A numeric skewness vector of length |
extended |
A single extension parameter. Default is |
Value
dmesn
returns the density, and pmesn
returns the probability,
of the bivariate or trivariate extended skew-normal distribution with the
specified location
, scale
, shape
, and extended
parameters.
If extended = 0
, the skew-normal distribution is obtained.
If shape = 0
and extended = 0
, the normal distribution is recovered.
Author(s)
Simone Padoan, simone.padoan@unibocconi.it, https://faculty.unibocconi.it/simonepadoan/; Boris Beranger, borisberanger@gmail.com, https://www.borisberanger.com.
References
Azzalini, A. and Capitanio, A. (1999). Statistical applications of the multivariate skew normal distribution. J. Roy. Statist. Soc. B 61, 579–602.
Azzalini, A. with the collaboration of Capitanio, A. (2014). The Skew-Normal and Related Families. Cambridge University Press, IMS Monographs series.
Azzalini, A. and Dalla Valle, A. (1996). The multivariate skew-normal distribution. Biometrika 83, 715–726.
Examples
sigma1 <- matrix(c(2, 1.5, 1.5, 3), ncol = 2)
sigma2 <- matrix(c(
2, 1.5, 1.8,
1.5, 3, 2.2,
1.8, 2.2, 3.5
), ncol = 3)
shape1 <- c(1, 2)
shape2 <- c(1, 2, 1.5)
dens1 <- dmesn(x = c(1, 1), scale = sigma1, shape = shape1, extended = 2)
dens2 <- dmesn(x = c(1, 1), scale = sigma1)
dens3 <- dmesn(x = c(1, 1, 1), scale = sigma2, shape = shape2, extended = 2)
dens4 <- dmesn(x = c(1, 1, 1), scale = sigma2)
prob1 <- pmesn(x = c(1, 1), scale = sigma1, shape = shape1, extended = 2)
prob2 <- pmesn(x = c(1, 1), scale = sigma1)
prob3 <- pmesn(x = c(1, 1, 1), scale = sigma2, shape = shape2, extended = 2)
prob4 <- pmesn(x = c(1, 1, 1), scale = sigma2)
Bivariate and trivariate extended skew-t distribution
Description
Density function, distribution function for the bivariate and trivariate extended skew-t (EST) distribution.
Usage
dmest(
x = c(0, 0),
location = rep(0, length(x)),
scale = diag(length(x)),
shape = rep(0, length(x)),
extended = 0,
df = Inf
)
pmest(
x = c(0, 0),
location = rep(0, length(x)),
scale = diag(length(x)),
shape = rep(0, length(x)),
extended = 0,
df = Inf
)
Arguments
x |
Quantile vector of length |
location |
A numeric location vector of length |
scale |
A symmetric positive-definite scale matrix of dimension
|
shape |
A numeric skewness vector of length |
extended |
A single value extension parameter.
|
df |
A single positive value representing the degree of freedom;
it can be non-integer. Default value is |
Value
Density (dmest
), probability (pmest
) from the bivariate
or trivariate extended skew-t distribution with given
location
, scale
, shape
, extended
and
df
parameters, or from the skew-t distribution if
extended = 0
. If shape = 0
and extended = 0
,
then the t distribution is recovered.
Author(s)
Simone Padoan, simone.padoan@unibocconi.it, https://faculty.unibocconi.it/simonepadoan/; Boris Beranger, borisberanger@gmail.com https://www.borisberanger.com;
References
Azzalini, A. and Capitanio, A. (2003). Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t distribution. J. Roy. Statist. Soc. B 65, 367–389.
Azzalini, A. with the collaboration of Capitanio, A. (2014). The Skew-Normal and Related Families. Cambridge University Press, IMS Monograph series.
Examples
sigma1 <- matrix(c(2, 1.5, 1.5, 3), ncol = 2)
sigma2 <- matrix(c(
2, 1.5, 1.8,
1.5, 3, 2.2,
1.8, 2.2, 3.5
), ncol = 3)
shape1 <- c(1, 2)
shape2 <- c(1, 2, 1.5)
dens1 <- dmest(x = c(1, 1), scale = sigma1, shape = shape1, extended = 2, df = 1)
dens2 <- dmest(x = c(1, 1), scale = sigma1, df = 1)
dens3 <- dmest(x = c(1, 1, 1), scale = sigma2, shape = shape2, extended = 2, df = 1)
dens4 <- dmest(x = c(1, 1, 1), scale = sigma2, df = 1)
prob1 <- pmest(x = c(1, 1), scale = sigma1, shape = shape1, extended = 2, df = 1)
prob2 <- pmest(x = c(1, 1), scale = sigma1, df = 1)
prob3 <- pmest(x = c(1, 1, 1), scale = sigma2, shape = shape2, extended = 2, df = 1)
prob4 <- pmest(x = c(1, 1, 1), scale = sigma2, df = 1)
Level sets for bivariate normal, student-t and skew-normal distributions probability densities.
Description
Level sets of the bivariate normal, student-t and skew-normal distributions probability densities for a given probability.
Usage
ellipse(
center = c(0, 0),
alpha = c(0, 0),
sigma = diag(2),
df = 1,
prob = 0.01,
npoints = 250,
pos = FALSE
)
Arguments
center |
A vector of length 2 corresponding to the location of the distribution. |
alpha |
A vector of length 2 corresponding to the skewness of the skew-normal distribution. |
sigma |
A 2 by 2 variance-covariance matrix. |
df |
An integer corresponding to the degree of freedom of the student-t distribution. |
prob |
The probability level. See |
npoints |
The maximum number of points at which it is evaluated. |
pos |
If |
Details
The level sets are defined as
R(f_\alpha) = \{ x: f(x) \geq f_\alpha \}
where f_\alpha
is the largest constant such that
P(X \in R(f_\alpha)) \geq 1 - \alpha
.
Here we consider f(x)
to be the bivariate normal, student-t
or skew-normal density.
Value
Returns a bivariate vector of 250
rows if pos = FALSE
,
and half otherwise.
Author(s)
Simone Padoan, simone.padoan@unibocconi.it,
https://faculty.unibocconi.it/simonepadoan/;
Boris Beranger, borisberanger@gmail.com,
https://www.borisberanger.com.
Examples
library(mvtnorm)
# Data simulation (Bivariate-t on positive quadrant)
rho <- 0.5
sigma <- matrix(c(1, rho, rho, 1), ncol = 2)
df <- 2
set.seed(101)
n <- 1500
data <- rmvt(5 * n, sigma = sigma, df = df)
data <- data[data[, 1] > 0 & data[, 2] > 0, ]
data <- data[1:n, ]
P <- c(1 / 750, 1 / 1500, 1 / 3000)
ell1 <- ellipse(prob = 1 - P[1], sigma = sigma, df = df, pos = TRUE)
ell2 <- ellipse(prob = 1 - P[2], sigma = sigma, df = df, pos = TRUE)
ell3 <- ellipse(prob = 1 - P[3], sigma = sigma, df = df, pos = TRUE)
plot(
data,
xlim = c(0, max(data[, 1], ell1[, 1], ell2[, 1], ell3[, 1])),
ylim = c(0, max(data[, 2], ell1[, 2], ell2[, 2], ell3[, 2])),
pch = 19
)
points(ell1, type = "l", lwd = 2, lty = 1)
points(ell2, type = "l", lwd = 2, lty = 1)
points(ell3, type = "l", lwd = 2, lty = 1)
Extract the estimated parameter
Description
This function extracts the estimated parameters from a fitted object.
Usage
est(x, digits = 3)
Arguments
x |
An object of class |
digits |
Integer indicating the number of decimal places to be reported. |
Value
A vector.
Author(s)
Simone Padoan, simone.padoan@unibocconi.it,
https://faculty.unibocconi.it/simonepadoan/;
Boris Beranger, borisberanger@gmail.com,
https://www.borisberanger.com.
See Also
Examples
data(pollution)
f.hr <- fExtDep(
x = PNS,
method = "PPP",
model = "HR",
par.start = rep(0.5, 3),
trace = 2
)
est(f.hr)
Extremal Dependence Estimation
Description
Estimate the parameters of extremal dependence models using frequentist, composite likelihood, or Bayesian approaches.
Usage
fExtDep(x, method = "PPP", model, par.start = NULL,
c = 0, optim.method = "BFGS", trace = 0,
Nsim, Nbin = 0, Hpar, MCpar, seed = NULL)
## S3 method for class 'ExtDep_Freq'
plot(x, type, log = TRUE, contour = TRUE, style, labels,
cex.dat = 1, cex.lab = 1, cex.cont = 1, Q.fix, Q.range,
Q.range0, cond = FALSE, ...)
## S3 method for class 'ExtDep_Freq'
logLik(object, ...)
## S3 method for class 'ExtDep_Bayes'
plot(x, type, log = TRUE, contour = TRUE, style, labels,
cex.dat = 1, cex.lab = 1, cex.cont = 1, Q.fix, Q.range,
Q.range0, cond = FALSE, cred.ci = TRUE, subsamp, ...)
## S3 method for class 'ExtDep_Bayes'
summary(object, cred = 0.95, plot = FALSE, ...)
Arguments
x |
|
object |
For |
method |
Estimation method: |
model |
Name of the model. For |
par.start |
Vector of initial parameter values for optimization. |
c |
Real in |
optim.method |
Optimization algorithm (see |
trace |
Non-negative integer controlling optimization progress output (see |
Nsim |
Number of MCMC simulations (for |
Nbin |
Burn-in length (for |
Hpar |
List of hyper-parameters (see Details). Required for |
MCpar |
Variance of the proposal distribution (see Details). Required for |
seed |
Integer seed for reproducibility (passed to |
type |
For |
log |
Logical; applies to |
contour |
Logical; applies to |
style |
For |
labels |
Labels for axes in |
cex.dat |
Point size for 3D angular plots. |
cex.lab |
Label size in plots. |
cex.cont |
Contour line size in |
Q.fix , Q.range , Q.range0 , cond |
Arguments for |
cred.ci |
Logical, for |
subsamp |
Posterior subsample percentage (used with |
cred |
Credible interval coverage probability (default 0.95). |
plot |
Logical; if |
... |
Additional graphical or density arguments (see Details). |
Details
Estimation:
-
method="PPP"
: Approximate likelihood estimation usingdExtDep(method="Parametric", angular=TRUE)
. -
method="BayesianPPP"
: Bayesian estimation of the spectral measure (Sabourin et al., 2013; Sabourin & Naveau, 2014). RequiresHpar
andMCpar
. Hyper-parameters depend on the model (see references for details). -
method="Composite"
: Pairwise composite likelihood usingdExtDep(method="Parametric", angular=FALSE)
.
