

User Guide

OpenNI User Guide Page | 2

Table of Contents
License Notice.. 4

Overview .. 4

Natural Interaction ... 4

What is OpenNI? .. 4

Abstract Layered View .. 5

Concepts .. 6

Modules ... 6

Production Nodes ... 7

Production Node Types ... 9

Production Chains .. 10

Capabilities .. 11

Generating and Reading Data .. 12

Generating Data .. 12

Reading Data ... 12

Mock Nodes .. 13

Sharing Devices between Applications and Locking Nodes 13

Licensing ... 14

General Framework Utilities ... 15

Recording .. 15

Production Node Error Status .. 15

Backwards Compatibility ... 16

Getting Started .. 16

Supported Platforms ... 16

Main Objects .. 16

The Context Object .. 16

Metadata Objects .. 16

Configuration Changes .. 17

Data Generators .. 17

User Generator .. 19

Creating an empty project that uses OpenNI ... 19

Basic Functions: Initialize, Create a Node and Read Data 20

OpenNI User Guide Page | 3

Enumerating Possible Production Chains .. 21

Understanding why enumeration failed ... 22

Working with Depth, Color and Audio Maps ... 22

Working with the Skeleton ... 24

Working with Hand Point ... 26

Working with Audio Generators ... 29

Recording and Playing Data .. 30

Recording ... 30

Playing ... 31

Node Configuration ... 32

Configuration Using XML file ..33

Licenses ..33

Log ... 34

Production Nodes .. 34

Global Mirror.. 34

Recordings .. 35

Nodes .. 35

Queries ... 35

Configuration ... 36

Start Generating ... 39

Building and Running a Sample Application ..39

NiSimpleRead .. 40

NiSimpleCreate .. 40

NiCRead ... 40

NiSimpleViewer ... 40

NiSampleModule ... 40

NiConvertXToONI .. 41

NiRecordSynthetic ... 41

NiViewer .. 41

NiBackRecorder ... 42

Troubleshooting .. 44

Glossary .. 44

OpenNI User Guide Page | 4

License Notice
OpenNI is written and distributed under the GNU Lesser General Public License (LGPL) which
means that its source code is freely-distributed and available to the general public.

You can redistribute it and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation, either version 3 of the License, or any
later version.

OpenNI is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details: http://www.gnu.org/licenses/.

Overview

Natural Interaction
The term Natural Interaction (NI) refers to a concept where Human-device interaction is based
on human senses, mostly focused on hearing and vision. Human device NI paradigms render
such external peripherals as remote controls, keypads or a mouse obsolete. Examples of
everyday NI usage include:

 Speech and command recognition, where devices receive instructions via vocal commands.

 Hand gestures, where pre-defined hand gestures are recognized and interpreted to activate
and control devices. For example, hand gesture control enables users to manage living room
consumer electronics with their bare hands.

 Body Motion Tracking, where full body motion is tracked, analyzed and interpreted for
gaming purposes.

What is OpenNI?
OpenNI (Open Natural Interaction) is a multi-language, cross-platform framework that defines
APIs for writing applications utilizing Natural Interaction. OpenNI APIs are composed of a set of
interfaces for writing NI applications. The main purpose of OpenNI is to form a standard API that
enables communication with both:

 Vision and audio sensors (the devices that ‘see’ and ‘hear’ the figures and their
surroundings.)

 Vision and audio perception middleware (the software components that analyze the audio
and visual data that is recorded from the scene, and comprehend it). For example, software
that receives visual data, such as an image, returns the location of the palm of a hand
detected within the image.

http://www.gnu.org/licenses/
http://en.wikipedia.org/wiki/Cross-platform
http://en.wikipedia.org/wiki/Application_programming_interface

OpenNI User Guide Page | 5

OpenNI supplies a set of APIs to be implemented by the sensor devices, and a set of APIs to be
implemented by the middleware components. By breaking the dependency between the sensor
and the middleware, OpenNI’s API enables applications to be written and ported with no
additional effort to operate on top of different middleware modules (“write once, deploy
everywhere”). OpenNI's API also enables middleware developers to write algorithms on top of
raw data formats, regardless of which sensor device has produced them, and offers sensor
manufacturers the capability to build sensors that power any OpenNI compliant application.

The OpenNI standard API enables natural-interaction application developers to track real-life
(3D) scenes by utilizing data types that are calculated from the input of a sensor (for example,
representation of a full body, representation of a hand location, an array of the pixels in a depth
map and so on). Applications can be written regardless of the sensor or middleware providers.

OpenNI is an open source API that is publicly available at www.OpenNI.org.

Abstract Layered View
Figure 1 below displays a three-layered view of the OpenNI Concept with each layer
representing an integral element:

 Top: Represents the software that implements natural interaction applications on top of
OpenNI.

 Middle: Represents OpenNI, providing communication interfaces that interact with both the
sensors and the middleware components, that analyze the data from the sensor.

 Bottom: Shows the hardware devices that capture the visual and audio elements of the
scene.

http://www.openni.org/

OpenNI User Guide Page | 6

Concepts

Modules

The OpenNI Framework is an abstract layer that provides the interface for both physical devices
and middleware components. The API enables multiple components to be registered in the
OpenNI framework. These components are referred to as modules, and are used to produce and
process the sensory data. Selecting the required hardware device component, or middleware
component is easy and flexible.

The modules that are currently supported are:

Sensor Modules

 3D sensor

 RGB camera

 IR camera

 Audio device (a microphone or an array of microphones)

Middleware components

 Full body analysis middleware: a software component that processes sensory data and
generates body related information (typically data structure that describes joints,
orientation, center of mass, and so on).

 Hand point analysis middleware: a software component that processes sensory data and
generates the location of a hand point

 Gesture detection middleware: a software component that identifies predefined gestures
(for example, a waving hand) and alerts the application.

 Scene Analyzer middleware: a software component that analyzes the image of the scene in
order to produce such information as:
o The separation between the foreground of the scene (meaning, the figures) and the

background
o The coordinates of the floor plane
o The individual identification of figures in the scene.

OpenNI User Guide Page | 7

Example

The illustration below displays a scenario in which 5 modules are registered to work with an
OpenNI installation. Two of the modules are 3D sensors that are connected to the host. The
other three are middleware components, including two that produce a person’s full-body data,
and one that handles hand point tracking.

Modules, whether software or actual devices that wish to be OpenNI compliant, must
implement certain interfaces.

Production Nodes

"Meaningful"3D data is defined as data that can comprehend, understand and translate the
scene. Creating meaningful 3D data is a complex task. Typically, this begins by using a sensor
device that produces a form of raw output data. Often, this data is a depth map, where each
pixel is represented by its distance from the sensor. Dedicated middleware is then used to
process this raw output, and produce a higher-level output, which can be understood and used
by the application.

OpenNI defines Production Nodes, which are a set of components that have a productive role in
the data creation process required for Natural Interaction based applications. Each production
node encapsulates the functionality that relates to the generation of the specific data type.
These production nodes are the fundamental elements of the OpenNI interface provided for the
applications. However, the API of the production nodes only defines the language. The logic of
data generation must be implemented by the modules that plug into OpenNI.

For example, there is a production node that represents the functionality of generating hand-
point data. The logic of hand-point data generation must come from an external middleware
component that is both plugged into OpenNI, and also has the knowledge of how to produce
such data.

OpenNI User Guide Page | 8

In principal, each production node is a standalone unit that generates a specific type of data,
and can provide it to any object, whether it be another production node, or the application
itself. However, typically some production nodes always use other production nodes that
represent lower level data types, analyze this lower level data and produce higher level data for
the application.

Example
The application wants to track the motion of a human figure in a 3D scene. This requires a
production node that provides body data for the application, or, in other words, a user
generator. This specific user generator obtains its data from a depth generator. A depth
generator is a production node that is implemented by a sensor, which takes raw sensory data
from a depth sensor (for example, a stream of X frames per second) and outputs a depth map.

Common examples of higher level output are as described and illustrated below:

 The location of a user’s hand.
The output can be either the center of the palm (often referred to as ‘hand point’) or the
finger tips.

 The identification of a figure within the scene.
The output is the current location and orientation of the joints of this figure (often referred
to as ‘body data’).

OpenNI User Guide Page | 9

 The identification of a hand gesture (for example, waving).
The output is an alert to the application that a specific hand gesture has occurred.

Production Node Types

Each production node in OpenNI has a type and belongs to one of the following categories:

 Sensor-Related Production Nodes

 Middleware-Related Production Nodes

The production node types that are currently supported in OpenNI are:

Sensor-Related Production Nodes

 Device: A node that represents a physical device (for example, a depth sensor, or an RGB
camera). The main role of this node is to enable device configuration.

 Depth Generator: A node that generates a depth-map. This node should be implemented
by any 3D sensor that wishes to be certified as OpenNI compliant.

 Image Generator: A node that generates colored image-maps. This node should be
implemented by any color sensor that wishes to be certified as OpenNI compliant

 IR Generator: A node that generates IR image-maps. This node should be implemented by
any IR sensor that wishes to be certified as OpenNI compliant.

 Audio Generator: A node that generates an audio stream. This node should be implemented
by any audio device that wishes to be certified as OpenNI compliant.

