Net wor k Wor ki ng Group S. Sun

Request for Comments: 3652 S. Reilly
Cat egory: | nformational L. Lannom
J. Petrone

CNRI

Novenmber 2003

Handl e System Protocol (ver 2.1) Specification
Status of this Meno

This neno provides information for the Internet community. It does
not specify an Internet standard of any kind. Distribution of this
meno i s unlimted.

Copyright Notice
Copyright (C) The Internet Society (2003). Al Rights Reserved.
| ESG Not e

Several groups within the | ETF and | RTF have di scussed the Handl e
Systemand its relationship to existing systens of identifiers. The
| ESG wi shes to point out that these discussions have not resulted in
| ETF consensus on the described Handl e System nor on how it might
fit into the IETF architecture for identifiers. Though there has
been di scussion of handles as a formof URI, specifically as a URN,

t hese docunents describe an alternate view of how nanespaces and
identifiers might work on the Internet and include characterizations
of existing systens which nmay not match the | ETF consensus vi ew.

Abstract

The Handl e Systemis a general - purpose gl obal name service that
al | ows secured nanme resolution and administration over the public
Internet. This docunent describes the protocol used for client
software to access the Handl e System for both handl e resol ution and
adm nistration. The protocol specifies the procedure for a client
software to locate the responsi bl e handl e server of any given handl e.
It al so defines the nmessages exchanged between the client and server
for any handl e operati on.

Sun, et al. I nf or mat i onal [Page 1]

RFC 3652

Handl e System Protocol (v2.1) Novernber 2003

Tabl e of Contents

1.
2.

Sun,

Overvi ew . ..
Pr ot ocol El enents.

2. 1.

2. 2.

2.3.

Conventi ons.

2.1.1. Data Tr ansm ssr on Order

2.1.2. Transport Layer.

2.1.3. Character Case
2.1.4. Standard String Type UTF8- Stri ng.
Common El enment s. . G
2.2.1. Message Envel ope .

2.2.2. Message Header

2.2.3. Message Body .

2.2.4. Message Credenti al

Message Transm ssion .

Handl e Protocol Operations .

3. 1.

abrw

et al.

i ent Bootstrapping . . .
.1.1. dobal Handle Regr stry and |ts Servr ce
I nf or mati on. .
.2. Locating the Handl e Syst em Ser Vi ce Conponent
.3. Selecting the Responsible Server .o
y Operation. .o
1. Query Request
. 2. Successful Query Response
.3. Unsuccessful Query Response
r Response from Server
i ce Referral
nt Aut henticati on.
.1. Challenge from Server to Cl i ent
.2. Chall enge-Response fromdient to Server
. 3. Chal |l enge- Response Verification-Request.
4.
I
1
2
3
4
5
n
.1
. 2.

°°Q

r

D =
SO T NNNOD PR

o <O

Chal | enge- Response Veri ficati on- Response .

d e Administration. . .

Add Handl e Val ue(s)

Renmove Handl e Val ue(s)

Modi fy Handl e Val ue(s)

Create Handl e.
. Delete Handl e. . .
g Authority (NA) Admnlstratlon . .

Li st Handl e(s) under a Nami ng Aut hor| ty

Li st Sub-Nami ng Authorities under a Nam ng

Aut hority.

WRZWRRWWWTWRRWOEM®WWH W

NN3 oo

Session and Session I\/Ianagerrent
3.8.1. Session Setup Request.
3.8.2. Session Setup Response .
3.8.3. Session Key Exchange .
3.8.4. Session Term nation.

o~N~NOOBDMAPAW

I nf or mat i onal [Page 2]

RFC 3652 Handl e System Protocol (v2.1) Novernber 2003

4. Inplenentation Guidelines. 48
4.1. Server |Inplenmentation. 48
4.2. dient Inplenmentation. 49

5. Security Considerations. 49

6. Acknow edgements .. .50

7. Informative References .50

8. Authors’ Addresses 052

9. Full Copyright Staterent b3

1. Overview

The Handl e System provi des a general - pur pose, secured gl obal nane
service for the Internet. It was originally conceived and descri bed
in a paper by Robert Kahn and Robert WIlensky [18] in 1995. The
Handl e System defines a client server protocol in which client
software subnits requests via a network to handl e servers. Each
request describes the operation to be perfornmed on the server. The
server will process the request and return a nmessage indicating the
result of the operation. This docunent specifies the protocol for
client software to access a handl e server for handle resolution and
adm nistration. It does not include the description of the protoco
used to manage handl e servers. A discussion of the managenent
protocol is out of the scope of this docunent and will be nade
available in a separate docunent. The docunent assunes that readers
are famliar with the basic concepts of the Handl e System as

i ntroduced in the "Handl e System Overview' [1], as well as the data
nodel and service definition given in the "Handl e System Nanmespace
and Service Definition" [2].

The Handl e System consists of a set of service conponents as defined
in[2]. Fromthe client’s point of view, the Handle Systemis a

di stributed database for handles. Different handl es under the Handl e
System may be maintained by different handl e servers at different
network | ocations. The Handl e protocol specifies the procedure for a
client to | ocate the responsible handl e server of any given handle.

It al so defines the nmessages exchanged between the client and server
for any handl e operation.

Some key aspects of the Handl e protocol include:
o The Handl e protocol supports both handl e resol ution and
adm nistration. The protocol follows the data and service
nodel defined in [2].

o Aclient may authenticate any server response based on the
server’s digital signature

Sun, et al. I nf or mat i onal [Page 3]

RFC 3652 Handl e System Protocol (v2.1) Novernber 2003

0 A server nay authenticate its client as handl e admini strator
via the Handl e authentication protocol. The Handl e
aut hentication protocol is a challenge-response protocol that
supports both public-key and secret-key based authentication

0 A session nmay be established between the client and server so
that authentication informati on and network resources (e.g.
TCP connection) may be shared anong nultiple operations. A
session key can be established to achieve data integrity and
confidentiality.

0 The protocol can be extended to support new operations.
Controls can be used to extend the existing operations. The
protocol is defined to allow future backward conpatibility.

o Distributed service architecture. Support service referra
anong different service conponents.

0 Handles and their data types are based on the | SO 10646
(Unicode 2.0) character set. UTF-8 [3] is the nandated
encodi ng under the Handl e protocol

The Handl e protocol (version 2.1) specified in this docunent has
changed significantly fromits earlier versions. These changes are
necessary due to changes nmade in the Handl e System data nodel and the
service nodel. Servers that inplenent this protocol may continue to
support earlier versions of the protocol by checking the protoco
version specified in the Message Envel ope (see section 2.2.1).

2. Protocol Elenents
2.1. Conventions

The follow ng conventions are followed by the Handl e protocol to
ensure interoperability anong different inplenentations.

2.1.1. Data Transm ssion O der

The order of transm ssion of data packets follows the network byte
order (also called the Big-Endian [11]). That is, when a data-gram
consists of a group of octets, the order of transm ssion of those
octets follows their natural order fromleft to right and fromtop to
bottom as they are read in English. For exanple, in the follow ng
diagram the octets are transmitted in the order they are nunbered.

Sun, et al. I nf or mat i onal [Page 4]

RFC 3652 Handl e System Protocol (v2.1) Novernber 2003

8 1234567829 é 12345
T
T
| 5 | 6 |

If an octet represents a numeric quantity, the left nost bit is the
nost significant bit. For exanple, the follow ng diagramrepresents
the value 170 (decinal).

01234567

Simlarly, whenever a nulti-octet field represents a nuneric
quantity, the left nost bit is the npost significant bit and the nost
significant octet of the whole field is transmitted first.

2.1.2. Transport Layer

The Handl e protocol is designed so that nessages nay be transnitted
either as separate data-grans over UDP or as a continuous byte stream
via a TCP connection. The recommended port numnber for both UDP and
TCP is 2641.

UDP Usage

Messages carried by UDP are restricted to 512 bytes (not including
the 1P or UDP header). Longer nessages nust be fragnmented into
UDP packets where each packet carries a proper sequence nunber in
t he Message Envel ope (see Section 2.2.1).

The optimumretransm ssion policy will vary dependi ng on the
network or server performance, but the follow ng are reconmended:

o The client should try other servers or service interfaces
before repeating a request to the sane server address.

0 The retransmission interval should be based on prior
statistics if possible. Overly aggressive retransmn ssion
shoul d be avoided to prevent network congestion. The
reconmended retransm ssion interval is 2-5 seconds.