Plotting:
See angular.plot
, pickands.plot
, and returns.plot
.
Angular plots can display data as histograms (style="hist"
) or ticks (style="ticks"
). For trivariate cases, use cex.dat
to control point size.
Value
fExtDep
:
For
"PPP"
or"Composite"
: an object of classExtDep_Freq
with elements- model
The fitted model.
- par
Estimated parameters.
- LL
Maximized log-likelihood.
- SE
Standard errors.
- TIC
Takeuchi Information Criterion.
- data
Input data.
For
"BayesianPPP"
: an object of classExtDep_Bayes
with elements- stored.values
Posterior sample matrix of size
(Nsim-Nbin) \times d
.- llh
Log-likelihoods at posterior samples.
- lprior
Log-priors at posterior samples.
- arguments
Algorithm details.
- elapsed
Elapsed run time.
- Nsim, Nbin
Simulation settings.
- n.accept, n.accept.kept
MCMC acceptance counts.
- emp.mean
Posterior means.
- emp.sd
Posterior standard deviations.
- BIC
Bayesian Information Criterion.
logLik
: numerical log-likelihood value.
Author(s)
Simone Padoan (simone.padoan@unibocconi.it, https://faculty.unibocconi.it/simonepadoan/) Boris Beranger (borisberanger@gmail.com, https://www.borisberanger.com)
References
Beranger, B. and Padoan, S. A. (2015). Extreme Dependence Models, in Extreme Value Modeling and Risk Analysis: Methods and Applications, Chapman & Hall/CRC.
Sabourin, A., Naveau, P., and Fougeres, A.-L. (2013). Bayesian model averaging for multivariate extremes. Extremes, 16, 325-350.
Sabourin, A. and Naveau, P. (2014). Bayesian Dirichlet mixture model for multivariate extremes: A re-parametrization. Computational Statistics & Data Analysis, 71, 542-567.
See Also
dExtDep
, pExtDep
, rExtDep
, fExtDep.np
Examples
# Poisson Point Process approach
data(pollution)
f.hr <- fExtDep(x = PNS, method = "PPP", model = "HR",
par.start = rep(0.5, 3), trace = 2)
plot(f.hr, type = "angular",
labels = c(expression(PM[10]), expression(NO), expression(SO[2])),
cex.lab = 2)
plot(f.hr, type = "pickands",
labels = c(expression(PM[10]), expression(NO), expression(SO[2])),
cex.lab = 2) # may be slow
# Pairwise composite likelihood
set.seed(1)
data <- rExtDep(n = 300, model = "ET", par = c(0.6, 3))
f.et <- fExtDep(x = data, method = "Composite", model = "ET",
par.start = c(0.5, 1), trace = 2)
plot(f.et, type = "angular", cex.lab = 2)
Non-parametric extremal dependence estimation
Description
This function estimates the bivariate extremal dependence structure using a non-parametric approach based on Bernstein Polynomials.
Usage
fExtDep.np(
x, method, cov1 = NULL, cov2 = NULL, u, mar.fit = TRUE,
mar.prelim = TRUE, par10, par20, sig10, sig20, param0 = NULL,
k0 = NULL, pm0 = NULL, prior.k = "nbinom", prior.pm = "unif",
nk = 70, lik = TRUE,
hyperparam = list(mu.nbinom = 3.2, var.nbinom = 4.48),
nsim, warn = FALSE, type = "rawdata"
)
## S3 method for class 'ExtDep_npBayes'
plot(
x, type, summary.mcmc, burn, y, probs,
A_true, h_true, est.out, mar1, mar2, dep,
QatCov1 = NULL, QatCov2 = QatCov1, P,
CEX = 1.5, col.data, col.Qfull, col.Qfade, data = NULL, ...
)
## S3 method for class 'ExtDep_npFreq'
plot(
x, type, est.out, mar1, mar2, dep, P, CEX = 1.5,
col.data, col.Qfull, data = NULL, ...
)
## S3 method for class 'ExtDep_npEmp'
plot(
x, type, est.out, mar1, mar2, dep, P, CEX = 1.5,
col.data, col.Qfull, data = NULL, ...
)
## S3 method for class 'ExtDep_npBayes'
summary(
object, w, burn, cred = 0.95, plot = FALSE, ...
)
Arguments
x |
|
object |
A list object of class |
method |
A character string indicating the estimation method inlcuding |
cov1 , cov2 |
A covariate vector/matrix for linear model on the location parameter of the marginal distributions. |
u |
When |
mar.fit |
A logical value indicated whether the marginal distributions should be fitted. When |
rawdata |
A character string specifying if the data is |
mar.prelim |
A logical value indicated whether a preliminary fit of marginal distributions should be done prior to estimating the margins and dependence. Required when |
par10 , par20 |
Vectors of starting values for the marginal parameter estimation. Required when |
sig10 , sig20 |
Positive reals representing the initial value for the scaling parameter of the multivariate normal proposal distribution for both margins. Required when |
param0 |
A vector of initial value for the Bernstein polynomial coefficients. It should be a list with elements |
k0 |
An integer indicating the initial value of the polynomial order. Required when |
pm0 |
A list of initial values for the probability masses at the boundaries of the simplex. It should be a list with two elements |
prior.k |
A character string indicating the prior distribution on the polynomial order. By default |
prior.pm |
A character string indicating the prior on the probability masses at the endpoints of the simplex. By default |
nk |
An integer indicating the maximum polynomial order. Required when |
lik |
A logical value; if |
hyperparam |
A list of the hyper-parameters depending on the choice of |
nsim |
An integer indicating the number of iterations in the Metropolis-Hastings algorithm. Required when |
warn |
A logical value. If |
type |
|
summary.mcmc |
The output of the |
burn |
The burn-in period. |
y |
A 2-column matrix of unobserved thresholds at which the returns are calculated. Required when |
probs |
The probability of joint exceedances, the output of the |
A_true |
A vector representing the true pickands dependence function evaluated at the grid points on the simplex given in the |
h_true |
A vector representing the true angular density function evaluated at the grid points on the simplex given in the |
est.out |
A list containing:
Note that a posterior summary is made of its mean and Only required when |
mar1 , mar2 |
Vectors of marginal GEV parameters. Required when |
dep |
A logical value; if |
QatCov1 , QatCov2 |
Matrices representing the value of the covariates at which extreme quantile regions should be computed. Required when |
P |
A vector indicating the probabilities associated with the quantiles to be computed. Required when |
CEX |
Label and axis sizes. |
col.data , col.Qfull , col.Qfade |
Colors for data, estimate of extreme quantile regions and its credible interval (when applicable). Required when |
data |
A 2-column matrix providing the original data to be plotted when |
w |
A matrix or vector of values on the unit simplex. If vector values need to be between 0 and 1, if matrix each row need to sum to one. |
cred |
A probability for the credible intervals. |
plot |
A logical value indicating whether |
... |
Additional graphical parameters |
Details
Regarding the fExtDep.np
function:
When method="Bayesian"
, the vector of hyper-parameters is provided in the argument hyperparam
. It should include:
- If
prior.pm="unif"
requires
hyperparam$a.unif
andhyperparam$b.unif
.- If
prior.pm="beta"
requires
hyperparam$a.beta
andhyperparam$b.beta
.- If
prior.k="pois"
requires
hyperparam$mu.pois
.- If
prior.k="nbinom"
requires
hyperparam$mu.nbinom
andhyperparam$var.nbinom
orhyperparam$pnb
andhyperparam$rnb
. The relationship ispnb = mu.nbinom/var.nbinom
andrnb = mu.nbinom^2 / (var.nbinom - mu.nbinom)
.
When u
is specified Algorithm 1 of Beranger et al. (2021) is applied whereas when it is not specified Algorithm 3.5 of Marcon et al. (2016) is considered.
When method="Frequentist"
, if type="rawdata"
then pseudo-polar coordinates are extracted and only observations with a radial component above some high threshold (the quantile equivalent of u
for the raw data) are retained. The inferential approach proposed in Marcon et al. (2017) based on the approximate likelihood is applied.
When method="Empirical"
, the empirical estimation procedure presented in Einmahl et al. (2013) is applied.
Regarding the plot
method function:
type="returns"
:produces a (contour) plot of the probabilities of exceedances for some threshold. This corresponds to the output of the
returns
function.type="A"
:produces a plot of the estimated Pickands dependence function. If
A_true
is specified the plot includes the true Pickands dependence function and a functional boxplot for the estimated function.type="h"
:produces a plot of the estimated angular density function. If
h_true
is specified the plot includes the true angular density and a functional boxplot for the estimated function.type="pm"
:produces a plot of the prior against the posterior for the mass at
\{0\}
.type="k"
:produces a plot of the prior against the posterior for the polynomial degree
k
.type="summary"
:when the estimation was performed in a Bayesian framework then a 2 by 2 plot with types
"A"
,"h"
,"pm"
and"k"
is produced. Otherwise a 1 by 2 plot with types"A"
and"h"
is produced.type="Qsets"
:displays extreme quantile regions according to the methodology developped in Beranger et al. (2021).
Regarding the code summary
method function:
It is obvious that the value of burn
cannot be greater than the number of iterations in the mcmc algorithm. This can be found as object$nsim
.
Value
Regarding the fExtDep.np
function:
Returns lists of class ExtDep_npBayes
, ExtDep_npFreq
or ExtDep_npEmp
depending on the value of the method
argument. Each list includes:
- method:
The argument.
