MachineShop News
Version Updates
3.9.0
- Add offset support to
XGBModel.
- Add logical argument
pool to calibration()
indicating whether to compute a single calibration curve on predictions
pooled over all resampling iterations or to compute them for each
iteration individually and return the mean calibration curve.
- The new argument default is
pool = FALSE. The pooling
that had been the only implementation in previous package versions
(<= 3.8.0) can reproduced with pool = FALSE but is
deprecated and will be removed along with the argument in a future
version.
- Note that pooling can result in large memory allocation errors when
fitting smooth curves with
breaks = NULL.
3.8.0
- Changes to
varimp() arguments.
- Add argument
sort.
- Extend argument
scale to vectors of logical.
- Changes to model-based variable importance.
- Fix unused argument error from
CForestModel.
- Use
drop1() to compute model term-specific p-values for
CoxModel, POLRModel, and
SurvRegModel as is done for GLMModel and
LMModel.
- Changes to
VariableImportance class.
- Add slots
method and metric to store the
computational method ("permute" or "model")
and the performance metric used for computations.
- Add
update() method to add the new slots to objects
created with previous versions of the package.
- Deprecate
type = "default" option in
predict() and replace it with
type = "raw".
- Fix unimplemented type ‘list’ in ‘listgreater’ error from
SelectedInput.recipe().
3.7.0
- Compatibility updates for parsnip.
- Enable resampling by a grouping variable with
BootControl, OOBControl, and
SplitControl.
- Enable resampling by a stratification variable with
SplitControl.
- Require R 4.1.0 or later.
3.6.2
- Add backward compatibility for older
MLModel objects
without a na.rm slot.
- Fix CRAN check warning: S3 generic/method consistency.
- Update
role_binom(), role_case(), and
role_surv() to remove the requirement that their variables
be present in newdata supplied to
predict().
3.6.1
- Compatibility updates for ggplot2,
Matrix, and recipes package
dependencies.
3.6.0
- Add argument
na.rm to MLModel() for
construction of a model that automatically removes all cases with
missing values from model fitting and prediction, none, or only those
whose missing values are in the response variable. Set the
na.rm values in supplied MLModels to
automatically remove cases with missing values if not supported by their
model fitting and prediction functions.
- Add argument
prob.model to
SVMModel().
- Add argument
verbose to fit() and
predict().
- Fix
Error in as.data.frame(x) : object 'x' not found
issue when fitting a BARTMachineModel that started
occurring with bartMachine package version 1.2.7.
- Remove expired deprecations of
ModeledInput and
rpp().
- Internal changes
- Add slot
na.rm to MLModel.
3.5.0
- Add argument
method to r2() for
calculation of Pearson or Spearman correlation.
- Add
predict() S4 method for
MLModelFit.
- Export
MLModelFunction().
- Export
as.MLInput() methods for MLModelFit
and ModelSpecification.
- Export
as.MLModel() method for
ModelSpecification.
- Improve recursive feature elimination of
SelectedInput
terms.
- Improve speed of
StackedModel and
SuperModel.
- Internal changes
- Add
.MachineShop list attribute to
MLModelFit.
- Move field
mlmodel in MLModelFit to
model in .MachineShop.
- Move slot
input in MLModel to
.MachineShop.
- Pass
.MachineShop to the predict and
varimp slot functions of MLModel.
3.4.3
- Fix
TypeError in dependence() with numeric
dummy variables from recipes.
- Prep
ModelRecipe with retain = TRUE for
recipe steps that are skipped, for example, when test datasets are
created.
- Add generalized area under performance curves to
auc(),
pr_auc(), and roc_auc() for multiclass factor
responses.
3.4.2
- Add argument
select to rfe().
- Fix object
perf_stats not found in
optim().
3.4.1
- Add argument
conf to
set_optim_bayes().
- Enable global grid expansion and tuning of
StackedModel
and SuperModel in ModelSpecification().
3.4.0
- Fixes
- Enable prediction with survival times of 0.
- Implement class
SelectedModelSpecification.
