
Eclipse and the
Parallel Tools Platform

Greg Watson, IBM
g.watson@computer.org

Beth Tibbitts, NCSA
beth@tibweb.com

Steven R. Brandt, LSU
sbrandt@cct.lsu.edu

Jay Alameda, NCSA
jalameda@ncsa.illinois.edu

Jeff Overbey, Auburn U.
jeffreyoverbey@acm.org

July 14, 2014

Wyatt Spear, U. Oregon
wspear@cs.uoregon.edu

Galen Arnold, NCSA
arnoldg@ncsa.uiuc.edu

Chris Navarro, NCSA
cmnavarr@illinois.edu

Portions of this material are supported by or based upon work supported by
•  The Defense Advanced Research Projects Agency (DARPA) under its Agreement No.

HR0011-07-9-0002
•  The Blue Waters sustained-petascale computing project, which is supported by the National

Science Foundation (award number OCI 07-25070)
•  The United States Department of Energy under Contract No. DE-FG02-06ER25752
•  The SI2-SSI Productive and Accessible Development Workbench for HPC Applications, which

is supported by the National Science Foundation under award number OCI 1047956

Tutorial Outline
Time (Tentative!) Module Topics Presenter

8:00-9:00 Eclipse Installation
Intro/Overview

!  Installation of Eclipse and PTP
!  Eclipse architecture & organization overview

Beth
Greg

 9:00-9:30 Eclipse basics (1:45) !  Eclipse basics; synchronized projects; Git support
!  Editor features; MPI Features

Beth

9:30-10:00 BREAK Atrium Foyer

10:00-11:15 (continue Basics)

11:15-12:00 Build/run (1:00) !  Building w/Makefile
!  Target configurations and launching a parallel app
!  Modules (Build Environment Mgmt)

Steve

12:00 – 1:00 Lunch Atrium Ballroom B & C

1:00-1:15 (continue Build/Run)

1:15-2:15 Debugging (1:00) !  Debugging an MPI program Greg

2:15-3:30 Fortran
Advanced Features

!  Fortran
!  Search & refactoring
!  GUI terminal
!  XSEDE feature

Jeff

Steve
Chris

3:30-4:00 BREAK Atrium Foyer

4:00-4:50 Performance Tuning &
 Analysis Tools (:50)

!  TAU, External Tools FrameWork (:40)
!  Perfsuite

Wyatt
Chris

4:50-5:00

Wrap-up (:10) !  Online resources; getting involved; feedback Beth

(1:00)

(1:15)

Final Slides, Installation
Instructions

! Please go to http://
wiki.eclipse.org/PTP/tutorials/
XSEDE14 for slides and installation
instructions

Installation

! Objective
! To learn how to install Eclipse and PTP

! Contents
! System Prerequisites
! Eclipse Download and Installation of “Eclipse for

Parallel Application Developers”
! Installation Confirmation
! Updating the PTP within your Eclipse to the latest

release

Installation Install-1

System Prerequisites
! Local system (running Eclipse)

! Linux (just about any version)
! MacOSX (10.5 Leopard or higher)
! Windows (XP on)

! Java: Eclipse requires Sun or IBM Java
! Only need Java runtime environment (JRE)
! Java 1.7 or higher

! Java 1.7 is the same as JRE Version 7
! The GNU Java Compiler (GCJ), which comes standard

on Linux, will not work!
! OpenJDK, distributed with some Linux distributions,

comes closer to working, but should not be used.
! See http://wiki.eclipse.org/PTP/installjava

Install-2 Installation

Eclipse Packages
! The current version of Eclipse (4.4) is also

known as “Luna”
! Eclipse is available in a number of different

packages for different kinds of development
! http://eclipse.org/downloads

! For PTP, we recommend the all-in-one
download:
! Eclipse for Parallel Application Developers

We often call this the “Parallel Package”

Install-3 Installation

New! See
next slide
for update

New! Parallel Package updated
!  The public Parallel Package on eclipse.org/downloads is only

updated three times yearly
!  We are now building updated all-in-one packages with new

releases of PTP already installed.
!  You can use this, or just update the original one

!  See next slides for updating…
To use already-updated package:
!  Go to http://eclipse.org/ptp/downloads.php
!  Under File Downloads:
!  Click on the link, and on the file downloads page, see

Parallel Application Developers Package and download
the appropriate file for your platform
!  Mac OS X
!  Linux X86 and X86_64
!  Windows x86 and x86_64

!  Unzip or untar it

Install-4 Installation

Exercise

1.  Download the “Eclipse for Parallel Application
Developers” package to your laptop
!  Your tutorial instructions will provide the location of

the package
!  Make sure you match the architecture with that of

your laptop
2.  If your machine is Linux or Mac OS X, untar

the file
!  On Mac OS X you can just double-click in the Finder

3.  If your machine is Windows, unzip the file
4.  This creates an eclipse folder containing the

executable as well as other support files and
folders

Install-5 Installation

Starting Eclipse
!  Linux

!  From a terminal window, enter
“<eclipse_installation_path>/eclipse/eclipse &”

!  Mac OS X
!  From finder, open the eclipse folder where you installed
! Double-click on the Eclipse application
! Or from a terminal window

!  Windows

! Open the eclipse folder
! Double-click on the eclipse executable

Install-6 Installation

! Eclipse prompts for a workspace location at
startup time

! The workspace contains all user-defined data
! Projects and resources such as folders and files
! The default workspace location is fine for this tutorial

Specifying A Workspace

The prompt can be
turned off

Install-7 Installation

Eclipse Welcome Page

! Displayed when Eclipse is run for the first time
Select “Workbench”

Install-8
Installation

Checking for PTP Updates

! From time-to-time there may be newer PTP
releases than the Luna release
! Luna and “Parallel package” updates are released only

in September and February

! PTP maintains its own update site with the
most recent release
! Bug fix releases can be more frequent than base

Eclipse (e.g. Luna), and what is within the parallel
package

! You must enable (and install from) the PTP-
specific update site before the updates will be
found

Install-9 Installation

Updating PTP
!  Now select Help>Install New Software…

!  In the Work With: dropdown box, select this update site,
or enter it:
http://download.eclipse.org/tools/ptp/updates/luna

Install-10 Installation

Updating PTP (2)

!  Easiest option is to “Select All” - which updates existing
PTP features and adds a few more

Note: for this tutorial, this installs extra features we’ll
refer to later anyway (TAU, PerfSuite)

!  Select Next to continue updating PTP
!  Select Next to confirm features to install

Install-11 Installation

Updating PTP (3)

!  Accept the License agreement and select Finish

Install-12 Installation

Updating PTP - restart

!  Select Yes when prompted to restart Eclipse

Install-13 Installation

Updating Individual Features

!  It’s also possible (but a bit tedious) to update all the PTP
features without adding any new features
!  Open each feature and check the ones you want to update

!  Icons indicate: Grey plug: already installed

 Double arrow: can be updated
 Color plug: Not installed yet

!  Note: if network is slow, consider unchecking:

Install-14 Installation

Restart after Install

!  If any new top-level features
are installed, they will be
shown on the welcome screen

!  We only updated PTP, so we
land back at C/C++
Perspective

Install-15 Installation

!  Help>About or Eclipse > About Eclipse …
will indicate the release of PTP installed

!  Further Help>Check for Updates will find future updates on
the PTP Update site

Exercise

1.  Launch Eclipse and select the default
workspace

2.  Configure Eclipse to check for PTP updates
3.  Update all PTP features to the latest level
4.  Install the optional features of PTP, including

TAU and PerfSuite
–  Selecting all features accomplishes 3. and 4.

5.  Restart Eclipse once the installation is
completed

Install-16 Installation

Intro-0 Introduction

Introduction

! Objective
! To introduce the Eclipse platform and PTP

! Contents
! New and Improved Features
! What is Eclipse?
! What is PTP?

Intro-1

What is Eclipse?

! A vendor-neutral open-source workbench for
multi-language development

! A extensible platform for tool integration
! Plug-in based framework to create, integrate

and utilize software tools

Introduction

Intro-2

Eclipse Features

! Full development lifecycle support
! Revision control integration (CVS, SVN, Git)
! Project dependency management
! Incremental building
! Content assistance
! Context sensitive help
! Language sensitive searching
! Multi-language support
! Debugging

Introduction

Intro-3

Parallel Tools Platform (PTP)

!  The Parallel Tools Platform aims to provide a highly
integrated environment specifically designed for parallel
application development

!  Features include:
!  An integrated development environment (IDE) that

supports a wide range of parallel architectures and runtime
systems

!  A scalable parallel debugger
!  Parallel programming tools

(MPI, OpenMP, UPC, etc.)
!  Support for the integration

of parallel tools
!  An environment that simplifies the

end-user interaction with parallel systems
!  http://www.eclipse.org/ptp

Introduction

Eclipse PTP Family of Tools
Coding & Analysis

(C, C++, Fortran)

Parallel Debugging

Launching &
Monitoring

Performance Tuning
(TAU, PerfSuite, …) Intro-4 Introduction

How Eclipse is Used

Intro-5

Remote
Source
Code

Introduction

Local
Source
Code

Edit/Build

Launch/Monitor

Debugging

Performance Tuning

Eclipse Basics
! Objective

! Learn about basic Eclipse workbench concepts:
projects,

! Learn about projects: local, synchronized, remote

! Contents
! Workbench components: Perspectives, Views, Editors
! Local, remote, and synchronized projects
! Learn how to create and manage a C project
! Learn about Eclipse editing features

Eclipse Basics Basic-0

Eclipse Basics
!  A workbench contains the menus, toolbars, editors and

views that make up the main Eclipse window

perspective Eclipse Basics

view
view

view

editor

!  The workbench represents
the desktop development
environment
!  Contains a set of tools

for resource mgmt
!  Provides a common way

of navigating through
the resources

!  Multiple workbenches
can be opened at the
same time

!  Only one workbench can
be open on a workspace
at a time

Basic-1

Perspectives

! Perspectives define the layout of views and
editors in the workbench

! They are task oriented, i.e. they contain
specific views for doing certain tasks:
! C/C++ Perspective for manipulating compiled code
! Debug Perspective for debugging applications
! System Monitoring Perspective for monitoring

jobs
!  You can easily switch between perspectives
! If you are on the Welcome screen now, select
�Go to Workbench� now

Eclipse Basics Basic-2

Switching Perspectives

!  Three ways of changing
perspectives

1.  Choose the Window>Open
Perspective menu option
Then choose Other…

2.  Click on the Open Perspective button in the
upper right corner of
screen (hover over it to
see names)

3.  Click on a
perspective
shortcut button

Eclipse Basics Basic-3

Which Perspective?