- type:
whether it is
"maxima"
or"rawdata"
(in the broader sense that a threshold exceedance model was taken).
If method="Bayesian"
the list also includes:
- mar.fit:
The argument.
- pm:
The posterior sample of probability masses.
- eta:
The posterior sample for the coeficients of the Bernstein polynomial.
- k:
The posterior sample for the Bernstein polynoial order.
- accepted:
A binary vector indicating if the proposal was accepted.
- acc.vec:
A vector containing the acceptance probabilities for the dependence parameters at each iteration.
- prior:
A list containing
hyperparam
,prior.pm
andprior.k
.- nsim:
The argument.
- data:
The argument.
In addition if the marginal parameters are estimated (mar.fit=TRUE
):
- cov1, cov2:
The arguments.
- accepted.mar, accepted.mar2:
Binary vectors indicating if the marginal proposals were accepted.
- straight.reject1, straight.reject2:
Binary vectors indicating if the marginal proposals were rejected straight away as not respecting existence conditions (proposal is multivariate normal).
- acc.vec1, acc.vec2:
Vectors containing the acceptance probabilities for the marginal parameters at each iteration.
- sig1.vec, sig2.vec:
Vectors containing the values of the scaling parameter in the marginal proposal distributions.
Finally, if the argument u
is provided, the list also contains:
- threshold:
A bivariate vector indicating the threshold level for both margins.
- kn:
The empirical estimate of the probability of being greater than the threshold.
When method="Frequentist"
, the list includes:
- hhat:
An estimate of the angular density.
- Hhat:
An estimate of the angular measure.
- p0, p1:
The estimates of the probability mass at 0 and 1.
- Ahat:
An estimate of the Pickands dependence function.
- w:
A sequence of value on the bivariate unit simplex.
- q:
A real in
[0,1]
indicating the quantile associated with the thresholdu
. Takes valueNULL
iftype="maxima"
.- data:
The data on the unit Frechet scale (empirical transformation) if
type="rawdata"
andmar.fit=TRUE
. Data on the original scale otherwise.
When method="Empirical"
, the list includes:
- fi:
An estimate of the angular measure.
- h_hat:
An estimate of the angular density.
- theta_seq:
A sequence of angles from
0
to\pi/2
- data
The argument.
Regarding the code summary
method function:
The function returns a list with the following objects:
- k.median, k.up, k.low:
Posterior median, upper and lower bounds of the CI for the estimated Bernstein polynomial degree
\kappa
.- h.mean, h.up, h.low:
Posterior mean, upper and lower bounds of the CI for the estimated angular density
h
.- A.mean, A.up, A.low:
Posterior mean, upper and lower bounds of the CI for the estimated Pickands dependence function
A
.- p0.mean, p0.up, p0.low:
Posterior mean, upper and lower bounds of the CI for the estimated point mass
p_0
.- p1.mean, p1.up, p1.low:
Posterior mean, upper and lower bounds of the CI for the estimated point mass
p_1
.- A_post:
Posterior sample for Pickands dependence function.
- h_post:
Posterior sample for angular density.
- eta.diff_post:
Posterior sample for the Bernstein polynomial coefficients (
\eta
parametrisation).- beta_post:
Posterior sample for the Bernstein polynomial coefficients (
\beta
parametrisation).- p0_post, p1_post:
Posterior sample for point masses
p_0
andp_1
.- w:
A vector of values on the bivariate simplex where the angular density and Pickands dependence function were evaluated.
- burn:
The argument provided.
If the margins were also fitted, the list given as object
would contain mar1
and mar2
and the function would also output:
- mar1.mean, mar1.up, mar1.low:
Posterior mean, upper and lower bounds of the CI for the estimated marginal parameter on the first component.
- mar2.mean, mar2.up, mar2.low:
Posterior mean, upper and lower bounds of the CI for the estimated marginal parameter on the second component.
- mar1_post:
Posterior sample for the estimated marginal parameter on the first component.
- mar2_post:
Posterior sample for the estimated marginal parameter on the second component.
Author(s)
Simone Padoan, simone.padoan@unibocconi.it, https://faculty.unibocconi.it/simonepadoan/; Boris Beranger, borisberanger@gmail.com https://www.borisberanger.com;
References
Beranger, B., Padoan, S. A. and Sisson, S. A. (2021). Estimation and uncertainty quantification for extreme quantile regions. Extremes, 24, 349-375.
Einmahl, J. H. J., de Haan, L. and Krajina, A. (2013). Estimating extreme bivariate quantile regions. Extremes, 16, 121-145.
Marcon, G., Padoan, S. A. and Antoniano-Villalobos, I. (2016). Bayesian inference for the extremal dependence. Electronic Journal of Statistics, 10, 3310-3337.
Marcon, G., Padoan, S.A., Naveau, P., Muliere, P. and Segers, J. (2017) Multivariate Nonparametric Estimation of the Pickands Dependence Function using Bernstein Polynomials. Journal of Statistical Planning and Inference, 183, 1-17.
See Also
dExtDep
, pExtDep
, rExtDep
, fExtDep
Examples
###########################################################
### Example 1 - Wind Speed and Differential of pressure ###
###########################################################
data(WindSpeedGust)
years <- format(ParcayMeslay$time, format = "%Y")
attach(ParcayMeslay[which(years %in% c(2004:2013)), ])
# Marginal quantiles
WS_th <- quantile(WS, .9)
DP_th <- quantile(DP, .9)
# Standardisation to unit Frechet (requires evd package)
pars.WS <- evd::fpot(WS, WS_th, model = "pp")$estimate
pars.DP <- evd::fpot(DP, DP_th, model = "pp")$estimate
# transform the marginal distribution to common unit Frechet:
data_uf <- trans2UFrechet(cbind(WS, DP), type = "Empirical")
# compute exceedances
rdata <- rowSums(data_uf)
r0 <- quantile(rdata, probs = .90)
extdata_WSDP <- data_uf[rdata >= r0, ]
# Fit
SP_mle <- fExtDep.np(
x = extdata_WSDP, method = "Frequentist", k0 = 10, type = "maxima"
)
# Plot
plot(x = SP_mle, type = "summary")
####################################################
### Example 2 - Pollution levels in Milan, Italy ###
####################################################
## Not run:
### Here we will only model the dependence structure
data(MilanPollution)
data <- Milan.winter[, c("NO2", "SO2")]
data <- as.matrix(data[complete.cases(data), ])
# Thereshold
u <- apply(
data, 2, function(x) quantile(x, prob = 0.9, type = 3)
)
# Hyperparameters
hyperparam <- list(mu.nbinom = 6, var.nbinom = 8, a.unif = 0, b.unif = 0.2)
### Standardise data to univariate Frechet margins
f1 <- fGEV(data = data[, 1], method = "Bayesian", sig0 = 0.0001, nsim = 5e+4)
diagnostics(f1)
burn1 <- 1:30000
gev.pars1 <- apply(f1$param_post[-burn1, ], 2, mean)
sdata1 <- trans2UFrechet(data = data[, 1], pars = gev.pars1, type = "GEV")
f2 <- fGEV(data = data[, 2], method = "Bayesian", sig0 = 0.0001, nsim = 5e+4)
diagnostics(f2)
burn2 <- 1:30000
gev.pars2 <- apply(f2$param_post[-burn2, ], 2, mean)
sdata2 <- trans2UFrechet(data = data[, 2], pars = gev.pars2, type = "GEV")
sdata <- cbind(sdata1, sdata2)
### Bayesian estimation using Bernstein polynomials
pollut1 <- fExtDep.np(
x = sdata, method = "Bayesian", u = TRUE,
mar.fit = FALSE, k0 = 5, hyperparam = hyperparam, nsim = 5e+4
)
diagnostics(pollut1)
pollut1_sum <- summary(object = pollut1, burn = 3e+4, plot = TRUE)
pl1 <- plot(
x = pollut1, type = "Qsets", summary.mcmc = pollut1_sum,
mar1 = gev.pars1, mar2 = gev.pars2, P = 1 / c(600, 1200, 2400),
dep = TRUE, data = data, xlim = c(0, 400), ylim = c(0, 400)
)
pl1b <- plot(
x = pollut1, type = "Qsets", summary.mcmc = pollut1_sum, est.out = pl1$est.out,
mar1 = gev.pars1, mar2 = gev.pars2, P = 1 / c(1200),
dep = FALSE, data = data, xlim = c(0, 400), ylim = c(0, 400)
)
### Frequentist estimation using Bernstein polynomials
pollut2 <- fExtDep.np(
x = sdata, method = "Frequentist", mar.fit = FALSE, type = "rawdata", k0 = 8
)
plot(x = pollut2, type = "summary", CEX = 1.5)
pl2 <- plot(
x = pollut2, type = "Qsets", mar1 = gev.pars1, mar2 = gev.pars2,
P = 1 / c(600, 1200, 2400),
dep = TRUE, data = data, xlim = c(0, 400), ylim = c(0, 400),
xlab = expression(NO[2]), ylab = expression(SO[2]),
col.Qfull = c("red", "green", "blue")
)
### Frequentist estimation using EKdH estimator
pollut3 <- fExtDep.np(x = data, method = "Empirical")
plot(x = pollut3, type = "summary", CEX = 1.5)
pl3 <- plot(
x = pollut3, type = "Qsets", mar1 = gev.pars1, mar2 = gev.pars2,
P = 1 / c(600, 1200, 2400),
dep = TRUE, data = data, xlim = c(0, 400), ylim = c(0, 400),
xlab = expression(NO[2]), ylab = expression(SO[2]),
col.Qfull = c("red", "green", "blue")
)
## End(Not run)
Fitting of a max-stable process
Description
This function uses the Stephenson-Tawn likelihood to estimate parameters of max-stable models.