Sun, et al. I nf or mat i onal [Page 5]

RFC 3652 Handl e System Protocol (v2.1) Novernber 2003

0 Wien transnitting large anmounts of data, TCP-friendly
congestion control, such as an interface to the Congestion
Manager [12], should be inpl enmented whenever possible to
avoi d unfair consunption of the bandw dth agai nst TCP- based
applications. Details of the congestion control wll be
di scussed in a separate docunent.

TCP Usage

Messages under the Handl e protocol can be mapped directly into a
TCP byte-stream However, the size of each nessage is linmted by
the range of a 4-byte unsigned integer. Longer nessages nay be
fragmented into nultiple nmessages before the transm ssion and
reassenbl ed at the receiving end.

Several connection managenent policies are recomended:

0 The server shoul d support nultiple connections and shoul d
not bl ock other activities waiting for TCP data.

0 By default, the server should close the connection after
conpl eting the request. However, if the request asks to
keep the connection open, the server should assune that the
client will initiate connection closing

2.1.3. Character Case

Handl es are character strings based on the | SO 10646 character set
and nust be encoded in UTF-8. By default, handle characters are
treated as case-sensitive under the Handle protocol. A handle
service, however, nmay be inplenented in such a way that ASCI
characters are processed case-insensitively. For exanple, the d oba
Handl e Regi stry (CGHR) provides a handl e service where ASCI

characters are processed in a case-insensitive manner. This suggests
that ASCI| characters in any naming authority are case-insensitive

Wien handl es are created under a case-insensitive handle server

their original case should be preserved. To avoid any confusion, the
server should avoid creating any handl e whose character string

mat ches that of an existing handle, ignoring the case difference.

For exanple, if the handle "X/ Y' was already created, the server
shoul d refuse any request to create the handle "x/y" or any of its
case vari ations.

Sun, et al. I nf or mat i onal [Page 6]

RFC 3652 Handl e System Protocol (v2.1) Novernber 2003

2.1.4. Standard String Type: UTF8-String

Handl es are transnitted as UTF8-Strings under the Handl e protocol
Thr oughout this document, UTF8-String stands for the data type that
consists of a 4-byte unsigned integer followed by a character string
in UTF-8 encoding. The |eading integer specifies the nunber of
octets of the character string.

2.2. Commpn El enents

Each nessage exchanged under the system protocol consists of four
sections (see Fig. 2.2). Sone of these sections (e.g., the Message
Body) may be enpty dependi ng on the protocol operation.

The Message Envel ope nust always be present. It has a fixed size of
20 octets. The Message Envel ope does not carry any application | ayer
information and is primarily used to help deliver the nessage.
Content in the Message Envelope is not protected by the digita
signature in the Message Credential.

The Message Header nust always be present as well. It has a fixed
size of 24 octets and holds the common data fields of all nessages
exchanged between client and server. These include the operation
code, the response code, and the control options for each protoco
operation. Content in the Message Header is protected by the digita
signature in the Message Credential.

The Message Body contains data specific to each protocol operation
Its format varies according to the operation code and the response
code in the Message Header. The Message Body nmay be enpty. Content
in the Message Body is protected by the digital signature in the
Message Credential .

The Message Credential provides a nmechanismfor transport security
for any nessage exchanged between the client and server. A non-enpty
Message Credential may contain the digital signature fromthe
originator of the nessage or the one-way Message Authenticati on Code
(MAC) based on a pre-established session key. The Message Credenti al
may be used to authenticate the nessage between the client and
server. It can also be used to check data integrity after its
transm ssi on.

Sun, et al. I nf or mat i onal [Page 7]

RFC 3652 Handl e System Protocol (v2.1) Novernber 2003

Message wrapper for proper nessage
delivery. Not protected by the
digital signature in the Message
Credenti al .

Conmon data fields for all handle
operations.

Specific data fields for each
request/response.

Contains digital signature or
nmessage aut hentication code (MAC)
upon Message Header and Message
Body.

Fig 2.2: Message format under the Handl e protoco

2.2.1. Message Envel ope

Each nessage begins with a Message Envel ope under the Handl e
protocol. |If a nessage has to be truncated before its transm ssion
each truncated portion nust also begin with a Message Envel ope.

The Message Envel ope allows the reassenbly of the nessage at the
receiving end. It has a fixed size of 20 octets and consi sts of

seven fi el ds:

8 12345673829 é 12345673829 g 12345673829 g 1
Ciorversion | Mnorversion 1 eesngeriag T |
| sessiomd T I
T et 4TI |
| Sequencetumber T |

Sun, et al.

I nf or mat i onal [Page 8]

RFC 3652 Handl e System Protocol (v2.1) Novernber 2003

2.2.1.1. <MjorVersion> and <M nor Ver si on>

The <Maj or Versi on> and <M nor Version> are used to identify the
versi on of the Handle protocol. Each of themis defined as a one-
byte unsigned integer. This specification defines the protoco
versi on whose <MajorVersion> is 2 and <M norVersion> is 1

<Mpj or Ver si on> and <M nor Versi on> are designed to allow future
backward conpatibility. A difference in <MajorVersion> indicates
maj or variation in the protocol format and the party with the | ower
<Mpj orVersion> will have to upgrade its software to ensure precise
comuni cation. An increment in <M norVersion> is nade when
additional capabilities are added to the protocol w thout any ngjor
change to the nessage fornat.

2.2.1.2. <MessageFl ag>

The <MessageFl ag> consists of two octets defined as foll ows:

Bit 0 is the CP (ConPressed) flag that indicates whether the nessage
(excluding the Message Envelope) is conpressed. |If the CP bit is set
(to 1), the nessage is conpressed. Oherwi se, the nessage is not
compressed. The Handl e protocol uses the same conpression nethod as
used by the FTP protocol[8].

Bit 1 is the EC (EnCrypted) flag that indicates whether the nessage
(excl uding the Message Envel ope) is encrypted. The EC bit shoul d
only be set under an established session where a session key is in
place. If the EC bit is set (to 1), the nessage is encrypted using
the session key. Oherwi se the nessage is not encrypted.

Bit 2 is the TC (TrunCated) flag that indicates whether this is a
truncat ed nmessage. Message truncati on happens nost often when
transmitting a | arge nessage over the UDP protocol. Details of
message truncation (or fragnmentation) will be discussed in section
2. 3.

Bits 3 to 15 are currently reserved and nmust be set to zero.

Sun, et al. I nf or mat i onal [Page 9]

RFC 3652 Handl e System Protocol (v2.1) Novernber 2003

2.2.1.3. <Sessionld>

The <Sessionld> is a four-byte unsigned integer that identifies a
conmuni cati on session between the client and server.

Session and its <Sessionld> are assigned by a server, either upon an
explicit request froma client or when nmultiple nessage exchanges are
expected to fulfill the client’s request. For exanple, the server
wi Il assign a unique <Sessionld> in its response if it has to
authenticate the client. A client may explicitly ask the server to
set up a session as a virtually private comunication channel I|ike
SSL [4]. Requests fromclients without an established session nust
have their <Sessionld> set to zero. The server nust assign a uni que

non-zero <Sessionld> for each new session. It is also responsible
for term nating those sessions that are not in use after some period
of tinme.

Both clients and servers nust nmintain the sane <Sessionld> for
messages exchanged under an established session. A nessage whose
<Sessionld> is zero indicates that no session has been established.

The session and its state information may be shared anong nultiple
handl e operations. They may al so be shared over nultiple TCP
connections as well. Once a session is established, both client and
server nust naintain their state information according to the
<Sessionld> The state information may include the stage of the
conversation, the other party' s authentication information, and the
session key that was established for nmessage encryption or

aut hentication. Details of these are discussed in section 3.8.

2.2.1.4. <Requestld>

Each request froma client is identified by a <Requestld>, a 4-byte
unsi gned integer set by the client. Each <Requestld> nust be uni que
fromall other outstanding requests fromthe sanme client. The
<Requestld> allows the client to keep track of its requests, and any
response fromthe server nust include the correct <Requestld>.

2.2.1.5. <SequenceNunber >

Messages under the Handl e protocol may be truncated during their
transmission (e.g., under UDP). The <SequenceNunber> is a 4-byte
unsi gned i nteger used as a counter to keep track of each truncated
portion of the original nessage. The nessage recipient can
reassenbl e the original nessage based on the <SequenceNunber>. The
<SequenceNunmber > nust start with O for each nmessage. Each truncated
message must set its TC flag in the Message Envel ope. Messages that
are not truncated nust set their <SequenceNunber> to zero.

