Stream: Internet Engineering Task Force (IETF)

RFC: 8966

Obsoletes: 6126, 7557

Category: Standards Track

Published: January 2021

ISSN: 2070-1721

Authors: J. Chroboczek D. Schinazi

IRIF, University of Paris-Diderot =~ Google LLC

RFC 8966
The Babel Routing Protocol

Abstract

Babel is a loop-avoiding, distance-vector routing protocol that is robust and efficient both in
ordinary wired networks and in wireless mesh networks. This document describes the Babel
routing protocol and obsoletes RFC 6126 and RFC 7557.

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at https://www.rfc-editor.org/info/rfc8966.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Simplified BSD License.

Chroboczek & Schinazi Standards Track Page 1


https://www.rfc-editor.org/rfc/rfc8966
https://www.rfc-editor.org/rfc/rfc6126
https://www.rfc-editor.org/rfc/rfc7557
https://www.rfc-editor.org/info/rfc8966
https://trustee.ietf.org/license-info

RFC 8966

The Babel Routing Protocol

Table of Contents

1. Introduction

1.1.
1.2
1.3.

Features
Limitations

Specification of Requirements

2. Conceptual Description of the Protocol

2.1.
2.2.
2.3.
2.4.
2.5.
2.6.
2.7.
2.8.

Costs, Metrics, and Neighbourship
The Bellman-Ford Algorithm
Transient Loops in Bellman-Ford
Feasibility Conditions

Solving Starvation: Sequencing Routes
Requests

Multiple Routers

Overlapping Prefixes

3. Protocol Operation

3.1.
3.2.
3.3.
3.4.
3.5.
3.6.
3.7.
3.8.

Message Transmission and Reception

Data Structures

Acknowledgments and Acknowledgment Requests
Neighbour Acquisition

Routing Table Maintenance

Route Selection

Sending Updates

Explicit Requests

4. Protocol Encoding

4.1.
4.2.
4.3.
4.4,
4.5.

Data Types
Packet Format
TLV Format
Sub-TLV Format

Parser State and Encoding of Updates

Chroboczek & Schinazi Standards Track

January 2021

Page 2



RFC 8966 The Babel Routing Protocol January 2021

4.6. Details of Specific TLVs
4.7. Details of specific sub-TLVs

5. IANA Considerations
6. Security Considerations
7. References
7.1. Normative References

7.2. Informative References

Appendix A. Cost and Metric Computation
A.1. Maintaining Hello History
A.2. Cost Computation

A.3. Route Selection and Hysteresis

Appendix B. Protocol Parameters

Appendix C. Route Filtering

Appendix D. Considerations for Protocol Extensions
Appendix E. Stub Implementations

Appendix F. Compatibility with Previous Versions
Acknowledgments

Authors' Addresses

1. Introduction

Babel is a loop-avoiding distance-vector routing protocol that is designed to be robust and
efficient both in networks using prefix-based routing and in networks using flat routing ("mesh
networks"), and both in relatively stable wired networks and in highly dynamic wireless
networks. This document describes the Babel routing protocol and obsoletes [RFC6126] and
[REC7557].

1.1. Features

The main property that makes Babel suitable for unstable networks is that, unlike naive
distance-vector routing protocols [RIP], it strongly limits the frequency and duration of routing
pathologies such as routing loops and black-holes during reconvergence. Even after a mobility
event is detected, a Babel network usually remains loop-free. Babel then quickly reconverges to a
configuration that preserves the loop-freedom and connectedness of the network, but is not

Chroboczek & Schinazi Standards Track Page 3



RFC 8966 The Babel Routing Protocol January 2021

necessarily optimal; in many cases, this operation requires no packet exchanges at all. Babel then
slowly converges, in a time on the scale of minutes, to an optimal configuration. This is achieved
by using sequenced routes, a technique pioneered by Destination-Sequenced Distance-Vector
routing [DSDV].

More precisely, Babel has the following properties:

* when every prefix is originated by at most one router, Babel never suffers from routing
loops;

* when a single prefix is originated by multiple routers, Babel may occasionally create a
transient routing loop for this particular prefix; this loop disappears in time proportional to
the loop's diameter, and never again (up to an arbitrary garbage-collection (GC) time) will
the routers involved participate in a routing loop for the same prefix;

* assuming bounded packet loss rates, any routing black-holes that may appear after a
mobility event are corrected in a time at most proportional to the network's diameter.

Babel has provisions for link quality estimation and for fairly arbitrary metrics. When
configured suitably, Babel can implement shortest-path routing, or it may use a metric based, for
example, on measured packet loss.

Babel nodes will successfully establish an association even when they are configured with
different parameters. For example, a mobile node that is low on battery may choose to use larger
time constants (hello and update intervals, etc.) than a node that has access to wall power.
Conversely, a node that detects high levels of mobility may choose to use smaller time constants.
The ability to build such heterogeneous networks makes Babel particularly adapted to the
unmanaged or wireless environment.

Finally, Babel is a hybrid routing protocol, in the sense that it can carry routes for multiple
network-layer protocols (IPv4 and IPv6), regardless of which protocol the Babel packets are
themselves being carried over.

1.2. Limitations

Babel has two limitations that make it unsuitable for use in some environments. First, Babel
relies on periodic routing table updates rather than using a reliable transport; hence, in large,
stable networks it generates more traffic than protocols that only send updates when the
network topology changes. In such networks, protocols such as OSPF [OSPF], IS-IS [IS-IS], or the
Enhanced Interior Gateway Routing Protocol (EIGRP) [EIGRP] might be more suitable.

Second, unless the second algorithm described in Section 3.5.4 is implemented, Babel does
impose a hold time when a prefix is retracted. While this hold time does not apply to the exact
prefix being retracted, and hence does not prevent fast reconvergence should it become
available again, it does apply to any shorter prefix that covers it. This may make those
implementations of Babel that do not implement the optional algorithm described in Section
3.5.4 unsuitable for use in networks that implement automatic prefix aggregation.

Chroboczek & Schinazi Standards Track Page 4



RFC 8966 The Babel Routing Protocol January 2021

1.3. Specification of Requirements

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to
be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in
all capitals, as shown here.

2. Conceptual Description of the Protocol

Babel is a loop-avoiding distance-vector protocol: it is based on the Bellman-Ford algorithm, just
like the venerable RIP [RIP], but includes a number of refinements that either prevent loop
formation altogether, or ensure that a loop disappears in a timely manner and doesn't form
again.

Conceptually, Bellman-Ford is executed in parallel for every source of routing information
(destination of data traffic). In the following discussion, we fix a source S; the reader will recall
that the same algorithm is executed for all sources.

2.1. Costs, Metrics, and Neighbourship

For every pair of neighbouring nodes A and B, Babel computes an abstract value known as the
cost of the link from A to B, written C(A, B). Given a route between any two (not necessarily
neighbouring) nodes, the metric of the route is the sum of the costs of all the links along the
route. The goal of the routing algorithm is to compute, for every source S, the tree of routes of
lowest metric to S.

Costs and metrics need not be integers. In general, they can be values in any algebra that satisfies
two fairly general conditions (Section 3.5.2).

