sreg: Stratified Randomized Experiments

version Static Badge R-CMD-check codecov

The sreg package for R, offers a toolkit for estimating average treatment effects (ATEs) in stratified randomized experiments. It supports a wide range of stratification designs, including matched pairs, \(k\)-tuple designs, and larger strata with many units — possibly of unequal size across strata. The package is designed to accommodate scenarios with multiple treatments, and cluster-level treatment assignments, and accomodates optimal linear covariate adjustment based on baseline observable characteristics. The package computes estimators and standard errors based on Bugni, Canay, Shaikh (2018); Bugni, Canay, Shaikh, Tabord-Meehan (2023); Jiang, Linton, Tang, Zhang (2023); Bai, Jiang, Romano, Shaikh, Zhang (2024); Bai (2022); Bai, Romano, Shaikh (2022); Liu (2024); and Cytrynbaum (2024).

Dependencies: dplyr, tidyr, extraDistr, rlang

Suggests: haven, knitr, rmarkdown, testthat (>= 3.0.0)

R version required: >= 2.10

Latest Build (v.2.0.1)

Authors

Supplementary files

Installation

Install the official CRAN release using:

install.packages("sreg")
trying URL 'https://ftp.osuosl.org/pub/cran/src/contrib/sreg_1.0.1.tar.gz'
Content type 'application/x-gzip' length 43389 bytes (42 KB)
==================================================
downloaded 42 KB

* installing *source* package ‘sreg’ ...
** package ‘sreg’ successfully unpacked and MD5 sums checked
** using staged installation
** R
** data
*** moving datasets to lazyload DB
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (sreg)

The downloaded source packages are in
/private/var/folders/mp/06gjwr8j56zdp5j2vgdkd4z40000gq/T/RtmpVk96vN/downloaded_packages’
library(sreg)
#>  ____  ____  _____ ____      Stratified Randomized
#> / ___||  _ \| ____/ ___|     Experiments
#> \___ \| |_) |  _|| |  _  
#>  ___) |  _ <| |__| |_| |  
#> |____/|_| \_\_____\____| version 1.0.1

#> Type 'citation("sreg")' for citing this R package in publications. 

The latest development version can be installed using devtools.

library(devtools)
install_github("jutrifonov/sreg")
Downloading GitHub repo jutrifonov/sreg@HEAD
── R CMD build ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
✔  checking for file ‘/private/var/folders/mp/06gjwr8j56zdp5j2vgdkd4z40000gq/T/RtmpVk96vN/remotes1026130d7f9b4/jutrifonov-sreg-53c1377/DESCRIPTION’ ...
─  preparing ‘sreg’:
✔  checking DESCRIPTION meta-information ...
─  checking for LF line-endings in source and make files and shell scripts
─  checking for empty or unneeded directories
─  building ‘sreg_2.0.0.9000.tar.gz’
   
Installing package into ‘/opt/homebrew/lib/R/4.4/site-library’
(as ‘lib’ is unspecified)
* installing *source* package ‘sreg’ ...
** using staged installation
** R
** data
*** moving datasets to lazyload DB
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (sreg)
library(sreg)
ℹ Loading sreg
#>  ____  ____  _____ ____      Stratified Randomized
#> / ___||  _ \| ____/ ___|     Experiments
#> \___ \| |_) |  _|| |  _  
#>  ___) |  _ <| |__| |_| |  
#> |____/|_| \_\_____\____| version 2.0.0.9000
                           

#> Type 'citation("sreg")' for citing this R package in publications.                

Function: sreg()

Estimates the ATE(s) and the corresponding standard error(s) for a (collection of) treatment(s) relative to a control.

