
pst-asr
Tex macros for typesetting

autosegmental representations

[+cons]

Coronal

Place

[+cons]

Coronal

Place

[+cons]

Coronal

Place
Soft Palate

[+nas]

[−ant] [αant] [−ant]

[−dist] [βdist] [+dist]

User’s Guide
John Frampton

j.frampton@neu.edu

17 September 2006
Version 1.1

Contents

1 Introduction to pst-asr 1
1.1 The components of a software package 2

2 The grid . 3
2.1 Horizontal dimensions 3
2.2 Vertical dimensions 3
2.3 Incremental modification 4

3 The hbox that representations are built in 5
4 Putting elements on tiers and associating elements 7
5 The parser . 8

5.1 Special parser tokens: {, |, <, ’, and control sequences . 9
6 Syllables . 11

6.1 Example . 12
7 Inserting timing slots and phonemes and associating them . . . 14

7.1 Example . 15
8 Marking disassociation 17

8.1 Example (Sanskrit coronal assimilation) 18
8.2 Example (Wikchammi vowel harmony) 20

9 Reusing the syllable tier 22
9.1 The macro \LevelsIncrement 22

10 Representations with no timing tier 25
10.1 Example . 25

11 The morpheme structure of words 27
11.1 Branch styles . 30
11.2 Technical specification of the action of \binup 31

12 Morpheme tiers . 32
13 Miscellaneous examples 34

13.1 Unusual timing slot symbol 34
13.2 Syllable constituent structure 35
13.3 Derivation of foot structure 36

A Parser extensions . 37
A.1 Displaced macro evaluation in parsing 37
A.2 Parsing timing tier delimiters 38
A.3 Modifying the parser 39

B Utility macros . 41
B.1 Manipulating dimensions 41
B.2 Interpolating a node between two points 41

C Installation and working environment 42
Index . 44

1. Introduction to pst-asr

Typesetting autosegmental representations poses difficult problems. While no
single representation poses an insurmountable problem, it is difficult to typeset
autosegmental representations with sufficient ease to make them a regular part
of the discussion. Halle and Idsardi (1995) is notable for its extensive use of
autosegmental representations, but although their paper is full of multi-tiered
representations, the relation between tiers in their stress analysis is particularly
simple. Goldsmith’s book Autosegmental and Metrical Phonology (1990) is
particularly notable, with many complex autosegmental representations. Consider
the following derivation of syllable structure, adapted from Goldsmith’s discussion
(p. 119) of Yokuts syllabification. V represents an epenthetic vowel.

(1)

l

×
o

×
g

×
w

×
h

×
i

×
n

× →
σ

l

×
o

×
g

×
w

×
h

×
i

×
n

×

→
σ

l

×
o

×
g

×
σ

w

×
V

×
h

×
i

×
n

× →
σ

l

×
o

×
g

×
σ

w

×
V

×
σ

h

×
i

×
n

×

Without software which is specialized to construct autosegmental displays, creating
(1) requires sufficient work that a linguist has to think twice about using a display
like this in a handout or or even a paper.

pst-asr makes it fairly easy. The code is:

\bigskip

\noindent (1)\quad

\asr logwhin\endasr

\quad \to\quad

\asr \3logwhin\endasr

\bigskip \hfill

\quad \to\quad

\asr \3log\2wVhin\endasr

\quad \to\quad

\asr \3log\2wV\3hin\endasr

\kern1em

\bigskip

If you decide to install pst-asr, there are instructions in Appendix C. It is
heavily dependent on the PSTricks package and the XKeyVal packages, which will
also have to be installed. This section will outline what is involved conceptually in
this software package. The remaining sections detail the workings of the various
macros which make it up.

2

1.1. The components of a software package

What is required to allow code like (2a) to generate the display (2b)?

(2) a. \asr \4ki:p\endasr b.

σ

k

×
i

× ×
p

×

Grid. A grid of some sort is necessary in order to provide a framework in which to
place characters and establish reference points for drawing association lines.

(3) σ

k

×
i

× ×
p

×

Parser. A parser is needed in order to read the sequence \4ki:p from left to
right, breaking it down into its component parts and translating them into the
corresponding pieces of the display.

(4) \4 →
σ

k →
k

×

i: →
i

× ×

p →
p

×

Extendability and Adjustability. The mechanism must be extendable, so that new
tiers in addition to the phoneme, timing slot, and syllable tiers can be defined and
means provided for placing elements on tiers and associating elements on different
tiers. All of the many dimensions and choices that need to be made to specify a
tiered structure must be easily adjustable and defaults provided so that a reasonable
“first draft” is produced with minimal settings.

3

2. The grid

2.1. Horizontal dimensions

Parameters: xgap, unitxgap
Dimension register: \ASRxgap

The horizontal grid is set by the parameter xgap. \psset{xgap=dimension} sets
a dimension register \ASRxgap. The dimension can be specified without explicit
dimension units, in which case it is understood as being specified in psxunits (i.e.
a multiple of \psxunit). If the boolean parameter unitxgap is set to true, then
\psset{xgap=dimension} has the secondary effect \psset{xunit=dimension}.
This makes it easy to specify horizontal positions, because all the pst-asr macros
understand numerical x-dimensions (i.e. ones without explicit dimensions) as
being measured in psxunits. The default setting is unitxgap=true.

2.2. Vertical dimensions

Macro: \newtier
Parameters: tsB, tsht, tsdp, ts, phB, phht, phdp, ph, syB, syht, sydp, sy.
Macros which evaluate to a dimension: \ASRtsB, \ASRtst, \ASRtsb, \ASRphB,
\ASRpht, \ASRphb, \ASRsyB, \ASRsyt, \ASRsyb.

Executing \newtier{name} establishes four parameters: nameB, nameht,
namedp, and name. Setting the parameters nameB, nameht, and namedp (assigning
them dimensions) establishes 3 y-levels and 2 y-differences, all recorded in control
sequences, as shown below.

\ASRnamet

\ASRnameB

\ASRnameb

\ASR@namedp

\ASR@nameht

Tiers named ts (timing tier), sy (syllable tier), and ph (phoneme tier) are defined in
pst-asr. Users can define whatever other tiers they need. \newtier accepts a list
of names as well as a single name.

The parameter name does not have an independent role, but gives a convenient
way to set the other parameters. The sy-tier will be used for illustrative purposes.
The parameters are syB, syt, syb, and sy. The most common way to set the
sy-levels is by executing

\psset{sy=baseline specification height/depth specification}

There are several options available for setting the baseline level.

(5) baseline specification →

y-level
(tier name) y-offset
∗

4

The baseline level can be specified directly, or as an offset to an already established
tier baseline, or left unchanged (the * option). So, for example,

\psset{sy=(ts) 1 3ex 1.5ex}

will set the sy-baseline to be 1 psyunit above the ts-baseline. All dimensions can
either be purely numerical, in which case they will be interpreted as being given in
psyunits, or with explicit Tex dimensions (pt, ex, em, . . .).

The options for setting the tier height and depth are:

(6) height/depth specification →

height depth
height/depth
(stuff) extra height extra depth
(stuff) extra height/depth
(stuff)

If two dimensions are given, they are taken to be the height and depth of the tier.
If a single dimension is given, it is taken to be both the height and depth of the
tier. If there is a (stuff) term, the stuff is put in an hbox and the height and depth
of the hbox, augmented by the given extra height and extra depth, are taken to
be the height and depth of the tier. Two characters usually suffice for “stuff”; the
tallest and deepest characters that appear on the tier. If no extra height or depth is
specified, the current value of the parameter extragap is used to augment both the
height and depth of the hbox to determine the height and depth of the tier. The core
tiers are established in pst-asr by:

\newtier{ts,ph,sy}

\newpsstyle{medsyls}{unitxgap=true,xgap=2.5ex,

extragap=.5ex,ts=0 (\times),ph=-3.5ex (pf),

sy=3.5ex (σ)}

\psset{style=medsyls}

Here and throughout this User’s Guide, full width boxed code is a quotation from
pst-asr.

2.3. Incremental modification

Small adjustments (in the sy-tier levels, for example) are often best handled by
the parameters syB, syht, and sydp. These parameters (not the parameter sy)
accept incremental modification, signalled by the prefix ! on the value. So,
for example, \psset{syB=!2pt} will raise the sy-baseline by 2pt. \ASRsyB,
\ASRsyt, and \ASRsyb are all modified accordingly. The parameter xgap also
accepts incremental modification.

5

3. The hbox that representations are built in

Macros: \dbox, \enddbox, \dput

\dbox initiates the construction of an hbox. It also initializes some dimension
registers which are used to keep track of the bounding box of material typeset
inside the box by the \dput macro. \enddbox closes up the box and uses those
dimension to set the size of the resulting box so that it bounds the material inside
the box which was typeset by \dput. The macro \dput is just like the PSTricks
macro \rput, but adds the updating of the dimension registers which are used to
set the size of the dbox.