- Internal changes
- Deprecate classes
ModeledInput,
ModeledFrame, and ModeledRecipe.
- Remove unused class
TunedModeledRecipe.
- Expire deprecations
- Remove argument
fixed from
TunedModel().
- Remove
Grid().
- Rename
rpp() to ppr().
- Replace
ModeledInput() with
ModelSpecification().
- Require R >= 4.0.0.
- Use Olden algorithm for
NNetModel model-specific
variable importance.
3.3.1
- Fixes
SurvRegModelFit summary() error
- update number of folds recorded in
CVControl when
stratification or grouping size leads to construction of fewer than
requested folds for cross-validation resampling
3.3.0
- Add argument
.type with options "glance"
and "tidy" to summary.MLModelFit().
- Add case components data (stratification and grouping variables) to
print.Resample().
- Add class and methods for
ModelSpecification.
- Add training parameters set functions
set_monitor(): monitoring of resampling and
optimization
set_optim_bayes(): Bayesian optimization with a
Gaussian process model
set_optim_bfgs(): low-memory quasi-Newton BFGS
optimization
set_optim_grid(): exhaustive and random grid
searches
set_optim_method(): user-defined optimization
functions
set_optim_pso(): particle swarm optimization
set_optim_sann(): simulated annealing
- Add
performance() method for MLModel to
replicate the previous behavior of summary.MLModel().
- Add
performance(), plot(), and
summary() methods for TrainingStep.
- Add support for unordered plots of
Resample
performances.
- Changes to argument
type of predict().
- Add option
"default" for model-specific default
predictions.
- Add option
"numeric" for numeric predictions.
- Change option
"prob" to be for probabilities between 0
and 1.
- Change
confusion() default behavior to convert factor
probabilities to levels.
- Rename argument
control to object in set
functions.
- Rename argument
f to fun in
roc_index().
- Return a
ListOf training step summaries from
summary.MLModel().
- Return a
TrainingStep object from
rfe().
- Support tibble-convertible objects as arguments to
expand_params().
- Internal changes
- Add class
EnsembleModel.
- Add classes
MLOptimization, GridSearch,
NullOptimization, RandomGridSearch, and
SequentialOptimization.
- Add class
NullControl.
- Add slot
control to PerformanceCurve.
- Add slot
method to TrainingStep.
- Add slot
optim to TrainingParams.
- Add slot
params to MLInput.
- Inherit class
SelectedModel from
EnsembleModel.
- Inherit class
StackedModel from
EnsembleModel.
- Inherit class
SuperModel from
StackedModel.
- Rename slot
case_comps to vars in
Resample.
- Rename slot
grid to log in
TrainingStep.
- Fixes
- error predicting single factor response in
GLMModel
- ‘size(x@performance, 3)’ error in
print.TrainingStep()
- ‘Unmatched tuning parameters’ error in
TunedModel()
3.2.1
- Fix ‘data’ argument of wrong type error in
terms.formula().
- Require >= 3.1.0 version of cli package.
3.2.0
- Add argument
distr and method to
dependence().
- Add function
ParsnipModel() for model specifications
(model_spec) from the parsnip
package.
- Add function
rfe() for recursive feature
elimination.
- Add method
as.MLModel() for model_spec and
ModeledInput.
- Add support for any model specification whose object has an
as.MLModel() method.
- Add support for cross-validation with case groups.
- Add support for names in argument
metric of
auc().
- Change argument
method default from
"model" to "permute" in
varimp().
- Change class
ModelFrame to an S4 class; generally
requires explicit conversion to a data frame with
as.data.frame() in MLModel fit
and predict functions.
- Change progress bar display from elapsed to estimated completion
time.
- Changes to global settings
- Rename
stat.Trained to
stat.TrainingParams.
- Remove
stats.VarImp.
- Changes to internal classes
- Add class
ParsnipModel.
- Add class
SurvTimes.
- Add class
TrainingParams.
- Add class union
Grid.
- Add class union
Params.
- Add column
name, selected, and
metrics to slot grid of
TrainingStep class.
- Add slot
grid to TunedInput.
