
RFC 9930
Tunnel Extensible Authentication Protocol (TEAP)
Version 1

Abstract
This document defines the Tunnel Extensible Authentication Protocol (TEAP) version 1. TEAP is a
tunnel-based EAP method that enables secure communication between a peer and a server by
using the Transport Layer Security (TLS) protocol to establish a mutually authenticated tunnel.
Within the tunnel, TLV objects are used to convey authentication-related data between the EAP
peer and the EAP server. This document obsoletes RFC 7170 and updates RFC 9427 by moving all
TEAP specifications from those documents to this one.

Stream: Internet Engineering Task Force (IETF)
RFC: 9930
Obsoletes: 7170
Updates: 9427
Category: Standards Track
Published: February 2026
ISSN: 2070-1721
Author: A. DeKok, Ed.

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9930

Copyright Notice
Copyright (c) 2026 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions

https://trustee.ietf.org/license-info

DeKok Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9930
https://www.rfc-editor.org/rfc/rfc7170
https://www.rfc-editor.org/rfc/rfc9427
https://www.rfc-editor.org/info/rfc9930
https://trustee.ietf.org/license-info

with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

Table of Contents
1. Introduction

1.1. Interoperability Issues

1.2. Requirements Language

1.3. Terminology

2. Protocol Overview

2.1. Architectural Model

2.2. Protocol-Layering Model

2.3. Outer TLVs Versus Inner TLVs

3. TEAP Protocol

3.1. Version Negotiation

3.2. TEAP Authentication Phase 1: Tunnel Establishment

3.3. Server Certificate Requirements

3.4. Server Certificate Validation

3.4.1. Client Certificates Sent During Phase 1

3.5. Resumption

3.5.1. TLS Session Resumption Using Server State

3.5.2. TLS Session Resumption Using Client State

3.6. TEAP Authentication Phase 2: Tunneled Authentication

3.6.1. Inner Method Ordering

3.6.2. Inner EAP Authentication

3.6.3. Inner Password Authentication

3.6.4. EAP-MSCHAPv2

3.6.5. Limitations on Inner Methods

3.6.6. Protected Termination and Acknowledged Result Indication

3.7. Determining Peer-Id and Server-Id

3.8. TEAP Session Identifier

7

7

8

8

8

9

9

10

10

11

12

13

13

14

14

15

15

15

16

17

17

18

19

20

21

21

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 2

3.9. Error Handling

3.9.1. Outer-Layer Errors

3.9.2. TLS Layer Errors

3.9.3. Phase 2 Errors

3.10. Fragmentation

3.11. Services Requested by the Peer

3.11.1. Certificate Provisioning Within the Tunnel

3.11.2. Certificate Content and Uses

3.11.3. Server Unauthenticated Provisioning Mode

3.11.4. Channel Binding

4. Message Formats

4.1. TEAP Message Format

4.2. TEAP TLV Format and Support

4.2.1. General TLV Format

4.2.2. Authority-ID TLV

4.2.3. Identity-Type TLV

4.2.4. Result TLV

4.2.5. NAK TLV

4.2.6. Error TLV

4.2.7. Channel-Binding TLV

4.2.8. Vendor-Specific TLV

4.2.9. Request-Action TLV

4.2.10. EAP-Payload TLV

4.2.11. Intermediate-Result TLV

4.2.12. PAC TLV

4.2.13. Crypto-Binding TLV

4.2.14. Basic-Password-Auth-Req TLV

4.2.15. Basic-Password-Auth-Resp TLV

4.2.16. PKCS#7 TLV

4.2.17. PKCS#10 TLV

22

22

22

23

23

24

25

26

26

27

28

28

30

30

32

32

34

35

36

38

39

40

41

42

43

43

46

46

47

48

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 3

4.2.18. Trusted-Server-Root TLV

4.2.19. CSR-Attributes TLV

4.2.20. Identity-Hint TLV

4.3. TLV Rules

4.3.1. Outer TLVs

4.3.2. Inner TLVs

5. Limitations of TEAPv1

5.1. Interoperable Inner Methods

5.2. Explanation and Background

5.3. Next Steps

6. Cryptographic Calculations

6.1. TEAP Authentication Phase 1: Key Derivations

6.2. Intermediate Compound Key Derivations

6.2.1. Generating the Inner Method Session Key

6.2.2. Generating S-IMCK

6.2.3. Choosing Inner Methods Securely

6.2.4. Managing and Computing Crypto-Binding

6.2.5. Unintended Side Effects

6.3. Computing the Compound-MAC

6.4. EAP Master Session Key Generation

7. IANA Considerations

7.1. TEAP TLV Types

7.2. TEAP Error TLV (value 5) Error Codes

7.3. TLS Exporter Labels

7.4. Extended Master Session Key (EMSK) Parameters

7.5. Extensible Authentication Protocol (EAP) Registry

8. Security Considerations

8.1. Mutual Authentication and Integrity Protection

8.2. Method Negotiation

8.3. Separation of Phase 1 and Phase 2 Servers

49

50

51

52

53

53

54

55

55

55

56

56

56

57

59

60

60

63

64

65

66

66

67

67

67

68

68

68

68

69

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 4

8.4. Mitigation of Known Vulnerabilities and Protocol Deficiencies

8.4.1. User Identity Protection and Verification

8.5. Dictionary Attack Resistance

8.5.1. Protection Against On-Path Attacks

8.6. Protecting Against Forged Cleartext EAP Packets

8.7. Use of Cleartext Passwords

8.8. Accidental or Unintended Behavior

8.9. Implicit Challenge

8.10. Security Claims

9. Changes from RFC 7170

10. References

10.1. Normative References

10.2. Informative References

Appendix A. Evaluation Against Tunnel-Based EAP Method Requirements

A.1. Requirement 4.1.1: RFC Compliance

A.2. Requirement 4.2.1: TLS Requirements

A.3. Requirement 4.2.1.1.1: Cipher Suite Negotiation

A.4. Requirement 4.2.1.1.2: Tunnel Data Protection Algorithms

A.5. Requirement 4.2.1.1.3: Tunnel Authentication and Key Establishment

A.6. Requirement 4.2.1.2: Tunnel Replay Protection

A.7. Requirement 4.2.1.3: TLS Extensions

A.8. Requirement 4.2.1.4: Peer Identity Privacy

A.9. Requirement 4.2.1.5: Session Resumption

A.10. Requirement 4.2.2: Fragmentation

A.11. Requirement 4.2.3: Protection of Data External to Tunnel

A.12. Requirement 4.3.1: Extensible Attribute Types

A.13. Requirement 4.3.2: Request/Challenge Response Operation

A.14. Requirement 4.3.3: Indicating Criticality of Attributes

A.15. Requirement 4.3.4: Vendor-Specific Support

A.16. Requirement 4.3.5: Result Indication

69

70

71

71

72

72

72

73

73

74

75

75

77

80

80

80

80

81

81

81

81

81

81

81

81

81

82

82

82

82

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 5

A.17. Requirement 4.3.6: Internationalization of Display Strings

A.18. Requirement 4.4: EAP Channel-Binding Requirements

A.19. Requirement 4.5.1.1: Confidentiality and Integrity

A.20. Requirement 4.5.1.2: Authentication of Server

A.21. Requirement 4.5.1.3: Server Certificate Revocation Checking

A.22. Requirement 4.5.2: Internationalization

A.23. Requirement 4.5.3: Metadata

A.24. Requirement 4.5.4: Password Change

A.25. Requirement 4.6.1: Method Negotiation

A.26. Requirement 4.6.2: Chained Methods

A.27. Requirement 4.6.3: Cryptographic Binding with the TLS Tunnel

A.28. Requirement 4.6.4: Peer-Initiated EAP Authentication

A.29. Requirement 4.6.5: Method Metadata

Appendix B. Major Differences from EAP-FAST

Appendix C. Examples

C.1. Successful Authentication

C.2. Failed Authentication

C.3. Full TLS Handshake Using Certificate-Based Cipher Suite

C.4. Client Authentication During Phase 1 with Identity Privacy

C.5. Fragmentation and Reassembly

C.6. Sequence of EAP Methods

C.7. Failed Crypto-Binding

C.8. Sequence of EAP Method with Vendor-Specific TLV Exchange

C.9. Peer Requests Inner Method After Server Sends Result TLV

C.10. Channel Binding

C.11. PKCS Exchange

C.12. Failure Scenario

C.13. Client Certificate in Phase 1

Acknowledgments

Contributors

82

82

82

82

82

83

83

83

83

83

83

83

83

84

84

84

85

86

88

90

92

94

96

98

100

102

103

104

105

106

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 6

Author's Address 106

1. Introduction
A tunnel-based Extensible Authentication Protocol (EAP) method is an EAP method that
establishes a secure tunnel and executes other EAP methods under the protection of that secure
tunnel. A tunnel-based EAP method can be used in any lower-layer protocol that supports EAP
authentication. There are several existing tunnel-based EAP methods that use Transport Layer
Security (TLS) to establish the secure tunnel. EAP methods supporting this include
Protected EAP (PEAP) , EAP Tunneled Transport Layer Security (EAP-TTLS) ,
and EAP Flexible Authentication via Secure Tunneling (EAP-FAST) . However, they all
are either vendor-specific or informational, and the industry calls for a Standards Track tunnel-
based EAP method. outlines the list of requirements for a standard tunnel-based EAP
method.

This document describes the Tunnel Extensible Authentication Protocol (TEAP) version 1, which
is based on EAP-FAST . The changes from EAP-FAST to TEAP are largely minor in order
to meet the requirements outlined in for a standard tunnel-based EAP method.

This document also defines cryptographic derivations for use with TLS 1.2. When TLS 1.3 is used,
the definitions of cryptographic derivations in be used instead of the ones given
here.

Note that while it is technically possible to use TEAPv1 with TLS 1.0 and TLS 1.1, those protocols
have been deprecated in . As such, the definitions given here are only applicable for
TLS 1.2 and TLS 1.3.

[RFC8446]
[PEAP] [RFC5281]

[RFC4851]

[RFC6678]

[RFC4851]
[RFC6678]

[RFC9427] MUST

[RFC8996]

1.1. Interoperability Issues
This document contains substantial changes from . These changes are largely
clarifications and corrections to that specification.

However, there is one major change from in the specification of the cryptographic-
binding information. While there were multiple implementations of , the text in that
document was interpreted differently by each implementation. The implementations are
interoperable but only for a subset of the functionality described in .

This specification describes how TEAPv1 works in theory but also explains what subset of
TEAPv1 is currently interoperable. In order to simplify the description of an already complex
specification, all interoperability issues are documented separately from the normal protocol
operation.

Please see Section 5 for further discussion of interoperability issues.

[RFC7170]

[RFC7170]
[RFC7170]

[RFC7170]

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 7

1.2. Requirements Language
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

1.3. Terminology
Much of the terminology in this document comes from . Additional terms are defined
below:

Type-Length-Value (TLV)
The TEAP protocol utilizes objects in TLV format. The TLV format is defined in Section 4.2.

Inner Method
An authentication method that is sent as application data inside of a TLS exchange that is
carried over TEAP. The inner method can be an EAP authentication method, a username/
password authentication, or a vendor-specific authentication method. Where the TLS
connection is authenticated, the inner method could also be a Public Key Cryptography
Standard (PKCS) exchange.

[RFC3748]

2. Protocol Overview
TEAP authentication occurs in two phases after the initial EAP Identity request/response
exchange. In the first phase, TEAP employs the TLS handshake to provide an
authenticated key exchange and to establish a protected tunnel. Once the tunnel is established,
the second phase begins with the peer and server engaging in further conversations to establish
the required authentication and authorization policies. TEAP makes use of TLV objects to carry
out the inner authentication, results, and other information, such as channel-binding
information.

As discussed in and , the outer EAP Identity
 be an anonymous Network Access Identifier (NAI) as described in

. While places no limits on the contents of the Identity field,
 states that Identities that do not follow the NAI format cannot be

transported in an Authentication, Authorization, and Accounting (AAA) proxy network. As such,
Identities in non-NAI form are likely to not work outside of limited and local networks.

Any inner identities (EAP or otherwise) also follow the recommendations of
 about inner identities.

[RFC8446]

Section 2.1.7 of [RFC9190] Section 3.1 of [RFC9427]
SHOULD Section 2.4 of
[RFC7542] Section 5.1 of [RFC3748]
Section 2.6 of [RFC7542]

SHOULD [RFC9427],
Section 3.1

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 8

https://www.rfc-editor.org/rfc/rfc9190#section-2.1.7
https://www.rfc-editor.org/rfc/rfc9427#section-3.1
https://www.rfc-editor.org/rfc/rfc7542#section-2.4
https://www.rfc-editor.org/rfc/rfc3748#section-5.1
https://www.rfc-editor.org/rfc/rfc7542#section-2.6
https://www.rfc-editor.org/rfc/rfc9427#section-3.1

 defined a Protected Access Credential (PAC) to mirror EAP-FAST . However,
implementation experience and analysis determined that the PAC was not necessary. Instead,
TEAP performs session resumption using the NewSessionTicket message as defined in Sections
2.1.2 and 2.1.3 of . As such, the PAC has been deprecated.

The TEAP conversation is used to establish or resume an existing session to typically establish
network connectivity between a peer and the network. Upon successful execution of TEAP, the
EAP peer and EAP server both derive strong session key material (Master Session Key)
that can then be communicated to the network access server (NAS) for use in establishing a link-
layer security association.

[RFC7170] [RFC4851]

[RFC9190]

[RFC3748]

2.1. Architectural Model
The network architectural model for TEAP usage is shown below:

The Peer and Authenticator are defined in . The TEAP server is the
"backend authentication server" defined in . The "Inner Method server" is
usually part of the TEAP server and handles the application data (inner methods, EAP,
passwords, etc.) inside of the TLS tunnel.

The entities depicted above are logical entities and may or may not correspond to separate
network components. For example, the TEAP server and Inner Method server might be a single
entity; the authenticator and TEAP server might be a single entity; or the functions of the
authenticator, TEAP server, and Inner Method server might be combined into a single physical
device. For example, typical IEEE 802.11 deployments place the authenticator in an access point
(AP) while a RADIUS server may provide the TEAP and inner method server components. The
above diagram illustrates the division of labor among entities in a general manner and shows
how a distributed system might be constructed; however, actual systems might be realized more
simply. The security considerations in Section 8.3 provide an additional discussion of the
implications of separating the TEAP server from the Inner Method server.

Figure 1: TEAP Architectural Model

 +----------+ +----------+ +----------+ +----------+
						Inner
Peer	<---->	Authen-	<---->	TEAP	<---->	Method
		ticator		server		server
 +----------+ +----------+ +----------+ +----------+

[RFC3748], Section 1.2
[RFC3748], Section 1.2

2.2. Protocol-Layering Model
TEAP packets are encapsulated within EAP; EAP in turn requires a transport protocol. TEAP
packets encapsulate TLS, which is then used to encapsulate user authentication information.
Thus, TEAP messaging can be described using a layered model, where each layer encapsulates
the layer above it. The following diagram clarifies the relationship between protocols:

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 9

https://www.rfc-editor.org/rfc/rfc9190#section-2.1.2
https://www.rfc-editor.org/rfc/rfc9190#section-2.1.3
https://www.rfc-editor.org/rfc/rfc3748#section-1.2
https://www.rfc-editor.org/rfc/rfc3748#section-1.2

The TLV layer is a payload with TLV objects as defined in Section 4.2. The TLV objects are used to
carry arbitrary parameters between an EAP peer and an EAP server. All data exchanges in the
TEAP-protected tunnel are encapsulated in a TLV layer.

Methods for encapsulating EAP within carrier protocols are already defined. For example, IEEE
802.1X may be used to transport EAP between the peer and the authenticator;
RADIUS or Diameter may be used to transport EAP between the
authenticator and the EAP server.

Figure 2: Protocol-Layering Model

 +--+
 | Inner EAP Method | Other TLV information |
 |--|
 | TLV Encapsulation (TLVs) |
 |--+---------------------+
 | TLS | Optional Outer TLVs |
 |--|
TEAP
EAP
--
Carrier Protocol (EAP over LAN, RADIUS, Diameter, etc.)
 +--+

[IEEE.802-1X.2020]
[RFC3579] [RFC4072]

2.3. Outer TLVs Versus Inner TLVs
TEAP packets may include TLVs both inside and outside the TLS tunnel defined as follows:

Outer TLVs
This term is used to refer to optional TLVs outside the TLS tunnel, which are only allowed in
the first two messages in the TEAP protocol. That is the first EAP-server-to-peer message and
first peer-to-EAP-server message. If the message is fragmented, the whole set of fragments is
counted as one message.

Inner TLVs
This term is used to refer to TLVs sent within the TLS tunnel. In TEAP Phase 1, Outer TLVs are
used to help establish the TLS tunnel, but no Inner TLVs are used. In Phase 2 of TEAP, TLS
records may encapsulate zero or more Inner TLVs, but no Outer TLVs are used.

3. TEAP Protocol
The operation of the protocol, including Phase 1 and Phase 2, is the topic of this section. The
format of TEAP messages is given in Section 4, and the cryptographic calculations are given in
Section 6.

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 10

3.1. Version Negotiation
TEAP packets contain a 3-bit Version field, following the TLS Flags field, which enables future
TEAP implementations to be backward compatible with previous versions of the protocol. This
specification documents the TEAP version 1 protocol; implementations of this specification
use a Version field set to 1.

Version negotiation proceeds as follows:

In the first EAP-Request sent with EAP type=TEAP, the EAP server set the Version field
to the highest version it supports.
If the EAP peer supports this version of the protocol, it responds with an EAP-Response of
EAP type=TEAP, including the version number proposed by the TEAP server.
If the TEAP peer does not support the proposed version but supports a lower version, it
responds with an EAP-Response of EAP type=TEAP and sets the Version field to its highest
supported version.
If the TEAP peer only supports versions higher than the version proposed by the TEAP
server, then use of TEAP will not be possible. In this case, the TEAP peer sends back an EAP-
Nak either to negotiate a different EAP type or to indicate no other EAP types are available.
If the TEAP server does not support the version number proposed by the TEAP peer, it
either terminate the conversation with an EAP Failure or negotiate a new EAP type.
If the TEAP server does support the version proposed by the TEAP peer, then the
conversation continues using the version proposed by the TEAP peer.

The version negotiation procedure guarantees that the TEAP peer and server will agree to the
latest version supported by both parties. If version negotiation fails, then use of TEAP will not be
possible, and another mutually acceptable EAP method will need to be negotiated if
authentication is to proceed.

The TEAP version is not protected by TLS and hence can be modified in transit. In order to detect
a bid-down attack on the TEAP version, the peers exchange the TEAP version number
received during version negotiation using the Crypto-Binding TLV described in Section 4.2.13.
The receiver of the Crypto-Binding TLV verify that the version received in the Crypto-
Binding TLV matches the version sent by the receiver in the TEAP version negotiation.

Intermediate results are signaled via the Intermediate-Result TLV (Section 4.2.11). However, the
Crypto-Binding TLV be validated before any Intermediate-Result TLV or Result TLV is
examined. If the Crypto-Binding TLV fails to be validated for any reason, then it is a fatal error
and is handled as described in Section 3.9.3.

The true success or failure of TEAP is conveyed by the Result TLV with value Success or Failure.
However, as EAP terminates with either a cleartext EAP Success or Failure, a peer will also
receive a cleartext EAP Success or Failure. The received cleartext EAP Success or Failure
match that received in the Result TLV; the peer silently discard those cleartext EAP
Success or Failure messages that do not coincide with the status sent in the protected Result TLV.

MUST

1. MUST

2.

3.

4.

5. MUST

6.

MUST

MUST

MUST

MUST
SHOULD

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 11

3.2. TEAP Authentication Phase 1: Tunnel Establishment
TEAP relies on the TLS handshake to establish an authenticated and protected tunnel.
The TLS version offered by the peer and server be TLS version 1.2 or later. This
version of the TEAP implementation support the following TLS cipher suites:

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

Other cipher suites be supported. Implementations implement the recommended
cipher suites in for TLS 1.2 and in for TLS 1.3.

It is that anonymous cipher suites such as TLS_DH_anon_WITH_AES_128_CBC_SHA
 only be used in the case when the inner method provides mutual authentication, key

generation, and resistance to on-path and dictionary attacks. TLS cipher suites that do not
provide confidentiality be used. During the TEAP Phase 1, the TEAP endpoints
negotiate TLS compression. During TLS tunnel establishment, TLS extensions be used. For
instance, the Certificate Status Request extension and the Multiple Certificate Status
Request extension can be used to leverage a certificate-status protocol such as the
Online Certificate Status Protocol (OCSP) to check the validity of server certificates.
TLS renegotiation indications defined in be supported.

Use of TLS-PSK is . TEAP has not been designed to work with TLS-PSK, and
no use cases, security analyses, or implementations have been done. TLS-PSK may work (or not)
with TEAP, depending on the status of a particular implementation, and it is therefore not useful
to deploy it.

The EAP server initiates the TEAP conversation with an EAP request containing a TEAP/Start
packet. This packet includes a set Start (S) bit, the TEAP version as specified in Section 3.1, and
an authority identity TLV. The TLS payload in the initial packet is empty. The authority identity
TLV (Authority-ID TLV) is used to provide the peer a hint of the server's identity that may be
useful in helping the peer select the appropriate credential to use. Assuming that the peer
supports TEAP, the conversation continues with the peer sending an EAP-Response packet with
EAP type of TEAP with the Start (S) bit clear and the version as specified in Section 3.1. This
message encapsulates one or more TLS handshake messages. If the TEAP version negotiation is
successful, then the TEAP conversation continues until the EAP server and EAP peer are ready to
enter Phase 2. When the full TLS handshake is performed, then the first payload of TEAP Phase 2

 be sent along with a server-finished handshake message to reduce the number of round
trips.

TEAP implementations support mutual peer authentication during tunnel establishment
using the TLS cipher suites specified in this section. The TEAP peer does not need to authenticate
as part of the TLS exchange but can alternatively be authenticated through additional exchanges
carried out in Phase 2.

[RFC8446]
MUST [RFC5246]

MUST

•
•

MAY MUST
[RFC9325], Section 4.2 [RFC9325], Section 4.3

REQUIRED
[RFC5246]

MUST NOT MAY
MAY

[RFC6066]
[RFC6961]

[RFC6960]
[RFC5746] MUST

NOT RECOMMENDED

MAY

MUST

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 12

https://www.rfc-editor.org/rfc/rfc9325#section-4.2
https://www.rfc-editor.org/rfc/rfc9325#section-4.3

The TEAP tunnel protects peer identity information exchanged during Phase 2 from disclosure
outside the tunnel. Implementations that wish to provide identity privacy for the peer identity
need to carefully consider what information is disclosed outside the tunnel prior to Phase 2.
TEAP implementations support the immediate renegotiation of a TLS session to initiate
a new handshake message exchange under the protection of the current cipher suite. This
allows support for protection of the peer's identity when using TLS client authentication. An
example of the exchanges using TLS renegotiation to protect privacy is shown in Appendix C.

SHOULD

3.3. Server Certificate Requirements
Server certificates include a subjectAltName extension, with the dnsName attribute
containing a Fully Qualified Domain Name (FQDN) string. Server certificates also include a
SubjectDN containing a single element, "CN=", which contains the FQDN of the server. However,
this use of SubjectDN is deprecated for TEAP and is forbidden in .

The KeyUsage extensions be included but are not required.

The ExtendedKeyUsage extensions defined in also be included, but their use is
discouraged. Systems use a private Certification Authority (CA) for EAP in preference to
public CAs. The most commonly used public CAs are focused on the web, and those certificates
are not always suitable for use with EAP. In contrast, private CAs can be designed for any
purposes and can be restricted to an enterprise or an other organization.

MUST
MAY

[RFC9525], Section 2

MAY

[RFC5280] MAY
SHOULD

3.4. Server Certificate Validation
As part of the TLS negotiation, the server usually presents a certificate to the peer. In most cases,
the certificate needs to be validated, but there are a number of situations where the EAP peer
does not need to do certificate validation:

when the peer has the server's End Entity (EE) certificate pinned or loaded directly into it's
trusted anchor information ;
when the peer is requesting server unauthenticated provisioning;
when the peer is certain that it will be using an authenticated inner method.

In some cases, such as onboarding (or "bootstrapping"), the certificate validation may be
delayed. However, once the onboarding has taken place, the validation steps described below

 still be performed.

In all other cases, the EAP peer validate the server certificate. This validation is done in the
same manner as is done for EAP-TLS, which is discussed in and in

. Further guidance on server identity validation can be found in
.

Where the EAP peer has an NAI, EAP peers use the realm to perform the DNS-ID validation
as per . The realm is used both to construct the list of reference identifiers as
defined in , and as the "source domain" field of that same section.

•
[RFC4949]

•
•

MUST

MUST
[RFC9190], Section 5.3

[RFC5216], Section 5.3 [RFC9525],
Section 6

MUST
[RFC9525], Section 6

[RFC9525], Section 6.1.2

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 13

https://www.rfc-editor.org/rfc/rfc9525#section-2
https://www.rfc-editor.org/rfc/rfc9190#section-5.3
https://www.rfc-editor.org/rfc/rfc5216#section-5.3
https://www.rfc-editor.org/rfc/rfc9525#section-6
https://www.rfc-editor.org/rfc/rfc9525#section-6
https://www.rfc-editor.org/rfc/rfc9525#section-6.1.2

When performing server certificate validation, implementations also support the rules in
 for validating certificates against a known trust anchor. In addition, implementations

 support matching the realm portion of the peer's NAI against a SubjectAltName of type
dnsName within the server certificate. However, in certain deployments, this comparison might
not be appropriate or enabled.