For example, (7b) produces (7a).

(7) a. × × × ×
k i p

σ

b. \dbox
\dput[B](0,\ASRtsB){\times}

\dput[B](1,\ASRtsB){\times}

\dput[B](2,\ASRtsB){\times}

\dput[B](3,\ASRtsB){\times}

\dput[B](0,\ASRphB){k}

\psline(0,\ASRpht)(0,\ASRtsb)

\dput[B](1.5,\ASRphB){i}

\psline(1.5,\ASRpht)(1,\ASRtsb)

\psline(1.5,\ASRpht)(2,\ASRtsb)

\dput[B](3,\ASRphB){p}

\psline(3,\ASRpht)(3,\ASRtsb)

\dput[B](1.5,\ASRsyB){σ}

\psline(0,\ASRtst)(1.5,\ASRsyb)

\psline(1,\ASRtst)(1.5,\ASRsyb)

\psline(2,\ASRtst)(1.5,\ASRsyb)

\psline(3,\ASRtst)(1.5,\ASRsyb)

\enddbox

There are 16 lines of code inside \dbox. . . \enddbox, one for each of the 4 timing
slots, 3 phonemes, 1 syllable symbol, and 8 association lines. Be patient, we will
soon see that (7a) can be produced much more simply. But we need to take one
step at a time in order to understand how pst-asr operates.

6

An magnified version of (7a) is given below, with the grid explicit, which can
be compared with the code. Each piece of the display corresponds to a line of code
in (7b).

(8) σ

k

×
i

× ×
p

×
phb

phB

pht

tsb
tsB

tst

syb
syB

syt

0 1 2 3

xgap

7

4. Putting elements on tiers and associating elements

\tierput, \assoc, \tiershortcuts

The two general structure building macros are \tierput and \assoc.

\tierput[x-offset](x, tier){stuff }

If x′ = x + x-offset, this is equivalent to \dput[B](x′,\ASR tierB}){stuff } with
respect to what is displayed. Additionally, both x′ and the tier name are saved (in
the macros \ASR@lasttierx and \ASR@lasttier). If there is no offset argument,
the offset defaults to 0.

\assoc(xA, tierA)(xB, tierB)

Suppose that tierA has levels y B
A, y top

A , and ybot
A ; and that tierB has levels y B

B ,
y top

B , and ybot
B . If y B

A > y B
B , then an association line is drawn from (xA, ybot

A) to
(xB, y

top
B), otherwise, an association line is drawn from (xB, ybot

B) to (xA, y
top
A).

If only a single point follows \assoc, the second point is assumed to be
(\ASR@lasttierx,\ASR@lasttier).

pst-asr contains

\def\tiershortcuts{\let\@=\tierput \let\-=\assoc}

Now, the code (7b) above can be simplified:

(9) \dbox
\tiershortcuts

\@(0,ts){\times}

\@(1,ts){\times}

\@(2,ts){\times}

\@(3,ts){\times}

\@(0,ph){k}\-(0,ts)

\@(1.5,ph){i}\-(1,ts)\-(2,ts)

\@(3,ph){p}\-(3,ts)

\@(1.5,sy){σ}\-(0,ts)\-(1,ts)\-(2,ts)\-(3,ts)

\enddbox

This is an improvement, but to gain more significant simplification a parser is
needed.

8

5. The parser

Macros: \asr, \endasr
Parameters: tssym, asrB, everyph, everyasr
Dimension register: \xpos

The code (10a) produces the display (10b), given the default parameter settings.

(10) a. \asr kat\endasr

b.

k

×
a

×
t

×

\asr starts a dbox, initializes the dimension register \xpos to 0 pt, and initiates
parsing. \xpos keeps track of the horizontal progress of structure building, which
proceeds from left to right as characters are read from left to right, until \endasr
terminates the process, closing the dbox. After each character is read (unless it is
followed by :), a timing slot, phoneme, and association are drawn, and a dimension
\xpos is stepped by \ASRxgap. If : follows the character, a geminate is typeset
and \xpos is stepped by twice \ASRxgap.

(11) a. \asr ka:t\endasr

b.

k

×
a

× ×
t

×

The symbol that is used for timing slots is determined by the parameter tssym,
with the setting tssym=\times the default. So, for example:

(12) a. \asr[tssym=\bullet] ka:t\endasr

b.

k

•
a

• •
t

•

Phonemes are typeset by putting them in an hbox and placing the hbox
appropriately. Inside each of these phoneme boxes, the macro \ASR@everyph is
evaluated as the first order of business. Its body is set by the parameter everyph.
So:

(13) a. \asr[tssym=\bullet,everyph=\it] ka:t\endasr

b.

k

•
a

• •
t

•

everyph is mainly intended as a way to allow the user to automatically switch to
IPA fonts when typesetting phonemes.

The default is to put the baseline of the hbox that \asr. . . \endasr builds at
the y = 0 level. This can be changed using the asrB parameter. The default is to put

9

the baseline of the timing tier at the y = 0 level. Compare the following, assuming
the default setting of asrB in (14a) and the default timing tier level throughout.

(14) 1. a. \asr ka:t\endasr b.

k

×
a

× ×
t

×

2. a. \asr[asrB=1ex] ka:t\endasr b.

k

×
a

× ×
t

×

3. a. \asr[asrB=\ASRphB] ka:t\endasr b. k

×
a

× ×
t

×

5.1. Special parser tokens: {, |, <, ’, and control sequences

If the parser encounters {, it assumes a group follows and it treats the entire
group as a single phoneme and typesets it accordingly.

(15) 1. \asr {k$\rm ˆh$}a:t\endasr

2.

kh

×
a

× ×
t

×

If the parser encounters |, parsing is temporarily suspended until a second | is
encountered. |. . . | is therefore a region in the code where macros of various kinds
can be executed during the parse of a string of phonemes.

(16) 1. \asr k|\pscircle(\xpos,.55ex){1.5ex}|amba\endasr

2.

k

×
a

×
m

×
b

×
a

×

If the parser encounters a control sequence, it is simply evaluated, not set as a
phoneme, and the parser moves on to the next token in the string.

(17) 1. \def\goop{\pscircle(\xpos,.55ex){1.5ex}}
\asr k\goop amba\endasr

2.

k

×
a

×
m

×
b

×
a

×

10

Control sequences which are intended to expand to phonemes must be enclosed
in braces so that they receive the correct interpretation.

(18) 1. \def\kh{k$\rm ˆh$}%
\asr {\kh}amba\endasr

2.

kh

×
a

×
m

×
b

×
a

×

If the parser encounters the character <, it assumes that the next token is a
control sequence (say \CS). <\CS is read and has the same effect as:

|{\stepxpos{-\ASRxgap}\CS}|

The modification of \xpos is grouped, so it has no effect outside the group.
< is provided so that there is an easy way to evaluate control sequences at the

second timing slot of a geminate. Suppose you want to use \goop from (17) to
typeset:

k

×
u

×
p

×
a

× ×
n

×
u

×

The solution is: \asr kupa:<\goop nu\endasr
If the parser encounters ’, the following token is set as a timing tier delimiter.

The details are explained in Appendix A.
If the parser encounters \endasr, parsing is terminated and the dbox is closed.

11

6. Syllables

Macros: \varsyl, \qsyl, \monosysym, \bisysym, \1, \2, \3, \4, \5, \DefList
PST styles: medsyls, bigsyls
parameter: sysym

The default syllable symbol is set by the parameter sysym. The general syllable
building macro is \varsyl, with syntax:

\varsyl [pars] x-offset {x-offset1, . . . ,x-offsetn}

(19) a. \asr du|\varsyl[linestyle=dashed]{1.5}{0,1,2}|
man\endasr

b.

d

×
u

×
σ

m

×
a

×
n

×

Note that \varsyl is in the nonparsing |. . . | environment. Macros which take
arguments must be outside the parsing environment. Note also that the x-offsets
from the current \xpos are required, not absolute positions. Finally, note that the
parser skips over spaces (i.e. the one at the end of the first line in the code above).

pst-asr includes:

\def\monosysym{$\sigmaˆ{\mu\mu}\mskip-10mu$}

\def\bisysym{$\sigmaˆ{\mu\mu}\mskip-18mu$}

(20) a. \asr |\varsyl[sysym=\monosysym]{.5}{0,1}|du
|\varsyl[sysym=\bisysym]{1}{0,1,2}|man\endasr

b.