Eclipse Basics Basic-4

! The current perspective is displayed in the title
bar

Views

! The workbench window is
divided up into Views

! The main purpose of a view is:
! To provide alternative ways of presenting information
! For navigation
! For editing and modifying information

! Views can have their own menus and toolbars
! Items available in menus and toolbars are

available only in that view
! Menu actions only

apply to the view
! Views can be resized

view

view view

Eclipse Basics Basic-5

Stacked Views

! Stacked views appear as tabs
! Selecting a tab brings that view to the

foreground

Eclipse Basics Basic-6

Expand a View

! Double-click on a view/editor�s tab to fill the
workbench with its content;

! Repeat to return to original size

! Window > Reset Perspective
returns everything to original positions

Basic-7 Eclipse Basics

Double
click

Double
click

Help

!  To access help
!  Help>Help Contents
!  Help>Search
!  Help>Dynamic Help

!  Help Contents provides
detailed help on different
Eclipse features in a
browser

!  Search allows you to
search for help locally, or
using Google or the Eclipse
web site

!  Dynamic Help shows help
related to the current
context (perspective, view,
etc.)

Eclipse Basics Basic-8

Eclipse Preferences
!  Eclipse Preferences allow

customization of almost
everything

!  To open use
!  Mac: Eclipse>Preferences…
!  Others:

Window>Preferences…

!  The C/C++ preferences
allow many options to be
altered

!  In this example you can
adjust what happens in
the editor as you type.

Eclipse Basics Basic-9

Preferences Example
More C/C++ preferences:
! In this example the

Code Style preferences
are shown

! These allow code to be
automatically
formatted in different
ways

Eclipse Basics Basic-10

Exercise
1.  Change to a different perspective
2.  Experiment with moving and resizing views

!  Move a view from a stack to beside another view
!  Expand a view to maximize it; return to original size

3.  Save the perspective
4.  Reset the perspective
5.  Open Eclipse preferences
6.  Search for �Launching�
7.  Make sure the �Build (if required) before

launching� setting is disabled

Eclipse Basics Basic-11

Optional Exercise
Best performed after learning about projects, CVS, and editors

1.  Use source code formatting to format a source file, or a region
of a source file
!  Use Source>Format menu

2.  In Eclipse Preferences, change the C/C++ source code style
formatter, e.g.
!  Change the indentation from 4 to 6
!  Make line wrapping not take effect until a line has a

maximum line width of 120, instead of the default 80
!  Save a (new) profile with these settings
!  Format a source file with these settings

3.  Revert the file back to the original – experiment with
!  Replace with HEAD, replace with previous from local history,

or reformat using original style

Eclipse Basics Basic-12

Creating a Synchronized Project
! Objective

! Learn how to create and use synchronized projects
! Learn how to create a sync project

! From a source code repository in Git

! Contents
! Eclipse project types
! Clone a git repository; create a synchronized project

! Using synchronize filters
! Remote Terminal view
! Converting an existing project to synchronized

Synchronized Projects Sync-0

Project Location
! Local

! Source is located on local machine, builds happen locally
! This is the default Eclipse model

! Synchronized
! Source is located on both local and remote machine(s),

then kept in synchronization by Eclipse
! Building and launching happens remotely

(can also happen locally)
! Used mainly for scientific and supercomputing

applications
! There are also remote-only projects, but these

have limitations and are not covered here

Synchronized Projects Sync-1

Sync-2

Synchronized Projects
!  Projects types can be:

-2

File%Service% Index%Service%

Launch%Service%

Build%Service%

Debug%Service%

Local%source%
code%

Source%code%
copy%

Local% Remote%

Run%

Debug
%

Compute%

Edit% Search/Index%
NavigaAon%

Synchronize%

Executable%

Synchronized Projects

StaAc%
Analysis%

Revision Control Systems
(Source Code Repositories)

! Eclipse supports a range of revision control
systems, such as CVS, Git, and Subversion (and
others)

! These are distinct from synchronized projects
! Revision control systems can be used in

conjunction with synchronized projects
! Synchronized projects are typically not used for

revision control

Synchronized Projects Sync-3

Sync-4

Synchronized Project Creation

! Local -> Remote
! Projects start out local then are synchronized to a

remote machine
! Three options

! Created from scratch
! Imported from local filesystem
! Imported from source code repository (Git) <- this tutorial

! Remote -> Local
! Projects start out on remote machine then are

synchronized to the local system
! Two options

! Already on remote system
! Checked out from source code repository

-4 Synchronized Projects

Sync-5

C, C++, and Fortran Projects
Build types

! Makefile-based
! Project contains its own build command – typically a

makefile (or makefiles) for building the application –
but can be any build scripts, etc.

! Managed
! Eclipse manages the build process, no makefile

required by the user

-5 Synchronized Projects

Create Synchronized project on the local machine
at the same time.

Two steps:

Sync-6 Synchronized
Projects

Check out source code
from Git repository

! Clone Git Repo
! Create project files from within the clone

Clone the git repo

Sync-7 Synchronized
Projects

! Open Git perspective
! Window > Open

Perspective > Other
! Select Git

! In the view, select
Clone a Git repository one of two ways

Clone a Git repository and
add the clone to this view

If there are no git repos yet
you will see this:

Specify remote git repo location
! URI: git@github.com:xsede14/ptp-tutorial.git

! If this doesn’t work for you, try:
https://github.com/xsede14/ptp-tutorial.git

! Fill in URI and
other
fields fill
themselves

! Select Next>

Sync-8 Synchronized
Projects

Finish git cloning

Sync-9

! Select Next> to choose the (only) branch
! Then select Finish> to use the default git

destination (Remember this, you’ll need it later)

Synchronized
Projects

Remember:

Import project from cloned repo

!  After repo is cloned, expand ptp-tutorial and Working
Directory

!  We are importing only
one project

!  Select shallow

!  Right mouse,
Import Projects…

Sync-10 Synchronized
Projects

Create new project with wizard

! Select Use the New Project Wizard to be
able to create the project as a Synchronized
C/C++ project at creation

! Select Finish
to finish the git
cloning, and you
will be taken to
Sync project
info next.

Sync-11 Synchronized
Projects

New Project Wizard

Sync-12 Synchronized Projects

We are creating the project
directly as a Synchronized
C/C++ project

! Expand Remote
! Select

Synchronized
C/C++ Project

! Select Next>

Synchronized Projects Sync-13

!  Enter the Project Name
!  E.g. �shallow�

!  Next we will specify the Local
Directory where the local files
are located (cloned from git)
!  Files are synchronized here, and we

will edit them locally

!  …and the Remote Directory
where the remote files are located
!  Our remote target machine,

where we will build, run, & debug

!  Use Modify File Filtering… if required
(see later slide)

New Synchronized Project Wizard

See Next slides…

Local and remote directories
1.  For Local directory,

NOTE: Uncheck Use default
location
and browse to the location you
chose for git repo
- the shallow dir beneath that

2.  To specify the Remote directory,
first Create a connection to the
remote target machine by
selecting New…

Sync-14 Synchronized
Projects

Creating a Connection

! In the New Connection
dialog
! Enter a Connection name

for the remote host
! Enter host name, user name,

and user password or
other credentials

! Select Finish

Sync-15 Synchronized Projects

Specifying the remote directory
!  After the connection has been specified,

back in the New Synchronized Project window..

!  For Remote directory, you can enter
its location. If it does not
exist, it will be created.

!  If the remote dir exists, you can select

it with the Browse… Note that this
is the first time that the Connection
information is utilized.

!  Later slides in this section show
how to fix Connection
if e.g. password or userid are
entered incorrectly

Sync-16 Synchronized
Projects

Sync-17

!  Choose the Project Type
!  This tutorial’s code has its own makefile,

so use
Makefile Project>Empty Project

!  Otherwise, choose the type of project
you want to create

!  Choose toolchain for remote build
!  Use a toolchain that most closely

matches the remote system

!  Choose a toolchain for the local
build (OPTIONAL)
!  This is optional if you don’t plan to build

on the local machine
!  This is used for advanced editing/

searching

!  Click Finish to create the project

Project Type & Toolchain

!  You should now see the �shallow� project in your
workspace

!  Project is synchronized
with remote host

Project successfully created

Sync-18

Expand the
project root
to see the
project’s
contents

Synchronized Projects

Status area in lower right
shows Synchronization
progress:

Synchronized Project

!  Back in the Project
Explorer, decorator on
project icon indicates
synchronized project

!  Double-+ icon

!  C Project w/o Sync

!  Synchronized Project

Sync-19 Synchronized Projects

Synchronize Filters

! If not all files in the remote project should be
synchronized, a filter can be set up
! For example, it may not be desirable to synchronize

binary files, or large data files
! Filters can be created at the same time as the

project is created
! Click on the Modify File Filtering… button in the

New Project wizard
! Filters can be added later

! Right click on the project and select
Synchronize>Filter…

Sync-20 Synchronized Projects

Synchronize Filter Dialog

!  Files can be filtered individually
by selecting/unselecting them in
the File View at the top

!  Include or exclude files based on
paths and expressions

!  Suggestion: add filter for
‘shallow’ so the executable, built
on remote machine, doesn’t get
synced back

Sync-21 Synchronized Projects

Synchronized Project Properties
!  Synchronized configurations

can be managed through the
project properties

!  Open the project properties
by right-clicking on the
project and selecting
Properties
!  Select Synchronize

!  This is the same as using the
Synchronize>Manage…
menu

Sync-22 Synchronized Projects

Forcing a Resync
!  If Auto-sync is set, the project

should automatically resync with
remote system when things
change (e.g. after build)

!  Sometimes you may need to
do it explicitly

!  Right click on project and select
Synchronization>Sync Active
Now
 - or use the toolbar icon

!  Status area in lower right shows
when Synchronization occurs

Sync-23 Synchronized Projects

Remote Terminal
!  There is a remote terminal that can provide a shell from within Eclipse

using the connection you created for your synchronized project
!  Right-Click on your synchronized project and select “Show Terminal”

Or

!  If view is not in your workbench:
! Select Window>Show View>Other…
! Choose Terminal from the Terminal folder

!  In the Terminal view, click on the
Connect button

!  It will use the previously configured connection from the dropdown, or
create a new one …more in Advanced Features section…

Sync-24 Synchronized Projects

!  If you need to change remote connection
information (such as username or
password), open Preferences
!  Win/Linux: Window > Preferences
!  Mac: Eclipse > Preferences

and use Remote Development >
Connections

Changing Remote Connection Information

Sync-25 Synchronized Projects

Sync-26

To Edit a
connection:
!  Close the

remote
connection first

!  Right-click and
select Edit
! Change host,

userid,
password,
etc.