Usage
fExtDepSpat(
x, model, sites, hit, jw, thresh, DoF, range, smooth,
alpha, par0, acov1, acov2, parallel, ncores, args1, args2,
seed = 123, method = "BFGS", sandwich = TRUE,
control = list(trace = 1, maxit = 50, REPORT = 1, reltol = 0.0001)
)
## S3 method for class 'ExtDep_Spat'
logLik(object, ...)
Arguments
x |
A |
object |
An object of class |
model |
A character string indicating the max-stable model, currently extremal-t ( |
sites |
A |
hit |
A |
jw |
An integer between |
thresh |
A positive real indicating the threshold value for pairwise distances. See |
DoF |
A positive real indicating a fixed value of the degree of freedom of the extremal-t and extremal skew-t models. |
range |
A positive real indicating a fixed value of the range parameter for the power exponential correlation function (only correlation function currently available). |
smooth |
A positive real in |
alpha |
A vector of length |
par0 |
A vector of initial values of the parameter vector, in order: the degree of freedom |
acov1 , acov2 |
Vectors of length |
parallel |
A logical value; if |
ncores |
An integer indicating the number of cores considered in the parallel socket cluster of type |
args1 , args2 |
Lists specifying details about the Monte Carlo simulation scheme to compute multivariate CDFs. See |
seed |
An integer for reproducibility in the CDF computations. |
method |
A character string indicating the optimisation method to be used. See |
sandwich |
A logical value; if |
control |
A list of control parameters for the optimisation. See |
... |
For the |
Details
This routine follows the methodology developed by Beranger et al. (2021). It uses the Stephenson-Tawn likelihood which relies on the knowledge of time occurrences of each block maxima. Rather than considering all partitions of the set \{1, \ldots, d\}
, the likelihood is computed using the observed partition. Let \Pi = (\pi_1, \ldots, \pi_K)
denote the observed partition, then the Stephenson-Tawn likelihood is given by
L(\theta; x) = \exp \left\{ - V(x; \theta) \right\}
\times \prod^{K}_{k = 1} - V_{\pi_k}(x; \theta),
where V_{\pi}
represents the partial derivative(s) of V(x; \theta)
with respect to \pi
.
When jw = d
the full Stephenson-Tawn likelihood is considered, whereas for values lower than d
a composite likelihood approach is taken.
The argument thresh
is required when the composite likelihood is used. A tuple of size jw
is assigned a weight of one if the maximum pairwise distance between corresponding locations is less than thresh
, and a weight of zero otherwise.
Arguments args1
and args2
relate to specifications of the Monte Carlo simulation scheme to compute multivariate CDF evaluations. These should take the form of lists including the minimum and maximum number of simulations used (Nmin
and Nmax
), the absolute error (eps
), and whether the error should be controlled on the log-scale (logeps
).
Value
fExtDepSpat
: An object of class ExtDep_Spat
in the form of a list comprising:
the vector of estimated parameters (
est
),the composite likelihood order (
jw
),the maximised log-likelihood value (
LL
),if
sandwich = TRUE
, the standard errors from the sandwich information matrix (stderr.sand
),the TIC for model selection (
TIC
),if the composite likelihood is considered, a matrix of all tuples with weight 1 (
cmat
).
logLik
: The value of the maximised log-likelihood.
Author(s)
Simone Padoan, simone.padoan@unibocconi.it, https://faculty.unibocconi.it/simonepadoan/; Boris Beranger, borisberanger@gmail.com, https://www.borisberanger.com
References
Beranger, B., Stephenson, A. G., and Sisson, S. A. (2021). High-dimensional inference using the extremal skew-t process. Extremes, 24, 653–685.
See Also
Examples
set.seed(14342)
# Simulation of 20 locations
Ns <- 20
sites <- matrix(runif(Ns * 2) * 10 - 5, nrow = Ns, ncol = 2)
for (i in 1:2) sites[, i] <- sites[, i] - mean(sites[, i])
# Simulation of 50 replicates from the Extremal-t model
Ny <- 50
x <- rExtDepSpat(
Ny, sites, model = "ET", cov.mod = "powexp", DoF = 1,
range = 3, nugget = 0, smooth = 1.5,
control = list(method = "exact")
)
# Fit the extremal-t using the full Stephenson-Tawn likelihood
args1 <- list(Nmax = 50L, Nmin = 5L, eps = 0.001, logeps = FALSE)
args2 <- list(Nmax = 500L, Nmin = 50L, eps = 0.001, logeps = TRUE)
## Not run:
fit1 <- fExtDepSpat(
x = x$vals, model = "ET", sites = sites, hit = x$hits,
par0 = c(3, 1, 1), parallel = TRUE, ncores = 6,
args1 = args1, args2 = args2, control = list(trace = 0)
)
stderr(fit1)
## End(Not run)
Fitting of the Generalized Extreme Value Distribution
Description
Maximum-likelihood and Metropolis-Hastings algorithm for the estimation of the generalized extreme value distribution.
Usage
fGEV(data, par.start, method="Frequentist", u, cov,
optim.method="BFGS", optim.trace=0, sig0, nsim)
Arguments
data |
A vector representing the data, which may contain missing values. |
par.start |
A vector of length |
method |
A character string indicating whether the estimation is done following a |
u |
A real indicating a high threshold. If supplied a threshold exceedance approach is taken and computations use the censored likelihood. If missing, a block maxima approach is taken and the regular GEV likelihood is used. |
cov |
A matrix of covariates to define a linear model for the location parameter. |
optim.method |
The optimization method to be used. Required when |
optim.trace |
A non-negative integer tracing the progress of the optimization. Required when |
sig0 |
Positive reals representing the initial value for the scaling parameter of the multivariate normal proposal distribution for both margins. Required when |
nsim |
An integer indicating the number of iterations in the Metropolis-Hastings algorithm. Required when |
Details
When cov
is a vector of ones then the location parameter \mu
is constant. On the contrary, when cov
is provided, it represents the design matrix for the linear model on \mu
(the number of columns in the matrix indicates the number of linear predictors).
When u=NULL
or missing, the likelihood function is given by
\prod_{i=1}^{n} g(x_i; \mu, \sigma, \xi)
where g(\cdot;\mu,\sigma,\xi)
represents the GEV pdf, whereas when a threshold value is set the likelihood is given by
k_n \log\left( G(u;\mu,\sigma,\xi) \right) \times \prod_{i=1}^n \frac{\partial}{\partial x}G(x;\mu,\sigma,\xi)|_{x=x_i}
where G(\cdot;\mu,\sigma,\xi)
is the GEV cdf and k_n
is the empirical estimate of the probability of being greater than the threshold u
.
Note that the case \xi \leq 0
is not yet considered when u
is used.
The choice method="Bayesian"
applies a random walk Metropolis-Hastings algorithm as described in Section 3.1 and Step 1 and 2 of Algorithm 1 from Beranger et al. (2021). The algorithm may restart for several reasons including if the proposed value of the parameters changes too much from the current value (see Garthwaite et al. (2016) for more details).
The choice method="Frequentist"
uses the optim
function to find the maximum likelihood estimator.
Value
When
method="Frequentist"
the routine returns a list including the parameter estimates (est
), associated variance-covariance matrix (varcov
), and standard errors (stderr
).When
method="Bayesian"
the routine returns a list including:- param_post
the parameter posterior sample;
- accepted
a binary vector indicating which proposals were accepted;
- straight.reject
a binary vector indicating which proposals were rejected immediately, given that the proposal is multivariate normal and there are constraints on the parameter values;
- nsim
the number of simulations in the algorithm;
- sig.vec
the vector of updated scaling parameters in the multivariate normal proposal distribution at each iteration;
- sig.restart
the value of the scaling parameter in the multivariate normal proposal distribution when the algorithm needs to restart;
- acc.vec
a vector of acceptance probabilities at each iteration.
Author(s)
Simone Padoan, simone.padoan@unibocconi.it, https://faculty.unibocconi.it/simonepadoan/; Boris Beranger, borisberanger@gmail.com, https://www.borisberanger.com;
References
Beranger, B., Padoan, S. A., and Sisson, S. A. (2021). Estimation and uncertainty quantification for extreme quantile regions. Extremes, 24, 349–375.
Garthwaite, P. H., Fan, Y., and Sisson, S. A. (2016). Adaptive optimal scaling of Metropolis-Hastings algorithms using the Robbins-Monro process. Communications in Statistics - Theory and Methods, 45(17), 5098–5111.
See Also
Examples
##################################################
### Example - Pollution levels in Milan, Italy ###
##################################################
data(MilanPollution)
# Frequentist estimation
fit <- fGEV(Milan.winter$PM10)
fit$est
# Bayesian estimation with high threshold
cov <- cbind(rep(1, nrow(Milan.winter)), Milan.winter$MaxTemp,
Milan.winter$MaxTemp^2)
u <- quantile(Milan.winter$PM10, prob=0.9, type=3, na.rm=TRUE)
fit2 <- fGEV(data=Milan.winter$PM10, par.start=c(50,0,0,20,1),
method="Bayesian", u=u, cov=cov, sig0=0.1, nsim=5e+4)
Summer temperature maxima in Melbourne, Australia between 1961 and 2010
Description
The dataset corresponds to summer temperature maxima taken over the period from August to April inclusive, recorded between 1961 and 2010 at 90 stations arranged on a 0.15 degree grid in a 9 by 10 formation.
Details
The first maximum is taken over the August 1961 to April 1962 period, and the last maximum is taken over the August 2010 to April 2011 period.
The object heatdata
contains the core of the data:
- vals
A
50 \times 90
matrix containing the50
summer maxima at the90
locations.- sitesLL
A
90 \times 2
matrix containing the site locations in latitude-longitude, recentered (means subtracted).- sitesEN
A
90 \times 2
matrix containing the site locations in eastings-northings, recentered (means subtracted).- hits
A
50 \times 90
integer matrix indicating the “heatwave” number associated with each summer maximum. Locations on the same row with the same integer indicate maxima arising from the same heatwave, defined over a three-day window.- sitesLLO
A
90 \times 2
matrix containing the site locations in latitude-longitude, on the original scale.- sitesENO
A
90 \times 2
matrix containing the site locations in eastings-northings, on the original scale.- ufvals
A
50 \times 90
matrix containing the50
summer maxima at the90
locations, standardized to the unit Frechet scale.
