| Title: | Smoothed M-Estimators for 1-Dimensional Location |
| Version: | 0.1-3 |
| Date: | 2022-04-27 |
| Author: | Christian Hennig <christian.hennig@unibo.it> |
| Depends: | R (≥ 2.0), MASS |
| Description: | Some M-estimators for 1-dimensional location (Bisquare, ML for the Cauchy distribution, and the estimators from application of the smoothing principle introduced in Hampel, Hennig and Ronchetti (2011) to the above, the Huber M-estimator, and the median, main function is smoothm), and Pitman estimator. |
| Maintainer: | Christian Hennig <christian.hennig@unibo.it> |
| License: | GPL-2 | GPL-3 [expanded from: GPL] |
| URL: | https://www.unibo.it/sitoweb/christian.hennig/en |
| NeedsCompilation: | no |
| Packaged: | 2022-04-27 14:38:35 UTC; chrish |
| Repository: | CRAN |
| Date/Publication: | 2022-04-27 22:10:05 UTC |
The double exponential (Laplace) distribution
Description
Density for and random values from double exponential (Laplace)
distribution with density exp(-abs(x-mu)/lambda)/(2*lambda),
for which the median is the ML estimator.
Usage
ddoublex(x, mu=0, lambda=1)
rdoublex(n,mu=0,lambda=1)
Arguments
x |
numeric vector. |
mu |
numeric. Distribution median. |
lambda |
numeric. Scale parameter. |
n |
integer. Number of random values to be generated. |
Details
- ddoublex:
density.
- rdoublex:
random number generation.
Value
ddoublex gives out a vector of density values.
rdoublex gives out a vector of random numbers generated by
the double exponential distribution.
Author(s)
Christian Hennig chrish@stats.ucl.ac.uk http://www.homepages.ucl.ac.uk/~ucakche/
References
Huber, P. J. and Ronchetti, E. (2009) Robust Statistics (2nd ed.). Wiley, New York.
Examples
set.seed(123456)
ddoublex(1:5,lambda=5)
rdoublex(5,mu=10,lambda=5)
Huber's least favourable distribution
Description
Density for and random values from Huber's least favourable distribution, see Huber and Ronchetti (2009).
Usage
dhuber(x, k=0.862, mu=0, sigma=1)
edhuber(x, k=0.862, mu=0, sigma=1)
rhuber(n,k=0.862, mu=0, sigma=1)
Arguments
x |
numeric vector. |
k |
numeric. Borderline value of central Gaussian part of the distribution. The default values refers to a 20% contamination neighborhood of the Gaussian distribution. |
mu |
numeric. distribution mean. |
sigma |
numeric. Distribution scale ( |
n |
integer. Number of random values to be generated. |
Details
- dhuber:
density.
- edhuber:
density, and computes the contamination proportion corresponding to
k.- rhuber:
random number generation.
Value
dhuber gives out a vector of density values.
edhuber gives out a list with components val (density
values) and eps (contamination proportion).
rhuber gives out a vector of random numbers generated by
Huber's least favourable distribution.
Author(s)
Christian Hennig chrish@stats.ucl.ac.uk http://www.homepages.ucl.ac.uk/~ucakche/
References
Huber, P. J. and Ronchetti, E. (2009) Robust Statistics (2nd ed.). Wiley, New York.
Examples
set.seed(123456)
edhuber(1:5,k=1.5)
rhuber(5)
Auxiliary functions for pitman
Description
Auxiliary functions for pitman.
Usage
pdens(z, x, dfunction, ...)
sdens(z, x, dfunction, ...)
dens(x, dfunction, ...)
Arguments
z |
numeric vector. |
x |
numeric vector. |
dfunction |
a density function defining the distribution for which the Pitman estimator is computed. |
... |
further arguments to be passed on to the density function
|
Details
- dens
product of density values at
x.- pdens
vector of
z*dens(x-z).- sdens
vector of
dens(x-z).
Value
Numeric value (dens) or vector.
Author(s)
Christian Hennig chrish@stats.ucl.ac.uk http://www.homepages.ucl.ac.uk/~ucakche/
References
Pitman, E.J. (1939) The estimation of the location and scale parameters of a continuous population of any given form. Biometrika 30, 391-421.
See Also
Examples
dens(1:5,dcauchy)
pdens(1:5,0,dcauchy)
sdens(1:5,0:2,dcauchy)
Pitman location estimator
Description
Pitman estimator of one-dimensional location, optimal with scale
assumed to be known.