Middleware-Related Production Nodes

 Gestures Alert Generator: Generates callbacks to the application when specific gestures are
identified.

 Scene Analyzer: Analyzes a scene, including the separation of the foreground from the
background, identification of figures in the scene, and detection of the floor plane.
The Scene Analyzer’s main output is a labeled depth map, in which each pixel holds a label
that states whether it represents a figure, or it is part of the background.

 Hand Point Generator: Supports hand detection and tracking. This node generates
callbacks that provide alerts when a hand point (meaning, a palm) is detected, and when a
hand point currently being tracked, changes its location.

 User Generator: Generates a representation of a (full or partial) body in the 3D scene.

OpenNI User Guide Page | 10

For recording purposes, the following production node types are supported:

 Recorder: Implements data recordings
 Player: Reads data from a recording and plays it
 Codec: Used to compress and decompress data in recordings

Production Chains

As explained previously, several modules (middleware components and sensors) can be
simultaneously registered to a single OpenNI implementation. This topology offers applications
the flexibility to select the specific sensor devices and middleware components with which to
produce and process the data.

What is a production chain?

In the Production Nodes section, an example was presented in which a user generator type of
production node is created by the application. In order to produce body data, this production
node uses a lower level depth generator, which reads raw data from a sensor. In the example
below, the sequence of nodes (user generator => depth generator), is reliant on each other in
order to produce the required body data, and is called a production chain.

Different vendors (brand names) can supply their own implementations of the same type of
production node.

Example:
Brand A provides an implementation (a module) of user generator middleware. Brand B provides
separate middleware that implements a user generator. Both generators are available to the
application developer. OpenNI enables the application to define which modules, or production
chain, to use. The OpenNI interface enumerates all possible production chains according to the
registered modules. The application can then choose one of these chains, based on the
preference for a specific brand, component, or version and so on, and create it.
Note: An application can also be non-specific, and request the first enumerated production chain
from OpenNI.

Typically, an application is only interested in the top product node of each chain. This is the
node that outputs the required data on a practical level, for example, a hand point generator.
OpenNI enables the application to use a single node, without being aware of the production
chain beneath this node. For advanced tweaking, there is an option to access this chain, and
configure each of the nodes.

OpenNI User Guide Page | 11

For example, if we look at the system illustration that was presented earlier, it described
multiple registered modules and devices. Once an application requests a user generator,
OpenNI returns the following four optional production chains to be used to obtain body data:

The above illustration shows a scenario in which the following modules were registered to
OpenNI:

 Two body middleware components, each being different brands.

 Two 3D sensors, each being two different brands

This illustration displays the four optional production chains that were found for this
implementation. Each chain represents a possible combination of a body middleware
component and a 3D sensor device. OpenNI offers the application the option to choose from the
above four production chain alternatives.

Capabilities
The Capabilities mechanism supports the flexibility of the registration of multiple middleware
components and devices to OpenNI. OpenNI acknowledges that different providers may have
varying capabilities and configuration options for their production nodes, and therefore, certain
non-mandatory extensions are defined by the OpenNI API. These optional extensions to the API
are called Capabilities, and reveal additional functionality, enabling providers to decide
individually whether to implement an extension. A production node can be asked whether it
supports a specific capability. If it does, those functions can be called for that specific node.

OpenNI is released with a specific set of capabilities, with the option of adding further
capabilities in the future. Each module can declare the capabilities it supports. Furthermore,
when requesting enumeration of production chains, the application can specify the capabilities
that should be supported as criteria. Only modules that support the requested capability are
returned by the enumeration.

OpenNI User Guide Page | 12

Currently supported capabilities:

 Alternative View: Enables any type of map generator (depth, image, IR) to transform its
data to appear as if the sensor is placed in another location (represented by another
production node, usually another sensor).

 Cropping: Enables a map generator (depth, image, IR) to output a selected area of the frame
as opposed to the entire frame. When cropping is enabled, the size of the generated map is
reduced to fit a lower resolution (less pixels). For example, if the map generator is working
in VGA resolution (640x480) and the application chooses to crop at 300x200, the next pixel
row will begin after 300 pixels. Cropping can be very useful for performance boosting.

 Frame Sync: Enables two sensors producing frame data (for example, depth and image) to
synchronize their frames so that they arrive at the same time.

 Mirror: Enables mirroring of the data produced by a generator. Mirroring is useful if the
sensor is placed in front of the user, as the image captured by the sensor is mirrored, so the
right hand appears as the left hand of the mirrored figure.

 Pose Detection: Enables a user generator to recognize when the user is posed in a specific
position.

 Skeleton: Enables a user generator to output the skeletal data of the user. This data includes
the location of the skeletal joints, the ability to track skeleton positions and the user
calibration capabilities.

 User Position: Enables a Depth Generator to optimize the output depth map that is
generated for a specific area of the scene.

 Error State: Enables a node to report that it is in "Error" status, meaning that on a practical
level, the node may not function properly.

 Lock Aware: Enables a node to be locked outside the context boundary. For more
information, see Sharing Devices between Applications and Locking Nodes.

Generating and Reading Data
Generating Data

Production nodes that also produce data are called Generators, as discussed previously. Once
these are created, they do not immediately start generating data, to enable the application to
set the required configuration. This ensures that once the object begins streaming data to the
application, the data is generated according to the required configuration. Data Generators do
not actually produce any data until specifically asked to do so. The
xn::Generator::StartGenerating() function is used to begin generating. The application may also
want to stop the data generation without destroying the node, in order to store the
configuration, and can do this using the xn::Generator::StopGenerating function.

Reading Data

Data Generators constantly receive new data. However, the application may still be using older
data (for example, the previous frame of the depth map). As a result of this, any generator
should internally store new data, until explicitly requested to update to the newest available
data.

mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/group__generator.html
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/group__mapgen.html
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/classxn_1_1_generator.html#a4fa8a933a96765b30537b5203da3381e
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/classxn_1_1_generator.html#ae955127df36f3c71e76bdc5f2e383065

OpenNI User Guide Page | 13

This means that Data Generators "hide" new data internally, until explicitly requested to expose
the most updated data to the application, using the UpdateData request function. OpenNI
enables the application to wait for new data to be available, and then update it using the
xn::Generator::WaitAndUpdateData() function.

In certain cases, the application holds more than one node, and wants all the nodes to be
updated. OpenNI provides several functions to do this, according to the specifications of what
should occur before the UpdateData occurs:

 xn::Context::WaitAnyUpdateAll(): Waits for any node to have new data. Once new data is
available from any node, all nodes are updated.

 xn::Context::WaitOneUpdateAll(): Waits for a specific node to have new data. Once new
data is available from this node, all nodes are updated. This is especially useful when several
nodes are producing data, but only one determines the progress of the application.

 xn::Context::WaitNoneUpdateAll(): Does not wait for anything. All nodes are immediately
updated.

 xn::Context::WaitAndUpdateAll(): Waits for all nodes to have new data available, and then
updates them.

The above four functions exit after a timeout of two seconds. It is strongly advised that you use
one of the xn::Context::Wait*…+UpdateAll() functions, unless you only need to update a specific
node. In addition to updating all the nodes, these functions have the following additional
benefits:

 If nodes depend on each other, the function guarantees that the "needed" node (the lower-
level node generating the data for another node) is updated before the "needing" node.

 When playing data from a recording, the function reads data from the recording until the
condition is met.

 If a recorder exists, the function automatically records the data from all nodes added to this
recorder.

Mock Nodes
OpenNI provides a mock implementation for nodes. A mock implementation of a node does not
contain any logic for generating data. Instead, it allows an outside component (such as an
application, or another node implementation) feed it configuration changes and data. Mock
nodes are rarely required by the application, and are usually used by player nodes to simulate
actual nodes when reading data from a recording.

Sharing Devices between Applications and Locking
Nodes

In most cases, the data generated by OpenNI nodes comes from a hardware device. A hardware
device can usually be set to more than one configuration. Therefore, if several applications all
using the same hardware device are running simultaneously, their configuration must be
synchronized.

mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/classxn_1_1_generator.html#aaf3162a87a79a05fa655f344c835fa2e
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/classxn_1_1_context.html#a17fab043d7b6d60728511527a1d5c090
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/classxn_1_1_context.html#ad4bab84f35a855639d485da99a05c585
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/classxn_1_1_context.html#ae498b727aa0fdade75f91bdb2563f88c
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/classxn_1_1_context.html#a52929d2a535166b18098e066900f9d59
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/conc__locks.html
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/conc__locks.html

OpenNI User Guide Page | 14

However, usually, when writing an application, it is impossible to know what other applications
may be executed simultaneously, and as such, synchronization of the configuration is not
possible. Additionally, sometimes it is essential that an application use a specific configuration,
and no other.

OpenNI has two modes that enable multiple applications to share a hardware device:

 Full Sharing (default): In this mode, the application declares that it can handle any
configuration of this node. OpenNI interface enables registering to callback functions of any
configuration change, so the application can be notified whenever a configuration changes
(by the same application, or by another application using the same hardware device).

 Locking Configuration: In this mode, an application declares that it wants to lock the current
configuration of a specific node. OpenNI will therefore not allow "Set" functions to be called
on this node. If the node represents a hardware device (or anything else that can be shared
between processes), it should implement the "Lock Aware" capability, which enables locking
across process boundaries.