Standardisation to the unit Frechet scale is performed as in Beranger et al. (2021) by fitting the GEV distribution marginally, using unconstrained location and scale parameters and a shape parameter specified as a linear function of eastings and northings (in 100 km units). The resulting estimates are stored in the objects locgrid
, scalegrid
, and shapegrid
, which are 10 \times 9
matrices.
Details about the study region are given in mellat
and mellon
, vectors of length 10
and 11
, which provide the latitude and longitude coordinates of the grid.
References
Beranger, B., Stephenson, A. G. and Sisson, S. A. (2021).
High-dimensional inference using the extremal skew-t
process.
Extremes, 24, 653-685.
Examples
image(x = mellon, y = mellat, z = locgrid)
points(heatdata$sitesLLO, pch = 16)
Index of extremal dependence
Description
Computes the extremal coefficient, Pickands dependence function, and the coefficients of upper and lower tail dependence for several parametric models. Also computes the lower tail dependence function for the bivariate skew-normal distribution.
Usage
index.ExtDep(object, model, par, x, u)
Arguments
object |
A character string indicating the index of extremal dependence to compute. Options are:
|
model |
A character string indicating the model/distribution.
|
par |
A vector of parameter values for the specified model/distribution. |
x |
A vector on the bivariate or trivariate unit simplex indicating where to evaluate the Pickands dependence function. |
u |
A real number in |
Details
The extremal coefficient is defined as
\theta = V(1,\ldots,1) = d \int_{W} \max_{j \in \{1, ..., d\}} (w_j) dH(w) = - \log G(1,\ldots,1),
where W
is the unit simplex, V
is the exponent function, and
G(\cdot)
the distribution function of a multivariate extreme value model.
Bivariate and trivariate versions are available.
The Pickands dependence function is defined as
A(x) = - \log G(1/x)
for x
in the bivariate/trivariate simplex W
.
The coefficient of upper tail dependence is defined as
\vartheta = R(1,\ldots,1) = d \int_{W} \min_{j \in \{1, ..., d\}} (w_j) dH(w).
In the bivariate case, using the inclusion-exclusion principle this reduces to
\vartheta = 2 + \log G(1,1) = 2 - V(1,1).
For the skew-normal distribution, the lower tail dependence function is defined
as in Bortot (2010). This approximation is obtained in the limiting case as
u
tends to 1
. The par
argument should be a vector of length
3
, consisting of the correlation parameter (between -1
and 1
)
and two real-valued skewness parameters.
Value
-
object="extremal"
: returns a value in[1, d]
(d=2,3
). -
object="pickands"
: returns a value in[\max(x), 1]
. -
object="upper.tail"
: returns a value in[0, 1]
. -
object="lower.tail"
: returns a value in[-1, 1]
.
Author(s)
Simone Padoan simone.padoan@unibocconi.it
https://faculty.unibocconi.it/simonepadoan/
Boris Beranger borisberanger@gmail.com
https://www.borisberanger.com
References
Bortot, P. (2010). Tail dependence in bivariate skew-normal and skew-t distributions. Unpublished.
Examples
#############################
### Extremal skew-t model ###
#############################
## Extremal coefficient
index.ExtDep(object = "extremal", model = "EST", par = c(0.5, 1, -2, 2))
## Pickands dependence function
w <- seq(0.00001, 0.99999, length = 100)
pick <- numeric(100)
for (i in 1:100) {
pick[i] <- index.ExtDep(
object = "pickands", model = "EST", par = c(0.5, 1, -2, 2),
x = c(w[i], 1 - w[i])
)
}
plot(w, pick, type = "l", ylim = c(0.5, 1), ylab = "A(t)", xlab = "t")
polygon(c(0, 0.5, 1), c(1, 0.5, 1), lwd = 2, border = "grey")
## Upper tail dependence coefficient
index.ExtDep(object = "upper.tail", model = "EST", par = c(0.5, 1, -2, 2))
## Lower tail dependence coefficient
index.ExtDep(object = "lower.tail", model = "EST", par = c(0.5, 1, -2, 2))
################################
### Skew-normal distribution ###
################################
## Lower tail dependence function
index.ExtDep(object = "lower.tail", model = "SN", par = c(0.5, 1, -2), u = 0.5)
Valid set of parameters for the 3-dimensional Husler-Reiss model
Description
Given two parameters of the Husler-Reiss model, this function evaluates the range of values the third parameter can take to ensure a positive definite matrix in the model.
Usage
lambda.HR(lambda)
Arguments
lambda |
A vector of length 3 containing one |
Details
As indicated in Engelke et al. (2015), the matrix with zero diagonal and
squared lambda
parameters on the off-diagonal needs to be strictly
conditionally negative definite.
Value
A 2 \times 3
matrix with, on the top, the lowest value of the parameter
corresponding to the NA
value in the input, and on the bottom the
largest value.
Author(s)
Simone Padoan, simone.padoan@unibocconi.it, https://faculty.unibocconi.it/simonepadoan/; Boris Beranger, borisberanger@gmail.com, https://www.borisberanger.com.
References
Engelke, S., Malinowski, A., Kabluchko, Z., and Schlather, M. (2015). Estimation of Husler-Reiss distributions and Brown-Resnick processes. Journal of the Royal Statistical Society: Series B (Methodological), 77, 239–265.
Examples
ls <- lambda.HR(c(1, 2, NA))
dExtDep(
x = c(0.1, 0.7, 0.2),
method = "Parametric",
model = "HR",
par = ls[1, ],
angular = TRUE
)
Monthly maxima of log-return exchange rates of the Pound Sterling (GBP) against the US dollar (USD) and the Japanese yen (JPY), between March 1991 and December 2014
Description
The dataset logReturns
contains four columns:
date_USD
and USD
give the date and value of the monthly maxima
of the log-return exchange rate GBP/USD, while date_JPY
and JPY
give the date and value of the monthly maxima of the log-return exchange rate
GBP/JPY.
Format
A 286 \times 4
matrix. The first and third columns are of type
"character"
, while the second and fourth columns are of type
"numeric"
.
Madogram-based estimation of the Pickands Dependence Function
Description
Computes a non-parametric estimate of the Pickands dependence function
A(w)
for multivariate data, based on the madogram estimator.
Usage
madogram(w, data, margin = c("emp", "est", "exp", "frechet", "gumbel"))
Arguments
w |
An |
data |
An |
margin |
A string indicating the type of marginal distributions
( |
Details
The estimation procedure is based on the madogram as proposed in Marcon et al. (2017). The madogram is defined by
\nu(\mathbf{w}) =
\mathbb{E}\left(
\max_{i=1,\dots,d}\left\lbrace F_i^{1/w_i}(X_i) \right\rbrace
- \frac{1}{d}\sum_{i=1}^d F_i^{1/w_i}(X_i)
\right),
where 0 < w_i < 1
and
w_d = 1 - (w_1 + \ldots + w_{d-1})
.
Each row of the design matrix w
is a point in the
d
-dimensional unit simplex.
If X
is a d
-dimensional max-stable random vector with exponent
measure V(\mathbf{x})
and Pickands dependence function
A(\mathbf{w})
, then
\nu(\mathbf{w}) =
\frac{V(1/w_1,\ldots,1/w_d)}{1 + V(1/w_1,\ldots,1/w_d)} - c(\mathbf{w}),
where
c(\mathbf{w}) = \frac{1}{d}\sum_{i=1}^d \frac{w_i}{1+w_i}.
From this, it follows that
V(1/w_1,\ldots,1/w_d) =
\frac{\nu(\mathbf{w}) + c(\mathbf{w})}{1 - \nu(\mathbf{w}) - c(\mathbf{w})},
and
A(\mathbf{w}) =
\frac{\nu(\mathbf{w}) + c(\mathbf{w})}{1 - \nu(\mathbf{w}) - c(\mathbf{w})}.
Marginal treatment:
-
"emp"
: empirical transformation of the marginals, -
"est"
: maximum-likelihood fitting of the GEV distributions, -
"exp"
,"frechet"
,"gumbel"
: parametric GEV theoretical distributions.
Value
A numeric vector of estimates of the Pickands dependence function.
Author(s)
Simone Padoan, simone.padoan@unibocconi.it, https://faculty.unibocconi.it/simonepadoan/; Boris Beranger, borisberanger@gmail.com, https://www.borisberanger.com; Giulia Marcon, giuliamarcongm@gmail.com
References
Marcon, G., Padoan, S.A., Naveau, P., Muliere, P. and Segers, J. (2017). Multivariate Nonparametric Estimation of the Pickands Dependence Function using Bernstein Polynomials. Journal of Statistical Planning and Inference, 183, 1–17.
Naveau, P., Guillou, A., Cooley, D. and Diebolt, J. (2009). Modelling pairwise dependence of maxima in space. Biometrika, 96(1), 1–17.
See Also
Examples
x <- simplex(2)
data <- evd::rbvevd(50, dep = 0.4, model = "log", mar1 = c(1,1,1))
Amd <- madogram(x, data, "emp")
Amd.bp <- beed(data, x, 2, "md", "emp", 20, plot = TRUE)
lines(x[,1], Amd, lty = 1, col = 2)
Extract the method attribute
Description
This function extracts the method name from a fitted object.
Usage
method(x)
Arguments
x |
An object of class |
Value
A character string.
Author(s)
Simone Padoan, simone.padoan@unibocconi.it, https://faculty.unibocconi.it/simonepadoan/; Boris Beranger, borisberanger@gmail.com https://www.borisberanger.com;
See Also
Examples
data(pollution)
f.hr <- fExtDep(
x = PNS,
method = "PPP",
model = "HR",
par.start = rep(0.5, 3),
trace = 2
)
method(f.hr)
Extract the model attribute
Description
Extracts the model name from a fitted object.
Usage
model(x)
Arguments
x |
An object of class |
Value
A character string.
