| Type: | Package |
| Title: | Monitoring Systemic Risk |
| Version: | 0.1.0 |
| Description: | The past decade has demonstrated an increased need to better understand risks leading to systemic crises. This framework offers scholars, practitioners and policymakers a useful toolbox to explore such risks in financial systems. Specifically, this framework provides popular econometric and network measures to monitor systemic risk and to measure the consequences of regulatory decisions. These systemic risk measures are based on the frameworks of Adrian and Brunnermeier (2016) <doi:10.1257/aer.20120555> and Billio, Getmansky, Lo and Pelizzon (2012) <doi:10.1016/j.jfineco.2011.12.010>. |
| Depends: | R (≥ 2.10) |
| License: | GPL-3 |
| Encoding: | UTF-8 |
| LazyData: | true |
| Imports: | igraph, Matrix, quantreg, xts |
| NeedsCompilation: | no |
| Packaged: | 2020-05-05 13:54:53 UTC; jb-ha |
| Author: | Jean-Baptiste Hasse [aut, cre] |
| Maintainer: | Jean-Baptiste Hasse <jb-hasse@hotmail.fr> |
| Repository: | CRAN |
| Date/Publication: | 2020-05-08 09:20:02 UTC |
State variables
Description
This dataset includes state variables data extracted from the FRED. Specifically, it includes data on credit spread, liquidity spread, yield spread, 3M Treasury bill and VIX.
Usage
data("data_state_variables")
Format
A data frame with 5030 observations on the following 7 variables.
Datea date vector
CRESPRa numeric vector
LIQSPRa numeric vector
YIESPRa numeric vector
TBR3Ma numeric vector
RESIa numeric vector
VIXa numeric vector
Source
Federal Reserve Economic Data (FRED) St. Louis Fed
References
Hasse, Jean-Baptiste. "Systemic Risk: a Network Approach". AMSE Working Paper (2020) Hasse, Jean-Baptiste, and Quentin Lajaunie. "Does the Yield Curve Signal Recessions? New Evidence from an International Panel Data Analysis." AMSE Working Paper (2020).
Examples
data("data_state_variables")
head(data_state_variables)
Financial institutions (banks, insurers and asset managers) stock returns
Description
This dataset includes state variables data extracted from the FRED and Yahoo Finance. Specifically, it includes dates, MSCI STOXX Europe 600 Index returns and banks, insurers and asset managers stock returns.
Usage
data("data_stock_returns")
Format
A data frame with 5030 observations on the following 74 variables.
ACKB.BB.Equitya numeric vector
AGN.NA.Equitya numeric vector
AGS.BB.Equitya numeric vector
AIBG.ID.Equitya numeric vector
ALV.GY.Equitya numeric vector
AV..LN.Equitya numeric vector
BALN.SE.Equitya numeric vector
BARC.LN.Equitya numeric vector
BBVA.SQ.Equitya numeric vector
BIRG.ID.Equitya numeric vector
BKT.SQ.Equitya numeric vector
BNP.FP.Equitya numeric vector
BPE.IM.Equitya numeric vector
CBG.LN.Equitya numeric vector
CBK.GY.Equitya numeric vector
CNP.FP.Equitya numeric vector
CS.FP.Equitya numeric vector
CSGN.SE.Equitya numeric vector
DANSKE.DC.Equitya numeric vector
DBK.GY.Equitya numeric vector
DNB.NO.Equitya numeric vector
Datea date vector
EBS.AV.Equitya numeric vector
EMG.LN.Equitya numeric vector
G.IM.Equitya numeric vector
GBLB.BB.Equitya numeric vector
GLE.FP.Equitya numeric vector
HELN.SE.Equitya numeric vector
HNR1.GY.Equitya numeric vector
HSBA.LN.Equitya numeric vector
HSX.LN.Equitya numeric vector
ICP.LN.Equitya numeric vector
III.LN.Equitya numeric vector
INDUA.SS.Equitya numeric vector
INGA.NA.Equitya numeric vector
INVEB.SS.Equitya numeric vector
ISP.IM.Equitya numeric vector
JYSK.DC.Equitya numeric vector
KBC.BB.Equitya numeric vector
KINVB.SS.Equitya numeric vector
KN.FP.Equitya numeric vector
KOMB.CK.Equitya numeric vector
LGEN.LN.Equitya numeric vector
LLOY.LN.Equitya numeric vector
LUNDB.SS.Equitya numeric vector
MAP.SQ.Equitya numeric vector
MB.IM.Equitya numeric vector
MF.FP.Equitya numeric vector
MUV2.GY.Equitya numeric vector
NDA.SS.Equitya numeric vector
NXG.LN.Equitya numeric vector
OML.LN.Equitya numeric vector
PARG.SE.Equitya numeric vector
PRU.LN.Equitya numeric vector
RBS.LN.Equitya numeric vector
RF.FP.Equitya numeric vector
RSA.LN.Equitya numeric vector
SAMPO.FH.Equitya numeric vector
SAN.SQ.Equitya numeric vector
SCR.FP.Equitya numeric vector
SDR.LN.Equitya numeric vector
SEBA.SS.Equitya numeric vector
SHBA.SS.Equitya numeric vector
SLHN.SE.Equitya numeric vector
SREN.SE.Equitya numeric vector
STAN.LN.Equitya numeric vector
STB.NO.Equitya numeric vector
STJ.LN.Equitya numeric vector
SWEDA.SS.Equitya numeric vector
SXXP.Indexa numeric vector
SYDB.DC.Equitya numeric vector
UBSG.SE.Equitya numeric vector
UCG.IM.Equitya numeric vector
ZURN.SE.Equitya numeric vector
Source
Federal Reserve Economic Data (FRED) St. Louis Fed and Yahoo Finance
References
Hasse, Jean-Baptiste. "Systemic Risk: a Network Approach". AMSE Working Paper (2020)
Examples
data("data_stock_returns")
head(data_stock_returns)
Computing static CoVaR and Delta CoVaR
Description
This function computes the CoVaR and the Delta CoVaR of a given financial institution i for a given quantile q.