- Add slot
id to MLInput and
MLModel classes.
- Add slot
id and name to
TrainingStep class.
- Add slot
models to SelectedModel.
- Remove slot
name from MLControl
classes.
- Remove slot
selected, values, and
metric from TrainingStep class.
- Remove slot
shift from VariableImportance
class.
- Rename class
Grid to TuningGrid.
- Rename class
Resamples to Resample.
- Rename class
TrainStep to
TrainingStep.
- Rename class
VarImp to
VariableImportance.
- Rename classes of
MLControl.
MLBootControl → BootControl
MLBootOptimismControl →
BootOptimismControl
MLCVControl → CVControl
MLCVOptimismControl →
CVOptimismControl
MLOOBControl → OOBControl
MLSplitControl → SplitControl
MLTrainControl → TrainControl
- Rename column
Input and Model to
params in slot grid of
TrainingStep class.
- Rename column
Resample to Iteration in
Resample class
- Rename slot
x to input in
MLModel class.
- Changes to
XGBModel
- Change argument default for
nrounds from 1 to 100.
- Rearrange constructor arguments.
- Reduce number of tuning grid parameters
- Include
nrounds and max_depth in automated
grids for XGBDARTModel and XGBTreeModel.
- Include
nrounds, lambda, and
alpha in automated grid for
XGBLinearModel.
- Compute survival probabilities for
survival:aft
prediction.
- Change default survival objective from
survival:cox to
survival:aft.
- Format and condense printout of objects.
- Include all computed performance metrics in
TrainingStep objects and output.
- Remove shift from variable importance scaling in
varimp().
- Rename and redefine dispatch (first) arguments in functions.
model → object in
TunedModel()
x → object in
expand_model()
x →
formula/input/model in
expand_modelgrid(), fit(),
ModelFrame(), resample(), rfe()
methods
x →
formula/object/model in
ModeledInput() methods
x → object in ParameterGrid()
methods
x → control in set_monitor(),
set_predict(), set_strata()
x → object in
TunedInput()
- Rename function
Grid() to
TuningGrid().
- Reorder optional arguments in
ModelFrame().
- Save model constructor arguments as the list elements in
MLModel params slots.
3.1.0
- Add argument
na.rm to dependence().
- Add global setting
stats.VarImp for summary statistics
to compute on permutation-based variable importance.
- Add permutation-based variable importance to
varimp().
- Sort variable importance by first column only if not scaled.
- Correct the estimated variances for cross-validation estimators of
mean performance difference in
t.test.PerformanceDiff().
- Rename argument
metric to type in
varimp() functions for BartMachineModel,
C50Model, EarthModel, RFSRCModel,
and XGBModel.
- Set argument
type default to "nsubsets" in
EarthModel varimp().
- Expand case weighted metrics support.
- Fix weights used in survival event-specific metrics.
- Use weights for
cross_entropy() numeric
method.
- Use weights for predicted survival probabilities.
- Fix error with argument
f in roc_index()
Surv method.
3.0.0
- Add slot
weights to MLModel classes.
- Allow case weights in
LMModel for all response
types.
- Exclude infinite values from calculation of
breaks in
calibration().
- Fix invalid
max = Inf arguments to
print.default().
- Add support for case weights in performance metrics and curves.
- Evaluate
ModelFrame() arguments strata and
weights in data environment.
- Fix issue introduced in package version 2.9.0 of recipe case weights
not being used in model fitting.
- Add column
Weight of case weights to
Resamples data frame.
- Rename
values column to get_values in
MLModel gridinfo slot.
- Move global settings
resample_progress and
resample_verbose to set_monitor() arguments
progress and verbose.
- Move
MLControl() arguments strata_breaks,
strata_nunique, strata_prop, and
strata_size to set_strata() arguments
breaks, nunique, prop, and
size.
- Move
MLControl() arguments times,
distr, and method to
set_predict().
- Export
%>% operator.
- Return case stratification values in the ‘strata’ slot of
Resamples objects.
2.9.0
- Rename tibble column
regular to default in
MLModel gridinfo slot.