Note: When a node is locked, the locking application receives a lock handle. Other than using
this handle to unlock the node, the handle can also be used to change the node configuration
without releasing the lock (in order that the node configuration will not be "stolen" by another
application).

Licensing
OpenNI provides a simple licensing mechanism that can be used by modules and applications.
An OpenNI context object, which is an object that holds the complete state of applications using
OpenNI, holds a list of currently loaded licenses. This list can be accessed at any stage to search
for a specific license.

A license is composed of a vendor name and a license key. Vendors who want to use this
mechanism can utilize their own proprietary format for the key.

The license mechanism is used by modules, to ensure that they are only used by authorized
applications A module of a particular vendor can be installed on a specific machine, and only be
accessible if the license is provided by the application using the module. During the enumeration
process, when OpenNI searches for valid production chains, the module can check the licenses
list. If the requested license is not registered, the module is able to hide itself, meaning that it
will return zero results and therefore not be counted as a possible production chain.

OpenNI also provides a global registry for license keys, which are loaded whenever a context is
initialized. Most modules require a license key from the user during installation. The license
provided by the user can then be added to the global license registry, using the niLicense
command-line tool, which can also be used to remove licenses.

Additionally, applications sometimes have private licenses for a module, meaning that this
module can only be activated using this application (preventing other applications from using it).

mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/nilicense.html

OpenNI User Guide Page | 15

General Framework Utilities

In addition to the formal OpenNI API, a set of general framework utilities is also published,
intended mainly to ease the portability over various architectures and operating systems. The
utilities include:

 A USB access abstract layer (provided with a driver for Microsoft Windows)

 Certain basic data type implementation (including list, hash, and so on)

 Log and dump systems

 Memory and performance profiling

 Events (enabling callbacks to be registered to a specific event)

 Scheduling of tasks

Those utilities are available to any application using OpenNI. However, these utilities are not
part of standard OpenNI, and as such, backwards compatibility is only guaranteed to a certain
extent.

Recording

Recordings are a powerful debug tool. They enable full capture of the data and the ability to
later stream it back so that applications can simulate an exact replica of the situation to be
debugged.

OpenNI supports recordings of the production nodes chain; both the entire configuration of
each node, and all data streamed from a node.

OpenNI has a framework for recording data and for playing it back (using mock nodes). It also
comes with the nimRecorder module, which defines a new file format (".ONI") - and implements
a Recorder node and a Player node for this format.

Production Node Error Status
Each production node has an error status, indicating whether it is currently functional. For
example, a device node may not be functional if the device is disconnected from the host
machine. The default error state is always OK, unless an Error Status capability is implemented.
This capability allows the production node to change its error status if an error occurs. A node
that does not implement this capability always has a status of "OK".

An application can check the error status of each node although it mostly only needs to know if
any node has an error status, and is less interested which node (other than for user notification
purposes). In order to receive notifications about a change in the error status of a node, the
application can register to a callback that will alert of any change in a node's error status.

mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/conc__mocks.html

OpenNI User Guide Page | 16

OpenNI aggregates the error statuses of all the nodes together into a single error status, called
Global Error Status. This makes it easier for applications to find out about the current state of a
node or nodes. A global error status of XN_STATUS_OK means that all the nodes are OK. If only
one node has an error status, that error status becomes the global error status (for example, if
one sensor is disconnected, the OpenNI global error status is
XN_STATUS_DEVICE_NOT_CONNECTED). If more than one node has an error status, the global
error status is XN_STATUS_MULTIPLE_NODES_ERROR. In such a situation, the application can
review all nodes and check which one has an error status, and why.

Backwards Compatibility
OpenNI declares full backwards compatibility. This means that every application developed over
any version of OpenNI, can also work with every future OpenNI version, without requiring
recompilation.

On a practical level, this means that each computer should ideally have the latest OpenNI
version installed on it. If not this, then the latest OpenNI version required by any of the
applications installed on this computer. In order to achieve this, we recommend that the
application installation should also install OpenNI.

Getting Started

Supported Platforms
OpenNI is available on the following platforms:

 Windows XP and later, for 32-bit only

 Linux Ubuntu 10.10 and later, for x86

Main Objects
The Context Object

The context is the main object in OpenNI. A context is an object that holds the complete state of
applications using OpenNI, including all the production chains used by the application. The same
application can create more than one context, but the contexts cannot share information. For
example, a middleware node cannot use a device node from another context. The context must
be initialized once, prior to its initial use. At this point, all plugged-in modules are loaded and
analyzed. To free the memory used by the context, the application should call the shutdown
function.

Metadata Objects

OpenNI Metadata objects encapsulate a set of properties that relate to specific data alongside
the data itself. For example, typical property of a depth map is the resolution of this map (for
example, the number of pixels on both an X and a Y axis). Each generator that produces data has
its own specific metadata object.

OpenNI User Guide Page | 17

In addition, the metadata objects play an important role in recording the configuration of a node
at the time the corresponding data was generated. Sometimes, while reading data from a node,
an application changes the node configuration. This can cause inconsistencies that may cause
errors in the application, if not handled properly.

Example
A depth generator is configured to produce depth maps in QVGA resolution (320x240 pixels), and
the application constantly reads data from it. At some point, the application changes the node
output resolution to VGA (640x480 pixels). Until a new frame arrives, the application may
encounter inconsistency where calling the xn::DepthGenerator::GetDepthMap() function will
return a QVGA map, but calling the xn::DepthGenerator::GetMapOutputMode() function will
return that the current resolution is a VGA map. This can result in the application assuming that
the depth map that was received is in VGA resolution, and therefore try to access nonexistent
pixels.

The solution is as follows: Each node has its metadata object, that records the properties of the
data when it was read. In the above case, the correct way to handle data would be to get the
metadata object, and read both the real data (in this case, a QVGA depth map) and its
corresponding resolution from this object.

Configuration Changes

Each configuration option in OpenNI interfaces comprises the following functions:

 A Set function for modifying the configuration.

 A Get function for providing the current value.

 Register and Unregister functions, enabling registration for callback functions to be called
when this option changes.

Data Generators

Map Generator

The basic interface for all data generators that produce any type of map.

Main functionalities:

 Output Mode property: Controls the configuration by which to generate the map

 Cropping capability

 Alternative Viewpoint capability

 Frame Sync capability

Depth Generator

An object that generates a depth map.

Main Functionalities:

 Get depth map: Provides the depth map

 Get Device Max Depth: The maximum distance available for this depth generator

 Field of View property: Configures the values of the horizontal and vertical angles of the
sensor

mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/classxn_1_1_depth_generator.html#a595b24d346a23327a4effb695451b384
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/classxn_1_1_map_generator.html#a1fd1a64c376d7a47b2951bd996939644

OpenNI User Guide Page | 18

 User Position capability

Image Generator

A Map Generator that generates a color image map.

Main Functionalities:

 Get Image Map: Provides the color image map

 Pixel format property

IR Generator

A map generator that generates an IR map.

Main Functionality:

 Get IR Map: Provides the current IR map

Scene Analyzer

A map generator that gets raw sensory data and generates a map with labels that clarify the
scene.

Main Functionalities:

 Get Label Map: Provides a map in which each pixel has a meaningful label (i.e. figure 1,
figure 2, background, and so on)

 Get Floor: get the coordinates of the floor plane

Audio Generator

An object that generates Audio data.

Main Functionalities:

 Get Audio Buffer

 Wave Output Modes property: Configure the audio output, including sample rate, number
of channels and bits-per-sample

Gesture Generator

An object that enables specific body or hand gesture tracking

Main Functionalities:

 Add/Remove Gesture: Turn on/off a gesture. Once turned on, the generator will start
looking for this gesture.

 Get Active Gestures: Provides the names of the gestures that are currently active

 Register/Unregister Gesture callbacks

 Register/Unregister Gesture change

Hand Point Generator

An object that enables hand point tracking.

Main Functionalities:

 Start/Stop Tracking: Start/stop tracking a specific hand (according to its position)

mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/classxn_1_1_module_depth_generator.html#a9707e516cf279f39c82e508561782f68

OpenNI User Guide Page | 19

 Register/Unregister Hand Callbacks: The following actions will generate hand callbacks:
o When a new hand is created
o When an existing hand is in a new position
o When an existing hand disappears

User Generator

An object that generates data relating to a figure in the scene.

Main Functionalities:

 Get Number of Users: Provides the number of users currently detected in the scene

 Get Users: Provides the current users

 Get User CoM: Returns the location of the center of mass of the user

 Get User Pixels: Provides the pixels that represent the user. The output is a map of the
pixels of the entire scene, where the pixels that represent the body are labeled User ID.

 Register/Unregister user callbacks: The following actions will generate user callbacks:
o When a new user is identified
o When an existing user disappears

Creating an empty project that uses OpenNI

1. Open a new project or an existing one with which you want to use OpenNI.
2. In the Visual Studio menu, open the Project menu and choose Project properties.
3. In the C/C++ section, under the General node, select =>Additional Include Directories and

add "$(OPEN_NI_INCLUDE)". This is an environment variable that points to the location of
the OpenNI Include directory. (The default location is: C:\Program files\OpenNI\Include.)