Sun, et al. I nf or mat i onal [Page 10]

RFC 3652 Handl e System Protocol (v2.1) Novernber 2003

2.2.1.6. <MessagelLen>

A 4-byte unsigned integer that specifies the total nunber of octets
of any nmessage, excluding those in the Message Envelope. The length
of any single nessage exchanged under the Handle protocol is limted
by the range of a 4-byte unsigned integer. Longer data can be
transmitted as nultiple nessages with a comon <Request| d>

2.2.2. Message Header

The Message Header contains the conmon data el enents anong any

protocol operation. It has a fixed size of 24 octets and consists of
eight fields.
0 1 2 3
01234567890123456789012345678901
| OpCode |
R R SRR EEEEEEEEEEEEEEEEEE |
ResponseCode
I OpFl ag I
Si t el nf oSeri al Nunber

Every message that is not truncated nust have a Message Header. |If a
nmessage has to be truncated for its transni ssion, the Message Header
nmust appear in the first truncated portion of the nessage.

This is different fromthe Message Envel ope, which appears in each
truncated portion of the nessage.

2.2.2.1. <OCode>

The <OpCode> stands for operation code, which is a four-byte unsigned
i nteger that specifies the intended operation. The follow ng table
lists the <OpCode>s that MJST be supported by all inplenmentations in
order to conformto the base protocol specification. Each operation
code is given a synbolic nane that is used throughout this docunent
for easy reference.

Sun, et al. I nf or mat i onal [Page 11]

RFC 3652 Handl e System Protocol (v2.1) Novernber 2003

Op_Code Synbol i ¢ Name Remar k
0 OC_RESERVED Reserved
1 OC_RESOLUTI ON Handl e query
2 OC_CET_SI TEI NFO Get HS_SI TE val ues
100 OC_CREATE_HANDLE Create new handl e
101 OC_DELETE_HANDLE Del ete existing handl e
102 OC_ADD VALUE Add handl e val ue(s)
103 OC_REMOVE_VALUE Remove handl e val ue(s)
104 OC_MODI FY_VALUE Modi fy handl e val ue(s)
105 OC LI ST_HANDLE Li st handl es
106 OC LI ST_NA Li st sub-naming authorities
200 OC_CHALLENGE_RESPONSE Response to chal |l enge
201 OC_VERI FY_RESPONSE Verify chal | enge response
300
: { Reserved for handl e server adninistration }
399
400 OC_SESSI ON_SETUP Session setup request
401 OC _SESSI ON_TERM NATE Session term nation request
402 OC_SESSI ON_EXCHANGEKEY Session key exchange

A detail ed description of each of these <OpCode>s can be found in
section 3 of this docunent. |In general, clients use the <OpCode> to
tell the server what kind of handle operation they want to
acconplish. Response fromthe server nust maintain the same <QpCode>
as the original request and use the <ResponseCode> to indicate the
result.

2.2.2.2. <ResponseCode>

The <ResponseCode> is a 4-byte unsigned integer that is given by a
server to indicate the result of any service request. The list of
<ResponseCode>s used in the Handl e protocol is defined in the
following table. Each response code is given a synbolic name that is
used t hroughout this docunent for easy reference.

Sun, et al. I nf or mat i onal [Page 12]

RFC 3652

Sun,

100
101
102

200
201
202

300
301
302
303

400
401
402
403
404
405
406

500
501
502
503
504

900
901

902

et al.

Handl e System Prot oco

Synbol i ¢ Name

RC_RESERVED
RC_SUCCESS
RC_ERRCR
RC_SERVER B

usy

RC_PROTOCOL_ERROR

RC_OPERATI ON_DENI ED

RC_RECUR LI

M T_EXCEEDED

RC_HANDLE_NOT_FOUND

RC_HANDLE_Al
RC_ | NVALI D_

L READY_EXI ST
HANDL E

RC_VALUE_NOT_FOUND

RC_VALUE_AL

READY_EXI ST

RC_VALUE_| NVALI D

RC_EXPI RED_SI TE_| NFO
RC_SERVER NOT_RESP

RC_SERVI CE_

REFERRAL

RC_NA DELEGATE

RC_NOT_AUTHORI ZED
RC_ACCESS_DENI ED

RC_AUTHEN_N

EEDED

RC_AUTHEN_FAI LED
RC_| NVALI D_CREDENTI AL

RC_AUTHEN T

| MEQUT

RC_UNABLE_TO_AUTHEN

RC_SESSI ON_TI MEQUT

RC_SESSI ON_FAI LED
RC_NO_SESSI ON_KEY
RC_SESSI ON_NO_SUPPORT
RC_SESSI ON_KEY_| NVALI D
RC_TRYI NG

RC_FORWARDED

RC_QUEUED

I nf or mat i ona

(v2.1) Novernber 2003

Reserved for request
Success response

General error

Server too busy to respond
Corrupted or

unr ecogni zabl e nessage
Unsupported operation

Too many recursions for

t he request

Handl e not found
Handl e al ready exists
Encodi ng (or syntax) error

Val ue not found
Val ue al ready exists
I nvalid handl e val ue

SI TE I NFO out of date
Server not responsible
Server referra

Nam ng authority del egation
t akes pl ace.

Not aut horized/ permtted
No access to data

Aut henti cation required
Fail ed to authenticate
Invalid credenti al

Aut hentication tinmed out
Unabl e to authenticate

Sessi on expired

Unabl e to establish session
No session yet available
Sessi on not supported

I nvalid session key

Request under processing
Request forwarded to
anot her server

Request queued for |ater
processi ng

[Page 13]

RFC 3652 Handl e System Protocol (v2.1) Novernber 2003

Response codes under 10000 are reserved for systemuse. Any nessage
with a response code under 10000 but not |isted above should be
treated as an unknown error. Response codes above 10000 are user
defined and can be used for application specific purposes.

Detai |l ed descriptions of these <ResponseCode>s can be found in
section 3 of this docunent. |n general, any request froma client
must have its <ResponseCode> set to 0. The response nessage fromthe
server nust have a non-zero <ResponseCode> to indicate the result.

For exanple, a response nessage froma server with <ResponseCode> set
to RC_SUCCESS i ndicates that the server has successfully fulfilled
the client’s request.

2.2.2.3. <OpFl ag>
The <OpFlag> is a 32-bit bit-mask that defines various contro

options for protocol operation. The follow ng figure shows the
| ocation of each option flag in the <QpFlag> field.

iAT | CT | ENC| REC| CA |CN | KC | PO | RD | Reserved
___ |
| Reser ved

AT - AuThoritative bit. A request with the AT bit set (to 1)

i ndi cates that the request should be directed to the
primary service site (instead of any mirroring sites). A
response nessage with the AT bit set (to 1) indicates
that the nessage is returned froma primary server
(within the prinmary service site)

CT - CerTified bit. A request with the CT bit set (to 1) asks
the server to sign its response with its digita
signature. A response with the CT bit set (to 1)

i ndi cates that the nessage is signed. The server nust
sign its response if the request has its CT bit set (to
1). If the server fails to provide a valid signature in
its response, the client should discard the response and
treat the request as failed.

ENC - ENCryption bit. A request with the ENC bit set (to 1)

requires the server to encrypt its response using the
pre-established session key.

Sun, et al. I nf or mat i onal [Page 14]

RFC 3652

Sun,

REC

KC

PO

RD

et al.

Handl e System Protocol (v2.1) Novernber 2003

RECursive bit. A request with the REC bit set (to 1)
asks the server to forward the query on behalf of the
client if the request has to be processed by another
handl e server. The server may honor the request by
forwardi ng the request to the appropriate handl e server
and passing on any result back to the client. The server
may al so deny any such request by sending a response
wit h <ResponseCode> set to RC_SERVER _NOT_RESP.

Cache Authentication. A request with the CA bit set (to
1) asks the caching server (if any) to authenticate any

server response (e.g., verifying the server’s signature)
on behalf of the client. A response with the CA bit set
(to 1) indicates that the response has been

aut henti cated by the caching server.

Conti Nuous bit. A nessage with the CN bit set (to 1)
tells the nessage recipient that nore nessages that are
part of the sane request (or response) will follow This
happens if a request (or response) has data that is too
large to fit into any single nmessage and has to be
fragmented into nultiple nessages.

Keep Connection bit. A nessage with the KC bit set
requires the nessage recipient to keep the TCP
connection open (after the response is sent back). This
all ows the same TCP connection to be used for nultiple
handl e operati ons.

Public Only bit. Used by query operations only. A query
request with the PO bit set (to 1) indicates that the
client is only asking for handl e val ues that have the
PUB_READ permnission. A request with PO bit set to zero
asks for all the handl e val ues regardl ess of their read
perm ssion. |If any of the handle values require

ADM N _READ perni ssion, the server nust authenticate the
client as the handl e adninistrator.