In most situations, the EAP peer will have no network access during the authentication process.
It will therefore have no way of correlating the server identity given in the certificate presented
by the EAP server with a hostname, as is done with other protocols such as HTTPS. Therefore, if
the EAP peer has no preconfigured trust anchor, it will have few, if any, ways of validating the
server's certificate.

MUST
[RFC5280]
MUST

3.4.1. Client Certificates Sent During Phase 1

Note that since TLS client certificates are sent in the clear with TLS 1.2, if identity protection is
required, then it is possible for the TLS authentication to be renegotiated after the first server
authentication. To accomplish this, the server will typically not request a certificate in the
server_hello; then, after the server_finished message is sent and before TEAP Phase 2, the server

 send a TLS hello_request. This allows the peer to perform client authentication by sending a
client_hello if it wants to or sending a no_renegotiation alert to the server indicating that it
wants to continue with TEAP Phase 2 instead. Assuming that the peer permits renegotiation by
sending a client_hello, then the server will respond with server_hello, certificate, and
certificate_request messages. The peer replies with certificate, client_key_exchange, and
certificate_verify messages. Since this renegotiation occurs within the encrypted TLS channel, it
does not reveal client certificate details. It is possible to perform certificate authentication using
EAP (for example, EAP-TLS) within the TLS session in TEAP Phase 2 instead of using TLS
handshake renegotiation.

When TLS 1.3 or later is used, it is that client certificates are sent in Phase 1
instead of via Phase 2 and EAP-TLS. Doing so will reduce the number of round trips. Further
discussion of this issue is given below in Section 3.6.5

MAY

RECOMMENDED

3.5. Resumption
For resumption, discusses EAP-TLS resumption for all versions of TLS and
is incorporated herein by reference. is also incorporated by reference, as it
provides generic discussion of resumption for TLS-based EAP methods when TLS 1.3 is used.

This document only describes TEAP issues when resumption is used for TLS versions of 1.2 and
earlier. It also describes resumption issues that are specific to TEAP for TLS 1.3.

If the server agrees to resume the session, Phase 2 is bypassed entirely. If the server does not
agree to resume the session, then the server rejects the resumption as per .
It then continues with a full handshake. After the full TLS handshake has completed, both EAP
server and peer proceed with Phase 2.

[RFC9190], Section 5.7
[RFC9427], Section 4

[RFC9190], Section 5.7

MUST

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 14

https://www.rfc-editor.org/rfc/rfc9190#section-5.7
https://www.rfc-editor.org/rfc/rfc9427#section-4
https://www.rfc-editor.org/rfc/rfc9190#section-5.7

All TEAP implementations support resumption. Using resumption can significantly
improve the scalability and stability of authentication systems. For example, some environments
such as universities may have users re-authenticating multiple times a day, if not hourly. Failure
to implement resumption would increase the load on the user database by orders of magnitude,
leading to unnecessary cost.

The following sections describe how a TEAP session can be resumed based on server-side or
client-side state.

MUST

3.5.1. TLS Session Resumption Using Server State

TEAP session resumption is achieved in the same manner TLS achieves session resumption. To
support session resumption, the server and peer cache the Session ID, master secret, and cipher
suite. The peer attempts to resume a session by including a valid Session ID from a previous TLS
handshake in its ClientHello message. If the server finds a match for the Session ID and is willing
to establish a new connection using the specified session state, the server will respond with the
same Session ID and proceed with the TEAP Phase 1 tunnel establishment based on a TLS
abbreviated handshake.

3.5.2. TLS Session Resumption Using Client State

TEAP supports the resumption of sessions based on the state being stored on the client side
using the TLS SessionTicket extension techniques described in and .[RFC5077] [RFC9190]

3.6. TEAP Authentication Phase 2: Tunneled Authentication
The second portion of the TEAP authentication occurs immediately after successful completion
of Phase 1. Phase 2 occurs even if both peer and authenticator are authenticated in the Phase 1
TLS negotiation. Phase 2 occur if the Phase 1 TLS handshake fails, as that will
compromise the security as the tunnel has not been established successfully. Phase 2 consists of
a series of requests and responses encapsulated in TLV objects defined in Section 4.2. Phase 2

 always end with a Crypto-Binding TLV exchange described in Section 4.2.13 and a
protected termination exchange described in Section 3.6.6.

If the peer is not authenticated in Phase 1, the TEAP peer send one or more Identity-
Hint TLVs (Section 4.2.20) as soon as the TLS connection has been established. This information
lets the TEAP server choose an authentication type that is appropriate for that identity. When
the TEAP peer does not provide an Identity-Hint TLV, the TEAP server does not know which
inner method is supported by the peer. It must choose an inner method and propose it to the
peer, which may reject that inner method. As a result, the peer fails to authenticate and fails to
obtain network access.

The TLV exchange includes the execution of zero or more inner methods within the protected
tunnel as described in Sections 3.6.2 and 3.6.3. A server proceed directly to the protected
termination exchange without performing any inner authentication if it does not wish to
request further authentication from the peer. A server request one or more authentications
within the protected tunnel. After completion of each inner method, the server decides whether
or not to begin another inner method or to send a Result TLV.

MUST NOT

MUST

SHOULD

MAY

MAY

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 15

Implementations support at least two sequential inner methods, which allows both
machine and user authentication to be performed. Implementations also limit the
number of sequential inner authentications, as there is no reason to perform a large number of
inner authentications in one TEAP conversation.

Implementations wishing to use their own proprietary authentication method may substitute
the EAP-Payload or Basic-Password-Auth-Req TLV for the Vendor-Specific TLV, which carries
another authentication method. Any vendor-specific authentication method support
calculation of the Crypto-Binding TLV and use Intermediate-Result TLV and Result TLV as
is done with other authentication methods.

MUST
SHOULD

MUST
MUST

3.6.1. Inner Method Ordering

Due to issues noted in Section 5, the order of inner methods has implications for both security
and interoperability.

Where the authentication is expected to use multiple inner methods, implementations
order the methods so that a method that derives an Extended Master Session Key (EMSK) is used
first before any other method. This ordering helps to securely tie the inner method to the TLS
session and therefore can prevent attacks.

Implementations support both EAP and basic password for inner methods.
Implementations that support multiple types of inner methods (User and Machine)
support all of those methods in any order or combination. That is, it is explicitly permitted to
"mix and match" inner methods.

For example, a server can request user authentication from the peer and have the peer return
machine authentication (or vice versa). If the server is configured to accept machine
authentication, it accept that response. If that authentication succeeds, then depending on
local policy, the server proceed with requesting user authentication again.

Similarly, a peer that is configured to support multiple types of inner methods (User and
Machine) can return a method other than what the server requested. This action is usually taken
by the peer so that it orders inner methods for increased security. See Section 6.2.3 for further
discussion of this issue.

However, the peer and server assume that either will skip inner methods or other
TLV exchanges, as the other peer might have a different security policy. The peer may have
roamed to a network that requires conformance with a different authentication policy, or the
peer may request the server take additional action (e.g., channel binding) through the use of the
Request-Action TLV as defined in Section 4.2.9.

The completion of each inner method is signaled by an Intermediate-Result TLV. Where the
Intermediate-Result TLV indicates failure, an Error TLV also be included using the most
descriptive error code possible. The Intermediate-Result TLV may be accompanied by another
TLV indicating that the server wishes to perform a subsequent authentication. When all inner
methods have completed, the server send a Result TLV indicating success or failure
instead of a TLV that carries an inner method.

SHOULD

SHOULD
MUST

MUST
SHOULD

MUST NOT

SHOULD

MUST

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 16

3.6.2. Inner EAP Authentication

EAP prohibits use of multiple authentication methods within a single EAP
conversation in order to limit vulnerabilities to on-path attacks. TEAP addresses on-path attacks
through support for cryptographic protection of the inner EAP exchange and cryptographic
binding of the inner EAP method(s) to the protected tunnel. Inner methods are executed serially
in a sequence. This version of TEAP does not support initiating multiple inner methods
simultaneously in parallel. The inner methods need not be distinct. For example, EAP-TLS
(and) could be run twice as an inner method, first using machine
credentials, followed by a second instance using user credentials.

When EAP is used as an inner method, the EAP messages are carried within EAP-Payload TLVs
defined in Section 4.2.10. Note that in this use case, TEAP is simply a carrier for EAP, much as
RADIUS is a carrier for EAP. The full EAP state machine runs as normal and is carried over the
EAP-Payload TLV. Each distinct EAP authentication be managed as a separate EAP state
machine.

A TEAP server therefore begin an EAP authentication with an EAP-Request/Identity
(carried in an EAP-Payload TLV). However, a TEAP server finish the EAP conversation
with an EAP Success or EAP Failure packet; the Intermediate-Result TLV is used instead.

Upon completion of each EAP authentication in the tunnel, the server send an
Intermediate-Result TLV indicating the result of that authentication. When the result indicates
success, it be accompanied by a Crypto-Binding TLV. The peer respond to the
Intermediate-Result TLV indicating its own result and similarly on success accompany the
TLV with its own Crypto-Binding TLV. The Crypto-Binding TLV is further discussed in Sections
4.2.13 and 6.3. The Intermediate-Result TLVs can be included with other TLVs that indicate a
subsequent authentication or with the Result TLV used in the protected termination exchange.

If both peer and server indicate success, then the authentication is considered successful. If
either indicates failure, then the authentication is considered failed. The result of failure of an
EAP authentication does not always imply a failure of the overall authentication. If one inner
method fails, the server may attempt to authenticate the peer with a different method (EAP or
password).

[RFC3748]

[RFC5216] [RFC9190]

MUST

MUST
MUST NOT

MUST

MUST MUST
MUST

3.6.3. Inner Password Authentication

The authentication server (AS) initiates password authentication by sending a Basic-Password-
Auth-Req TLV defined in Section 4.2.14. If the peer wishes to participate in password
authentication, then it responds with a Basic-Password-Auth-Resp TLV that contains the
username and password as defined in Section 4.2.15. If it does not wish to perform password
authentication, then it responds with a Negative Acknowledgment (NAK) TLV indicating the
rejection of the Basic-Password-Auth-Req TLV.

The basic password authentication defined here is similar in functionality to that used by EAP-
TTLS with inner password authentication. It shares a similar security and risk
analysis.

[RFC5281]

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 17

Multiple round trips of password authentication requests and responses be used to support
some "housekeeping" functions such as a password or pin change before a user is considered to
be authenticated. Multiple rounds also be used to communicate a user's password and,
separately, a one-time password such as Time-Based One-Time Passwords (TOTPs) .

Implementations limit the number of round trips for password authentication. It is
reasonable to use one or two round trips. Further round trips are likely to be problematic and

 be avoided.

The first Basic-Password-Auth-Req TLV received in a session include a prompt, which the
peer displays to the user. Subsequent authentication rounds include a prompt, but it is
not always necessary.

When the peer first receives a Basic-Password-Auth-Req TLV, it should allow the user to enter
both a username and a password, which are then placed in the Basic-Password-Auth-Resp TLV. If
the peer receives subsequent Basic-Password-Auth-Req TLVs in the same authentication session,
it prompt for a username and instead allow the user to enter only a password. The
peer copy the username used in the first Basic-Password-Auth-Resp TLV into all
subsequent Basic-Password-Auth-Resp TLVs.

Servers track the username across multiple password rounds and reject authentication if
the identity changes from one Basic-Password-Auth-Resp TLV to the next. There is no reason for
a user (or machine) to change identities in the middle of authentication.

Upon reception of a Basic-Password-Auth-Resp TLV in the tunnel, the server send an
Intermediate-Result TLV indicating the result. The peer respond to the Intermediate-Result
TLV indicating its result. If the result indicates success, the Intermediate-Result TLV be
accompanied by a Crypto-Binding TLV. The Crypto-Binding TLV is further discussed in Sections
4.2.13 and 6.3.

The Intermediate-Result TLVs can be included with other TLVs that indicate a subsequent
authentication or with the Result TLV used in the protected termination exchange.

The use of EAP-FAST-GTC as defined in is with TEAPv1 because
EAP-FAST-GTC is not compliant with EAP-GTC defined in . Implementations should
instead make use of the password authentication TLVs defined in this specification.

MAY

MAY
[RFC6238]

MUST

SHOULD

MUST
SHOULD

MUST NOT
MUST

MUST

MUST
MUST

MUST

[RFC5421] NOT RECOMMENDED
[RFC3748]

3.6.4. EAP-MSCHAPv2

If using EAP-MSCHAPv2 as an inner EAP method, the EAP-FAST-MSCHAPv2 variant
defined in be used instead of the derivation defined in .

The difference between EAP-MSCHAPv2 and EAP-FAST-MSCHAPv2 is that the first and the
second 16 octets of the EAP-MSCHAPv2 Master Session Key (MSK) are swapped when it is used as
the Inner Method Session Keys (IMSKs) for TEAP.

[KAMATH]
[RFC5422], Section 3.2.3 MUST [MSCHAP]

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 18

https://www.rfc-editor.org/rfc/rfc5422#section-3.2.3

3.6.5. Limitations on Inner Methods

Implementations limit the permitted inner EAP methods to a small set such as EAP-TLS
and the EAP-FAST-MSCHAPv2 variant of EAP-MSCHAPv2. These EAP methods are the most
commonly supported inner methods in TEAP and are known to be interoperable among
multiple implementations.

Other EAP methods such as EAP-pwd, EAP-SIM, EAP-AKA, or EAP-AKA' can be used within a
TEAP tunnel. Any EAP method that derives both MSK and EMSK is likely to work as an inner
method for TEAP, because EAP-TLS has that behavior and it works. EAP methods that derive
only MSK should work, as EAP-FAST-MSCHAPv2 has that behavior, and it works. Other EAP
methods are untested and may or may not work.

Tunneled EAP methods such as PEAP , EAP-TTLS , and EAP-FAST
 be used for inner EAP authentication. There is no reason to have multiple layers of

TLS in order to protect a password exchange.

The EAP methods defined in , such as MD5-Challenge, One-Time Password
(OTP), and Generic Token Card (GTC), do not derive an MSK or an EMSK and are vulnerable to
on-path attacks. The construction of the OTP and GTC methods makes this attack less relevant, as
the information being sent is generally a one-time token. However, EAP-OTP and EAP-GTC offer
no benefit over the basic password authentication defined in Section 3.6.3, which also does not
perform crypto-binding of the inner method to the TLS session. These EAP methods are
therefore not useful as Phase 2 methods within TEAP.

Other EAP methods are less widely used and highly likely to not work as the inner EAP method
for TEAP.

In order to protect from on-path attacks, TEAP implementations permit the use of
inner EAP methods that fail to perform crypto-binding of the inner method to the TLS session.

Implementations permit resumption for the inner EAP methods such as EAP-TLS. If
the user or machine needs to be authenticated, it should use a method that provides full
authentication. If the user or machine needs to do resumption, it can perform a full
authentication once and then rely on the outer TLS session for resumption. This restriction
applies also to all TLS-based EAP methods that can tunnel other EAP methods. As a result, this
document updates .

In general, the reason to use a non-TLS-based EAP method inside of a TLS-based EAP method
such as TEAP is for privacy. Many previous EAP methods may leak information about user
identity, and those leaks are prevented by running the method inside of a protected TLS tunnel.

EAP-TLS is permitted in Phase 2 for two use cases. The first use case is when TLS 1.2 is used, as
the client certificate is not protected as with TLS 1.3. It is therefore that when
TLS 1.3 is used for the outer TEAP exchange, the client certificate is sent in Phase 1 instead of
doing EAP-TLS in Phase 2. This behavior will simplify the authentication exchange and use
fewer round trips than doing EAP-TLS inside of TEAP.

SHOULD

[PEAP] [RFC5281] [RFC4851]
MUST NOT

[RFC3748], Section 5

MUST NOT

MUST NOT

[RFC9427]

RECOMMENDED

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 19

https://www.rfc-editor.org/rfc/rfc3748#section-5

The second use case for EAP-TLS in Phase 2 is where both the user and machine use client
certificates for authentication. Since TLS permits only one client certificate to be presented, only
one certificate can be used in Phase 1. The second certificate is then presented via EAP-TLS in
Phase 2.

For basic password authentication, it is that this method be only used for the
exchange of one-time passwords. The existence of password-based EAP methods such as EAP-
pwd (and) makes most cleartext password exchanges unnecessary. The
updates to EAP-pwd in permit it to be used with databases that store passwords in
"salted" form, which greatly increases security.

Where no inner method provides an EMSK, the Crypto-Binding TLV offers little protection, as it
cannot tie the inner EMSK to the TLS session via the TLS-PRF. As a result, the TEAP session will
be vulnerable to on-path active attacks. Implementations and deployments adopt
various mitigation strategies described in . Implementations also need to
implement the inner method ordering described in Section 6.1 in order to fully prevent on-path
attacks.

RECOMMENDED

[RFC5931] [RFC8146]
[RFC8146]

SHOULD
[RFC7029], Section 3.2

3.6.6. Protected Termination and Acknowledged Result Indication

A successful TEAP Phase 2 conversation always end in a successful Crypto-Binding TLV
and Result TLV exchange. A TEAP server may initiate the Crypto-Binding TLV and Result TLV
exchange without initiating any inner methods in TEAP Phase 2. After the final Result TLV
exchange, the TLS tunnel is terminated, and a cleartext EAP Success or EAP Failure is sent by the
server. Peers implementing TEAP accept a cleartext EAP Success or Failure packet
prior to the peer and server reaching synchronized protected result indication.

The Crypto-Binding TLV exchange is used to prove that both the peer and server participated in
the tunnel establishment and sequence of authentications. It also provides verification of the
TEAP type, version negotiated, and Outer TLVs exchanged before the TLS tunnel establishment.
Except as noted below, the Crypto-Binding TLV be exchanged and verified before the final
Result TLV exchange, regardless of whether or not there is an inner method. The Crypto-Binding
TLV and Intermediate-Result TLV be included to perform cryptographic binding after each
successful authentication in a sequence of one or more inner methods. The server may send the
final Result TLV along with an Intermediate-Result TLV and a Crypto-Binding TLV to indicate its
intention to end the conversation. If the peer requires nothing more from the server, it will
respond with a Result TLV indicating success accompanied by a Crypto-Binding TLV and
Intermediate-Result TLV if necessary. The server then tears down the tunnel and sends a
cleartext EAP Success or EAP Failure.

If the peer receives a Result TLV indicating success from the server, but its authentication
policies are not satisfied (for example, it requires a particular authentication mechanism to be
run), it may request further action from the server using the Request-Action TLV. The Request-
Action TLV is sent with a Status field indicating what EAP Success/Failure result the peer would
expect if the requested action is not granted. The value of the Action field indicates what the
peer would like to do next. The format and values for the Request-Action TLV are defined in
Section 4.2.9.

MUST

MUST NOT

MUST

MUST

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 20

https://www.rfc-editor.org/rfc/rfc7029#section-3.2

Upon receiving the Request-Action TLV, the server may process the request or ignore it, based on
its policy. If the server ignores the request, it proceeds with termination of the tunnel and sends
the cleartext EAP Success or Failure message based on the Status field of the peer's Request-
Action TLV. If the server honors and processes the request, it continues with the requested action.
The conversation completes with a Result TLV exchange. The Result TLV may be included with
the TLV that completes the requested action.

Error handling for Phase 2 is discussed in Section 3.9.3.

3.7. Determining Peer-Id and Server-Id
The Peer-Id and Server-Id may be determined based on the types of credentials used
during either the TEAP tunnel creation or authentication. In the case of multiple peer
authentications, all authenticated peer identities and their corresponding identity types (Section
4.2.3) need to be exported. In the case of multiple server authentications, all authenticated
server identities need to be exported.

When X.509 certificates are used for peer authentication, the Peer-Id is determined by the
subject and subjectAltName fields in the peer certificate. As noted in :

The subject field identifies the entity associated with the public key stored in the subject
public key field. The subject name be carried in the subject field and/or the
subjectAltName extension. . . . If subject naming information is present only in the
subjectAltName extension (e.g., a key bound only to an email address or URI), then the
subject name be an empty sequence and the subjectAltName extension be
critical.

Where it is non-empty, the subject field contain an X.500 distinguished name (DN).

If an inner EAP authentication method is run, then the Peer-Id is obtained from that inner EAP
authentication method.

When the server uses an X.509 certificate to establish the TLS tunnel, the Server-Id is determined
in a similar fashion as stated above for the Peer-Id, e.g., the subject and subjectAltName fields in
the server certificate define the Server-Id.

[RFC5247]

[RFC5280]

MAY

MUST MUST

MUST

3.8. TEAP Session Identifier
For TLS 1.2 and earlier, the EAP session identifier is constructed using the tls-unique
from the Phase 1 outer tunnel at the beginning of Phase 2 as defined by .
The Session-Id is defined as follows:

[RFC5247]
Section 3.1 of [RFC5929]

 Session-Id = teap_type | tls-unique

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 21

https://www.rfc-editor.org/rfc/rfc5929#section-3.1

Where:

| denotes concatenation,
teap_type is the EAP Type assigned to TEAP, and
tls-unique = tls-unique from the Phase 1 outer tunnel at the beginning of Phase 2 as defined
by .

The Session-Id derivation for TLS 1.3 is given in

•
•
•

Section 3.1 of [RFC5929]

[RFC9427], Section 2.1

3.9. Error Handling
TEAP uses the error-handling rules summarized below:

Errors in the outer EAP packet layer are handled as defined in Section 3.9.1.
Errors in the TLS layer are communicated via TLS alert messages in both phases of TEAP.
The Intermediate-Result TLVs carry success or failure indications of the individual inner
methods in TEAP Phase 2. Errors within an EAP conversation in Phase 2 are expected to be
handled by the individual EAP authentication methods.
Violations of the Inner TLV rules are handled using Result TLVs together with Error TLVs.
Tunnel-compromised errors (errors caused by a failed or missing Crypto-Binding) are
handled using Result TLVs and Error TLVs.

1.
2.
3.

4.
5.

3.9.1. Outer-Layer Errors

Errors on the TEAP outer-packet layer are handled in the following ways:

If Outer TLVs are invalid or contain unknown values, they will be ignored.
The entire TEAP packet will be ignored if other fields (version, length, flags, etc.) are
inconsistent with this specification.

1.
2.

3.9.2. TLS Layer Errors

If the TEAP server detects an error at any point in the TLS handshake or the TLS layer, the server
 send a TEAP request encapsulating a TLS record containing the appropriate TLS alert

message rather than immediately terminating the TEAP exchange so as to allow the peer to
inform the user of the cause of the failure. The TEAP peer send a TEAP response to an alert
message. The EAP-Response packet sent by the peer contain a TEAP response with a
zero-length message. The server terminate the TEAP exchange with an EAP Failure packet
no matter what the client says.

If the TEAP peer detects an error at any point in the TLS layer, the TEAP peer send a
TEAP response encapsulating a TLS record containing the appropriate TLS alert message, which
contains a zero-length message. The server then terminate the conversation with an EAP
failure as discussed in the previous paragraph.

SHOULD

MUST
SHOULD

MUST

SHOULD

MUST

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 22

https://www.rfc-editor.org/rfc/rfc5929#section-3.1
https://www.rfc-editor.org/rfc/rfc9427#section-2.1

While TLS 1.3 allows for the TLS conversation to be restarted, it is not clear when that
would be useful (or used) for TEAP. Fatal TLS errors will cause the TLS conversation to fail. Non-
fatal TLS errors can likely be ignored entirely. As a result, TEAP implementations
permit TLS restarts.

[RFC8446]

MUST NOT

3.9.3. Phase 2 Errors

There are a large number of situations where errors can occur during Phase 2 processing. This
section describes both errors and the recommended processing of them.

When the server receives a Result TLV with a fatal Error TLV from the peer, it terminate
the TLS tunnel and reply with an EAP Failure.

When the peer receives a Result TLV with a fatal Error TLV from the server, it respond
with a Result TLV indicating failure. The server discard any data it receives from the peer
and reply with an EAP Failure. The final message from the peer is required by the EAP state
machine and serves only to allow the server to reply to the peer with the EAP Failure.

The following items describe specific errors and processing in more detail.

Fatal Error processing a TLV:
Any time the peer or the server finds a fatal error outside of the TLS layer during Phase 2 TLV
processing, it send a Result TLV of failure and an Error TLV using the most descriptive
error code possible.

Fatal Error during TLV Exchanges:
For errors involving the processing of the sequence of exchanges, such as a violation of TLV
rules (e.g., multiple EAP-Payload TLVs), the error code is Unexpected TLVs Exchanged.

Fatal Error due to tunnel compromise:
For errors involving a tunnel compromise, such as when the Crypto-Binding TLV fails
validation, the error code is Tunnel Compromise Error.

Non-Fatal Error due to inner method:
If there is a non-fatal error while running the inner method, the receiving side
silently drop the inner method exchange. Instead, it reply with an Error TLV using
the most descriptive error code possible.

If there is no error code that matches the particular issue, then the value Inner Method Error
(1001) be used. This response is a positive indication that there was an error
processing the current inner method. The side receiving a non-fatal Error TLV decide to
start a new and different inner method instead or send back a Result TLV to terminate the
TEAP authentication session.

MUST

MUST
MUST

MUST

SHOULD NOT
SHOULD

SHOULD
MAY

3.10. Fragmentation
Fragmentation of EAP packets is discussed in . There is no special
handling of fragments for TEAP.

[RFC5216], Section 2.1.5

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 23

https://www.rfc-editor.org/rfc/rfc5216#section-2.1.5

3.11. Services Requested by the Peer
Several TEAP operations, including server unauthenticated provisioning, certificate
provisioning, and channel binding, depend on the peer trusting the TEAP server. If the peer
trusts the provided server certificate, then the server is authenticated.