4. In the Linker section, under the General node, select Additional Library Directories and add
"$(OPEN_NI_LIB)". This is an environment variable that points to the location of the OpenNI
include directory. (The default location is: C:\Program files\OpenNI\Lib.)

5. In the Linker section, under the Input node, select Additional Dependencies and add
OpenNI.lib.

6. If you wish to use an XML file to configure OpenNI, you can start from the basic XML file that
can be found in the OpenNI Data folder. (The default location is: C:\Program
files\OpenNI\Data.) For further information about OpenNI xml scripts, see Xml Scripts.

7. Ensure that you add the Additional Include and Library directories to both your Release and
Debug configurations.

8. Your code files should include XnOpenNI.h if using the C interface, or XnCppWrapper.h if
using the C++ interface.

mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/new__app.html
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/xmlscripts.html
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/_xn_open_n_i_8h.html
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/_xn_cpp_wrapper_8h.html

OpenNI User Guide Page | 20

Basic Functions: Initialize, Create a Node and Read
Data

The following code illustrates the basic functionality of OpenNI. It initializes a Context object,
and creates and reads data from a single Depth node.

XnStatus nRetVal = XN_STATUS_OK;

xn::Context context;

// Initialize context object

nRetVal = context.Init();

// TODO: check error code

// Create a DepthGenerator node

xn::DepthGenerator depth;

nRetVal = depth.Create(context);

// TODO: check error code

// Make it start generating data

nRetVal = context.StartGeneratingAll();

// TODO: check error code

// Main loop

while (bShouldRun)

{

 // Wait for new data to be available

 nRetVal = context.WaitOneUpdateAll(depth);

 if (nRetVal != XN_STATUS_OK)

 {

 printf("Failed updating data: %s\n",

xnGetStatusString(nRetVal));

 continue;

 }

 // Take current depth map

 const XnDepthPixel* pDepthMap = depth.GetDepthMap();

 // TODO: process depth map

mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/basic.html
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/basic.html
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/group__context.html
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/_xn_status_8h.html#a23967099202ddb640cd2044b3808253c
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/classxn_1_1_context.html
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/classxn_1_1_context.html#adfc68c424c840a788d0903e20a95e541
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/classxn_1_1_depth_generator.html
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/classxn_1_1_depth_generator.html#a7a20818a005e6a292d5adf82f8a8fc98
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/classxn_1_1_context.html#affa5173b7c32b98d344ab2c8634f2cb7
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/classxn_1_1_context.html#ad4bab84f35a855639d485da99a05c585
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/_xn_status_8h.html#a8a6e38b12a989afac9f0e2afd76f8605
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/_xn_types_8h.html#ad55e431b82556504d5c1c00d153156c9
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/classxn_1_1_depth_generator.html#a595b24d346a23327a4effb695451b384

OpenNI User Guide Page | 21

}

// Clean-up

context.Shutdown();

Enumerating Possible Production Chains
The following code demonstrates how to fine control the enumeration process. It enumerates
Production Chains for producing User output, reduces the options using a basic query, and then
chooses the first of all the possibilities.

// Build a query object

xn::Query query;

nRetVal = query.SetVendor("MyVendor");

// TODO: check error code

query.AddSupportedCapability(XN_CAPABILITY_SKELETON);

// TODO: check error code

// Enumerate

xn::NodeInfoList possibleChains;

nRetVal = context.EnumerateProductionTrees(XN_NODE_TYPE_USER, &query,

possibleChains, NULL);

// TODO: check error code

// No errors so far. This means list has at least one item. Take the

first one

xn::NodeInfo selected = *possibleChains.Begin();

// Create it

nRetVal = context.CreateProductionTree(selected);

// TODO: check error code

// Take the node

xn::UserGenerator userGen;

nRetVal = selected.GetInstance(userGen);

// TODO: check error code

// Now we can start to use it

mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/classxn_1_1_context.html#a540ce910df984fba8995f229cd299466
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/tut__enum.html
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/classxn_1_1_query.html
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/classxn_1_1_query.html#aa0ba8c8db03a4d6b5c9c694c4fb81769
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/classxn_1_1_query.html#ab9e676cbf419d9a91bcd046b4193cb8a
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/_xn_types_8h.html#a62ac1922557ef6246bec2f2b706b129f
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/classxn_1_1_node_info_list.html
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/classxn_1_1_context.html#a98b4e21182556cfc4833e7772f8eacba
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/_xn_types_8h.html#aee86ae1c5986afc66f6495c530d7b346ac93391e720c5a61b844cdee1ebc86ec7
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/classxn_1_1_node_info.html
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/classxn_1_1_node_info_list.html#ac3ea53d25467c429341ac7d0829bb25e
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/classxn_1_1_context.html#a3d4b965c181f9b1e6b215925512d7a38
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/classxn_1_1_user_generator.html
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/classxn_1_1_node_info.html#a8ad87ca850fcfcc02108e85878a54892

OpenNI User Guide Page | 22

Understanding why enumeration failed

Sometimes an application enumerates for a specific node, and receives zero results. An obvious
reason would be that no module implementing the node type was installed, although there are
other possible reasons, including that a module may be installed but have no license, or a
required hardware device is currently disconnected.

OpenNI enables the application to acquire a full list of modules that failed to enumerate,
including why each one failed, by using the xn::EnumerationErrors function.

The following code attempts to create a Hands Generator node, and if enumeration fails, checks
all errors:

xn::EnumerationErrors errors;

xn::HandsGenerator handsGen;

nRetVal = context.CreateAnyProductionTree(XN_NODE_TYPE_HANDS, NULL,

handsGen, &errors);

if (nRetVal == XN_STATUS_NO_NODE_PRESENT)

{

 // Iterate over enumeration errors, and print each one

 for (xn::EnumerationErrors::Iterator it = errors.Begin(); it !=

errors.End(); ++it)

 {

 XnChar strDesc[512];

 xnProductionNodeDescriptionToString(&it.Description(), strDesc,

512);

 printf("%s failed to enumerate: %s\n",

xnGetStatusString(it.Error()));

 }

 return (nRetVal);

}

else if (nRetVal != XN_STATUS_OK)

{

 printf("Create failed: %s\n", xnGetStatusString(nRetVal));

 return (nRetVal);

}

Working with Depth, Color and Audio Maps
The following code creates a depth generator, checks if it can generate VGA maps in 30 FPS,
configures it to that mode, and then reads frames from it, printing out the middle pixel value:

XnStatus nRetVal = XN_STATUS_OK;

Context context;

mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/tut__enumeration__errors.html
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/classxn_1_1_enumeration_errors.html
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/classxn_1_1_enumeration_errors.html
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/classxn_1_1_hands_generator.html
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/classxn_1_1_context.html#a4dba9b1553322cfb4ecdff6b6c93a182
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/_xn_types_8h.html#aee86ae1c5986afc66f6495c530d7b346a1c981c7a091b029bd2ac2f8e9ff2d273
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/classxn_1_1_enumeration_errors_1_1_iterator.html
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/classxn_1_1_enumeration_errors.html#a52aec7854f2e2786d0d2902a5f1c5970
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/classxn_1_1_enumeration_errors.html#ab4375be31a2840bf8ae676fb7c12af9f
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/group__utils.html#ga512985a4d5f1cbcfdf321a707c9fa87e
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/_xn_status_8h.html#a8a6e38b12a989afac9f0e2afd76f8605
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/_xn_status_8h.html#a8a6e38b12a989afac9f0e2afd76f8605

OpenNI User Guide Page | 23

nRetVal = context.Init();

// TODO: check error code

// Create a depth generator

DepthGenerator depth;

nRetVal = depth.Create(context);

// TODO: check error code

// Set it to VGA maps at 30 FPS

XnMapOutputMode mapMode;

mapMode.nXRes = XN_VGA_X_RES;

mapMode.nYRes = XN_VGA_Y_RES;

mapMode.nFPS = 30;

nRetVal = depth.SetMapOutputMode(mapMode);

// TODO: check error code

// Start generating

nRetVal = context.StartGeneratingAll();

// TODO: check error code

// Calculate index of middle pixel

XnUInt32 nMiddleIndex =

 XN_VGA_X_RES * XN_VGA_Y_RES/2 + // start of middle line

 XN_VGA_X_RES/2; // middle of this line

while (TRUE)

{

 // Update to next frame

 nRetVal = context.WaitOneUpdateAll(depth);

 // TODO: check error code

 const XnDepthPixel* pDepthMap = depth.GetDepthMap();

 printf("Middle pixel is %u millimeters away\n",

 pDepthMap[nMiddleIndex]);

}

// Clean up

OpenNI User Guide Page | 24

context.Shutdown();

Working with the Skeleton
The following code shows how to identify when a new user is detected, look for a pose for that
user, calibrate the user when they are in the pose, and track them.

Specifically, it prints out the location of the user’s head, as they are tracked.