A Babel node periodically sends Hello messages to all of its neighbours; it also periodically sends
an IHU ("I Heard You") message to every neighbour from which it has recently heard a Hello.
From the information derived from Hello and ITHU messages received from its neighbour B, a
node A computes the cost C(A, B) of the link from A to B.

2.2. The Bellman-Ford Algorithm

Every node A maintains two pieces of data: its estimated distance to S, written D(A), and its next-
hop router to S, written NH(A). Initially, D(S) = 0, D(A) is infinite, and NH(A) is undefined.

Periodically, every node B sends to all of its neighbours a route update, a message containing D
(B). When a neighbour A of B receives the route update, it checks whether B is its selected next
hop; if that is the case, then NH(A) is set to B, and D(A) is set to C(A, B) + D(B). If that is not the
case, then A compares C(A, B) + D(B) to its current value of D(A). If that value is smaller, meaning
that the received update advertises a route that is better than the currently selected route, then
NH(A) is set to B, and D(A) is set to C(A, B) + D(B).

Chroboczek & Schinazi Standards Track Page 5



RFC 8966 The Babel Routing Protocol January 2021

A number of refinements to this algorithm are possible, and are used by Babel. In particular,
convergence speed may be increased by sending unscheduled "triggered updates" whenever a
major change in the topology is detected, in addition to the regular, scheduled updates.
Additionally, a node may maintain a number of alternate routes, which are being advertised by
neighbours other than its selected neighbour, and which can be used immediately if the selected
route were to fail.

2.3. Transient Loops in Bellman-Ford

It is well known that a naive application of Bellman-Ford to distributed routing can cause
transient loops after a topology change. Consider for example the following topology:

1
SREEENAR ]
\

1\

C

B
1 /|
I
I
I

After convergence, D(B) = D(C) = 2, with NH(B) = NH(C) = A.

Suppose now that the link between S and A fails:

17/
/

w
>

\
1T\

B
|

I
|1
|

I
©
When it detects the failure of the link, A switches its next hop to B (which is still advertising a
route to S with metric 2), and advertises a metric equal to 3, and then advertises a new route
with metric 3. This process of nodes changing selected neighbours and increasing their metric

continues until the advertised metric reaches "infinity", a value larger than all the metrics that
the routing protocol is able to carry.

2.4. Feasibility Conditions

Bellman-Ford is a very robust algorithm: its convergence properties are preserved when routers
delay route acquisition or when they discard some updates. Babel routers discard received route
announcements unless they can prove that accepting them cannot possibly cause a routing loop.

More formally, we define a condition over route announcements, known as the "feasibility
condition", that guarantees the absence of routing loops whenever all routers ignore route
updates that do not satisfy the feasibility condition. In effect, this makes Bellman-Ford into a
family of routing algorithms, parameterised by the feasibility condition.

Chroboczek & Schinazi Standards Track Page 6



RFC 8966 The Babel Routing Protocol January 2021

Many different feasibility conditions are possible. For example, BGP can be modelled as being a
distance-vector protocol with a (rather drastic) feasibility condition: a routing update is only
accepted when the receiving node's AS number is not included in the update's AS_PATH attribute
(note that BGP's feasibility condition does not ensure the absence of transient "micro-loops"
during reconvergence).

Another simple feasibility condition, used in the Destination-Sequenced Distance-Vector (DSDV)
routing protocol [DSDV] and in the Ad hoc On-Demand Distance Vector (AODV) protocol
[RFC3561], stems from the following observation: a routing loop can only arise after a router has
switched to a route with a larger metric than the route that it had previously selected. Hence, one
may define that a route is feasible when its metric at the local node would be no larger than the
metric of the currently selected route, i.e., an announcement carrying a metric D(B) is accepted
by A when C(A, B) + D(B) <= D(A). If all routers obey this constraint, then the metric at every
router is nonincreasing, and the following invariant is always preserved: if A has selected B as its
next hop, then D(B) < D(A), which implies that the forwarding graph is loop-free.

Babel uses a slightly more refined feasibility condition, derived from EIGRP [DUAL]. Given a
router A, define the feasibility distance of A, written FD(A), as the smallest metric that A has ever
advertised for S to any of its neighbours. An update sent by a neighbour B of A is feasible when
the metric D(B) advertised by B is strictly smaller than A's feasibility distance, i.e., when D(B) < FD
A).

It is easy to see that this latter condition is no more restrictive than DSDV-feasibility. Suppose that
node A obeys DSDV-feasibility; then D(A) is nonincreasing, hence at all times D(A) <= FD(A).
Suppose now that A receives a DSDV-feasible update that advertises a metric D(B). Since the
update is DSDV-feasible, C(A, B) + D(B) <= D(A), hence D(B) < D(A), and since D(A) <= FD(A), D(B) <
FD(A).

To see that it is strictly less restrictive, consider the following diagram, where A has selected the
route through B, and D(A) = FD(A) = 2. Since D(C) = 1 < FD(A), the alternate route through C is
feasible for A, although its metric C(A, C) + D(C) = 5 is larger than that of the currently selected
route:

T\ / 4
C

To show that this feasibility condition still guarantees loop-freedom, recall that at the time when
A accepts an update from B, the metric D(B) announced by B is no smaller than FD(B); since it is
smaller than FD(A), at that point in time FD(B) < FD(A). Since this property is preserved when A
sends updates and also when it picks a different next hop, it remains true at all times, which
ensures that the forwarding graph has no loops.

Chroboczek & Schinazi Standards Track Page 7



RFC 8966 The Babel Routing Protocol January 2021

2.5. Solving Starvation: Sequencing Routes

Obviously, the feasibility conditions defined above cause starvation when a router runs out of
feasible routes. Consider the following diagram, where both A and B have selected the direct
route to S:

A
1 /] D(A) = 1
/| FD(A) = 1
S |1
\ | D(B) = 2
2 \| FD(B) = 2
B

Suppose now that the link between A and S breaks:

A
I
| FD(A) = 1
S |1
\ | D(B) = 2
2 \| FD(B) = 2
B

The only route available from A to S, the one that goes through B, is not feasible: A suffers from
spurious starvation. At that point, the whole subtree suffering from starvation must be reset,
which is essentially what EIGRP does when it performs a global synchronisation of all the routers
in the starving subtree (the "active" phase of EIGRP).

Babel reacts to starvation in a less drastic manner, by using sequenced routes, a technique
introduced by DSDV and adopted by AODV. In addition to a metric, every route carries a
sequence number, a nondecreasing integer that is propagated unchanged through the network
and is only ever incremented by the source; a pair (s, m), where s is a sequence number and m a
metric, is called a distance.

A received update is feasible when either it is more recent than the feasibility distance
maintained by the receiving node, or it is equally recent and the metric is strictly smaller. More

formally, if FD(A) = (s, m), then an update carrying the distance (s', m') is feasible when either s' >
s,ors=s'and m' <m.