Request-Digest bit. A request with the RD bit set (to 1)
asks the server to include in its response the nmessage

di gest of the request. A response nessage with the RD
bit set (to 1) indicates that the first field in the
Message Body contains the nessage digest of the origina
request. The nessage digest can be used to check the
integrity of the server response. Details of these are
di scussed later in this docunent.

I nf or mat i onal [Page 15]

RFC 3652 Handl e System Protocol (v2.1) Novernber 2003

Al'l other bits in the <OpFlag> field are reserved and nust be set to
zero.

In general, servers nust honor the <OpFl ag> specified in the request.
If a requested option cannot be met, the server should return an
error nessage with the proper <ResponseCode> as defined in the

previ ous section.

2.2.2.4. <SitelnfoSerial Nunber >

The <SitelnfoSerial Number> is a two-byte unsigned integer. The
<Sitel nfoSerial Nunber> in a request refers to the <Seri al Nunber > of
the HS SITE val ue used by the client (to access the server). Servers
can check the <SitelnfoSerial Nunber> in the request to find out if
the client has up-to-date service information

When possible, the server should fulfill a client’s request even if
the service information used by the client is out-of-date. However,
the response nessage shoul d specify the | atest version of service
information in the <SitelnforSerial Nunmber> field. dients with out-
of -date service informati on can update the service information from
the G obal Handle Registry. |If the server cannot fulfill a client’s
request due to expired service information, it should reject the
request and return an error nessage with <ResponseCode> set to
RC_EXPI RED_SI TE_I NFO

2.2.2.5. <RecursionCount >

The <RecursionCount> is a one-byte unsigned integer that specifies

t he nunber of service recursions. Service recursion happens if the
server has to forward the client’s request to another server. Any
request directly fromthe client nmust have its <Recursi onCount> set
to 0. |If the server has to send a recursive request on behal f of the
client, it must increnment the <RecursionCount> by 1. Any response
fromthe server nust maintain the same <RecursionCount> as the one in
the request. To prevent an infinite | oop of service recursion, the
server should be configurable to stop sending a recursive request
when the <RecursionCount> reaches a certain val ue.

2.2.2.6. <ExpirationTi me>
The <ExpirationTinme> is a 4-byte unsigned integer that specifies the
ti me when the nessage should be considered expired, relative to

January 1st, 1970 GMI, in seconds. It is set to zero if no
expiration is expected.

Sun, et al. I nf or mat i onal [Page 16]

RFC 3652 Handl e System Protocol (v2.1) Novernber 2003

2.2.2.7. <BodyLengt h>

The <BodyLength> is a 4-byte unsigned integer that specifies the
number of octets in the Message Body. The <BodylLengt h> does not
count the octets in the Message Header or those in the Message
Credenti al .

2.2.3. Message Body

The Message Body al ways foll ows the Message Header. The nunber of
octets in the Message Body can be determined fromthe <BodyLength> in
the Message Header. The Message Body nmay be enpty. The exact fornat
of the Message Body depends on the <OpCode> and the <ResponseCode> in
the Message Header. Details of the Message Body under each <OpCode>
and <ResponseCode> are described in section 3 of this docunent.

For any response nessage, if the Message Header has its RD bit (in
<pFl ag>) set to 1, the Message Body nust begin with the nessage
di gest of the original request. The nessage digest is defined as

fol | ows:
<Request Di gest> ::= <DigestAl gorithm dentifier>
<MessageDi gest >
wher e

<Di gest Al gorithm dentifier>

An octet that identifies the algorithmused to generate the
message digest. |If the octet is set to 1, the digest is
generated using the WMD5 [9] algorithm |If the octet is set
to 2, SHA-1 [10] algorithmis used.

<MessageDi gest >

The message digest itself. It is calculated upon the
Message Header and the Message Body of the original request.
The length of the field is fixed according to the digest
algorithm For MD5 algorithm the length is 16 octets. For
SHA-1, the length is 20 octets.

The Message Body may be truncated into nultiple portions during its
transm ssion (e.g., over UDP). Recipients of such a nessage may
reassenbl e the Message Body from each portion based on the
<SequenceNunber> in the Message Envel ope.

Sun, et al. I nf or mat i onal [Page 17]

RFC 3652 Handl e System Protocol (v2.1)

2.2.4. Message Credenti al

Novenmber 2003

The Message Credential is primarily used to carry any digital
signatures signed by the nessage issuer. It may also carry the
Message Authentication Code (MAC) if a session key has been

est abl i shed.

The Message Credential is used to protect contents in

the Message Header and the Message Body from being tanpered with
during transmni ssion.

designed to be senmantically conpatible with PKCS#7 [5].

Credential consists of the follow ng fields:

0

The format of the Message Credential is
Each Message

1 2 3

01234567890123456789012345678901

| Si gner: <Handl e, |ndex>

Si gnedl nfo: <Length> : 4-byte unsigned integer

Si gnedDat a: <Lengt h, Signature>

|
| Di gest Al gorithm <UTF8-String>
|
|

wher e

Sun,

<Cr edenti al Lengt h>

A 4-byte unsigned integer that specifies the nunber of octets in

the Message Credenti al .

It nust be set to zero if the nessage has

no Message Credenti al .

<Ver si on>

An octet that identifies the version nunber of the Message
Credential. The version nunber specified in this docunent is
zero.

<Reserved>
An octet that nust

<Opti ons>

be set to zero.

Two octets reserved for various cryptography options.

et al.

I nf or mat i onal [Page 18]

RFC 3652 Handl e System Protocol (v2.1) Novernber 2003

Sun,

<Si gner> : .= <HANDLE>

<| NDEX>
A reference to a handle value in terms of the <HANDLE> and the
<I NDEX> of the handl e value. The handle value may contain the
public key, or the X. 509 certificate, that can be used to
validate the digital signature.

<Type>

A UTF8-String that indicates the type of content in the

<Si gnedinfo> field (described below). It may contain HS DI GEST i f
<Si gnedl nfo> contai ns the nessage digest, or HS MAC i f

<Si gnedl nf o> contai ns the Message Authentication Code (MAC). The
<Type> field will specify the signature algorithmidentifier if
<Si gnedlinfo> contains a digital signature. For exanple, with the
<Type> field set to HS_SI GNED_PSS, the <Signedinfo> field wll
contain the digital signature generated using the RSA-PSS
algorithm[16]. |If the <Type> field is set to HS SIGNED, the
<Signedinfo> field will contain the digital signature generated
froma DSA public key pair.

<Si gnedlnfo> ::= <Length>
<Di gest Al gori t hne
<Si gnedDat a>
wher e

<Lengt h>
A 4-byte unsigned integer that specifies the nunber of
octets in the <Signedl nfo> field.

<Di gest Al gori t hn

A UTF8-String that refers to the digest algorithmused to
generate the digital signature. For exanple, the value
"SHA-1" indicates that the SHA-1 algorithmis used to
generate the nmessage digest for the signature.

<Si gnedDat a> ::= <LENGTH>
<SI GNATURE>
wher e
<LENGTH>

A 4-byte unsigned integer that specifies the nunber of
octets in the <SI GNATURE>.

<S| GNATURE>

Contains the digital signature or the MAC over the
Message Header and Message Body. The syntax and
semantics of the signature depend on the <Type> field

et al. I nf or mat i onal [Page 19]

RFC 3652 Handl e System Protocol (v2.1) Novernber 2003

and the public key referenced in the <Signer> field.
For exanple, if the <Type> field is "HS SI GNED' and
the public key referred to by the <Signer> field is

a DSA [6] public key, the signature will be the

ASN. 1 octet string representation of the paraneter R
and S as described in [7]. |If the <Signer> field
refers to a handle value that contains a X 509
certificate, the signature should be encoded according
to RFC 3279 and RFC 3280 [14, 15].

The Message Credential may contain the nmessage authentication code
(MAC) generated using a pre-established session key. In this case,
the <Signer> field nust set its <HANDLE> to a zero-length UTF8-String
and its <INDEX> to the <Sessionld> specified in the Message Envel ope.
The <Signature> field nust contain the MACin its <SI GNATURE> fi el d.
The MAC is the result of the one-way hash over the concatenation of
the session key, the <Message Header>, the <MessageBody>, and the
session key agai n.

The Message Credential in a response nessage nay contain the digita
signature signed by the server. The server’s public key can be found
in the service information used by the client to send the request to
the server. |In this case, the client should ignore any reference in
the <Signer> field and use the public key in the service information
to verify the signature.

The Message Credential can al so be used for non-repudiation purposes.
This happens if the Message Credential contains a server’'s digita
signature. The signature nmay be used as evidence to denonstrate that
the server has rendered its service in response to a client’s
request.