!  Note: Remote Host may be closed/stopped
!  Any remote interaction starts it
! No need to restart it explicitly

Synchronized Projects

Remote Connections

Exercise
1.  Create a synchronized project

!  Your login information and source directory will be
provided by the tutorial instructor

2.  Observe that the project files are copied to your
workspace

3.  Open a file in an editor, add a comment, and
save the file

4.  Observe that the file is synchronized when you
save the file
!  Watch lower-right status area; confirm on host system

Synchronized Projects Sync-27

Optional Exercise
1.  Modify Sync filters to not bring the *.o files and

your executable back from the remote host
!  Rebuild and confirm the files don�t get copied

Synchronized Projects Sync-28

Editor Features
! Objective

! Learn about Eclipse editor features

! Contents
! Saving
! Editor markers
! Setting up include paths
! Code analysis
! Content assistance and templates

Editor Features Editor-0

Editors
!  An editor for a resource (e.g. a file) opens when you

double-click on a resource
!  The type of editor depends on the type of the resource

!  .c files are opened with the
C/C++ editor by default

!  You can use Open With to
use another editor

!  In this case the default
editor is fine (double-click)

!  Some editors do not just edit raw text
!  When an editor opens on a resource, it stays open across

different perspectives
!  An active editor contains menus and toolbars specific to that

editor

 Editor Features Editor-1

Saving File in Editor

! When you change a file in the editor,
an asterisk on the editor�s title bar
indicates unsaved changes

! Save the changes by using
Command/Ctrl-S or File>Save

! Undo last change using Command/Ctrl Z

Editor Features Editor-2

Editor and Outline View
!  Double-click on

source file
!  Editor will open in

main view

!  Outline view is
shown for file in
editor

!  Console shows
results of build,
local runs, etc.

Editor Features Editor-3

Source Code Editors & Markers

!  A source code editor is a
special type of editor for
manipulating source
code

!  Language features are
highlighted

!  Marker bars for showing
!  Breakpoints
!  Errors/warnings
!  Task Tags, Bookmarks

!  Location bar for
navigating to interesting
features in the entire file Icons:

Editor Features Editor-4

Remote Include Paths
! In order for editor and build features to work

properly, Eclipse needs to know where your
include files are located
! The build environment on the remote host knows

your include files etc., and will work fine without
additional information

! But if we tell Eclipse also,
!  Then indexing, search, completion, etc. will know

where things are

! Two methods: (A) manual and (B) discover

 Editor-5 Editor Features

A B

Set Include Paths manually

Editor-6 Editor Features

!  Open Project Properties
!  Expand C/C++ General
!  Select Preprocessor Include

Paths
!  Click GNU C, then CDT User

Setting Entries, then click
Add…

!  In upper right, select
File System Path in pulldown

!  Check Contains System
Headers

!  A UNC-style path specifies
//<connection>/<path>

!  Enter Path
//trestles/opt/openmpi/gnu/ib/
include

!  Select OK

A

Include Paths con’t

! After adding include directory, it should
appear in the list

!  Add second value:

//trestles/usr/include

... the same way

You should have
two entries:

Editor-7 Editor Features

A

Include Paths con’t (3)

! Select OK
! The C/C++ Indexer should run

! Lower right status area indicates it

! If not force it via Project Properties>Index>Rebuild

Editor-8 Editor Features

A

Set Include Paths
automatically

1.  Project Properties > C/C++ General > Preprocessor Include
Paths, Macros etc.

2.  Select the "Providers" tab
3.  Click on the checkbox for "Sync GCC Builtin Compiler Settings”
4.  Open the window wider. You'll see a text box with "Command

to get compiler specs"
!  It will read
!  ${COMMAND} -E -P -v -dD ${INPUTS}
!  Change ${COMMAND} to mpicc, and click OK

5.  Rebuild the index
!  Right click on project, Index > Rebuild

6.  mpi.h and its symbols should now be resolved.

Editor-9 Editor Features

B

Set include paths automatically (con’t)

Editor-10 Editor Features

B

Set include paths automatically (con’t)

Editor-11 Editor Features

B

! You may see in lower right:

! When it’s done, Rebuild Index (Rightmouse on
project)

! The C/C++ Indexer should run
! Lower right status area indicates it

Code Analysis (Codan)
! If you see bug icons in the editor marker bar, they

are likely suggestions from Codan
!  If include files are set correctly, they should not appear.

! Code checkers can flag possible errors, even if
code is technically correct

! To turn them off, use Preferences
Window > Preferences or Mac: Eclipse > Preferences
 C/C++ > Code Analysis
and uncheck
all problems

!  Select OK to
close
Preferences

! If icons don�t disappear:
Right mouse on Project >
Run C/C++ Code Analysis
! You can also enable/disable
this per project in Project
Properties Uncheck all Editor Features Editor-12

Line Numbers

!  Text editors can show line numbers in the
left column

!  To turn on line
numbering:
!  Right-mouse click in

the editor marker bar
(at editor left edge)

!  Click on Show Line
Numbers

Editor Features Editor-13

!  On demand hyperlink
!  In main.c line 135:
!  Hold down Command/Ctrl key

e.g. on call to initialise
!  Click on initialise to navigate

to its definition in the header file
(Exact key combination
depends on your OS)

!  E.g. Command/Ctrl and click on
initialise

!  Open declaration
!  Right-click and select Open

Declaration will also open the
file in which the element is
declared

!  E.g. in main.c line 29 right-click
on decs.h and select Open
Declaration

Navigating to Other Files

Note: may need to left-click
before right-click works Editor Features Editor-14

!  Note: remote includes must be set up
correctly for this to work

!  On demand hyperlink
!  In main.c line 73:
!  Ctrl-click on fprintf
!  stdio.h on remote system opens

!  Open declaration (or F3)
!  In main.c, right-click and select

Open Declaration e.g on <stdio.h>
!  File from remote system is opened.

!  Hover over editor name tab to see remote
location.

Navigating to Remote Files

Editor Features Editor-15

Content Assist & Templates
!  Type an incomplete function name e.g. �get� into the editor,

and hit ctrl-space
!  Select desired completion value with cursor or mouse

Hit ctrl-space again
for code templates !  Code Templates: type

�for� and Ctrl-space

More info on code templates later
Editor Features Editor-16

Hover Help

! Hover the mouse over a program element in
the source file to see additional information

Editor-17 Editor Features

Inactive code

! Inactive code will appear grayed out in the
CDT editor

Editor-18 Editor Features

Exercise
1.  Open an editor by double clicking on a source file in the

Project Explorer
2.  Use the Outline View to navigate to a different line in

the editor
3.  Back in main.c, turn on line numbering
4.  In main.c, ctrl-click on line 99, master_packet, should

navigate to its definition in the file
5.  In worker.c, line 132, hover over variable p to see info

6.  Try the exercises at the end of the “Basics” section, if you

haven’t already, since you now have some project/source
files to play with.

Editor Features Editor-19

Optional Exercise
1.  Type �for�, then activate content assist

!  Select the for loop with temporary variable template, insert it,
then modify the template variable

!  Surround the code you just inserted with �#if 0� and �#endif� and
observe that it is marked as inactive

!  Save the file
2.  What do these keys do in the editor?

!  Ctrl+L; Ctrl+Shift+P (do it near some brackets)
!  Ctrl+Shift+/;
!  Ctrl+Shift+Y and Ctrl+Shift+X (do it on a word or variable name

e.g.)
!  Alt+Down; Alt+Up

3.  To make sure you didn�t do any damage,
!  Select any source files you changed and do rightmouse > replace with ..

!  (if you made project from CVS) ….Latest from HEAD
!  (If you made project from remote files) … Local History ….

!  Observe that your changes are gone.

Editor Features Editor-20

MPI Programming
! Objective

! Learn about MPI features for your source files

! Contents
! Using Editor features for MPI
! MPI Help features
! Finding MPI Artifacts
! MPI New Project Wizards
! MPI Barrier Analysis

MPI Programming MPI-0

MPI-Specific Features

!  PTP�s Parallel Language Development Tools (PLDT) has
several features specifically for developing MPI code
! Show MPI Artifacts
! Code completion / Content Assist
! Context Sensitive Help for MPI
! Hover Help
! MPI Templates in the editor
! MPI Barrier Analysis

! PLDT has similar features for OpenMP, UPC,

OpenSHMEM, OpenACC

MPI-1 MPI Programming

! In Project Explorer, select a project, folder, or a
single source file
!  The analysis will be run on the selected resource(s)

MPI-2

Show MPI Artifacts

-2

!  Run the analysis by
clicking on drop-
down menu next to
the analysis button

!  Select Show MPI
Artifacts

MPI Programming

-3

MPI Artifact View
!  Markers indicate the

location of artifacts in
editor

!  The MPI Artifact View
lists the type and location
of each artifact

!  Navigate to source code
line by double-clicking on
the artifact

!  Run the analysis on
another file (or entire
project!) and its markers
will be added to the view

!  Click on column headings
to sort

!  Remove markers via

MPI-3 MPI Programming

MPI-4

MPI Editor Features
!  Code completion will show all

the possible MPI keyword
completions

!  Enter the start of a keyword
then press <ctrl-space>

-4

!  Hover over MPI API
!  Displays the function

prototype and a
description

MPI Programming

MPI-5

Context Sensitive Help
!  Click mouse, then press help

key when the cursor is within a
function name
!  Windows: F1 key
!  Linux: ctrl-F1 key
!  MacOS X: Help key or

Help!Dynamic Help
!  A help view appears (Related

Topics) which shows
additional information
(You may need to click on MPI
API in editor again, to
populate)

!  Click on the function name to
see more information

!  Move the help view within your
Eclipse workbench, if you like,
by dragging its title tab

-5

Some special
info has been
added for MPI
APIs

MPI Programming

MPI-6

MPI Templates

! Example:
 MPI send-receive

! Enter:
 mpisr <ctrl-space>

! Expands to a send-receive
pattern

! Highlighted variable names
can all be changed at once

! Type mpi <ctrl-space> <ctrl-
space> to see all templates

Add more templates using Eclipse preferences!
C/C++>Editor>Templates
Extend to other common patterns

-6

! Allows quick entry of common patterns in MPI programming

MPI Programming

MPI Barrier Analysis
!  Verify barrier

synchronization in C/MPI
programs

!  For verified programs, lists
barrier statements that
synchronize together
(match)

!  For synchronization errors,
reports counter example
that illustrates and
explains the error

MPI-7

Local files only

MPI Programming

MPI Barrier Analysis (2)

MPI-8

Run the Analysis:
! In the Project

Explorer, select the
project (or directory,
or file) to analyze

! Select the MPI
Barrier Analysis
action in the pull-
down menu

MPI Programming

MPI Barrier Analysis (3)

! No Barrier Errors are found (no pop-up
indicating error)

! Two barriers are found

MPI-9 MPI Programming

MPI Barrier Analysis Views

MPI Barriers view

Simply lists the barriers

Like MPI Artifacts view,
double-click to navigate
to source code line (all
3 views)

Barrier Matches view
Groups barriers that
match together in a
barrier set – all
processes must go
through a barrier in the
set to prevent a
deadlock

Barrier Errors view

If there are errors, a
counter-example
shows paths with
mismatched number
of barriers

MPI-10 MPI Programming

Barrier Errors

! Let�s cause a barrier mismatch error
! Open worker.c in the editor by double-clicking

on it in Project Explorer
! At about line 125,

enter a barrier:
! Type MPI_B
! Hit Ctl-space
! Select MPI_Barrier
! Add communicator

arg MPI_COMM_WORLD and closing semicolon

MPI-11 MPI Programming

Barrier Errors (2)

! Save the file
! Ctl-S (Mac Command-S) or File > Save
! Tab should lose asterisk indicating file saved

! Run barrier analysis on shallow project again
! Select shallow

project in Project
Explorer first

MPI-12 MPI Programming

Barrier Errors (3)