σµ

d

×
u

×
σµµ

m

×
a

×
n

×

\qsyl (symbol) n

\qsyl is a streamlined version of \varsyl which does not take parameters and
builds a symmetric syllable over the following n timing slots. The (symbol)
argument is optional. If it is present, the symbol is used as the syllable symbol. If it
is not, the syllable symbol set by the sysym parameter (accessible as \ASR@sysym)
is used.

(21) a. \asr |\qsyl(\monosysym)2|du|\qsyl(\bisysym)3|man\endasr

12

b.

σµ

d

×
u

×
σµµ

m

×
a

×
n

×

(22) a. \asr |\qsyl2|du|\qsyl3|man\endasr

b.

σ

d

×
u

×
σ

m

×
a

×
n

×

pst-asr contains:

\def\1{\qsyl 1}

\def\2{\qsyl 2}

\def\3{\qsyl 3}

\def\4{\qsyl 4}

\def\5{\qsyl 5}

(23) a. \asr \3kat\3man\2du\endasr

b.

σ

k

×
a

×
t

×
σ

m

×
a

×
n

×
σ

d

×
u

×

Macros that do not take arguments can appear in the parsing environment. They
are simply evaluated and the parser proceeds to the next token.

6.1. Example

We have accumulated enough machinary to typeset a moderately complex example.
Suppose you believe (as I do) that syllables have an autosegmental structure, not
a constituent structure. Then you might want to typeset something like (24), with
nuclei on a different tier than syllables.

(24)

σ

k

×
a

×
t

×

σ

m

×
a

×
n

×

σ

d

×
u

×

ν ν ν

One way to typeset (24) is given in (25). The style bigsyls is defined in
pst-asr.

13

\newpsstyle{bigsyls}{extragap=.6ex,unitxgap=true,

xgap=3.5ex,ts=0pt (\times),sy=5.5ex (σ) .7ex,

ph=-4.5ex (pf)}

(25) \newtier{nuc}
\tiershortcuts

\asr[style=bigsyls,nuc=(sy) 1em (ν)]

|\varsyl{.4}{0,1,2}|kat

|\varsyl{.4}{0,1,2}|man

|\varsyl{-.1}{0,1}|du

|\@[.2](1,nuc){ν}\-(1,ts)

\@[.2](4,nuc){ν}\-(4,ts)

\@[.2](7,nuc){ν}\-(7,ts)

\endasr

One weakness in the code in (25) is that the settings which must be adjusted to
get a good looking display (.4, −.1, and .2) are spread out in various places in the
code. This makes adjustment difficult. pst-asr provides \DefList, which gives a
convenient way to concentrate the parameters which might need to be adjusted.

\newtier{nuc}

\DefList{\syloffA{.4},\syloffB{-.1},\nucoff{.2}}

\tiershortcuts

\asr[style=bigsyls,nuc=(sy) 1em (ν)]

|\varsyl{\syloffA}{0,1,2}|kat

|\varsyl{\syloffA}{0,1,2}|man

|\varsyl{\syloffB}{0,1}|du

|\@[\nucoff](1,nuc){ν}\-(1,ts)

\@[\nucoff](4,nuc){ν}\-(4,ts)

\@[\nucoff](7,nuc){ν}\-(7,ts)

\endasr

\DefList distributes \def over the list which follows and ignores following
spaces. Note also that inside \asr. . . \endasr, spaces which follow |, or which
follow tokens or groups which are parsed as phonemes, are ignored.

If you prefer writing \@ and \- to writing \tierput and \assoc, you
might want to execute \tiershorts someplace outside any group so that the
shortcuts are available globally. There is another option. pst-asr provides a
way for it to be automatically enforced inside \asr. . . \endasr, but not outside.
When \asr is executed, immediately after construction of the dbox is begun,
the macro \ASR@everyasr is evaluated. The body of that macro (which does
not take arguments) is set by means of the parameter everyasr. So if you say
\psset{everyasr=\tiershortcuts}, then the shortcuts will be in effect inside
\asr. . . \endasr, but not outside it.

14

7. Inserting timing slots and phonemes and associating them

Macros: \varph, \bare, \X, \asrsetkeys

Suppose you would like to typeset:

(26)

k

×
a

×

t

× ×

b

×

Three macros which are provided in pst-asr are relevent.

\bare symbol

The symbol is typeset on the timing tier at the current position, then the current
position is advanced to the position of the next timing slot.

\X

Defined to be \bare{\ASR@tssym}.

\varph phoneme x-offset

The phoneme is typeset on the phoneme tier at the specified offset from the current
position and the current position is advance to the position of the next timing slot.

Then, (27a) produces (27b).

(27) a. \asr[style=bigsyls]
|\X\varph{a}{1}\X\varph{}{-1}\X

\endasr

b. ×
a

× × × ×

The full code for (26) is:

\asr[style=bigsyls]

|\qsyl(k)1 \X \varph{a}1 \qsyl(t)1 \X \varph{}{-1}

\qsyl(b)1 \X

\endasr

15

7.1. Example

The display (28) is from Kenstowicz (1995:). A surprising amount of it can be
done using the standard parsing and syllable building facilities of pst-asr.

(28)
[
+cons
−sonor

]

Coronal

Oral

Glottal

Phar

[
+cons
−sonor

]

Glottal

Phar

Coronal

Oral

[−cons
+sonor

]

Dorsal

Oral

[
+cons
+sonor

]

SP

Phar

Labial

Oral Oral

[
+cons
−sonor

]

Glottal

Phar

[−voiced] [−voiced]
[+nasal]

[+low]
[−back]

In order to fit on the page, 10 pt type is used. Since all dimension are given in
ex and em units, the effect is almost the same as if magnification (less than 1) is
applied.

We first need a macro to construct the feature matrices.

\def\\#1#2{$\left[\matrix

{\rm #1cons\hfill\cr \rm#2sonor\cr}\right]$}

If you are going to use this macro outside this particular display, a more informative
name should be given to it.

Most of the diagram above can be constructed using the three preassigned tiers.

[
+cons
−sonor

]

Coronal

Oral

Glottal

Phar

[
+cons
−sonor

]

Glottal

Phar

Coronal

Oral

[−cons
+sonor

]

Dorsal

Oral

[
+cons
+sonor

]

SP

Phar

Labial

Oral Oral

[
+cons
−sonor

]

Glottal

Phar

is produced by

\asr[unit=2em,xgap=4.2em,sy=1.5 (\\++),

ts=0 (G),ph=-1.2 (C),tssym=Oral,sysym=\\+-]

\2{Coronal}|\varph[tssym=Phar]{Glottal}{0}|

\2|\varph[tssym=Phar]{Glottal}0|{Coronal}

|\qsyl(\\-+)1|{Dorsal}

|\qsyl(\\++)2\varph[tssym=Phar]{SP}{0}|{Labial}

:<\2|\varph[tssym=Phar]{Glottal}{0}|

\endasr

If you want to understand how the parser operates, it is worth studying this
example and making sure you understand why it produces the display that it does.

16

The full code for (28) is given below. Defining \PharGlot and \PharSP is not
necessary, but does make the code more readable. \asrsetkeys is a more efficient
alternative to \psset if all the keys which must be set are asr-keys. \psset must
search the entire family of keys associated with PSTricks, while \asrsetkeys
searchs for keys only in the asr subgroup of that family.

\psset{tssym=Oral,sysym=\\+-,unit=2em,xgap=4.2 em,

sy=1.5 (\\++),ts=0 (O),ph=-1.2 (C),asrB=\ASRsyB}

\newtier{voice,nasal,low,back}

\asrsetkeys{voice=(ph) -1.4 ([),nasal=(ph) -1 ([),

low=(ph) -2 ([),back=(ph) -2.3 ([)}

\DefList{\lowoff{-.5},\backoff{.4}}

\def\PharGlot{\varph[tssym=Phar]{Glottal}0}%

\def\PharSP{\varph[tssym=Phar]{SP}0}%

\asr

\2{Coronal}\PharGlot

\2\PharGlot{Coronal}

|\qsyl(\\-+)1|{Dorsal}

|\qsyl(\\++)2|\PharSP{Labial}

:<\2\PharGlot

|\@(1.5,voice){\feat{-voiced}}

\-(1,ph)\-(2,ph)

\@(8,voice){\feat{-voiced}}

\-(8,ph)

\@(5,nasal){\feat{+nasal}}

\-(5,ph)

\@[\lowoff](4,low){\feat{+low}}

\-(4,ph)

\@[\backoff](4,back){\feat{-back}}

\-(4,ph)

\endasr

17

8. Marking disassociation

Macros: \xedparlines, \xedcirc, \feat
Parameters: xed, xedtype, xedratio, xedht, xedsep, xedlinewidth

Representations like the one on the right side of the display below are
well known. They are used to portray the delinking of a tone and its subsequent
relinking to a different tone bearing element. pst-asr provides the means to typeset
them relatively easily.

h

×
u

× +
a

×
r

×
i

×

L H L

→
h

×
w

×
a

×
r

×
i

×

L H L

The code for the representation on the right is:

\asr[xgap=2em,syB=2.5em] hwari|

\@(1,sy){L}

\-[xed=true,xedratio=.4](1,ts)\-[style=dotted](2,ts)

\@(2,sy){H}

\-(2,sy)(2,ts)

\@(4,sy){L}

\-(4,ts)

\endasr

A later section will explain how to easily typeset the timing tier junction “+” which
appears on the timing tier above.