Typically, this authentication process involves the peer validating the certificate to a trust
anchor by verifying that the server presenting the certificate holds the private key and
confirming that the entity named by the certificate is the intended server. Server authentication
also occurs when the procedures in Section 3.2 are used to resume a session where the peer and
server were previously mutually authenticated. Alternatively, the server is deemed to be
authenticated if an inner EAP method provides mutual authentication along with an MSK and/or
EMSK. The inner method also provide for cryptographic binding via the Compound
Message Authentication Code (MAC), as discussed in Section 4.2.13. This issue is further
described in Section 3.11.3.

TEAP peers track whether or not server authentication has taken place. When the server
cannot be authenticated, the peer request any services such as certificate
provisioning (Section 3.11.1) from it.

Unless the peer requests server unauthenticated provisioning, it authenticate the server,
and fail the current authentication session fails if the server cannot be authenticated.

An additional complication arises when an inner method authenticates multiple parties, such as
authenticating both the peer machine and the peer user to the EAP server. Depending on how
authentication is achieved, only some of these parties may have confidence in it. For example, if
a strong shared secret is used to mutually authenticate the user and the EAP server, the machine
may not have confidence that the EAP server is the authenticated party if the machine cannot
trust the user not to disclose the shared secret to an attacker. In these cases, the parties who
participate in the authentication need to be considered when evaluating whether the peer
should request these services or whether the server should provide them.

The server also authenticate the peer before providing these services. The alternative is to
send provisioning data to unauthenticated and potentially malicious peers, which can have
negative impacts on security.

When a device is provisioned via TEAP, any subsequent authorization be done on the
authenticated credentials. That is, there may be no credentials (or anonymous credentials)
passed in Phase 1, but there will be credentials passed or provisioned in Phase 2. If later
authorizations are done on the Phase 1 identity, then a device could obtain the wrong
authorization. If authorization is done on the authenticated credentials instead, then the device
will obtain the correct kind of network access.

The correct authorization must also be applied to any resumption, as noted in
. However, as it is possible in TEAP for the credentials to change, the new credentials be

associated with the session ticket. If this association cannot be done, then the server

MUST

MUST
MUST NOT

MUST

MUST

MUST

[RFC9190], Section
5.7 MUST

MUST

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 24

https://www.rfc-editor.org/rfc/rfc9190#section-5.7
https://www.rfc-editor.org/rfc/rfc9190#section-5.7

invalidate any session tickets for the current session. This invalidation will force a full re-
authentication on any subsequent connection; at which point, the correct authorization will be
associated with any session ticket.

Note that the act of re-provisioning a device is essentially indistinguishable from any initial
provisioning. The device authenticates and obtains new credentials via the standard
provisioning mechanisms. The only caveat is that the device discard the old
credentials unless either they are known to have expired or the new credentials have been
verified to work.

SHOULD NOT

3.11.1. Certificate Provisioning Within the Tunnel

Provisioning of a peer's certificate is supported in TEAP by performing the Simple PKI Request/
Response from using PKCS#10 and PKCS#7 TLVs, respectively. A peer sends the Simple
PKI Request using a PKCS#10 CertificateRequest encoded into the body of a PKCS#10
TLV (see Section 4.2.17). The TEAP server issues a Simple PKI Response using a PKCS#7
unsigned (i.e., degenerate) "Certificates Only" message encoded into the body of a PKCS#7 TLV
(see Section 4.2.16) only after an inner method has run and provided an identity proof on the
peer prior to a certificate is being issued.

In order to provide linking identity and proof-of-possession by including information specific to
the current authenticated TLS session within the signed certification request, the peer
generating the request obtain the tls-unique value from the TLS subsystem as defined in
"Channel Bindings for TLS" . The TEAP peer operations between obtaining the tls-
unique value through generation of the Certification Signing Request (CSR) that contains the
current tls-unique value and the subsequent verification of this value by the TEAP server are the
"phases of the application protocol during which application-layer authentication occurs" that
are protected by the synchronization interoperability mechanism described in the
interoperability note in "Channel Bindings for TLS" (). When performing
renegotiation, TLS "secure_renegotiation" be used.

The tls-unique value is base-64-encoded as specified in , and the resulting
string is placed in the certification request challengePassword field ().
The challengePassword field is limited to 255 octets (indicates that no
existing cipher suite would result in an issue with this limitation). If tls-unique information is
not embedded within the certification request, the challengePassword field be empty to
indicate that the peer did not include the optional channel-binding information (any value
submitted is verified by the server as tls-unique information).

The server verify the tls-unique information. This ensures that the signed certificate
request is being presented by an authenticated TEAP peer that is in possession of the private key.

The Simple PKI Request/Response generation and processing rules of apply to
TEAP, with the exception of error conditions. In the event of an error, the TEAP server
respond with an Error TLV using the most descriptive error code possible; it ignore the
PKCS#10 request that generated the error.

[RFC5272]
[RFC2986]

[RFC2315]

SHOULD
[RFC5929]

[RFC5929], Section 3.1
[RFC5746] MUST

Section 4 of [RFC4648]
[RFC2985], Section 5.4.1

Section 7.4.9 of [RFC5246]

MUST

SHOULD

[RFC5272] SHALL
SHOULD

MAY

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 25

https://www.rfc-editor.org/rfc/rfc5929#section-3.1
https://www.rfc-editor.org/rfc/rfc4648#section-4
https://www.rfc-editor.org/rfc/rfc2985#section-5.4.1
https://www.rfc-editor.org/rfc/rfc5246#section-7.4.9

3.11.2. Certificate Content and Uses

It is not enough to verify that the CSR provided by the peer to the authenticator is from an
authenticated user. The CSR itself should also be examined by the authenticator or CA before
any certificate is issued.

The format of a CSR is complex and contains a substantial amount of information. That
information could be incorrect, such as a user claiming a wrong physical address, email address,
etc. It is that systems provisioning these certificates validate that the CSR
contains the expected data and that it does not contain unexpected data. For example, a CA
could refuse to issue the certificate if the CSR contained unknown fields or if a known field
contained an unexpected or invalid value. The CA can modify or refuse a particular CSR to
address these deficiencies for any reasons, including local site policy. We note that the "A" in "CA"
means for "Authority", while the "R" in "CSR" means "Request". There is no requirement for a CA
to sign any and all CSRs that are presented to it.

Once an EAP peer receives the signed certificate, the peer could potentially be (ab)used for in
TLS contexts other than TEAP. For example, the certificate could be used with EAP-TLS, or even
with HTTPS. It is to use certificates provisioned via TEAP for any non-TEAP
protocol. One method of enforcing this restriction is to have different CAs (or different
intermediate CAs) that issue certificates for different uses. For example, TLS-based EAP methods
could share one CA, and even use different intermediary CAs for different TLS-based EAP
methods. HTTPS servers could use an entirely different CA. The different protocols could then be
configured to validate client certificates only from their preferred CA, which would prevent
peers from using certificates outside of the intended use case.

Another method of limiting the uses of a certificate is to provision it with an appropriate value
for the Extended Key Usage field . For example, the id-kp-eapOverLAN
value could be used to indicate that this certificate is intended for use only with EAP.

It is difficult to give more detailed recommendations than the above. Each CA or organization
may have its own local policy as to what is permitted or forbidden in a certificate. All we can do
in this document is to highlight the issues and make the reader aware that they have to be
addressed.

RECOMMENDED

NOT RECOMMENDED

[RFC7299] [RFC4334]

3.11.3. Server Unauthenticated Provisioning Mode

In Server Unauthenticated Provisioning Mode, an unauthenticated tunnel is established in Phase
1, and the peer and server negotiate an inner method or methods in Phase 2. This inner method

 support mutual authentication, provide key derivation, and be resistant to attacks such as
on-path and dictionary attacks. In most cases, this inner method will be an EAP authentication
method. Example inner methods that satisfy these criteria include EAP-pwd and EAP-
EKE but not EAP-FAST-MSCHAPv2.

MUST

[RFC5931]
[RFC6124]

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 26

This provisioning mode enables the bootstrapping of peers when the peer lacks the ability to
authenticate the server during Phase 1. This includes both cases in which the cipher suite
negotiated does not provide authentication and in which the cipher suite negotiated provides
the authentication, but the peer is unable to validate the identity of the server for some reason.

Upon successful completion of the inner method in Phase 2, the peer and server exchange a
Crypto-Binding TLV to bind the inner method with the outer tunnel and ensure that an on-path
attack has not been attempted.

Support for the Server Unauthenticated Provisioning Mode is optional. The cipher suite
TLS_DH_anon_WITH_AES_128_CBC_SHA is when using Server Unauthenticated
Provisioning Mode, but other anonymous cipher suites be supported as long as the TLS pre-
master secret is generated from contribution from both peers.

When a strong inner method is not used with Server Unauthenticated Provisioning Mode, it is
possible for an attacker to perform an on-path attack. In effect, Server Unauthenticated
Provisioning Mode has similar security issues as just running the inner method in the open
without the protection of TLS. All of the information in the tunnel should be assumed to be
visible to, and modifiable by, an attacker.

Implementations exchange minimal data in Server Unauthenticated Provisioning
Mode. Instead, they should use that mode to set up a secure/authenticated tunnel and then use
that tunnel to perform any needed data exchange.

It is that client implementations and deployments authenticate TEAP servers if
at all possible. Authenticating the server means that a client can be provisioned securely with no
chance of an attacker eaves-dropping on the connection.

Note that server unauthenticated provisioning can only use anonymous cipher suites in TLS 1.2
and earlier. These cipher suites have been deprecated in TLS 1.3 (). For
TLS 1.3, the server provide a certificate, and the peer performs server unauthenticated
provisioning by not validating the certificate chain or any of its contents.

RECOMMENDED
MAY

SHOULD

RECOMMENDED

[RFC8446], Appendix C.5
MUST

3.11.4. Channel Binding

 defines channel bindings for EAP that solve the "lying NAS" and the "lying provider"
problems, using a process in which the EAP peer gives information about the characteristics of
the service provided by the authenticator to the Authentication, Authorization, and Accounting
(AAA) server protected within the EAP authentication method. This allows the server to verify
the authenticator is providing information to the peer that is consistent with the information
received from this authenticator as well as the information stored about this authenticator.

TEAP supports EAP channel binding using the Channel-Binding TLV defined in Section 4.2.7. If
the TEAP server wants to request the channel-binding information from the peer, it sends an
empty Channel-Binding TLV to indicate the request. The peer responds to the request by sending
a Channel-Binding TLV containing a channel-binding message as defined in . The
server validates the channel-binding message and sends back a Channel-Binding TLV with a
result code. If the server did not initiate the channel-binding request and the peer still wants to

[RFC6677]

[RFC6677]

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 27

https://www.rfc-editor.org/rfc/rfc8446#appendix-C.5

send the channel-binding information to the server, it can do that by using the Request-Action
TLV along with the Channel-Binding TLV. The peer only send channel-binding information
after it has successfully authenticated the server and established the protected tunnel.

MUST

4. Message Formats
The following sections describe the message formats used in TEAP. The fields are transmitted
from left to right in network byte order.

1

2

4.1. TEAP Message Format
A summary of the TEAP Request/Response packet format is shown below.

Code
The Code field is one octet in length and is defined as follows:

Request

Response

Identifier
The Identifier field is one octet and aids in matching responses with requests. The Identifier
field be changed on each Request packet. The Identifier field in the Response packet

 match the Identifier field from the corresponding request.

Length
The Length field is two octets and indicates the length of the EAP packet including the Code,
Identifier, Length, Type, Flags, Ver, Message Length, TLS Data, and Outer TLVs fields. Octets
outside the range of the Length field should be treated as Data Link Layer padding and
should be ignored on reception.

Type
55 for TEAP

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Code | Identifier | Length |
+-+
| Type | Flags | Ver | Message Length :
+-+
: Message Length | Outer TLV Length
+-+
: Outer TLV Length | TLS Data...
+-+
| Outer TLVs...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

MUST
MUST

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 28

L

M

S

O

R

Flags

Length included; set to indicate the presence of the four-octet Message Length field. It
 be present for the first fragment of a fragmented message. It be present

for any other message.

More fragments; set on all but the last fragment.

TEAP start; set in a TEAP Start message sent from the server to the peer.

Outer TLV length included; set to indicate the presence of the four-octet Outer TLV Length
field. It be present only in the initial request and response messages. If the initial
message is fragmented, then it be present only on the first fragment.

Reserved (be zero and ignored upon receipt)

Ver
This field contains the version of the protocol. This document describes version 1 (001 in
binary) of TEAP.

Message Length
The Message Length field is four octets and is present only if the L bit is set. This field
provides the total length of the message that may be fragmented over the data fields of
multiple packets.

Outer TLV Length
The Outer TLV Length field is four octets and is present only if the O bit is set. This field
provides the total length of the Outer TLVs if present.

TLS Data
When the TLS Data field is present, it consists of an encapsulated TLS packet in TLS record
format. A TEAP packet with Flags and Version fields, but with zero length TLS Data field, is
used to indicate TEAP acknowledgment for either a fragmented message, a TLS Alert
message, or a TLS Finished message.

Outer TLVs
The Outer TLVs consist of the optional data used to help establish the TLS tunnel in TLV
format. They are only allowed in the first two messages in the TEAP protocol. That is the first
EAP-server-to-peer message and first peer-to-EAP-server message. The start of the Outer TLVs
can be derived from the EAP Length field and Outer TLV Length field.

 0 1 2 3 4
+-+-+-+-+-+
|L M S O R|
+-+-+-+-+-+

MUST MUST NOT

MUST
MUST

MUST

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 29

4.2. TEAP TLV Format and Support
The TLVs defined here are TLV objects. The TLV objects could be used to carry arbitrary
parameters between an EAP peer and EAP server within the protected TLS tunnel.

The EAP peer may not necessarily implement all the TLVs supported by the EAP server. To allow
for interoperability, TLVs are designed to allow an EAP server to discover if a TLV is supported
by the EAP peer using the NAK TLV. The mandatory bit in a TLV indicates whether support of the
TLV is required. If the peer or server does not support a TLV marked mandatory, then it
send a NAK TLV in the response, and all the other TLVs in the message be ignored. If an
EAP peer or server finds an unsupported TLV that is marked as optional, it can ignore the
unsupported TLV. It only send a NAK TLV for a TLV that is marked mandatory but is not
understood and otherwise send a NAK TLV. If all TLVs in a message are marked
optional and none are understood by the peer, then a Result TLV be sent to the other
side in order to continue the conversation. It is also possible to send a NAK TLV when all TLVs in
a message are marked optional.

Note that a peer or server may support a TLV with the mandatory bit set but may not
understand the contents. The appropriate response to a supported TLV with content that is not
understood is defined by the individual TLV specification.

EAP implementations compliant with this specification support TLV exchanges as well as
the processing of mandatory/optional settings on the TLV. Implementations conforming to this
specification support the following TLVs:

Authority-ID TLV
Identity-Type TLV
Result TLV
NAK TLV
Error TLV
Request-Action TLV
EAP-Payload TLV
Intermediate-Result TLV
Crypto-Binding TLV
Basic-Password-Auth-Req TLV
Basic-Password-Auth-Resp TLV

MUST
MUST

MUST
MUST NOT

SHOULD

MUST

MUST

•
•
•
•
•
•
•
•
•
•
•

4.2.1. General TLV Format

TLVs are defined as described below. The fields are transmitted from left to right.

If a peer or server receives a TLV that is not of the correct format, the TLV be discarded. It
is generally useful to log an error or debugging message that indicates which TLV had an issue
and what the problem is. However, TLVs that are malformed are invalid and cannot be used.

MUST

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 30

0

1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

M
Optional TLV

Mandatory TLV

R
Reserved, set to zero (0)

TLV Type
A 14-bit field, denoting the TLV type. Allocated types include:

Unassigned

Authority-ID TLV (Section 4.2.2)

Identity-Type TLV (Section 4.2.3)

Result TLV (Section 4.2.4)

NAK TLV (Section 4.2.5)

Error TLV (Section 4.2.6)

Channel-Binding TLV (Section 4.2.7)

Vendor-Specific TLV (Section 4.2.8)

Request-Action TLV (Section 4.2.9)

EAP-Payload TLV (Section 4.2.10)

Intermediate-Result TLV (Section 4.2.11)

PAC TLV (DEPRECATED)

Crypto-Binding TLV (Section 4.2.13)

Basic-Password-Auth-Req TLV (Section 4.2.14)

Basic-Password-Auth-Resp TLV (Section 4.2.15)

PKCS#7 TLV (Section 4.2.16)

PKCS#10 TLV (Section 4.2.17)

Trusted-Server-Root TLV (Section 4.2.18)

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|M|R| TLV Type | Length |
+-+
| Value...
+-+

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 31

18

19

CSR-Attributes TLV (Section 4.2.19)

Identity-Hint TLV (Section 4.2.20)

Length
The length of the Value field in octets.

Value
The value of the TLV.

4.2.2. Authority-ID TLV

M
0 - Optional TLV

R
Reserved, set to zero (0)

TLV Type
1 - Authority-ID

Length
The Length field is two octets and contains the length of the ID field in octets.

ID
Hint of the identity of the server to help the peer to match the credentials available for the
server. It should be unique across the deployment.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|M|R| TLV Type | Length |
+-+
| ID...
+-+

4.2.3. Identity-Type TLV

The Identity-Type TLV allows an EAP server to send a hint to help the EAP peer select the right
type of identity, for example, user or machine. TEAPv1 implementations support this TLV.
Only one Identity-Type TLV be present in the TEAP request or response packet.

A server sending the Identity-Type TLV also include an EAP-Payload TLV or a Basic-
Password-Auth-Resp TLV. A peer sending an Identity-Type TLV also include EAP-Payload
TLV or a Basic-Password-Auth-Resp TLV.

An EAP peer receiving an Identity-Type request respond with an Identity-Type TLV with
the requested type. If the Identity-Type field does not contain one of the known values, or if the
EAP peer does not have an identity corresponding to the identity type requested, then the peer

 respond with an Identity-Type TLV with the one of available identity types.

MUST
SHOULD

MUST
MUST

SHOULD

SHOULD

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 32

A server receiving an Identity-Type in the response check if the value of the Identity-Type
in the response matches the value of the Identity-Type that was sent in the request. A match
means that the server can proceed with authentication.

However, if the values do not match, the server can proceed with authentication if and only if
the following two conditions match. If either of the following two conditions does not match, the
server respond with a Result TLV of Failure.

The Identity-Type contains a value permitted by the server configuration.
The Identity-Type value was not previously used for a successful authentication.

The first condition allows a server to be configured to permit only user authentication, or else
only machine authentication. A server could also use an Identity-Hint TLV sent in the response
to permit different types of authentication for different identities. A server could also permit or
forbid different kinds of authentication based on other information, such an outer EAP Identity,
fields in an outer EAP client certificate, or other fields received in a RADIUS or Diameter packet
along with the TEAP session. There is no requirement that a server has to support both user and
machine authentication for all TEAP sessions.

The second condition ensures that if a particular inner method succeeds, the server does not
attempt a subsequent inner method for the same Identity-Type. For example, if a user is
authenticated via an inner method of EAP-TLS, there is no benefit to also requesting additional
authentication via a different inner method. Similarly, there is no benefit to repeating an
authentication sessions for the same user; the result will not change.

This second condition also forbids multiple rounds of challenge/response authentication via the
Basic-Password-Auth-Req TLV. TEAPv1 supports only one round of Basic-Password-Auth-Req
followed by Basic-Password-Auth-Resp. The result of that round be another Basic-
Password-Auth-Req TLV.

This second condition also means that a server send an Identity-Hint TLV that has the
same value as was previously used for a successful authentication.

The Identity-Type TLV is defined as follows:

M
Mandatory, set to one (1)

MUST

MUST

1.
2.

MUST NOT

MUST NOT

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|M|R| TLV Type | Length |
+-+
| Identity-Type |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 33

1

2

R
Reserved, set to zero (0)

TLV Type
2 - Identity-Type TLV

Length
2

Identity-Type
The Identity-Type field is two octets. Values include:

User

Machine

4.2.4. Result TLV

The Result TLV provides support for acknowledged success and failure messages for protected
termination within TEAP. If the Status field does not contain one of the known values, then the
peer or EAP server treat this as a fatal error of Unexpected TLVs Exchanged. The behavior
of the Result TLV is further discussed in Sections 3.6.6 and 3.9.3.

A Result TLV indicating failure be accompanied by the following TLVs: NAK, EAP-
Payload TLV, or Crypto-Binding TLV.

A Result TLV indicating success be accompanied by a Crypto-Binding TLV.

The Result TLV is defined as follows:

M
Mandatory, set to one (1)

R
Reserved, set to zero (0)

TLV Type
3 - Result TLV

Length
2

MUST

MUST NOT

MUST

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|M|R| TLV Type | Length |
+-+
| Status |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 34

1

2

Status
The Status field is two octets. Values include:

Success

Failure

4.2.5. NAK TLV

The NAK TLV allows a peer to detect TLVs that are not supported by the other peer. A TEAP
packet can contain 0 or more NAK TLVs. A NAK TLV should not be accompanied by other TLVs. A
NAK TLV be sent in response to a message containing a Result TLV, instead a Result
TLV of failure should be sent indicating failure and an Error TLV of Unexpected TLVs Exchanged.
The NAK TLV is defined as follows:

M
Mandatory, set to one (1)

R
Reserved, set to zero (0)

TLV Type
4 - NAK TLV

Length
>=6

Vendor-Id
The Vendor-Id field is four octets and contains the Vendor-Id of the TLV that was not
supported. The high-order octet is 0, and the low-order three octets are the Structure of
Management Information (SMI) Network Management Private Enterprise Number of the
Vendor in network byte order. The Vendor-Id field be zero for TLVs that are not Vendor-
Specific TLVs.

NAK-Type
The NAK-Type field is two octets. The field contains the type of the TLV that was not
supported. A TLV of this type have been included in the previous packet.

MUST NOT

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|M|R| TLV Type | Length |
+-+
| Vendor-Id |
+-+
| NAK-Type | TLVs...
+-+

MUST

MUST

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 35

TLVs
This field contains a list of zero or more TLVs, each of which have the mandatory
bit set. These optional TLVs are for future extensibility to communicate why the offending
TLV was determined to be unsupported.

MUST NOT

1

2

4.2.6. Error TLV

The Error TLV allows an EAP peer or server to indicate errors to the other party. A TEAP packet
can contain 0 or more Error TLVs. The Error-Code field describes the type of error. Error codes
1-999 represent successful outcomes (informative messages), 1000-1999 represent warnings, and
2000-2999 represent fatal errors. A fatal Error TLV be accompanied by a Result TLV
indicating failure, and the conversation is terminated as described in Section 3.9.3.

Many of the error codes below refer to errors in inner method processing that may be retrieved
if made available by the inner method. Implementations take care that error messages do
not reveal too much information to an attacker. For example, the usage of error message 1031
(User account credentials incorrect) is , because it allows an attacker to
determine valid usernames by differentiating this response from other responses. It should only
be used for troubleshooting purposes.

The Error TLV is defined as follows:

M
Mandatory, set to one (1)

R
Reserved, set to zero (0)

TLV Type
5 - Error TLV

Length
4

Error-Code
The Error-Code field is four octets. Currently defined values for Error-Code include:

User account expires soon

User account credential expires soon

MUST

MUST

NOT RECOMMENDED

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|M|R| TLV Type | Length |
+-+
| Error-Code |
+-+

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 36

3

4

5

6

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

User account authorizations change soon

Clock skew detected

Contact administrator

User account credentials change required

Inner Method Error

Unspecified authentication infrastructure problem

Unspecified authentication failure

Unspecified authorization failure

User account credentials unavailable

User account expired

User account locked: try again later

User account locked: admin intervention required

Authentication infrastructure unavailable

Authentication infrastructure not trusted

Clock skew too great

Invalid inner realm

Token out of sync: administrator intervention required

Token out of sync: PIN change required

Token revoked

Tokens exhausted

Challenge expired

Challenge algorithm mismatch

Client certificate not supplied

Client certificate rejected

Realm mismatch between inner and outer identity

Unsupported Algorithm In Certificate Signing Request

Unsupported Extension In Certificate Signing Request

Bad Identity In Certificate Signing Request

Bad Certificate Signing Request

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 37

1026

1027

1028

1029

1030

1031

1032

2001

2002

2003

2004

2005

2006

2007

2008

2009

Internal CA Error

General PKI Error

Inner method's channel-binding data required but not supplied

Inner method's channel-binding data did not include required information

Inner method's channel binding failed

User account credentials incorrect [USAGE]

Inner method not supported

Tunnel Compromise Error

Unexpected TLVs Exchanged

The Crypto-Binding TLV is invalid (Version, Received-Ver, or Sub-Type)

The first inner method did not derive EMSK

The Crypto-Binding TLV did not include a required MSK Compound-MAC

The MSK Compound-MAC fails verification

The Crypto-Binding TLV did not include a required EMSK Compound-MAC

The EMSK Compound-MAC fails verification

The EMSK Compound-MAC exists, but the inner method did not derive EMSK

NOT RECOMMENDED

4.2.7. Channel-Binding TLV

The Channel-Binding TLV provides a mechanism for carrying channel-binding data from the
peer to the EAP server and a channel-binding response from the EAP server to the peer as
described in . TEAPv1 implementations support this TLV, which cannot be
responded to with a NAK TLV. If the Channel-Binding data field does not contain one of the
known values or if the EAP server does not support this TLV, then the server ignore the
value. The Channel-Binding TLV is defined as follows:

M
0 - Optional TLV

[RFC6677] MAY

MUST

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|M|R| TLV Type | Length |
+-+
| Data ...
+-+

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 38

R
Reserved, set to zero (0)

TLV Type
6 - Channel-Binding TLV

Length
variable

Data
The data field contains a channel-binding message as defined in . Section 5.3 of [RFC6677]

4.2.8. Vendor-Specific TLV

The Vendor-Specific TLV is available to allow vendors to support their own extended attributes
not suitable for general usage. A Vendor-Specific TLV attribute can contain one or more TLVs,
referred to as Vendor TLVs. The TLV type of a particular Vendor TLV is defined by the vendor. All
the Vendor TLVs inside a single Vendor-Specific TLV belong to the same vendor. There can be
multiple Vendor-Specific TLVs from different vendors in the same message. Error handling in the
Vendor TLV could use the vendor's own specific error-handling mechanism or use the standard
TEAP error codes defined.