! Barrier Error is found
! Hit OK to dismiss dialog

! Code diverges on line 87

! One path has 2 barriers, other has 1

MPI-13

Double-click
on a row in
Barrier Errors
view to find
the line it
references in
the code

MPI Programming

Fix Barrier Error

! Fix the Barrier Error
before continuing

! Double-click on the
barrier in worker.c
to quickly navigate
to it

! Remove the line and save the file
! Re-run the barrier analysis to check that it has

been fixed

MPI-14 MPI Programming

Remove Barrier Markers

! Run Barrier Analysis again to remove the error
! Remove the Barrier Markers via the �X� in one

of the MPI Barrier views

MPI-15 MPI Programming

MPI New Project Wizards

! Quick way to make a simple MPI project
! File > New > C Project

! �MPI Hello World�

is good for trying out
Eclipse for MPI

MPI-16 MPI Programming

MPI New Project Wizards (2)

! Next> and fill in (optional) Basic Settings

MPI-17

! Next> and fill in MPI Project
 Settings
! Include path set in MPI
Preferences can be added to
project

MPI Programming

MPI New Project Wizards (3)

! Select Finish and �MPI Hello World� project
is created

MPI-18 MPI Programming

MPI Preferences

! Settings for MPI New Project wizards
! MPI Include paths, if set in MPI

Preferences, are added in MPI New
Project Wizard

MPI-19 MPI Programming

Exercise

1.  Find MPI artifacts in �shallow� project
!  Locate all the MPI communication (send/receive)

calls
2.  Use content assist to add an api call

!  E.g., Type MPI_S, hit ctl-space
3.  Use hover help
4.  Use a template to add an MPI code template

!  On a new line, type mpisr and ctl-space…

MPI-20 MPI Programming

Optional Exercise

1.  Insert an MPI_Barrier function call into one of
your source files using content assist
!  E.g. Line 125 of worker.c

2.  Save the file
3.  Run Barrier Analysis on the project
4.  Locate the source of the barrier error and

remove the statement
5.  Re-run barrier analysis to observe that the

problem has been fixed

MPI-21 MPI Programming

Building a Project

! Objective
! Learn how to build an MPI program on a remote

system
! Contents

! How to change build settings
! How to start a build and view build output
! How to clean and rebuild a project
! How to do environment configuration with modules
! How to create build targets

Build-0 Building a Project

Build Configurations
!  A build configuration provides the

necessary information to build the
project

!  The build configuration
information is specified in the
project properties

!  Projects can have multiple build
configurations, each configuration
specifies a different set of options
for a build

!  Open the properties by right-
clicking on the project name in the
Project Explorer view and
selecting Properties (bottom of
the context menu list)

Build-1 Building a Project

Note: Fortran projects are a superset of
C/C++ projects, so they have properties
for both

Build Properties (1)

Build-2 Building a Project

!  C/C++ Build
!  Main properties page
!  Configure the build command
!  Default is �make� but this can be changed to

anything
!  Build Variables

!  Create/manage variables that can be used in other
build configuration pages

!  Environment
!  Modify/add environment variables passed to build

!  Logging
!  Enable/disable build logging

Build Properties (2)

Build-3 Building a Project

!  Settings
!  Binary parser selection (used to display binaries in

Project Explorer)
!  Error parser selection (used to parse the output from

compiler commands)
!  Tool Chain settings (managed projects only)

!  Tool Chain Editor
!  Allows the tools in a particular tool chain to be

modified
!  XL C/C++ Compiler

!  Compiler settings for XL C/C++ compilers (if installed)

!  C/C++ General/Preprocessor Include Paths…
!  Set include paths here

Selecting Build Configuration

!  Multiple build configurations may be available
!  Synchronized projects will usually have a remote and a local build configuration
!  Build configurations for different architectures

!  The active build configuration will be used when the build button
is selected

!  The Build Configurations project context menu can be used to
change the active configuration
!  Right click on project, then select the build configuration from the Build

Configurations > Set Active menu

Build-4 Building a Project

Building Synchronized Projects
!  When the build button is selected, the

“active” build configuration will be built
on the remote system specified by the
“active” synchronize configuration

!  The build and synchronize configurations
are independent
!  It is possible to change which build

configuration is active, but make sure this
makes sense on the remote system specified in
the synchronize configuration

!  Right mouse on Project,
Synchronize > Manage…

!  A build configuration can be associated
with a synchronize configuration, so that
it is automatically selected when the
synchronize configuration is changed

Build-5 Build

Configuring the Build Environment
!  If the remote system has an

environment system (such as
Modules) installed, a custom
set of modules can be
configured for building C/C++
projects

!  In the Manage Synchronize
Configurations dialog, select
the configuration you wish to
change

!  Check Use an environment
management system to
customize the remote build
environment

Build-6 Building a Project

Build Environment (2)
!  Select a module from the

Available Modules list and
click the Add-> button to add
them to the Selected
Modules list

!  Use the <-Remove button to
remove modules from the
Selected Modules list

!  Use the Filter list field to
quickly find modules with a
given name

!  Use the Up and Down
buttons to change the order of
the Selected Modules

!  Click Select Defaults to load
only those modules that are
present in a new login shell

Build-7 Building a Project

We’ll do this for tutorial in a few slides…

Build Environment (3)

!  When you build the project, Eclipse will
!  Open a new Bash login shell
!  Execute module purge
!  Execute module load for each selected module
!  Run make

!  Module commands are displayed in the Console view during build
!  Beware of modules that must be loaded in a particular order, or

that contain common paths like /bin or /usr/bin

Build-8 Building a Project

Build Environment (4)
!  For this tutorial, we

want to use gcc and
Open MPI

!  To get to this dialog: Right
mouse on Project,
Synchronize > Manage…

!  Navigate to gnu in
Available Modules
and select Add ->

!  Navigate to
openmpi_ib and
select Add ->

!  Assure the
order matches this
!  If not, use Up/Down

buttons

Build-9 Building a Project

Start with original�shallow�

! Start with original �shallow� code:
! Project checked out from git:

! Right mouse on project,
Replace With > HEAD Revision

Also see Compare With …

! Other project:
! Right mouse on project,

Restore from local history – finds deleted files
! Right mouse on file, Compare With

or Replace With

Build-10 Building a Project

Starting the Build
!  Select the project in Project Explorer

!  Click on the hammer button in toolbar to run a build
using the active build configuration

!  By default, the Build Configuration assumes there is a
Makefile (or makefile) for the project

Build-11 Building a Project

!  Build output will be visible in console

Viewing the Build Output

Build-12 Building a Project

Build Problems

!  Build problems will be
shown in a variety of
ways
!  Marker on file
!  Marker on editor line
!  Line is highlighted
!  Marker on overview ruler
!  Listed in the Problems

view

!  Double-click on line in
Problems view to go
to location of error in
the editor

 Building a Project Build-13

Forcing a Rebuild
!  If no changes have been made,

make doesn�t think a build is needed
e.g. if you only change the Makefile

!  In Project Explorer, right click on
project; Select Clean Project

!  Build console will display results

!  Rebuild project by clicking on
build button again

Building a Project Build-14

Forcing a Resync
!  Project should resync with remote

system when things change
!  Sometimes you may need to

do it explicitly
!  Right mouse on project,

Synchronize>Sync Active Now

!  Status area in lower right shows
when Synchronization occurs

Building a Project Build-15

!  By default
!  The build button will run �make all�
!  Cleaning a project will run �make clean�

!  Sometimes, other build targets are
required

!  Open Make Target view
!  Select project and click on New

Make Target button
!  Enter new target name
!  Modify build command if desired
!  New target will appear in view
!  Double click on target to activate

Creating Make Targets

Build-16 Building a Project

Build-17

Exercise

1.  Start with your �shallow� project
2.  Build the project
3.  Edit a source file and introduce a compile error

!  In main.c, line 97, change �;� to �:�
!  Save, rebuild, and watch the Console view
!  Use the Problems view to locate the error
!  Locate the error in the source code by double

clicking on the error in the Problems view
!  Fix the error

4.  Rebuild the project and verify there are no build errors

Building a Project

Build-18

Optional Exercise

1.  Open the Makefile in Eclipse. Note the line starting with
�tags:� – this defines a make target named tags.

2.  Open the Outline view while the Makefile is open. What icon
is used to denote make targets in the Outline?

3.  Right-click the tags entry in the Outline view. Add a Make
Target for tags.

4.  Open the Make Target view, and build the tags target.

5.  Rename Makefile to Makefile.mk
6.  Attempt to build the project; it will fail
7.  In the project properties (under the C/C++ Build category),

change the build command to: make –f Makefile.mk
8.  Build the project; it should succeed

Building a Project

Running an Application
! Objective

! Learn how to run an MPI program on a remote system

! Contents
! Creating a run configuration
! Configuring the application run
! Monitoring the system and jobs
! Controlling jobs
! Obtaining job output

Running an Application Run-1

Run-2

!  Open the run configuration
dialog Run>Run
Configurations…

!  Select Parallel Application
!  Select the New button

Or, just double-click on
Parallel Application
to create a new one

Creating a Run Configuration

Note: We use “Launch Configuration” as a generic term to refer to either a
“Run Configuration” or a “Debug Configuration”, which is used for debugging.

Running an Application

Run-3

Set Run Configuration Name
!  Enter a name for this run configuration

!  E.g. “shallow”

!  This allows you to easily re-run the
same application

!  If the “shallow” project was selected
when the dialog was opened, its name
will be automatically entered

-3 Running an Application

Run-4

Configuring the Target System
!  In Resources tab, select a

Target System Configuration
that corresponds to your target
system
!  Use edu.sdsc.trestles.torque.batch

!  Target system configurations can
be generic or can be specific to a
particular system

!  Use the specific configuration if
available, or the generic
configuration that most closely
matches your system

!  You can type text in the box to
filter the configurations in the
list

-4 Running an Application

Run-5

Configure the Connection
!  Choose a connection to

use to communicate with
the target system

!  If no connection has been
configured, click on the
New button to create a
new one
!  Fill in connection information,

then click ok

!  The new connection
should appear in the
dropdown list

!  Select the connection you
already have to
trestles.sdsc.edu

!  Select toggle if you don’t
want to see popup again

-5 Running an Application

Run-6

Resources Tab
!  The content of the

Resources tab will vary
depending on the target
system configuration
selected

!  This example shows the
TORQUE configuration

!  For TORQUE, you will
normally need to select
the Queue and the
Number of nodes

!  For parallel jobs, choose
the MPI Command and
the MPI Number of
Processes

-6 Running an Application

For this tutorial:
•  Queue: shared
•  Number of nodes: 1:ppn=5
•  MPI Command: mpirun
•  MPI Number of Processes: 1
•  Leave other fields alone

Run-7

Configure Environment Modules
!  Click on the Modules to Load: Configure… button
!  Check the Use an environment management system to

customize the remote build environment box if it is not
already checked

!  Select the required modules and click Add -> (you can
either select one at a time, or all at once)

!  Click ok

-7 Running an Application

For this tutorial, use the
following modules:
•  gnu
•  gnubase
•  openmpi_ib

Run-8

Viewing the Job Script
!  Some target

configurations will
provide a View Script
button

!  Click on this to view the
job script that will be
submitted to the job
scheduler

