Internet Engineering Task Force (IETF) D. Burnett

Request for Comments: 6787 Voxeo

Category: Standards Track S. Shanmugham

ISSN: 2070-1721 Cisco Systems, Inc.
November 2012

Media Resource Control Protocol Version 2 (MRCPVv2)
Abstract

The Media Resource Control Protocol Version 2 (MRCPv2) allows client
hosts to control media service resources such as speech synthesizers,
recognizers, verifiers, and identifiers residing in servers on the

network. MRCPV2 is not a "stand-alone" protocol -- it relies on

other protocols, such as the Session Initiation Protocol (SIP), to
coordinate MRCPV2 clients and servers and manage sessions between
them, and the Session Description Protocol (SDP) to describe,

discover, and exchange capabilities. It also depends on SIP and SDP
to establish the media sessions and associated parameters between the
media source or sink and the media server. Once this is done, the
MRCPv2 exchange operates over the control session established above,
allowing the client to control the media processing resources on the
speech resource server.

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 5741.

Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc6787.

Copyright Notice

Copyright (¢) 2012 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents

Burnett & Shanmugham Standards Track [Page 1]

RFC 6787 MRCPv2 November 2012

carefully, as they describe your rights and restrictions with respect

to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of

the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

This document may contain material from IETF Documents or IETF
Contributions published or made publicly available before November
10, 2008. The person(s) controlling the copyright in some of this
material may not have granted the IETF Trust the right to allow
modifications of such material outside the IETF Standards Process.
Without obtaining an adequate license from the person(s) controlling
the copyright in such materials, this document may not be modified
outside the IETF Standards Process, and derivative works of it may
not be created outside the IETF Standards Process, except to format
it for publication as an RFC or to translate it into languages other
than English.

Table of Contents

1. Introduction 8
2. Document Conventions 9
2.1. Definitions 10
2.2. State-Machine Diagrams 10
23. URISchemes 11
3. Architecture 11
3.1. MRCPv2 Media Resource Types 12
3.2. Server and Resource Addressing 14
4. MRCPV2BasiCs 14
4.1. Connectingtothe Server................ 14
4.2. Managing Resource Control Channels 14
4.3. SIP SessionExample 17
4.4. Media Streams and RTP Ports 22
4.5. MRCPv2 Message Transport. 24
4.6. MRCPv2 Session Termination 24
5. MRCPvV2 Specification 24
5.1. Common Protocol Elements 25
52. Request 28
53. Response 29
54. StatusCodes...................... 30
55. Bvents........... 31
6. MRCPv2 Generic Methods, Headers, and Result Structure 32
6.1. GenericMethods 32
6.1.1. SET-PARAMS 32
6.1.2. GET-PARAMS 33
6.2. Generic Message Headers 34
6.2.1. Channel-ldentifier................. 35
6.2.2. Accept......... 36

Burnett & Shanmugham Standards Track [Page 2]

RFC 6787 MRCPv2 November 2012

6.2.3. Active-Request-Id-List............... 36
6.2.4. Proxy-Sync-ld 36
6.2.5. Accept-Charset................... 37
6.2.6. Content-Type 37
6.27. Content-ID 38
6.2.8. Content-Base 38
6.2.9. Content-Encoding.................. 38
6.2.10. Content-Location 39
6.2.11. Content-Length 39
6.2.12. Fetch Timeout 39
6.2.13. Cache-Control 40
6.2.14. Logging-Tagcovvvunn. 41
6.2.15. Set-Cookie 42
6.2.16. Vendor-Specific Parameters 44
6.3. Generic Result Structure 44
6.3.1. Natural Language Semantics Markup Language
7. Resource Discovery 46
8. Speech Synthesizer Resource 47
8.1. Synthesizer State Machine 48
8.2. Synthesizer Methods 48
8.3. SynthesizerEvents................... 49
8.4. Synthesizer Header Fields 49
8.4.1. Jump-Size, 49
8.4.2. Kil-On-Barge-In.................. 50
8.4.3. Speaker-Profile 51
8.4.4. Completion-Cause 51
8.4.5. Completion-Reason 52
8.4.6. Voice-Parameter 52
8.4.7. Prosody-Parameters................. 53
8.4.8. Speech-Marker 53
8.4.9. Speech-Language 54
8.4.10. Fetch-Hint..................... 54
8.4.11. Audio-Fetch-Hint.................. 55
8.4.12. Failed-URI..................... 55
8.4.13. Failed-URI-Cause 55
8.4.14. Speak-Restart 56
8.4.15. Speak-Length.................... 56
8.4.16. Load-Lexicon.................... 57
8.4.17. Lexicon-Search-Order................ 57
8.5. Synthesizer Message Body 57
8.5.1. Synthesizer SpeechData 57
85.2. LexiconData.................... 59
8.6. SPEAKMethod 60
87. STOP i 62
8.8. BARGE-IN-OCCURRED 63
89. PAUSE 65
810. RESUME 66
8.11. CONTROL, 67