Vendor TLVs may be optional or mandatory. Vendor TLVs sent with Result TLVs be marked
as optional. If the Vendor-Specific TLV is marked as mandatory, then it is expected that the
receiving side needs to recognize the vendor ID, parse all Vendor TLVs within, and deal with
error handling within the Vendor-Specific TLV as defined by the vendor.

Where a Vendor-Specific TLV carries an authentication protocol in the inner method, it
define values for MSK and EMSK. Where these values cannot be derived from cryptographic
primitives, they be set to zero, as happens when Basic-Password-Auth-Req is used.

The Vendor-Specific TLV is defined as follows:

M
0 or 1

R
Reserved, set to zero (0)

MUST

MUST

MUST

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|M|R| TLV Type | Length |
+-+
| Vendor-Id |
+-+
| Vendor TLVs....
+-+

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 39

https://www.rfc-editor.org/rfc/rfc6677#section-5.3

TLV Type
7 - Vendor-Specific TLV

Length
4 + cumulative length of all included Vendor TLVs

Vendor-Id
The Vendor-Id field is four octets and contains the Vendor-Id of the TLV. The high-order octet
is 0, and the low-order 3 octets are the SMI Network Management Private Enterprise Number
of the Vendor in network byte order.

Vendor TLVs
This field is of indefinite length. It contains Vendor-Specific TLVs, in a format defined by the
vendor.

4.2.9. Request-Action TLV

The Request-Action TLV be sent at any time. The Request-Action TLV allows the peer or
server to request that the other side negotiates additional inner methods or process TLVs that
are passed inside of the Request-Action TLV.

The receiving side process this TLV. The processing for the TLV is as follows:

The receiving entity choose to process any of the TLVs that are included in the message.

If the receiving entity chooses NOT to process any TLV in the list, then it sends back a Result
TLV with the same code in the Status field of the Request-Action TLV.

If multiple Request-Action TLVs are in the request, the session can continue if any of the TLVs
in any Request-Action TLV are processed.

If multiple Request-Action TLVs are in the request and none of them is processed, then the
most fatal status should be used in the Result TLV returned. If a status code in the Request-
Action TLV is not understood by the receiving entity, then it be treated as a fatal
error. Otherwise, the receiving entity send a Request-Action TLV containing an Error
TLV of value 2002 (Unexpected TLVs Exchanged).

After processing the TLVs or inner method in the request, another round of Result TLV
exchange occur to synchronize the final status on both sides.

The peer or the server send multiple Request-Action TLVs to the other side. Two Request-
Action TLVs occur in the same TEAP packet if they have the same Status value. The
order of processing multiple Request-Action TLVs is implementation dependent. If the receiving
side processes the optional (non-fatal) items first, it is possible that the fatal items will disappear
at a later time. If the receiving side processes the fatal items first, the communication time will
be shorter.

The peer or the server return a new set of Request-Action TLVs after one or more of the
requested items have been processed and the other side has signaled it wants to end the EAP
conversation.

MAY

MUST

MAY

SHOULD
MAY

MUST

MAY
MUST NOT

MAY

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 40

1

2

1

2

The Request-Action TLV is defined as follows:

M
Mandatory, set to one (1)

R
Reserved, set to zero (0)

TLV Type
8 - Request-Action TLV

Length
2 + cumulative length of all included TLVs

Status
The Status field is one octet. This indicates the result if the party who receives this TLV does
not process the action. Values include:

Success

Failure

Action
The Action field is one octet. Values include:

Process-TLV

Negotiate-EAP

TLVs
This field is of indefinite length. It contains TLVs that the peer wants the server to process.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|M|R| TLV Type | Length |
+-+
| Status | Action | TLVs....
+--+-+-+-+-+-+-+-+-+-+-+-+-

4.2.10. EAP-Payload TLV

To allow coalescing an EAP request or response with other TLVs, the EAP-Payload TLV is defined,
which includes an encapsulated EAP packet and a list of optional TLVs. The optional TLVs are
provided for future extensibility to provide hints about the current EAP authentication. Only
one EAP-Payload TLV is allowed in a message. The EAP-Payload TLV is defined as follows:

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 41

M
Mandatory, set to one (1)

R
Reserved, set to zero (0)

TLV Type
9 - EAP-Payload TLV

Length
length of embedded EAP packet + cumulative length of additional TLVs

EAP packet
This field contains a complete EAP packet, including the EAP header (Code, Identifier, Length,
Type) fields. The length of this field is determined by the Length field of the encapsulated EAP
packet.

TLVs
This (optional) field contains a list of TLVs associated with the EAP packet field. The TLVs

 have the mandatory bit set. The total length of this field is equal to the Length field
of the EAP-Payload TLV, minus the Length field in the EAP header of the EAP packet field.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|M|R| TLV Type | Length |
+-+
| EAP packet...
+-+
| TLVs...
+-+

MUST NOT

4.2.11. Intermediate-Result TLV

The Intermediate-Result TLV signals intermediate Success and Failure messages for all inner
methods. The Intermediate-Result TLV be used for all inner methods.

An Intermediate-Result TLV indicating success be accompanied by a Crypto-Binding TLV.

An Intermediate-Result TLV indicating failure be accompanied by an Error TLV that
indicates why the authentication failed.

The optional TLVs associated with this TLV are provided for future extensibility to provide hints
about the current result. The Intermediate-Result TLV is defined as follows:

MUST

MUST

SHOULD

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 42

1

2

M
Mandatory, set to one (1)

R
Reserved, set to zero (0)

TLV Type
10 - Intermediate-Result TLV

Length
2 + cumulative length of the embedded associated TLVs

Status
The Status field is two octets. Values include:

Success

Failure

TLVs
This field is of indeterminate length and contains zero or more of the TLVs associated with
the Intermediate Result TLV. The TLVs in this field have the mandatory bit set.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|M|R| TLV Type | Length |
+-+
| Status | TLVs...
+-+

MUST NOT

4.2.12. PAC TLV

 defined a Protected Access Credential (PAC) to mirror EAP-FAST . However,
implementation experience and analysis determined that the PAC was not necessary. Instead,
TEAP performs session resumption using the NewSessionTicket message as defined in Sections
2.1.2 and 2.1.3 of . As such, the PAC TLV has been deprecated.

As the PAC TLV is deprecated, an entity receiving it send a Result TLV indicating failure
and an Error TLV of Unexpected TLVs Exchanged.

[RFC7170] [RFC4851]

[RFC9190]

SHOULD

4.2.13. Crypto-Binding TLV

The Crypto-Binding TLV is used to prove that both the peer and server participated in the tunnel
establishment and sequence of authentications. It also provides verification of the TEAP type,
version negotiated, and Outer TLVs exchanged before the TLS tunnel establishment.

A Crypto-Binding be accompanied by an Intermediate-Result TLV indicating success.MUST

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 43

https://www.rfc-editor.org/rfc/rfc9190#section-2.1.2
https://www.rfc-editor.org/rfc/rfc9190#section-2.1.3

The Crypto-Binding TLV be exchanged and validated before any Intermediate-Result or
Result TLV value is examined, regardless of whether there is an inner method or not. It be
included with the Intermediate-Result TLV to perform cryptographic binding after each
successful inner method in a sequence of inner methods, before proceeding with another inner
method. If no MSK or EMSK has been generated and a Crypto-Binding TLV is required, then the
MSK Compound-MAC field contains the MAC using keys generated according to Section 6.3.

The Crypto-Binding TLV is valid only if the following checks pass on its contents:

The Version field contain a known value.
The Received-Ver field matches the TEAP version sent by the receiver during the EAP
version negotiation.
The Sub-Type field is set to the correct value for this exchange.
The Flags field is set to a known value.
The Compound-MAC(s) verify correctly.

If any of the above checks fails, then the TLV is invalid. An invalid Crypto-Binding TLV is a fatal
error and is handled as described in Section 3.9.3

See Section 6 for a more detailed discussion of how the Compound-MAC fields are constructed
and verified.

The Crypto-Binding TLV is defined as follows:

M
Mandatory, set to one (1)

R
Reserved, set to zero (0)

MUST
MUST

•
•

•
•
•

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|M|R| TLV Type | Length |
+-+
| Reserved | Version | Received-Ver.| Flags|Sub-Type|
+-+
| |
~ Nonce ~
| |
+-+
| |
~ EMSK Compound-MAC ~
| |
+-+
| |
~ MSK Compound-MAC ~
| |
+-+

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 44

1

2

3

0

1

TLV Type
12 - Crypto-Binding TLV

Length
76

Reserved
Reserved, set to zero (0)

Version
The Version field is a single octet, which is set to the version of Crypto-Binding TLV the TEAP
method is using. For an implementation compliant with TEAPv1, the version number
be set to one (1).

Received-Ver
The Received-Ver field is a single octet and be set to the TEAP version number received
during version negotiation. Note that this field only provides protection against downgrade
attacks, where a version of EAP requiring support for this TLV is required on both sides.

For TEAPv1, this version number be set to one (1).

Flags
The Flags field is four bits. Defined values include:

EMSK Compound-MAC is present

MSK Compound-MAC is present

Both EMSK and MSK Compound-MAC are present

All other values of the Flags field are invalid.

Sub-Type
The Sub-Type field is four bits. Defined values include:

Binding Request

Binding Response

All other values of the Sub-Type field are invalid.

Nonce
The Nonce field is 32 octets. It contains a 256-bit nonce that is temporally unique, used for
Compound-MAC key derivation at each end. The nonce in a request have its least
significant bit set to zero (0), and the nonce in a response have the same value as the
request nonce except the least significant bit be set to one (1).

EMSK Compound-MAC
The EMSK Compound-MAC field is 20 octets. This can be the Server MAC (B1_MAC) or the
Client MAC (B2_MAC). The computation of the MAC is described in Section 6.3.

MUST

MUST

MUST

MUST
MUST

MUST

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 45

Note that this field is always 20 octets in length. Any larger MAC is simply truncated. All
validations or comparisons be done on the truncated value.

MSK Compound-MAC
The MSK Compound-MAC field is 20 octets. This can be the Server MAC (B1_MAC) or the
Client MAC (B2_MAC). The computation of the MAC is described in Section 6.3.

Note that this field is always 20 octets in length. Any larger MAC is simply truncated. All
validations or comparisons be done on the truncated value.

MUST

MUST

M

R

TLV Type

Length

Prompt

4.2.14. Basic-Password-Auth-Req TLV

The Basic-Password-Auth-Req TLV is used by the authentication server to request a username
and password from the peer. It contains an optional user prompt message for the request. The
peer is expected to obtain the username and password and send them in a Basic-Password-Auth-
Resp TLV.

The Basic-Password-Auth-Req TLV is defined as follows:

Mandatory, set to one (1)

Reserved, set to zero (0)

13 - Basic-Password-Auth-Req TLV

variable

optional user prompt message in UTF-8 format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|M|R| TLV Type | Length |
+-+
| Prompt
+-+

[RFC3629]

4.2.15. Basic-Password-Auth-Resp TLV

The Basic-Password-Auth-Resp TLV is used by the peer to respond to a Basic-Password-Auth-Req
TLV with a username and password. The TLV contains a username and password. The username
and password are in UTF-8 format.

The Basic-Password-Auth-Resp TLV is defined as follows:

[RFC3629]

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 46

M

R

TLV Type

Length

Userlen

Username

Passlen

Password

Mandatory, set to one (1)

Reserved, set to zero (0)

14 - Basic-Password-Auth-Resp TLV

variable

Length of Username field in octets.

The value of Userlen be zero.

Username in UTF-8 format.

The content of Username follow the guidelines set in .

Length of Password field in octets.

The value of Passlen be zero.

Password in UTF-8 format.

Note that there is no requirement that passwords be humanly readable. Octets in a
passwords may have values less than 0x20, including 0x00.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|M|R| TLV Type | Length |
+-+
| Userlen | Username
+-+
 ... Username ...
+-+
| Passlen | Password
+-+
 ... Password ...
+-+

MUST NOT

[RFC3629]

SHOULD [RFC9427], Section 3.1

MUST NOT

[RFC3629]

4.2.16. PKCS#7 TLV

The PKCS#7 TLV is used by the EAP server to deliver certificate(s) to the peer. The format
consists of a certificate or certificate chain in binary DER encoding in a degenerate
Certificates Only PKCS#7 SignedData Content as defined in .

When used in response to a Trusted-Server-Root TLV request from the peer, the EAP server
send the PKCS#7 TLV inside a Trusted-Server-Root TLV. When used in response to a PKCS#10
certificate enrollment request from the peer, the EAP server send the PKCS#7 TLV without
a Trusted-Server-Root TLV. The PKCS#7 TLV is always marked as optional, which cannot be

[X.690]
[RFC5652]

MUST

MUST

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 47

https://www.rfc-editor.org/rfc/rfc9427#section-3.1

M

R

TLV Type

Length

PKCS#7 Data

responded to with a NAK TLV. TEAP implementations that support the Trusted-Server-Root TLV
or the PKCS#10 TLV support this TLV. Peers assume that the certificates in a
PKCS#7 TLV are in any order.

TEAP servers return self-signed certificates. Peers that handle self-signed certificates or
trust anchors implicitly trust these certificates merely due to their presence in the
certificate bag. Note: Peers are advised to take great care in deciding whether to use a received
certificate as a trust anchor. The authenticated nature of the tunnel in which a PKCS#7 bag is
received can provide a level of authenticity to the certificates contained therein. Peers are
advised to take into account the implied authority of the EAP server and to constrain the trust it
can achieve through the trust anchor received in a PKCS#7 TLV.

The PKCS#7 TLV is defined as follows:

0 - Optional TLV

Reserved, set to zero (0)

15 - PKCS#7 TLV

The length of the PKCS#7 Data field.

This field contains the DER-encoded X.509 certificate or certificate chain in a
Certificates-Only PKCS#7 SignedData message.

MUST MUST NOT

MAY
MUST NOT

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|M|R| TLV Type | Length |
+-+
| PKCS#7 Data...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-++-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

4.2.17. PKCS#10 TLV

The PKCS#10 TLV is used by the peer to initiate the "Simple PKI" Request/Response from
. The format of the request is as specified in . The PKCS#10 TLV

is always marked as optional, which cannot be responded to with a NAK TLV.

The PKCS#10 TLV is defined as follows:

[RFC5272] Section 6.4 of [RFC4945]

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|M|R| TLV Type | Length |
+-+
| PKCS#10 Data...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-++-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 48

https://www.rfc-editor.org/rfc/rfc4945#section-6.4

M

R

TLV Type

Length

PKCS#10 Data

0 - Optional TLV

Reserved, set to zero (0)

16 - PKCS#10 TLV

The length of the PKCS#10 Data field.

This field contains the DER-encoded PKCS#10 certificate request.

M

R

4.2.18. Trusted-Server-Root TLV

Trusted-Server-Root TLV facilitates the request and delivery of a trusted server root certificate.
The Trusted-Server-Root TLV can be exchanged in regular TEAP authentication mode or
provisioning mode. The Trusted-Server-Root TLV is always marked as optional and cannot be
responded to with a NAK TLV. The Trusted-Server-Root TLV only be sent as an Inner TLV
(inside the protection of the tunnel).

After the peer has determined that it has successfully authenticated the EAP server and
validated the Crypto-Binding TLV, it send one or more Trusted-Server-Root TLVs (marked as
optional) to request the trusted server root certificates from the EAP server. The EAP server
send one or more root certificates with a Public Key Cryptographic System #7 (PKCS#7) TLV
inside the Trusted-Server-Root TLV. The EAP server also choose not to honor the request.

The Trusted-Server-Root TLV allows the peer to send a request to the EAP server for a list of
trusted roots. The server may respond with one or more root certificates in PKCS#7
format.

If the EAP server sets the credential format to PKCS#7-Server-Certificate-Root, then the Trusted-
Server-Root TLV should contain the root of the certificate chain of the certificate issued to the
EAP server packaged in a PKCS#7 TLV. If the server certificate is a self-signed certificate, then the
root is the self-signed certificate.

If the Trusted-Server-Root TLV credential format contains a value unknown to the peer, then the
EAP peer should ignore the TLV.

The Trusted-Server-Root TLV is defined as follows:

0 - Optional TLV

Reserved, set to zero (0)

MUST

MAY
MAY

MAY

[RFC2315]

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|M|R| TLV Type | Length |
+-+
| Credential-Format | Cred TLVs...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-++-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 49

TLV Type

Length

Credential-Format

Cred TLVs

17 - Trusted-Server-Root TLV

>=2 octets

The Credential-Format field is two octets. Values include:

1 - PKCS#7-Server-Certificate-Root

This field is of indefinite length. It contains TLVs associated with the credential
format. The peer may leave this field empty when using this TLV to request server trust roots.

M

R

TLV Type

Length

4.2.19. CSR-Attributes TLV

The CSR-Attributes TLV provides information from the server to the peer on how certificate
signing requests should be formed. The purpose of CSR attributes is described in

. Servers send the CSR-Attributes TLV directly after the TLS session has been
established. A server also send in the same message a Request-Action frame for a PKCS#10
TLV. This is an indication to the peer that the server would like the peer to renew its certificate
using the parameters provided in this TLV. Servers shall construct the contents of the CSR-
Attributes TLV as specified in with the exception that the DER encoding

 be encoded in base64. The base64 encoding is used in because the
transport protocol used there requires textual encoding. In contrast, TEAP attributes can
transport arbitrary binary data.

Servers and peers follow the guidance provided in when creating the CSR-
Attributes TLV. Peers ignore the contents of the TLV if they are unable to do so, but then
servers may not process PKCS#10 certificate requests for this or any other reason.

The CSR-Attributes TLV is defined as follows:

0 - Optional TLV

Reserved, set to zero (0)

18 - CSR-Attributes

>=2 octets

Section 4.5 of
[RFC7030] MAY

MAY

[RFC7030], Section 4.5.2
MUST NOT [RFC7030]

MUST [RFC9908]
MAY

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|M|R| TLV Type | Length |
+-+
| DER Encoded CSR Attributes |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-++-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 50

https://www.rfc-editor.org/rfc/rfc7030#section-4.5
https://www.rfc-editor.org/rfc/rfc7030#section-4.5.2

4.2.20. Identity-Hint TLV

The Identity-Hint TLV is an optional TLV that can be sent by the peer to the server at the
beginning of the Phase 2 TEAP conversation. The purpose of the TLV is to provide a "hint" as to
the identity or identities that the peer will be using by subsequent inner methods.

The purpose of this TLV is to solve the "bootstrapping" problem for the server. In order to
perform authentication, the server must choose an inner method. However, the server has no
knowledge of what methods are supported by the peer. Without an identity hint, the server
needs to propose a method and then have the peer return a response indicating that the
requested method is not available. This negotiation increases the number of round trips
required for TEAP to conclude with no additional benefit.

When the Identity-Hint is used, the peer can signal which identities it has available, which
enables the server to choose an inner method that is appropriate for that identity.

The peer send an Identity-Hint TLV for each Identity-Type that is available to it. For
example, if the peer can do both machine and user authentication, it can send two Identity-Hint
TLVs with values "host/name.example.com" (for a machine with hostname "name.example.com")
and "user@example.com" (for a person with identity "user@example.com").

The contents of the Identity-Hint TLV be in the format of an NAI , but we note
that as given in the example above, Machine identities might not follow that format. As these
identities are never used for AAA routing as discussed in , the format and
definition of these identities are entirely site local. Robust implementations support
arbitrary data in the content of this TLV, including binary octets.

As the Identity-Hint TLV is a "hint", server implementations are free to ignore the hints given
and do whatever is required by site-local policies.

The Identity-Hint TLV is used only as a guide when selecting which inner methods to use. This
TLV has no other meaning, and it be used for any other purpose. Specifically, server
implementations compare the identities given this TLV to later identities given as part
of the inner methods. There is no issue with the hint(s) failing to match any subsequent identity
that is used.

The Identity-Hint TLV be used for server unauthenticated provisioning. This TLV is
only used as a hint for normal authentication.

The Identity-Hint TLV is defined as follows:

SHOULD

SHOULD [RFC7542]

[RFC7542], Section 3
MUST

MUST NOT
MUST NOT

MUST NOT

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 51

https://www.rfc-editor.org/rfc/rfc7542#section-3

M

R

TLV Type

Length

0 - Optional TLV

Reserved, set to zero (0)

19 - Identity-Hint

>=2 octets

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|M|R| TLV Type | Length |
+-+
| Identity Hint |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-++-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

0

0+

0-1

1

4.3. TLV Rules
To save round trips, multiple TLVs can be sent in a single TEAP packet. However, multiple EAP
Payload TLVs, multiple Basic Password Authentication TLVs, or an EAP Payload TLV with a Basic
Password Authentication TLV within one single TEAP packet is not supported in this version and

 be sent. If the peer or EAP server receives multiple EAP Payload TLVs, then it
terminate the connection with the Result TLV. The order in which TLVs are encoded in a TEAP
packet does not matter. However, there is an order in which TLVs in a packet must be processed:

Crypto-Binding TLV
Intermediate-Result TLV
Result TLV or Request-Action TLV
Identity-Type TLV
EAP-Payload TLV (Identity-Request) or Basic-Password-Auth-Req TLV
Other TLVs

That is, cryptographic binding is checked before any result is used and identities are checked
before proposing an inner method, as the identity may influence the chosen inner method.

The following define the meaning of the table entries in the sections below:

This TLV be present in the message.

Zero or more instances of this TLV be present in the message.

Zero or one instance of this TLV be present in the message.

Exactly one instance of this TLV be present in the message.

MUST NOT MUST

1.
2.
3.
4.
5.
6.

MUST NOT

MAY

MAY

MUST

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 52

4.3.1. Outer TLVs

The following table provides a guide to which TLVs may be included in the TEAP packet outside
the TLS channel, which kind of packets, and in what quantity:

Request Response Success Failure TLVs

0-1 0 0 0 Authority-ID

0-1 0-1 0 0 Identity-Type

0+ 0+ 0 0 Vendor-Specific

Table 1

Outer TLVs be marked as optional. Vendor TLVs inside of a Vendor-Specific TLV be
marked as optional when included in Outer TLVs. Outer TLVs be included in messages
after the first two TEAP messages sent by peer and EAP-server, respectively. That is, the first EAP-
server-to-peer message and first peer-to-EAP-server message. If the message is fragmented, the
whole set of messages is counted as one message. If Outer TLVs are included in messages after
the first two TEAP messages, they be ignored.

MUST MUST
MUST NOT

MUST

4.3.2. Inner TLVs

The following table provides a guide to which Inner TLVs may be encapsulated in TLS in TEAP
Phase 2, in which kind of packets, and in what quantity. The messages are as follows: Request is
a TEAP Request, Response is a TEAP Response, Success is a message containing a successful
Result TLV, and Failure is a message containing a failed Result TLV.

Request Response Success Failure TLVs

0-1 0-1 0 0 Identity-Type

0-1 0-1 1 1 Result

0+ 0+ 0 0 NAK

0+ 0+ 0+ 0+ Error

0-1 0-1 0 0 Channel-Binding

0+ 0+ 0+ 0+ Vendor-Specific

0+ 0+ 0+ 0+ Request-Action

0-1 0-1 0 0 EAP-Payload

0-1 0-1 0-1 0-1 Intermediate-Result

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 53

Request Response Success Failure TLVs

0-1 0-1 0-1 0-1 Crypto-Binding

0-1 0 0 0 Basic-Password-Auth-Req

0 0-1 0 0 Basic-Password-Auth-Resp

0-1 0 0-1 0 PKCS#7

0 0-1 0 0 PKCS#10

0-1 0-1 0-1 0 Trusted-Server-Root

0-1 0 0 0 CSR-Attributes TLV

0 0+ 0 0 Identity-Hint TLV

Table 2

NOTE: Vendor TLVs (included in Vendor-Specific TLVs) sent with a Result TLV be marked
as optional. Also, the CSR-Attributes TLV is never transmitted by the peer, and so is treated as a
request in this table.

MUST

5. Limitations of TEAPv1
As noted in Section 1.1, TEAPv1 implementations are limited in functionality as compared to
what the protocol is theoretically capable of. These limitations mean that only a small number of
inner methods are fully supported by existing TEAPv1 implementations.

While Section 6 defines the cryptographic calculations used for key derivation and crypto-
binding, this section documents which inner methods are known to work and why those
methods work. Other inner methods may work, but those results are likely to be implementation-
specific.

We discuss the issues here without naming particular implementations or making any negative
inference about them. The implementations work well enough together in limited situations.
Any interoperability issues are due to the complexity and incompleteness of the definitions
given in and are not due to issues with any particular implementation.

The interoperability issues are limited to the use and derivation of the Compound-MAC(s), which
are derived from the inner MSK and EMSK. In short, implementations are known to derive
different values for the Compound-MAC(s) when more than one inner method provides an EMSK.