- Redefine
size and random arguments of
ParameterGrid() to match those of Grid().
- Revise selection of character values in model grids.
- Select
coeflearn values in their defined order instead
of at random in AdaBoostModel.
- Select
kernels values in their defined order instead of
at random in KNNModel.
- Add survival
splitrule methods in
RangerModel.
- Select
splitrule values in their defined order instead
of at random in RangerModel.
- Revise global settings names.
- Rename
max.print to print_max.
- Rename
progress.resample to
resample_progress.
- Rename
stat.train to stat.Trained.
- Rename
dist.Surv to distr.SurvMeans.
- Rename
dist.SurvProbs to
distr.SurvProbs.
- Implement customized stratification methods for resampling.
- Stratify survival data by time within event status by default
instead of by event status only.
- Add
strata_breaks, strata_nunique,
strata_prop and strata_size arguments to
MLControl() constructor.
- Reduce
strata_breaks if numeric quantile bins are below
strata_prop and strata_size.
- Pool smallest factor levels below
strata_prop and
strata_size iteratively.
- Pool smallest adjacent ordered levels below
strata_prop
and strata_size iteratively.
- Remove deprecated
length arguments from
Grid() and ParameterGrid().
- Drop compatibility with deprecated
gridinfo functions
in MLModel().
- New and improved survival analysis methods.
- Add support for counting process survival data.
- Use model weights in estimation of predicted baseline survival
curves.
- Change censoring curve estimation method from direct to cumulative
hazard-based in the
brier() metric.
- Improve computational speed of survival curve estimation.
- Remove
"fleming-harrington" as a choice for the
method argument of predict() and for the
method.EmpiricalSurv global setting, because it is a
special case of the existing (default) "efron" choice and
thus not needed.
- Add
"rayleigh" choice for the distr.Surv
and distr.SurvProbs global settings.
- Rename
dist argument to distr in
calibration(), MLControl(),
predict(), and r2().
- Return survival distribution name with predicted values.
- Add
distr argument to SurvEvents() and
SurvProbs().
- Add
SurvMeans class.
- Return predicted mean survival times as
SurvMeans
object.
- Default to the distribution used in predicting mean survival times
in
calibration() and r2().
- Rename
"terms" predictor_encoding to
"model.frame" in MLModel class.
- Pass elliptical arguments in
performance() response
type-specific methods to metrics supplied as a single
MLMetric function.
2.8.0
- Replace
get_grid() with
expand_modelgrid().
- Fix for truncated grid of lambda values in
GLMNetModel.
- Support package version constraints in
MLModel.
2.7.1
- Rename
traininfo slot to train_steps in
MLModel classes.
- Issue #4: compatibility fix for recipes package
change in behavior of the
retain argument in
prep().
2.7.0
- Sort randomly sampled grid points.
- Change
fixed argument default NULL to
list() in TunedModel().
- CRAN release.
2.6.2
- Rename
length argument to size in
Grid() and ParameterGrid().
- Add support for named sizes in
ParameterGrid().
- Revise model tuning grids.
- Replace
grid slot with gridinfo in
MLModel classes.
- Add support for size vectors in
Grid().
- Add
get_grid() function to extract model-defined tuning
grids.
- Rename
trainbits slot to traininfo in
MLModel classes.
2.6.1
- Doc edits: do not test examples requiring suggested packages.
- CRAN release.
2.6.0
- Preprocess data for automated grid construction only when
needed.
- Select
RPartModel cp grid points from
cptable according to smallest cross-validation error (mean
plus one standard deviation).
- CRAN release.
2.5.2
- Export
Performance diff() method.
2.5.1
- Implement fast random forest model
RFSRCModel.
- Export
unMLModelFit() function to revert an
MLModelFit object to its original class.
2.5.0
- Add
options argument to step_lincomp() and
step_sbf().
- CRAN release.
2.4.3
- Add recipe
step_sbf() function for variable selection
by filtering.
- Inherit
step_kmedoids objects from
step_sbf, and refactor methods.
