library(filtro)
library(dplyr)
library(modeldata)⚠️ work-in-progress
We’ll need to load a few packages:
library(filtro)
library(dplyr)
library(modeldata)Predictor importance can be assessed using three different random forest models. They can be accessed via the following score class objects:
score_imp_rf
score_imp_rf_conditional
score_imp_rf_obliqueThese models are powered by the following packages:
#> [1] "ranger"
#> [1] "partykit"
#> [1] "aorsf"
Regarding score types:
The {ranger} random forest computes the importance scores.
The {partykit} conditional random forest computes the conditional importance scores.
The {aorsf} oblique random forest computes the permutation importance scores.
The {modeldata} package contains a data set used to predict which cells in a high content screen were well segmented. It has 57 predictor columns and a factor variable class (the outcome).
Since case is only used to indicate Train/Test, not for data analysis, it will be set to NULL. Furthermore, for efficiency, we will use a small sample of 50 from the original 2019 observations.
cells_subset <- modeldata::cells |>
# Use a small example for efficiency
dplyr::slice(1:50)
cells_subset$case <- NULL
# cells_subset |> str() # Uncomment to see the structure of the dataFirst, we create a score class object to specify a {ranger} random forest, and then use the fit() method with the standard formula to compute the importance scores.
# Specify random forest and fit score
cells_imp_rf_res <- score_imp_rf |>
fit(
class ~ .,
data = cells_subset,
seed = 42
)The data frame of results can be accessed via object@results.
cells_imp_rf_res@results
#> # A tibble: 56 × 4
#> name score outcome predictor
#> <chr> <dbl> <chr> <chr>
#> 1 imp_rf 0.000967 class angle_ch_1
#> 2 imp_rf -0.0000620 class area_ch_1
#> 3 imp_rf 0.00438 class avg_inten_ch_1
#> 4 imp_rf 0.00916 class avg_inten_ch_2
#> 5 imp_rf -0.000426 class avg_inten_ch_3
#> 6 imp_rf -0.000296 class avg_inten_ch_4
#> 7 imp_rf 0.00836 class convex_hull_area_ratio_ch_1
#> 8 imp_rf 0.00133 class convex_hull_perim_ratio_ch_1
#> 9 imp_rf 0.000739 class diff_inten_density_ch_1
#> 10 imp_rf -0.00128 class diff_inten_density_ch_3
#> # ℹ 46 more rowsA copule of notes here:
The random forest filter, including all three types of random forests,
regression tasks, and
classificaiton tasks.
In case where NA is produced, a safe value can be used to retain the predictor, and can be accessed via object@fallback_value.
Larger values indicate more important predictors.
For this specific filter, i.e., score_imp_rf_*, case weights are supported.
Like {parsnip}, the argument names are harmonized. For example, the arguments to set the number of trees: num.trees in {ranger}, ntree in {partykit}, and n_tree in {aorsf} are all standardized to a single name, trees, so users only need to remember a single name.
The same applies to the number of variables to split at each node, mtry, and the minimum node size for splitting, min_n.
# Set hyperparameters
cells_imp_rf_res <- score_imp_rf |>
fit(
class ~ .,
data = cells_subset,
trees = 100,
mtry = 2,
min_n = 1
)However, there is one argument name specific to {ranger}. For reproducibility, instead of using the standard set.seed() method, we would use the seed argument.
cells_imp_rf_res <- score_imp_rf |>
fit(
class ~ .,
data = cells_subset,
trees = 100,
mtry = 2,
min_n = 1,
seed = 42 # Set seed for reproducibility
)If users use {ranger} argument names, intentionally or not, it still works. We have handled the necessary adjustments. The following code chunk can be used to obtain a fitted score:
cells_imp_rf_res <- score_imp_rf |>
fit(
class ~ .,
data = cells_subset,
num.trees = 100,
mtry = 2,
min.node.size = 1,
seed = 42
)The same applies to {partykit}- and {aorsf}- specific arguments.
For the {partykit} conditional random forest, we again create a score class object to specify the model, then use the fit() method to compute the importance scores.
The data frame of results can be accessed via object@results.
# Set seed for reproducibility
set.seed(42)
# Specify conditional random forest and fit score
cells_imp_rf_conditional_res <- score_imp_rf_conditional |>
fit(class ~ ., data = cells_subset, trees = 100)
cells_imp_rf_conditional_res@results
#> # A tibble: 40 × 4
#> name score outcome predictor
#> <chr> <dbl> <chr> <chr>
#> 1 imp_rf_conditional -0.0306 class angle_ch_1
#> 2 imp_rf_conditional 0.178 class area_ch_1
#> 3 imp_rf_conditional 0.158 class avg_inten_ch_1
#> 4 imp_rf_conditional 0.132 class avg_inten_ch_2
#> 5 imp_rf_conditional 0.0927 class convex_hull_area_ratio_ch_1
#> 6 imp_rf_conditional 0.963 class convex_hull_perim_ratio_ch_1
#> 7 imp_rf_conditional -0.0842 class diff_inten_density_ch_1
#> 8 imp_rf_conditional 0.0688 class diff_inten_density_ch_3
#> 9 imp_rf_conditional 0.147 class entropy_inten_ch_1
#> 10 imp_rf_conditional 0.00105 class entropy_inten_ch_3
#> # ℹ 30 more rowsNote that when a predictor’s importance score is 0, partykit::cforest() may exclude its name from the output. In such cases, a score of 0 is assigned to the missing predictors.
For the {aorsf} oblique random forest, we again create a score class object to specify the model, then use the fit() method to compute the importance scores.
The data frame of results can be accessed via object@results.
# Set seed for reproducibility
set.seed(42)
# Specify oblique random forest and fit score
cells_imp_rf_oblique_res <- score_imp_rf_oblique |>
fit(class ~ ., data = cells_subset, trees = 100, mtry = 2)
cells_imp_rf_oblique_res@results
#> # A tibble: 56 × 4
#> name score outcome predictor
#> <chr> <dbl> <chr> <chr>
#> 1 imp_rf_oblique 0.0165 class fiber_width_ch_1
#> 2 imp_rf_oblique 0.0121 class inten_cooc_contrast_ch_3
#> 3 imp_rf_oblique 0.0109 class inten_cooc_max_ch_3
#> 4 imp_rf_oblique 0.00850 class shape_p_2_a_ch_1
#> 5 imp_rf_oblique 0.00777 class entropy_inten_ch_1
#> 6 imp_rf_oblique 0.00725 class eq_ellipse_lwr_ch_1
#> 7 imp_rf_oblique 0.00589 class inten_cooc_asm_ch_3
#> 8 imp_rf_oblique 0.00543 class diff_inten_density_ch_1
#> 9 imp_rf_oblique 0.00513 class shape_lwr_ch_1
#> 10 imp_rf_oblique 0.00506 class fiber_length_ch_1
#> # ℹ 46 more rowsThe list of score class objects for random forests, their corresponding engines and supported tasks:
| object | engine | task |
|---|---|---|
score_imp_rf |
ranger::ranger |
regression, classification |
score_imp_rf_conditional |
partykit::cforest |
regression, classification |
score_imp_rf_oblique |
aorsf::orsf |
regression, classification |