The Message Credential provides a nechanismfor safe transnission of
any nessage between the client and server. Any nessage whose Message
Header and Message Body conplies with its Message Credential suggests
that the nmessage indeed conmes fromits originator and assures that
the message has not been tanpered with during its transm ssion

2.3. Message Transm ssion

A large nessage may be truncated into multiple packets during its
transm ssion. For exanple, to fit the size limt of a UDP packet,
the nmessage issuer nust truncate any |arge nessage into nultiple UDP
packets before its transnission. The nessage recipient nust
reassenbl e the nessage fromthese truncated packets before further
processi ng. Message truncation nust be carried out over the entire

Sun, et al. I nf or mat i onal [Page 20]

RFC 3652 Handl e System Protocol (v2.1) Novernber 2003

nmessage except the Message Envel ope. A new Message Envel ope has to
be inserted in front of each truncated packet before its
transm ssion. For exanple, a large nessage that consists of

| Message Envel ope | Message Header, Body, Credenti al |

Message Envelope 1	Truncated_Packet 1
Message Envelope 2	Truncated_Packet 2
Message Envelope N	Truncated Packet N
where the "Truncated packet 1", "Truncated_packet 2", ..., and

"Truncat ed_packet N' result fromtruncating the Message Header, the
Message Body and the Message Credential. Each "Message Envel ope i"
(inserted before each truncation) nmust set its TC flag to 1 and

mai ntai n the proper sequence count (in the <SequenceNunmber>). Each
"Message Envelope i" nust also set its <MessagelLength> to reflect the
size of the packet. The recipient of these truncated packets can
reassenbl e the nessage by concatenating these packets based on their
<SequenceNumber >,

3. Handl e Protocol Operations
This section describes the details of each protocol operation in
terns of nmessages exchanged between the client and server. It also
defines the format of the Message Body according to each <OpCode> and
<ResponseCode> in the Message Header.

3.1. dient Bootstrapping

3.1.1. dobal Handle Registry and its Service Information
The service information for the A obal Handl e Registry (GHR) all ows
clients to contact the GHR to find out the responsible service

components for their handles. The service information is a set of
HS SI TE val ues assigned to the root handle "0.NA/0.NA" and is al so

Sun, et al. I nf or mat i onal [Page 21]

RFC 3652 Handl e System Protocol (v2.1) Novernber 2003

called the root service information. The root service information
may be distributed along with the client software, or be downl oaded
fromthe Handl e System website at http://ww. handl e. net.

Changes to the root service information are identified by the

<Serial Nunber> in the HS SITE values. A server at GHR can find out
if the root service information used by the client is outdated by
checking the <Serial Nunber> in the client’s request. The client
shoul d update the root service information if the <ResponseCode> of
the response nmessage is RC EXPIRED SITE INFO dients may obtain the
nost up-to-date root service information fromthe root handle. The
GHR nust sign the root service information using the public key
specified in the outdated service infornmation (identified in the
client’s request) so that the client can validate the signature.

3.1.2. Locating the Handl e System Servi ce Conmponent

Each handl e under the Handl e Systemis nmanaged by a uni que handl e
service conponent (e.g., LHS). For any given handle, the responsible
servi ce conponent (and its service information) can be found fromits
nam ng authority handle. Before resolving any given handle, the
client needs to find the responsi bl e service conmponent by querying
the nanming authority handle fromthe GHR

For exanple, to find the responsible LHS for the handl e "1000/abc"
client software can query the GHR for the HS SITE (or HS SERV) val ues
assigned to the naming authority handl e "0. NA/1000". The set of

HS SI TE val ues provides the service information of the LHS that
manages every handl e under the nam ng authority "1000". If no

HS SI TE val ues are found, the client can check if there is any

HS SERV val ue assigned to the naming authority handle. The HS SERV
val ue provides the service handle that maintains the service
information for the LHS. Service handl es are used to nanage the
service information shared by different naming authorities.

It is possible that the nami ng authority handl e requested by the
client does not reside at the GHR Thi s happens when nami ng
authority del egation takes place. Naming authority del egation
happens when a naning authority del egates an LHS to manage all its
child naming authorities. |In this case, the del egati ng nam ng

aut hority must contain the service information, a set of

HS NA DELEGATE val ues, of the LHS that manages its child nani ng
authorities.

Al'l top-level nam ng authority handl es nust be registered and managed
by the GHR. Wen a server at the GHR receives a request for a naning
authority that has been delegated to an LHS, it nust return a message
with the <ResponseCode> set to RC_NA DELEGATE, along with the

Sun, et al. I nf or mat i onal [Page 22]

RFC 3652 Handl e System Protocol (v2.1) Novernber 2003

HS NA DELAGATE val ues fromthe nearest ancestor nami ng authority.

The client can query the LHS described by the HS NA DELAGATE val ues
for the del egated naming authority handle. |In practice, the ancestor
nam ng authority should make itself available to any handl e server
within the GHR, by replicating itself at the tine of del egation

This will prevent any cross-queries anong handl e servers (within a
service site) when the naning authority in query and the ancestor
nam ng authority do not hash into the same handl e server

3.1.3. Selecting the Responsible Server

Each handl e service conponent is defined in terns of a set of HS SITE
val ues. Each of these HS SITE val ues defines a service site within
the service conponent. A service site may consist of a group of
handl e servers. For any given handle, the responsible handle server
wi thin the service conponent can be found followi ng this procedure:

1. Select a preferred service site.

Each service site is defined in terms of an HS SITE value. The
HS SI TE val ue may contain a <Description> or other attributes
(under the <AttributelList>) to help the selection. Cients
must select the primary service site for any admnistrative
operations.

2. Locate the responsible server within the service site.

This can be done as follows: Convert every ASCI| character in
the handle to its upper case. Calculate the MD5 hash of the
converted handl e string according to the <HashOption> given in
the HS SITE value. Take the last 4 bytes of the hash result as
a signed integer. Mdulo the absolute value of the integer by
the <Nuntf Server> given in the HS_SITE value. The result is

t he sequence nunber of the <ServerRecord> listed in the HS SITE
value. For exanple, if the result of the nodulation is 2, the
third <ServerRecord> listed in the <HS SI TE> shoul d be

sel ected. The <ServerRecord> defines the responsible handl e
server for the given handle.

3.2. Query Operation
A query operation consists of a client sending a query request to the
responsi bl e handl e server and the server returning the query result

to the client. Query requests are used to retrieve handl e val ues
assigned to any given handl e.

Sun, et al. I nf or mat i onal [Page 23]

RFC 3652 Handl e System Protocol (v2.1) Novernber 2003

3.2.1. Query Request

The Message Header of any query request nust set its <CpCode> to
OC RESOLUTI ON (defined in section 2.2.2.1) and <ResponseCode> to O.

The Message Body for any query request is defined as foll ows:

<Message Body of Query Request> ::.= <Handl e>
<I ndexLi st >
<TypelLi st >
wher e
<Handl e>

A UTF8-String (as defined in section 2.1.4) that specifies
the handl e to be resol ved.

<l ndexLi st >

A 4-byte unsigned integer followed by an array of 4-byte
unsigned integers. The first integer indicates the number
of integers in the integer array. Each nunber in the
integer array is a handle value index and refers to a handl e
value to be retrieved. The client sets the first integer to
zero (followed by an enpty array) to ask for all the handle
val ues regardl ess of their index.

<Typeli st >

A 4-byte unsigned integer followed by a |ist of UTF8-
Strings. The first integer indicates the nunber of
UTF8-Strings in the list that follows. Each UTF8-String in
the list specifies a data type. This tells the server to
return all handl e val ues whose data type is listed in the
list. If a UTF8-String ends with the '.’ (0x2E) character
the server nust return all handl e val ues whose data type is
under the type hierarchy specified in the UTF8-String. The
<TypelLi st> may contain no UTF8-String if the first integer
is 0. In this case, the server nust return all handle

val ues regardl ess of their data type.

If a query request does not specify any index or data type and the PO
flag (in the Message Header) is set, the server will return all the
handl e val ues that have the PUBLI C READ permission. dients can also

send queries without the PO flag set. |In this case, the server wll
return all the handl e values with PUBLI C READ pernission and all the
handl e val ues with ADM N _READ perm ssion. |f the query requests a

speci fic handl e value via the value index and the val ue does not have
PUBLI C_READ perm ssion, the server should accept the request (and
authenticate the client) even if the request has its PO flag set.

Sun, et al. I nf or mat i onal [Page 24]

RFC 3652 Handl e System Protocol (v2.1) Novernber 2003

If a query consists of a non-enpty <IndexList> but an enpty

<TypelLi st>, the server should only return those handl e val ues whose

i ndexes are listed in the <lIndexList> Likewise, if a query consists
of a non-enpty <TypeList> but an enpty <IndexList> the server should
only return those handl e val ues whose data types are listed in the
<TypelLi st >.