Burnett & Shanmugham Standards Track [Page 3]

RFC 6787 MRCPv2 November 2012

8.12. SPEAK-COMPLETE 69
8.13. SPEECH-MARKER 70
8.14. DEFINE-LEXICON 71
9. Speech Recognizer Resource 72
9.1. Recognizer State Machine 74
9.2. RecognizerMethods................... 74
9.3. RecognizerEvents 75
9.4. Recognizer Header Fields 75
9.4.1. Confidence-Threshold................ 77
9.4.2. Sensitivity-Level 77
9.4.3. Speed-Vs-Accuracy 77
9.4.4. N-Best-List-Length................. 78
9.45. Input-Type 78
9.4.6. No-lnput-Timeout.................. 78
9.4.7. Recognition-Timeout 79
9.4.8. Waveform-URI.................... 79
9.49. Media-Type i, 80
9.4.10. Input-Waveform-URI................. 80
9.4.11. Completion-Cause 80
9.4.12. Completion-Reason 83
9.4.13. Recognizer-Context-Block 83
9.4.14. Start-Input-Timers................. 83
9.4.15. Speech-Complete-Timeout 84
9.4.16. Speech-Incomplete-Timeout 84
9.4.17. DTMF-Interdigit-Timeout 85
9.4.18. DTMF-Term-Timeout 85
9.4.19. DTMF-Term-Char 85
9.4.20. Failed-URI 86
9.4.21. Failed-URI-Cause 86
9.4.22. Save-Waveform 86
9.4.23. New-Audio-Channel 86
9.4.24. Speech-Language 87
9.4.25. Ver-Buffer-Utterance 87
9.4.26. Recognition-Mode 87
9.4.27. Cancel-If-Queue 88
9.4.28. Hotword-Max-Duration................ 88
9.4.29. Hotword-Min-Duration................ 88
9.4.30. Interpret-Text................... 89
9.4.31. DTMF-Buffer-Time 89
9.4.32. Clear-DTMF-Buffer 89
9.4.33. Early-No-Match 90
9.4.34. Num-Min-Consistent-Pronunciations 90
9.4.35. Consistency-Threshold 90
9.4.36. Clash-Threshold 90
9.4.37. Personal-Grammar-URI 91
9.4.38. Enroll-Utterance 91
9.4.39. Phrase-Id 91
9.4.40. Phrase-NL 92

Burnett & Shanmugham Standards Track [Page 4]