Chroboczek & Schinazi Standards Track Page 8



RFC 8966 The Babel Routing Protocol January 2021

Assuming the sequence number of S is 137, the diagram above becomes:

A
I FD(A) = (137, 1)
S |1
\ | D(B) = (137, 2)
2 \| FD(B) = (137, 2)
B

After S increases its sequence number, and the new sequence number is propagated to B, we
have:

A
I FD(A) = (137, 1)
S |1
\ | D(B) = (138, 2)
2 \| FD(B) = (138, 2)
B

at which point the route through B becomes feasible again.

Note that while sequence numbers are used for determining feasibility, they are not used in
route selection: a node ignores the sequence number when selecting the best route to a given
destination (Section 3.6). Doing otherwise would cause route oscillation while a sequence
number propagates through the network, and might even cause persistent black-holes with some
exotic metrics.

2.6. Requests

In DSDV, the sequence number of a source is increased periodically. A route becomes feasible
again after the source increases its sequence number, and the new sequence number is
propagated through the network, which may, in general, require a significant amount of time.

Babel takes a different approach. When a node detects that it is suffering from a potentially
spurious starvation, it sends an explicit request to the source for a new sequence number. This
request is forwarded hop by hop to the source, with no regard to the feasibility condition. Upon
receiving the request, the source increases its sequence number and broadcasts an update,
which is forwarded to the requesting node.

Note that after a change in network topology not all such requests will, in general, reach the
source, as some will be sent over links that are now broken. However, if the network is still
connected, then at least one among the nodes suffering from spurious starvation has an
(unfeasible) route to the source; hence, in the absence of packet loss, at least one such request
will reach the source. (Resending requests a small number of times compensates for packet loss.)

Chroboczek & Schinazi Standards Track Page 9



RFC 8966 The Babel Routing Protocol January 2021

Since requests are forwarded with no regard to the feasibility condition, they may, in general, be
caught in a forwarding loop; this is avoided by having nodes perform duplicate detection for the
requests that they forward.

2.7. Multiple Routers

The above discussion assumes that each prefix is originated by a single router. In real networks,
however, it is often necessary to have a single prefix originated by multiple routers: for example,
the default route will be originated by all of the edge routers of a routing domain.

Since synchronising sequence numbers between distinct routers is problematic, Babel treats
routes for the same prefix as distinct entities when they are originated by different routers:
every route announcement carries the router-id of its originating router, and feasibility distances
are not maintained per prefix, but per source, where a source is a pair of a router-id and a prefix.
In effect, Babel guarantees loop-freedom for the forwarding graph to every source; since the
union of multiple acyclic graphs is not in general acyclic, Babel does not in general guarantee
loop-freedom when a prefix is originated by multiple routers, but any loops will be broken in a
time at most proportional to the diameter of the loop -- as soon as an update has "gone around"
the routing loop.

Consider for example the following topology, where A has selected the default route through S,
and B has selected the one through S":

1 1 1
3/ - 8 ——- A --- B -—- §' -- ::/8

Suppose that both default routes fail at the same time; then nothing prevents A from switching to
B, and B simultaneously switching to A. However, as soon as A has successfully advertised the
new route to B, the route through A will become unfeasible for B. Conversely, as soon as B will
have advertised the route through A, the route through B will become unfeasible for A.

In effect, the routing loop disappears at the latest when routing information has gone around the
loop. Since this process can be delayed by lost packets, Babel makes certain efforts to ensure that
updates are sent reliably after a router-id change (Section 3.7.2).

Additionally, after the routers have advertised the two routes, both sources will be in their
source tables, which will prevent them from ever again participating in a routing loop involving
routes from S and S' (up to the source GC time, which, available memory permitting, can be set to
arbitrarily large values).

2.8. Overlapping Prefixes

In the above discussion, we have assumed that all prefixes are disjoint, as is the case in flat
("mesh") routing. In practice, however, prefixes may overlap: for example, the default route
overlaps with all of the routes present in the network.

Chroboczek & Schinazi Standards Track Page 10



RFC 8966 The Babel Routing Protocol January 2021

After a route fails, it is not correct in general to switch to a route that subsumes the failed route.
Consider for example the following configuration:

1 1
::/6 -- A---B ---C

Suppose that node C fails. If B forwards packets destined to C by following the default route, a
routing loop will form, and persist until A learns of B's retraction of the direct route to C. B avoids
this pitfall by installing an "unreachable" route after a route is retracted; this route is maintained
until it can be guaranteed that the former route has been retracted by all of B's neighbours
(Section 3.5.4).

3. Protocol Operation

Every Babel speaker is assigned a router-id, which is an arbitrary string of 8 octets that is
assumed unique across the routing domain. For example, router-ids could be assigned randomly,
or they could be derived from a link-layer address. (The protocol encoding is slightly more
compact when router-ids are assigned in the same manner as the IPv6 layer assigns host IDs; see
the definition of the "R" flag in Section 4.6.9.)

3.1. Message Transmission and Reception

Babel protocol packets are sent in the body of a UDP datagram (as described in Section 4). Each
Babel packet consists of zero or more TLVs. Most TLVs may contain sub-TLVs.

Babel's control traffic can be carried indifferently over IPv6 or over IPv4, and prefixes of either
address family can be announced over either protocol. Thus, there are at least two natural
deployment models: using IPv6 exclusively for all control traffic, or running two distinct protocol
instances, one for each address family. The exclusive use of IPv6 for all control traffic is
RECOMMENDED, since using both protocols at the same time doubles the amount of traffic
devoted to neighbour discovery and link quality estimation.

The source address of a Babel packet is always a unicast address, link-local in the case of IPv6.
Babel packets may be sent to a well-known (link-local) multicast address or to a (link-local)
unicast address. In normal operation, a Babel speaker sends both multicast and unicast packets
to its neighbours.

With the exception of acknowledgments, all Babel TLVs can be sent to either unicast or multicast
addresses, and their semantics does not depend on whether the destination is a unicast or a
multicast address. Hence, a Babel speaker does not need to determine the destination address of
a packet that it receives in order to interpret it.

A moderate amount of jitter may be applied to packets sent by a Babel speaker: outgoing TLVs
are buffered and SHOULD be sent with a random delay. This is done for two purposes: it avoids
synchronisation of multiple Babel speakers across a network [JITTER], and it allows for the
aggregation of multiple TLVs into a single packet.

Chroboczek & Schinazi Standards Track Page 11



RFC 8966 The Babel Routing Protocol January 2021

The maximum amount of delay a TLV can be subjected to depends on the TLV. When the protocol
description specifies that a TLV is urgent (as in Section 3.7.2 and Section 3.8.1), then the TLV
MUST be sent within a short time known as the urgent timeout (see Appendix B for
recommended values). When the TLV is governed by a timeout explicitly included in a previous
TLYV, such as in the case of Acknowledgments (Section 4.6.4), Updates (Section 3.7), and IHUs
(Section 3.4.2), then the TLV MUST be sent early enough to meet the explicit deadline (with a
small margin to allow for propagation delays). In all other cases, the TLV SHOULD be sent out
within one-half of the Multicast Hello interval.