Syntax

sreg(Y, S = NULL, D, G.id = NULL, Ng = NULL, X = NULL, HC1 = TRUE, small.strata = FALSE)

Arguments

Data Structure

Here we provide an example of a data frame that can be used with sreg.

|       Y      | S | D | G.id | Ng |     x_1    |      x_2      |
|--------------|---|---|------|----|------------|---------------|
| -0.57773576  | 2 | 0 |  1   | 10 |  1.5597899 |  0.03023334   |
|  1.69495638  | 2 | 0 |  1   | 10 |  1.5597899 |  0.03023334   |
|  2.02033740  | 4 | 2 |  2   | 30 |  0.8747419 | -0.77090031   |
|  1.22020493  | 4 | 2 |  2   | 30 |  0.8747419 | -0.77090031   |
|  1.64466086  | 4 | 2 |  2   | 30 |  0.8747419 | -0.77090031   |
| -0.32365109  | 4 | 2 |  2   | 30 |  0.8747419 | -0.77090031   |
|  2.21008191  | 4 | 2 |  2   | 30 |  0.8747419 | -0.77090031   |
| -2.25064316  | 4 | 2 |  2   | 30 |  0.8747419 | -0.77090031   |
|  0.37962312  | 4 | 2 |  2   | 30 |  0.8747419 | -0.77090031   |

Summary

sreg prints a “Stata-style” table containing the ATE estimates, corresponding standard errors, \(t\)-statistics, \(p\)-values, \(95\)% asymptotic confidence intervals, and significance indicators for different levels \(\alpha\). The example of the printed output is provided below.

Saturated Model Estimation Results under CAR
Observations: 2710 
Clusters: 100 
Number of treatments: 2 
Number of strata: 10 
Setup: big strata 
Standard errors: adjusted (HC1) 
Treatment assignment: cluster level 
Covariates used in linear adjustments: 
---
Coefficients:
      Tau   As.se  T-stat P-value CI.left(95%) CI.right(95%) Significance
1 1.13687 0.31181 3.64608 0.00027      0.52574       1.74799          ***
2 0.66447 0.30263 2.19565 0.02812      0.07133       1.25761            *
---
Signif. codes:  0 `***` 0.001 `**` 0.01 `*` 0.05 `.` 0.1 ` ` 1

Return Value

The function returns an object of class sreg that is a list containing the following elements:

Empirical Example

Here, we provide the empirical application example using the data from (Chong et al., 2016), who studied the effect of iron deficiency anemia on school-age children’s educational attainment and cognitive ability in Peru. The example replicates the empirical illustration from (Bugni et al., 2019). For replication purposes, the data is included in the package and can be accessed by running data("AEJapp"). This example can be accessed directly in R via help(sreg).

library(sreg, dplyr, haven)

The description of the dataset can be accessed using help():

help(AEJapp)

We can upload the AEJapp dataset to the R session via data():

data("AEJapp")
data <- AEJapp

It is pretty straightforward to prepare the data to fit the package syntax using dplyr:

Y <- data$gradesq34
D <- data$treatment
S <- data$class_level
data.clean <- data.frame(Y, D, S)
data.clean <- data.clean %>%
  mutate(D = ifelse(D == 3, 0, D))
Y <- data.clean$Y
D <- data.clean$D
S <- data.clean$S
head(data.clean)
     Y D S
1 11.2 1 1
2 12.4 0 3
3 11.9 0 5
4 13.1 0 1
5 13.4 2 2
6 10.7 0 1

We can take a look at the frequency table of D and S:

table(D = data.clean$D, S = data.clean$S)
   S
D    1  2  3  4  5
  0 15 19 16 12 10
  1 16 19 15 10 10
  2 17 20 15 11 10

Now, it is straightforward to replicate the results from (Bugni et al, 2019) using sreg:

result <- sreg::sreg(Y = Y, S = S, D = D)
print(result)
Saturated Model Estimation Results under CAR
Observations: 215 
Number of treatments: 2 
Number of strata: 5 
Setup: big strata 
Standard errors: adjusted (HC1) 
Treatment assignment: individual level 
Covariates used in linear adjustments: 
---
Coefficients:
       Tau   As.se   T-stat P-value CI.left(95%) CI.right(95%) Significance
1 -0.05113 0.20645 -0.24766 0.80440     -0.45577       0.35351             
2  0.40903 0.20651  1.98065 0.04763      0.00427       0.81379            *
---
Signif. codes:  0 `***` 0.001 `**` 0.01 `*` 0.05 `.` 0.1 ` ` 1