RFC 6787 MRCPv2 November 2012

9.4.41. Weight. 92
9.4.42. Save-Best-Waveform................. 92
9.4.43. New-Phrase-Id 93
9.4.44. Confusable-Phrases-URI............... 93
9.4.45. Abort-Phrase-Enrollment 93
9.5. Recognizer MessageBody 93
9.5.1. Recognizer GrammarData 93
9.5.2. RecognizerResultData............... 97
9.5.3. EnrollmentResultData............... 98
9.5.4. Recognizer ContextBlock 98
9.6. RecognizerResults 99
9.6.1. Markup Functions.................. 99
9.6.2. Overview of Recognizer Result Elements and Their
Relationships 100
9.6.3. Elements and Attributes 101
9.7. EnrollmentResults 106
9.7.1. <num-clashes>Element 106
9.7.2. <num-good-repetitions> Element 106
9.7.3. <num-repetitions-still-needed> Element 107
9.7.4. <consistency-status>Element............ 107
9.7.5. <clash-phrase-ids>Element............. 107
9.7.6. <transcriptions>Element.............. 107
9.7.7. <confusable-phrases>Element............ 107
9.8. DEFINE-GRAMMAR 107
9.9. RECOGNIZE, 111
9.10. STOP i 118
9.11. GET-RESULT 119
9.12. START-OF-INPUT 120
9.13. START-INPUT-TIMERS 120
9.14. RECOGNITION-COMPLETE 120
9.15. START-PHRASE-ENROLLMENT 123
9.16. ENROLLMENT-ROLLBACK 124
9.17. END-PHRASE-ENROLLMENT 124
9.18. MODIFY-PHRASE 125
9.19. DELETE-PHRASE 125
9.20. INTERPRET 125
9.21. INTERPRETATION-COMPLETE 127
9.22. DTMF Detection 128
10. RecorderResource 129
10.1. Recorder State Machine 129
10.2. Recorder Methods 130
10.3. RecorderEvents 130
10.4. Recorder Header Fields 130
10.4.1. Sensitivity-Level 130
10.4.2. No-Input-Timeout 131
10.4.3. Completion-Cause 131
10.4.4. Completion-Reason 132
10.4.5. Failed-URI 132

Burnett & Shanmugham Standards Track [Page 5]

RFC 6787 MRCPv2 November 2012

10.4.6. Failed-URI-Cause 132
10.4.7. Record-URI 132
10.4.8. Media-Type oot 133
10.49. Max-Time 133
10.4.10. Trim-Length 134
10.4.11. Final-Silence 134
10.4.12. Capture-On-Speech 134
10.4.13. Ver-Buffer-Utterance 134
10.4.14. Start-Input-Timers 135
10.4.15. New-Audio-Channel 135
10.5. Recorder MessageBody 135
106. RECORD ... 135
10.7. STOP 136
10.8. RECORD-COMPLETE 137
10.9. START-INPUT-TIMERS 138
10.10. START-OF-INPUT oo 138
11. Speaker Verification and Identification. 139
11.1. Speaker Verification State Machine 140
11.2. Speaker Verification Methods 142
11.3. VerificationEvents 144
11.4. Verification Header Fields 144
11.4.1. Repository-URI 144
11.4.2. Voiceprint-ldentifier 145
11.4.3. Verification-Mode 145
11.4.4. Adapt-Model 146
11.45. Abort-Model 146
11.4.6. Min-Verification-Score 147
11.4.7. Num-Min-Verification-Phrases 147
11.4.8. Num-Max-Verification-Phrases 147
11.4.9. No-lnput-Timeout 148
11.4.10. Save-Waveform 148
11.4.11. Media-Typeo o 148
11.4.12. Waveform-URI 148
11.4.13. Voiceprint-Exists 149
11.4.14. Ver-Buffer-Utterance 149
11.4.15. Input-Waveform-URI 149
11.4.16. Completion-Cause 150
11.4.17. Completion-Reason 151
11.4.18. Speech-Complete-Timeout 151
11.4.19. New-Audio-Channel 152
11.4.20. Abort-Verification 152
11.4.21. Start-Input-Timers 152
11.5. Verification MessageBody 152
11.5.1. Verification ResultData.............. 152
11.5.2. Verification Result Elements 153
11.6. START-SESSION 157
11.7. END-SESSION 158
11.8. QUERY-VOICEPRINT 159

Burnett & Shanmugham Standards Track [Page 6]