Calculated by brute force (using integrate).
Usage
pitman(y, d=ddoublex, lower=-Inf, upper=Inf, s=mad(y), ...)
Arguments
y |
numeric vector. Data set. |
d |
a density function defining the distribution for which the Pitman estimator is computed. |
lower |
numeric. Lower bound for the involved integrals (should
be |
upper |
numeric. Lower bound for the involved integrals (should
be |
s |
numeric. Estimated or assumed scale/standard deviation. |
... |
further arguments to be passed on to the density function
|
Value
The estimated value.
Author(s)
Christian Hennig chrish@stats.ucl.ac.uk http://www.homepages.ucl.ac.uk/~ucakche/
References
Pitman, E.J. (1939) The estimation of the location and scale parameters of a continuous population of any given form. Biometrika 30, 391-421.
See Also
Examples
set.seed(10001)
y <- rdoublex(7)
pitman(y,ddoublex)
pitman(y,dcauchy)
pitman(y,dnorm)
Smoothed and unsmoothed 1-d location M-estimators
Description
smoothm is an interface for all the smoothed
M-estimators introduced in Hampel, Hennig and Ronchetti (2011) for
one-dimensional location, the Huber- and Bisquare-M-estimator and the
ML-estimator of the Cauchy distribution, calling all the other
functions documented on this page.
Usage
smoothm(y, method="smhuber",
k=0.862, sn=sqrt(2.046/length(y)),
tol=1e-06, s=mad(y), init="median")
sehuber(y, k = 0.862, tol = 1e-06, s=mad(y), init="median")
smhuber(y, k = 0.862, sn=sqrt(2.046/length(y)), tol = 1e-06, s=mad(y),
smmed=FALSE, init="median")
mbisquare(y, k=4.685, tol = 1e-06, s=mad(y), init="median")
smbisquare(y, k=4.685, tol = 1e-06, sn=sqrt(1.0526/length(y)),
s=mad(y), init="median")
mlcauchy(y, tol = 1e-06, s=mad(y))
smcauchy(y, tol = 1e-06, sn=sqrt(2/length(y)), s=mad(y))
Arguments
y |
numeric vector. Data set. |
method |
one of |
k |
numeric. Tuning constant. This is used for |
sn |
numeric. This is used for |
tol |
numeric. Stopping criterion for algorithms (absolute difference between two successive values). |
s |
numeric. Estimated or assumed scale/standard deviation. |
init |
|
smmed |
logical. If |
Details
The following estimators can be computed (some computational details are given in Hampel et al. 2011):
- Huber estimator.
method="huber"and functionsehubercompute the standard Huber estimator (Huber and Ronchetti 2009). The only differences from huber are thatsandinitcan be specified and that the defaultkis different.- Smoothed Huber estimator.
method="smhuber"and functionsmhubercompute the smoothed Huber estimator (Hampel et al. 2011).- Bisquare estimator.
method="bisquare"and functionbisquarecompute the bisquare M-estimator (Maronna et al. 2006). This usespsi.bisquare.- Smoothed bisquare estimator.
method="smbisquare"and functionsmbisquarecompute the smoothed bisquare M-estimator (Hampel et al. 2011). This usespsi.bisquare- ML estimator for Cauchy distribution.
method="cauchy"and functionmlcauchycompute the ML-estimator for the Cauchy distribution.- Smoothed ML estimator for Cauchy distribution.
method="smcauchy"and functionsmcauchycompute the smoothed ML-estimator for the Cauchy distribution (Hampel et al. 2011).- Smoothed median.
method="smmed"and functionsmhuberwithmedian=TRUEcompute the smoothed median (Hampel et al. 2011).
Value
A list with components
mu |
the location estimator. |
method |
see above. |
k |
see above. |
sn |
see above. |
tol |
see above. |
s |
see above. |
Author(s)
Christian Hennig chrish@stats.ucl.ac.uk http://www.homepages.ucl.ac.uk/~ucakche/
References
Hampel, F., Hennig, C. and Ronchetti, E. (2011) A smoothing principle for the Huber and other location M-estimators. Computational Statistics and Data Analysis 55, 324-337.
Huber, P. J. and Ronchetti, E. (2009) Robust Statistics (2nd ed.). Wiley, New York.