#define POSE_TO_USE "Psi"

xn::UserGenerator g_UserGenerator;

void XN_CALLBACK_TYPE

User_NewUser(xn::UserGenerator& generator,

 XnUserID nId, void* pCookie)

{

 printf("New User: %d\n", nId);

 g_UserGenerator.GetPoseDetectionCap().StartPoseDetection(POSE_TO_USE,

 nId);

}

void XN_CALLBACK_TYPE

User_LostUser(xn::UserGenerator& generator, XnUserID nId,

 void* pCookie)

{}

void XN_CALLBACK_TYPE

Pose_Detected(xn::PoseDetectionCapability& pose, const XnChar* strPose,

 XnUserID nId, void* pCookie)

{

 printf("Pose %s for user %d\n", strPose, nId);

 g_UserGenerator.GetPoseDetectionCap().StopPoseDetection(nId);

 g_UserGenerator.GetSkeletonCap().RequestCalibration(nId, TRUE);

}

void XN_CALLBACK_TYPE

Calibration_Start(xn::SkeletonCapability& capability, XnUserID nId,

 void* pCookie)

{

 printf("Starting calibration for user %d\n", nId);

}

void XN_CALLBACK_TYPE

Calibration_End(xn::SkeletonCapability& capability, XnUserID nId,

OpenNI User Guide Page | 25

 XnBool bSuccess, void* pCookie)

{

 if (bSuccess)

 {

 printf("User calibrated\n");

 g_UserGenerator.GetSkeletonCap().StartTracking(nId);

 }

 else

 {

 printf("Failed to calibrate user %d\n", nId);

 g_UserGenerator.GetPoseDetectionCap().StartPoseDetection(

 POSE_TO_USE,

 nId);

 }

}

void main()

{

 XnStatus nRetVal = XN_STATUS_OK;

 xn::Context context;

 nRetVal = context.Init();

 // TODO: check error code

 // Create the user generator

 nRetVal = g_UserGenerator.Create(context);

 // TODO: check error code

 XnCallbackHandle h1, h2, h3;

 g_UserGenerator.RegisterUserCallbacks(User_NewUser, User_LostUser,

 NULL, h1);

 g_UserGenerator.GetPoseDetectionCap().RegisterToPoseCallbacks(

 Pose_Detected, NULL, NULL, h2);

 g_UserGenerator.GetSkeletonCap().RegisterCalibrationCallbacks(

 Calibration_Start, Calibration_End, NULL, h3);

 // Set the profile

OpenNI User Guide Page | 26

 g_UserGenerator.GetSkeletonCap().SetSkeletonProfile(

 XN_SKEL_PROFILE_ALL);

 // Start generating

 nRetVal = context.StartGeneratingAll();

 // TODO: check error code

 while (TRUE)

 {

 // Update to next frame

 nRetVal = context.WaitAndUpdateAll();

 // TODO: check error code

 // Extract head position of each tracked user

 XnUserID aUsers[15];

 XnUInt16 nUsers = 15;

 g_UserGenerator.GetUsers(aUsers, nUsers);

 for (int i = 0; i < nUsers; ++i)

 {

 if (g_UserGenerator.GetSkeletonCap().IsTracking(aUsers[i]))

 {

 XnSkeletonJointPosition Head;

 g_UserGenerator.GetSkeletonCap().GetSkeletonJointPosition(

 aUsers[i], XN_SKEL_HEAD, Head);

 printf("%d: (%f,%f,%f) [%f]\n", aUsers[i],

 Head.position.X, Head.position.Y, Head.position.Z,

 Head.fConfidence);

 }

 }

 }

 // Clean up

 context.Shutdown();

}

Working with Hand Point
The following code shows how to look for hand gestures, and once a gesture is identified, to
start tracking that hand.

OpenNI User Guide Page | 27

#define GESTURE_TO_USE "Click"

xn::GestureGenerator g_GestureGenerator;

xn::HandsGenerator g_HandsGenerator;

void XN_CALLBACK_TYPE

Gesture_Recognized(xn::GestureGenerator& generator,

 const XnChar* strGesture,

 const XnPoint3D* pIDPosition,

 const XnPoint3D* pEndPosition, void* pCookie)

{

 printf("Gesture recognized: %s\n", strGesture);

 g_GestureGenerator.RemoveGesture(strGesture);

 g_HandsGenerator.StartTracking(*pEndPosition);

}

void XN_CALLBACK_TYPE

Gesture_Process(xn::GestureGenerator& generator,

 const XnChar* strGesture,

 const XnPoint3D* pPosition,

 XnFloat fProgress,

 void* pCookie)

{}

void XN_CALLBACK_TYPE

Hand_Create(xn::HandsGenerator& generator,

 XnUserID nId, const XnPoint3D* pPosition,

 XnFloat fTime, void* pCookie)

{

 printf("New Hand: %d @ (%f,%f,%f)\n", nId,

 pPosition->X, pPosition->Y, pPosition->Z);

}

void XN_CALLBACK_TYPE

Hand_Update(xn::HandsGenerator& generator,

 XnUserID nId, const XnPoint3D* pPosition,

 XnFloat fTime, void* pCookie)

{

}

OpenNI User Guide Page | 28

void XN_CALLBACK_TYPE

Hand_Destroy(xn::HandsGenerator& generator,

 XnUserID nId, XnFloat fTime,

 void* pCookie)

{

 printf("Lost Hand: %d\n", nId);

 g_GestureGenerator.AddGesture(GESTURE_TO_USE, NULL);

}

void main()

{

 XnStatus nRetVal = XN_STATUS_OK;

 Context context;

 nRetVal = context.Init();

 // TODO: check error code

 // Create the gesture and hands generators

 nRetVal = g_GestureGenerator.Create(context);

 nRetVal = g_HandsGenerator.Create(context);

 // TODO: check error code

 // Register to callbacks

 XnCallbackHandle h1, h2;

 g_GestureGenerator.RegisterGestureCallbacks(Gesture_Recognized,

 Gesture_Process,

 NULL, h1);

 g_HandsGenerator.RegisterHandCallbacks(Hand_Create, Hand_Update,

 Hand_Destroy, NULL, h2);

 // Start generating

 nRetVal = context.StartGeneratingAll();

 // TODO: check error code

 nRetVal = g_GestureGenerator.AddGesture(GESTURE_TO_USE);

OpenNI User Guide Page | 29

 while (TRUE)

 {

 // Update to next frame

 nRetVal = context.WaitAndUpdateAll();

 // TODO: check error code

 }

 // Clean up

 context.Shutdown();

}

Working with Audio Generators

As detailed earlier, Audio Generators accumulate data until a call to UpdateData() is made, and
the entire accumulated audio buffer is returned to the application. The size of the audio buffer
may differ from one call to another, and the application should always call the
xn::AudioGenerator::GetDataSize() function to get the current size of the buffer.

The following code creates an audio generator, configures it to CD quality, and then constantly
reads data from it:

Context context;

nRetVal = context.Init();

// TODO: check error code

AudioGenerator audio;

nRetVal = audio.Create(context);

// TODO: check error code

XnWaveOutputMode waveMode;

waveMode.nSampleRate = 44100;

waveMode.nChannels = 2;

waveMode.nBitsPerSample = 16;

nRetVal = audio.SetWaveOutputMode(waveMode);

// TODO: check error code

while (TRUE)

{

 // Update to next data

 nRetVal = context.WaitOneUpdateAll(audio);

OpenNI User Guide Page | 30

 // TODO: check error code

 // Get the audio buffer

 const XnUChar* pAudioBuf = audio.GetAudioBuffer();

 XnUInt32 nBufSize = audio.GetDataSize();

 // Queue the buffer for playing

}

// Clean up

context.Shutdown();

Recording and Playing Data
Recording

To record, an application should create a Recorder node, and set its destination (the file name
to which it should write). The application should then add to the recorder node, every node it
wants to record. When adding a node to the recorder, the recorder reads its configuration and
records it. It also registers to every possible event of the node, so that when any configuration
change takes place, it is also recorded.

Once all required nodes are added, the application can read data from the nodes and record it.
Recording of data can be achieved either by explicitly calling the xn::Recorder::Record()
function, or by using one of the UpdateAll functions (see Reading Data).

Applications that initialize OpenNI using an XML file can easily record their session without any
change to the code. All that is required is that they create an additional node in the XML file for
the recorder, add nodes to it, and when the application calls one of the UpdateAll functions,
recording will occur.

The following code generates a depth generator, and then records it:

// Create a depth generator

DepthGenerator depth;

nRetVal = depth.Create(context);

// TODO: check error code

// Start generating

nRetVal = context.StartGeneratingAll();

// TODO: check error code

// Create Recorder

Recorder recorder;

mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/group__recorder.html#ga68d39b2e51ee5f66443fc64329b3e343

OpenNI User Guide Page | 31

nRetVal = recorder.Create(context);

// TODO: check error code

// Init it

nRetVal = recorder.SetDestination(XN_RECORD_MEDIUM_FILE,

"c:\\temp\\tempRec.oni");

// TODO: check error code

// Add depth node to recording

nRetVal = recorder.AddNodeToRecording(depth, XN_CODEC_16Z_EMB_TABLES);

// TODO: check error code

while (TRUE)

{

 // Update to next frame (this will also record that frame)

 nRetVal = context.WaitOneUpdateAll(depth);

 // TODO: check error code

 // Do application logic

}

Playing

To play a file recording, use the xn::Context::OpenFileRecording() function. OpenNI will open
the file, create a mock node for each node in the file, and populate it with the recorded
configuration.