RFC 6787 MRCPv2 November 2012

11.9. DELETE-VOICEPRINT 160
11.10. VERIFY 160
11.11. VERIFY-FROM-BUFFER 160
11.12. VERIFY-ROLLBACK 164
1113.STOP e 164
11.14. START-INPUT-TIMERS 165
11.15. VERIFICATION-COMPLETE 165
11.16. START-OF-INPUT 166
11.17.CLEAR-BUFFER 166
11.18. GET-INTERMEDIATE-RESULT 167
12. Security Considerations 168
12.1. Rendezvous and Session Establishment.......... 168
12.2. Control Channel Protection 168
12.3. Media Session Protection................ 169
12.4. Indirect Content Access 169
12.5. Protection of Stored Media 170
12.6. DTMF and Recognition Buffers 171
12.7. Client-Set Server Parameters............... 171
12.8. DELETE-VOICEPRINT and Authorization 171
13. IANA Considerations 171
13.1. New Registries 171
13.1.1. MRCPv2 Resource Types 171
13.1.2. MRCPv2 Methodsand Events 172
13.1.3. MRCPv2 Header Fields 173
13.1.4. MRCPv2 Status Codes 176
13.1.5. Grammar Reference List Parameters 176
13.1.6. MRCPv2 Vendor-Specific Parameters 176
13.2. NLSML-Related Registrations 177
13.2.1. ’application/nlsml+xml’ Media Type Registration .. 177
13.3. NLSML XML Schema Registration 178
13.4. MRCPv2 XML Namespace Registration 178
13.5. Text Media Type Registrations 178
13.5.1. text/grammar-ref-list 178
13.6. ’'session’ URI Scheme Registration 180
13.7. SDP Parameter Registrations 181
13.7.1. Sub-Registry "proto" 181
13.7.2. Sub-Registry "att-field (media-level)" 182
14. Exampleso i 183
14.1. Message Flow 183
14.2. Recognition Result Examples 192
14.2.1. Simple ASR Ambiguity 192
14.2.2. Mixed Initiative 192
14.23. DTMFInput. 193
14.2.4. Interpreting Meta-Dialog and Meta-Task Utterances . 194
14.2.5. Anaphoraand Deixis 195
14.2.6. Distinguishing Individual Items from Sets with
OneMember..................... 195
14.2.7. Extensibility 196

Burnett & Shanmugham Standards Track [Page 7]

RFC 6787 MRCPv2 November 2012

15. ABNF Normative Definition 196
16. XML Schemas 211
16.1. NLSML Schema Definition 211
16.2. Enrollment Results Schema Definition. 213
16.3. Verification Results Schema Definition. 214
17.References, 218
17.1. Normative References 218
17.2. Informative References 220
Appendix A. Contributors 223
Appendix B. Acknowledgements 223

1. Introduction

MRCPV2 is designed to allow a client device to control media

processing resources on the network. Some of these media processing
resources include speech recognition engines, speech synthesis
engines, speaker verification, and speaker identification engines.
MRCPvV2 enables the implementation of distributed Interactive Voice
Response platforms using VoiceXML [W3C.REC-voicexml|20-20040316]
browsers or other client applications while maintaining separate
back-end speech processing capabilities on specialized speech
processing servers. MRCPV2 is based on the earlier Media Resource
Control Protocol (MRCP) [RFC4463] developed jointly by Cisco Systems,
Inc., Nuance Communications, and Speechworks, Inc. Although some of
the method names are similar, the way in which these methods are
communicated is different. There are also more resources and more
methods for each resource. The first version of MRCP was essentially
taken only as input to the development of this protocol. There is no
expectation that an MRCPv2 client will work with an MRCPv1 server or
vice versa. There is no migration plan or gateway definition between

the two protocols.

The protocol requirements of Speech Services Control (SPEECHSC)
[RFC4313] include that the solution be capable of reaching a media
processing server, setting up communication channels to the media
resources, and sending and receiving control messages and media
streams to/from the server. The Session Initiation Protocol (SIP)
[RFC3261] meets these requirements.

The proprietary version of MRCP ran over the Real Time Streaming
Protocol (RTSP) [RFC2326]. At the time work on MRCPv2 was begun, the
consensus was that this use of RTSP would break the RTSP protocol or
cause backward-compatibility problems, something forbidden by Section
3.2 of [RFC4313]. This is the reason why MRCPV2 does not run over
RTSP.

Burnett & Shanmugham Standards Track [Page 8]

RFC 6787 MRCPv2 November 2012

MRCPV2 leverages these capabilities by building upon SIP and the
Session Description Protocol (SDP) [RFC4566]. MRCPv2 uses SIP to set
up and tear down media and control sessions with the server. In
addition, the client can use a SIP re-INVITE method (an INVITE dialog
sent within an existing SIP session) to change the characteristics of
these media and control session while maintaining the SIP dialog
between the client and server. SDP is used to describe the
parameters of the media sessions associated with that dialog. It is
mandatory to support SIP as the session establishment protocol to
ensure interoperability. Other protocols can be used for session
establishment by prior agreement. This document only describes the
use of SIP and SDP.