!  Batch scheduler
configurations should
also provide a means of
importing a batch script

-8 Running an Application

Run-9

Application Tab

!  Select the Application tab
!  Choose the Application

program by clicking the
Browse button and locating
the executable on the remote
machine
!  Use the same “shallow”

executable
!  Select Display output from

all processes in a console
view

-9 Running an Application

Run-10

Arguments Tab (Optional)
!  The Arguments tab lets

you supply command-line
arguments to the
application

!  You can also change the
default working directory
when the application
executes

-10 Running an Application

Run-11

Environment Tab (Optional)
!  The Environment tab

lets you set environment
variables that are passed
to the job submission
command

!  This is independent of the
Environment Management
(module/softenv) support
described on previous
slide

-11 Running an Application

Run-12

Synchronize Tab (Optional)
!  The Synchronize tab lets

you specify upload/
download rules that are
execute prior to, and after
the job execution

!  Click on the New
upload/download rule
buttons to define rules

!  The rule defines which file
will be uploaded/
downloaded and where it
will be put

!  Can be used in
conjunction with program
arguments to supply input
data to the application

-12 Running an Application

Run-13

Common Tab (Optional)
!  The Common tab is

available for most launch
configuration types (not
just Parallel Application)

!  Allows the launch
configuration to be
exported to an external
file

!  Can add the launch
configuration to the
favorites menu, which is
available on the main
Eclipse toolbar

!  Select Run to launch
the job

-13 Running an Application

Run

! Select Run to launch the job
! You may be asked to switch to the System

Monitoring Perspective

! Select Remember my decision so you
won’t be asked again

! Select Yes to switch and launch the job

 Run-14 Building and Running

System Monitoring Perspective
!  System view

!  Jobs running

on system

!  Active jobs

!  Inactive jobs

!  Messages

!  Console

Run-15 Running an Application
Scroll to see more

Moving views

! The System Monitoring Perspective overlaps
the Active Jobs and Inactive Jobs views

! To split them apart and see both at once,
drag the tab for the Inactive Jobs view to
the lower half of its area, and let go of mouse

Run-16 Building and Running

Run-17

System Monitoring

!  System view, with
abstraction of system
configuration

!  Hold mouse button
down on a job in
Active Jobs view to
see where it is
running in System
view

!  Hover over node in

System view to see
job running on node
in Active Jobs view

-17

One node with
16 cores

Running an Application

Run-18

!  Job initially appears in

Inactive Jobs view
!  Moves to the Active Jobs

view when execution begings
!  Returns to Inactive Jobs

view on completion
!  Status refreshes

automatically every 60 sec
!  Can force refresh with menu

-18 Running an Application

Job Monitoring

Run-19

!  Right click on a job to open
context menu

!  Actions will be enabled IFF
!  The job belongs to you
!  The action is available on the

target system
!  The job is in the correct state for

the action

!  When job has COMPLETED, it
will remain in the Inactive
Jobs view

-19 Running an Application

Controlling Jobs

Run-20

!  After status changes to

COMPLETED, the output is
available
!  Right-click on the job
!  Select Get Job Output to display

output sent to standard output
!  Select Get Job Error to retrieve

output sent to standard error

!  Output/Error info shows in
Console View

!  Jobs can be removed by
selecting Remove Job Entry

-20 Running an Application

Obtaining Job Output

Add a Monitor

! You can monitor other systems too
! In Monitors view, select the ‘+’ button to

add a monitor

! Choose monitor type and connection;
create a new connection if necessary

Run-21 Running an Application

Double click
new monitor
to start

Run-22

Exercise

1.  Start with your ‘shallow’ project
2.  Create a run configuration
3.  Complete the Resources tab
4.  Select the executable in the Application tab
5.  Submit the job
6.  Check the job is visible in the Inactive Jobs view,

moves to the Active Jobs view when it starts running
(although it may be too quick to show up there), then
moves back to the Inactive Jobs view when completed

7.  View the job output
8.  Remove the job from the Inactive Jobs view

Running an Application

Parallel Debugging

Parallel Debugging

! Objective
! Learn the basics of debugging parallel programs

! Contents
! Launching a debug session
! The Parallel Debug Perspective
! Controlling sets of processes
! Controlling individual processes
! Parallel Breakpoints
! Terminating processes

Debug-0

Debugging Setup

!  Debugging requires interactive access to the application
!  Can use any of the -Interactive target configurations

!  Torque-Generic-Interactive
!  PBS-Generic-Interactive
!  OpenMPI-Generic-Interactive

Parallel Debugging Debug-1

Create a Debug Configuration
!  A debug configuration is

essentially the same as a run
configuration (like we used
in the Running an Application
module)

!  It is possible to re-use an
existing configuration and
add debug information

!  Use the drop-down next to
the debug button (bug icon)
instead of run button

!  Select Debug
Configurations… to open
the Debug Configurations
dialog

Parallel Debugging Debug-2

Create a New Configuration

!  Select the existing
configuration

!  Click on the new button to
create a new configuration

Parallel Debugging Debug-3

Configure the Resources Tab
!  Select the new target system

configuration
!  Choose the queue
!  Make sure number of nodes

is correct
!  Make sure the mpirun

command is selected
!  Select the number of

processes
!  Configure modules if required

Parallel Debugging Debug-4

For this tutorial:
•  Target: edu.sdsc.trestles.torque.interactive.openmpi
•  Queue: shared
•  Number of nodes: 1:ppn=5
•  MPI Command: mpirun
•  MPI Number of Processes: 5

Configure modules
•  gnu
•  gnubase
•  openmpi_ib

Configure the Application Tab (Optional)

!  Select Application tab
!  Make sure the Project is

correct
!  Select the application

executable

Parallel Debugging Debug-5

Configure the Debug Tab (Optional)

!  Select Debugger tab
!  Debugger will stop at

main() by default
!  By default the built-in

SDM will be used
!  Override this if you want to

use your own SDM

!  Click on Debug to launch

the program

Parallel Debugging Debug-6

Exercise

1.  Open the debug configuration dialog
2.  Create a new configuration
3.  Select the edu.sdsc.trestles.torque.interactive.openmpi

target configuration
4.  Configure the Debug tab

!  Queue: shared
!  Number of nodes: 1:ppn=5
!  MPI Command: mpirun
!  MPI Number of Processes: 5

5.  Configure the environment modules
!  gnu
!  gnubase
!  openmpi_ib

6.  Launch the debugger

Parallel Debugging Debug-7

!  Parallel Debug
view shows job
and processes
being debugged

!  Debug view shows
threads and call
stack for individual
processes

!  Source view
shows a current
line marker for all
processes

The Parallel Debug Perspective (1)

Parallel Debugging Debug-8

The Parallel Debug Perspective (2)

!  Breakpoints view

shows breakpoints
that have been set
(more on this later)

!  Variables view
shows the current
values of variables
for the currently
selected process in
the Debug view

!  Outline view (from
CDT) of source
code

Parallel Debugging Debug-9

Stepping All Processes
!  The buttons in the

Parallel Debug View
control groups of
processes

!  The Step Over button
will step all processes
one line

!  The process icons will
change to green
(running), then back to
yellow (suspended)

!  The current line marker
will move to the next
source line

Parallel Debugging Debug-10

Stepping An Individual Process
!  The buttons in the

Debug view are used
to control an
individual process, in
this case process 0

!  The Step Over button
will control just the
one process

!  There are now two
current line markers,
the first shows the
position of process 0,
the second shows the
positions of processes
1-4

Parallel Debugging Debug-11

Process Sets (1)

!  Traditional debuggers apply operations to a single
process

!  Parallel debugging operations apply to a single process
or to arbitrary collections of processes

!  A process set is a means of simultaneously referring to
one or more processes

Parallel Debugging Debug-12

Process Sets (2)

!  When a parallel debug session is first started, all
processes are placed in a set, called the Root set

!  Sets are always associated with a single job
!  A job can have any number of process sets
!  A set can contain from 1 to the number of processes in

a job

Parallel Debugging Debug-13

Operations On Process Sets
!  Debug operations on the

Parallel Debug view
toolbar always apply to the
current set:
!  Resume, suspend, stop,

step into, step over, step
return

!  The current process set is
listed next to job name
along with number of
processes in the set

!  The processes in process
set are visible in right hand
part of the view

Root set = all processes

Parallel Debugging Debug-14

Create set Remove
from set

Delete
set

Change
current set

Managing Process Sets

!  The remaining icons in the toolbar of the Parallel
Debug view allow you to create, modify, and delete
process sets, and to change the current process set

Parallel Debugging Debug-15

Creating A New Process Set
!  Select the processes in

the set by clicking and
dragging, in this case,
the last three

!  The Create Set button
enables a new process
set to be created

!  The set can be given a
name, in this case
workers

!  The view is changed to
display only the
selected processes

Parallel Debugging Debug-16

Stepping Using New Process Set
!  With the workers set

active, the Step Over
button will now
operated on only these
processes

!  Only the first line
marker will move

!  After stepping a couple
more times, two line
markers will be visible,
one for the single
master process, and
one for the 4 worker
processes

Parallel Debugging Debug-17

Process Registration

! Process set commands apply to groups of
processes

! For finer control and more detailed
information, a process can be registered and
isolated in the Debug view

! Registered processes, including their stack
traces and threads, appear in the Debug view

! Any number of processes can be registered,
and processes can be registered or
un-registered at any time

Parallel Debugging Debug-18

Process Registration (2)
!  By default, process 0 was

registered when the debug
session was launched

!  Registered processes are
surrounded by a box and
shown in the Debug view

!  The Debug view only shows
registered processes in the
current set

!  Since the �workers� set
doesn�t include process 0, it
is no longer displayed in the
Debug view

Parallel Debugging Debug-19

Registering A Process
!  To register a process,

double-click its process
icon in the Parallel
Debug view or select a
number of processes and
click on the register
button

!  To un-register a process,
double-click on the
process icon or select a
number of processes and
click on the unregister
button

Individual
(registered)
processes

Groups (sets)
of processes

Debug-20 Parallel Debugging

Current Line Marker

! The current line marker is used to show the
current location of suspended processes

! In traditional programs, there is a single
current line marker (the exception to this is
multi-threaded programs)

! In parallel programs, there is a current line
marker for every process

! The PTP debugger shows one current line
marker for every group of processes at the
same location

Parallel Debugging Debug-21

Multiple processes marker

Registered process marker

Un-registered process marker

Colors And Markers

!  The highlight color depends on
the processes suspended at
that line:
!  Blue: All registered process(es)
!  Orange: All unregistered

process(es)
!  Green: Registered or unregistered

process with no source line (e.g.
suspended in a library routine)

!  The marker depends on the
type of process stopped at that
location

!  Hover over marker for more
details about the processes
suspend at that location