An application may take the nodes it needs by calling the xn::Context::FindExistingNode()
function, and use them normally.

Note: Nodes created by the player are locked, and cannot be changed, as the configuration
must remain according to the recorded configuration.

Applications that initialize OpenNI using an XML file can easily replace their input. This means
that instead of reading from a real-time device, they read from a recording by replacing the
nodes in the XML file with a recording element (see Recording).

The following code opens up a recording file, and takes the depth generator that was created
for this purpose:

Context context;

nRetVal = context.Init();

// TODO: check error code

mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/classxn_1_1_context.html#ab8dfa42779f343962e5340a4e0cb3762
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/group__context.html#gade7a247130a7e3c5bc77984ec2742798

OpenNI User Guide Page | 32

// Open recording

nRetVal = context.OpenFileRecording("c:\\temp\\tempRec.oni");

// TODO: check error code

// Take the depth node (we assume recording contains a depth node)

DepthGenerator depth;

nRetVal = context.FindExistingNode(XN_NODE_TYPE_DEPTH, depth);

// TODO: check error code

// Add regular application logic

Node Configuration

An application will usually want to fully configure a node prior to beginning to stream data. For
this reason, OpenNI defines a flow in which configuration can take place, and once all
configurations are set, the xn::Generator::StartGenerating() function of the node can be called,
and data streaming can begin.

The following code creates a depth generator, configures it to VGA resolution, 30 FPS, and then
starts it:

// Create a DepthGenerator node

xn::DepthGenerator depth;

nRetVal = depth.Create(context);

// TODO: check error code

XnMapOutputMode outputMode;

outputMode.nXRes = 640;

outputMode.nYRes = 480;

outputMode.nFPS = 30;

nRetVal = depth.SetMapOutputMode(outputMode);

// TODO: check error code

// We're done configuring it. Make it start generating data

nRetVal = context.StartGeneratingAll();

// TODO: check error code

// Main loop

while (bShouldRun)

mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/classxn_1_1_generator.html#a4fa8a933a96765b30537b5203da3381e
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/classxn_1_1_depth_generator.html
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/classxn_1_1_depth_generator.html#a7a20818a005e6a292d5adf82f8a8fc98
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/struct_xn_map_output_mode.html
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/struct_xn_map_output_mode.html#a069752554d19a7c2fb0ac9e49d3f02c8
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/struct_xn_map_output_mode.html#a25bc682450484d16acbfe7f16e0c2530
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/struct_xn_map_output_mode.html#a59b47e091ebe2ad58749dc0609e4b870
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/classxn_1_1_map_generator.html#aea291fb67aea2d2d21d7b0b159884f9d
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/classxn_1_1_context.html#affa5173b7c32b98d344ab2c8634f2cb7

OpenNI User Guide Page | 33

{

 // Wait for new data to be available

 nRetVal = context.WaitOneUpdateAll(depth);

 if (nRetVal != XN_STATUS_OK)

 {

 printf("Failed updating data: %s\n",

xnGetStatusString(nRetVal));

 continue;

 }

 // Take current depth map

 const XnDepthPixel* pDepthMap = depth.GetDepthMap();

 // TODO: process depth map

}

Configuration Using XML file

OpenNI supports using XML as a configuration script. The configuration XML script can be used
for creating nodes and configuring them, as well as for configuring the context itself (adding
license keys, etc.). an XML script can be executed by calling xn::Context::RunXmlScript() and
passing it the XML script as a string, or by calling xn::Context::RunXmlScriptFromFile() and
passing it an XML file to load.

The XML must have one single root node named OpenNI. Under this node there can be three
optional sections: Licenses, Log and Production Nodes.

Licenses

This section can provide additional license keys to be registered. The element name should be
"Licenses", and it should contain a list of elements, each named "License" with two string
attributes: "vendor" and "key". Each such element actually calls xn::Context::AddLicense(). For
example:

<Licenses>

 <License vendor="vendor1" key="key1"/>

 <License vendor="vendor2" key="key2"/>

</Licenses>

mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/classxn_1_1_context.html#ad4bab84f35a855639d485da99a05c585
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/_xn_status_8h.html#a8a6e38b12a989afac9f0e2afd76f8605
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/_xn_types_8h.html#ad55e431b82556504d5c1c00d153156c9
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/classxn_1_1_depth_generator.html#a595b24d346a23327a4effb695451b384
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/classxn_1_1_context.html#af8144e631e0d81d5526649cee8916318
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/classxn_1_1_context.html#a31c7a4aea2fa8c9a0557e72a803bd217
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/xmlscripts.html#xmllics
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/xmlscripts.html#xmllog
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/xmlscripts.html#xmlnodes
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/classxn_1_1_context.html#af06765d6feb2d6bb23deac208ee07a52

OpenNI User Guide Page | 34

Log

This section can configure the OpenNI log system. The element name should be "Log". It can
contain the following optional attributes:

 writeToConsole: "True" or "false" (default). Determines if the log should be written to the
application console.

 writeToFile: "true" or "false" (default). Determines if the log should be written to a file. This
file is located under a Log folder that is created under working directory.

 writeLineInfo: "true" (default) or "false". Determines if every log entry should also contain
the file name and line info from which it was written.

Additionally, it can also contain the following elements:

 LogLevel with the attribute values set to 0 (verbose), 1 (info), 2 (warnings) or 3 (errors,
default). This determines the minimum severity of the log to be written.

 Masks with a list of mask elements, each of which determines if a specific mask is on or off.
 Dumps with a list of dump elements, each of which determines if a specific dump is on or

off.

For example:

<Log writeToConsole="false" writeToFile="false" writeLineInfo="true">

 <LogLevel value="3"/>

 <Masks>

 <Mask name="ALL" on="true" />

 </Masks>

 <Dumps>

 <Dump name="SensorTimestamps" on="false" />

 </Dumps>

</Log>

Production Nodes

This section allows the creation and configuration of nodes. The element name should be
"ProductionNodes", and it can have several child-elements performing various tasks:

Global Mirror

The "ProductionNodes" element can contain an element called "GlobalMirror" which sets the
global mirror (xn::Context::SetGlobalMirror()), according to the "on" attribute ("true" or
"false").

For example:

<ProductionNodes>

 <GlobalMirror on="true" />

</ProductionNodes>

mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/classxn_1_1_context.html#adcdabaa87787c0e3b61e37619c6a6590

OpenNI User Guide Page | 35

Recordings

The "ProductionNodes" element may contain an element called "Recording" that instructs it to
open a recording. For now, OpenNI supports file recordings using the "file" attribute:

<Recording file="c:\myfile.oni" />

Nodes

The "ProductionNodes" element can contain one or more elements named "Node". Each such
element asks OpenNI to enumerate and create a node (similar to the
xn::Context::CreateAnyProductionTree() function). The "Node" element should have a string
attribute named "type" which will indicate the type of the node to be enumerated.

The type can be one of the following:

 Device (XN_NODE_TYPE_DEVICE)
 Depth (XN_NODE_TYPE_DEPTH)
 Image (XN_NODE_TYPE_IMAGE)
 IR (XN_NODE_TYPE_IR)
 Audio (XN_NODE_TYPE_AUDIO)
 Gesture (XN_NODE_TYPE_GESTURE)
 User (XN_NODE_TYPE_USER)
 Scene (XN_NODE_TYPE_SCENE)
 Hands (XN_NODE_TYPE_HANDS)
 Recorder (XN_NODE_TYPE_RECORDER)

Additionally, the "Node" element can have an optional "name" string attribute, which will hold
the requested name of the created node.

Queries

The "Node" element can also declare a query that will be used when enumerating for this node.
It is done by adding a "Query" element to the "Node" element, which can have the following
child-elements:

 "Vendor": Specifies the requested node vendor
 "Name": Specifies the requested node name
 "MinVersion": Specifies the requested node minimum version
 "MaxVersion": Specifies the requested node maximum version.
 "Capabilities": Specifies a list of capabilities that the node must support, each under a

"Capability" sub-element.
 "MapOutputModes": Specifies a list of map output modes that should be supported by the

map generator, each under a "MapOutputMode" object, that contains three attributes:
"xRes", "yRes" and "fps".

 "MinUserPositions": Specifies the minimum number of user positions supported by a depth
generator with the "UserPosition" capability.