Author(s)
Simone Padoan, simone.padoan@unibocconi.it, https://faculty.unibocconi.it/simonepadoan/; Boris Beranger, borisberanger@gmail.com, https://www.borisberanger.com
See Also
Examples
data(pollution)
f.hr <- fExtDep(
x = PNS, method = "PPP", model = "HR",
par.start = rep(0.5, 3), trace = 2
)
model(f.hr)
Parametric and Non-Parametric Distribution Function of Extremal Dependence
Description
Evaluate the distribution function of parametric multivariate extreme-value distributions and the angular probability distribution represented through Bernstein polynomials.
Usage
pExtDep(q, type, method = "Parametric", model, par, plot = TRUE,
main, xlab, cex.lab, cex.axis, lwd, ...)
Arguments
q |
A vector or matrix of quantiles. |
type |
A character string: |
method |
A character string: |
model |
A character string with the model name:
|
par |
A vector or matrix of parameters for the model. If a matrix, rows correspond to different parameter sets. |
plot |
Logical; if |
main , xlab , cex.lab , cex.axis , lwd |
Graphical arguments passed to |
... |
Additional graphical arguments passed to |
Details
When method = "Parametric"
, the distribution function is available in 2 or 3 dimensions only.
See dim_ExtDep
for the correct length of the parameter vector.
If
type = "lower"
, the cumulative distribution function is computed:G(x) = P(X \leq x), \quad x \in \mathbb{R}^d, \; d=2,3.
If
type = "inv.lower"
, the survival function is computed:1 - G(x) = P(\exists i : X_i > x_i).
If
type = "upper"
, the joint probability of exceedance is computed:P(X \geq x).
When method = "NonParametric"
, the distribution function is available in 2 dimensions only.
If par
is a matrix and plot = TRUE
, a histogram of the probabilities is displayed across parameter sets.
A kernel density estimator, 2.5\%, 50\%, 97.5\%
quantiles (crosses) and the mean (dot) are added.
Value
If
par
is a vector: returns a scalar (ifq
is a vector) or a vector of lengthnrow(q)
(ifq
is a matrix).If
par
is a matrix: returns a vector of lengthnrow(par)
(ifq
is a vector) or a matrix withnrow(par)
rows andnrow(q)
columns (ifq
is a matrix).
Author(s)
Simone Padoan simone.padoan@unibocconi.it,
https://faculty.unibocconi.it/simonepadoan/
Boris Beranger borisberanger@gmail.com,
https://www.borisberanger.com
References
Beranger, B. and Padoan, S.A. (2015).
Extreme Value Modeling and Risk Analysis: Methods and Applications.
Chapman & Hall/CRC.
Beranger, B., Padoan, S.A. and Sisson, S.A. (2017).
Models for extremal dependence derived from skew-symmetric families.
Scandinavian Journal of Statistics, 44(1), 21–45.
Husler, J. and Reiss, R.-D. (1989).
Maxima of normal random vectors: between independence and complete dependence.
Statistics and Probability Letters, 7, 283–286.
Marcon, G., Padoan, S.A., Naveau, P., Muliere, P. and Segers, J. (2017). Multivariate nonparametric estimation of the Pickands dependence function using Bernstein polynomials. Journal of Statistical Planning and Inference, 183, 1–17.
See Also
dExtDep
, rExtDep
, fExtDep
, fExtDep.np
Examples
# Trivariate Extremal Skew-t
pExtDep(q = c(1, 1.2, 0.6), type = "lower", method = "Parametric",
model = "EST", par = c(0.2, 0.4, 0.6, 2, 2, 2, 1))
# Bivariate Extremal-t
pExtDep(q = rbind(c(1.2, 0.6), c(1.1, 1.3)), type = "inv.lower",
method = "Parametric", model = "ET", par = c(0.2, 1))
# Bivariate Extremal Skew-t
pExtDep(q = rbind(c(1.2, 0.6), c(1.1, 1.3)), type = "inv.lower",
method = "Parametric", model = "EST", par = c(0.2, 0, 0, 1))
# Non-parametric angular density
beta <- c(1.0000000, 0.8714286, 0.7671560, 0.7569398,
0.7771908, 0.8031573, 0.8857143, 1.0000000)
pExtDep(q = rbind(c(0.1, 0.9), c(0.2, 0.8)),
method = "NonParametric", par = beta)
Probability of Falling into a Failure Region
Description
Compute the empirical probability of falling into two types of failure regions, based on exceedances simulated from a fitted extreme-value model.
Usage
pFailure(n, beta, u1, u2, mar1, mar2, type, plot, xlab, ylab, nlevels = 10)
Arguments
n |
Integer. Number of points generated to compute the empirical probability. |
beta |
Numeric vector. Bernstein polynomial coefficients. |
u1 , u2 |
Numeric vectors of positive thresholds. |
mar1 , mar2 |
Numeric vectors. Marginal GEV parameters. |
type |
Character. Type of failure region:
|
plot |
Logical. If |
xlab , ylab |
Character strings for axis labels in plots. |
nlevels |
Integer. Number of contour levels for plots. |
Details
The two failure regions are:
A_u = \{ (v_1, v_2): v_1 > u_1 \ \textrm{or}\ v_2 > u_2 \}
and
B_u = \{ (v_1, v_2): v_1 > u_1 \ \textrm{and}\ v_2 > u_2 \}
for (v_1, v_2) \in \mathbb{R}_+^2
, with thresholds u_1,u_2 > 0
.
Exceedance samples are generated following Algorithm 3 of Marcon et al. (2017). The empirical estimates are
\hat{P}_{A_u} = \frac{1}{n}\sum_{i=1}^n I(y_{i1} > u_1^* \ \textrm{or}\ y_{i2} > u_2^*)
and
\hat{P}_{B_u} = \frac{1}{n}\sum_{i=1}^n I(y_{i1} > u_1^* \ \textrm{and}\ y_{i2} > u_2^*)
.
Value
A list with elements AND
and/or OR
, depending on type
. Each element is a matrix of size length(u1) x length(u2)
.
Author(s)
Simone Padoan simone.padoan@unibocconi.it (https://faculty.unibocconi.it/simonepadoan/) \ Boris Beranger borisberanger@gmail.com (https://www.borisberanger.com)
References
Marcon, G., Naveau, P. and Padoan, S.A. (2017). A semi-parametric stochastic generator for bivariate extreme events. Stat, 6, 184–201.
See Also
dExtDep
, rExtDep
, fExtDep
, fExtDep.np
Examples
# Example: Wind speed and gust data
data(WindSpeedGust)
years <- format(ParcayMeslay$time, format = "%Y")
attach(ParcayMeslay[years %in% 2004:2013, ])
WS_th <- quantile(WS, .9)
DP_th <- quantile(DP, .9)
pars.WS <- evd::fpot(WS, WS_th, model = "pp")$estimate
pars.DP <- evd::fpot(DP, DP_th, model = "pp")$estimate
data_uf <- trans2UFrechet(cbind(WS, DP), type = "Empirical")
rdata <- rowSums(data_uf)
r0 <- quantile(rdata, probs = .90)
extdata <- data_uf[rdata >= r0, ]
SP_mle <- fExtDep.np(x = extdata, method = "Frequentist", k0 = 10, type = "maxima")
pF <- pFailure(
n = 50000, beta = SP_mle$Ahat$beta,
u1 = seq(19, 28, length = 200), mar1 = pars.WS,
u2 = seq(40, 60, length = 200), mar2 = pars.DP,
type = "both", plot = TRUE,
xlab = "Daily-maximum Wind Speed (m/s)",
ylab = "Differential of Pressure (mbar)",
nlevels = 15
)
Plot for the Pickands dependence function
Description
This function displays the Pickands dependence function for bivariate and trivariate extreme values models.
Usage
pickands.plot(model, par, labels, cex.lab, contour, cex.cont)
Arguments
model |
A string with the name of the model considered. Takes value
|
par |
A vector representing the parameters of the model. |
labels |
A vector of character strings indicating the labels. Must be of
length |
cex.lab |
A positive real indicating the size of the labels. |
contour |
A logical value; if |
cex.cont |
A positive real indicating the size of the contour labels. |
Details
The Pickands dependence function is computed using the function
index.ExtDep
with argument object="pickands"
.
When contours are displayed, levels are chosen to be the deciles.
Author(s)
Simone Padoan, simone.padoan@unibocconi.it, https://faculty.unibocconi.it/simonepadoan/; Boris Beranger, borisberanger@gmail.com, https://www.borisberanger.com
See Also
Examples
pickands.plot(model="HR", par=0.6)
## Not run:
pickands.plot(model="ET", par=c(0.6, 0.2, 0.5, 2))
## End(Not run)
Air quality datasets recorded in Leeds (U.K.)
Description
Air quality datasets containing daily maxima of five air pollutants
(PM10, NO, NO2, O3 and SO2) recorded in Leeds, U.K., during five winter
seasons (November–February) between 1994 and 1998. Six derived datasets
are included: PNS
, PNN
, NSN
, PNNS
,
winterdat
and Leeds.frechet
.
Details
The dataset winterdat
contains 590
transformed observations
for each of the five pollutants. Contains NA
s. Outliers have been
removed according to Heffernan and Tawn (2004).
The following datasets have been obtained by applying transformations to
winterdat
:
-
Leeds.frechet
:590
observations corresponding to the daily maxima of five air pollutants transformed to unit Frechet scale. -
NSN
:100
observations in the3
-dimensional unit simplex for the daily maxima of nitrogen dioxide (NO2), sulfur dioxide (SO2) and nitrogen oxide (NO). -
PNN
:100
observations in the3
-dimensional unit simplex for the daily maxima of particulate matter (PM10), nitrogen oxide (NO) and nitrogen dioxide (NO2). -
PNS
:100
observations in the3
-dimensional unit simplex for the daily maxima of particulate matter (PM10), nitrogen oxide (NO) and sulfur dioxide (SO2). -
PNNS
:100
observations in the4
-dimensional unit simplex for the daily maxima of particulate matter (PM10), nitrogen oxide (NO), nitrogen dioxide (NO2) and sulfur dioxide (SO2).