- Support user-specified center and scale functions.
- Append prefix to selected variable names.
- Rename
tidy() column medoids to
selected.
- Rename
tidy() column names to
name.
- Set
tidy() non-selected variable names to
NA.
- Add recipe
step_lincomp() function for linear
components variable reduction.
- Inherit
step_kmeans objects from
step_lincomp, and refactor methods.
- Support user-specified center and scale functions.
- Rename
tidy() column names to
name.
- Inherit
step_spca objects from
step_lincomp, and refactor methods.
- Support user-specified center and scale functions.
- Rename
tidy() column value to
weight.
- Rename
tidy() column component to
name.
- Set
GBMModel distribution to bernoulli, instead of
multinomial, for binary responses.
2.4.2
- Add global setting
RHS.formula for listing of operators
and functions allowed on right-hand side of traditional formulas.
- Add clara clustering method to
step_kmedoids().
- Support Cox and accelerated failure time regression for survival
responses in
XGBModel, XGBDARTModel,
XGBLinearModel, and XGBTreeModel.
2.4.1
- Set
NNetModel linout argument
automatically according to the response variable type (numeric:
TRUE, other: FALSE). Previously,
linout had a default value of FALSE as defined
in the nnet package.
2.4.0
2.3.2
- Display progress bars for sequential resampling iterations.
2.3.1
- R 4.0 data.frame compatibility updates for calibration curves.
- Fix recipe prediction with StackedModel and SuperModel
2.3.0
- Display progress messages for any foreach parallel backend.
2.2.5
- Show all error messages when resample selection stops.
- Preserve predictor names in
NNetModel
fit() method.
- Fix aggregation of performance curves with infinite values.
- Add progress bar and verbose output options for
resample() methods.
- Get non-negative probabilities for survival confusion matrix.
- Update Using webpages and vignette.
2.2.4
- Fix
BARTMachineModel to predict highest binary response
level.
- Grid tune
BARTMachineModel nu parameter
for numeric responses only.
2.2.3
- Extend
ModeledInput() to
SelectedModelFrame, SelectedModelRecipe, and
TunedModelRecipe.
2.2.2
- Fix updating of recipe parameters in
TunedInput().
2.2.1
- Print
StackedModel and SuperModel training
information.
- Fix missing case names when resampling with recipes.
2.2.0
2.1.4
- Add cost-complexity pruning parameters to
TreeModel.
- Perform stratified resampling automatically for
ModeledInput() and SelectedInput() objects
constructed with formulas and matrices.
2.1.3
- Revisions needed to some
fit() methods to ensure that
unprepped recipes are passed to models, like TunedModed,
StackedModel, SelectedModel and
SuperModel, needing to replicate preprocessing steps in
their resampling routines.
- Extend
GLMModel to factor and matrix responses.
- Use
fun instead of deprecated fun.y in
ggplot2 functions.
- Capture user-supplied parameters passed in to the ellipsis of model
constructor functions that have them.
2.1.2
- Compatibility fix for tibble 3.0.0.
- Include missing values in model matrices created internally from
formulas.
2.1.1
- Improve specificity of
metricinfo() results for factor
responses.
- Correct
SplitControl() to train on the split sample
instead of the full dataset.
- Perform stratified resampling automatically when
fit()
formula and matrix methods are called with meta-models.
2.1.0
2.0.4
- Extend
print() argument n to data frame
and matrix columns for more concise display of large data
structures.
- Add preprocessing recipe functions
step_kmeans(),
step_kmedoids(), and step_spca().
2.0.3
- Internal changes:
- Remove
MLModel slot y.
- Rename
ModelFrame and ModelRecipe columns
(casenames) to (names).
- Register
ModelFrame inheritance from
data.frame.
- Define
Terms S4 classes for ModelFrame
slot terms.
2.0.2
- Implement
ModeledInput, SelectedInput and
TunedInput classes and methods.
- Deprecate
SelectedFormula(),
SelectedMatrix(), SelectedModelFrame(),
SelectedRecipe(), and TunedRecipe().
- Remove deprecated
tune().