If the boolean parameter xed is set to true, \assoc places an xed-mark on
the association line it draws. Its position along the line is determined by the
setting of the parameter xedratio. xedratio=1 places the mark at end of the
association line corresponding to the first of the two points, or at the position of
the last \tierput if \assoc has only one argument. xedratio=0 places it at
the other end of the association line. The type of xed-mark that is drawn depends
on the setting of the parameter xedtype, which is set to the macro which draws
the xed-mark. pst-asr provides two xed-marks, \xedparlines, which is used
above, is the default. The parameters xedsep, xedlinewidth, and xedht are
used to modify the characteristics of \xedparlines, in easily predicatable ways.
\xedcirc is also available, which is used to indicate crossed association lines.
\xedcirc cannot be modified by parameter setting as written, but users can easily
modify the definition if they want to. pst-asr contains:

\def\xedcirc{%

\pscircle[linestyle=solid,linewidth=.5pt](0,0){.7ex}}

The default parameter settings which are relevant to xed-marks, as set by
pst-asr, are:

18

xedsep=2.2pt,xedht=8pt,xedratio=.5,xedlinewidth=1pt,

xedtype=\xedparlines,xed=false

The xed-mechanism is clever enough to rotate an \xedparlines mark so that
it is perpindicular to the association line it marks.

× × × × ×

L

is produced by:

\asr[xgap=2em,syB=2.5em]

\X\X\X\X\X

\@(1,sy){L}

\-[xed=true](0,ts)

\-[xed=true](4,ts)

\endasr

8.1. Example (Sanskrit coronal assimilation)

Halle (1995) gives the following diagram to illustrate why intervening coronal
consonants block coronal assimilation in Sanskrit.

[+cons]

Coronal

Place

[+cons]

Coronal

Place

[+cons]

Coronal

Place
Soft Palate

[+nas]

[−ant] [αant] [−ant]

[−dist] [βdist] [+dist]

We begin the contruction with the display below, commandeering the ts, ph,
and sy-tiers for a different use.

19

[+cons]

Coronal

Place

[+cons]

Coronal

Place

[+cons]

Coronal

Place

is produced by:

\asr[xgap=1.5in,yunit=3em,ts=0 (Pg),sy=1 ([),

ph=-1 (Cg),tssym=Place,sysym=\feat{+cons},

everyph=Coronal]

\1{}\1{}\1{}

\endasr

The macro \feat (which is included in pst-asr), defined by

\def\feat#1{$\rm [#1]$}

is useful here and generally.
This skeleton must be fleshed out by defining new tiers and building the rest of

the structure. The full code is:

\newtier{softpal,ant,dist,nasal}

\newpsstyle{crossing}{xed=true,xedtype=\xedcirc,

style=dotted}

\tiershortcuts

\DefList{\softpalA{2.5},\antoffset{-.22},

\distoffset{.36}}

\asr[xgap=1.5in,yunit=3em,ts=0 (Pg),sy=1 ([),

ph=-1 (Cg),softpal=.3 (Sg),

nasal=-.4 ([),ant=-2 ([),dist=-3 ([),

tssym=Place,sysym=\feat{+cons},

everyph=Coronal]

\1{}\1{}\1{}|

\@(\softpalA,softpal){Soft Palate}

\-(2,sy)

\@(\softpalA,nasal){\feat{+nas}}

\-(\softpalA,softpal)

\@(\antoffset,ant){\feat{-ant}}

\-(0,ph)

\-[style=crossing](2,ph)

\@[1](\antoffset,ant){\feat{\alpha ant}}

\-(1,ph)

\@[2](\antoffset,ant){\feat{-ant}}

\-(2,ph)

20

\@(\distoffset,dist){\feat{-dist}}

\-(0,ph)

\-[style=crossing](2,ph)

\@[1](\distoffset,dist){\feat{\beta dist}}

\-(1,ph)

\@[2](\distoffset,dist){\feat{+dist}}

\-(2,ph)

\endasr

Note that the depth of the softpal, ts, and ph tiers is increased slightly by including
a character with a descender in the height/depth setting of softpal, ts, and ph.
To my eye, this looks better. Unless you want the four tiers and the definitions to
be global, the whole construction should be grouped.

8.2. Example (Wikchammi vowel harmony)

This is from Halle (1995:32).

[−cons]

Place Place

[−cons]

Place

[+cons]

Dorsal Dorsal

[−high]

[+back] [+back]

[−low] [+low]

Labial Labial

[+round] [−round]

The code is:

\def\feat#1{$\rm [#1]$}%

\newtier{dorsal,high,back,low,labial,round}

\psset{xgap=1.5in,yunit=3em,ts=0 (Pg),sy=1 ((),

dorsal=-1 (Dg),high=-2 ([),back=-2.6 ([),

low=-3.2 ([),labial=-4 (Lg),round=-5 ([),

sysym=\feat{-cons},tssym=Place}

\DefList{\dorsalA{.4},\dorsalB{1.6},\highoffset{-.2},%

\backoffsetA{.1},\backoffsetB{-.2},\lowoffsetA{.5},%

\lowoffsetB{.3},\labialA{-.2},\labialB{2.2}}

21

\asr \1\X\X\1\X

|\@(1,sy){\feat{+cons}}

\-(1,ts)

\@(\dorsalA,dorsal){Dorsal}\-(0,ts)

\@(\dorsalB,dorsal){Dorsal}\-(2,ts)

\@[\highoffset](\dorsalA,high){\feat{-high}}

\-(\dorsalA,dorsal)

\-(\dorsalB,dorsal)

\@[\backoffsetA](\dorsalA,back){\feat{+back}}

\-(\dorsalA,dorsal)

\-[style=dotted](\dorsalB,dorsal)

\@[\backoffsetB](\dorsalB,back){\feat{+back}}

\-[xed=true](\dorsalB,dorsal)

\@[\lowoffsetA](\dorsalA,low){\feat{-low}}

\-(\dorsalA,dorsal)

\-[style=dotted](\dorsalB,dorsal)

\@[\lowoffsetB](\dorsalB,low){\feat{+low}}

\-[xed=true](\dorsalB,dorsal)

\@(\labialA,labial){Labial}

\-(0,ts)

\@(\labialB,labial){Labial}

\-(2,ts)

\@(\labialA,round){\feat{+round}}

\-(\labialA,labial)

\-[style=dotted](\labialB,labial)

\@(\labialB,round){\feat{-round}}

\-[xed=true](\labialB,labial)

\endasr

22

9. Reusing the syllable tier

Macros: \LevelsIncrement, \setxpos, \stepxpos

Instead of defining a new tier above the syllable tier, it is sometimes easiest to
first put in the syllables, then raise the syllable tier and reuse it for the needed extra
tier. The advantage is that the syllable building macros \varsyl and \qsyl can be
used for elements on the extra tier. The disadvantage is that you have to remember
that “sy” means something different after the syllabel level is raised.

Consider again the display considered earlier:

σ

k

×
a

×
t

×

σ

m

×
a

×
n

×

σ

d

×
u

×

ν ν ν

An alternative to the code given earlier is:

\DefList{\syloffA{.4},\syloffB{-.1},\nucoff{.2}}

\asr[style=bigsyls]

|\varsyl{\syloffA}{0,1,2}|kat

|\varsyl{\syloffA}{0,1,2}|man

|\varsyl{\syloffB}{0,1}|du

|\psset{syB=!2.5ex,sysym=ν}

\setxpos1

\varsyl{\nucoff}{0}

\stepxpos3

\varsyl{\nucoff}{0}

\stepxpos3

\varsyl{\nucoff}{0}

\endasr

The macros \setxpos and \stepxpos are defined in pst-asr.tex and operate as
expected. Their arguments are not space delimited, so they are limited to one
token unless enclosed in braces. The argument can be numeric or a Tex dimension.
Following spaces are ignored.

9.1. The macro \LevelsIncrement

It is sometimes useful to shift tier levels so that the new ts-level is at the height
of the old sy level, and the new sy level is in the same relationship with the new
ts level that the old sy level was in with the old ts level. \LevelsIncrement
(included in pst-asr.tex accomplishes this. The following example is from Halle
and Idsardi (1995:409).

23

C

×
(∗

V

× .