 "NeededNodes": Specifies that only production trees containing specific nodes are valid.
Those nodes are declared using a sub-element named "Node".

mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/_xn_types_8h.html#aee86ae1c5986afc66f6495c530d7b346a3f3f170232645dd79fdbe7f7cc4e2097
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/_xn_types_8h.html#aee86ae1c5986afc66f6495c530d7b346a1415a428ab99e92cebedd4fdb1fe74c6
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/_xn_types_8h.html#aee86ae1c5986afc66f6495c530d7b346a6c93c4744f518c307c7c60f3b86937e4
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/_xn_types_8h.html#aee86ae1c5986afc66f6495c530d7b346a521e7cfb9cf7fcdf6878d32904314c9c
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/_xn_types_8h.html#aee86ae1c5986afc66f6495c530d7b346a8303fcf880f5c311b1a370c83cae3da3
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/_xn_types_8h.html#aee86ae1c5986afc66f6495c530d7b346ab68e8ada4e17a3cfbfcbf2dccdc11a55
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/_xn_types_8h.html#aee86ae1c5986afc66f6495c530d7b346ac93391e720c5a61b844cdee1ebc86ec7
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/_xn_types_8h.html#aee86ae1c5986afc66f6495c530d7b346aefdf879d85f73f61fcdf32d4e796682a
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/_xn_types_8h.html#aee86ae1c5986afc66f6495c530d7b346a1c981c7a091b029bd2ac2f8e9ff2d273
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/_xn_types_8h.html#aee86ae1c5986afc66f6495c530d7b346ab692ee9629e719de76e3667fd628a2ab

OpenNI User Guide Page | 36

If more than one such element is present, all conditions are checked using the "AND" operator.

For example, the following code will try to create a depth node, supplied by vendor1, named
name1, from version 1.0.0.0 to 3.1.0.5, supporting the "UserPosition" and "Mirror" capabilities,
a 30 FPS output mode VGA, at least 2 user positions, including user position that uses the
"MyDevice" node.

<Node type="Depth" name="MyDepth">

 <Query>

 <Vendor>vendor1</Vendor>

 <Name>name1</Name>

 <MinVersion>1.0.0.0</MinVersion>

 <MaxVersion>3.1.0.5</MaxVersion>

 <Capabilities>

 <Capability>UserPosition</Capability>

 <Capability>Mirror</Capability>

 </Capabilities>

 <MapOutputModes>

 <MapOutputMode xRes="640" yRes="480" FPS="30"/>

 </MapOutputModes>

 <MinUserPositions>2</MinUserPositions>

 <NeededNodes>

 <Node>MyDevice</Node>

 </NeededNodes>

 </Query>

</Node>

Configuration

Each "Node" element can also contain a list of configuration changes to be performed. This list
should be placed under a "Configuration" element. The sub-elements of the "Configuration"
element will be executed serially. Those commands can be:

 "Mirror", with an attribute "on" set to "true" or "false". Executes the
xn::MirrorCapability::SetMirror() function. Only relevant for generators supporting the
"Mirror" capability.

 "MapOutputMode", with 3 attributes: "xRes", "yRes" and "fps". Executes the
xn::MapGenerator::SetMapOutputMode() function. Only relevant for map generators
(depth, image, IR and scene).

 "WaveOutputMode", with 3 attributes: "sampleRate", "bitsPerSample" and "channels".
Executes the xn::AudioGenerator::SetWaveOutputMode() function. Only relevant for audio
generators.

mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/classxn_1_1_mirror_capability.html#ab41b9bcd5619fdaf5dcb515033ae99bb
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/classxn_1_1_map_generator.html#aea291fb67aea2d2d21d7b0b159884f9d
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/classxn_1_1_audio_generator.html#abb38eb1a22e6f6627901d336ab3d24b7

OpenNI User Guide Page | 37

 "Cropping", with 5 attributes: "enabled", "xOffset", "yOffset", "xSize", "ySize". Executes the
xn::CroppingCapability::SetCropping() function. Only relevant to map generators (depth,
image, IR and scene), which support the "Cropping" capability.

 "PixelFormat". Can have the one of the following values: "RGB24", "YUV422", "Grayscale8"
or "Grayscale16". Executes the xn::ImageGenerator::SetPixelFormat() function. Only
relevant for image generators.

 "UserPosition", which has the attribute "index" and two sub-elements: "Min" and "Max",
each has 3 attributes: "x", "y" and "z". Executes the
xn::UserPositionCapability::SetUserPosition() function. Only relevant for depth generators
supporting the "UserPosition" capability.

 "FrameSync", which contains the name of the node to frame sync with. Executes the
xn::FrameSyncCapability::FrameSyncWith() function. Only relevant for generators that
support the "FrameSync" capability.

 "AlternativeViewPoint", which contains the name of the node to set viewpoint to. Executes
the xn::AlternativeViewPointCapability::SetViewPoint() function. Only relevant for
generators that support the "AlternativeViewPoint" capability.

 "RecorderDestination", which contains two attributes: "medium" (currently, only "File" is
supported), and "name", which should hold the file name. Executes the
xn::Recorder::SetDestination() function. Only relevant for recorder nodes.

 "AddNodeToRecording", which contains two attributes: "name" and "codec". Executes the
xn::Recorder::AddNodeToRecording() function. Only relevant for recorder nodes.

 "Property", which contains 3 attributes: "type", "name" and "value". Type can be "int",
"real", or "string", which executes the xn::ProductionNode::SetIntProperty(),
xn::ProductionNode::SetRealProperty() or xn::ProductionNode::SetStringProperty()
functions.

In addition, the application can request that this node be locked (preventing any configuration
change to this node once configuration is done) by using the "lock" attribute, and setting it to
"true" or "false" (default). This calls the xn::ProductionNode::LockForChanges() function.

The following example creates three nodes: image, depth and audio.

 The image node is configured to use QVGA output of 60 FPS, with an RGB24 pixel format. It
also sets a cropping area, and turns on the mirror.

 The Depth node is configured to use VGA output of 30 FPS. It also sets the position of the
user to a binding box located between the following sets of coordinates: [128, 128, 500] and
[600, 400, 2000]. The depth node also configures a special property, proprietary to the
"VendorX" vendor.

 The audio is configured to be sampled at 44100 Hz, in stereo mode and at 16-bit per sample.
Enumeration takes place only for nodes that support those configurations.

<ProductionNodes>

 <Node type="Image">

 <Query>

 <MapOutputModes>

 <MapOutputMode xRes="320" yRes="240" FPS="60"/>

 </MapOutputModes>

mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/classxn_1_1_cropping_capability.html#a64fc464439faca2a3fbaf2d8c91b517a
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/classxn_1_1_image_generator.html#a1297b84dcc77a2e81300d5fa17b3efec
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/classxn_1_1_user_position_capability.html#a8cddd1d7254a25bc78045410e2d2fd25
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/classxn_1_1_frame_sync_capability.html#a12f4789a243005e3e3222294e34dddcd
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/classxn_1_1_alternative_view_point_capability.html#a1585bffe14e968b7bafc4c267dc78448
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/classxn_1_1_recorder.html#a1e84f796966c9808b2a26db0d5dfe621
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/classxn_1_1_recorder.html#aa6023d6f933e831504c6ddaa8357927f
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/classxn_1_1_production_node.html#a6796677af3d968d786d9094d33c6d9f1
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/classxn_1_1_production_node.html#a0b026a014056ab654859f14fe9a1408e
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/classxn_1_1_production_node.html#a21b665cca28349b53a3a2ff62355aab5
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/classxn_1_1_production_node.html#ad4e631318f4190de2d12e57525283d8f

OpenNI User Guide Page | 38

 <Capabilities>

 <Capability>Cropping</Capability>

 <Capability>Mirror</Capability>

 </Capabilities>

 </Query>

 <Configuration>

 <MapOutputMode xRes="320" yRes="240" FPS="60"/>

 <PixelFormat>RGB24</PixelFormat>

 <Cropping enabled="true" xOffset="28" yOffset="28"

xSize="200" ySize="160" />

 <Mirror on="true" />

 </Configuration>

 </Node>

 <Node type="Depth">

 <Query>

 <Vendor>VendorX</Vendor>

 <MapOutputModes>

 <MapOutputMode xRes="640" yRes="480" FPS="30"/>

 </MapOutputModes>

 <Capabilities>

 <Capability>UserPosition</Capability>

 </Capabilities>

 </Query>

 <Configuration>

 <MapOutputMode xRes="640" yRes="480" FPS="30"/>

 <UserPosition index="0">

 <Min x="128" y="128" z="500"/>

 <Max x="600" y="400" z="2000"/>

 </UserPosition>

 <Property type="int" name="VendorXDummyProp" value="3" />

 </Configuration>

 </Node>

 <Node type="Audio">

 <Configuration>

 <WaveOutputMode sampleRate="44100" bitsPerSample="16"

channels="2" />

 </Configuration>

 </Node>

OpenNI User Guide Page | 39

</ProductionNodes>

Start Generating

By default, when all nodes under the "ProductionNodes" element are created and configured, a
call is made to the xn::Context::StartGeneratingAll() function. If the application requires a
different behavior, it can place the "startGenerating" attribute containing "true" or "false", on
any node, and also on the "ProductionNodes" element (which defines whether or not to start to
generate all). For example, the following will create two nodes: image and depth, but only start
to generate the depth node:

<ProductionNodes startGenerating="false">

 <Node type="Image" />

 <Node type="Depth" startGenerating="true" />

</ProductionNodes>

Building and Running a Sample Application
OpenNI is provided with certain samples, which are located in the 'Samples' folder, with their
binaries under 'Samples\Bin\Debug' or 'Samples\Bin\Release'. Most samples use an XML file to
configure OpenNI. This XML file can be found at
'%OPEN_NI_INSTALL_DIR%\Data\SamplesConfig.xml'.