MRCPv2 uses SIP and SDP to create the speech client/server dialog and
set up the media channels to the server. It also uses SIP and SDP to
establish MRCPv2 control sessions between the client and the server

for each media processing resource required for that dialog. The
MRCPv2 protocol exchange between the client and the media resource is
carried on that control session. MRCPv2 exchanges do not change the
state of the SIP dialog, the media sessions, or other parameters of

the dialog initiated via SIP. It controls and affects the state of

the media processing resource associated with the MRCPv2 session(s).

MRCPv2 defines the messages to control the different media processing
resources and the state machines required to guide their operation.

It also describes how these messages are carried over a transport-

layer protocol such as the Transmission Control Protocol (TCP)
[RFCO0793] or the Transport Layer Security (TLS) Protocol [RFC5246].
(Note: the Stream Control Transmission Protocol (SCTP) [RFC4960] is a
viable transport for MRCPv2 as well, but the mapping onto SCTP is not
described in this specification.)

2. Document Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [RFC2119].

Since many of the definitions and syntax are identical to those for
the Hypertext Transfer Protocol -- HTTP/1.1 [RFC2616], this
specification refers to the section where they are defined rather
than copying it. For brevity, [HX.Y] is to be taken to refer to
Section X.Y of RFC 2616.

All the mechanisms specified in this document are described in both
prose and an augmented Backus-Naur form (ABNF [RFC5234]).

Burnett & Shanmugham Standards Track [Page 9]

RFC 6787 MRCPv2 November 2012

The complete message format in ABNF form is provided in Section 15
and is the normative format definition. Note that productions may be
duplicated within the main body of the document for reading
convenience. If a production in the body of the text conflicts with

one in the normative definition, the latter rules.

2.1. Definitions

Media Resource
An entity on the speech processing server that can be
controlled through MRCPv2.

MRCP Server
Aggregate of one or more "Media Resource" entities on
a server, exposed through MRCPv2. Often, 'server’ in
this document refers to an MRCP server.

MRCP Client
An entity controlling one or more Media Resources
through MRCPv2 ("Client" for short).

DTMF
Dual-Tone Multi-Frequency; a method of transmitting
key presses in-band, either as actual tones (Q.23
[Q.23]) or as named tone events (RFC 4733 [RFC4733)).
Endpointing

The process of automatically detecting the beginning
and end of speech in an audio stream. This is
critical both for speech recognition and for automated
recording as one would find in voice mail systems.

Hotword Mode
A mode of speech recognition where a stream of
utterances is evaluated for match against a small set
of command words. This is generally employed either
to trigger some action or to control the subsequent
grammar to be used for further recognition.

2.2. State-Machine Diagrams

The state-machine diagrams in this document do not show every

possible method call. Rather, they reflect the state of the resource

based on the methods that have moved to IN-PROGRESS or COMPLETE
states (see Section 5.3). Note that since PENDING requests

essentially have not affected the resource yet and are in the queue

to be processed, they are not reflected in the state-machine

diagrams.

Burnett & Shanmugham Standards Track [Page 10]

RFC 6787 MRCPv2 November 2012

2.3. URI Schemes

This document defines many protocol headers that contain URIs
(Uniform Resource Identifiers [RFC3986]) or lists of URIs for
referencing media. The entire document, including the Security
Considerations section (Section 12), assumes that HTTP or HTTP over
TLS (HTTPS) [RFC2818] will be used as the URI addressing scheme
unless otherwise stated. However, implementations MAY support other
schemes (such as 'file’), provided they have addressed any security
considerations described in this document and any others particular

to the specific scheme. For example, implementations where the

client and server both reside on the same physical hardware and the
file system is secured by traditional user-level file access controls
could be reasonable candidates for supporting the ‘file’ scheme.

3. Architecture

A system using MRCPV2 consists of a client that requires the
generation and/or consumption of media streams and a media resource
server that has the resources or "engines" to process these streams

as input or generate these streams as output. The client uses SIP

and SDP to establish an MRCPv2 control channel with the server to use
its media processing resources. MRCPV2 servers are addressed using
SIP URIs.