Besides that, sreg allows adding linear adjustments (covariates) to the estimation procedure:

pills <- data$pills_taken
age <- data$age_months
data.clean <- data.frame(Y, D, S, pills, age)
data.clean <- data.clean %>%
  mutate(D = ifelse(D == 3, 0, D))
Y <- data.clean$Y
D <- data.clean$D
S <- data.clean$S
X <- data.frame("pills" = data.clean$pills, "age" = data.clean$age)
result <- sreg::sreg(Y, S, D, G.id = NULL, X = X)
print(result)
Saturated Model Estimation Results under CAR with linear adjustments
Observations: 215 
Number of treatments: 2 
Number of strata: 5 
Setup: big strata 
Standard errors: adjusted (HC1) 
Treatment assignment: individual level 
Covariates used in linear adjustments: pills, age
---
Coefficients:
       Tau   As.se   T-stat P-value CI.left(95%) CI.right(95%) Significance
1 -0.02862 0.17964 -0.15929 0.87344     -0.38071       0.32348             
2  0.34609 0.18362  1.88477 0.05946     -0.01381       0.70598            .
---
Signif. codes:  0 `***` 0.001 `**` 0.01 `*` 0.05 `.` 0.1 ` ` 1

Example (small strata)

Beginning with version 2.0.0+, the sreg package supports experimental designs with small strata (e.g., matched pairs or k-tuples) via the small.strata argument in the sreg function. We demonstrate its implementation using simulated data generated by sreg.rgen() under a matched triplets design.

data <- sreg.rgen(n = 300, tau.vec = c(1.2, 0.8), cluster = FALSE, small.strata = TRUE, k = 3, treat.sizes = c(1, 1, 1))
> head(data)

           Y S D      x_1       x_2
1  2.6455170 1 0 5.594675 1.9023835
2  6.6589024 1 2 6.450984 4.2343208
3  4.3412644 1 1 4.787852 3.1895694
4 -0.7592291 2 2 6.240883 0.7458935
5  5.1391241 2 1 6.076305 2.6105942
6  2.3934378 2 0 5.403182 3.4032419
result <- sreg(Y = data$Y, S = data$S, D = data$D, X = data.frame('x_1' = data$x_1, 'x_2' = data$x_2), small.strata = TRUE)
> print(result)
Saturated Model Estimation Results under CAR with linear adjustments
Observations: 300 
Number of treatments: 2 
Number of strata: 100 
Setup: small strata 
Strata size (k): 3 
Standard errors: adjusted (HC1) 
Treatment assignment: individual level 
Covariates used in linear adjustments: x_1, x_2
---
Coefficients:
      Tau   As.se  T-stat P-value CI.left(95%) CI.right(95%) Significance
1 1.11577 0.13995 7.97258   0e+00      0.84147       1.39006          ***
2 0.58806 0.13439 4.37574   1e-05      0.32466       0.85147          ***
---
Signif. codes:  0 `***` 0.001 `**` 0.01 `*` 0.05 `.` 0.1 ` ` 1

S3 Method: plot.sreg()

Visualizes the estimated average treatment effects (ATEs) and their confidence intervals from an object returned by sreg(). This function defines an S3 method for the generic plot() function for objects of class sreg.

Syntax

plot(x,
     treatment_labels = NULL,
     title = "Estimated ATEs with Confidence Intervals",
     bar_fill = NULL,
     point_shape = 23,
     point_size = 3,
     point_fill = "white",
     point_stroke = 1.2,
     point_color = "black",
     label_color = "black",
     label_size = 4,
     bg_color = NULL,
     grid = TRUE,
     zero_line = TRUE,
     y_axis_title = NULL,
     x_axis_title = NULL,
     ...)