C

×
∗

V

× .

C

×
∗

V

× .

C

×
(∗

V

×
X

× .

C

×
∗

V

× .

C

×
∗

V

× .

C

×
(∗

V

×
X

× .

C

×
∗

V

× .

C

×
∗

V

× .

C

×
∗

V

× .

C

×
∗

V

×

∗(∗ ∗
∗

One way to get this is:

\def\({\tierput[-.7](\xpos,sy){(}}%

\def\.{{\stepxpos{-.5}\tierput(\xpos,ts){\bf .}}%

\asr[ts=0 (x),sy=1.5 ($*$),ph=-1.6 (C),

xgap=1.2em,syB=3.2ex,sysym=$*$]

C\(\1V\.C\1V\.C\1V\.C\(\1VX\.C\1V\.C\1V\.

C\(\1VX\.C\1V\.C\1V\.C\1V\.C\1V

|\LevelsIncrement

\setxpos1

\1\(

\stepxpos6

\1

\stepxpos7

\1

\LevelsIncrement

\setxpos1

\1

\endasr

Unless you want the definitions of \(and \. to be global, grouping should be
used to confine their scope. The same comment applies in general to preliminary
definitions to \asr. . . \endasr.

24

The next example reproduces a diagram in Blevins (1995:210), intended to
illustrate the so-called “universal prosodic hierarchy.” It shows how to label tiers in
addition to illustrating the use of \IncrementLevels.

σ

×
σ

× ×
σ

× ×
σ

×
σ

× ×
σ

×
σ

×
σ

× × syllable terminal

syllable

Ft Ft Ft Ft foot

Wd Wd Prosodic word

PhP Phonological phrase

\asr[unit=3.6ex,yunit=1.3,ts=0 (\times),

sy=1 (σ),xgap=1]

\1\X\2\X\X\2\X\X\1\X\2\X\X\1\X\1\X\2\X\X

|\dput[Bl](12.5,\ASRtsB){syllable terminal}

\dput[Bl](12.5,\ASRsyB){syllable}

\LevelsIncrement

\asrsetkeys{sysym=Ft,sy=* (F)}

\setxpos0

\varsyl{.75}{0,1.5}

\varsyl{4.25}{3.5,5}

\varsyl{7.25}{6.5,8}

\varsyl{9.75}{9,10.5}

\dput[Bl](12.5,\ASRsyB){foot}

\LevelsIncrement

\asrsetkeys{sysym=Wd,tsht=!.3ex}

\varsyl{2.5}{.75,4.25}

\varsyl{8.5}{7.25,9.75}

\dput[Bl](12,\ASRsyB){Prosodic word}

\LevelsIncrement

\asrsetkeys{sysym=PhP}

\varsyl{5.5}{2.5,8.5}

\dput[Bl](12,\ASRsyB){Phonological phrase}

\endasr

25

10. Representations with no timing tier

Parameter: reptype

Although the absence of a timing tier can be misleading, abbreviated represen-
tations like (29a) are sometimes desired for one reason or another, usually to save
space. The parser calls on the internal macros \ASR@putobj and \ASR@putgemobj
to typeset what it reads as phonemes and geminate phonemes. Changing the mean-
ing of these control sequences will change the action of the parser. In particular,
it can change what the parser does when it encounters a phoneme, producing
(29a) or (29b) depending on the meanings that are given. The parameter reptype
(representation type) is used to effect such changes. Three representation types are
defined: normal, nots (no timing slots), and DM (Distributed Morphology). The
latter representation style is considered in the next section.

(29) a. \asr[reptype=nots] \3kat\3man\3du:\endasr
σ

k a t

σ

m a n

σ

d u u

b. \asr[reptype=normal] \3kat\3man\3du:\endasr
σ

k

×
a

×
t

×
σ

m

×
a

×
n

×
σ

d

×
u

× ×

pst-asr.tex contains \psset{reptype=normal}, so explicitly setting reptype to
normal is not necessary unless a different representation type is currently in effect.

A moderately skilled Tex programmer could easily add new representation
types to fit special needs. Executing \psset{reptype=xxx} has the effect of
executing the macro \ASRreptype@xxx. Defining the representation type xxx
therefore consists of defining the macro \ASRreptype@xxx. The user can see how
pst-asr.tex accomplishes this by searching on \ASR@reptype and seeing what is
involved.

10.1. Example

Displays like the one below are used to illustrate the preservation of tones when
their supporting vowel is eliminated.

26

c

H

e d

L

e +

H

a r

L

i h

L

u +

H

a r

L

i underlying

c

H

e d +

H

a r

L

i

L

h w +

H

a r

L

i

L

syncope/glide formation

c

H

e d +

H

a r

L

i

L

h w +

H

a r

L

i

L

reassociation

The code is:

\vtop{%

\newpsstyle{tonedot}{linestyle=dotted,dotsep=1.2pt,

linewidth=1pt}

\def\H{\varsyl[sysym=H]0{0}}%

\psset{reptype=nots,xgap=1em,sysym=L,syB=2.2em}

\halign{#\hfil&& \hskip3em #\hfil\cr

%

\asr c\H ed\1e{$+$}\H ar\1i\endasr&

\asr h\1u{$+$}\H ar\1i\endasr&

underlying\cr

%

\noalign{\bigskip}

\asr c\H ed{$+$}\H ar\1i

|\tierput(2.5,sy){L}\endasr&

\asr hw{$+$}\H ar\1i

|\tierput(1,sy){L}\endasr&

syncope/glide formation\cr

%

\noalign{\bigskip}

\asr c\H ed{$+$}\H ar\1i

|\tierput(2.5,sy){L}

\assoc[style=tonedot](4,ts)\endasr&

\asr hw{$+$}\H ar\1i

|\tierput(1,sy){L}

\assoc[style=tonedot](3,ts)\endasr&

reassociation\cr

}}

27

11. The morpheme structure of words

Macros: \merge, \newbranchstyle
Parameters: lbstyle, rbstyle, realstyle, mslope, mlevelsep
Parameter value: reptype=DM

Work in morphophonology, particularly work which adopts the viewpoint
of Distributed Morphology, often needs representations like those in (30), which
reproduces an example in a handout by Asaf Bachrach and Michael Wagner
(“Syntactically Driven Cyclicity vs. Output-Output Correspondence”). Although
these representations are not autosegmental representations, they share many of the
same typesetting problems and pst-asr has been extended to provide the means to
typeset them efficiently.

(30) a. Derivational suffix b. /iñ/-Adjunction c. /ziñ/-Adjunction

Stem

amig

Suffix

on

n #

o

Suffix

n

#

Stem

amig

n1 Dim

iñ

n2 #

o

n1 n2

n1

#

Stem

amig

n #1

o

Dim

ziñ

n #2

o

n

#1

n

#2

#1

pst-asr provides macros which facilitate constructing representations of this
sort, as well as the related representations (31).

(31) a. Derivational suffix b. /iñ/-Adjunction c. /ziñ/-Adjunction

AMIG

amig

MOD

on

n #

o

AMIG

amig

n Dim

iñ

n #

o

AMIG

amig

n #

o

Dim

ziñ

n #

o

The dashed lines are supposed to represent a word internal adjunct relation which
Bachrach and Wagner propose. The solid lines indicate the location of the heads in
binary merged structures.

Two types of asr-representations have been discussed to this point, one with
timing slots and one with no timing slots, chosen by setting the parameter reptype
equal to normal (the default) or to nots. Changing the representation type changes
the action of the parser when it encounters what it reads as phonemes or geminates.
We now introduce a third representation type, chosen by setting the parameter

28

reptype equal to DM, which also changes the action of the parser. We begin by
showing how to construct (30b). The starting point is:

(32) a. \asr[reptype=DM,xgap=1.2ex,realstyle=normal]
{Stem,amig}{n}{Dim,i\˜n}{n}{\#,o}

\endasr

b. Stem

amig

n Dim

iñ

n #

o

With the reptype=DM setting, the parser reads a sequence of items of the form:

{syntactic terminal,realization}

The syntactic terminals are placed on the ts-tier, a distance xgap apart. Realizations
(which are optional) are placed on the ph-tier directly below the corresponding
syntactic terminal. Spacing beteen the items on the ts- and ph-tiers and connecting
association lines is as it is when reptype=normal.

The parser also names and records the position of reference points for use in
building the higher syntactic structure. The points are named A1, A2, . . . (assigned
in order). They are at a distance tsht above the baseline of the ts-tier, directly over
the center of the corresonding label. Recall that tsht is the height of the ts-tier, set
by directly by the parameter tsht or indirectly by the parameter ts. For (32a), five
points are named, as shown below.