SIP uses SDP with the offer/answer model described in RFC 3264
[RFC3264] to set up the MRCPV2 control channels and describe their
characteristics. A separate MRCPV2 session is needed to control each
of the media processing resources associated with the SIP dialog
between the client and server. Within a SIP dialog, the individual
resource control channels for the different resources are added or
removed through SDP offer/answer carried in a SIP re-INVITE
transaction.

The server, through the SDP exchange, provides the client with a
difficult-to-guess, unambiguous channel identifier and a TCP port
number (see Section 4.2). The client MAY then open a new TCP
connection with the server on this port number. Multiple MRCPv2
channels can share a TCP connection between the client and the
server. All MRCPv2 messages exchanged between the client and the
server carry the specified channel identifier that the server MUST
ensure is unambiguous among all MRCPv2 control channels that are
active on that server. The client uses this channel identifier to
indicate the media processing resource associated with that channel.
For information on message framing, see Section 5.

SIP also establishes the media sessions between the client (or other
source/sink of media) and the MRCPV2 server using SDP "m=" lines.

Burnett & Shanmugham Standards Track [Page 11]

RFC 6787 MRCPv2 November 2012

One or more media processing resources may share a media session
under a SIP session, or each media processing resource may have its
own media session.

The following diagram shows the general architecture of a system that
uses MRCPv2. To simplify the diagram, only a few resources are
shown.

MRCPV2 client MRCPv2 Media Resource Server
R | | |

Application Layer]			Synthesis	Recognition	Verification	
--emmmmme e [Engine	Engine	Engine		
Media Resource API			e			
[I ||Synthesis|Recognizer | Verifier ||

| SIP | MRCPv2 || ||Resource | Resource | Resource ||
|Stack | Il || Media Resource Management ||
| | I
[-----m-m - Il [| SIP | MRCPv2 I
| TCP/IP Stack ||---MRCPv2---|| Stack | Il
| | I |
[--=-mmmm e [|----SIP-----|| TCP/IP Stack Il
|-=mmmmmmmem - | Il Il

I I |

SIP [|

| /
e | RTP

| /

| Media Source/Sink [------------ /

Figure 1: Architectural Diagram
3.1. MRCPv2 Media Resource Types

An MRCPvV2 server may offer one or more of the following media
processing resources to its clients.

Basic Synthesizer
A speech synthesizer resource that has very limited
capabilities and can generate its media stream
exclusively from concatenated audio clips. The speech
data is described using a limited subset of the Speech
Synthesis Markup Language (SSML)
[W3C.REC-speech-synthesis-20040907] elements. A basic
synthesizer MUST support the SSML tags <speak>,
<audio>, <say-as>, and <mark>.

Burnett & Shanmugham Standards Track [Page 12]

RFC 6787 MRCPv2 November 2012

Speech Synthesizer
A full-capability speech synthesis resource that can
render speech from text. Such a synthesizer MUST have
full SSML [W3C.REC-speech-synthesis-20040907] support.

Recorder
A resource capable of recording audio and providing a
URI pointer to the recording. A recorder MUST provide
endpointing capabilities for suppressing silence at
the beginning and end of a recording, and MAY also
suppress silence in the middle of a recording. If
such suppression is done, the recorder MUST maintain
timing metadata to indicate the actual timestamps of
the recorded media.

DTMF Recognizer
A recognizer resource capable of extracting and
interpreting Dual-Tone Multi-Frequency (DTMF) [Q.23]
digits in a media stream and matching them against a
supplied digit grammar. It could also do a semantic
interpretation based on semantic tags in the grammar.

Speech Recognizer
A full speech recognition resource that is capable of
receiving a media stream containing audio and
interpreting it to recognition results. It also has a
natural language semantic interpreter to post-process
the recognized data according to the semantic data in
the grammar and provide semantic results along with
the recognized input. The recognizer MAY also support
enrolled grammars, where the client can enroll and
create new personal grammars for use in future
recognition operations.