In order to avoid packet drops (either at the sender or at the receiver), a delay SHOULD be
introduced between successive packets sent out on the same interface, within the constraints of
the previous paragraph. Note, however, that such packet pacing might impair the ability of some
link layers (e.g., IEEE 802.11 [IEEE802.11]) to perform packet aggregation.

3.2. Data Structures

In this section, we describe the data structures that every Babel speaker maintains. This
description is conceptual: a Babel speaker may use different data structures as long as the
resulting protocol is the same as the one described in this document. For example, rather than
maintaining a single table containing both selected and unselected (fallback) routes, as described
in Section 3.2.6, an actual implementation would probably use two tables, one with selected
routes and one with fallback routes.

3.2.1. Sequence Number Arithmetic

Sequence numbers (seqnos) appear in a number of Babel data structures, and they are

interpreted as integers modulo 216 For the purposes of this document, arithmetic on sequence
numbers is defined as follows.

Given a seqno s and a non-negative integer n, the sum of s and n is defined by the following:
s + 1 (modulo 216) = (s + n) MOD 216

or, equivalently,
s +n (modulo 216) = (s + n) AND 65535

where MOD is the modulo operation yielding a non-negative integer, and AND is the bitwise
conjunction operation.

Given two sequence numbers s and s', the relation s is less than s' (s < s') is defined by the
following:

s < s' (modulo 216) when 0 < ((s'-s) MOD 216) < 32768

or, equivalently,

s < s' (modulo 216) when s /=s"and ((s' - s) AND 32768) = 0.

Chroboczek & Schinazi Standards Track Page 12



RFC 8966 The Babel Routing Protocol January 2021

3.2.2. Node Sequence Number

A node's sequence number is a 16-bit integer that is included in route updates sent for routes
originated by this node.

A node increments its sequence number (modulo 216) whenever it receives a request for a new
sequence number (Section 3.8.1.2). A node SHOULD NOT increment its sequence number (seqno)
spontaneously, since increasing seqnos makes it less likely that other nodes will have feasible
alternate routes when their selected routes fail.

3.2.3. The Interface Table

The interface table contains the list of interfaces on which the node speaks the Babel protocol.
Every interface table entry contains the interface's outgoing Multicast Hello seqno, a 16-bit
integer that is sent with each Multicast Hello TLV on this interface and is incremented (modulo

216) whenever a Multicast Hello is sent. (Note that an interface's Multicast Hello seqno is
unrelated to the node's seqno.)

There are two timers associated with each interface table entry. The periodic multicast hello
timer governs the sending of scheduled Multicast Hello and IHU packets (Section 3.4). The
periodic Update timer governs the sending of periodic route updates (Section 3.7.1). See
Appendix B for suggested time constants.

3.2.4. The Neighbour Table

The neighbour table contains the list of all neighbouring interfaces from which a Babel packet
has been recently received. The neighbour table is indexed by pairs of the form (interface,
address), and every neighbour table entry contains the following data:

* the local node's interface over which this neighbour is reachable;
* the address of the neighbouring interface;

* a history of recently received Multicast Hello packets from this neighbour; this can, for
example, be a sequence of n bits, for some small value n, indicating which of the n hellos
most recently sent by this neighbour have been received by the local node;

* a history of recently received Unicast Hello packets from this neighbour;

o the "transmission cost" value from the last IHU packet received from this neighbour, or FFFF

hexadecimal (infinity) if the IHU hold timer for this neighbour has expired;

o the expected incoming Multicast Hello sequence number for this neighbour, an integer
modulo 216,

* the expected incoming Unicast Hello sequence number for this neighbour, an integer

modulo 21,

* the outgoing Unicast Hello sequence number for this neighbour, an integer modulo 216 that

is sent with each Unicast Hello TLV to this neighbour and is incremented (modulo 216)
whenever a Unicast Hello is sent. (Note that the outgoing Unicast Hello seqno for a neighbour
is distinct from the interface's outgoing Multicast Hello seqno.)

Chroboczek & Schinazi Standards Track Page 13



RFC 8966 The Babel Routing Protocol January 2021

There are three timers associated with each neighbour entry -- the multicast hello timer, which is
set to the interval value carried by scheduled Multicast Hello TLVs sent by this neighbour, the
unicast hello timer, which is set to the interval value carried by scheduled Unicast Hello TLVs,
and the IHU timer, which is set to a small multiple of the interval carried in IHU TLVs (see "[HU
Hold time" in Appendix B for suggested values).

Note that the neighbour table is indexed by IP addresses, not by router-ids: neighbourship is a
relationship between interfaces, not between nodes. Therefore, two nodes with multiple
interfaces can participate in multiple neighbourship relationships, a situation that can notably
arise when wireless nodes with multiple radios are involved.

3.2.5. The Source Table

The source table is used to record feasibility distances. It is indexed by triples of the form (prefix,
plen, router-id), and every source table entry contains the following data:

o the prefix (prefix, plen), where plen is the prefix length in bits, that this entry applies to;
o the router-id of a router originating this prefix;
* a pair (seqno, metric), this source's feasibility distance.

There is one timer associated with each entry in the source table -- the source garbage-collection
timer. It is initialised to a time on the order of minutes and reset as specified in Section 3.7.3.

3.2.6. The Route Table

The route table contains the routes known to this node. It is indexed by triples of the form
(prefix, plen, neighbour), and every route table entry contains the following data:

o the source (prefix, plen, router-id) for which this route is advertised;
¢ the neighbour (an entry in the neighbour table) that advertised this route;

* the metric with which this route was advertised by the neighbour, or FFFF hexadecimal
(infinity) for a recently retracted route;

* the sequence number with which this route was advertised;
¢ the next-hop address of this route;

* a boolean flag indicating whether this route is selected, i.e., whether it is currently being
used for forwarding and is being advertised.

There is one timer associated with each route table entry -- the route expiry timer. It is initialised
and reset as specified in Section 3.5.3.

Note that there are two distinct (seqno, metric) pairs associated with each route: the route's
distance, which is stored in the route table, and the feasibility distance, which is stored in the
source table and shared between all routes with the same source.

Chroboczek & Schinazi Standards Track Page 14



RFC 8966 The Babel Routing Protocol January 2021

3.2.7. The Table of Pending Seqno Requests

The table of pending seqno requests contains a list of seqno requests that the local node has sent
(either because they have been originated locally, or because they were forwarded) and to which
no reply has been received yet. This table is indexed by triples of the form (prefix, plen, router-
id), and every entry in this table contains the following data:

* the prefix, plen, router-id, and seqno being requested;
* the neighbour, if any, on behalf of which we are forwarding this request;

* a small integer indicating the number of times that this request will be resent if it remains
unsatisfied.

There is one timer associated with each pending seqno request; it governs both the resending of
requests and their expiry.

3.3. Acknowledgments and Acknowledgment Requests

A Babel speaker may request that a neighbour receiving a given packet reply with an explicit
acknowledgment within a given time. While the use of acknowledgment requests is optional,
every Babel speaker MUST be able to reply to such a request.

An acknowledgment MUST be sent to a unicast destination. On the other hand, acknowledgment
requests may be sent to either unicast or multicast destinations, in which case they request an
acknowledgment from all of the receiving nodes.