(33) Stem

amig

n1 Dim

iñ

n2 #

o

A1 A2 A3 A4 A5

The syntactic structure is built by applications of the macro \merge, which
has the syntax below, with the [directive] and {stuff } terms optional. nameA and
nameB are names which have already been assigned to points. nameC is the name
which will be assigned to the connection point of the new structure which is built.

\merge{nameA,nameB,nameC}[directive]{stuff }

Because of optionality and control by a directive, specifying the results of executing
\merge is somewhat complicated, with several different cases to consider. It will
be less intimidating to first give some examples of its use, and then to detail the
technical specification of \merge.

The code

\asr[reptype=DM,xgap=1.5ex,

ph=-2.3em (ky),ts=0 (ky),mlevelsep=.8em]

{Stem,amig}{n$_1$}{Dim,i\˜n}{n$_2$}{\#,o}|

\merge{A1,A2,B1}{n$_1$}

\merge{A3,A4,B2}{n$_2$}

29

\merge{B1,B2,C1}{n$_1$}

\merge{C1,A5,D1}[C]{\#}

\endasr

produces

Stem

amig

n1 Dim

iñ

n2 #

o

n1 n2

n1

#

Each application of \merge above draws 2 branches to an apex, typesets a
label above the apex, and names a point above the label for use in later structure
building. The vertical position of the apex is determined by the requirement that
the branch with the smaller height have height mlevelsep (set by the parameter
mlevelsep). The default is to position the apex so that the slope of one branch is
the negative of the slope of the other branch. The final application of \merge above
departs from the default by specifying the directive C (center), which horizontally
centers the apex between the two points of origin. The directive M (mirror) is also
allowed, but it it simply gives the default. Aside from C and M, the directive can
be in a number. In that case, the horizontal coordinate of the apex is interpolated
between the horizontal coordinates of the two points of origin (as specified later).
The directives C and .5 produce the same result. If the two points of origin are at
the same vertical level, the directives C, M, and .5 all produce the same result.

The behavior of \merge is significantly different if no {stuff } term is present.
The code

\asr[reptype=DM,xgap=1.5ex,

ph=-2.3em (ky),ts=0 (ky),mslope=1,yunit=.8]

{\sc AMIG,amig}{n}{ \# ,o}{Dim,zi\˜n}{n}{ \#,o}|

\merge{A1,A2,B1}

\merge{B1,A3,C1}

\merge{A4,A5,B2}

\merge{B2,A6,C2}

\merge{C1,C2,D1}[.6]

\endasr

produces

30

AMIG

amig

n #

o

Dim

ziñ

n #

o

Instead of moving up a fixed distance at each application of \merge, lines are
drawn with a specified slope (or its negative). The default slope is mslope (set by
the parameter mslope), but the slope can be specified by a numerical directive,
as in the last application of \merge in the code above. The slope is measured in
vertical psyunits divided by horizontal psxunits, not physical units, so the overall
height of the display can be varied by setting yunit, without resetting mslope,
which is set to 1 in pst-asr-morph.tex. There is usually no reason to depart from the
default setting of mslope.

11.1. Branch styles

Branch styles determine the ps-style that is used in drawing the various as-
sociation lines in reptype=DM constructions. Three parameters are relevant.
realstyle, lbstyle, and rbstyle. The parser uses the setting of realstyle
to determine the style to use in drawing the vertical association lines between
syntactic terminals and their realizations (which are directly below the terminals).
\merge{nameA,nameB,nameC} . . . uses the setting of lbstyle (left branch
style) to draw the branch starting at the point named nameA and the setting of
rbstyle to draw the branch starting at the point named nameB.

pst-asr contains:

%% the settings below can be changed, overwritten, or

%% expanded to suit the user

\newbranchstyle{normal}{linewidth=.15ex,linestyle=solid}

\newbranchstyle{spell}{linewidth=.15ex,linestyle=solid,

arrowsize=.6ex 1.3,arrows=->}

\newbranchstyle{head}{linewidth=.3ex,linestyle=solid}

\newbranchstyle{adjunct}{linewidth=..15ex,yunit=.8ex,

linestyle=dashed,xgap=1.2ex}

\asrsetkeys{lbstyle=normal,rbstyle=normal,realstyle=spell}

31

If these setting are in force,

AMIG

amig

n #

o

Dim

ziñ

n #

o

is produced by the code:

\asr[reptype=DM,xgap=1.5ex,rbstyle=head,

ph=-2.3em (ky),ts=0 (ky),yunit=.8]

{\sc AMIG,amig}{n}{ \# ,o}{Dim,zi\˜n}{n}{ \#,o}|

\merge{A1,A2,B1}

\merge{B1,A3,C1}

\merge{A4,A5,B2}

\merge{B2,A6,C2}

\merge[lbstyle=head,rbstyle=adjunct]{C1,C2,D1}[.6]

\endasr

11.2. Technical specification of the action of \binup

We now reconsider:

\merge{nameA,nameB,nameC}[directive]{stuff }

Suppose that nameA is assigned to the point (a1, a2) and nameB is assigned to the
point (b1, b2). \merge first determines a point (c1, c2) and draws lines from (a1, a2)
and (b1, b2) to (c1, c2). If the stuff term {stuff } is missing entirely, or is simply
{}, nameC is assigned to the point (c1, c2); otherwise \hbox{stuff} is typeset with
the center of its baseline a distance tsdp directly above (c1, c2) and the point which
is at a distance tsdp + tsht directly above (c1, c2) is assigned the name nameC.
Recall that tsht and tsdp are the height and depth of the ts-tier, set directly by the
parameters tsht and tsdp or indirectly by the parameter ts. The complexity is
in the specification of the point (c1, c2). The settings of the parameter mlabelsep,
which is a dimension, and the parameter mslope, which is numeric, are used. We
consider 3 cases.

1. \merge{nameA,nameB,nameC}[M]{stuff }

c2 = Max(a2, b2) +mlabelsep.
c1 is calculated so that the slope of the line joining (a1, a2) and (c1, c2) is the
negative of the slope of the line joining (b1, b2) and (c1, c2).
If there is no directive, M (mirror) is assumed.

2. \merge{nameA,nameB,nameC}[α]{stuff }

c2 = Max(a2, b2) +mlabelsep.

32

c1 = (1 − α)a1 + αb1.
If the directive is C (center), α = .5 is assumed. Nonumeric directives other than M
and C produce an error if there is a {stuff } term.

3. \merge{nameA,nameB,nameC}[α] (with no following {)

One line is drawn through (a1, a2) with slope α and another is drawn through
(b1, b2) with slope −α. (c1, c2) is the intersection.
If there is no directive, α = mslope is assumed. All nonnumeric directives produce
an error if there is no {stuff } term.

12. Morpheme tiers

Halle & Vergnaud (1987:79) use the display below to illustrate McCarthy’s idea
of planar segregation of consonants and vowels in the Semitic languages (see, for
example, McCarthy, 1986, “OCP Effects: Gemination and Antigemination”).

× × × × ×
a

k t b

If the center line of the timing tier is at y = 0 and coordinates are transformed
according to (x, y) → (x + .5y, y), the display transforms as shown in (34). Since
y < 0, points will be moved to the left, a distance proportional to their y-coordinates.

(34) × × × × ×
a

−→ × × × × ×
a

The crucial macro in carring this out is:

\skewx(x-coord , y-coord) macro name

It defines a macro with the given name which evaluates to the new x-coordinate of
the given point. \skewline and \skewput use \skewx in the expected way.

\def\skewx(#1,#2)#3{%

\pssetxlength\dimpuba{#1}%

\pssetylength\dimpubb{#2}%

\advance\dimpuba by \slantratio\dimpubb

\edef#3{\the\dimpuba}%

}

33

\def\skewline#1(#2,#3)#4(#5,#6){%

\skewx(#2,#3)\tempa

\skewx(#5,#6)\tempb

\psline#1(\tempa,#3)(\tempb,#6)%

}

\def\skewdput#1(#2,#3){%

\skewx(#2,#3)\tempa

\dput#1(\tempa,#3)%

}

An important fine point in (33) is the whitespace around the timing slots. The
usual timing slot is put in a ps-framebox, with a solid (white) fill. The timing slots
are then typeset after the dashed line is drawn.

\def\ts{\psframebox*[framesep=0pt]{\times}}

We can now give the full code. Note on line 4 that the height of the ph-tier is
made quite small and that the baseline of the display is made to correspond to the
syllable level. On line 6, the full frame of the vertical page is drawn before the
timing slots are overwritten. On line 12, the starting position of the skew line is
fudged slightly (from 1 to 1.15) for better appearance. Lines 18 and 19 are used to
size the bounding box.