The transformation to unit Frechet margins of the raw data was considered by
Cooley et al. (2010). Only the 100
data points with the largest
radial components were kept.
Source
References
Cooley, D., Davis, R. A., and Naveau, P. (2010). The pairwise beta distribution: a flexible parametric multivariate model for extremes. Journal of Multivariate Analysis, 101, 2103–2117.
Heffernan, J. E., and Tawn, J. A. (2004). A conditional approach for multivariate extreme values. Journal of the Royal Statistical Society: Series B (Methodology), 66, 497–546.
Parametric and semi-parametric random generator of extreme events
Description
Generates random samples of iid observations from extremal dependence models and semi-parametric stochastic generators.
Usage
rExtDep(n, model, par, angular = FALSE, mar = c(1,1,1), num, threshold, exceed.type)
Arguments
n |
An integer indicating the number of observations. |
model |
A character string with the name of the model. Parametric models include
|
par |
A vector representing the parameters of the (parametric or non-parametric) model. |
angular |
Logical; |
mar |
A vector or matrix of marginal parameters. |
num |
An integer indicating the number of observations over which the componentwise maxima
is computed. Required for |
threshold |
A bivariate vector indicating the level of exceedances. Required for
|
exceed.type |
A character string taking values |
Details
There is no limit on the dimensionality when model = "HR"
, "ET"
or "EST"
,
while model = "semi.bvevd"
and "semi.bvexceed"
can only generate bivariate observations.
When angular = TRUE
and model = "semi.bvevd"
or "semi.bvexceed"
,
the simulation of pseudo-angles follows Algorithm 1 of Marcon et al. (2017).
When model = "semi.bvevd"
and angular = FALSE
, maxima samples are generated
according to Algorithm 2 of Marcon et al. (2017).
When model = "semi.bvexceed"
and angular = FALSE
, exceedance samples are
generated above the value specified by threshold
, according to Algorithm 3 of Marcon et al. (2017).
exceed.type = "and"
generates samples that exceed both thresholds while
exceed.type = "or"
generates samples exceeding at least one threshold.
If mar
is a vector, the marginal distributions are identical. If a matrix is provided,
each row corresponds to a set of marginal parameters. No marginal transformation is applied when
mar = c(1,1,1)
.
Value
A matrix with n
rows and p \ge 2
columns.
p = 2
when model = "semi.bvevd"
or "semi.bvexceed"
.
Author(s)
Simone Padoan simone.padoan@unibocconi.it https://faculty.unibocconi.it/simonepadoan/; Boris Beranger borisberanger@gmail.com https://www.borisberanger.com;
References
Marcon, G., Naveau, P. and Padoan, S. A. (2017). A semi-parametric stochastic generator for bivariate extreme events. Stat, 6, 184–201.
See Also
dExtDep
, pExtDep
, fExtDep
, fExtDep.np
Examples
# Example using the trivariate Husler-Reiss
set.seed(1)
data <- rExtDep(n = 10, model = "HR", par = c(2,3,3))
# Example using the semi-parametric generator of maxima
set.seed(2)
beta <- c(1.0000000, 0.8714286, 0.7671560, 0.7569398,
0.7771908, 0.8031573, 0.8857143, 1.0000000)
data <- rExtDep(n = 10, model = "semi.bvevd", par = beta,
mar = rbind(c(0.2, 1.5, 0.6), c(-0.5, 0.4, 0.9)))
# Example using the semi-parametric generator of exceedances
set.seed(3)
data <- rExtDep(n = 10, model = "semi.bvexceed", par = beta,
threshold = c(0.2, 0.4), exceed.type = "and")
Random generation of max-stable processes
Description
Generates realizations from a max-stable process.
Usage
rExtDepSpat(n, coord, model = "SCH", cov.mod = "whitmat", grid = FALSE,
control = list(), cholsky = TRUE, ...)
Arguments
n |
An integer indicating the number of observations. |
coord |
A vector or matrix corresponding to the coordinates of locations where the process is simulated. Each row corresponds to a location. |
model |
A character string indicating the max-stable model. See |
cov.mod |
A character string indicating the correlation function. See |
grid |
Logical; |
control |
A named list with arguments:
See |
cholsky |
Logical; if |
... |
Additional parameters of the max-stable model. See |
Details
This function extends the rmaxstab
function from the SpatialExtremes
package in two ways:
- 1.
The extremal skew-t model is included.
- 2.
The function returns the hitting scenarios, i.e., the index of which 'storm' (or process) led to the maximum value for each location and observation.
Available max-stable models:
- Smith model
(
model = 'SMI'
) does not requirecov.mod
. Ifcoord
is univariate,var
needs to be specified. For higher dimensions, covariance parameters such ascov11
,cov12
,cov22
, etc. should be provided.- Schlather model
(
model = 'SCH'
) requirescov.mod
as one of'whitmat'
,'cauchy'
,'powexp'
or'bessel'
. Parametersnugget
,range
andsmooth
must be specified.- Extremal-t model
(
model = 'ET'
) requirescov.mod
as above. Parametersnugget
,range
,smooth
andDoF
must be specified.- Extremal skew-t model
(
model = 'EST'
) requirescov.mod
as above. Parametersnugget
,range
,smooth
,DoF
,alpha
(vector of length 3) andacov1
,acov2
(vectors of length equal to number of locations) must be specified. The skewness vector is\alpha = \alpha_0 + \alpha_1 \textrm{acov1} + \alpha_2 \textrm{acov2}
.- Geometric Gaussian model
(
model = 'GG'
) requirescov.mod
as above. Parameterssig2
,nugget
,range
andsmooth
must be specified.- Brown-Resnick model
(
model = 'BR'
) does not requirecov.mod
. Parametersrange
andsmooth
must be specified.
- method
In
control
: NULL by default, meaning the function selects the most appropriate simulation technique. For the extremal skew-t model, only'exact'
or'direct'
are allowed.- nlines
In
control
: default 1000 ifNULL
.- uBound
In
control
: default reasonable values, e.g., 3.5 for the Schlather model.
Value
A list containing:
- vals
A
n \times d
matrix withn
observations atd
locations.- hits
A
n \times d
matrix of hitting scenarios. Elements with the same integer indicate maxima coming from the same 'storm' or process.
Author(s)
Simone Padoan simone.padoan@unibocconi.it https://faculty.unibocconi.it/simonepadoan/; Boris Beranger borisberanger@gmail.com https://www.borisberanger.com;
References
Beranger, B., Stephenson, A. G. and Sisson, S. A. (2021). High-dimensional inference using the extremal skew-t process. Extremes, 24, 653–685.
See Also
Examples
# Generate some locations
set.seed(1)
lat <- lon <- seq(from = -5, to = 5, length = 20)
sites <- as.matrix(expand.grid(lat, lon))
# Example using the extremal-t
set.seed(2)
z <- rExtDepSpat(1, sites, model = "ET", cov.mod = "powexp", DoF = 1,
nugget = 0, range = 3, smooth = 1.5,
control = list(method = "exact"))
fields::image.plot(lat, lon, matrix(z$vals, ncol = 20))
# Example using the extremal skew-t
set.seed(3)
z2 <- rExtDepSpat(1, sites, model = "EST", cov.mod = "powexp", DoF = 5,
nugget = 0, range = 3, smooth = 1.5, alpha = c(0,5,5),
acov1 = sites[,1], acov2 = sites[,2],
control = list(method = "exact"))
fields::image.plot(lat, lon, matrix(z2$vals, ncol = 20))
Compute return values
Description
Predicts the probability of future simultaneous exceedances.
Usage
returns(x, summary.mcmc, y, plot = FALSE, data = NULL, ...)
Arguments
x |
An object of class |
summary.mcmc |
The output of the
|
y |
A 2-column matrix of unobserved thresholds. |
plot |
Logical. If |
data |
As in |
... |
Additional graphical parameters when |
Details
Computes for a range of unobserved extremes (larger than those observed in a sample) the pointwise mean from the posterior predictive distribution of such predictive values. The probabilities are calculated through
P(Y_1 > y_1, Y_2 > y_2) = \frac{2}{k} \sum_{j=0}^{k-2} (\eta_{j+1} - \eta_j)
\times \left(
\frac{(j+1) B\!\left(\frac{y_1}{y_1+y_2} \mid j+2, k-j-1\right)}{y_1}
- \frac{(k-j-1) B\!\left(\frac{y_2}{y_1+y_2} \mid k-j, j+1\right)}{y_2}
\right)
where B(x \mid a,b)
denotes the cumulative distribution
function of a Beta random variable with shape parameters
a, b > 0
. See Marcon et al. (2016, p. 3323) for details.
Value
A numeric vector whose length equals the number of rows of the input
y
.
Author(s)
Simone Padoan simone.padoan@unibocconi.it https://faculty.unibocconi.it/simonepadoan/; Boris Beranger borisberanger@gmail.com https://www.borisberanger.com; Giulia Marcon giuliamarcongm@gmail.com
References
Marcon, G., Padoan, S. A. and Antoniano-Villalobos, I. (2016). Bayesian inference for the extremal dependence. Electronic Journal of Statistics, 10, 3310–3337.