Parallel Debugging Debug-22

Exercise

1.  From the initial debugger session, step all processes
until the current line is just after MPI_Init (line 68)

2.  Create a process set called �workers� containing
processes 1-4

3.  Step the �worker� processes twice, observe two line
markers

4.  Hover over markers to see properties
5.  Switch to the �root� set
6.  Step only process 0 twice so that all processes are now

at line 71 (hint – use the debug view)

Parallel Debugging Debug-23

!  Apply only to processes in the particular set that is
active in the Parallel Debug view when the breakpoint
is created

!  Breakpoints are colored depending on the active
process set and the set the breakpoint applies to:
! Green indicates the breakpoint set is the same

as the active set.
!  Blue indicates some processes in the breakpoint set are

also in the active set (i.e. the process sets overlap)
!  Yellow indicates the breakpoint set is different from the

active set (i.e. the process sets are disjoint)
!  When the job completes, the breakpoints are

automatically removed

Breakpoints

Parallel Debugging Debug-24

Creating A Breakpoint
!  Select the process set that

the breakpoint should apply
to, in this case, the workers
set

!  Double-click on the left edge
of an editor window, at the
line on which you want to set
the breakpoint, or right click
and use the Parallel
Breakpoint!Toggle
Breakpoint context menu

!  The breakpoint is displayed
on the marker bar

Parallel Debugging Debug-25

Hitting the Breakpoint
!  Switch back to the Root set

by clicking on the Change
Set button

!  Click on the Resume button
in the Parallel Debug view

!  In this example, the three
worker processes have hit the
breakpoint, as indicated by
the yellow process icons and
the current line marker

!  Process 0 is still running as its
icon is green

!  Processes 1-4 are suspended
on the breakpoint

Parallel Debugging Debug-26

More On Stepping
!  The Step buttons are only

enabled when all processes
in the active set are
suspended (yellow icon)

!  In this case, process 0 is still
running

!  Switch to the set of
suspended processes (the
workers set)

!  You will now see the Step
buttons become enabled

Parallel Debugging Debug-27

Breakpoint Information

! Hover over breakpoint icon
! Will show the sets this breakpoint applies to

! Select Breakpoints view
! Will show all breakpoints in all projects

Parallel Debugging Debug-28

! Use the menu in the breakpoints view to group
breakpoints by type

! Breakpoints sorted by breakpoint set (process
set)

Breakpoints View

Parallel Debugging Debug-29

!  Apply to all processes and all jobs
!  Used for gaining control at debugger startup
!  To create a global breakpoint

!  First make sure that no jobs are selected (click in white
part of jobs view if necessary)

! Double-click on the left edge of an editor window
! Note that if a job is selected, the breakpoint will apply to

the current set

Global Breakpoints

Parallel Debugging Debug-30

Exercise

1.  Select the �worker� process set
2.  Create a breakpoint by double-clicking on right hand

bar at line 88 (worker function)
3.  Hover over breakpoint to see properties
4.  Switch to �root� process set
5.  Observer breakpoint color changes to blue
6.  Resume all processes
7.  Observe �worker� processes at breakpoint, and process

0 still running (green icon)
8.  Switch to �worker� process set
9.  Step �worker� processes over worker() function
10. Observe output from program

Parallel Debugging Debug-31

Terminating A Debug Session
!  Click on the Terminate

icon in the Parallel
Debug view to
terminate all processes
in the active set

!  Make sure the Root set
is active if you want to
terminate all processes

!  You can also use the
terminate icon in the
Debug view to
terminate the currently
selected process

Parallel Debugging Debug-32

Cancelling The Job
!  Interactive jobs will continue

until the reservation time has
expired

!  You can cancel the job once
the debug session is finished

!  Switch back to the System
Monitoring perspective

!  Locate the job in the Active
Jobs view
!  Use the view menu to filter for

only your jobs if there are too
many

!  Right click on the job and
select Cancel Job

Parallel Debugging Debug-33

Exercise

1.  Switch to the �root� set
2.  Terminate all processes
3.  Switch to the System Monitoring perspective
4.  Right-click on your running job and select Cancel

Parallel Debugging Debug-34

Optional Exercise

1.  Launch another debug job
2.  Create a breakpoint at line 71 in main.c
3.  Resume all processes
4.  Select the Variables view tab if not already selected
5.  Observe value of the �tid� variable
6.  Register one of the worker processes
7.  Select stack frame of worker process in Debug view
8.  Observe value of the �tid� variable matches worker

process
9.  Switch to the breakpoints view, change grouping
10. Terminate all processes
11. Switch to the System Monitoring perspective and

cancel the job
Parallel Debugging Debug-35

Fortran
! Objectives

! Learn how to create and convert Fortran projects
! Learn to use Fortran-specific editing features
! Learn about Fortran-specific properties/preferences

! Contents
! Fortran projects
! Using the Fortran editor
! Fortran project properties and workbench preferences

! Prerequisites
! Basics (for exercises)

Fortran Projects Fortran-0

Ralph Johnson�s research group at UIUC used to meet at Pho-Tran…

…which became the name of their Fortran IDE.

Configuring Fortran Projects

Fortran Projects Fortran-3

Project Properties

!  Right-click Project
!  Select Properties…

! Project properties are settings
that can be changed for each
project

!  Contrast with
workspace preferences,
which are the same
regardless of what
project is being edited
!  e.g., editor colors
!  Set in Window!

Preferences
(on Mac, Eclipse!
Preferences)

!  Careful! Dialog is
very similar

Fortran Projects Fortran-4

Converting to a Fortran Project

! Are there categories labeled Fortran General
and Fortran Build in the project properties?

No Fortran categories

! If not, the project is not a Fortran Project
! Switch to the Fortran Perspective
! In the Fortran Projects view, right-click on the

project, and click Convert to Fortran Project
! Don�t worry; it�s still a C/C++ project, too

! Every Fortran project is also a C/C++ Project

Do this
once

Fortran Projects Fortran-5

Project Location

!  How to tell where a project
resides?

!  In the project properties
dialog, select the
Resource category

Fortran Projects Fortran-6

Error Parsers

! Are compiler errors not appearing in the
Problems view?
! Make sure the correct error parser is enabled
! In the project properties, navigate to

C++ Build!Settings or Fortran Build!Settings
! Switch to the Error Parsers tab
! Check the error parser(s) for your compiler(s)

Do this
once

Fortran Projects Fortran-7

Fortran Source Form Settings
! Fortran files are either free form or fixed form;

some Fortran files are preprocessed (#define, #ifdef, etc.)

!  Source form determined by filename extension
!  Defaults are similar to most Fortran compilers:

 Fixed form: .f .fix .for .fpp .ftn .f77

 Free form: .f08 .f03 .f95 .f90 < unpreprocessed
 .F08 .F03 .F95 .F90 < preprocessed

! Many features will not work if filename extensions
are associated with the wrong source form
(outline view, content assist, search, refactorings, etc.)

Fortran Projects Fortran-8

Fortran Source Form Settings

!  In the project
properties, select
Fortran General!
Source Form

!  Select source form
for each filename
extension

!  Click OK

Do this
once

Fortran Projects Fortran-9

Enabling Fortran Advanced Features

! Some Fortran features are disabled by default
! Must be explicitly enabled

! In the project properties dialog,
select Fortran General ! Analysis/Refactoring

! Click Enable
Analysis/
Refactoring

! Close and re-open
any Fortran editors

! This turns on the
�Photran Indexer�
! Turn it off if it�s slow

Do this
once

Fortran Projects Fortran-10

Exercise

1.  Convert shallow to a Fortran project

2.  Make sure errors from the GNU Fortran
compiler will be recognized

3.  Make sure *.f90 files are treated as
�Free Form� which is unpreprocessed

4.  Make sure search and refactoring will work in
Fortran

Fortran Projects Fortran-11

Advanced Editing

Code Templates

Fortran Projects Fortran-12

Code Templates
(C/C++ and Fortran)

! Auto-complete common code patterns
! For loops/do loops, if constructs, etc.
! Also MPI code templates

! Included with content assist proposals

(when Ctrl-Space is pressed)
! E.g., after the last line in tstep.f90, type �sub� and

press Ctrl-Space
! Press Enter to insert the template

Fortran Projects Fortran-13

Code Templates (2)
(C/C++ and Fortran)

! After pressing enter to insert the code
template, completion fields are highlighted

! Press Tab to move between completion fields
! Changing one instance of a field changes all

occurrences

Fortran Projects Fortran-14

Exercise

!  Open tstep.f90 and retype the last loop nest
!  Use the code template to complete the do-loops

!  Use content assist to complete variable names

Fortran Projects Fortran-15

Custom Code Templates
(Fortran)

! Customize code templates in Window !
Preferences ! Fortran ! Templates

! Can import/export templates to XML files
Fortran Projects Fortran-16

Advanced Features
Search, Refactoring, & GUI Terminal

! Objectives
! Develop proficiency using Eclipse�s textual and

language-based search and navigation capabilities
! Introduce common automated refactorings
! Develop proficiency using the PTP GUI Terminal

! Contents
! Searching
! Refactoring and Transformation
! GUI Terminal

! Prerequisites
! Basics
! Fortran

Advanced Features Advanced-0

Find/Replace within Editor

! Simple Find within editor buffer
! Ctrl-F (Mac: Command-F)

Advanced-1 Advanced Features

Mark Occurrences
(C/C++ Only)

! Double-click on a variable in the CDT editor
! All occurrences in the source file are

highlighted to make locating the variable
easier

! Alt-shift-O to turn off (Mac: Alt-Cmd-O)

Advanced-2 Advanced Features

Language-Based Searching
(C/C++ and Fortran)

Advanced-3 Advanced Features

!  �Knows� what things can
be declared in each
language (functions,
variables, classes,
modules, etc.)

!  E.g., search for every call
to a function whose name
starts with �get�

!  Search can be project- or
workspace-wide

Find References
(C/C++ and Fortran)

! Finds all of the places where a variable,
function, etc., is used
! Right-click on an identifier in the editor
! Click References!Workspace

or References!Project

! Search view
shows matches

Advanced-4 Advanced Features

Open Declaration
(C/C++ and Fortran)

!  Jumps to the declaration of
a variable, function, etc.,
even if it�s in a different
file

!  Left-click to select identifier
!  Right-click on identifier
!  Click Open Declaration

!  C/C++ only:

Can also Ctrl-click
(Mac: Cmd-click) on an
identifier to �hyperlink� to
its declaration

Advanced-5 Advanced Features

Goes to its declaration
in copy.c

Search – Try It!

1.  Find every call to MPI_Recv in Shallow.

2.  In worker.c, on line 42, there is a declaration
float p[n][m].
a)  What is m (local? global? function parameter?)

b)  Where is m defined?

c)  How many times is m used in the project?