When to request acknowledgments is a matter of local policy; the simplest strategy is to never
request acknowledgments and to rely on periodic updates to ensure that any reachable routes
are eventually propagated throughout the routing domain. In order to improve convergence
speed and to reduce the amount of control traffic, acknowledgment requests MAY be used in
order to reliably send urgent updates (Section 3.7.2) and retractions (Section 3.5.4), especially
when the number of neighbours on a given interface is small. Since Babel is designed to deal
gracefully with packet loss on unreliable media, sending all packets with acknowledgment
requests is not necessary and NOT RECOMMENDED, as the acknowledgments cause additional
traffic and may force additional Address Resolution Protocol (ARP) or Neighbour Discovery (ND)
exchanges.

3.4. Neighbour Acquisition

Neighbour acquisition is the process by which a Babel node discovers the set of neighbours
heard over each of its interfaces and ascertains bidirectional reachability. On unreliable media,
neighbour acquisition additionally provides some statistics that may be useful for link quality
computation.

Before it can exchange routing information with a neighbour, a Babel node MUST create an entry
for that neighbour in the neighbour table. When to do that is implementation-specific; suitable
strategies include creating an entry when any Babel packet is received, or creating an entry
when a Hello TLV is parsed. Similarly, in order to conserve system resources, an implementation

Chroboczek & Schinazi Standards Track Page 15



RFC 8966 The Babel Routing Protocol January 2021

SHOULD discard an entry when it has been unused for long enough; suitable strategies include
dropping the neighbour after a timeout, and dropping a neighbour when the associated Hello
histories become empty (see Appendix A.2).

3.4.1. Reverse Reachability Detection
Every Babel node sends Hello TLVs to its neighbours, at regular or irregular intervals, to indicate

that it is alive. Each Hello TLV carries an increasing (modulo 216) sequence number and an
upper bound on the time interval until the next Hello of the same type (see below). If the time
interval is set to 0, then the Hello TLV does not establish a new promise: the deadline carried by
the previous Hello of the same type still applies to the next Hello (if the most recent scheduled
Hello of the right kind was received at time t0 and carried interval i, then the previous promise
of sending another Hello before time t0 + i still holds). We say that a Hello is "scheduled" if it
carries a nonzero interval, and "unscheduled" otherwise.

There are two kinds of Hellos: Multicast Hellos, which use a per-interface Hello counter (the
Multicast Hello seqno), and Unicast Hellos, which use a per-neighbour counter (the Unicast Hello
seqno). A Multicast Hello with a given seqno MUST be sent to all neighbours on a given interface,
either by sending it to a multicast address or by sending it to one unicast address per neighbour
(hence, the term "Multicast Hello" is a slight misnomer). A Unicast Hello carrying a given seqno
should normally be sent to just one neighbour (over unicast), since the sequence numbers of
different neighbours are not in general synchronised.

Multicast Hellos sent over multicast can be used for neighbour discovery; hence, a node SHOULD
send periodic (scheduled) Multicast Hellos unless neighbour discovery is performed by means
outside of the Babel protocol. A node MAY send Unicast Hellos or unscheduled Hellos of either
kind for any reason, such as reducing the amount of multicast traffic or improving reliability on
link technologies with poor support for link-layer multicast.

A node MAY send a scheduled Hello ahead of time. A node MAY change its scheduled Hello
interval. The Hello interval MAY be decreased at any time; it MAY be increased immediately
before sending a Hello TLV, but SHOULD NOT be increased at other times. (Equivalently, a node
SHOULD send a scheduled Hello immediately after increasing its Hello interval.)

How to deal with received Hello TLVs and what statistics to maintain are considered local
implementation matters; typically, a node will maintain some sort of history of recently received
Hellos. An example of a suitable algorithm is described in Appendix A.1.

After receiving a Hello, or determining that it has missed one, the node recomputes the
association's cost (Section 3.4.3) and runs the route selection procedure (Section 3.6).

3.4.2. Bidirectional Reachability Detection

In order to establish bidirectional reachability, every node sends periodic IHU ("I Heard You")
TLVs to each of its neighbours. Since IHUs carry an explicit interval value, they MAY be sent less
often than Hellos in order to reduce the amount of routing traffic in dense networks; in

Chroboczek & Schinazi Standards Track Page 16



RFC 8966 The Babel Routing Protocol January 2021

particular, they SHOULD be sent less often than Hellos over links with little packet loss. While
IHUs are conceptually unicast, they MAY be sent to a multicast address in order to avoid an ARP
or Neighbour Discovery exchange and to aggregate multiple IHUs into a single packet.

In addition to the periodic IHUs, a node MAY, at any time, send an unscheduled IHU packet. It
MAY also, at any time, decrease its IHU interval, and it MAY increase its IHU interval immediately
before sending an IHU, but SHOULD NOT increase it at any other time. (Equivalently, a node
SHOULD send an extra IHU immediately after increasing its Hello interval.)

Every IHU TLV contains two pieces of data: the link's rxcost (reception cost) from the sender's
perspective, used by the neighbour for computing link costs (Section 3.4.3), and the interval
between periodic IHU packets. A node receiving an IHU sets the value of the txcost (transmission
cost) maintained in the neighbour table to the value contained in the IHU, and resets the IHU
timer associated to this neighbour to a small multiple of the interval value received in the IHU
(see "THU Hold time" in Appendix B for suggested values). When a neighbour's ITHU timer expires,
the neighbour's txcost is set to infinity.

After updating a neighbour's txcost, the receiving node recomputes the neighbour's cost (Section
3.4.3) and runs the route selection procedure (Section 3.6).

3.4.3. Cost Computation

A neighbourship association's link cost is computed from the values maintained in the neighbour
table: the statistics kept in the neighbour table about the reception of Hellos, and the txcost
computed from received IHU packets.

For every neighbour, a Babel node computes a value known as this neighbour's rxcost. This value
is usually derived from the Hello history, which may be combined with other data, such as
statistics maintained by the link layer. The rxcost is sent to a neighbour in each ITHU.

Since nodes do not necessarily send periodic Unicast Hellos but do usually send periodic
Multicast Hellos (Section 3.4.1), a node SHOULD use an algorithm that yields a finite rxcost when
only Multicast Hellos are received, unless interoperability with nodes that only send Multicast
Hellos is not required.

How the txcost and rxcost are combined in order to compute a link's cost is a matter of local
policy; as far as Babel's correctness is concerned, only the following conditions MUST be satisfied:

* the cost is strictly positive;
« if no Hello TLVs of either kind were received recently, then the cost is infinite;
« if the txcost is infinite, then the cost is infinite.

See Appendix A.2 for RECOMMENDED strategies for computing a link's cost.

Chroboczek & Schinazi Standards Track Page 17



RFC 8966 The Babel Routing Protocol January 2021

3.5. Routing Table Maintenance

Conceptually, a Babel update is a quintuple (prefix, plen, router-id, seqno, metric), where (prefix,
plen) is the prefix for which a route is being advertised, router-id is the router-id of the router

originating this update, seqno is a nondecreasing (modulo 216) integer that carries the
originating router seqno, and metric is the announced metric.