1 \newpsstyle{pageborder}{linestyle=dashed,linewidth=.3pt,

2 dash=2pt 1.8pt}

3 \psset{unit=4ex,xgap=1,ts=-.5ex (\times),

4 ph=-1.3 (e) .5pt,sy=1.5 (s),tssym=\ts,asrB=1.5}

5 \DefList{\vpagetop{2.5},\hpagebot{-1.7},\slantratio{.9}}

6 \asr |\psframe[style=pageborder](-1,0)(5,\vpagetop)|

7 \X\X\X\X\X

8 |\skewx(-1,\hpagebot)\tempa

9 \skewx(5,\hpagebot)\tempb

10 \psline[style=pageborder]

11 (-1,0)(\tempa,\hpagebot)(\tempb,\hpagebot)(5,0)

12 \skewline(1.15,\ASRtsb)(2,\ASRpht)

13 \skewline(3,\ASRtsb)(2,\ASRpht)

14 \skewdput[B](2,\ASRphB){\bf a}

15 \@(0,sy){\bf k}\-(0,ts)

16 \@(2,sy){\bf t}\-(2,ts)

17 \@(4,sy){\bf b}\-(4,ts)

18 \skewdput(-1,\hpagebot){}

19 \dput(0,\vpagetop){}

20 \endasr

34

13. Miscellaneous examples

13.1. Unusual timing slot symbol

• • •
+upper −upper +upper

−hi

•

+hi

•

−hi

•H L H

\DefList{\hioff{.4},\upoff{-.2}}%

\def\\#1{$\scriptstyle\rm #1$}%

\asr[unit=2em,xgap=5em,ts=0 (\bullet) 1ex 0,

tssym=\bullet,phB=-1,syB=\ASRtst]

\X\X\X

|\@[\upoff](0,ph){\\{+upper}}

\-(0,ts)

\-[style=dotted](1,ts)

\@[\upoff](1,ph)

{\\{-upper}}

\-[xed=true,xedratio=.55](1,ts)

\@[\upoff](2,ph){\\{+upper}}

\-(2,ts)

\asrsetkeys{phB=!-1}

\setxpos0

\varph{\\{-hi}}{\hioff}

\varph{\\{+hi}}{\hioff}

\varph{\\{-hi}}{\hioff}

\@(0,sy){H}

\@(1,sy){L}

\@(2,sy){H}

\endasr

35

13.2. Syllable constituent structure

From Blevins (1995), in The Handbook of Phonological Theory.

σ

d

×
r

×
i

× ×
m

×
N

R

{nuclear,rhyme}

\psset{xgap=2em,yunit=1.8em,

phB=-1,syB=3.5,nuclear=1 (N),rhyme=2.2 (R)}

\DefList{\sypos{2.2},\rhymepos{3.1}}

\hfil\asr |\varsyl{\sypos}{0,1}|

dri:m

|\@(2.5,nuclear){N}

\-(2,ts)

\-(3,ts)

\@(\rhymepos,rhyme){R}

\-(\sypos,sy)

\-(2.5,nuclear)

\-(4,ts)

\endasr

d

×
r

×
i

× ×
m

×
nuclear

coda
onset

rhyme

σ

{nuclear,rhyme,coda,onset}

\psset{xgap=2.5em,yunit=2em,

phB=-1,nuclear=.9 (lg),coda=1.2 (dg),rhyme=2.3 (hy),

onset=1.8 (tg),syB=3.5}

36

\DefList{\onsetpos{.5},\nuclearpos{2.5},\rhymepos{3.25}}

\asr dri:m

|\@(\nuclearpos,nuclear){nuclear}

\-(2,ts)

\-(3,ts)

\@(4,coda){coda}

\-(4,ts)

\@(\onsetpos,onset){onset}

\-(0,ts)

\-(1,ts)

\@(\rhymepos,rhyme){rhyme}

\-(4,coda)

\-(\nuclearpos,nuclear)

\@(2,sy){σ}

\-(\onsetpos,onset)

\-(\rhymepos,rhyme)

\endasr

13.3. Derivation of foot structure

a. ω ω ω ω

(ώ ω ω ω

(ώ ω)ω ω

(ώ ω) ώ)ω

b. ω ω ω -ω

(ώ ω ω -ω

(ώ ω)ω -ω

c. ω ω ω ω -ω

(ώ ω ω ω -ω

(ώ ω)ω ω -ω

(ώ ω) ώ)ω -ω

\def\XS{\bare{$\acute\omega$}}%

\def\JunctureChoose#1{\ifx#1-\hbox{-}\else #1\fi}%

\psset{tssym=ω,xgap=1.3em,phantomjunctures=true}

a.\quad

\vtop{\openup1ex

\halign{#\hfil\cr

\asr \X\X\X\X\endasr \cr

\asr ’(\XS\X\X\X\endasr \cr

\asr ’(\XS\X’)\X\X\endasr \cr

\asr ’(\XS\X’)\XS’)\X\endasr \cr

}}

\qquad

b.\quad

\vtop{\openup1ex

\halign{#\hfil\cr

\asr \X\X\X’-\X\endasr \cr

\asr ’(\XS\X\X’-\X\endasr \cr

37

\asr ’(\XS\X’)\X’-\X\endasr \cr

}}

\qquad

c.\quad

\vtop{\openup1ex

\halign{#\hfil\cr

\asr \X\X\X\X’-\X\endasr \cr

\asr ’(\XS\X\X\X’-\X\endasr \cr

\asr ’(\XS\X’)\X\X’-\X\endasr \cr

\asr ’(\XS\X’)\XS’)\X’-\X\endasr \cr

}}

Appendix A. Parser extensions

Macro: \JunctureChoose
Parameters: juncsep, phantomjunctures
Special parser token: ’, <

The use of < described below to displace the position at which a macro is
evaluated to the position of the previous timing slot is of general interest. The other
extensions are probably of much less interest to most users. They are included
because they were developed to meet special needs I have had from time to time.
There is a special mechanism for handling timing tier delimiters, in particular,
which has hypertrophied. Since it does not consume very many lines of code in
pst-asr.tex, I have left it in the public version of pst-asr in the hopes that it might be
useful to someone else.

A.1. Displaced macro evaluation in parsing

The special parser token < is somewhat more flexible than indicated in Section 5. If
[x] follows <, then the following control sequence or active character is evaluated
with \xpos incremented by x. So (35a) and (35b) both produce (35c).

(35) a. \asr \2ka\2pa:<\1\2du\endasr

b. \asr \2ka\2<[2]\1pa:\2du\endasr

c.

σ

k

×
a

×
σ

p

×
a

× ×
σ σ

d

×
u

×

One caution is in order. Displaced evaluation using < does not contribute to
determining the bounding box of \asr. . . \endasr since the evaluation takes place
inside a group. Compare the following:

(36) a. \psframebox[framesep=0]
{\asr ka:|\stepxpos{-1}\1\stepxpos{1}|t\endasr}

38

k

×
a

× ×
σ

t

×

b. \psframebox[framesep=0]
{\asr ka:<\1t\endasr}

k

×
a

× ×
σ

t

×

A.2. Parsing timing tier delimiters

Suppose you want to typeset:

(37)

t

×
a

× #

o

×
g

×
u

×

One way is:

(38) \asr[xgap=1.6em] taogu
|\tierput(1.5,ts){\#}

\endasr

The parser provides a more convenient way to insert timing tier junctures.
If the parser encounters ’, it assumes that a juncture follows, which it typesets
midway between the current position and the position of the previous timing slot.
So (37) is produced by:

(39) \asr[xgap=1.6em] ta’\#ogu\endasr

Actually, before the juncture is typeset, the parser checks to see if a second
instance of ’ follows. If it does, the second juncture is read and the two junctures
typeset as a pair. So:

(40) a.

t

×
a

× ##

o

×
g

×
u

×

b. \asr[xgap=2em] ta’\#’\#ogu\endasr

Extra space will be put in between the junctures if the parameter juncsep is
set to a positive dimension. The default is 0 pt. So:

(41) a.

t

×
a

×##

o

×
g

×
u

×

b. \asr[xgap=2em,juncsep=.2ex] ta’\#’\#ogu\endasr

39

Setting juncsep to a negative dimension is sometimes useful with certain
combinations of junctures for making a more compact display.

Before typesetting the juncture, a substitution table is consulted (encoded in
the macro \JunctureChoose). pst-asr contains:

\def\JunctureChoose#1{%

\ifx#1<\langle\else\ifx#1>\rangle\else#1\fi\fi}

This particular substitution table has no particular significance, but it is given
to serve as a model for users with special needs to use in defining their own
substitution tables. With it:

(42) a. \asr[xgap=2em] ’<ta’>ogu\endasr

b. 〈
t

×
a

× 〉
o

×
g

×
u

×

Junctures are always set in math mode.
Finally, the parameter phantomjunctures determines whether the junctures

enter into the determination of the bounding box of the display. The default is
phantomjunctures=false. Setting this parameter to true is sometimes helpful if
there are multiple displays that need to be left aligned.