Usage
f_CoVaR_Delta_CoVaR_i_q(df_data_returns)
Arguments
df_data_returns |
A dataframe including data: dates and stock returns |
Value
CoVaR_i_q |
A numeric matrix |
Delta_CoVaR_i_q |
A numeric vector |
Author(s)
Jean-Baptiste Hasse
References
Adrian, Tobias, and Markus K. Brunnermeier. "CoVaR". American Economic Review 106.7 (2016): , 106, 7, 1705-1741.
Examples
# Scale the entries of a vector to the interval [0,1]
# NOT RUN {
# Load data
data("data_stock_returns")
# Compute CoVaR_i_q and Delta_CoVaR_i_q
f_CoVaR_Delta_CoVaR_i_q(data_stock_returns)
# }
Computing dynamic CoVaR and Delta CoVaR
Description
This function computes the dynamic CoVaR and the Delta CoVaR of a given financial institution i for a given quantile q at time t. The dynamic and aggregate Delta CoVaR is also computed.
Usage
f_CoVaR_Delta_CoVaR_i_q_t(df_data_returns, df_data_state_variables)
Arguments
df_data_returns |
A dataframe including data: dates and stock returns |
df_data_state_variables |
A dataframe including data: dates and macroeconomic variables |
Value
CoVaR_i_q_t |
A xts matrix |
Delta_CoVaR_i_q_t |
A xts matrix |
Delta_CoVaR_t |
A xts vector |
Author(s)
Jean-Baptiste Hasse
References
Adrian, Tobias, and Markus K. Brunnermeier. "CoVaR". American Economic Review 106.7 (2016): , 106, 7, 1705-1741.
Examples
# Scale the entries of a vector to the interval [0,1]
# NOT RUN {
# Load data
data("data_stock_returns")
data("data_state_variables")
# Compute CoVaR_i_q_t , Delta_CoVaR_i_q_t and Delta_CoVaR_t
l_result <- f_CoVaR_Delta_CoVaR_i_q_t(data_stock_returns, data_state_variables)
# Plot Delta_CoVaR_t
f_plot(l_result$Delta_CoVaR_t)
# }
Dynamic systemic risk measures from correlation-based networks.
Description
This function provides methods to compute dynamic systemic risk measures from correlation-based networks.
Usage
f_correlation_network_measures(df_data_returns)
Arguments
df_data_returns |
A dataframe including dates and stock returns |
Value
Degree |
xts vector |
Closeness_Centrality |
xts vector |
Eigenvector_Centrality |
xts vector |
SR |
xts vector |
Volatility |
xts vector |
Author(s)
Jean-Baptiste Hasse
References
Hasse, Jean-Baptiste. "Systemic Risk: a Network Approach". AMSE Working Paper (2020)
Examples
# Scale the entries of a vector to the interval [0,1]
# NOT RUN {
# Load data
data("data_stock_returns")
# Compute topological risk measures from correlation-based financial networks
l_result <- f_correlation_network_measures(data_stock_returns)
# Plot SR_t
f_plot(l_result$SR)
# }
Plot dynamic risk measures
Description
This function provides a framework to plot xts time series.
Usage
f_plot(xts_index_returns)
Arguments
xts_index_returns |
A xts vector |
Value
No return value, called for side effects
Author(s)
Jean-Baptiste Hasse
Examples
# Plot a xts vector
# NOT RUN {
# Generate data returns
v_returns <- numeric(10)
v_returns <- rnorm(10, 0, 0.01)
v_date <- seq(from = as.Date("2019-01-01"), to = as.Date("2019-10-01"), by = "month")
xts_returns <- xts(v_returns, order.by = v_date)
# Plot the xts vector of simulated returns
f_plot(xts_returns)
# }
Rescale
Description
This function normalizes data to 0-1 range. Specifically, this function computes linearly rescaled values from a vector of numeric values.
Usage
f_scale(v_time_series)
Arguments
v_time_series |
Vector of numeric values |
Value
A vector of numeric normalized values
Author(s)
Jean-Baptiste Hasse
References
Hasse, Jean-Baptiste. "Systemic Risk: a Network Approach". AMSE Working Paper (2020)
Examples
# Scale the entries of a vector to the interval [0,1]
# NOT RUN {
# Generate data
v_data <- numeric(10)
v_data <- c(1, 5, 3, 2, 15, 12, 9, 11, 7, 13)
# Rescale data
v_rescaled_data <- numeric(10)
v_rescaled_data <- f_scale(v_data)
# print rescaled data
print(v_rescaled_data)
# }