Before being accepted, an update is checked against the feasibility condition (Section 3.5.1),
which ensures that the route does not create a routing loop. If the feasibility condition is not
satisfied, the update is either ignored or prevents the route from being selected, as described in
Section 3.5.3. If the feasibility condition is satisfied, then the update cannot possibly cause a
routing loop.

3.5.1. The Feasibility Condition

The feasibility condition is applied to all received updates. The feasibility condition compares the
metric in the received update with the metrics of the updates previously sent by the receiving
node; updates that fail the feasibility condition, and therefore have metrics large enough to cause
arouting loop, are either ignored or prevent the resulting route from being selected.

A feasibility distance is a pair (seqno, metric), where seqno is an integer modulo 216 and metric
is a positive integer. Feasibility distances are compared lexicographically, with the first
component inverted: we say that a distance (seqno, metric) is strictly better than a distance
(seqno’, metric"), written

(seqno, metric) < (seqno', metric')
when
seqno > seqno' or (seqno = seqno’ and metric < metric')

where sequence numbers are compared modulo 216,

Given a source (prefix, plen, router-id), a node's feasibility distance for this source is the
minimum, according to the ordering defined above, of the distances of all the finite updates ever
sent by this particular node for the prefix (prefix, plen) and the given router-id. Feasibility
distances are maintained in the source table, the exact procedure is given in Section 3.7.3.

A received update is feasible when either it is a retraction (its metric is FFFF hexadecimal), or the
advertised distance is strictly better, in the sense defined above, than the feasibility distance for
the corresponding source. More precisely, a route advertisement carrying the quintuple (prefix,
plen, router-id, seqno, metric) is feasible if one of the following conditions holds:

e metric is infinite; or
* no entry exists in the source table indexed by (prefix, plen, router-id); or

Chroboczek & Schinazi Standards Track Page 18



RFC 8966 The Babel Routing Protocol January 2021

* an entry (prefix, plen, router-id, seqno’, metric') exists in the source table, and either

° seqno' < seqno or
° seqno = seqno' and metric < metric'.

Note that the feasibility condition considers the metric advertised by the neighbour, not the
route's metric; hence, a fluctuation in a neighbour's cost cannot render a selected route
unfeasible. Note further that retractions (updates with infinite metric) are always feasible, since
they cannot possibly cause a routing loop.

3.5.2. Metric Computation

A route's metric is computed from the metric advertised by the neighbour and the neighbour's
link cost. Just like cost computation, metric computation is considered a local policy matter; as
far as Babel is concerned, the function M(c, m) used for computing a metric from a locally
computed link cost c and the metric m advertised by a neighbour MUST only satisfy the following
conditions:

« if ¢ is infinite, then M(c, m) is infinite;
* M is strictly monotonic: M(c, m) > m.

Additionally, the metric SHOULD satisfy the following condition:
e M is left-distributive: if m <= m', then M(c, m) <= M(c, m").

While strict monotonicity is essential to the integrity of the network (persistent routing loops
may arise if it is not satisfied), left-distributivity is not: if it is not satisfied, Babel will still
converge to a loop-free configuration, but might not reach a global optimum (in fact, a global
optimum may not even exist).

The conditions above are easily satisfied by using the additive metric, i.e., by defining M(c, m) =
¢ + m. Since the additive metric is useful with a large range of cost computation strategies, it is
the RECOMMENDED default. See also Appendix C, which describes a technique that makes it
possible to tweak the values of individual metrics without running the risk of creating routing
loops.

3.5.3. Route Acquisition

When a Babel node receives an update (prefix, plen, router-id, seqno, metric) from a neighbour
neigh, it checks whether it already has a route table entry indexed by (prefix, plen, neigh).

If no such entry exists:

o if the update is unfeasible, it MAY be ignored;

o if the metric is infinite (the update is a retraction of a route we do not know about), the
update is ignored;

 otherwise, a new entry is created in the route table, indexed by (prefix, plen, neigh), with
source equal to (prefix, plen, router-id), seqno equal to seqno, and an advertised metric
equal to the metric carried by the update.

Chroboczek & Schinazi Standards Track Page 19



RFC 8966 The Babel Routing Protocol January 2021

If such an entry exists:

o if the entry is currently selected, the update is unfeasible, and the router-id of the update is
equal to the router-id of the entry, then the update MAY be ignored;

» otherwise, the entry's sequence number, advertised metric, metric, and router-id are
updated, and if the advertised metric is not infinite, the route's expiry timer is reset to a
small multiple of the interval value included in the update (see "Route Expiry time" in
Appendix B for suggested values). If the update is unfeasible, then the (now unfeasible) entry
MUST be immediately unselected. If the update caused the router-id of the entry to change,
an update (possibly a retraction) MUST be sent in a timely manner as described in Section
3.7.2.

Note that the route table may contain unfeasible routes, either because they were created by an
unfeasible update or due to a metric fluctuation. Such routes are never selected, since they are
not known to be loop-free. Should all the feasible routes become unusable, however, the
unfeasible routes can be made feasible and therefore possible to select by sending requests along
them (see Section 3.8.2).

When a route's expiry timer triggers, the behaviour depends on whether the route's metric is
finite. If the metric is finite, it is set to infinity and the expiry timer is reset. If the metric is
already infinite, the route is flushed from the route table.

After the route table is updated, the route selection procedure (Section 3.6) is run.

3.5.4. Hold Time

When a prefix P is retracted (because all routes are unfeasible or have an infinite metric,
whether due to the expiry timer or for other reasons), and a shorter prefix P' that covers P is
reachable, P' cannot in general be used for routing packets destined to P without running the risk
of creating a routing loop (Section 2.8).

To avoid this issue, whenever a prefix P is retracted, a route table entry with infinite metric is
maintained as described in Section 3.5.3. As long as this entry is maintained, packets destined to
an address within P MUST NOT be forwarded by following a route for a shorter prefix. This entry
is removed as soon as a finite-metric update for prefix P is received and the resulting route
selected. If no such update is forthcoming, the infinite metric entry SHOULD be maintained at
least until it is guaranteed that no neighbour has selected the current node as next hop for prefix
P. This can be achieved by either:

» waiting until the route's expiry timer has expired (Section 3.5.3); or

* sending a retraction with an acknowledgment request (Section 3.3) to every reachable
neighbour that has not explicitly retracted prefix P, and waiting for all acknowledgments.

The former option is simpler and ensures that, at that point, any routes for prefix P pointing at
the current node have expired. However, since the expiry time can be as high as a few minutes,
doing that prevents automatic aggregation by creating spurious black-holes for aggregated
routes. The latter option is RECOMMENDED as it dramatically reduces the time for which a prefix
is unreachable in the presence of aggregated routes.

Chroboczek & Schinazi Standards Track Page 20



RFC 8966 The Babel Routing Protocol January 2021

3.6. Route Selection

Route selection is the process by which a single route for a given prefix is selected to be used for
forwarding packets and to be re-advertised to a node's neighbours.