Arguments

Return Value

Invisibly returns the ggplot object used to generate the figure. The function is called primarily for its side effect — rendering the plot. ### Example

library("sreg")
library("dplyr")
library("haven")
data <- sreg.rgen(n = 1000, tau.vec = c(-0.3, 0.2), n.strata = 4, cluster = FALSE)
Y <- data$Y
S <- data$S
D <- data$D
X <- data.frame("x_1" = data$x_1, "x_2" = data$x_2)
result <- sreg(Y, S, D, G.id = NULL, Ng = NULL, X)
plot(result)
Example Plot

S3 Method: print.sreg()

Prints a summary table of the estimated treatment effects from an object returned by sreg(). This function defines an S3 method for the generic print() function for objects of class sreg. This method prints a formatted summary table that includes the estimated average treatment effects, standard errors, \(p\)-values, confidence intervals, and details about the experimental design.

Syntax

print.sreg(x, ...)

Arguments

Function sreg.rgen()

Generates the observed outcomes, treatment assignments, strata indicators, cluster indicators, cluster sizes, and covariates for estimating the treatment effect following the stratified block randomization design under covariate-adaptive randomization (CAR).

Syntax

sreg.rgen(n, Nmax = 50, n.strata,
         tau.vec = c(0), gamma.vec = c(0.4, 0.2, 1),
         cluster = TRUE, is.cov = TRUE, small.strata = FALSE,
         k = 3, treat.sizes = c(1, 1, 1))

Arguments

Return Value

Example

library(sreg)
# big stata
data <- sreg.rgen(n = 1000, tau.vec = c(0), n.strata = 4, cluster = TRUE)
> head(data)
         Y S D      x_1       x_2
1 1.717293 1 0 4.772092 2.4138491
2 2.553695 2 0 5.413440 2.0551019
3 2.237556 3 2 6.611161 0.9300293
4 1.825809 3 1 2.735503 1.7839981
5 5.536280 2 2 2.469239 2.0495611
6 1.628753 2 0 4.887561 2.1327071

# matched pairs (small strata)
data <- sreg.rgen(n = 100, tau.vec = c(1.2), cluster = FALSE, small.strata = TRUE, k = 2, treat.sizes = c(1, 1))
> head(data)
          Y S D      x_1      x_2
1 2.0393535 1 1 7.904694 1.487941
2 3.3839515 1 0 3.461776 2.832059
3 1.7250989 2 0 3.049906 3.170014
4 3.0991776 2 1 7.437064 1.098371
5 1.7406104 3 1 5.008703 1.750753
6 0.6986514 3 0 3.418835 1.375744

References

Bugni, F. A., Canay, I. A., and Shaikh, A. M. (2018). Inference Under Covariate-Adaptive Randomization. Journal of the American Statistical Association, 113(524), 1784–1796, doi:10.1080/01621459.2017.1375934.

Bugni, F., Canay, I., Shaikh, A., and Tabord-Meehan, M. (2024+). Inference for Cluster Randomized Experiments with Non-ignorable Cluster Sizes. Forthcoming in the Journal of Political Economy: Microeconomics, doi:10.48550/arXiv.2204.08356.

Jiang, L., Linton, O. B., Tang, H., and Zhang, Y. (2023+). Improving Estimation Efficiency via Regression-Adjustment in Covariate-Adaptive Randomizations with Imperfect Compliance. Forthcoming in Review of Economics and Statistics, doi:10.48550/arXiv.2204.08356.

Bai, Y., Jiang, L., Romano, J. P., Shaikh, A. M., and Zhang, Y. (2024). Covariate adjustment in experiments with matched pairs. Journal of Econometrics, 241(1), doi:10.1016/j.jeconom.2024.105740.

Bai, Y. (2022). Optimality of Matched-Pair Designs in Randomized Controlled Trials. American Economic Review, 112(12), doi:10.1257/aer.20201856.

Bai, Y., Romano, J. P., and Shaikh, A. M. (2022). Inference in Experiments With Matched Pairs. Journal of the American Statistical Association, 117(540), doi:10.1080/01621459.2021.1883437.

Liu, J. (2024). Inference for Two-stage Experiments under Covariate-Adaptive Randomization. doi:10.48550/arXiv.2301.09016.

Cytrynbaum, M. (2024). Covariate Adjustment in Stratified Experiments. Quantitative Economics, 15(4), 971–998, doi:10.3982/QE2475