Wien bot h <l ndexLi st> and <TypelList> fields are non-enpty, the server
shoul d return all handl e val ues whose indexes are listed in the

<I ndexLi st> AND all handl e val ues whose data types are listed in the
<TypelLi st >.

3.2.2. Successful Query Response
The Message Header of any query response nmust set its <CpCode> to
OC RESOLUTI ON. A successful query response must set its
<ResponseCode> t 0 RC_SUCCESS

The message body of the successful query response is defined as

fol | ows:
<Message Body of Successful Query Response> ::= [<Request D gest >]
<Hand| e>
<Val uelLi st >
wher e

<Request Di gest >
Optional field as defined in section 2.2.3.

<Handl| e>
A UTF8-String that specifies the handle queried by the
client.

<Val ueli st >

A 4-byte unsigned integer followed by a |ist of handle

val ues. The integer specifies the nunber of handl e val ues
inthe list. The encoding of each handle value follows the
specification given in [2] (see section 3.1). The integer
is set to zero if there is no handl e value that satisfies

t he query.

Sun, et al. I nf or mat i onal [Page 25]

RFC 3652 Handl e System Protocol (v2.1) Novernber 2003

3.2.3. Unsuccessful Query Response

If a server cannot fulfill a client’s request, it must return an
error nessage. The general format for any error nmessage fromthe
server is specified in section 3.3 of this docunent.

For exanple, a server nust return an error nessage if the queried
handl e does not exist in its database. The error nmessage will have
an enpty nessage body and have its <ResponseCode> set to
RC_HANDLE_NOT_FOUND.

Note that a server should NOT return an RC HANDLE NOT_FOUND nessage
if the server is not responsible for the handl e being queried. It is
possi bl e that the queried handl e exists but is nanaged by anot her
handl e server (under sone other handle service). Wen this happens,
the server should either send a service referral (see section 3.4) or
simply return an error message with <ResponseCode> set to
RC_SERVER_NOT_RESP.

The server may return an error nessage with <ResponseCode> set to

RC _SERVER BUSY if the server is too busy to process the request.

Li ke RC_HANDLE NOT_FOUND, an RC_SERVER BUSY nessage al so has an enpty
nmessage body.

Servers should return an RC_ACCESS DEN ED nessage if the request asks
for a specific handle value (via the handl e val ue i ndex) that has
nei t her PUBLI C_READ nor ADM N_READ per ni ssi on.

A handl e Server may ask its client to authenticate itself as the
handl e admi ni strator during the resolution. This happens if any
handl e val ue in query has ADM N _READ permi ssion, but no PUBLI C_ READ
permi ssion. Details of client authentication are described later in
thi s docunent.

3.3. FError Response from Server

A handl e server will return an error nessage if it encounters an
error when processing a request. Any error response fromthe server
must maintain the sane <pCode> (in the nessage header) as the one in
the original request. Each error condition is identified by a unique
<ResponseCode> as defined in section 2.2.2.2 of this document.

Sun, et al. I nf or mat i onal [Page 26]

RFC 3652 Handl e System Protocol (v2.1) Novernber 2003

The Message Body of an error nessage nay be enpty. Qherwise it
consists of the following data fields (unless otherw se specified):

<Message Body of Error Response from Server> ::= [<Request Di gest >]
<Error Message>
[<l ndexList>]

wher e

<Request Di gest >
Optional field as defined in section 2.2.3.

<Error Message>
A UTF8-String that explains the error.

<I ndexLi st >

An optional field. Wen not enpty, it consists of a 4-byte
unsi gned integer followed by a Iist of handl e val ue indexes.
The first integer indicates the nunber of indexes in the
list. Each index in the list is a 4-byte unsigned integer
that refers to a handle value that contributed to the error
An exanpl e woul d be a server that is asked to add three
handl e val ues, with indexes 1, 2, and 3, and handl e val ues
with indexes of 1 and 2 already in existence. In this case,
the server could return an error nessage w th <REsponseCode>
set to RC VALUE ALREADY EXI ST and add index 1 and 2 to the
<IndexList> Note that the server is not obligated to
return the conplete list of handle val ue i ndexes that may
have caused the error.

3.4, Service Referra

A handl e server may receive requests for handl es that are nanaged by
sonme ot her handl e server or service. Wen this happens, the server
has the option to either return a referral nessage that directs the
client to the proper handle service, or sinply return an error
message with <ResponseCode> set to RC SERVER NOT_RESP. Service
referral al so happens when ownershi p of handles noves from one handl e
service to another. It may al so be used by any |ocal handl e service
to delegate its service into nultiple service |ayers

The Message Header of a service referral nust maintain the sane

<pCode> as the one in the original request and set its
<ResponseCode> t 0 RC_SERVI CE_REFERRAL.

Sun, et al. I nf or mat i onal [Page 27]

RFC 3652 Handl e System Protocol (v2.1) Novernber 2003

The Message Body of any service referral is defined as foll ows:

<Message Body of Service Referral> ::= [<RequestDi gest>]
<Ref erral Handl e>
[<Vval uelList>]

wher e

<Request Di gest >
Optional field as defined in section 2.2.3.

<Ref erral Handl e>

A UTF8-String that identifies the handle (e.g., a service
handl e) that nmaintains the referral information (i.e., the
service information of the handl e service in which this
refers). If the <Referral Handle> is set to "0.NA/ 0. NA"

it isreferring the client to the GHR

<Val uelLi st >

An optional field that nust be enpty if the <Referral Handl e>
is provided. Wen not enpty, it consists of a 4-byte

unsi gned integer, followed by a list of HS SITE values. The
i nteger specifies the nunber of HS SITE values in the |ist.

Unl i ke regul ar query responses that may consi st of handl e val ues of
any data type, a service referral can only have zero or nore HS SITE
values in its <ValuelList> The <Referral Handl e> may contain an enpty
UTF8-String if the HS SITE values in the <Val uelLi st> are not

mai nt ai ned by any handl e.

Care nust be taken by clients to avoid any | oops caused by service
referrals. It is also the client’s responsibility to authenticate
the service informati on obtained fromthe service referral. A client
shoul d al ways use its own copy of the GHR service information if the
<Referral Handl e> is set to "0. NA/ 0. NA"

3.5. dient Authentication

Clients are asked to authenticate thenselves as handl e administrators
when querying for any handl e value with ADM N_READ but no PUBLI C_READ
perm ssion. Client authentication is also required for any handl e
adm ni stration requests that require adninistrator privileges. This

i ncl udes addi ng, renoving, or nodifying handl es or handl e val ues.

Cient authentication consists of multiple nessages exchanged between
the client and server. Such nessages include the challenge fromthe
server to the client to authenticate the client, the chall enge-
response fromthe client in response to the server’'s challenge, and

Sun, et al. I nf or mat i onal [Page 28]

RFC 3652 Handl e System Protocol (v2.1) Novernber 2003

the verification request and response nessage if secret key

aut hentication takes place. Messages exchanged during the

aut hentication are correlated via a uni que <Sessionl d> assi gned by
the server. For each authentication session, the server needs to
mai ntain the state information that includes the server’s chall enge,
the chal |l enge-response fromthe client, as well as the origina
client request.

The aut hentication starts with a response nessage fromthe server
that contains a challenge to the client. The client nust respond to
the challenge with a chall enge-response nessage. The server
val i dates the chal |l enge-response, either by verifying the digita
signature inside the challenge-response, or by sending a verification
request to another handle server (herein referred to as the
verification server), that maintains the secret key for the

adm nistrator. The purpose of the challenge and the chall enge-
response is to prove to the server that the client possesses the
private key (or the secret key) of the handle administrator. |If the
aut hentication fails, an error response will be sent back with the
<ResponseCode> set to RC_AUTHEN_FAI LED.

Upon successful client authentication, the server nust also nake sure

that the adm nistrator is authorized for the request. |If the
adm ni strator has sufficient privileges, the server will process the
request and send back the result. [|f the adninistrator does not have
suf ficient privileges, the server will return an error nmessage with

<ResponseCode> set to RC_NOT_AUTHORI ZED.

The follow ng sections provide details of each nessage exchanged
during the authentication process.

3.5.1. Challenge from Server to dient

The Message Header of the CHALLENGE nust keep the sanme <OpCode> as
the original request and set the <ResponseCode> to RC_AUTH_NEEDED.
The server nust assign a non-zero uni que <Sessionld> in the Message
Envel ope to keep track of the authentication. It nust also set the
RD flag of the <OpFl ag> (see section 2.2.2.3) in the Message Header,
regardl ess of whether the original request had the RD bit set or not.