Maronna, A.R., Martin, D.R., Yohai, V.J. (2006). Robust Statistics: Theory and Methods. Wiley, New York
See Also
Examples
library(MASS)
set.seed(10001)
y <- rdoublex(7)
median(y)
huber(y)$mu
smoothm(y)$mu
smoothm(y,method="huber")$mu
smoothm(y,method="bisquare",k=4.685)$mu
smoothm(y,method="smbisquare",k=4.685,sn=sqrt(1.0526/7))$mu
smoothm(y,method="cauchy")$mu
smoothm(y,method="smcauchy",sn=sqrt(2/7))$mu
smoothm(y,method="smmed",sn=sqrt(1.0526/7))$mu
smoothm(y,method="smmed",sn=sqrt(1.0526/7),init="mean")$mu
Auxiliary functions for smoothm
Description
Psi-functions, derivatives and further auxiliary functions used for
computing the estimators in smoothm.
Usage
psicauchy(x)
psidcauchy(x)
likcauchy(x,mu)
flikcauchy(y,x,mu,sn)
smtfcauchy(x,mu,sn)
smcipsi(y, x, sn=sqrt(2/length(x)))
smcipsid(y, x, sn=sqrt(2/length(x)))
smcpsi(x, sn=sqrt(2/length(x)))
smcpsid(x, sn=sqrt(2/length(x)))
smbpsi(y, x, k=4.685, sn=sqrt(2/length(x)))
smbpsid(y, x, k=4.685, sn=sqrt(2/length(x)))
smbpsii(x, k=4.685, sn=sqrt(2/length(x)))
smbpsidi(x, k=4.685, sn=sqrt(2/length(x)))
smpsi(x,k=0.862,sn=sqrt(2/length(x)))
smpmed(x,sn=sqrt(1/5))
Arguments
x |
numeric vector. |
mu |
numeric. |
y |
numeric vector. |
sn |
numeric. Smoothing constant. See |
k |
numeric. Tuning constant. See |
Details
- psicauchy
psi-function for Cauchy ML-estimator at
x.- psidcauchy
derivative of
psicauchyatx.- likcauchy
Cauchy likelihood of data
xfor mode parametermu.- flikcauchy
vector of Gaussian density at
ywith mean 0 and st. dev.sntimes Cauchy log-likelihood ofxwith mode parametermu+y.- smtfcauchy
integral of
flikcauchywithyrunning from-InftoInf.- smcipsi
psicauchy(x-y)*dnorm(y,sd=sn).- smcipsid
derivative of
smcipsiw.r.t.x.- smcpsi
psi-function for smoothed Cauchy ML-estimator. Integral of
smpcipsiwithyrunning from-InftoInf.- smcpsid
integral of
smpcipsidwithyrunning from-InftoInf.- smbpsi
(x-y)*psi.bisquare(x-y,c=k)*dnorm(y,sd=sn).- smbpsid
psi.bisquare(x-y,c=k,deriv=1)*dnorm(y,sd=sn).- smbpsii
psi-function for smoothed bisquare M-estimator. Integral of
smbpsiwithyrunning from-InftoInf.- smbpsidi
integral of
smbpsidwithyrunning from-InftoInf.- smpsi
psi-function for smoothed Huber-estimator at
x.- smpmed
psi-function for smoothed median at
x.
Value
A numeric vector.
Author(s)
Christian Hennig chrish@stats.ucl.ac.uk http://www.homepages.ucl.ac.uk/~ucakche/
References
Hampel, F., Hennig, C. and Ronchetti, E. (2011) A smoothing principle for the Huber and other location M-estimators. Computational Statistics and Data Analysis 55, 324-337.
Huber, P. J. and Ronchetti, E. (2009) Robust Statistics (2nd ed.). Wiley, New York.
Maronna, A.R., Martin, D.R., Yohai, V.J. (2006). Robust Statistics: Theory and Methods. Wiley, New York
See Also
smoothm, psi.huber,
psi.bisquare
Examples
psicauchy(1:5)
psidcauchy(1:5)
likcauchy(1:5,0)
flikcauchy(3,1:5,0,1)
smtfcauchy(1:5,0,1)
smcipsi(1,1:3)
smcipsid(1,1:3)
smcpsi(1:5)
smcpsid(1:5)
smbpsi(1,1:5)
smbpsid(0:4,1:5)
smbpsii(1:5)
smbpsidi(1:5)
smpsi(1:5)
smpmed(1:5)