Note: on Linux, some samples (like NiViewer, NiSimpleViewer, NiUserTracker) need the GLUT
library in order to compile and run. Install freeglut3-dev or equivalent. Other samples need the
mono WinForms library. Install libmono-winforms2.0-cil (or mono-complete).

To build and run a sample application:

1. Ensure that you have the latest Microsoft Platform SDK installed. This can be downloaded
this using the following hyperlink: Microsoft's Platform SDK Web Install.

2. Open Windows Explorer (or your preferred file navigator), and browse to the OpenNI
installation directory, the default location of which is: C:\Program Files\OpenNI.

3. In the OpenNI directory, browse to: Samples\NiSimpleViewer.

4. Open the NiSimpleViewer_2008.vcproj project file, and build the application.

5. After you have successfully built the project, but before you try to run it, please ensure that
the SamplesConfig.xml file is correctly configured, according to the following specifications:

a. Navigate to the Data directory, the default location of which is C:\Program
Files\OpenNI\Data.

b. Use a text editor program to open the SamplesConfig.xml to be edited.

Throughout the sample applications tutorial you will encounter use of relative paths in the
sample application source files.

mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/classxn_1_1_context.html#affa5173b7c32b98d344ab2c8634f2cb7
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/build__and__run__sample.html
http://www.microsoft.com/downloads/details.aspx?FamilyID=a55b6b43-e24f-4ea3-a93e-40c0ec4f68e5&DisplayLang=en

OpenNI User Guide Page | 40

Note: When your application is executed from within a debugging environment, such as
Microsoft Visual Studio, paths which are not absolute may not be resolved relative to the output
executable.

In order for the sample application to execute correctly in debug mode, you should modify the
Working Directory to be the sub-folder in which the executable is located. You can also use
Visual Studio's macro instead of setting an actual path.

Note: To set the value, use "Project Properties"->"Debugging"->"Working Directory".

NiSimpleRead

NiSimpleRead is a basic sample that configures OpenNI using the SamplesConfig XML file, then
uses the depth generator node. The application loops to read new frames from the depth
generator, and prints out the depth value of the middle pixel. The sample is created when the
user presses 'ESC'.

NiSimpleCreate

NiSimpleCreate demonstrates how to create a production node programmatically in code,
rather than using the SamplesConfig XML file. After creating a depth node, it reads from the
node in the same way as NiSimpleRead.

NiCRead

NiCRead is a sample that is exactly the same as NiSimpleRead, other than the fact that it
demonstrates the use of the C interface, rather than the C++ interface.

NiSimpleViewer

NiSimpleViewer is a small OpenGL application that draws the depth maps and the image maps
to the screen. It configures OpenNI using the SamplesConfig XML, but requires both depth and
color images to be present, both with the same resolution, and with the image node set to
RGB24 format. The application creates a histogram of the depth map and draws the frame using
this, to enable better visibility of the depth map.

The following keys can be used to control the application:

Key Description

1 Converts to OVERLAY mode, drawing a depth map on top of the image map. It also sets
depth viewpoint to image viewpoint (using the Alternative viewpoint capability).

2 Draws only depth. It also turns off alternative viewpoint.

3 Draws only image. It also turns off alternative viewpoint.

Esc Closes the application

NiSampleModule

NiSampleModule is a sample for writing a module that is OpenNI compliant. It implements a
depth node supporting the mirror capability. Before using this, this module must be registered
using the niReg utility. It should also be deregistered afterwards, otherwise applications may
receive this when they require depth nodes.

mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/samples.html#nisimpleread
mk:@MSITStore:C:/Program%20Files/OpenNI/Documentation/OpenNI.chm::/nireg.html

OpenNI User Guide Page | 41

NiConvertXToONI

NiConvertXToONI opens any recording, takes every node within it, and records it to a new ONI
recording. It receives both the input file and the output file from the command line.

NiRecordSynthetic

NiRecordSynthetic demonstrates how to open a recording, perform a form of transformation on
the data within it, and re-record this data.

NiViewer

NiViewer shows how to display depth, image and IR maps, and play audio, in addition to
demonstrating a wide set of configurations. NiViewer has two modes: If a file name appears in
the command-line, it will open this file as a recording. Otherwise, it will configure OpenNI using
the SamplesConfig XML file.

NiViewer is automatically associated with the .ONI file extension, for opening OpenNI
recordings. The following keys can be used to control the application:

Key Description

1 Shows depth only, in histogram mode

2 Shows depth only, in psychedelic mode (centimeters)

3 Shows depth only, in psychedelic mode (millimeters)

4 Shows depth only, in rainbow mode

5 Shows depth masked image, meaning image pixels that don't have depth values are
blacked out.

6 Background removal mode

7 Shows depth and image (or IR), side by side.

8 Shows depth on top of image (or IR)

9 Shows transparent depth on top of image (or IR)

0 Shows rainbow depth on top of image (or IR)

= Shows image (or IR) only

` Shows depth standard deviation

p Toggles pointer mode on/off. When pointer mode is on, additional depth info is displayed
regarding currently pointed pixel.

f Toggles Full Screen / Window mode

? Toggles help screen on/off

m Toggles mirror on/off

/ Resets all cropping

s Start recording

d Start recording in 5 seconds

OpenNI User Guide Page | 42

x Stop recording

c Capture current frame to files

z Start/Stop collecting statistics about depth pixels

o Pause/Play

l Seek one frame forward (recordings only)

L Seek 10 frames forward (recordings only)

k Seek one frame backwards (recordings only)

K Seek 10 frames backwards (recordings only)

; Read one single frame and pause

Esc Closes the application

Additionally, the mouse can be used. Clicking the right-button of the mouse opens up a menu
through which many configurations can be changed. Using the left mouse button can block
selection, by holding it down over one part of a frame, then moving it and releasing the key,
causes the node to be cropped, if the Cropping capability is supported.

NiBackRecorder

niBackRecorder is a command line tool, which stores frames in memory in a cyclic buffer.
Clicking "D" sends a request to dump this cyclic buffer to an ONI file. In effect, it saves the last
certain number of seconds, according to how it has been configured.

Usage

niBackRecorder time <seconds> [depth [qvga|vga]] [image [qvga|vga]]

[verbose] [mirror <on|off>] [registration] [framesync] [outdir

<directory>]

The following option is mandatory:

 Time: Number of seconds to dump each time

The following options can be used:

 Depth: Sets the resolution of the depth to either QVGA or VGA. If not specified, depth is off.
If no resolution is specified, QVGA is used.

 Image: Sets the resolution of the image, to either QVGA or VGA. If not specified, image is
off. If no resolution is specified, QVGA is used.

 Verbose: Turns on the log

 Mirror: Sets the mirror mode. If not specified otherwise, it uses whatever was configured.

 Registration: Changes the depth to match the image.

 Framesync: Synchronizes between depth and image

 Outdir: The location where the oni files should be created. The default is the execution
directory.

Note: Keep in mind the amount of memory used to store the frames.

Configuration Size

OpenNI User Guide Page | 43

1 second, QVGA depth 30*320*240*2B = 4500KB

1 second, QVGA image 30*320*240*3B = 6750KB

1 second, VGA depth 30*640*480*2B = 18000KB

1 second, VGA image 30*640*480*3B = 27000KB

NiUserTracker

NiUserTracker shows how to use the User Generator, with its pose detection and skeleton
capabilities.

Each figure identified in the scene is colored in a different color, and the User Generator
searches for the calibration pose. Once the figure is in the calibration pose, calibration is
performed on that figure. When the calibration is successfully completed, a skeletal
representation of the figure exists.

Key Description

b Toggle background pixels

x Toggle all pixels

s Toggle skeleton (for calibrated users)

i Toggle user label

l Toggle skeleton (for calibrated users)

p Pause/Start

Esc Closes the application

OpenNI User Guide Page | 44

Troubleshooting
OpenNI provides a simple log mechanism. Each log entry consists of a severity (error, warning,
info or verbose), a mask (arbitrary string, usually the name of the component logging this entry)
and a message. Any component (or application) that uses OpenNI can write log entries.

Log entries can be output to a file, the console, or both.

The log system can be configured using API calls or Xml scripts (see Configuration Using XML
file). Available configuration options set the destination of the log, and filter it according to
severity or to specific masks.

Note: The special mask “ALL” controls whether all masks are written.

When failing to start any OpenNI based application, the most useful thing to do is to turn on
logs. This is also a reason why it is better for an application to be configured using an XML script.
The script will have turned the log off by default, and when needed, a user can turn it back on.
The log may contain the reason why the application fails to load, but even if it does not contain
this reason, sending the log to the developer of a failing component could mean a lot in terms of
pinpointing the problem.

Glossary

Term Description

Image Map An array of pixels that represent an image.

IR Image Map An image map where each pixel represents the brightness of that pixel in
grayscale.

Depth Map An image map where each pixel is represented by its distance from the
sensor.

Color Image Map An image map where each pixel is represented by an RGB value.

Hand Point The location of the palm of a hand in the scene.

Gesture Expressing an instruction through bodily movements.

Calibration The act of capturing and analyzing the various proportions and
measurements of the figure’s body, to optimize the specific tracking of its
movements.

Calibration Pose A pose that the figure is requested to hold for several seconds, to enable
the software to calculate the calibration data of this specific user (for
example, a Psi pose).