A.3. Modifying the parser

A moderately skilled Tex programmer can modify the parser so that it takes special
action if certain tokens are encountered. Below is a fragment of the code the parser
uses, which gives an idea of how the parser operates.

\def\ASR@d{\futurelet\temp\ASR@dd}

\def\ASR@dd{%

\ifx\temp|\let\next=\ASR@pushasr\else

\ifx\temp’\let\next=\ASR@juncture\else

\ifx\temp<\let\next=\ASR@displace\else

\ifx\temp\bgroup\let\next=\ASR@char \else

\ifx\temp\endasr\let\next=\ASR@finish \else

\ifcat\noexpand\temp\noexpand\ASR\let\next=\ASR@cs

\else \let\next=\ASR@char

\fi\fi\fi\fi\fi\fi\next

}

\def\ASR@char#1{%

\def\ASR@hold{#1}%

\@ifnextchar:\ASR@gem\ASR@charA

}

\def\ASR@charA{\ASR@putobj{\ASR@hold}\ASR@d}

\def\ASR@gem#1{\ASR@putgemobj{\ASR@hold}\ASR@d}

Suppose, for example, that you have frequent need to typeset things like the
display below, with “.” marking syllable boundaries:

40

k

×
a

×
t

× .

m

×
a

×
n

× .

d

×
u

×

A simple modification of \ASR@dd will allow you to say simply:

\asr kat.man.du\endasr

41

First, modify \ASR@dd as shown below, with the modifications boxed.

\def\ASR@dd{%

\ifx\temp|\let\next=\ASR@pushasr\else

\ifx\temp’\let\next=\ASR@juncture\else

\ifx\temp<\let\next=\ASR@displace\else

\ifx\temp.\let\next=\ASR@period\else

\ifx\temp\bgroup\let\next=\ASR@char \else

\ifx\temp\endasr\let\next=\ASR@finish \else

\ifcat\noexpand\temp\noexpand\ASR\let\next=\ASR@cs

\else \let\next=\ASR@char

\fi\fi\fi\fi\fi\fi\fi\next

}

Then add:

\def\ASR@period#1{%

\tierput[-.5\ASRxgap](\xpos,ts){\bf .}\ASR@d

}

Appendix B. Utility macros

B.1. Manipulating dimensions

\xaddto dimension register dimension

\xsettosum dimension register dimension1 dimension2

\ysettodiff dimension register dimension1 dimension2

The dimensions can be: 1) dimension registers; 2) dimensions in Tex units
or macros that expand to dimensions in Tex units; or numbers or macros that
expand to numbers. Numeric dimensions are considered to be measured in
psxunits (\xaddto and \xsettosum) or psyunits (\ysettodiff). The dimension
register is set as the name of the macro indicates (dimension1 − dimension2 for
\ysettodiff).

B.2. Interpolating a node between two points

The following macro will interpolate a node between two given points.

\interpolate(point1)(point2){ratio}{node name}

The points can be in any description recognized by pst-node as a \SpecialCoor
description. node name names a point on the line which goes through point1 and
point2. If the rectangular coordinates of this point are (x3, y3), the rectangular
coordinates of point1 are (x1, y1), and the rectangular coordinates of point2 are
(x2, y2), then x3 = x1 + ratio (x2 − x1) and y3 = y1 + ratio (y2 − y1). If ratio = .5,
for example, the named point is the midpoint of the line segment joining point1 and
point2.

42

Appendix C. Installation and working environment

Assuming that you have already installed the PSTricks and XKeyVal packages, you
have to put the file pst-asr.tex in a place where it can be found. The directory that
contains pstricks.tex is a natural place, but if you know how, it is probably better
to make your own parallel Tex local subtree so that updating your Tex files with a
new Tex distribution does not wipe out pst-asr.tex. If you work in LaTex, you need
to do the same with pst-asr.sty. Finally, if Tex file retrieval is done by an indexing
method (as it almost certainly is), you have to run the indexing program so that the
locations of the newly installed files are properly indexed. The pst=asr dirstribution
consists of only three files: pst-asr.tex, pst-asr.sty, and pst-asr-doc.pdf (which you
are now reading).

Before you proceed, you should make sure that you can run and view a simple
example. If you are a LaTex user, process (43a) and if a Tex user, process (43b).

(43) a. \documentclass{article}
\usepackage{pstricks}

\usepackage{pst-xkey}

\usepackage{pst-asr}

\begin{document}

\asr ki:p\endasr

\end{document}

b. \input pstricks
\input pst-xkey

\input pst-asr

\asr ki:p\endasr

\bye

Your dvi viewer may understand enough Postscript code to properly display
the dvi file that is produced. You should see the represention below, left aligned:

k

×
i

× ×
p

×

PSTricks does its tricks by using Tex \special commands to embed Postscript
code in the dvi file that Tex produces. Some dvi viewers will simply ignore
embedded Postscript code and you will have to use a dvi to ps translator (the
program dvips, for example) to create a .ps file which can be viewed with a
Postscript viewer like Ghostscript. Even if your dvi viewer can handle the dvi
output from (43), which has very simple postscript inclusions, the full range of
PSTricks tricks will require dvi to ps conversion for proper display, so it is a
capability that you will soon have to acquire. If you cannot successfully convert a
dvi file to a ps file and view it, get help with PSTricks and/or dvi to ps conversion
before you proceed.

Working environment: It is important to create a good working Tex/LaTex
environment that lets you see the effect of modifications quickly and with no fuss.
A good interactive Tex environment minimizes the time between making a change
in the editor and seeing the results on the screen. Your editor, dvi viewer, and
postscript viewer should all remain active and you should be able to easily bring
one or the other into the foreground. Your viewers should be configured so that
they keep their place in the file they are viewing. If a new dvi or ps file is created,
for example, your viewer should automatically load it and be positioned at the

43

same place (page and xy-position) as it was in the old file. You want to reduce the
cycle time between editing and viewing the result to a few seconds (on a fast PC).

44

Index of control sequences, parameters, and special characters

! (parameter prefix), 4
: (parser control character), 8
{ (parser control character), 9
| (parser control character), 9
’ (parser control character), 9
< (parser control character), 9
\1, 11
\2, 11
\3, 11
\4, 11
\5, 11
\asr, 8
asrB (parameter), 8
\ASRphB, 3
\ASRphb, 3
\ASRpht, 3
\asrsetkeys, 16
\ASRsyB, 3
\ASRsyb, 3
\ASRsyt, 3
\ASRtsB, 3
\ASRtsb, 3
\ASRtst, 3
\ASRxgap (dimension register), 3
\assoc, 7
\bare, 14
bigsyls (style), 11
\bisysym, 11
\dbox, 5
\DefList, 13
DM (reptype setting), 25
\dput, 5
\endasr, 8
\enddbox, 5
everyasr (parameter), 8
everyph (parameter), 8
\feat, 17
\interpolate, 41
juncsep (parameter), 37
\JunctureChoose, 37
lbstyle (parameter), 27
\LevelsIncrement, 22

medsyls (style), 11
\merge, 27
mlevelsep (parameter), 27
\monosysym, 11
mslope (parameter), 27
\newbranchstyle, 27
\newtier, 3
normal (reptype setting), 25
nots (reptype setting), 25
ph (parameter), 3
phantomjunctures

(boolean parameter), 37
phB (parameter), 3
phdp (parameter), 3
phht (parameter), 3
\qsyl, 11
rbstyle (parameter), 27
realstyle (parameter), 27
reptype (parameter), 25
\setxpos, 22
\stepxpos, 22
sy (parameter), 3
syB (parameter), 3
sydp (parameter), 3
syht (parameter), 3
sysym (parameter), 11
\tierput, 7
\tiershortcuts, 7
ts (parameter), 3
tsB (parameter), 3
tsdp (parameter), 3
tsht (parameter), 3
tssym (parameter), 8
unitxgap (boolean parameter), 3
\varph, 14
\varsyl, 11
\X, 14
\xaddto, 41
xed (parameter), 17
\xedcirc, 17
xedht (parameter), 17
xedlinewidth (parameter), 17

45

\xedparline, 17
xedratio (parameter), 17
xedsep (parameter), 17
xedtype (parameter), 17

xgap (parameter), 3
\xpos (dimension register), 8

User defined parameters and macros

As described on page 3, executing \newtier defines a tier, i.e. establishes a
number of parameters and macros (which expand to dimensions). For example, if
\newtier{yK} is executed, a tier named yK is created. Parameters yK, yKB, yKht,
and yKdp are created; and macros \ASRyKB, \ASRyKt, and \ASRyKb are defined.
pst-asr pre-defines the tiers ts, ph, and sy.