[RFC7170]

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 54

5.1. Interoperable Inner Methods
The following inner methods are known to work. These methods work for both User and
Machine credentials.

EAP-MSCHAPv2
EAP-TLS

The following combinations of inner methods are known to work. These methods work for any
order of User and Machine credentials.

EAP-MSCHAPv2 followed by EAP-MSCHAPv2
EAP-TLS followed by EAP-MSCHAPv2

The following combinations of inner methods are known to work when both the supplicant and
authenticator ignore the EMSK Compound-MAC field of the Crypto-Binding TLV. These methods
work for any order of User and Machine credentials.

EAP-MSCHAPv2 followed by EAP-TLS
EAP-TLS followed by EAP-TLS

•
•

•
•

•
•

5.2. Explanation and Background
The main reason for the limited set of inner methods is that the most well-known TEAP
supplicant supports only EAP-MSCHAPv2 and EAP-TLS for the inner methods. Further, this
implementation does not encode the EMSK Compound-MAC field in all of the Crypto-Binding
TLVs that it sends and ignores that field in all of the Crypto-Binding TLVs that it receives.

The known authenticator implementations support this client, but any other combination of
inner methods was not tested. The result is that due to both the complexity of the cryptographic
derivations and the lack of interoperability testing, each authenticator implemented entirely
different derivations of the EMSK Compound-MAC field of the Crypto-Binding TLV. This
difference was discovered only after multiple implementations had been shipping for years.

5.3. Next Steps
Any attempt to change TEAPv1 to address these issues would likely result in one or more
implementations being non-compliant with the updated specification. Even worse, updates to
this specification would result in multiple incompatible versions of TEAPv1.

That approach is not acceptable.

In the interest of maintaining known interoperability, this specification simply documents these
issues rather than trying to correct the problem. Since the TEAP protocol and the Crypto-Binding
TLV both contain a Version field, the better path forward is to publish this specification while
documenting the large caveats for TEAPv1. Any changes to the TEAP protocol can then be done
in a future TEAPv2 specification.

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 55

6. Cryptographic Calculations
The definitions given in this section are known to work with all implementations but only for a
few inner methods, as described above in Section 5. In the interest of avoiding additional
complexity in an already complex process, those definitions are given as if they work for all
possible inner methods.

We note that some interoperable implementations have been written based on these definitions,
which support inner methods other than EAP-MSCHAPv2 and EAP-TLS. It is therefore useful to
document the full operation of TEAPv1 despite the known issues. We only caution implementors
that inner methods that are not listed above in Section 5 are likely to work with only a subset of
existing TEAPv1 implementations.

For key derivation and crypto-binding, TEAP uses the Pseudorandom Function (PRF) and MAC
algorithms negotiated in the underlying TLS session. Since these algorithms depend on the TLS
version and cipher suite, TEAP implementations need a mechanism to determine the version
and cipher suite in use for a particular session. The implementation can then use this
information to determine which PRF and MAC algorithm to use.

6.1. TEAP Authentication Phase 1: Key Derivations
With TEAPv1, the TLS master secret is generated as specified in TLS. If session resumption is
used, then the master secret is obtained as described in .

TEAPv1 makes use of the TLS Keying Material Exporters defined in to derive the
session_key_seed as follows:

No context data is used in the export process.

The session_key_seed is used by the TEAP authentication Phase 2 conversation to both
cryptographically bind the inner method(s) to the tunnel as well as generate the resulting TEAP
session keys. The other TLS keying materials are derived and used as defined in .

[RFC5077]

[RFC5705]

 session_key_seed = TLS-Exporter(
 "EXPORTER: teap session key seed",, 40)

[RFC5246]

6.2. Intermediate Compound Key Derivations
As TEAP can run multiple inner methods, there needs to be a way to cryptographically bind each
inner method to the TLS tunnel and to cryptographically bind each method to the previous one.
This binding is done by deriving a number of intermediate keys and exchanging that
information in the Crypto-Binding TLV.

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 56

The key derivation is complicated by a number of factors. An inner method can derive an MSK or
(as with basic passwords) not derive an MSK. An inner method can derive an EMSK or perhaps
not derive an EMSK, or some EAP types may derive different EMSKs for the peer and the server.
All of these cases must be accounted for and have recommendations made for how peers and
servers can interoperate.

There are a number of intermediate keys used to calculate the final MSK and EMSK for TEAP. We
give a brief overview here in order to clarify the detailed definitions and derivations given
below. As each inner method can derive an MSK (or not) and an EMSK (or not), there need to be
separate intermediate key calculations for MSK and for EMSK. For the purposes of this overview,
we just describe the derivations at a high level and state that the MSK/EMSK issue is addressed
in the more detailed text below.

For each inner method, we derive an IMSK. This key depends on the inner key (MSK or EMSK).
This IMSK is then tied to the TLS session via the TLS-PRF to derive an Inner Method Compound
Key (IMCK). The IMCK is used to generate a Compound-MAC key (CMK). The CMK is mixed with
various data from the TEAP negotiation to create Compound-MAC field of the Crypto-Binding
attribute. This TLV cryptographically binds the inner method to the protected tunnel and to the
other fields that have been negotiated. The cryptographic binding prevents on-path attacks.

The IMCK for this inner method is then mixed with keys from previous inner methods,
beginning with the TEAP Phase 2 session_key_seed derived above, to yield a Secure IMCK (S-
IMCK) for this round. The S-IMCK from the final is then used to derive the MSK and EMSK for
TEAP.

We differentiate keys for inner methods by counting inner methods starting from 0 and use an
index "j" to refer to an arbitrary inner method. For example, IMCK[0] is the IMCK for the first, or
"0" inner method. While TEAPv1 is currently limited to one or two inner methods (j=0 or j=0,1),
further updates could allow for more inner method exchanges.

6.2.1. Generating the Inner Method Session Key

Each inner method generates an IMSK that depends on the EMSK (preferred) or the MSK if it
exists, or else it is all zeros. We refer to the IMSK for inner method "j" as IMSK[j].

If an inner method supports export of an EMSK, then the IMSK be derived from the
EMSK, which is defined in . The optional data parameter is not used in the derivation.

The above derivation is not a requirement, as some peer implementations of TEAP are also
known to not derive IMSK from EMSK and to only derive IMSK from MSK. In order to be
compatible with those implementations, the use of EMSK here is not made mandatory.

Some EAP methods may also have the peer and server derive different EMSKs. Mandating an
EMSK-based derivation there would prevent interoperability, as the Crypto-Binding TLV contents
that depend on EMSK could not then be validated by either side. Those methods
derive IMSK from EMSK unless the method has a way to negotiate how the EMSK is derived,
along with a way to signal that both the peer and server have derived the same EMSK.

SHOULD
[RFC5295]

SHOULD NOT

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 57

It is that for those EAP methods, implementations take the simpler approach of
ignoring EMSK and always derive IMSK from MSK. This approach is less secure, as IMSK no
longer cryptographically binds the inner method to the TLS tunnel. A better solution is to suggest
that deployments of TEAP avoid such methods.

The derivation of IMSK[j] from the j'th EMSK is given as follows:

Where:

"|" denotes concatenation
The TLS-PRF is defined in as:

The secret is the EMSK from the j'th inner method, the usage label used is
"TEAPbindkey@ietf.org" consisting of the ASCII value for the label
"TEAPbindkey@ietf.org" (without quotes), and the seed consists of the "\0" null delimiter
(0x00) and 2-octet unsigned integer length of 64 octets in network byte order (0x00 | 0x40)
specified in .

If an inner method does not support the export of EMSK but does export MSK, then the IMSK is
copied from the MSK of the inner method. If the MSK is longer than 32 octets, the IMSK is copied
from the first 32 octets and the rest of MSK is ignored. If the MSK is shorter than 32 octets, then
the ISMK is copied from MSK and the remaining data in IMSK is padded with zeros to a length of
32 octets. IMSK[j] is then this derived value.

If the inner method does not provide either MSK or EMSK, such as when basic password
authentication is used or when no inner method has been run, then both MSK and IMSK[j] are
set to all zeroes (i.e., IMSK[j] = MSK = 32 octets of 0x00s).

Note that using an MSK of all zeroes opens up TEAP to on-path attacks as discussed in Section 8.3.
It is therefore to use inner methods that fail to generate an MSK or EMSK.
These methods should only be used in conjunction with another inner method that does provide
for MSK or EMSK generation.

It is also that TEAP peers order inner methods such that methods that generate
EMSKs are performed before methods that do not generate EMSKs. Ordering inner methods in
this manner ensures that the first inner method detects any on-path attackers, and any
subsequent inner method used is therefore secure.

RECOMMENDED

SHOULD

 IMSK[j] = First 32 octets of TLS-PRF(
 EMSK[j],
 "TEAPbindkey@ietf.org",
 0x00 | 0x00 | 0x40)

•
• [RFC5246]

 PRF(secret, label, seed) = P_<hash>(secret, label | seed)

•

[RFC5295]

NOT RECOMMENDED

RECOMMENDED

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 58

For example, Phase 2 could perform both machine authentication using EAP-TLS, followed by
user authentication via the Basic Password Authentication TLVs. In that case, the use of EAP-TLS
would allow an attacker to be detected before the users' password was sent.

However, it is possible that the peer and server sides might not have the same capability to
export EMSK. In order to maintain maximum flexibility while prevent downgrading attack, the
following mechanism is in place.

6.2.2. Generating S-IMCK

Once IMSK[j] has been determined, it is mixed via the TLS-PRF with the key S-IMCK[j-1] from a
previous round. That mixing derives a new key IMCK[j]. This key is then used to derive both S-
IMCK[j] for this round and CMK[j] for this round.

The derivation of S-IMCK is as follows:

where TLS-PRF is the PRF (described above) negotiated as part of TLS handshake . The
value j refers to a corresponding inner method 1 through n. The special value of S-IMCK[0] is
used to bootstrap the calculations and can be done as soon as the TLS connection is established
and before any inner methods are run.

In practice, the requirement to use either MSK or EMSK means that an implement track
two independent derivations of IMCK[j], one that depends on the MSK, and another that
depends on EMSK. That is, we have both values derived from MSK:

IMSK_MSK[j]
S-IMCK_MSK[j]
CMK_MSK[j]

and then also values derived from EMSK:

IMSK_EMSK[j]
S-IMCK_EMSK[j]
CMK_EMSK[j]

At the conclusion of a successful exchange of Crypto-Binding TLVs, a single S-IMCK[j] is selected
based on which Compound-MAC value was included in the Crypto-Binding TLV from the client.
If EMSK Compound-MAC was included, S-IMCK[j] is taken from S-IMCK_EMSK[j]. Otherwise, S-
IMCK[j] is taken from S-IMCK_MSK[j].

 S-IMCK[0] = session_key_seed
 For j = 1 to n-1 do
 IMCK[j] = the first 60 octets of TLS-PRF(S-IMCK[j-1],
 "Inner Methods Compound Keys",
 IMSK[j])
 S-IMCK[j] = first 40 octets of IMCK[j]
 CMK[j] = last 20 octets of IMCK[j]

[RFC5246]

MUST

•
•
•

•
•
•

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 59

6.2.3. Choosing Inner Methods Securely

In order to further secure TEAP, implementations can take steps to increase their security by
carefully ordering inner methods. Where multiple inner methods are used, implementations

 choose an ordering so that the first inner method used is one that derives EMSK.

For an EAP server, it can select the first inner method to be one that derives EMSK. Since
ordering of inner methods is not otherwise important in EAP, any chosen order is supported by
the peer that receives this request.

For an EAP peer, it can choose its response to a server's request for a particular type of
authentication. The peer can ignore that request and return an inner method that derives EMSK.
Again, since the ordering of inner methods is not otherwise important in EAP, any chosen order
is supported by the server that receives this response. Once the more secure authentication has
succeed, the server then requests the other type of authentication and the peer can respond with
the chosen type of authentication.

Implementations can also provide configuration flags, policies, or documented
recommendations that control the type of inner methods used or verify their order. These
configurations allow implementations and administrators to control their security exposure to
on-path attackers.

Implementations can permit administrators to configure TEAP so that the following security
checks are enforced:

Verifying that the first inner method used is one that derives EMSK. If this is not done, a
fatal error can be returned.
Verifying that if any inner method derives EMSK, the received Crypto-Binding TLV for that
method contains an EMSK Compound-MAC. If an EMSK has been derived and no EMSK
Compound-MAC is seen, a fatal error can be returned.

The goal of these suggestions is to enforce the use of the EMSK Compound-MAC to protect the
TEAP session from on-path attackers. If these suggestions are not enforced, then the TEAP
session is vulnerable.

Most of these suggestions are not normative, as some existing implementations are known to not
follow them. Instead, these suggestions are here to inform new implementors, along with
administrators, of the issues surrounding this subject.

SHOULD

•

•

6.2.4. Managing and Computing Crypto-Binding

After an inner method has been completed successfully and the inner keys have been derived,
the server sends a Crypto-Binding TLV to the peer. If the inner method has failed, the server does
not send a Crypto-Binding TLV.

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 60

The peer verifies the Crypto-Binding TLV by applying the rules defined in Section 4.2.13. If
verification passes, the peer responds with its own Crypto-Binding TLV, which the server in turn
verifies. If at any point verification fails, the party that makes this determination terminates the
session.

The Crypto-Binding TLV is normally sent in conjunction with other TLVs that indicate
intermediate or final results or that begin negotiation of a new inner method. This negotiation
does not otherwise affect the Crypto-Binding TLV.

While Section 4.2.13 defines that the Compound-MAC fields exist in the Crypto-Binding TLV, it
does not describe the derivation and management of those fields. This derivation is complex and
is therefore located here along with the other key derivations.

The following text defines how the server and peer compute, send, and then verify the
Compound-MAC fields Crypto-Binding TLV. Depending on the inner method and site policy, the
Crypto-Binding TLV can contain only an MSK Compound-MAC (Flags=2), only the EMSK
Compound-MAC (Flags=2), or both Compound-MACs (Flags=3). Each party to the TEAP session
follows its own set of procedures to compute and verify the Compound-MAC fields.

The determination of the contents of the Crypto-Binding TLV is done separately for each inner
method. If at any point the verification of a Compound-MAC fails, the determining party returns
a fatal error as described in Section 3.9.3.

We presume that each peer and server have site policies that require (or not) the use of the MSK
Compound-MAC and/or the EMSK Compound-MAC. These policies can be enforced globally for
all inner methods, or they can be enforced separately on each inner method. These policies
could be enabled automatically when the EAP method is known to always generate an EMSK
and could otherwise be configurable.

The server initiates crypto binding by determining which Compound-MAC(s) to use, computing
their value(s), placing the resulting Compound-MAC(s) into the Crypto-Binding TLV, and then
sending it to the peer.

Then, the steps taken by the server are as follows:

If the inner method is known to generate only MSK, or if the server's policy is to not use
EMSK Compound-MACs:

The server computes the MSK Compound-MAC using the MSK of the inner method. The
server does not use the EMSK Compound-MAC field (Flags=2).

Otherwise, the EMSK is available.

If the server's policy permits the use of the MSK Compound-MAC:

The sender computes the MSK Compound-MAC along with the EMSK Compound-MAC
(Flags=3).

Otherwise, the server's policy does not allow the use of the MSK Compound-MAC:

The server computes only the EMSK Compound-MAC (Flags=1).

•

◦

•

◦

◦

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 61

The peer verifies the Crypto-Binding TLV it receives from the server. It then replies with its own
crypto binding response by determining which Compound-MAC(s) to use, computing their
value(s), placing the resulting Compound-MAC(s) into the Crypto-Binding TLV, and then sending
it to the server. The result of this process is either a fatal error or one or more Compound-MACs
that are placed in the Crypto-Binding TLV and sent to the server.

Then, the steps taken by the peer are as follows:

If the peer site policy requires the use of the EMSK Compound-MAC:

The peer checks if the Flags field indicates the presence of the EMSK Compound MAC
(Flags=1 or 3). If the Flags field has any other value, the peer returns a fatal error.
The peer checks if the inner method has derived an EMSK. If not, the peer returns a fatal
error.

Otherwise, the peer site policy does not require the use of the EMSK Compound-MAC and
the EMSK may or may not exist.

If the inner method is known to generate only MSK and not EMSK:

The peer checks if the Flags field indicates that only the MSK Compound-MAC exists
(Flags=2). If the Flags field has any other value, the peer returns a fatal error.

Otherwise, the MSK exists, the EMSK may or may not exist, and the peer allows the use of
the EMSK Compound-MAC. The peer may have received one or two Compound-MACs
(Flags=1,2,3). Any Compound-MAC that is present is verified. No futher action is taken by the
peer if a particular Compound-MAC is not present. No further action is taken by the peer if
an unexpected Compound-MAC is present.

Note that due to earlier validation of the Flags field (Section 4.2.13), at least one Compound-
MAC must now exist (Flags=1,2,3).

If the peer has received an MSK Compound-MAC, it verifies it and returns a fatal error if
verification fails.
If EMSK is available and the peer has received an EMSK Compound-MAC, it verifies it and
returns a fatal error if verification fails.

The peer creates a crypto binding response by determining which Compound-MAC(s) to use,
computing their value(s), placing the resulting Compound-MAC(s) into the Crypto-Binding TLV,
and then sending it to the server.

The steps taken by the peer are then as follows.

If the peer received an MSK Compound-MAC from the server:

Since the MSK always exists, this step is always possible. The peer computes the MSK
Compound-MAC for the response (Flags=2).

•

◦

◦

•

◦

•

•

•

◦

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 62

If the peer site policy requires the use of the EMSK Compound-MAC:

The preceding steps taken by the peer ensures that the EMSK exists and the server had
sent an EMSK Compound-MAC. The peer computes the EMSK Compound-MAC for the
response. The Flags field is updated (Flags=1,3).

Otherwise, if the EMSK exists:

The peer computes the EMSK Compound-MAC for the response. The Flags field is updated
(Flags=1,3).

The server processes the response from the peer via the following steps:

If the server site policy requires the use of the EMSK Compound-MAC:

The server checks if the Flags field indicates the presence of the EMSK Compound MAC
(Flags=1 or 3). If the Flags field has any other value, the server returns a fatal error.
The server checks if the inner method has derived an EMSK. If not, the server returns a
fatal error.

If the inner method is known to generate only MSK and not EMSK:

The server checks if the Flags field indicates that only the MSK Compound-MAC exists
(Flags=2). If the Flags field has any other value, the server returns a fatal error.

Otherwise, the MSK exists and the EMSK may or may not exist. The server may have
received one or two Compound-MACs (Flags=1,2,3). Any Compound-MAC that is present is
verified. No further action is taken by the server if a particular Compound-MAC is not
present. No further action is taken by the server if an unexpected Compound-MAC is present.

If the server has received an MSK Compound-MAC, it verifies it and returns a fatal error if
verification fails.
If EMSK is available and the server has received an EMSK Compound-MAC, it verifies it and
returns a fatal error if verification fails.

Once the above steps have concluded, the server either continues authentication with another
inner method or it returns a Result TLV.

•

◦

◦

•

◦

◦

•

◦

•

•

6.2.5. Unintended Side Effects

In earlier drafts of this document, the descriptions of the key derivations had issues that were
only discovered after TEAP had been widely implemented. These issues need to be documented
in order to enable interoperable implementations.

As noted above, some inner EAP methods derive MSK but do not derive EMSK. When there is no
EMSK, it is therefore not possible to derive IMCK_EMSK[j] from it. The choice of multiple
implementations was then to simply define:

 IMCK_EMSK[j] = IMCK_EMSK[j - 1]

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 63

This definition can be trivially implemented by simply keeping a cached copy of IMCK_EMSK in
a data structure. If EMSK is available, IMCK_EMCK is updated from it via the TLS-PRF function as
defined above. If EMSK is not available, then the IMCK_EMSK value is unmodified.

This behavior was not explicitly anticipated by earlier drafts of this document. It instead appears
to be an accidental outcome of implementing the derivations above with the limitation of a
missing EMSK. This behavior is explicitly called out here in the interest of fully documenting
TEAP.

Another unintended consequence is in the calculation of the Crypto-Binding TLV. That TLV
includes compound MACs that depend on the MSK and EMSK of the current authentication
method. Where the current method does not provide an EMSK, the Crypto-Binding TLV does not
include a compound MAC that depends on the EMSK. Where the current method does not
provide an MSK, the Crypto-Binding TLV includes a compound MAC that depends on a special
"all zero" IMSK as discussed earlier.

The result of this definition is that the final Crypto-Binding TLV in an inner TEAP exchange may
not include a compound MAC that depends on EMSK, even if earlier EAP methods in the Phase 2
exchange provided an EMSK. This result likely has negative effects on security, though the full
impact is unknown at the time of writing this document.

These design flaws have nonetheless resulted in multiple interoperable implementations. We
note that these implementations seem to support only EAP-TLS and the EAP-FAST-MSCHAPv2
variant of EAP-MSCHAPv2. Other inner EAP methods may work by accident but are not likely to
work by design. For this document, we can only ensure that the behavior of TEAPv1 is fully
documented, even if that behavior was an unintended consequence of unclear text in earlier
versions of this document.

We expect that these issues will be addressed in a future revision of TEAP.

6.3. Computing the Compound-MAC
For inner methods that generate keying material, further protection against on-path attacks is
provided through cryptographically binding keying material established by both TEAP Phase 1
and TEAP Phase 2 conversations. After each successful inner EAP authentication, EAP EMSK and/
or MSKs are cryptographically combined with key material from TEAP Phase 1 to generate a
Compound Session Key (CMK). The CMK is used to calculate the Compound-MAC as part of the
Crypto-Binding TLV described in Section 4.2.13, which helps provide assurance that the same
entities are involved in all communications in TEAP. During the calculation of the Compound-
MAC, the MAC field is filled with zeros.

The Compound-MAC computation is as follows:

 Compound-MAC = the first 20 octets of MAC(CMK[n], BUFFER)

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 64

where n is the number of the last successfully executed inner method, MAC is the MAC function
negotiated in TLS (e.g., TLS 1.2 in), and BUFFER is created after concatenating these
fields in the following order:

The entire Crypto-Binding TLV attribute with both the EMSK and MSK Compound-MAC fields
zeroed out.
The EAP Type sent by the other party in the first TEAP message, which be TEAP,
encoded as one octet of 0x37.
All the Outer TLVs from the first TEAP message sent by the EAP server to the peer. If a single
TEAP message is fragmented into multiple TEAP packets, then the Outer TLVs in all the
fragments of that message be included.
All the Outer TLVs from the first TEAP message sent by the peer to the EAP server. If a single
TEAP message is fragmented into multiple TEAP packets, then the Outer TLVs in all the
fragments of that message be included.

If no inner method is run, then no MSK or EMSK will be generated. If an IMSK needs to be
generated, then the MSK and therefore the IMSK is set to all zeroes (i.e., IMSK = MSK = 32 octets
of 0x00s).

Note that there is no boundary marker between the fields in steps (3) and (4). However, the
server calculates the compound MAC using the outer TLVs it sent and the outer TLVs it received
from the peer. On the other side, the peer calculates the compound MAC using the outer TLVs it
sent and the outer TLVs it received from the server. As a result, any modification in transit of the
outer TLVs will be detected because the two sides will calculate different values for the
compound MAC.

If no key-generating inner method is run, then no MSK or EMSK will be generated. If an IMSK
needs to be generated, then the MSK and therefore the IMSK is set to all zeroes (i.e., IMSK = MSK
= 32 octets of 0x00s)

[RFC5246]

1.

2. MUST

3.

MUST

4.

MUST

6.4. EAP Master Session Key Generation
TEAP authentication assures the MSK and EMSK output from running TEAP are the combined
result of all inner methods by generating an IMCK. The IMCK is mutually derived by the peer
and the server as described in Section 6.2 by combining the MSKs from inner methods with key
material from TEAP Phase 1. The resulting MSK and EMSK are generated from the final ("n"th)
inner method, as part of the IMCK[n] key hierarchy via the following derivation:

The secret is S-IMCK[n], where n is the number of the last generated S-IMCK[j] from Section 6.2.
The label is the ASCII value for the string without quotes. The seed is empty (0 length) and is
omitted from the derivation.

 MSK = the first 64 octets of TLS-PRF(S-IMCK[n],
 "Session Key Generating Function")
 EMSK = the first 64 octets of TLS-PRF(S-IMCK[n],
 "Extended Session Key Generating Function")

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 65

The EMSK is typically only known to the TEAP peer and server and is not provided to a third
party. The derivation of additional keys and transportation of these keys to a third party are
outside the scope of this document.

If no inner method has created an MSK or EMSK, the MSK and EMSK will be generated directly
from the session_key_seed meaning S-IMCK[0] = session_key_seed.

As we noted above, not all inner methods generate both MSK and EMSK, so we have to maintain
two independent derivations of S-IMCK[j], one for each of MSK[j] and EMSK[j]. The final
derivation using S-IMCK[n] must choose only one of these keys.

If the Crypto-Binding TLV contains an EMSK compound MAC, then the derivation is taken from
the S-IMCK_EMSK[n]. Otherwise, it is taken from the S-IMCK_MSK[n].

7. IANA Considerations
This section provides guidance to the Internet Assigned Numbers Authority (IANA) regarding
registration of values related to the TEAP protocol in accordance with BCP 26 .

Except as noted below, IANA has updated the "Tunnel Extensible Authentication Protocol (TEAP)
Parameters" registry to change the Reference field in all tables from to RFC 9930.

[RFC8126]

[RFC7170]

7.1. TEAP TLV Types
IANA has updated the references in the "TEAP TLV Types" registry from to RFC 9930
and added TLV 18 and TLV 19 to the registry. The Unassigned values then begin at 20 instead of
at 18.