- Rename global setting
stat.Curves to
stat.Curve.
2.0.1
- Rename global setting
stat.Train to
stat.train.
- Add print methods for
SelectedModel,
StackedModel, SuperModel, and
TunedModel.
- Revise training methods to ensure nested resampling of
SelectedRecipe and TunedRecipe.
- Return list of all training steps in
MLModel
trainbits slot.
2.0.0
- Rename global setting
stat.Tune to
stat.Train.
- Enable selection of formulas, design matrices, and model frames with
SelectedFormula(), SelectedMatrix(), and
SelectedModelFrame().
- Rename discrete variable classes:
BinomialMatrix →
BinomialVariate, DiscreteVector →
DiscreteVariate, NegBinomialVector →
NegBinomialVariate, and PoissonVector →
PoissonVariate.
- Add global setting
require for user-specified packages
to load during parallel execution of resampling algorithms.
- Rename recipe role
case_strata to
case_stratum.
- Rename
object argument to data in
ConfusionMatrix(), SurvEvents(), and
SurvProbs().
- Add
c methods for BinomialVariate,
DiscreteVariate, ListOf, and
SurvMatrix.
- Add
role_binom(), role_case(),
role_surv(), and role_term() to set recipe
roles.
- Support
base argument to varimp() for
log-transformed p-values.
- Rename
ParamSet to ParameterGrid.
- Add option to
reset global settings individually.
- Add
as.data.frame methods for Performance,
Performance summary, PerformanceDiff,
PerformanceDiffTest, and Resamples.
1.99.0
- Implement
DiscreteVector class and subclasses
BinomialVector, NegBinomialVector, and
PoissonVector for discrete response variables.
- Extend model support to
DiscreteVector classes as
follows.
DiscreteVector: all models applicable to numeric
responses.
BinomialVector/NegBinomialVector/PoissonVector:
BlackBoostModel, GAMBoostModel,
GLMBoostModel, GLMModel, and
GLMStepAICModel.
BinomialVector/PoissonVector:
GLMNetModel.
PoissonVector: GBMModel and
XGBModel
- Add support for offset terms in formulas, model matrices, and
recipes.
- Add recipe tune information to fitted
MLModel.
- Replace
Calibration(), Confusion(),
Curves(), Lift(), and Resamples()
with c methods.
- Redefine
Confusion S3 class as
ConfusionList S4 class.
- Remove support for one-element list to
metricinfo() and
modelinfo().
- Remove deprecated
expand.model().
- Expire deprecated
tune().
1.6.4
- Calculate regression variable importance as negative log
p-values.
- Support empty vectors in
metricinfo() and
modelinfo().
- Add support for dials package parameter sets with
ParamSet().
1.6.3
- Add
as.MLModel() for coercing MLModelFit
to MLModel.
- Deprecate
tune(); call fit() with a
SelectedModel or TunedModel instead.
1.6.2
- Implement optimism-corrected cross-validation
(
CVOptimismControl).
- Fix
BootOptimismControl error with 2D responses.
- Add global option
max.print for the number of models
and data frame rows to show with print methods.
- Enable recipe selection with
SelectedRecipe().
- Refactor
tune() methods.
- Replace
MLModelFit element fitbits
(MLFitBits object) with mlmodel
(MLModel object).
- Rename
VarImp slot center to
shift.
1.6.1
- Use tibbles for parameter grids.
- Add random sampling option to
expand_model(),
expand_params(), and expand_steps().
- Display information for model functions and objects more
compactly.
1.6.0
- Add global setting for default cutoff threshold value.
- Add option to reset all global settings.
- Enable recipe tuning with
TunedRecipe().
- Add
expand_model() for model expansion over tuning
parameters.
- Add
expand_params() for model parameters
expansion.
- Add
expand_steps() for recipe step parameters
expansion.
- Implement
MLModelFunction and MLModelList
classes.
- Add fit methods for
MLModel,
MLModelFunction, and MLModelList.
- Fix
NNetModel fit error with binary and factor
responses.
- Fix
modelinfo() function not found error.