Sun, et al. I nf or mat i onal [Page 29]

RFC 3652 Handl e System Protocol (v2.1) Novernber 2003

The Message Body of the server’'s CHALLENGE is defined as foll ows:

<Message Body of Server’'s Challenge> ::= <RequestDi gest>
<Nonce>
wher e

<Request Di gest >
Message Di gest of the request nessage, as defined in section
2.2.3.

<Nonce>

A 4-byte unsigned integer followed by a random string
generated by the server via a secure random nunber
generator. The integer specifies the nunber of octets in
the random string. The size of the random string should be
no | ess than 20 octets.

Note that the server will not sign the challenge if the client did

not request the server to do so. |If the client worries about whether
it is speaking to the right server, it may ask the server to sign the
<Chal l enge>. If the client requested the server to sign the

<Chal | enge> but failed to validate the server’s signature, the client
shoul d di scard the server’s response and rei ssue the request to the
server.

3.5.2. Challenge-Response fromCdient to Server

The Message Header of the CHALLENGE RESPONSE nust set its <OpCode> to
OC _CHALLENGE_RESPONSE and its <ResponseCode> to 0. It nust al so keep
the sane <Sessionld> (in the Message Envel ope) as specified in the
chal l enge fromthe server

The Message Body of the CHALLENGE_RESPONSE request is defines as

fol |l ows:
<Message Body of CHALLENGE RESPONSE> ::= <AuthenticationType>
<KeyHandl| e>
<Keyl ndex>
<Chal | engeResponse>
wher e

<Aut henti cati onType>

A UTF8-String that identifies the type of authentication key
used by the client. For exanple, the field is set to

"HS _SECKEY" if the client chooses to use a secret key for
its authentication. The field is set to "HS PUBKEY" if a
public key is used instead.

Sun, et al. I nf or mat i onal [Page 30]

RFC 3652

Sun,

et al.

Handl e System Protocol (v2.1) Novernber 2003

<KeyHandl e>
A UTF8-String that identifies the handle that holds the
public or secret key of the handl e adm nistrator.

<Keyl ndex>

A 4-byte unsigned integer that specifies the index of the
handl e val ue (of the <KeyHandl e>) that holds the public or
secret key of the adninistrator.

<Chal | engeResponse>

Contai ns either the Message Authenticati on Code (MAC) or the
digital signature over the challenge fromthe server. |f

t he <Aut henticationType> is "HS SECKEY", the

<Chal | engeResponse> consi sts of an octet followed by the
MAC. The octet identifies the algorithmused to generate
the MAC. For exanple, if the first octet is set to 0x01

the MAC i s generated by

MD5_Hash(<Secret Key> + <Server Chal | enge> + <Secr et Key>)

where the <SecretKey> is the adm nistrator’s secret key
referenced by the <KeyHandl e> and <Keyl ndex>. The
<Server Chal |l enge> is the Message Body portion of the
server’s challenge. |If the first octet in the

<Chal | engeResponse> is set to 0x02, the MAC is generated
usi ng

SHA- 1 Hash(<Secret Key> + <Server Chal | enge> + <Secr et Key>)

A nore secure approach is to use HVAC [17] for the

<Chal | engeResponse>. The HMAC can be generated using the
<Secr et Key> and <Server Chal | enge>. A <Chal | engeResponse>
with its first octet set to Ox11l indicates that the HVAC
is generated using the MD5 algorithm Likew se, a

<Chal | engeResponse> with its first octet set to 0x12

i ndi cates that the HVAC i s generated using the SHA-1

al gorithm

If the <AuthenticationType> is "HS PUBKEY", the

<Chal | engeResponse> contains the digital signature over the
Message Body portion of the server’'s challenge. The
signature is generated in two steps: First, a one-way hash
val ue is conputed over the blob that is to be signed.
Second, the hash value is signed using the private key.

The signature consists of a UTF8-String that specifies the
di gest algorithmused for the signature, followed by the
signature over the server’s challenge. The <KeyHandl e> and

I nf or mat i onal [Page 31]

RFC 3652 Handl e System Protocol (v2.1) Novernber 2003

<Keyl ndex> refers to the admi nistrator’s public key that can
be used to verify the signature.

Handl e adm nistrators are defined in terns of HS ADM N val ues
assigned to the handle. Each HS ADM N val ue defines the set of
privileges granted to the adnministrator. It also provides the
reference to the authentication key that can be used to authenticate
the adnministrator. The reference can be nade directly if the

<Adnmi nRef> field of the HS_ADM N val ue refers to the handl e val ue
that holds the authentication key. Indirect reference to the

aut henti cation key can al so be made via administrator groups. In
this case, the <AdminRef> field nay refer to a handl e val ue of type
HS VLIST. An HS VLI ST val ue defines an adninistrator group via a
list of handle value references, each of which refers to the

aut henti cation key of a handl e adninistrator.

For handles with rmultiple HS_ ADM N val ues, the server will have to
check each of those with sufficient privileges to see if its

<Admi nRef > field natches t he <KeyHandl e> and <Keyl ndex>. |f no natch
is found, but there are adninistrator groups defined, the server nust
check if the <KeyHandl e> and <Keyl ndex> belong to any of the

adm ni strator groups that have sufficient privileges. An
adm ni strator group may contain another adm nistrator group as a
menber. Servers nust be careful to avoid infinite | oops when

navi gati ng these groups.

I f the <KeyHandl e> and <Keyl ndex> are not referenced by any of the
HS ADM N val ues, or the adm nistrator group that has sufficient
privileges, the server will return an error nessage wth
<ResponseCode> set to RC NOT_AUTHORI ZED. O herw se, the server will
continue to authenticate the client as foll ows:

I f the <AuthenticationType> is "HS PUBKEY", the server will retrieve
the administrator’s public key based on the <KeyHandl e> and

<Keyl ndex>. The public key can be used to verify the

<Chal | engeResponse> agai nst the server’s <Challenge> |f the

<Chal | engeResponse> nmat ches the <Chal |l enge>, the server will continue
to process the original request and return the result. Oherw se,
the server will return an error nessage with <ResponseCode> set to
RC_AUTHENTI CATI ON_FAI LED.

If the <AuthenticationType> is "HS SECKEY", the server will have to
send a verification request to the verification server; that is, the
handl e server that nmanages the handl e referenced by the <KeyHandl e>.
The verification request and its response are defined in the

followi ng sections. The verification server will verify the
<Chal | engeResponse> agai nst the <Chal |l enge> on behal f of the handle
server.

Sun, et al. I nf or mat i onal [Page 32]

RFC 3652 Handl e System Protocol (v2.1) Novernber 2003

3.5.3. Challenge-Response Verification-Request

The message header of the VERI FI CATI ON_REQUEST nust set its <OpCode>
to OC_VERI FY_CHALLENGE and t he <ResponseCode> to O.

The nmessage body of the Verification-Request is defined as follows:

<Message Body of VERI FI CATI ON REQUEST> ::= <KeyHandl e>
<Keyl ndex>
<Chal | enge>
<Chal | engeResponse>

wher e

<KeyHandl e>
A UTF8-String that refers to the handl e that holds the
secret key of the admi nistrator.

<Keyl ndex>
A 4-byte unsigned integer that is the index of the handle
val ue that holds the secret key of the administrator

<Chal | enge>
The nmessage body of the server’s challenge, as described in
section 3.5. 1.

<Chal | engeResponse>
The <Chal | engeResponse> fromthe client in response to
the server’s <Chall enge>, as defined in section 3.5.2.

Any Chal | enge- Response Verification-Request nust set its CT bit in
the nmessage header. This is to ensure that the verification server
will sign the Verification-Response as specified in the next section

3.5.4. Chall enge- Response Verification-Response

The Verification-Response tells the requesting handl e server whether
t he <Chal | engeResponse> natches the <Challenge> in the Verification-
Request .

The Message Header of the Verification-Response nust set its
<ResponseCode> t 0 RC SUCCESS whet her or not the <Chal | engeResponse>
mat ches the <Challenge> The RD flag in the <OpFlag> field should

al so be set (to 1) since the <RequestDigist> will be nmandatory in the
Message Body.

Sun, et al. I nf or mat i onal [Page 33]

RFC 3652 Handl e System Protocol (v2.1) Novernber 2003

The Message Body of the Verification-Response is defined as foll ows:

<Chal | enge- Response Verificati on- Response>
.1 = <Request Di gest >
<VerificationResult>
wher e

<Request Di gest >
Cont ai ns the nmessage digest of the Verification-Request.

<VerificationResult>

An octet that is set to 1 if the <Chall engeResponse>
mat ches the <Challenge> Oherwise it nust be set to
0.