3.  Find every C function in Shallow whose name
contains the word time

Advanced-6 Advanced Features

Refactoring and Transformation

Advanced-7 Advanced Features

Refactoring

!  39 automated refactorings in Photran

(making changes to source code that don�t affect the behavior of the program)

Advanced-8 Advanced Features

Refactoring Caveats

! Photran can only refactor free form code that
is not preprocessed
! Determined by Source Form settings

(recall from earlier that these are configured in
Project Properties: Fortran General!Source Form)

Advanced-9 Advanced Features

! Refactor menu will be empty if
!  Refactoring not enabled in project properties

(recall from earlier that it is enabled in
Project Properties: Fortran General!Analysis/Refactoring)

!  The file in the active editor is fixed form
!  The file in the active editor is preprocessed

✔ Free Form, Unpreprocessed: .f08 .f03 .f95 .f90

✖ Free Form, Preprocessed: .F08 .F03 .F95 .F90

✖ Fixed Form: .f .fix .for .fpp .ftn .f77

Rename Refactoring
(also available in Fortran)

! Changes the name of a variable, function, etc.,
including every use
(change is semantic, not textual, and can be workspace-wide)

! Only proceeds if the new name will be legal
(aware of scoping rules, namespaces, etc.)

! Switch to C/C++ Perspective
! Open a source file
! In the editor, click on a

variable or function name
! Select menu item

Refactor!Rename
! Or use context menu

! Enter new name
Advanced-10 Advanced Features

In Java (Murphy-Hill et al., ICSE 2008):

Rename in File
(C/C++ Only)

Advanced-11 Advanced Features

!  Position the caret
over an identifier.

!  Press Ctrl-1
(Command-1 on Mac).

!  Enter a new name.
Changes are
propagated within
the file as you type.

!  Moves statements into a new function, replacing the
statements with a call to that function

!  Local variables are passed as arguments

Extract Function Refactoring

!  Select a sequence of
statements

!  Select menu item
Refactor!
Extract Function…

!  Enter new name

(also available in Fortran - �Extract Procedure�)

Advanced-12 Advanced Features

!  Fortran does not require variable declarations
(by default, names starting with I-N are integer variables; others are reals)

!  This adds an IMPLICIT NONE statement and adds explicit
variable declarations for all implicitly declared variables

Introduce IMPLICIT NONE Refactoring

!  Introduce in a single file by
opening the file and selecting
Refactor!Coding Style!
Introduce IMPLICIT NONE…

!  Introduce in multiple files by
selecting them in the Fortran
Projects view, right-clicking on
the selection, and choosing
Refactor!Coding
Style!Introduce IMPLICIT
NONE…

Advanced-13 Advanced Features

!  Interchange Loops CAUTION: No check for behavior preservation

!  Swaps the loop headers in a two-loop nest
!  Select the loop nest, click menu item Refactor!Do Loop!

Interchange Loops (Unchecked)…

Loop Transformations
(Fortran only)

Advanced-14 Advanced Features

Old version traverses
matrices in row-major order

New version traverses
in column-major order
(better cache performance)

Loop Transformations
(Fortran only)

Advanced-15 Advanced Features

!  Unroll Loop
!  Select a loop, click Refactor!Do Loop!Unroll Loop…

do i = 1, 12
 print *, 10*i
end do

do i = 1, 12, 4
 print *, 10*i
 print *, 10*(i+1)
 print *, 10*(i+2)
 print *, 10*(i+3)
end do

Unroll 4×

Refactoring & Transformation –
Exercises

1.  In init.c, extract the printf statements at
the bottom of the file into a new function
called print_banner

2.  In worker.c, change the spellings of
neighbour_send and neighbour_receive
to American English

3.  In tstep.f90, make the (Fortran) tstep
subroutine IMPLICIT NONE

Advanced-16 Advanced Features

! Some people prefer to use

the command line
! Some people prefer to use

the GUI
! Which is better? Each has

advantages
! Why do we have to choose?

 Advanced Features

GUI Terminal

PTP Tutorial Advanced-17

GUI Terminal
! There is a remote terminal that can provide a shell from within Eclipse
! Right-Click on your synchronized project and select “Show Terminal”

Or

! If not in your workbench:
! Select Window>Show View>Other…
! Choose Terminal from the Terminal folder

! In the Terminal view, click on the
Connect button
! It will use the previously configured connection from the dropdown, or
create a new one

Advanced Features PTP Tutorial Advanced-18

Opening the Eclipse Editor from
the Command Line

PTP Tutorial Advanced Features Advanced-19

Editing Files

PTP Tutorial Advanced Features

! Edits file locally within a

project, and lets the sync
mechanism update the
remote

! Uses a remote protocol to
edit files outside the project

Advanced-20

Terminal History

PTP Tutorial Advanced Features

Select the Terminal View
from Window >
 Show View >
 Others

Advanced-21

Terminal History

PTP Tutorial Advanced Features

Add this line History View
Advanced-22

Terminal History

! Close and open the connection, so
that the bashrc will be re-run

PTP Tutorial Advanced Features Advanced-23

Terminal History

PTP Tutorial Advanced Features

!  re-run the

command
!  favorite the

command

!  delete the

command
!  edit the

command

Advanced-24

GUI Menus

PTP Tutorial Advanced Features Advanced-25

NCSA/XSEDE Features
! Objectives

! Install NCSA’s GSI auth and XSEDE support plug-ins
! Become familiar with the System menu

! Contents
! Capabilities
! Installation

! Prerequisites
! (none)

Advanced Features: NCSA/XSEDE NCSA-0

Additional Plug-ins from NCSA

! NCSA publishes additional plug-ins that can be
added to an existing PTP installation

! Contribute a System menu to the menu bar
with XSEDE- and NCSA-specific commands

NCSA-1 Advanced Features: NCSA/XSEDE

System Menu

!  Open Web content in Eclipse:

!  Open XSEDE User Portal

!  Open User Guide for a machine

!  Open an SSH terminal
(as an Eclipse view)

NCSA-2 Advanced Features: NCSA/XSEDE

Eclipse-integrated SSH terminals are provided
by the Remote System Explorer (RSE), one of
the features that is included in the Eclipse for
Parallel Application Developers package.

System Menu

!  Shortcuts for common PTP tasks:

!  Add Remote Environment adds a

Remote Tools connection for a
particular machine

!  Add System Monitor opens the
System Monitoring perspective and
begins monitoring a particular
machine

NCSA-3 Advanced Features: NCSA/XSEDE

System Menu

!  The plug-in is preconfigured with
information about XSEDE and
NCSA resources

!  The bottom four commands
generally prompt for a system

!  Select System can be used to
eliminate this prompt, so these
commands always act on a
particular system

NCSA-4 Advanced Features: NCSA/XSEDE

MyProxy Logon

!  MyProxy Logon allows you
to authenticate with a
MyProxy server
!  Often myproxy.teragrid.org

!  It stores a “credential,” which
is usually valid for 12 hours

!  During these 12 hours, SSH
connections to XSEDE
resources will not require a
password; they can use the
stored credential
!  However, you must enter the

correct username for that
machine!

NCSA-5 Advanced Features: NCSA/XSEDE

Installation

1.  Click Help > Install New Software
2.  Click Add to open the Add Repository dialog
3.  In the Location field, enter

 http://forecaster.ncsa.uiuc.edu/updates/luna

and then click OK to close the Add dialog.
"  Or, if you copied ncsa-update-site.zip from a USB

drive, click Archive, select that file, and click OK.

See next slide…

NCSA-6 Advanced Features: NCSA/XSEDE

Installation (2)

4.  Select the following:
!  GSI Authentication and MyProxy Logon Support
!  NCSA and XSEDE System Support

5.  Click Next and
complete the
installation

NCSA-7 Advanced Features: NCSA/XSEDE

Performance Tuning
and Analysis Tools

! Objective
! Become familiar with tools integrated with PTP, to help

enhance performance of parallel applications
! Contents

! Overview of ETFw and Performance Tools

Performance and Analysis
Tools

Perf-0

PTP/External Tools Framework
formerly �Performance Tools Framework�

Goal:
! Reduce the �eclipse plumbing�

necessary to integrate tools
! Provide integration for

instrumentation, measurement, and
analysis for a variety of performance
tools

!  Dynamic Tool Definitions:
Workflows & UI

!  Tools and tool workflows are specified in an XML file
!  Tools are selected and configured in the launch

configuration window
!  Output is generated, managed and analyzed as

specified in the workflow
!  One-click ‘launch’ functionality
!  Support for development tools such as TAU, PPW and

others.
!  Adding new tools is much easier than developing a full

Eclipse plug-in

Performance and Analysis Tools Perf-1

SAX and JAXB Tool Definitions

! Prior implementations of ETFW used a simple SAX
based schema to define tool workflows

! By default workflows now use the more powerful
JAXB schema that defines PTP�s resource
manager

! Legacy workflows can still be loaded by selecting
the SAX parser in PTP options
! Window->Preferences->

Parallel Tools->External Tools

Performance and Analysis
Tools

Perf-2

Performance Tuning
and Analysis Tools - TAU

! Objective
! Become familiar with tools integrated with PTP, to help

enhance performance of parallel applications

! Contents
! Performance Tuning and external tools:

! PTP External Tools Framework (ETFw), TAU
Hands-on exercise using TAU with PTP

TAU TAU-1

TAU: Tuning and Analysis Utilities

!  TAU is a performance evaluation tool
!  It supports parallel profiling and tracing

!  Profiling shows you how much (total) time was spent in each routine
!  Tracing shows you when the events take place in each process along

a timeline
!  TAU uses a package called PDT (Performance Database Toolkit) for

automatic instrumentation of the source code
!  Profiling and tracing can measure time as well as hardware

performance counters from your CPU (or GPU!)
!  TAU can automatically instrument your source code (routines, loops,

I/O, memory, phases, etc.)
!  TAU runs on all HPC platforms and it is free (BSD style license)
!  TAU has instrumentation, measurement and analysis tools

!  paraprof is TAU’s 3D profile browser

TAU TAU-2

TAU Performance System Architecture

TAU-3 TAU

PTP TAU plug-ins
http://www.cs.uoregon.edu/research/tau

!  TAU (Tuning and Analysis Utilities)
!  First implementation of External Tools Framework (ETFw)
!  Eclipse plug-ins wrap TAU functions, make them available

from Eclipse
!  Full GUI support for the TAU command line interface
!  Performance analysis integrated with development

environment

TAU TAU-4

TAU Integration with PTP

! TAU: Tuning and
Analysis Utilities
! Performance data

collection and analysis
for HPC codes

! Numerous features
! Command line interface

! The TAU Workflow:
! Instrumentation
! Execution
! Analysis

TAU TAU-5

TAU PTP Installation

!  This tutorial assumes that the TAU extensions for PTP
are installed – they are not included in the
“Eclipse for Parallel Application Developers”

!  The installation section (Module 1) shows how to install
TAU and other features from the PTP update site –
be sure TAU was selected

TAU TAU-6

To confirm:
! Help>Install New Software…
! Select the link “What is already
installed” at the bottom of the
dialog
! You should see the TAU
Extension

Installing TAU Analysis Tools

!  The TAU plugin can use ParaProf for visual analysis and TauDB
for organization of profiles

!  To install these utilities on Mac or Linux platforms:
! Download (browser, curl or wget)

 tau.uoregon.edu/tautools-latest.tgz
! tar -zxf tautools-latest.tgz
! cd tautools-latest
! ./configure
! Set path as shown (launch eclipse from this environment)
! Run taudb_configure and follow the instructions