Examples
#########################################################
### Example 1 - daily log-returns between the GBP/USD ###
### and GBP/JPY exchange rates ###
#########################################################
if(interactive()){
data(logReturns)
mm_gbp_usd <- ts(logReturns$USD, start = c(1991, 3), end = c(2014, 12), frequency = 12)
mm_gbp_jpy <- ts(logReturns$JPY, start = c(1991, 3), end = c(2014, 12), frequency = 12)
# Detect seasonality and trend in the time series of maxima:
seas_usd <- stl(mm_gbp_usd, s.window = "period")
seas_jpy <- stl(mm_gbp_jpy, s.window = "period")
# Remove the seasonality and trend:
mm_gbp_usd_filt <- mm_gbp_usd - rowSums(seas_usd$time.series[,-3])
mm_gbp_jpy_filt <- mm_gbp_jpy - rowSums(seas_jpy$time.series[,-3])
# Estimation of margins and dependence
mm_gbp <- cbind(as.vector(mm_gbp_usd_filt), as.vector(mm_gbp_jpy_filt))
hyperparam <- list(mu.nbinom = 3.2, var.nbinom = 4.48)
gbp_mar <- fExtDep.np(x = mm_gbp, method = "Bayesian", par10 = rep(0.1, 3),
par20 = rep(0.1, 3), sig10 = 0.0001, sig20 = 0.0001, k0 = 5,
hyperparam = hyperparam, nsim = 5e4)
gbp_mar_sum <- summary(object = gbp_mar, burn = 3e4, plot = TRUE)
mm_gbp_range <- apply(mm_gbp, 2, quantile, c(0.9, 0.995))
y_gbp_usd <- seq(from = mm_gbp_range[1, 1], to = mm_gbp_range[2, 1], length = 20)
y_gbp_jpy <- seq(from = mm_gbp_range[1, 2], to = mm_gbp_range[2, 2], length = 20)
y <- as.matrix(expand.grid(y_gbp_usd, y_gbp_jpy, KEEP.OUT.ATTRS = FALSE))
ret_marg <- returns(x = gbp_mar, summary.mcmc = gbp_mar_sum, y = y, plot = TRUE,
data = mm_gbp, xlab = "GBP/USD exchange rate", ylab = "GBP/JPY exchange rate")
}
#########################################################
### Example 2 - reproducing results from Marcon et al. ###
#########################################################
## Not run:
set.seed(1890)
data <- evd::rbvevd(n = 100, dep = 0.6, asy = c(0.8, 0.3),
model = "alog", mar1 = c(1, 1, 1))
hyperparam <- list(a.unif = 0, b.unif = .5, mu.nbinom = 3.2, var.nbinom = 4.48)
pm0 <- list(p0 = 0.06573614, p1 = 0.3752118)
mcmc <- fExtDep.np(method = "Bayesian", data = data, mar.fit = FALSE, k0 = 5,
pm0 = pm0, prior.k = "nbinom", prior.pm = "unif",
hyperparam = hyperparam, nsim = 5e5)
w <- seq(0.001, 0.999, length = 100)
summary.mcmc <- summary(object = mcmc, w = w, burn = 4e5, plot = TRUE)
plot(x = mcmc, type = "A", summary.mcmc = summary.mcmc)
plot(x = mcmc, type = "h", summary.mcmc = summary.mcmc)
plot(x = mcmc, type = "pm", summary.mcmc = summary.mcmc)
plot(x = mcmc, type = "k", summary.mcmc = summary.mcmc)
y <- seq(10, 100, 2)
y <- as.matrix(expand.grid(y, y))
probs <- returns(out = mcmc, summary.mcmc = summary.mcmc, y = y, plot = TRUE)
## End(Not run)
Plot return levels
Description
Displays return levels for bivariate and trivariate extreme value models.
Usage
returns.plot(model, par, Q.fix, Q.range, Q.range0, cond, labels, cex.lab, ...)
Arguments
model |
A string giving the name of the model considered.
Takes values |
par |
A numeric vector representing the parameters of the model. |
Q.fix |
A vector of length equal to the model dimension, indicating
fixed quantiles for computing joint return levels. Must contain
|
Q.range |
A vector or matrix indicating quantile values on the unit
Frechet scale, for the components allowed to vary. Must be a vector or a
one-column matrix if there is one |
Q.range0 |
An object of the same format as |
cond |
Logical; if |
labels |
A character vector giving axis labels. Must be of length
|
cex.lab |
A positive numeric value indicating label size. |
... |
Details
Two cases are possible: univariate and bivariate return levels. Model dimensions are restricted to a maximum of three. In this case:
A univariate return level fixes two components.
A bivariate return level fixes one component.
The choice of fixed components is determined by the positions of the
NA
values in Q.fix
.
If par
is a vector, the corresponding return level(s) are printed.
If par
is a matrix, return level(s) are evaluated for each parameter
vector and the mean and empirical 95\%
interval are displayed.
This is typically used with posterior samples. If par
has only two
rows, the resulting plots may be uninformative.
When contours are displayed, levels correspond to deciles.
Author(s)
Simone Padoan, simone.padoan@unibocconi.it, https://faculty.unibocconi.it/simonepadoan/; Boris Beranger, borisberanger@gmail.com, https://www.borisberanger.com
See Also
Examples
data(pollution)
X.range <- seq(from = 68, to = 400, length = 10)
Y.range <- seq(from = 182.6, to = 800, length = 10)
transform <- function(x, data, par) {
data <- na.omit(data)
if (x > par[1]) {
emp.dist <- mean(data <= par[1])
dist <- 1 - (1 - emp.dist) *
max(0, 1 + par[3] * (x - par[1]) / par[2])^(-1 / par[3])
} else {
dist <- mean(data <= x)
}
return(-1 / log(dist))
}
Q.range <- cbind(
sapply(X.range, transform, data = winterdat[, 1],
par = c(68, 36.7, 0.29)),
sapply(Y.range, transform, data = winterdat[, 1],
par = c(183, 136.7, 0.13))
)
Q.range0 <- cbind(X.range, Y.range)
returns.plot(model = "HR", par = c(0.6, 0.9, 1.0),
Q.fix = c(NA, NA, 7),
Q.range = Q.range, Q.range0 = Q.range0,
labels = c("PM10", "NO"))
Definition of a multivariate simplex
Description
Generation of grid points over the multivariate simplex
Usage
simplex(d, n = 50, a = 0, b = 1)
Arguments
d |
A positive integer indicating the dimension of the simplex. |
n |
A positive integer indicating the number of grid points to be generated on the univariate components of the simplex. |
a , b |
Two numeric values indicating the lower and upper bounds of the simplex. By default |
Details
A d
-dimensional simplex is defined by
S = \{ (\omega_1, \ldots, \omega_d) \in \mathbb{R}^d_+ : \sum_{i=1}^d \omega_i = 1 \}.
Here the function defines the simplex as
S = \{ (\omega_1, \ldots, \omega_d) \in [a,b]^d : \sum_{i=1}^d \omega_i = 1 \}.
When d = 2
and [a,b] = [0,1]
, a grid of points of the form
\{ (\omega_1, \omega_2) \in [0,1] : \omega_1 + \omega_2 = 1 \}
is generated.
Value
Returns a matrix with d
columns.
When d = 2
, the number of rows is n
.
When d > 2
, the number of rows is equal to
\sum_{i_{d-1}=0}^{n-1} \sum_{i_{d-2}=0}^{n-i_{d-1}} \cdots \sum_{i_1=1}^{n-i_{d-1}-\cdots-i_2} i_1.
Author(s)
Simone Padoan, simone.padoan@unibocconi.it, https://faculty.unibocconi.it/simonepadoan/; Boris Beranger, borisberanger@gmail.com, https://www.borisberanger.com;
Examples
### 3-dimensional unit simplex
W <- simplex(d = 3, n = 10)
plot(W[,-3], pch = 16)
Extract the Takeuchi Information Criterion
Description
This function extracts the TIC value from a fitted object.
Usage
tic(x, digits = 3)
Arguments
x |
An object of class |
digits |
Integer indicating the number of decimal places to report. Default is 3. |
Value
A numeric vector containing the TIC value(s) of the fitted object.
Author(s)
Simone Padoan, simone.padoan@unibocconi.it, https://faculty.unibocconi.it/simonepadoan/; Boris Beranger, borisberanger@gmail.com, https://www.borisberanger.com;
See Also
Examples
data(pollution)
f.hr <- fExtDep(
x = PNS,
method = "PPP",
model = "HR",
par.start = rep(0.5, 3),
trace = 2
)
tic(f.hr)
Transformation to GEV Distribution
Description
Transforms marginal distributions from unit Frechet to the GEV scale.
Usage
trans2GEV(data, pars)
Arguments
data |
A vector of length |
pars |
A |
Details
The transformation is given by
(x^\xi - 1)\frac{\sigma}{\xi} + \mu
if \xi \neq 0
, and by
\sigma / x + \mu
if \xi = 0
.
Value
An object of the same format and dimensions as data
.
Author(s)
Simone Padoan, simone.padoan@unibocconi.it, https://faculty.unibocconi.it/simonepadoan/; Boris Beranger, borisberanger@gmail.com, https://www.borisberanger.com;
See Also
Examples
data(pollution)
pars <- fGEV(Leeds.frechet[,1])$est
par_new <- c(2, 1.5, 0.5)
data_new <- trans2GEV(Leeds.frechet[,1], pars = par_new)
fGEV(data_new)
Transformation to Unit Frechet Distribution
Description
Empirical and parametric transformation of a dataset to unit Frechet marginal distribution.
Usage
trans2UFrechet(data, pars, type = "Empirical")
Arguments
data |
A vector of length |
pars |
A |
type |
A character string indicating the type of transformation. Can be |
Details
When type = "Empirical"
, the transformation is
t(x) = -1 / \log(F_{\textrm{emp}}(x))
where F_{\textrm{emp}}(x)
denotes the empirical cumulative distribution function.
When type = "GEV"
, the transformation is
\left(1 + \xi \frac{x-\mu}{\sigma}\right)^{1/\xi}
if \xi \neq 0
, and
\sigma / (x-\mu)
if \xi = 0
. If pars
is missing, a GEV is fitted on the columns of data
using the fGEV
function.
Value
An object of the same format and dimensions as data
.
Author(s)
Simone Padoan, simone.padoan@unibocconi.it, https://faculty.unibocconi.it/simonepadoan/; Boris Beranger, borisberanger@gmail.com, https://www.borisberanger.com;
See Also
Examples
data(MilanPollution)
pars <- fGEV(Milan.winter$PM10)$est
data_uf <- trans2UFrechet(data = Milan.winter$PM10, pars = pars, type = "GEV")
fGEV(data_uf)$est
data_uf2 <- trans2UFrechet(data = Milan.winter$PM10, type = "Empirical")
fGEV(data_uf2)$est