The verification server may return an error with <ResponseCode> set
to RC_AUTHEN FAILED if it cannot performthe verification (e.g., the
<KeyHandl e> does not exist, or the <KeyHandl e> and <Keyl ndex> refer
to an invalid handl e value). Wen this happens, the server that
performs the client authentication should relay the same error
nmessage back to the client.

3. 6. Handl e Adm ni strati on

The Handl e System protocol supports a set of handl e adninistration
functions that include adding, deleting, and nodifyi ng handl es or
handl e values. Before fulfilling any administration request, the
server mnust authenticate the client as the handl e adm ni strator that
is authorized for the adnministrative operation. Handle

adm nistration can only be carried out by the primary handl e server

3.6.1. Add Handl e Val ue(s)
Cients add values to existing handl es by sendi ng ADD_ VALUE requests
to the responsi bl e handl e server. The Message Header of the
ADD VALUE request nust set its <OpCode> to OC ADD VALUE.

The Message Body of the ADD VALUE request is encoded as foll ows:

<Message Body of ADD VALUE Request> ::= <Handl e>
<Val uelLi st >
wher e
<Handl e>

A UTF8-String that specifies the handle.

Sun, et al. I nf or mat i onal [Page 34]

RFC 3652 Handl e System Protocol (v2.1) Novernber 2003

<Val uelLi st >

A 4-byte unsigned integer followed by a list of handle

val ues. The integer indicates the nunber of handl e val ues
inthe |ist.

The server that receives the ADD VALUE request nust first
authenticate the client as the adnmnistrator with the ADD VALUE
privilege. Upon successful authentication, the server will proceed

to add each value in the <ValuelList> to the <Handle>. |f successful
the server will return an RC_SUCCESS nessage to the client.
Each ADD VALUE request nust be carried out as a transaction. |If

addi ng any value in the <Val uelList> raises an error, the entire
operation must be rolled back. For any failed ADD VALUE request,
none of the values in the <Val uelist> should be added to the
<Handl e>. The server nust also send a response to the client that
explains the error. For exanple, if a value in the <Val ueLi st> has
the sane index as one of the existing handl e val ues, the server wll
return an error nessage that has the <ResponseCode> set to
RC_VALUE_ALREADY_EXI STS.

ADD _VALUE requests can al so be used to add handl e admi ni strators.
This happens if the <ValueList> in the ADD VALUE request contains any
HS ADM N val ues. The server nust authenticate the client as an

adm nistrator with the ADD ADM N privilege before fulfilling such
requests.

An ADD VALUE request will result in an error if the requested handl e
does not exist. \Wen this happens, the server will return an error
nmessage with <ResponseCode> set to RC HANDLE NOT_EXI ST.

3.6.2. Renpve Handl e Val ue(s)
Cients remove existing handl e val ues by sendi ng REMOVE VALUE
requests to the responsi bl e handl e server. The Message Header of the
REMOVE_VALUE request nust set its <OpCode> to OC REMOVE VALUE.

The Message Body of any REMOVE VALUE request is encoded as follows:

<Message Body of REMOVE VALUE Request> ::= <Handl e>
<l ndexLi st >
wher e
<Handl e>

A UTF8-String that specifies the handl e whose val ue(s) needs
to be renoved

Sun, et al. I nf or mat i onal [Page 35]

RFC 3652 Handl e System Protocol (v2.1) Novernber 2003

<l ndexLi st >

A 4-byte unsigned integer followed by a list of handle val ue
i ndexes. Each index refers to a handle value to be renoved
fromthe <Handl e>. The integer specifies the nunber of
indexes in the list. Each index is also encoded as a 4-byte
unsi gned i nt eger

The server that receives the REMOVE VALUE request nust first
authenticate the client as the adninistrator with the REMOVE VALUE

privilege. Upon successful authentication, the server will proceed
to renmove the handl e val ues specified in the <l ndexList> fromthe
<Handl e>. |f successful, the server will return an RC_SUCCESS

nmessage to the client.

Each REMOVE_VALUE request nust be carried out as a transaction. |If
renovi ng any val ue specified in the <l ndexList> raises an error, the
entire operation nust be rolled back. For any failed REMOVE VALUE
request, none of values referenced in the <IndexList> should be
renoved fromthe <Handl e>. The server nust al so send a response to
the client that explains the error. For exanple, attenpts to renove
any handl e value with neither PUB_WRI TE nor ADM N WRI TE perni ssi on
will result in an RC_ ACCESS DENI ED error. Note that a REMOVE VALUE
request asking to renove a non-existing handle value will not be
treated as an error.

REMOVE_VALUE requests can al so be used to renove handl e

adm nistrators. This happens if any of the indexes in the

<l ndexList> refer to an HS ADM N val ue. Servers nust authenticate
the client as an administrator with the REMOVE_ADM N privil ege before
fulfilling such requests.

3.6.3. Modify Handl e Val ue(s)
Cients can nake nodifications to an existing handl e val ue by sendi ng
MODI FY_VALUE requests to the responsi ble handl e server. The Message
Header of the MODI FY_VALUE request nust set its <CpCode> to
OC_MODI FY_VALUE.

The Message Body of any MODI FY_VALUE request is defined as follows:

<Message Body of MODI FY_VALUE Response> ::= <Handl e>
<Val uelLi st >
wher e
<Handl e>

A UTF8-String that specifies the handl e whose val ue(s) needs
to be nodified.

Sun, et al. I nf or mat i onal [Page 36]

RFC 3652 Handl e System Protocol (v2.1) Novernber 2003

<Val uelLi st >

A 4-byte unsigned integer followed by a list of handle

val ues. The integer specifies the nunber of handl e val ues
inthe list. Each value in the <Val ueList> specifies a
handl e value that will replace the existing handl e val ue
with the sane index.

The server that receives the MODI FY_VALUE request nust first
authenticate the client as an adnministrator with the MODI FY_VALUE
privilege. Upon successful authentication, the server will proceed
to replace those handle values listed in the <Val uelLi st>, provided
each handl e val ue has PUB WRI TE or ADM N WRI TE permi ssion. |f
successful, the server must notify the client with an RC SUCCESS
nmessage.

Each MODI FY_VALUE request nust be carried out as a transaction. |If
replacing any value listed in the <Val uelList> raises an error, the
entire operation nust be rolled back. For any failed MO FY_VALUE
request, none of values in the <Val ueList> should be replaced. The
server nmust also return a response to the client that explains the
error. For exanple, if a MODI FY_VALUE requests to renove a handl e
val ue that has neither PUB_WRI TE nor ADM N WRI TE perm ssion, the
server nust return an error nessage with the <ResponseCode> set to
RC ACCESS DEN ED. Any MODI FY_VALUE request to replace non- existing
handl e values is also treated as an error. In this case, the server
wWill return an error nessage with <ResponseCode> set to
RC_VALUE_NOT_FOUND.

MODI FY_VALUE requests can al so be used to update handl e

adm nistrators. This happens if both the values in the <Val uelLi st>
and the value to be replaced are HS ADM N val ues. Servers nust
authenticate the client as an adninistrator with the MODI FY_ADM N
privilege before fulfilling such a request. It is an error to

repl ace a non-HS_ADM N value with an HS ADM N value. In this case,
the server will return an error nessage with <ResponseCode> set to
RC_VALUE_I NVALI D.

3.6.4. Create Handle
Cients can create new handl es by sendi ng CREATE_HANDLE requests to

the responsi bl e handl e server. The Message Header of any
CREATE_HANDLE request nust set its <QpCode> to OC CREATE HANDLE.

Sun, et al. I nf or mat i onal [Page 37]

RFC 3652 Handl e System Protocol (v2.1) Novernber 2003

The Message Body of any CREATE HANDLE request is defined as foll ows:

<Message Body of CREATE_HANDLE Response> ::= <Handl e>
<Val ueli st >
wher e
<Handl e>

A UTF8-String that specifies the handle.

<Val ueli st >

A 4-byte unsigned integer followed by a |ist of handle

val ues. The integer indicates the nunber of handle val ues
inthe list. The <Valuelist> should at |east include one
HS ADM N val ue that defines the handl e adninistrator.

Only naming authority adm nistrators with the CREATE HANDLE privil ege
are allowed to create new handl es under the naning authority. The
server that receives a CREATE HANDLE request nust authenticate the
client as the administrator of the correspondi ng nam ng authority
handl e and nake certain that the adnmi nistrator is authorized to
create handl es under the naming authority. This is different from
the ADD VALUE request where the server authenticates the client as an
adm ni strator of the handle. Upon successful authentication, the
server will proceed to create the new handl e and add each value in