Value Description Reference

18 CSR-Attributes TLV RFC 9930

19 Identity-Hint TLV RFC 9930

20-16383 Unassigned

Table 3

IANA has closed the "TEAP PAC TLV (value 11) PAC Attribute Type Codes" and "TEAP PAC TLV
(value 11) PAC-Type Type Codes" registries to new registrations and updated those registries
with the following note:

This registry has been closed. See RFC 9930.

[RFC7170]

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 66

7.2. TEAP Error TLV (value 5) Error Codes
IANA has updated the "TEAP Error TLV (value 5) Error Codes" registry to add the following
entries:

Value Description Reference

1032 Inner method not supported RFC 9930

2003 The Crypto-Binding TLV is invalid (Version, or Received-Ver, or Sub-
Type)

RFC 9930

2004 The first inner method did not derive EMSK RFC 9930

2005 The Crypto-Binding TLV did not include a required MSK Compound-
MAC

RFC 9930

2006 The MSK Compound-MAC fails verification RFC 9930

2007 The Crypto-Binding TLV did not include a required EMSK Compound-
MAC

RFC 9930

2008 The EMSK Compound-MAC fails verification RFC 9930

2009 The EMSK Compound-MAC exists, but the inner method did not derive
EMSK

RFC 9930

Table 4

7.3. TLS Exporter Labels
IANA has updated the "TLS Exporter Labels" registry to change the Reference field for Value
"EXPORTER: teap session key seed" as follows:

Value DTLS-OK Recommended Reference

EXPORTER: teap session key seed N Y RFC 9930

Table 5

7.4. Extended Master Session Key (EMSK) Parameters
IANA has updated the "User Specific Root Keys (USRK) Key Labels" registry to change the
Reference field for Value "TEAPbindkey@ietf.org" as follows:

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 67

Label Description Reference

TEAPbindkey@ietf.org TEAP binding usage label RFC 9930

Table 6

7.5. Extensible Authentication Protocol (EAP) Registry
IANA has updated the "Method Types" registry to change the Reference field for Value "55" as
follows:

Value Description Reference

55 TEAP RFC 9930

Table 7

8. Security Considerations
TEAP is designed with a focus on wireless media, where the medium itself is inherent to
eavesdropping. Whereas in wired media an attacker would have to gain physical access to the
wired medium, wireless media enables anyone to capture information as it is transmitted over
the air, enabling passive attacks. Thus, physical security can not be assumed, and security
vulnerabilities are far greater. The threat model used for the security evaluation of TEAP is
defined in EAP .[RFC3748]

8.1. Mutual Authentication and Integrity Protection
As a whole, TEAP provides message and integrity protection by establishing a secure tunnel for
protecting the inner method(s). The confidentiality and integrity protection is defined by TLS
and provides the same security strengths afforded by TLS employing a strong entropy shared
master secret. The integrity of the key generating inner methods executed within the TEAP
tunnel is verified through the calculation of the Crypto-Binding TLV. This ensures that the tunnel
endpoints are the same as the inner method endpoints.

Where server unauthenticated provisioning is performed, TEAP requires that the inner
provisioning method provide for both peer and server authentication.

8.2. Method Negotiation
As is true for any negotiated EAP protocol, EAP NAK messages used to suggest an alternate EAP
authentication method are sent unprotected and, as such, are subject to spoofing. During
unprotected EAP method negotiation, NAK packets may be interjected as active attacks to bid-
down to a weaker form of authentication, such as EAP-MD5 (which only provides one-way
authentication and does not derive a key). Both the peer and server should have a method
selection policy that prevents them from negotiating down to weaker methods. Inner method

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 68

negotiation resists attacks because it is protected by the mutually authenticated TLS tunnel
established. Selection of TEAP as an authentication method does not limit the potential inner
methods, so TEAP should be selected when available.

An attacker cannot readily determine the inner method used, except perhaps by traffic analysis.
It is also important that peer implementations limit the use of credentials with an
unauthenticated or unauthorized server.

8.3. Separation of Phase 1 and Phase 2 Servers
Separation of the TEAP Phase 1 from the Phase 2 conversation is . Allowing
the Phase 1 conversation to be terminated at a different server than the Phase 2 conversation
can introduce vulnerabilities if there is not a proper trust relationship and protection for the
protocol between the two servers. Some vulnerabilities include:

Loss of identity protection
Offline dictionary attacks
Lack of policy enforcement
On-path active attacks (as described in)

There may be cases where a trust relationship exists between the Phase 1 and Phase 2 servers,
such as on a campus or between two offices within the same company, where there is no danger
in revealing the inner identity and credentials of the peer to entities between the two servers. In
these cases, using a proxy solution without end-to-end protection of TEAP be used. The
TEAP encrypting/decrypting gateway , at a minimum, provide support for IPsec, TLS, or
similar protection in order to provide confidentiality for the portion of the conversation
between the gateway and the EAP server. In addition, separation of the TEAP servers and Inner
servers allows for crypto-binding based on the inner method MSK to be thwarted as described in

. If the inner method derives an EMSK, then this threat is mitigated as TEAP uses the
Crypto-Binding TLV to tie the inner EMSK to the TLS session via the TLS-PRF, as described above
in Section 6.

On the other hand, if the inner method is not deriving EMSK, as with password authentication or
unauthenticated provisioning, then this threat still exists. Implementations therefore need to
limit the use of inner methods as discussed above in Section 3.6.5

NOT RECOMMENDED

•
•
•
• [RFC7029]

MAY
MUST

[RFC7029]

8.4. Mitigation of Known Vulnerabilities and Protocol Deficiencies
TEAP addresses the known deficiencies and weaknesses in some EAP authentication methods.
By employing a shared secret between the peer and server to establish a secured tunnel, TEAP
enables:

Per-packet confidentiality and integrity protection
User identity protection
Better support for notification messages
Protected inner method negotiation, including EAP method

•
•
•
•

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 69

Sequencing of inner methods, including EAP methods
Strong mutually derived MSKs
Acknowledged success/failure indication
Faster re-authentications through session resumption
Mitigation of offline dictionary attacks
Mitigation of on-path attacks
Mitigation of some denial-of-service attacks

It should be noted that in TEAP, as in many other authentication protocols, a denial-of-service
attack can be mounted by adversaries sending erroneous traffic to disrupt the protocol. This is a
problem in many authentication or key agreement protocols and is therefore noted for TEAP as
well.

TEAP was designed with a focus on protected inner methods that typically rely on weak
credentials, such as password-based secrets. To that extent, the TEAP authentication mitigates
several vulnerabilities, such as offline dictionary attacks, by protecting the weak credential-
based inner method. The protection is based on strong cryptographic algorithms in TLS to
provide message confidentiality and integrity. The keys derived for the protection relies on
strong random challenges provided by both peer and server as well as an established key with
strong entropy. Implementations should follow the recommendation in when
generating random numbers.

•
•
•
•
•
•
•

[RFC4086]

8.4.1. User Identity Protection and Verification

The initial identity request response exchange is sent in cleartext outside the protection of TEAP.
Typically, the NAI in the identity response is useful only for the realm of information
that is used to route the authentication requests to the right EAP server. This means that the
identity response may contain an anonymous identity and just contain realm information. In
other cases, the identity exchange may be eliminated altogether if there are other means for
establishing the destination realm of the request. In no case should an intermediary place any
trust in the identity information in the identity response since it is unauthenticated and may not
have any relevance to the authenticated identity. TEAP implementations should not attempt to
compare any identity disclosed in the initial cleartext EAP Identity response packet with those
Identities authenticated in Phase 2.

When the server is authenticated, identity request/response exchanges sent after the TEAP
tunnel is established are protected from modification and eavesdropping by attackers. For
server unauthenticated provisioning, the outer TLS session provides little security, and the
provisioning method must provide this protection instead.

When a client certificate is sent outside of the TLS tunnel in Phase 1, the peer include
Identity-Type as an outer TLV in order to signal the type of identity which that client certificate
is for. Further, when a client certificate is sent outside of the TLS tunnel, the server
proceed with Phase 2. If there is no Phase 2 data, then the EAP server reject the session.

Issues related to confidentiality of a client certificate are discussed above in Section 3.4.1

[RFC7542]

MUST

MUST
MUST

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 70

Note that the Phase 2 data could simply be a Result TLV with value Success, along with a Crypto-
Binding TLV. This Phase 2 data serves as a protected success indication as discussed in [RFC9190],
Section 2.1.1

8.5. Dictionary Attack Resistance
TEAP was designed with a focus on protected inner methods that typically rely on weak
credentials, such as password-based secrets. TEAP mitigates offline dictionary attacks by
allowing the establishment of a mutually authenticated encrypted TLS tunnel providing
confidentiality and integrity to protect the weak credential-based inner method.

TEAP mitigates dictionary attacks by permitting inner methods, such as EAP-pwd, that are not
vulnerable to dictionary attacks.

TEAP implementations can mitigate online "brute force" dictionary attempts by limiting the
number of failed authentication attempts for a particular identity.

8.5.1. Protection Against On-Path Attacks

TEAP provides protection from on-path attacks in a few ways:

By using a certificates or a session ticket to mutually authenticate the peer and server
during TEAP authentication Phase 1 establishment of a secure TLS tunnel.
When the TLS tunnel is not secured, by using the keys generated by the inner method (if the
inner methods are key generating) in the crypto-binding exchange and in the generation of
the key material exported by the inner method described in Section 6.

TEAP crypto binding does not guarantee protection from on-path attacks if the client allows a
connection to an untrusted server, such as in the case where the client does not properly
validate the server's certificate. If the TLS cipher suite derives the master secret solely from the
contribution of secret data from one side of the conversation (such as cipher suites based on RSA
key transport), then an attacker who can convince the client to connect and engage in
authentication can impersonate the client to another server even if a strong inner method is
executed within the tunnel. If the TLS cipher suite derives the master secret from the
contribution of secrets from both sides of the conversation (such as in cipher suites based on
Diffie-Hellman), then crypto binding can detect an attacker in the conversation if a strong inner
method is used.

TEAP crypto binding does not guarantee protection from on-path attacks when the client does
not verify the server, and the inner method does not produce an EMSK. The only way to close
this vulnerability is to define TEAPv2, which would then have different crypto binding
derivations.

1.

2.

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 71

https://www.rfc-editor.org/rfc/rfc9190#section-2.1.1

8.6. Protecting Against Forged Cleartext EAP Packets
EAP Success and EAP Failure packets are, in general, sent in cleartext and may be forged by an
attacker without detection. Forged EAP Failure packets can be used to attempt to convince an
EAP peer to disconnect. Forged EAP Success packets may be used to attempt to convince a peer
that authentication has succeeded, even though the authenticator has not authenticated itself to
the peer.

By providing message confidentiality and integrity, TEAP provides protection against these
attacks. Once the peer and authentication server (AS) initiate the TEAP authentication Phase 2,
compliant TEAP implementations silently discard all cleartext EAP messages, unless both
the TEAP peer and server have indicated success or failure using a protected mechanism.
Protected mechanisms include the TLS alert mechanism and the protected termination
mechanism described in Section 3.6.6.

The success/failure decisions within the TEAP tunnel indicate the final decision of the TEAP
authentication conversation. After a success/failure result has been indicated by a protected
mechanism, the TEAP peer can process unprotected EAP Success and EAP Failure messages;
however, the peer ignore any unprotected EAP Success or Failure messages where the
result does not match the result of the protected mechanism.

To abide by , the server sends a cleartext EAP Success or EAP Failure packet to
terminate the EAP conversation. However, since EAP Success and EAP Failure packets are not
retransmitted, the final packet may be lost. While a TEAP-protected EAP Success or EAP Failure
packet should not be a final packet in a TEAP conversation, it may occur based on the conditions
stated above, so an EAP peer should not rely upon the unprotected EAP Success and Failure
messages.

MUST

MUST

[RFC3748]

8.7. Use of Cleartext Passwords
TEAP can carry cleartext passwords in the Basic-Password-Auth-Resp TLV. Implementations
should take care to protect this data. For example, passwords should not normally be logged,
and password data should be securely scrubbed from memory when it is no longer needed.

8.8. Accidental or Unintended Behavior
Due to the complexity of TEAP, and the long time between and any substantial
implementation, there are many accidental or unintended behaviors in the protocol.

The first one is that EAP-FAST-MSCHAPv2 is used instead of EAP-MSCHAPv2. While
defined TEAP to use EAP-MSCHAPv2, an early implementor or implementors instead used EAP-
FAST-MSCHAPv2. The choice for this document was either to define a new version of TEAP that
used EAP-MSCHAPv2 or instead to document implemented behavior. The choice taken here was
to document running code.

[RFC7170]

[RFC7170]

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 72

The issues discussed in Section 6.2.5 could have security impacts, but no analysis has been
performed. The choice of using a special "all zero" IMSK in Section 6.2 was made for simplicity
but could also have negative security impacts.

The definition of the Crypto-Binding TLV means that the final Crypto-Binding TLV values might
not depend on all previous values of MSK and EMSK. This limitation could have negative
security impacts, but again, no analysis has been performed.

We suggest that the TEAP protocol be revised to TEAP version 2, which could address these
issues. There are proposals at this time to better derive the various keying materials and
cryptographic binding derivations. However, in the interest of documenting running code, we
are publishing this document with the acknowledgment that there are improvements to be
made.

8.9. Implicit Challenge
Certain authentication protocols that use a challenge/response mechanism rely on challenge
material that is not generated by the authentication server; therefore, the material may require
special handling. For EAP-TTLS, these challenges are defined in .

In EAP-MSCHAPv2, the authenticator issues a challenge to the supplicant. Then, the supplicant
hashes the challenge with the password and forwards the response to the authenticator. The
response also includes a Peer-Challenge, which is created by the supplicant. Since the challenge
is random, it is not associated with the TLS tunnel and the protocol may be susceptible to a
replay attack.

The Crypto-Binding TLV provides protection against intermediaries, but it does not provide
protection against a replay attack. We suggest that any TEAPv2 specification correct this issue.

[RFC5281], Section 11.1

Auth. mechanism:

Cipher Suite negotiation:

Mutual authentication:

Integrity protection:

Replay protection:

Confidentiality:

Key derivation:

8.10. Security Claims
This section provides the needed security claim requirement for EAP .

Certificate-based, shared-secret-based, and various tunneled authentication
mechanisms.

Yes

Yes

Yes. Any method executed within the TEAP tunnel is integrity protected.
The cleartext EAP headers outside the tunnel are not integrity protected. Server
unauthenticated provisioning provides its own protection mechanisms.

Yes

Yes

Yes

[RFC3748]

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 73

https://www.rfc-editor.org/rfc/rfc5281#section-11.1

Key strength:

Dictionary attack prot.:

Fast reconnect:

Cryptographic binding:

Session independence:

Fragmentation:

Key Hierarchy:

Channel binding:

See Note 1 below.

See Note 2 below.

Yes

Yes

Yes

Yes

Yes

Yes

Notes:

Note 1. BCP 86 offers advice on appropriate key sizes. The National Institute for
Standards and Technology (NIST) also offers advice on appropriate key sizes in

. , Section 6 advises use of the following required RSA or Diffie-Hellman
(DH) module and Digital Signature Algorithm (DSA) subgroup size in bits for a given level of
attack resistance in bits. Based on the table below, a 2048-bit RSA key is required to provide
112-bit equivalent key strength:

Attack Resistance (bits) RSA or DH Modulus size (bits) DSA subgroup size (bits)

70 947 129

80 1228 148

90 1553 167

100 1926 186

150 4575 284

200 8719 383

250 14596 482

Table 8

Note 2. TEAP protects against offline dictionary attacks when secure inner methods are
used. TEAP protects against online dictionary attacks by limiting the number of failed
authentications for a particular identity.

• [RFC3766]
[NIST-

SP-800-57] [RFC3766]

•

9. Changes from RFC 7170
Alan DeKok was added as an editor.

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 74

The document was converted to Markdown from the [RFC7170] text output.

Any formatting changes mostly result from differences between using Markdown versus XML
for source.

The IANA Considerations section was replaced with a note to change the IANA registry
references to this document.

A new section was added to explain that the inner EAP-MSCHAPv2 derivation follows EAP-FAST.
This is the largest technical change from the previous revision of this document and follows
existing implementations.

Many small changes have been made throughout the document to correct inconsistencies and to
address mistakes. At a high level:

All open errata have been addressed.
A new term "inner method" has been defined.
The definitions and derivation of IMSK, S-IMCK, etc. have been corrected and clarified.
The diagrams in Appendix C have been updated to match the TEAP state machine.

All uses of the PAC were removed. It had not been implemented, and there were no plans by
implementors to use it.

Text was added on recommendations for inner and outer identities.

Section 6.2.5 was added late in the document life cycle in order to document accidental behavior
that could result in interoperability issues.

•
•
•
•

10. References

[RFC2119]

[RFC2985]

[RFC2986]

[RFC3748]

10.1. Normative References

, , ,
, , March 1997,
.

 and ,
, , , November 2000,

.

 and ,
, , , November 2000,

.

, , , , and ,
, , , June 2004,

.

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Nystrom, M. B. Kaliski "PKCS #9: Selected Object Classes and Attribute
Types Version 2.0" RFC 2985 DOI 10.17487/RFC2985 <https://
www.rfc-editor.org/info/rfc2985>

Nystrom, M. B. Kaliski "PKCS #10: Certification Request Syntax
Specification Version 1.7" RFC 2986 DOI 10.17487/RFC2986
<https://www.rfc-editor.org/info/rfc2986>

Aboba, B. Blunk, L. Vollbrecht, J. Carlson, J. H. Levkowetz, Ed. "Extensible
Authentication Protocol (EAP)" RFC 3748 DOI 10.17487/RFC3748
<https://www.rfc-editor.org/info/rfc3748>

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 75

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2985
https://www.rfc-editor.org/info/rfc2985
https://www.rfc-editor.org/info/rfc2986
https://www.rfc-editor.org/info/rfc3748

[RFC5077]

[RFC5216]

[RFC5246]

[RFC5295]

[RFC5705]

[RFC5746]

[RFC5929]

[RFC6677]

[RFC7030]

[RFC8174]

[RFC8446]

[RFC8996]

[RFC9190]

, , , and ,
, ,

, January 2008, .

, , and , ,
, , March 2008,

.

 and ,
, , , August 2008,

.

, , , and ,
,

, , August 2008,
.

, ,
, , March 2010,

.

, , , and ,
, , , February

2010, .

, , and , , ,
, July 2010, .

, , and ,
, ,

, July 2012, .

, , and ,
, , , October 2013,

.

, ,
, , , May 2017,

.

, , ,
, August 2018, .

 and , , , ,
, March 2021, .

 and ,
, , ,

February 2022, .

Salowey, J. Zhou, H. Eronen, P. H. Tschofenig "Transport Layer Security
(TLS) Session Resumption without Server-Side State" RFC 5077 DOI 10.17487/
RFC5077 <https://www.rfc-editor.org/info/rfc5077>

Simon, D. Aboba, B. R. Hurst "The EAP-TLS Authentication Protocol" RFC
5216 DOI 10.17487/RFC5216 <https://www.rfc-editor.org/info/
rfc5216>

Dierks, T. E. Rescorla "The Transport Layer Security (TLS) Protocol Version
1.2" RFC 5246 DOI 10.17487/RFC5246 <https://www.rfc-editor.org/
info/rfc5246>

Salowey, J. Dondeti, L. Narayanan, V. M. Nakhjiri "Specification for the
Derivation of Root Keys from an Extended Master Session Key (EMSK)" RFC
5295 DOI 10.17487/RFC5295 <https://www.rfc-editor.org/info/
rfc5295>

Rescorla, E. "Keying Material Exporters for Transport Layer Security (TLS)" RFC
5705 DOI 10.17487/RFC5705 <https://www.rfc-editor.org/info/
rfc5705>

Rescorla, E. Ray, M. Dispensa, S. N. Oskov "Transport Layer Security (TLS)
Renegotiation Indication Extension" RFC 5746 DOI 10.17487/RFC5746

<https://www.rfc-editor.org/info/rfc5746>

Altman, J. Williams, N. L. Zhu "Channel Bindings for TLS" RFC 5929 DOI
10.17487/RFC5929 <https://www.rfc-editor.org/info/rfc5929>

Hartman, S., Ed. Clancy, T. K. Hoeper "Channel-Binding Support for
Extensible Authentication Protocol (EAP) Methods" RFC 6677 DOI 10.17487/
RFC6677 <https://www.rfc-editor.org/info/rfc6677>

Pritikin, M., Ed. Yee, P., Ed. D. Harkins, Ed. "Enrollment over Secure
Transport" RFC 7030 DOI 10.17487/RFC7030 <https://www.rfc-
editor.org/info/rfc7030>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Rescorla, E. "The Transport Layer Security (TLS) Protocol Version 1.3" RFC 8446
DOI 10.17487/RFC8446 <https://www.rfc-editor.org/info/rfc8446>

Moriarty, K. S. Farrell "Deprecating TLS 1.0 and TLS 1.1" BCP 195 RFC 8996
DOI 10.17487/RFC8996 <https://www.rfc-editor.org/info/rfc8996>

Preuß Mattsson, J. M. Sethi "EAP-TLS 1.3: Using the Extensible
Authentication Protocol with TLS 1.3" RFC 9190 DOI 10.17487/RFC9190

<https://www.rfc-editor.org/info/rfc9190>

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 76

https://www.rfc-editor.org/info/rfc5077
https://www.rfc-editor.org/info/rfc5216
https://www.rfc-editor.org/info/rfc5216
https://www.rfc-editor.org/info/rfc5246
https://www.rfc-editor.org/info/rfc5246
https://www.rfc-editor.org/info/rfc5295
https://www.rfc-editor.org/info/rfc5295
https://www.rfc-editor.org/info/rfc5705
https://www.rfc-editor.org/info/rfc5705
https://www.rfc-editor.org/info/rfc5746
https://www.rfc-editor.org/info/rfc5929
https://www.rfc-editor.org/info/rfc6677
https://www.rfc-editor.org/info/rfc7030
https://www.rfc-editor.org/info/rfc7030
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8996
https://www.rfc-editor.org/info/rfc9190

[RFC9427]

[RFC9525]

[RFC9908]

,
, , , June 2023,

.

 and , , ,
, November 2023, .

, , , and ,
, ,

, January 2026, .

DeKok, A. "TLS-Based Extensible Authentication Protocol (EAP) Types for Use
with TLS 1.3" RFC 9427 DOI 10.17487/RFC9427 <https://www.rfc-
editor.org/info/rfc9427>

Saint-Andre, P. R. Salz "Service Identity in TLS" RFC 9525 DOI 10.17487/
RFC9525 <https://www.rfc-editor.org/info/rfc9525>

Richardson, M., Ed. Friel, O. von Oheimb, D. D. Harkins "Clarification and
Enhancement of the CSR Attributes Definition in RFC 7030" RFC 9908 DOI
10.17487/RFC9908 <https://www.rfc-editor.org/info/rfc9908>

[IEEE.802-1X.2020]

[KAMATH]

[MSCHAP]

[NIST-SP-800-57]

[PEAP]

[RFC2315]

[RFC3579]

[RFC3629]

[RFC3766]

10.2. Informative References

,
, ,

, February 2020, .

 and , , ,
, 19 June 2007,

.

, , 23 April 2024,

.

, ,
, , May 2020,

.

,
, 24 June 2021,

.

, , ,
, March 1998, .

 and ,
, ,

, September 2003, .

, , , ,
, November 2003,

.

 and ,
, , , , April

2004, .

IEEE "IEEE Standard for Local and Metropolitan Area Networks--Port-
Based Network Access Control" IEEE Std 802.1X-2020 DOI 10.1109/IEEESTD.
2020.9018454 <https://doi.org/10.1109/IEEESTD.2020.9018454>

Kamath, V. A. Palekar "Microsoft EAP CHAP Extensions" Work in Progress
Internet-Draft, draft-kamath-pppext-eap-mschapv2-02 <https://
datatracker.ietf.org/doc/html/draft-kamath-pppext-eap-mschapv2-02>

Microsoft Corporation "Master Session Key (MSK) Derivation"
<https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-chap/
5a860bf5-2aeb-485b-82ee-fac1e8e6b76f>

Barker, E. "Recommendation for Key Management: Part 1 - General" NIST SP
800-57 Part 1 Rev. 5 DOI 10.6028/NIST.SP.800-57pt1r5 <https://doi.org/
10.6028/NIST.SP.800-57pt1r5>

Microsoft Corporation "[MS-PEAP]: Protected Extensible Authentication
Protocol (PEAP)" <https://learn.microsoft.com/en-us/openspecs/
windows_protocols/ms-peap/5308642b-90c9-4cc4-beec-fb367325c0f9>

Kaliski, B. "PKCS #7: Cryptographic Message Syntax Version 1.5" RFC 2315 DOI
10.17487/RFC2315 <https://www.rfc-editor.org/info/rfc2315>

Aboba, B. P. Calhoun "RADIUS (Remote Authentication Dial In User Service)
Support For Extensible Authentication Protocol (EAP)" RFC 3579 DOI 10.17487/
RFC3579 <https://www.rfc-editor.org/info/rfc3579>

Yergeau, F. "UTF-8, a transformation format of ISO 10646" STD 63 RFC 3629
DOI 10.17487/RFC3629 <https://www.rfc-editor.org/info/
rfc3629>

Orman, H. P. Hoffman "Determining Strengths For Public Keys Used For
Exchanging Symmetric Keys" BCP 86 RFC 3766 DOI 10.17487/RFC3766

<https://www.rfc-editor.org/info/rfc3766>

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 77

https://www.rfc-editor.org/info/rfc9427
https://www.rfc-editor.org/info/rfc9427
https://www.rfc-editor.org/info/rfc9525
https://www.rfc-editor.org/info/rfc9908
https://doi.org/10.1109/IEEESTD.2020.9018454
https://datatracker.ietf.org/doc/html/draft-kamath-pppext-eap-mschapv2-02
https://datatracker.ietf.org/doc/html/draft-kamath-pppext-eap-mschapv2-02
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-chap/5a860bf5-2aeb-485b-82ee-fac1e8e6b76f
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-chap/5a860bf5-2aeb-485b-82ee-fac1e8e6b76f
https://doi.org/10.6028/NIST.SP.800-57pt1r5
https://doi.org/10.6028/NIST.SP.800-57pt1r5
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-peap/5308642b-90c9-4cc4-beec-fb367325c0f9
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-peap/5308642b-90c9-4cc4-beec-fb367325c0f9
https://www.rfc-editor.org/info/rfc2315
https://www.rfc-editor.org/info/rfc3579
https://www.rfc-editor.org/info/rfc3629
https://www.rfc-editor.org/info/rfc3629
https://www.rfc-editor.org/info/rfc3766

[RFC4017]

[RFC4072]

[RFC4086]

[RFC4334]

[RFC4648]

[RFC4851]

[RFC4945]

[RFC4949]

[RFC4962]

[RFC5247]

[RFC5272]

[RFC5280]

, , and ,
, , ,

March 2005, .