Babel is designed to allow flexible route selection policies. As far as the algorithm's correctness is
concerned, the route selection policy MUST only satisfy the following properties:

* a route with infinite metric (a retracted route) is never selected;
* an unfeasible route is never selected.

Babel nodes using different route selection strategies will interoperate and will not create
routing loops as long as these two properties hold.

Route selection MUST NOT take seqnos into account: a route MUST NOT be preferred just because
it carries a higher (more recent) seqno. Doing otherwise would cause route oscillation while a
new seqno propagates across the network, and might create persistent black-holes if the metric
being used is not left-distributive (Section 3.5.2).

The obvious route selection strategy is to pick, for every destination, the feasible route with
minimal metric. When all metrics are stable, this approach ensures convergence to a tree of
shortest paths (assuming that the metric is left-distributive, see Section 3.5.2). There are two
reasons, however, why this strategy may lead to instability in the presence of continuously
varying metrics. First, if two parallel routes oscillate around a common value, then the smallest
metric strategy will keep switching between the two. Second, the selection of a route increases
congestion along it, which might increase packet loss, which in turn could cause its metric to
increase; this kind of feedback loop is prone to causing persistent oscillations.

In order to limit these kinds of instabilities, a route selection strategy SHOULD include some form
of hysteresis, i.e., be sensitive to a route's history: the strategy should only switch from the
currently selected route to a different route if the latter has been consistently good for some
period of time. A RECOMMENDED hysteresis algorithm is given in Appendix A.3.

After the route selection procedure is run, triggered updates (Section 3.7.2) and requests (Section
3.8.2) are sent.

3.7. Sending Updates

A Babel speaker advertises to its neighbours its set of selected routes. Normally, this is done by
sending one or more multicast packets containing Update TLVs on all of its connected interfaces;
however, on link technologies where multicast is significantly more expensive than unicast, a
node MAY choose to send multiple copies of updates in unicast packets, especially when the
number of neighbours is small.

Additionally, in order to ensure that any black-holes are reliably cleared in a timely manner, a
Babel node may send retractions (updates with an infinite metric) for any recently retracted
prefixes.

Chroboczek & Schinazi Standards Track Page 21



RFC 8966 The Babel Routing Protocol January 2021

If an update is for a route injected into the Babel domain by the local node (e.g., it carries the
address of a local interface, the prefix of a directly attached network, or a prefix redistributed
from a different routing protocol), the router-id is set to the local node's router-id, the metric is
set to some arbitrary finite value (typically 0), and the seqno is set to the local router's sequence
number.

If an update is for a route learnt from another Babel speaker, the router-id and sequence number
are copied from the route table entry, and the metric is computed as specified in Section 3.5.2.

3.7.1. Periodic Updates

Every Babel speaker MUST advertise each of its selected routes on every interface, at least once
every Update interval. Since Babel doesn't suffer from routing loops (there is no "counting to
infinity") and relies heavily on triggered updates (Section 3.7.2), this full dump only needs to
happen infrequently (see Appendix B for suggested intervals).

3.7.2. Triggered Updates

In addition to periodic routing updates, a Babel speaker sends unscheduled, or triggered, updates
in order to inform its neighbours of a significant change in the network topology.

A change of router-id for the selected route to a given prefix may be indicative of a routing loop
in formation; hence, whenever it changes the selected router-id for a given destination, a node
MUST send an update as an urgent TLV (as defined in Section 3.1). Additionally, it SHOULD make a
reasonable attempt at ensuring that all reachable neighbours receive this update.

There are two strategies for ensuring that. If the number of neighbours is small, then it is
reasonable to send the update together with an acknowledgment request; the update is resent
until all neighbours have acknowledged the packet, up to some number of times. If the number
of neighbours is large, however, requesting acknowledgments from all of them might cause a
non-negligible amount of network traffic; in that case, it may be preferable to simply repeat the
update some reasonable number of times (say, 3 for wireless and 2 for wired links). The number
of copies MUST NOT exceed 5, and the copies SHOULD be separated by a small delay, as described
in Section 3.1.

A route retraction is somewhat less worrying: if the route retraction doesn't reach all neighbours,
a black-hole might be created, which, unlike a routing loop, does not endanger the integrity of
the network. When a route is retracted, a node SHOULD send a triggered update and SHOULD
make a reasonable attempt at ensuring that all neighbours receive this retraction.

Finally, a node MAY send a triggered update when the metric for a given prefix changes in a
significant manner, due to a received update, because a link's cost has changed or because a
different next hop has been selected. A node SHOULD NOT send triggered updates for other
reasons, such as when there is a minor fluctuation in a route's metric, when the selected next
hop changes without inducing a significant change to the route's metric, or to propagate a new
sequence number (except to satisfy a request, as specified in Section 3.8).

Chroboczek & Schinazi Standards Track Page 22



RFC 8966 The Babel Routing Protocol January 2021

3.7.3. Maintaining Feasibility Distances

Before sending an update (prefix, plen, router-id, seqno, metric) with finite metric (i.e., not a
route retraction), a Babel node updates the feasibility distance maintained in the source table.
This is done as follows.

If no entry indexed by (prefix, plen, router-id) exists in the source table, then one is created with
value (prefix, plen, router-id, seqno, metric).

If an entry (prefix, plen, router-id, seqno’, metric') exists, then it is updated as follows:

« if seqno > seqno’, then seqno' := seqno, metric' := metric;
* if seqno = seqno' and metric' > metric, then metric' := metric;
* otherwise, nothing needs to be done.

The garbage-collection timer for the entry is then reset. Note that the feasibility distance is not
updated and the garbage-collection timer is not reset when a retraction (an update with infinite
metric) is sent.

When the garbage-collection timer expires, the entry is removed from the source table.

3.7.4. Split Horizon

When running over a transitive, symmetric link technology, e.g., a point-to-point link or a wired
LAN technology such as Ethernet, a Babel node SHOULD use an optimisation known as split
horizon. When split horizon is used on a given interface, a routing update for prefix P is not sent
on the particular interface over which the selected route towards prefix P was learnt.

Split horizon SHOULD NOT be applied to an interface unless the interface is known to be
symmetric and transitive; in particular, split horizon is not applicable to decentralised wireless
link technologies (e.g., IEEE 802.11 in ad hoc mode) when routing updates are sent over
multicast.

3.8. Explicit Requests

In normal operation, a node's route table is populated by the regular and triggered updates sent
by its neighbours. Under some circumstances, however, a node sends explicit requests in order
to cause a resynchronisation with the source after a mobility event or to prevent a route from
spuriously expiring.

The Babel protocol provides two kinds of explicit requests: route requests, which simply request
an update for a given prefix, and seqno requests, which request an update for a given prefix with
a specific sequence number. The former are never forwarded; the latter are forwarded if they
cannot be satisfied by the receiver.

Chroboczek & Schinazi Standards Track Page 23



RFC 8966 The Babel Routing Protocol January 2021

3.8.1. Handling Requests

Upon receiving a request, a node either forwards the request or sends an update in reply to the
request, as described in the following sections. If this causes an update to be sent, the update is
either sent to a multicast address on the interface on which the request was received, or to the

unicast address of the neighbour that sent the request.