!  Java WebStart: tau.uoregon.edu/paraprof
!  TAU Installation, downloads and instructions: tau.uoregon.edu

TAU TAU-7

Assumptions
! Obtain and install TAU*

! Download at tau.uoregon.edu
!  The website includes setup and user guides

! Set up the $PATH on the remote machine*
!  For TAU you should be able to run ‘which pprof’ on a remote login

and see a result from your TAU bin directory
! On trestles.sdsc.edu this is accomplished by including the TAU bin

directory in the PATH variable in your bash configuration file

! Include ‘eclipse.inc’ in the makefile*
! Create an empty eclipse.inc file in the same directory as the

makefile
!  Place ‘include eclipse.inc’ in the makefile after regular compiler

definitions
!  ETFw will modify eclipse.inc to set CC/CXX/FC variables
TAU TAU-8 * SC tutorial: this has been done for you

Selective Instrumentation
! By default tau provides timing data for each

subroutine of your application
! Selective instrumentation allows you to include/

exclude code from analysis and control additional
analysis features
!  Include/exclude source files or routines
! Add timers and phases around routines or arbitrary code
!  Instrument loops
! Note that some instrumentation features require the PDT

! Right click on calc.c, init.c, diag.c go to the Selective
Instrumention option and select Instrument Loops

! Note the creation of tau.selective (refresh if needed)

TAU TAU-9

Begin Profile Configuration

! The ETFw uses the same run configurations and
resource managers as debugging/launching

! Click on the ‘Run’ menu or the right side of the
Profile button

! From the dropdown menu select ‘Profile

configurations…’

TAU TAU-10

Select Configuration

!  Select the shallow configuration
prepared earlier

!  The Resource and Application
configuration tabs require little or
no modification
!  We are using the same resource

manager and Torque settings
!  Since we are using a makefile project

the application will be rebuilt in and
run from the previously selected
location

TAU TAU-11

Performance Analysis tab is
present in the Profile
Configurations dialog

Select Tool/Workflow

! Select the Performance Analysis tab and
choose the TAU tool set in the ‘Select Tool’
dropdown box
! Other tools may be available, either installed as

plug-ins or loaded from workflow definition XML files
! Configuration sub-panes appear depending on the

selected tool

TAU TAU-12

Tabs may be
hidden if the
window is too
small

Select TAU Configuration

! Choose the TAU Makefile tab:

! All TAU configurations in
remote installation are
available

! Check MPI and PDT
checkboxes to filter listed
makefiles

! Make your selection in the
Select Makefile: dropdown
box

! Select Makefile.tau-mpi-pdt

TAU TAU-13

Choose PAPI Hardware Counters
! When a PAPI-enabled TAU

configuration is selected the PAPI
Counter tool becomes available
! Select the ‘Select PAPI Counters’

button to open the tool
! Open the PRESET subtree
! Select PAPI_L1_DCM (Data cache

misses)
! Scroll down to select PAPI_FP_INS

(Floating point instructions)
! Invalid selections are automatically

excluded
! Select OK
! Not available on trestles.sdsc.edu

TAU TAU-14

Compiler Options
! TAU Compiler Options

! Set arguments to TAU compiler scripts
! Control instrumentation and

compilation behavior
! Verbose shows activity of compiler

wrapper
! KeepFiles retains instrumented source
!  PreProcess handles C type ifdefs in

fortran
!  In the Selective Instrumentation tab

select Internal then hit Apply
!  Scroll to bottom of the Tau Compiler tab

and activate TauSelectFile to use
tau.selective

TAU TAU-15

Runtime Options
! TAU Runtime options

! Set environment variables used by
TAU

! Control data collection behavior
! Verbose provides debugging info
! Callpath shows call stack

placement of events
! Throttling reduces overhead
! Tracing generates execution

timelines
!  Set Profile Format to merged

TAU TAU-16

Hover help

Working with Profiles
!  Profiles are uploaded to

selected database
!  A text summary may be

printed to the console
!  Profiles may be uploaded to

the TAU Portal for viewing
online
! tau.nic.uoregon.edu

!  Profiles may be copied to
your workspace and loaded
in ParaProf from the
command line. Select Keep
Profiles

TAU TAU-17

!  Once your TAU launch is
configured select ‘Profile’
!  Notice that the project rebuilds with TAU compiler commands
!  The project will execute normally but TAU profiles will be generated
!  TAU profiles will be processed as specified in the launch configuration.
!  If you have a local profile database the run will show up in the

Performance Data Management view
! Double click the new entry to view in ParaProf
! Right click on a function bar and select Show Source Code for

source callback to Eclipse

Launch TAU Analysis

TAU TAU-18

Paraprof
! Use ParaProf for profile visualization to identify

performance hotspots
! Inefficient sequential computation
! Communication overhead
! IO/Memory bottlenecks
! Load imbalance
! Suboptimal cache performance

! Compare multiple trials in PerfExplorer to identify
performance regressions and scaling issues

! To use ParaProf, install TAU from tau.uoregon.edu or
use Java webstart from tau.uoregon.edu/paraprof

TAU TAU-19

Exercise
!  Multi-Trial profile comparison

1.  Edit the shallow Makefile, adding -O3 to CFLAGS and FFLAGS
2.  Rerun the analysis (Run->Profile Configurations. Hit Profile)
3.  A second trial, distinguished by a new timestamp, will be

generated
!  It will appear in your Performance Data Manager view if a profile

database is available
!  Also present in the Profile subdirectory of your project directory
!  If you do not see a Profile directory right click on your project and go

to Synchronization->'Sync All Now'
4.  Load the two trials in paraprof (on the command line: paraprof /

path/to/tauprofile.xml)
5.  Open Windows->ParaProf Manager
6.  Expand your database down to reveal all trials
7.  Right click on each trial and click 'Add Mean to Comparison

Window' to visualize the two trials side by side

TAU TAU-20

PerfSuite

! Objectives
! Become familiar with PerfSuite
! Install Perfsuite Feedback Feature

! Contents
! Running a PerfSuite analysis within Eclipse/PTP
! Using the PerfSuite Feedback view to view the results

generated by PerfSuite

! Prerequisites
! Compile and Install PerfSuite command line tools
! Install supporting libraries used by PerfSuite (e.g. PAPI)

PerfSuite PerfSuite-1

PerfSuite
! PerfSuite is a collection of tools and libraries for

software performance analysis on Linux-based
systems.

! It supports counting and profiling using
! CPU and other hardware performance counters

! Network, thermal
! Interval timer profiling

! PerfSuite can be used from the command line or
within Eclipse/PTP

! PerfSuite results can be viewed via its Feedback
View.

PerfSuite PerfSuite-2

PerfSuite Demo
! Demonstration using a local project

! Setup and run psrun to gather performance
information

! Setup and run psprocess to post process results
for feedback view

! Should work on an synchronized project – not tested

PerfSuite PerfSuite-3

Installing PerfSuite plug-ins
! PerfSuite Eclipse plug-ins are not in the Parallel

Package.
! Update PTP per the slides on installation – and

select PerfSuite as follows:
! Help>Install New Software…

!  http://download.eclipse.org/tools/ptp/updates/luna
!  Select “PTP ETFw PerfSuite”
!  Next, Next, Accept, Finish

PerfSuite PerfSuite-4

Prerequisites
! To analyze your application using Perfsuite,
psrun and psprocess must be available in your
system path.
! If they aren't, then you will need to compile and

install them from the source code found at
http://perfsuite.ncsa.illinois.edu

! You may also need to install additional software that
is required by PerfSuite

! See http://perfsuite.ncsa.illinois.edu

PerfSuite PerfSuite-5

PerfSuite Help

PerfSuite PerfSuite-6

http://help.eclipse.org or
help within the PTP
Eclipse workbench

Launch profile configuration
! Run > Profile Configurations...

! Fill out

Resources tab

PerfSuite PerfSuite-7

Fill out Application tab
! Application tab

PerfSuite PerfSuite-8

Performance Analysis - PSRun
! PSRun Settings

PerfSuite PerfSuite-9

Performance Analysis PSProcess
! PSProcess
 settings

PerfSuite PerfSuite-10

Launching feedback view

! Right click
on mhpr.xml

! Display
Perfsuite
Feedback

PerfSuite PerfSuite-11

PerfSuite Feedback view opens
! The Perfsuite Feedback view opens

PerfSuite PerfSuite-12

Navigate from feedback view

! Double click on a line in the feedback view to go to
the corresponding line in the source code

PerfSuite PerfSuite-13

Tutorial Wrap-up

! Objective
! How to find more information on PTP
! Learn about other tools related to PTP
! See PTP upcoming features

! Contents
! Links to other tools, including performance tools
! Planned features for new versions of PTP
! Additional documentation
! How to get involved

WrapUp-0 Tutorial Wrap Up

Useful Eclipse Tools

!  Linux Tools (autotools, valgrind, Oprofile, Gprof)
!  http://eclipse.org/linuxtools (part of Parallel package)

!  Python
!  http://pydev.org

!  Ruby
!  http://www.aptana.com/products/radrails

!  Perl
!  http://www.epic-ide.org

!  VI bindings
!  Vrapper (open source) - http://vrapper.sourceforge.net
!  viPlugin (commercial) - http://www.viplugin.com

Tutorial Wrap Up WrapUp-1

Online Information
! Information about PTP

! PTP online help
! http://help.eclipse.org

! Main web site for downloads, documentation, etc.
! http://eclipse.org/ptp

! Wiki for designs, planning, meetings, etc.
! http://wiki.eclipse.org/PTP

! Information about Photran

! Main web site for downloads, documentation, etc.
! http://eclipse.org/photran

Tutorial Wrap Up WrapUp-2

Mailing Lists

!  User Mailing Lists
!  PTP

! http://dev.eclipse.org/mailman/listinfo/ptp-user
!  Photran

!  http://dev.eclipse.org/mailman/listinfo/photran
! Major announcements (new releases, etc.) - low volume

! http://dev.eclipse.org/mailman/listinfo/ptp-announce

!  Developer Mailing Lists

! Developer discussions - higher volume
! http://dev.eclipse.org/mailman/listinfo/ptp-dev

Tutorial Wrap Up WrapUp-3

Getting Involved

! See http://eclipse.org/ptp
! Read the developer documentation on the wiki

! http://wiki.eclipse.org/PTP
! Join the mailing lists
! Attend the monthly developer meetings

! Conf Call Monthly: Second Tuesday, 1:00 pm ET
!  Details on the PTP wiki

! Attend the monthly user meetings
! Teleconf Monthly: 4th Wednesday, 1:00 pm ET
! Details on the PTP wiki

Tutorial Wrap Up WrapUp-4

XSEDE BOF

! PTP BOF is Tuesday morning 7:00 am

! PTP Hackathon
! At LSU Aug 12-13, 2014
! Become familiar with PTP development
! Get help contributing to PTP
! Eat Cajun!
! $$ Travel assistance may be available – please ask!

Tutorial Wrap Up WrapUp-5

PTP Tutorial Wrap-Up

! Your feedback is valuable!

Thanks for attending
We hope you found it useful

Tutorial Wrap Up WrapUp-6