, , and ,
, , , August 2005,

.

, , and ,
, , , , June 2005,

.

 and ,

, , , February 2006,
.

, , ,
, October 2006, .

, , , and ,

, , , May 2007,
.

,
, , , August 2007,

.

, , , ,
, August 2007, .

 and ,
, , , ,

July 2007, .

, , and ,
, , , August 2008,

.

 and , , ,
, June 2008, .

, , , , , and ,

, , , May 2008,
.

Stanley, D. Walker, J. B. Aboba "Extensible Authentication Protocol (EAP)
Method Requirements for Wireless LANs" RFC 4017 DOI 10.17487/RFC4017

<https://www.rfc-editor.org/info/rfc4017>

Eronen, P., Ed. Hiller, T. G. Zorn "Diameter Extensible Authentication
Protocol (EAP) Application" RFC 4072 DOI 10.17487/RFC4072
<https://www.rfc-editor.org/info/rfc4072>

Eastlake 3rd, D. Schiller, J. S. Crocker "Randomness Requirements for
Security" BCP 106 RFC 4086 DOI 10.17487/RFC4086 <https://
www.rfc-editor.org/info/rfc4086>

Housley, R. T. Moore "Certificate Extensions and Attributes Supporting
Authentication in Point-to-Point Protocol (PPP) and Wireless Local Area
Networks (WLAN)" RFC 4334 DOI 10.17487/RFC4334 <https://
www.rfc-editor.org/info/rfc4334>

Josefsson, S. "The Base16, Base32, and Base64 Data Encodings" RFC 4648 DOI
10.17487/RFC4648 <https://www.rfc-editor.org/info/rfc4648>

Cam-Winget, N. McGrew, D. Salowey, J. H. Zhou "The Flexible
Authentication via Secure Tunneling Extensible Authentication Protocol
Method (EAP-FAST)" RFC 4851 DOI 10.17487/RFC4851 <https://
www.rfc-editor.org/info/rfc4851>

Korver, B. "The Internet IP Security PKI Profile of IKEv1/ISAKMP, IKEv2, and
PKIX" RFC 4945 DOI 10.17487/RFC4945 <https://www.rfc-
editor.org/info/rfc4945>

Shirey, R. "Internet Security Glossary, Version 2" FYI 36 RFC 4949 DOI
10.17487/RFC4949 <https://www.rfc-editor.org/info/rfc4949>

Housley, R. B. Aboba "Guidance for Authentication, Authorization, and
Accounting (AAA) Key Management" BCP 132 RFC 4962 DOI 10.17487/RFC4962

<https://www.rfc-editor.org/info/rfc4962>

Aboba, B. Simon, D. P. Eronen "Extensible Authentication Protocol (EAP)
Key Management Framework" RFC 5247 DOI 10.17487/RFC5247
<https://www.rfc-editor.org/info/rfc5247>

Schaad, J. M. Myers "Certificate Management over CMS (CMC)" RFC 5272
DOI 10.17487/RFC5272 <https://www.rfc-editor.org/info/rfc5272>

Cooper, D. Santesson, S. Farrell, S. Boeyen, S. Housley, R. W. Polk
"Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile" RFC 5280 DOI 10.17487/RFC5280 <https://www.rfc-
editor.org/info/rfc5280>

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 78

https://www.rfc-editor.org/info/rfc4017
https://www.rfc-editor.org/info/rfc4072
https://www.rfc-editor.org/info/rfc4086
https://www.rfc-editor.org/info/rfc4086
https://www.rfc-editor.org/info/rfc4334
https://www.rfc-editor.org/info/rfc4334
https://www.rfc-editor.org/info/rfc4648
https://www.rfc-editor.org/info/rfc4851
https://www.rfc-editor.org/info/rfc4851
https://www.rfc-editor.org/info/rfc4945
https://www.rfc-editor.org/info/rfc4945
https://www.rfc-editor.org/info/rfc4949
https://www.rfc-editor.org/info/rfc4962
https://www.rfc-editor.org/info/rfc5247
https://www.rfc-editor.org/info/rfc5272
https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc5280

[RFC5281]

[RFC5421]

[RFC5422]

[RFC5652]

[RFC5931]

[RFC6066]

[RFC6124]

[RFC6238]

[RFC6678]

[RFC6960]

[RFC6961]

[RFC7029]

 and ,
,

, , August 2008,
.

 and ,

, , , March 2009,
.

, , , and ,

, , , March 2009,
.

, , , ,
, September 2009, .

 and ,
, , ,

August 2010, .

,
, , , January 2011,

.

, , , and ,
, ,

, February 2011, .

, , , and ,
, , , May 2011,

.

, , , and ,
, ,

, July 2012, .

, , , , , and ,
,

, , June 2013,
.

,
, , , June 2013,

.

, , and ,
, , , October

2013, .

Funk, P. S. Blake-Wilson "Extensible Authentication Protocol Tunneled
Transport Layer Security Authenticated Protocol Version 0 (EAP-TTLSv0)" RFC
5281 DOI 10.17487/RFC5281 <https://www.rfc-editor.org/info/
rfc5281>

Cam-Winget, N. H. Zhou "Basic Password Exchange within the Flexible
Authentication via Secure Tunneling Extensible Authentication Protocol (EAP-
FAST)" RFC 5421 DOI 10.17487/RFC5421 <https://www.rfc-
editor.org/info/rfc5421>

Cam-Winget, N. McGrew, D. Salowey, J. H. Zhou "Dynamic Provisioning
Using Flexible Authentication via Secure Tunneling Extensible Authentication
Protocol (EAP-FAST)" RFC 5422 DOI 10.17487/RFC5422 <https://
www.rfc-editor.org/info/rfc5422>

Housley, R. "Cryptographic Message Syntax (CMS)" STD 70 RFC 5652 DOI
10.17487/RFC5652 <https://www.rfc-editor.org/info/rfc5652>

Harkins, D. G. Zorn "Extensible Authentication Protocol (EAP)
Authentication Using Only a Password" RFC 5931 DOI 10.17487/RFC5931

<https://www.rfc-editor.org/info/rfc5931>

Eastlake 3rd, D. "Transport Layer Security (TLS) Extensions: Extension
Definitions" RFC 6066 DOI 10.17487/RFC6066 <https://www.rfc-
editor.org/info/rfc6066>

Sheffer, Y. Zorn, G. Tschofenig, H. S. Fluhrer "An EAP Authentication
Method Based on the Encrypted Key Exchange (EKE) Protocol" RFC 6124 DOI
10.17487/RFC6124 <https://www.rfc-editor.org/info/rfc6124>

M'Raihi, D. Machani, S. Pei, M. J. Rydell "TOTP: Time-Based One-Time
Password Algorithm" RFC 6238 DOI 10.17487/RFC6238 <https://
www.rfc-editor.org/info/rfc6238>

Hoeper, K. Hanna, S. Zhou, H. J. Salowey, Ed. "Requirements for a Tunnel-
Based Extensible Authentication Protocol (EAP) Method" RFC 6678 DOI
10.17487/RFC6678 <https://www.rfc-editor.org/info/rfc6678>

Santesson, S. Myers, M. Ankney, R. Malpani, A. Galperin, S. C. Adams "X.
509 Internet Public Key Infrastructure Online Certificate Status Protocol - OCSP"
RFC 6960 DOI 10.17487/RFC6960 <https://www.rfc-editor.org/info/
rfc6960>

Pettersen, Y. "The Transport Layer Security (TLS) Multiple Certificate Status
Request Extension" RFC 6961 DOI 10.17487/RFC6961 <https://
www.rfc-editor.org/info/rfc6961>

Hartman, S. Wasserman, M. D. Zhang "Extensible Authentication Protocol
(EAP) Mutual Cryptographic Binding" RFC 7029 DOI 10.17487/RFC7029

<https://www.rfc-editor.org/info/rfc7029>

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 79

https://www.rfc-editor.org/info/rfc5281
https://www.rfc-editor.org/info/rfc5281
https://www.rfc-editor.org/info/rfc5421
https://www.rfc-editor.org/info/rfc5421
https://www.rfc-editor.org/info/rfc5422
https://www.rfc-editor.org/info/rfc5422
https://www.rfc-editor.org/info/rfc5652
https://www.rfc-editor.org/info/rfc5931
https://www.rfc-editor.org/info/rfc6066
https://www.rfc-editor.org/info/rfc6066
https://www.rfc-editor.org/info/rfc6124
https://www.rfc-editor.org/info/rfc6238
https://www.rfc-editor.org/info/rfc6238
https://www.rfc-editor.org/info/rfc6678
https://www.rfc-editor.org/info/rfc6960
https://www.rfc-editor.org/info/rfc6960
https://www.rfc-editor.org/info/rfc6961
https://www.rfc-editor.org/info/rfc6961
https://www.rfc-editor.org/info/rfc7029

[RFC7170]

[RFC7299]

[RFC7542]

[RFC8126]

[RFC8146]

[RFC9325]

[X.690]

, , , and ,
, , ,

May 2014, .

, , ,
, July 2014, .

, , , ,
May 2015, .

, , and ,
, , , , June

2017, .

, ,
, , April 2017,

.

, , and ,
,

, , , November 2022,
.

,

, February 2021, .

Zhou, H. Cam-Winget, N. Salowey, J. S. Hanna "Tunnel Extensible
Authentication Protocol (TEAP) Version 1" RFC 7170 DOI 10.17487/RFC7170

<https://www.rfc-editor.org/info/rfc7170>

Housley, R. "Object Identifier Registry for the PKIX Working Group" RFC 7299
DOI 10.17487/RFC7299 <https://www.rfc-editor.org/info/rfc7299>

DeKok, A. "The Network Access Identifier" RFC 7542 DOI 10.17487/RFC7542
<https://www.rfc-editor.org/info/rfc7542>

Cotton, M. Leiba, B. T. Narten "Guidelines for Writing an IANA
Considerations Section in RFCs" BCP 26 RFC 8126 DOI 10.17487/RFC8126

<https://www.rfc-editor.org/info/rfc8126>

Harkins, D. "Adding Support for Salted Password Databases to EAP-pwd" RFC
8146 DOI 10.17487/RFC8146 <https://www.rfc-editor.org/info/
rfc8146>

Sheffer, Y. Saint-Andre, P. T. Fossati "Recommendations for Secure Use of
Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)"
BCP 195 RFC 9325 DOI 10.17487/RFC9325 <https://www.rfc-
editor.org/info/rfc9325>

ITU-T "Information technology - ASN.1 encoding rules: Specification of Basic
Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished
Encoding Rules (DER)" <https://www.itu.int/rec/T-REC-X.690>

Appendix A. Evaluation Against Tunnel-Based EAP Method
Requirements
This section evaluates all tunnel-based EAP method requirements described in
against TEAP version 1.

[RFC6678]

A.1. Requirement 4.1.1: RFC Compliance
TEAPv1 meets this requirement by being compliant with , , , and

. It is also compliant with the "cryptographic algorithm agility" requirement by
leveraging TLS 1.2 for all cryptographic algorithm negotiation.

[RFC3748] [RFC4017] [RFC5247]
[RFC4962]

A.2. Requirement 4.2.1: TLS Requirements
TEAPv1 meets this requirement by mandating TLS version 1.2 support as defined in Section 3.2.

A.3. Requirement 4.2.1.1.1: Cipher Suite Negotiation
TEAPv1 meets this requirement by using TLS to provide protected cipher suite negotiation.

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 80

https://www.rfc-editor.org/info/rfc7170
https://www.rfc-editor.org/info/rfc7299
https://www.rfc-editor.org/info/rfc7542
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8146
https://www.rfc-editor.org/info/rfc8146
https://www.rfc-editor.org/info/rfc9325
https://www.rfc-editor.org/info/rfc9325
https://www.itu.int/rec/T-REC-X.690

A.4. Requirement 4.2.1.1.2: Tunnel Data Protection Algorithms
TEAPv1 meets this requirement by mandating cipher suites as defined in Section 3.2.

A.5. Requirement 4.2.1.1.3: Tunnel Authentication and Key Establishment
TEAPv1 meets this requirement by mandating cipher suites that only include cipher suites that
use strong cryptographic algorithms. They do not include cipher suites providing mutually
anonymous authentication or static Diffie-Hellman cipher suites as defined in Section 3.2.

A.6. Requirement 4.2.1.2: Tunnel Replay Protection
TEAPv1 meets this requirement by using TLS to provide sufficient replay protection.

A.7. Requirement 4.2.1.3: TLS Extensions
TEAPv1 meets this requirement by allowing TLS extensions, such as TLS Certificate Status
Request extension and SessionTicket extension , to be used during TLS
tunnel establishment.

[RFC6066] [RFC5077]

A.8. Requirement 4.2.1.4: Peer Identity Privacy
TEAPv1 meets this requirement by establishment of the TLS tunnel and protection identities
specific to the inner method. In addition, the peer certificate can be sent confidentially (i.e.,
encrypted).

A.9. Requirement 4.2.1.5: Session Resumption
TEAPv1 meets this requirement by mandating support of TLS session resumption as defined in
Section 3.5.1 and TLS session resumption using the methods defined in .[RFC9190]

A.10. Requirement 4.2.2: Fragmentation
TEAPv1 meets this requirement by leveraging fragmentation support provided by TLS as defined
in Section 3.10.

A.11. Requirement 4.2.3: Protection of Data External to Tunnel
TEAPv1 meets this requirement by including the TEAP version number received in the
computation of the Crypto-Binding TLV as defined in Section 4.2.13.

A.12. Requirement 4.3.1: Extensible Attribute Types
TEAPv1 meets this requirement by using an extensible TLV data layer inside the tunnel as
defined in Section 4.2.

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 81

A.13. Requirement 4.3.2: Request/Challenge Response Operation
TEAPv1 meets this requirement by allowing multiple TLVs to be sent in a single EAP request or
response packet, while maintaining the half-duplex operation typical of EAP.

A.14. Requirement 4.3.3: Indicating Criticality of Attributes
TEAPv1 meets this requirement by having a mandatory bit in each TLV to indicate whether it is
mandatory to support or not as defined in Section 4.2.

A.15. Requirement 4.3.4: Vendor-Specific Support
TEAPv1 meets this requirement by having a Vendor-Specific TLV to allow vendors to define their
own attributes as defined in Section 4.2.8.

A.16. Requirement 4.3.5: Result Indication
TEAPv1 meets this requirement by having a Result TLV to exchange the final result of the TEAP
authentication so both the peer and server have a synchronized state as defined in Section 4.2.4.

A.17. Requirement 4.3.6: Internationalization of Display Strings
TEAPv1 meets this requirement by supporting UTF-8 format in the Basic-Password-Auth-Req TLV
as defined in Section 4.2.14 and the Basic-Password-Auth-Resp TLV as defined in Section 4.2.15.

A.18. Requirement 4.4: EAP Channel-Binding Requirements
TEAPv1 meets this requirement by having a Channel-Binding TLV to exchange the EAP channel-
binding data as defined in Section 4.2.7.

A.19. Requirement 4.5.1.1: Confidentiality and Integrity
TEAPv1 meets this requirement by running the password authentication inside a protected TLS
tunnel.

A.20. Requirement 4.5.1.2: Authentication of Server
TEAPv1 meets this requirement by mandating authentication of the server before establishment
of the protected TLS and then running inner password authentication as defined in Section 3.2.

A.21. Requirement 4.5.1.3: Server Certificate Revocation Checking
TEAPv1 meets this requirement by supporting TLS Certificate Status Request extension

 during tunnel establishment.[RFC6066]

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 82

A.22. Requirement 4.5.2: Internationalization
TEAPv1 meets this requirement by supporting UTF-8 format in Basic-Password-Auth-Req TLV as
defined in Section 4.2.14 and Basic-Password-Auth-Resp TLV as defined in Section 4.2.15.

A.23. Requirement 4.5.3: Metadata
TEAPv1 meets this requirement by supporting Identity-Type TLV as defined in Section 4.2.3 to
indicate whether the authentication is for a user or a machine.

A.24. Requirement 4.5.4: Password Change
TEAPv1 meets this requirement by supporting multiple Basic-Password-Auth-Req TLV and Basic-
Password-Auth-Resp TLV exchanges within a single EAP authentication, which allows
"housekeeping"" functions such as password change.

A.25. Requirement 4.6.1: Method Negotiation
TEAPv1 meets this requirement by supporting inner EAP method negotiation within the
protected TLS tunnel.

A.26. Requirement 4.6.2: Chained Methods
TEAPv1 meets this requirement by supporting inner EAP method chaining within protected TLS
tunnels as defined in Section 3.6.2.

A.27. Requirement 4.6.3: Cryptographic Binding with the TLS Tunnel
TEAPv1 meets this requirement by supporting cryptographic binding of the inner EAP method
keys with the keys derived from the TLS tunnel as defined in Section 4.2.13.

A.28. Requirement 4.6.4: Peer-Initiated EAP Authentication
TEAPv1 meets this requirement by supporting the Request-Action TLV as defined in Section 4.2.9
to allow a peer to initiate another inner EAP method.

A.29. Requirement 4.6.5: Method Metadata
TEAPv1 meets this requirement by supporting the Identity-Type TLV as defined in Section 4.2.3
to indicate whether the authentication is for a user or a machine.

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 83

Appendix B. Major Differences from EAP-FAST
This document is a new standard tunnel EAP method based on revision of EAP-FAST version 1

 that contains improved flexibility, particularly for negotiation of cryptographic
algorithms. The major changes are:

The EAP method name has been changed from EAP-FAST to TEAP; this change thus requires
that a new EAP Type be assigned.
This version of TEAP support TLS 1.2 . TLS 1.1 and earlier be used
with TEAP.
The key derivation now makes use of TLS keying material exporters and the PRF
and hash function negotiated in TLS. This is to simplify implementation and better support
cryptographic algorithm agility.
TEAP is in full conformance with TLS ticket extension .
Support is provided for passing optional Outer TLVs in the first two message exchanges, in
addition to the Authority-ID TLV data in EAP-FAST.
Basic password authentication on the TLV level has been added in addition to the existing
inner EAP method.
Additional TLV types have been defined to support EAP channel binding and metadata. They
are the Identity-Type TLV and Channel-Binding TLVs, defined in Section 4.2.

[RFC4851]

1.

2. MUST [RFC5246] MUST NOT

3. [RFC5705]

4. [RFC5077]
5.

6.

7.

Appendix C. Examples

C.1. Successful Authentication
The following exchanges show a successful TEAP authentication with basic password
authentication. The conversation will appear as follows:

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 84

 Authenticating Peer Authenticator
 ------------------- -------------
 <- EAP-Request/
 Identity
 EAP-Response/
 Identity (MyID1) ->
 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TEAP Start, S bit set, Authority-ID)

 EAP-Response/
 EAP-Type=TEAP, V=1
 (TLS client_hello) ->

 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TLS server_hello,
 (TLS change_cipher_spec,
 TLS finished)

 EAP-Response/
 EAP-Type=TEAP, V=1 ->
 (TLS change_cipher_spec,
 TLS finished)

 TLS channel established
 (messages sent within the TLS channel)

 <- Basic-Password-Auth-Req TLV, Challenge

 Basic-Password-Auth-Resp TLV, Response with both
 username and password) ->

 optional additional exchanges (new pin mode,
 password change, etc.) ...

 <- Intermediate-Result TLV (Success),
 Crypto-Binding TLV (Request),
 Result TLV (Success)

 Intermediate-Result TLV (Success),
 Crypto-Binding TLV(Response),
 Result TLV (Success) ->

 TLS channel torn down
 (messages sent in cleartext)

 <- EAP-Success

C.2. Failed Authentication
The following exchanges show a failed TEAP authentication due to wrong user credentials. The
conversation will appear as follows:

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 85

 Authenticating Peer Authenticator
 ------------------- -------------
 <- EAP-Request/Identity

 EAP-Response/
 Identity (MyID1) ->

 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TEAP Start, S bit set, Authority-ID)

 EAP-Response/
 EAP-Type=TEAP, V=1
 (TLS client_hello) ->

 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TLS server_hello,
 (TLS change_cipher_spec,
 TLS finished)

 EAP-Response/
 EAP-Type=TEAP, V=1 ->
 (TLS change_cipher_spec,
 TLS finished)

 TLS channel established
 (messages sent within the TLS channel)

 <- Basic-Password-Auth-Req TLV, Challenge

 Basic-Password-Auth-Resp TLV, Response with both
 username and password) ->

 <- Intermediate-Result TLV (Failure),
 Result TLV (Failure)

 Intermediate-Result TLV (Failure),
 Result TLV (Failure) ->

 TLS channel torn down
 (messages sent in cleartext)

 <- EAP-Failure

C.3. Full TLS Handshake Using Certificate-Based Cipher Suite
In the case within TEAP Phase 1 where an abbreviated TLS handshake is tried, fails, and falls
back to the certificate-based full TLS handshake, the conversation will appear as follows:

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 86

 Authenticating Peer Authenticator
 ------------------- -------------
 <- EAP-Request/Identity
 EAP-Response/
 Identity (MyID1) ->

 // Identity sent in the clear. May be a hint to help route
 the authentication request to EAP server, instead of the
 full user identity.

 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TEAP Start, S bit set, Authority-ID)
 EAP-Response/
 EAP-Type=TEAP, V=1
 (TLS client_hello with
 SessionTicket extension)->

 // If the server rejects the session resumption,
 it falls through to the full TLS handshake.

 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TLS server_hello,
 TLS certificate,
 [TLS server_key_exchange,]
 [TLS certificate_request,]
 TLS server_hello_done)

 EAP-Response/
 EAP-Type=TEAP, V=1
 ([TLS certificate,]
 TLS client_key_exchange,
 [TLS certificate_verify,]
 TLS change_cipher_spec,
 TLS finished) ->
 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TLS change_cipher_spec,
 TLS finished,
 EAP-Payload TLV[EAP-Request/
 Identity])

 // TLS channel established
 (messages sent within the TLS channel)

 // First EAP Payload TLV is coalesced with the TLS Finished as
 Application Data and protected by the TLS tunnel.

 EAP-Payload TLV
 [EAP-Response/Identity (MyID2)]->

 // identity protected by TLS.

 <- EAP-Payload TLV
 [EAP-Request/EAP-Type=X]

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 87

 EAP-Payload TLV
 [EAP-Response/EAP-Type=X] ->

 // Method X exchanges followed by Protected Termination

 <- Intermediate-Result TLV (Success),
 Crypto-Binding TLV (Request),
 Result TLV (Success)

 Intermediate-Result TLV (Success),
 Crypto-Binding TLV (Response),
 Result TLV (Success) ->

 // TLS channel torn down
 (messages sent in cleartext)

 <- EAP-Success

C.4. Client Authentication During Phase 1 with Identity Privacy
In the case where a certificate-based TLS handshake occurs within TEAP Phase 1 and client
certificate authentication and identity privacy is desired (and therefore TLS renegotiation is
being used to transmit the peer credentials in the protected TLS tunnel), the conversation will
appear as follows for TLS 1.2:

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 88

 Authenticating Peer Authenticator
 ------------------- -------------
 <- EAP-Request/Identity
 EAP-Response/
 Identity (MyID1) ->

 // Identity sent in the clear. May be a hint to help route
 the authentication request to EAP server, instead of the
 full user identity.