1.5.2
- Implement exception handling of
tune() resampling
failures.
- Remove deprecated
types and design
arguments from MLModel().
1.5.1
- Implement global settings for default resampling control,
performance metrics, summary statistics, and tuning grid.
- Support vector arguments in
metricinfo() and
modelinfo().
- Update package documentation.
1.5.0
- Implement model:
SelectedModel.
- Remove
maximize argument from tune() and
TunedModel.
- Support lists as arguments to
StackedModel() and
SuperModel.
1.4.2
- Revert renaming of
expand.model().
- Exclude 0 distance from
KNNModel tuning grid.
- Improve random tuning grid coverage.
1.4.1
- Implement model:
TunedModel.
- Remove deprecated
na.action argument from
ModelFrame methods.
- Rename
MLModel() argument types to
response_types.
- Rename
MLModel() argument design to
predictor_encoding.
- Rename
expand.model() to
expand_model().
1.4.0
1.3.3
- Implement optimism-corrected bootstrap resampling
(
BootOptimismControl).
- Store case names in
ModelFrame and
ModelRecipe and save to Resamples.
1.3.2
- Add
BinaryConfusionMatrix and
OrderedConfusionMatrix classes.
- Export
ConfusionMatrix constructor.
- Extend
metricinfo() to confusion matrices.
- Refactor performance metrics methods code.
1.3.1
- Check and convert ordered factors in response methods.
- Check consistency of extracted variables in response methods.
- Add metrics methods for
Resamples.
1.3.0
- Improve compatibility with preprocessing recipes.
- Allow base math functions and operators in
ModelFrame
formulas.
1.2.5
- Save
ModelFrame response in first column.
- Unexport
response formula method.
- Add
ICHomes dataset.
- Add
center and scale slot to
VarImp.
1.2.4
- Prohibit in-line functions in
ModelFrame formulas.
- Rename
response function argument from
data to newdata.
1.2.3
- Add
fit, resample, and tune
methods for design matrices.
- Reduce computational overhead for design matrices and recipes.
- Rename
ModelFrame() argument na.action to
na.rm.
1.2.2
- Implement parametric (
"exponential",
"rayleigh", "weibull") estimation of baseline
survival functions.
- Set
"weibull" as the default distribution for survival
mean estimation.
- Add extract method for
Resamples.
- Add
na.rm argument to calibration(),
confusion(), performance(), and
performance_curve().
- Add loess
span argument to
calibration().
- Change
SurvMatrix from S4 to S3 class.
1.2.1
- Add
method option to predict() for
Breslow, Efron (default), or Fleming-Harrington estimation of survival
curves for Cox proportional hazards-based models.
- Add
dist option to predict() for
exponential or Weibull approximation to estimated survival curves.
- Add
dist option to calibration() for
distributional estimation of observed mean survival.
- Add
dist option to r2() for distributional
estimation of the total sum of squares mean.
- Handle unnamed arguments in
metricinfo() and
modelinfo().
1.2.0
- Implement metrics:
auc, fnr,
fpr, rpp, tnr,
tpr.
- Implement performance curves, including ROC and precision
recall.
- Implement
SurvMatrix classes for predicted survival
events and probabilities to eliminate need for separate
times arguments in calibration, confusion, metrics, and
performance functions.
- Add calibration curves for predicted survival means.
- Add lift curves for predicted survival probabilities.
- Add recipe support for survival and matrix outcomes.
- Rename
MLControl argument surv_times to
times.
- Fix identification of recipe
case_weight and
case_strata variables.
- Launch package website.
- Bring Introduction vignette up to date with package features.
1.1.0
- Implement model:
BARTModel.
- Implement model tuning over automatically generated grids of
parameter values and random sampling of grid points.
- Add metrics for predicted survival times:
accuracy,
f_score, kappa2, npv,
ppv, pr_auc, precision,
recall, roc_index, sensitivity,
specificity
- Add metrics for predicted survival means:
cindex,
gini, mae, mse,
msle, r2, rmse,
rmsle.