The exact behaviour is different for route requests and seqno requests.

3.8.1.1. Route Requests

When a node receives a route request for a given prefix, it checks its route table for a selected
route to this exact prefix. If such a route exists, it MUST send an update (over unicast or over
multicast); if such a route does not exist, it MUST send a retraction for that prefix.

When a node receives a wildcard route request, it SHOULD send a full route table dump. Full
route dumps SHOULD be rate-limited, especially if they are sent over multicast.

3.8.1.2. Seqno Requests

When a node receives a seqno request for a given router-id and sequence number, it checks
whether its route table contains a selected entry for that prefix. If a selected route for the given
prefix exists and has finite metric, and either the router-ids are different or the router-ids are

equal and the entry's sequence number is no smaller (modulo 216) than the requested sequence
number, the node MUST send an update for the given prefix. If the router-ids match, but the

requested seqno is larger (modulo 216) than the route entry's, the node compares the router-id
against its own router-id. If the router-id is its own, then it increases its sequence number by 1

(modulo 216) and sends an update. A node MUST NOT increase its sequence number by more than
1 in reaction to a single seqno request.

Otherwise, if the requested router-id is not its own, the received node consults the Hop Count
field of the request. If the hop count is 2 or more, and the node is advertising the prefix to its
neighbours, the node selects a neighbour to forward the request to as follows:

« if the node has one or more feasible routes towards the requested prefix with a next hop that
is not the requesting node, then the node MUST forward the request to the next hop of one
such route;

* otherwise, if the node has one or more (not feasible) routes to the requested prefix with a
next hop that is not the requesting node, then the node SHOULD forward the request to the
next hop of one such route.

In order to actually forward the request, the node decrements the hop count and sends the
request in a unicast packet destined to the selected neighbour. The forwarded request SHOULD
be sent as an urgent TLV (as defined in Section 3.1).

Chroboczek & Schinazi Standards Track Page 24



RFC 8966 The Babel Routing Protocol January 2021

A node SHOULD maintain a list of recently forwarded seqno requests and forward the reply (an
update with a seqno sufficiently large to satisfy the request) as an urgent TLV (as defined in
Section 3.1). A node SHOULD compare every incoming seqno request against its list of recently
forwarded seqno requests and avoid forwarding the request if it is redundant (i.e., if the node
has recently sent a request with the same prefix, router-id, and a seqno that is not smaller

modulo 216).

Since the request-forwarding mechanism does not necessarily obey the feasibility condition, it
may get caught in routing loops; hence, requests carry a hop count to limit the time during which
they remain in the network. However, since requests are only ever forwarded as unicast packets,
the initial hop count need not be kept particularly low, and performing an expanding horizon
search is not necessary. A single request MUST NOT be duplicated: it MUST NOT be forwarded to a
multicast address, and it MUST NOT be forwarded to multiple neighbours. However, if a seqno
request is resent by its originator, the subsequent copies may be forwarded to a different
neighbour than the initial one.

3.8.2. Sending Requests

A Babel node MAY send a route or seqno request at any time to a multicast or a unicast address;
there is only one case when originating requests is required (Section 3.8.2.1).

3.8.2.1. Avoiding Starvation

When a route is retracted or expires, a Babel node usually switches to another feasible route for
the same prefix. It may be the case, however, that no such routes are available.

A node that has lost all feasible routes to a given destination but still has unexpired unfeasible
routes to that destination MUST send a seqno request; if it doesn't have any such routes, it MAY
still send a seqno request. The router-id of the request is set to the router-id of the route that it
has just lost, and the requested seqno is the value contained in the source table plus 1. The
request carries a hop count, which is used as a last-resort mechanism to ensure that it eventually
vanishes from the network; it MAY be set to any value that is larger than the diameter of the
network (64 is a suitable default value).

If the node has any (unfeasible) routes to the requested destination, then it MUST send the
request to at least one of the next-hop neighbours that advertised these routes, and SHOULD send
it to all of them; in any case, it MAY send the request to any other neighbours, whether they
advertise a route to the requested destination or not. A simple implementation strategy is
therefore to unconditionally multicast the request over all interfaces.

Similar requests will be sent by other nodes that are affected by the route's loss. If the network is
still connected, and assuming no packet loss, then at least one of these requests will be
forwarded to the source, resulting in a route being advertised with a new sequence number.
(Due to duplicate suppression, only a small number of such requests are expected to actually
reach the source.)

Chroboczek & Schinazi Standards Track Page 25



RFC 8966 The Babel Routing Protocol January 2021

In order to compensate for packet loss, a node SHOULD repeat such a request a small number of
times if no route becomes feasible within a short time (see "Request timeout" in Appendix B for
suggested values). In the presence of heavy packet loss, however, all such requests might be lost;
in that case, the mechanism in the next section will eventually ensure that a new seqno is
received.

3.8.2.2. Dealing with Unfeasible Updates

When a route's metric increases, a node might receive an unfeasible update for a route that it
has currently selected. As specified in Section 3.5.1, the receiving node will either ignore the
update or unselect the route.

In order to keep routes from spuriously expiring because they have become unfeasible, a node
SHOULD send a unicast seqno request when it receives an unfeasible update for a route that is
currently selected. The requested sequence number is computed from the source table as in
Section 3.8.2.1.

Additionally, since metric computation does not necessarily coincide with the delay in
propagating updates, a node might receive an unfeasible update from a currently unselected
neighbour that is preferable to the currently selected route (e.g., because it has a much smaller
metric); in that case, the node SHOULD send a unicast seqno request to the neighbour that
advertised the preferable update.

3.8.2.3. Preventing Routes from Expiring

In normal operation, a route's expiry timer never triggers: since a route's hold time is computed
from an explicit interval included in Update TLVs, a new update (possibly a retraction) should
arrive in time to prevent a route from expiring.

In the presence of packet loss, however, it may be the case that no update is successfully received
for an extended period of time, causing a route to expire. In order to avoid such spurious expiry,
shortly before a selected route expires, a Babel node SHOULD send a unicast route request to the
neighbour that advertised this route; since nodes always send either updates or retractions in
response to non-wildcard route requests (Section 3.8.1.1), this will usually result in the route
being either refreshed or retracted.

4. Protocol Encoding

A Babel packet MUST be sent as the body of a UDP datagram, with network-layer hop count set to
1, destined to a well-known multicast address or to a unicast address, over IPv4 or IPv6; in the
case of IPv6, these addresses are link-local. Both the source and destination UDP port are set to a
well-known port number. A Babel packet MUST be silently ignored unless its source address is
either a link-local IPv6 address or an IPv4 address belonging to the local network, and its source
port is the well-known Babel port. It MAY be silently ignored if its destination address is a global
IPv6 address.

Chroboczek & Schinazi Standards Track Page 26



RFC 8966 The Babel Routing Protocol January 2021

In order to minimise the number of packets being sent while avoiding lower-layer
fragmentation, a Babel node SHOULD maximise the size of the packets it sends, up to the outgoing
interface's MTU adjusted for lower-