 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TEAP Start, S bit set, Authority-ID)
 EAP-Response/
 EAP-Type=TEAP, V=1
 (TLS client_hello)->
 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TLS server_hello,
 TLS certificate,
 [TLS server_key_exchange,]
 [TLS certificate_request,]
 TLS server_hello_done)
 EAP-Response/
 EAP-Type=TEAP, V=1
 (TLS client_key_exchange,
 TLS change_cipher_spec,
 TLS finished) ->
 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TLS change_cipher_spec,
 TLS finished,
 EAP-Payload TLV[EAP-Request/
 Identity])

 // TLS channel established
 (EAP Payload messages sent within the TLS channel)

 // peer sends TLS client_hello to request TLS renegotiation
 TLS client_hello ->

 <- TLS server_hello,
 TLS certificate,
 [TLS server_key_exchange,]
 [TLS certificate_request,]
 TLS server_hello_done
 [TLS certificate,]
 TLS client_key_exchange,
 [TLS certificate_verify,]
 TLS change_cipher_spec,
 TLS finished ->

 <- TLS change_cipher_spec,
 TLS finished,
 Crypto-Binding TLV (Request),
 Result TLV (Success)

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 89

 Crypto-Binding TLV (Response),
 Result TLV (Success)) ->

 //TLS channel torn down
 (messages sent in cleartext)

 <- EAP-Success

C.5. Fragmentation and Reassembly
In the case where TEAP fragmentation is required, the conversation will appear as follows:

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 90

 Authenticating Peer Authenticator
 ------------------- -------------
 <- EAP-Request/
 Identity
 EAP-Response/
 Identity (MyID) ->
 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TEAP Start, S bit set, Authority-ID)

 EAP-Response/
 EAP-Type=TEAP, V=1
 (TLS client_hello)->

 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TLS server_hello,
 TLS certificate,
 [TLS server_key_exchange,]
 [TLS certificate_request,]
 TLS server_hello_done)
 (Fragment 1: L, M bits set)

 EAP-Response/
 EAP-Type=TEAP, V=1 ->

 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (Fragment 2: M bit set)
 EAP-Response/
 EAP-Type=TEAP, V=1 ->
 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (Fragment 3)
 EAP-Response/
 EAP-Type=TEAP, V=1
 ([TLS certificate,]
 TLS client_key_exchange,
 [TLS certificate_verify,]
 TLS change_cipher_spec,
 TLS finished)
 (Fragment 1: L, M bits set)->

 <- EAP-Request/
 EAP-Type=TEAP, V=1
 EAP-Response/
 EAP-Type=TEAP, V=1
 (Fragment 2)->
 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TLS change_cipher_spec,
 TLS finished,
 [EAP-Payload TLV[
 EAP-Request/Identity]])

 // TLS channel established
 (messages sent within the TLS channel)

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 91

 // First EAP Payload TLV is coalesced with the TLS Finished as
 Application Data and protected by the TLS tunnel.

 EAP-Payload TLV
 [EAP-Response/Identity (MyID2)]->

 // identity protected by TLS.

 <- EAP-Payload TLV
 [EAP-Request/EAP-Type=X]

 EAP-Payload TLV
 [EAP-Response/EAP-Type=X] ->

 // Method X exchanges followed by Protected Termination

 <- Intermediate-Result TLV (Success),
 Crypto-Binding TLV (Request),
 Result TLV (Success)

 Intermediate-Result TLV (Success),
 Crypto-Binding TLV (Response),
 Result TLV (Success) ->

 // TLS channel torn down
 (messages sent in cleartext)

 <- EAP-Success

C.6. Sequence of EAP Methods
When TEAP is negotiated with a sequence of EAP method X followed by method Y, the
conversation will occur as follows:

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 92

 Authenticating Peer Authenticator
 ------------------- -------------
 <- EAP-Request/
 Identity
 EAP-Response/
 Identity (MyID1) ->
 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TEAP Start, S bit set, Authority-ID)

 EAP-Response/
 EAP-Type=TEAP, V=1
 (TLS client_hello)->

 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TLS server_hello,
 TLS certificate,
 [TLS server_key_exchange,]
 [TLS certificate_request,]
 TLS server_hello_done)
 EAP-Response/
 EAP-Type=TEAP, V=1
 ([TLS certificate,]
 TLS client_key_exchange,
 [TLS certificate_verify,]
 TLS change_cipher_spec,
 TLS finished) ->
 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TLS change_cipher_spec,
 TLS finished,
 Identity-Type TLV,
 EAP-Payload TLV[
 EAP-Request/Identity])

 // TLS channel established
 (messages sent within the TLS channel)

 // First EAP Payload TLV is coalesced with the TLS Finished as
 Application Data and protected by the TLS tunnel

 Identity_Type TLV
 EAP-Payload TLV
 [EAP-Response/Identity] ->

 <- EAP-Payload TLV
 [EAP-Request/EAP-Type=X]

 EAP-Payload TLV
 [EAP-Response/EAP-Type=X] ->

 // Optional additional X Method exchanges...

 <- EAP-Payload TLV
 [EAP-Request/EAP-Type=X]

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 93

 EAP-Payload TLV
 [EAP-Response/EAP-Type=X]->

 <- Intermediate Result TLV (Success),
 Crypto-Binding TLV (Request),
 Identity-Type TLV,
 EAP-Payload TLV[
 EAP-Request/Identity])

 // Compound-MAC calculated using keys generated from
 EAP method X and the TLS tunnel.

 // Next EAP conversation started (with EAP-Request/Identity)
 after successful completion of previous method X. The
 Intermediate-Result and Crypto-Binding TLVs are sent in
 the next packet to minimize round trips.

 Intermediate Result TLV (Success),
 Crypto-Binding TLV (Response),
 EAP-Payload TLV [EAP-Response/Identity (MyID2)] ->

 // Optional additional EAP method Y exchanges...

 <- EAP Payload TLV [
 EAP-Type=Y]

 EAP Payload TLV
 [EAP-Type=Y] ->

 <- Intermediate-Result TLV (Success),
 Crypto-Binding TLV (Request),
 Result TLV (Success)

 Intermediate-Result TLV (Success),
 Crypto-Binding TLV (Response),
 Result TLV (Success) ->

 // Compound-MAC calculated using keys generated from EAP
 methods X and Y and the TLS tunnel. Compound keys are
 generated using keys generated from EAP methods X and Y
 and the TLS tunnel.

 // TLS channel torn down (messages sent in cleartext)

 <- EAP-Success

C.7. Failed Crypto-Binding
The following exchanges show a failed crypto-binding validation. The conversation will appear
as follows:

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 94

 Authenticating Peer Authenticator
 ------------------- -------------
 <- EAP-Request/
 Identity
 EAP-Response/
 Identity (MyID1) ->
 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TEAP Start, S bit set, Authority-ID)

 EAP-Response/
 EAP-Type=TEAP, V=1
 (TLS client_hello) ->
 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TLS Server Key Exchange
 TLS Server Hello Done)
 EAP-Response/
 EAP-Type=TEAP, V=1 ->
 (TLS Client Key Exchange
 TLS change_cipher_spec,
 TLS finished)

 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TLS change_cipher_spec
 TLS finished)
 EAP-Payload TLV[
 EAP-Request/Identity])

 // TLS channel established
 (messages sent within the TLS channel)

 // First EAP Payload TLV is coalesced with the TLS Finished as
 Application Data and protected by the TLS tunnel.

 EAP-Payload TLV/
 EAP Identity Response ->

 <- EAP Payload TLV, EAP-Request,
 (EAP-FAST-MSCHAPV2, Challenge)

 EAP Payload TLV, EAP-Response,
 (EAP-FAST-MSCHAPV2, Response) ->

 <- EAP Payload TLV, EAP-Request,
 (EAP-FAST-MSCHAPV2, Success Request)

 EAP Payload TLV, EAP-Response,
 (EAP-FAST-MSCHAPV2, Success Response) ->

 <- Intermediate-Result TLV (Success),
 Crypto-Binding TLV (Request),
 Result TLV (Success)

 Intermediate-Result TLV (Success),
 Result TLV (Failure)

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 95

 Error TLV with
 (Error Code = 2001) ->

 // TLS channel torn down
 (messages sent in cleartext)

 <- EAP-Failure

C.8. Sequence of EAP Method with Vendor-Specific TLV Exchange
When TEAP is negotiated with a sequence of EAP methods followed by a Vendor-Specific TLV
exchange, the conversation will occur as follows:

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 96

 Authenticating Peer Authenticator
 ------------------- -------------
 <- EAP-Request/
 Identity
 EAP-Response/
 Identity (MyID1) ->
 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TEAP Start, S bit set, Authority-ID)

 EAP-Response/
 EAP-Type=TEAP, V=1
 (TLS client_hello)->
 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TLS server_hello,
 TLS certificate,
 [TLS server_key_exchange,]
 [TLS certificate_request,]
 TLS server_hello_done)

 EAP-Response/
 EAP-Type=TEAP, V=1
 ([TLS certificate,]
 TLS client_key_exchange,
 [TLS certificate_verify,]
 TLS change_cipher_spec,
 TLS finished) ->
 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TLS change_cipher_spec,
 TLS finished,
 EAP-Payload TLV[
 EAP-Request/Identity])

 // TLS channel established
 (messages sent within the TLS channel)

 // First EAP Payload TLV is coalesced with the TLS Finished as
 Application Data and protected by the TLS tunnel.

 EAP-Payload TLV
 [EAP-Response/Identity] ->

 <- EAP-Payload TLV
 [EAP-Request/EAP-Type=X]

 EAP-Payload TLV
 [EAP-Response/EAP-Type=X] ->

 <- EAP-Payload TLV
 [EAP-Request/EAP-Type=X]

 EAP-Payload TLV
 [EAP-Response/EAP-Type=X]->

 <- Intermediate Result TLV (Success),

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 97

 Crypto-Binding TLV (Request),
 Vendor-Specific TLV,

 // Vendor-Specific TLV exchange started after successful
 completion of previous method X. The Intermediate-Result
 and Crypto-Binding TLVs are sent with Vendor-Specific TLV
 in next packet to minimize round trips.

 // Compound-MAC calculated using keys generated from
 EAP method X and the TLS tunnel.

 Intermediate Result TLV (Success),
 Crypto-Binding TLV (Response),
 Vendor-Specific TLV ->

 // Optional additional Vendor-Specific TLV exchanges...

 <- Vendor-Specific TLV

 Vendor-Specific TLV ->
 <- Result TLV (Success)

 Result TLV (Success) ->

 // TLS channel torn down (messages sent in cleartext)

 <- EAP-Success

C.9. Peer Requests Inner Method After Server Sends Result TLV
In the case where the peer is authenticated during Phase 1 and the server sends back a Result
TLV but the peer wants to request another inner method, the conversation will appear as
follows:

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 98

 Authenticating Peer Authenticator
 ------------------- -------------
 <- EAP-Request/Identity
 EAP-Response/
 Identity (MyID1) ->

 // Identity sent in the clear. May be a hint to help route
 the authentication request to EAP server, instead of the
 full user identity. TLS client certificate is also sent.

 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TEAP Start, S bit set, Authority-ID)
 EAP-Response/
 EAP-Type=TEAP, V=1
 (TLS client_hello)->
 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TLS server_hello,
 TLS certificate,
 [TLS server_key_exchange,]
 [TLS certificate_request,]
 TLS server_hello_done)

 EAP-Response/
 EAP-Type=TEAP, V=1
 [TLS certificate,]
 TLS client_key_exchange,
 [TLS certificate_verify,]
 TLS change_cipher_spec,
 TLS finished ->
 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TLS change_cipher_spec,
 TLS finished,
 Crypto-Binding TLV (Request),
 Result TLV (Success))

 // TLS channel established
 (TLV Payload messages sent within the TLS channel)

 Crypto-Binding TLV(Response),
 Request-Action TLV
 (Status=Failure, Action=Negotiate-EAP)->

 <- EAP-Payload TLV
 [EAP-Request/Identity]

 EAP-Payload TLV
 [EAP-Response/Identity] ->

 <- EAP-Payload TLV
 [EAP-Request/EAP-Type=X]

 EAP-Payload TLV
 [EAP-Response/EAP-Type=X] ->

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 99

 <- EAP-Payload TLV
 [EAP-Request/EAP-Type=X]

 EAP-Payload TLV
 [EAP-Response/EAP-Type=X]->

 <- Intermediate Result TLV (Success),
 Crypto-Binding TLV (Request),
 Result TLV (Success)

 Intermediate Result TLV (Success),
 Crypto-Binding TLV (Response),
 Result TLV (Success)) ->

 // TLS channel torn down
 (messages sent in cleartext)

 <- EAP-Success

C.10. Channel Binding
The following exchanges show a successful TEAP authentication with basic password
authentication and channel binding using a Request-Action TLV. The conversation will appear as
follows:

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 100

 Authenticating Peer Authenticator
 ------------------- -------------
 <- EAP-Request/
 Identity
 EAP-Response/
 Identity (MyID1) ->

 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TEAP Start, S bit set, Authority-ID)

 EAP-Response/
 EAP-Type=TEAP, V=1
 (TLS client_hello) ->

 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TLS server_hello,
 (TLS change_cipher_spec,
 TLS finished)

 EAP-Response/
 EAP-Type=TEAP, V=1 ->
 (TLS change_cipher_spec,
 TLS finished)

 TLS channel established
 (messages sent within the TLS channel)

 <- Basic-Password-Auth-Req TLV, Challenge

 Basic-Password-Auth-Resp TLV, Response with both
 username and password) ->

 optional additional exchanges (new pin mode,
 password change, etc.) ...

 <- Crypto-Binding TLV (Request),
 Result TLV (Success),

 Crypto-Binding TLV(Response),
 Request-Action TLV
 (Status=Failure, Action=Process TLV,
 TLV=Channel-Binding TLV)->

 <- Channel-Binding TLV (Response),
 Result TLV (Success),

 Result TLV (Success) ->

 TLS channel torn down
 (messages sent in cleartext)

 <- EAP-Success

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 101

C.11. PKCS Exchange
The following exchanges show the peer sending a PKCS#10 TLV and server replying with a
PKCS7 TLV. The exchange below assumes that the EAP peer is authenticated in Phase 1, either via
bidirectional certificate exchange or some other TLS method such as a proof of knowledge (TLS-
POK). The conversation will appear as follows:

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 102

,----. ,-------.
|Peer| |AuthSrv|
`-+--' `---+---'
 | EAP-Request / Identity |
 | <- -
 | |
 | EAP-Response / Identity (MYID1) |
 | - >
 | |
 | EAP-Request/EAP-Type=TEAP, |
 | V=1(TEAP Start, |
 | S bit set, |
 | Authority-ID) |
 | <- -
 | |
 | EAP-Response/EAP-Type=TEAP, |
 | V=1(TLS client_hello) |
 | - >
 | |
 | EAP-Request/ EAP-Type=TEAP, |
 | V=1(TLS server_hello, |
 | TLS certificate, |
 | TLS certificate_request, |
 | TLS finished) |
 | <- -
 | |
 | EAP-Response/EAP-Type=TEAP, |
 | V=1(TLS change_cipher_spec, |
 | TLS certificate, |
 | TLS finished) TLS channel established |
 | - >
 | |
 | Send Request-Action TLV |
 | <- -
 | |
 | Send PKCS10 TLV |
 | - >
 | |
 | Sign the CSR and send PKCS7 TLV Intermediate-Result|
 | TLV request(Success), |
 | Crypto-Binding TLV(Request), |
 | Result TLV(Success) |
 | <- -
 | |
 | Intermediate-Result TLV response(Success), |
 | Crypto-Binding TLV(Response), |
 | Result TLV(Success) |
 | - >
 | |
 | EAP Success |
 | <- -

C.12. Failure Scenario
The following exchanges show a failure scenario. The conversation will appear as follows:

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 103

,----. ,-------.
|Peer| |AuthSrv|
`-+--' `---+---'
 | EAP-Request / Identity |
 | <- -
 | |
 | EAP-Response / Identity (MYID1) |
 | ->
 | |
 | EAP-Request/EAP-Type=TEAP, V=1 |
 | (TEAP Start, S bit set, Authority-ID) |
 | <- -
 | |
 | EAP-Response/EAP-Type=TEAP, V=1(TLS client_hello) |
 | ->
 | |
 | EAP-Request/ EAP-Type=TEAP, V=1 |
 | (TLS server_hello,(TLS change_cipher_spec, TLS finished)|
 | <- -
 | |
 | EAP-Response/EAP-Type=TEAP, V=1 |
 | (TLS change_cipher_spec, |
 | TLS finished) |
 | TLS channel established |
 | ->
 | |
 | Request-Action TLV |
 | <- -
 | |
 | Bad PKCS10 TLV |
 | ->
 | |
 | Intermediate-Result TLV request(Failure), |
 | Result TLV(Failure) |
 | <- -
 | |
 | Intermediate-Result TLV response(Failure), |
 | Result TLV(Failure) |
 | ->
 | |
 | EAP Failure |
 | <- -

C.13. Client Certificate in Phase 1
The following exchanges show a scenario where the client certificate is sent in Phase 1 and no
additional authentication or provisioning is performed in Phase 2. The conversation will appear
as follows:

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 104

,----. ,-------.
|Peer| |AuthSrv|
`-+--' `---+---'
 | EAP-Request / Identity |
 | <- -
 | |
 | EAP-Response / Identity (MYID1) |
 | ->
 | |
 | EAP-Request/EAP-Type=TEAP, |
 | V=1(TEAP Start, |
 | S bit set, |
 | Authority-ID) |
 | <- -
 | |
 | EAP-Response/EAP-Type=TEAP, |
 | V=1(TLS client_hello) |
 | ->
 | |
 | EAP-Request/ EAP-Type=TEAP, |
 | V=1(TLS server_hello, |
 | TLS certificate, |
 | TLS certificate_request, |
 | TLS change_cipher_spec, |
 | TLS finished) |
 | <- -
 | |
 | EAP-Response/EAP-Type=TEAP, |
 | V=1(TLS certificate, |
 | TLS change_cipher_spec, |
 | TLS finished) TLS channel established |
 | ->
 | |
 | Crypto-Binding TLV(Request), |
 | Result TLV(Success) |
 | <- -
 | |
 | Crypto-Binding TLV(Response), |
 | Result TLV(Success) |
 | ->
 | |
 | EAP Success |
 | <- -

Acknowledgments
Nearly all of the text in this document was taken directly from . We are grateful to the
original authors and reviewers for that document. The acknowledgments given here are only for
the changes that resulted in this document.

 provided substantial and detailed technical feedback on nearly every aspect
of the specification. The corrections in this document are based on his work.

[RFC7170]

Alexander Clouter

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 105

We wish to thank the many reviewers and commenters in the EMU WG, including ,
, , , and . Many corner cases and

edge conditions were caught and corrected as a result of their feedback.

 initially pointed out the issues with . Those comments resulted in
substantial discussion on the EMU WG mailing list, and eventually this document. Jouni also
made substantial contributions in analyzing corner cases, which resulted in the text in Section
6.2.5.

Eliot Lear Joe
Salowey Heikki Vatiainen Bruno Pereria Vidal Michael Richardson

Jouni Malinin [RFC7170]

Contributors
Han Zhou

Joseph Salowey
joe@salowey.netEmail:

Nancy Cam-Winget
ncamwing@cisco.comEmail:

Steve Hanna
steve.hanna@infineon.comEmail:

Author's Address
Alan DeKok ()editor

aland@freeradius.orgEmail:

RFC 9930 TEAP Version 1 February 2026

DeKok Standards Track Page 106

mailto:joe@salowey.net
mailto:ncamwing@cisco.com
mailto:steve.hanna@infineon.com
mailto:aland@freeradius.org

	RFC 9930
	Tunnel Extensible Authentication Protocol (TEAP) Version 1
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Interoperability Issues
	1.2. Requirements Language
	1.3. Terminology

	2. Protocol Overview
	2.1. Architectural Model
	2.2. Protocol-Layering Model
	2.3. Outer TLVs Versus Inner TLVs

	3. TEAP Protocol
	3.1. Version Negotiation
	3.2. TEAP Authentication Phase 1: Tunnel Establishment
	3.3. Server Certificate Requirements
	3.4. Server Certificate Validation
	3.4.1. Client Certificates Sent During Phase 1

	3.5. Resumption
	3.5.1. TLS Session Resumption Using Server State
	3.5.2. TLS Session Resumption Using Client State

	3.6. TEAP Authentication Phase 2: Tunneled Authentication
	3.6.1. Inner Method Ordering
	3.6.2. Inner EAP Authentication
	3.6.3. Inner Password Authentication
	3.6.4. EAP-MSCHAPv2
	3.6.5. Limitations on Inner Methods
	3.6.6. Protected Termination and Acknowledged Result Indication

	3.7. Determining Peer-Id and Server-Id
	3.8. TEAP Session Identifier
	3.9. Error Handling
	3.9.1. Outer-Layer Errors
	3.9.2. TLS Layer Errors
	3.9.3. Phase 2 Errors

	3.10. Fragmentation
	3.11. Services Requested by the Peer
	3.11.1. Certificate Provisioning Within the Tunnel
	3.11.2. Certificate Content and Uses
	3.11.3. Server Unauthenticated Provisioning Mode
	3.11.4. Channel Binding

	4. Message Formats
	4.1. TEAP Message Format
	4.2. TEAP TLV Format and Support
	4.2.1. General TLV Format
	4.2.2. Authority-ID TLV
	4.2.3. Identity-Type TLV
	4.2.4. Result TLV
	4.2.5. NAK TLV
	4.2.6. Error TLV
	4.2.7. Channel-Binding TLV
	4.2.8. Vendor-Specific TLV
	4.2.9. Request-Action TLV
	4.2.10. EAP-Payload TLV
	4.2.11. Intermediate-Result TLV
	4.2.12. PAC TLV
	4.2.13. Crypto-Binding TLV
	4.2.14. Basic-Password-Auth-Req TLV
	4.2.15. Basic-Password-Auth-Resp TLV
	4.2.16. PKCS#7 TLV
	4.2.17. PKCS#10 TLV
	4.2.18. Trusted-Server-Root TLV
	4.2.19. CSR-Attributes TLV
	4.2.20. Identity-Hint TLV

	4.3. TLV Rules
	4.3.1. Outer TLVs
	4.3.2. Inner TLVs

	5. Limitations of TEAPv1
	5.1. Interoperable Inner Methods
	5.2. Explanation and Background
	5.3. Next Steps

	6. Cryptographic Calculations
	6.1. TEAP Authentication Phase 1: Key Derivations
	6.2. Intermediate Compound Key Derivations
	6.2.1. Generating the Inner Method Session Key
	6.2.2. Generating S-IMCK
	6.2.3. Choosing Inner Methods Securely
	6.2.4. Managing and Computing Crypto-Binding
	6.2.5. Unintended Side Effects

	6.3. Computing the Compound-MAC
	6.4. EAP Master Session Key Generation

	7. IANA Considerations
	7.1. TEAP TLV Types
	7.2. TEAP Error TLV (value 5) Error Codes
	7.3. TLS Exporter Labels
	7.4. Extended Master Session Key (EMSK) Parameters
	7.5. Extensible Authentication Protocol (EAP) Registry

	8. Security Considerations
	8.1. Mutual Authentication and Integrity Protection
	8.2. Method Negotiation
	8.3. Separation of Phase 1 and Phase 2 Servers
	8.4. Mitigation of Known Vulnerabilities and Protocol Deficiencies
	8.4.1. User Identity Protection and Verification

	8.5. Dictionary Attack Resistance
	8.5.1. Protection Against On-Path Attacks

	8.6. Protecting Against Forged Cleartext EAP Packets
	8.7. Use of Cleartext Passwords
	8.8. Accidental or Unintended Behavior
	8.9. Implicit Challenge
	8.10. Security Claims

	9. Changes from RFC 7170
	10. References
	10.1. Normative References
	10.2. Informative References

	Appendix A. Evaluation Against Tunnel-Based EAP Method Requirements
	A.1. Requirement 4.1.1: RFC Compliance
	A.2. Requirement 4.2.1: TLS Requirements
	A.3. Requirement 4.2.1.1.1: Cipher Suite Negotiation
	A.4. Requirement 4.2.1.1.2: Tunnel Data Protection Algorithms
	A.5. Requirement 4.2.1.1.3: Tunnel Authentication and Key Establishment
	A.6. Requirement 4.2.1.2: Tunnel Replay Protection
	A.7. Requirement 4.2.1.3: TLS Extensions
	A.8. Requirement 4.2.1.4: Peer Identity Privacy
	A.9. Requirement 4.2.1.5: Session Resumption
	A.10. Requirement 4.2.2: Fragmentation
	A.11. Requirement 4.2.3: Protection of Data External to Tunnel
	A.12. Requirement 4.3.1: Extensible Attribute Types
	A.13. Requirement 4.3.2: Request/Challenge Response Operation
	A.14. Requirement 4.3.3: Indicating Criticality of Attributes
	A.15. Requirement 4.3.4: Vendor-Specific Support
	A.16. Requirement 4.3.5: Result Indication
	A.17. Requirement 4.3.6: Internationalization of Display Strings
	A.18. Requirement 4.4: EAP Channel-Binding Requirements
	A.19. Requirement 4.5.1.1: Confidentiality and Integrity
	A.20. Requirement 4.5.1.2: Authentication of Server
	A.21. Requirement 4.5.1.3: Server Certificate Revocation Checking
	A.22. Requirement 4.5.2: Internationalization
	A.23. Requirement 4.5.3: Metadata
	A.24. Requirement 4.5.4: Password Change
	A.25. Requirement 4.6.1: Method Negotiation
	A.26. Requirement 4.6.2: Chained Methods
	A.27. Requirement 4.6.3: Cryptographic Binding with the TLS Tunnel
	A.28. Requirement 4.6.4: Peer-Initiated EAP Authentication
	A.29. Requirement 4.6.5: Method Metadata

	Appendix B. Major Differences from EAP-FAST
	Appendix C. Examples
	C.1. Successful Authentication
	C.2. Failed Authentication
	C.3. Full TLS Handshake Using Certificate-Based Cipher Suite
	C.4. Client Authentication During Phase 1 with Identity Privacy
	C.5. Fragmentation and Reassembly
	C.6. Sequence of EAP Methods
	C.7. Failed Crypto-Binding
	C.8. Sequence of EAP Method with Vendor-Specific TLV Exchange
	C.9. Peer Requests Inner Method After Server Sends Result TLV
	C.10. Channel Binding
	C.11. PKCS Exchange
	C.12. Failure Scenario
	C.13. Client Certificate in Phase 1

	Acknowledgments
	Contributors
	Author's Address