- Add
performance and metric methods for
ConfusionMatrix.
- Add confusion matrices for predicted survival times.
- Standardize predict functions to return mean survival when times are
not specified.
- Replace
MLModel slot and constructor argument
nvars with design.
1.0.0
- Implement models:
BARTMachineModel,
LARSModel.
- Implement performance metrics:
gini, multi-class
pr_auc and roc_auc, multivariate
rmse, msle, rmsle.
- Implement smooth calibration curves.
- Implement
MLMetric class for performance metrics.
- Add
as.data.frame method for
ModelFrame.
- Add
expand.model function.
- Add
label slot to MLModel.
- Expand
metricinfo/modelinfo support for mixed argument
types.
- Rename
calibration argument n to
breaks.
- Rename
modelmetrics function to
performance.
- Rename
ModelMetrics/Diff classes to
Performance/Diff.
- Change
MLModelTune slot resamples to
performance.
0.4.0
- Implement models:
AdaBagModel,
AdaBoostModel, BlackBoostModel,
EarthModel, FDAModel,
GAMBoostModel, GLMBoostModel,
MDAModel, NaiveBayesModel,
PDAModel, RangerModel,
RPartModel, TreeModel
- Implement user-specified performance metrics in
modelmetrics function.
- Implement metrics:
accuracy, brier,
cindex, cross_entropy, f_score,
kappa2, mae, mse,
npv, ppv, pr_auc,
precision, r2, recall,
roc_auc, roc_index, sensitivity,
specificity, weighted_kappa2.
- Add
cutoff argument to confusion
function.
- Add
modelinfo and metricinfo
functions.
- Add
modelmetrics method for
Resamples.
- Add
ModelMetrics class with print and
summary methods.
- Add
response method for recipe.
- Export
Calibration constructor.
- Export
Confusion constructor.
- Export
Lift constructor.
- Extend
calibration arguments to observed and predicted
responses.
- Extend
confusion arguments to observed and predicted
responses.
- Extend
lift arguments to observed and predicted
responses.
- Extend
metrics and stats function
arguments to accept function names.
- Extend
Resamples to arguments with multiple
models.
- Change
CoxModel, GLMModel, and
SurvRegModel constructor definitions so that model control
parameters are specified directly instead of with a separate
control argument/structure.
- Change
predict(..., times = numeric()) function calls
to survival model fits to return predicted values in the same direction
as survival times.
- Change
predict(..., times = numeric()) function calls
to CForestModel fits to return predicted means instead of
medians.
- Change
tune function argument metrics to
be defined in terms of a user-specified metric or metrics.
- Deprecate MLControl arguments
cutoff,
cutoff_index, na.rm, and
summary.
0.3.0
- Implement linear models (
LMModel), linear discriminant
analysis (LDAModel), and quadratic discriminant analysis
(QDAModel).
- Implement confusion matrices.
- Support matrix response variables.
- Support user-specified stratification variables for resampling via
the
strata argument of ModelFrame or the role
of "case_strata" for recipe variables.
- Support user-specified case weights for model fitting via the role
of
"case_weight" for recipe variables.
- Provide fallback for models with undefined variable importance.
- Update the importing of
prepper due to its relocation
from rsample to recipes.
0.2.0
- Implement partial dependence, calibration, and lift estimation and
plotting.
- Implement k-nearest neighbors model (
KNNModel), stacked
regression models (StackedModel), super learner models
(SuperModel), and extreme gradient boosting
(XGBModel).
- Implement resampling constructors for training resubstitution
(
TrainControl) and split training and test sets
(SplitControl).
- Implement
ModelFrame class for general model formula
and dataset specification.
- Add multi-class Brier score to
modelmetrics().
- Extend
predict() to automatically preprocess recipes
and to use training data as the newdata default.
- Extend
tune() to lists of models.
- Extent
summary() argument stats to
functions.
- Fix survival probability calculations in
GBMModel and
GLMNetModel.
- Change
MLControl argument na.rm default
from FALSE to TRUE.
- Removed
na.rm argument from
modelmetrics().
0.1