Speaker Verifier
A resource capable of verifying the authenticity of a
claimed identity by matching a media stream containing
spoken input to a pre-existing voiceprint. This may
also involve matching the caller’s voice against more
than one voiceprint, also called multi-verification or
speaker identification.

Burnett & Shanmugham Standards Track [Page 13]

RFC 6787 MRCPv2 November 2012

3.2. Server and Resource Addressing

The MRCPvV2 server is a generic SIP server, and is thus addressed by a
SIP URI (RFC 3261 [RFC3261)).

For example:

sip:mrcpv2@example.net or
sips:mrcpv2@example.net

4., MRCPv2 Basics

MRCPV2 requires a connection-oriented transport-layer protocol such
as TCP to guarantee reliable sequencing and delivery of MRCPv2
control messages between the client and the server. In order to meet
the requirements for security enumerated in SPEECHSC requirements
[RFC4313], clients and servers MUST implement TLS as well. One or
more connections between the client and the server can be shared
among different MRCPv2 channels to the server. The individual
messages carry the channel identifier to differentiate messages on
different channels. MRCPv2 encoding is text based with mechanisms to
carry embedded binary data. This allows arbitrary data like
recognition grammars, recognition results, synthesizer speech markup,
etc., to be carried in MRCPv2 messages. For information on message
framing, see Section 5.

4.1. Connecting to the Server

MRCPv2 employs SIP, in conjunction with SDP, as the session
establishment and management protocol. The client reaches an MRCPv2
server using conventional INVITE and other SIP requests for

establishing, maintaining, and terminating SIP dialogs. The SDP
offer/answer exchange model over SIP is used to establish a resource
control channel for each resource. The SDP offer/answer exchange is
also used to establish media sessions between the server and the

source or sink of audio.

4.2. Managing Resource Control Channels

The client needs a separate MRCPV2 resource control channel to
control each media processing resource under the SIP dialog. A
unigue channel identifier string identifies these resource control
channels. The channel identifier is a difficult-to-guess,

unambiguous string followed by an "@", then by a string token
specifying the type of resource. The server generates the channel
identifier and MUST make sure it does not clash with the identifier

of any other MRCP channel currently allocated by that server. MRCPv2
defines the following IANA-registered types of media processing

Burnett & Shanmugham Standards Track [Page 14]

RFC 6787 MRCPv2 November 2012

resources. Additional resource types and their associated methods/
events and state machines may be added as described below in
Section 13.

| Resource Type | Resource Description | Described in |
+ + + +

| speechrecog | Speech Recognizer | Section9 |

| dtmfrecog | DTMF Recognizer | Section 9 |

| speechsynth | Speech Synthesizer | Section 8 |

| basicsynth | Basic Synthesizer | Section 8 |

| speakverify | Speaker Verification | Section 11 |

| recorder | Speech Recorder | Section 10 |
+ + + +

Table 1: Resource Types

The SIP INVITE or re-INVITE transaction and the SDP offer/answer
exchange it carries contain "m=" lines describing the resource

control channel to be allocated. There MUST be one SDP "m=" line for
each MRCPV2 resource to be used in the session. This "m="line MUST
have a media type field of "application” and a transport type field

of either "TCP/MRCPv2" or "TCP/TLS/MRCPv2". The port number field of
the "m="line MUST contain the "discard" port of the transport

protocol (port 9 for TCP) in the SDP offer from the client and MUST
contain the TCP listen port on the server in the SDP answer. The

client may then either set up a TCP or TLS connection to that server

port or share an already established connection to that port. Since
MRCPv2 allows multiple sessions to share the same TCP connection,
multiple "m="lines in a single SDP document MAY share the same port
field value; MRCPv2 servers MUST NOT assume any relationship between
resources using the same port other than the sharing of the
communication channel.

MRCPv2 resources do not use the port or format field of the "m="line
to distinguish themselves from other resources using the same
channel. The client MUST specify the resource type identifier in the
resource attribute associated with the control "m=" line of the SDP
offer. The server MUST respond with the full Channel-Identifier
(which includes the resource type identifier and a difficult-to-

guess, unambiguous string) in the "channel" attribute associated with
the control "m="line of the SDP answer. To remain backwards
compatible with conventional SDP usage, the format field of the "m="
line MUST have the arbitrarily selected value of "1".

When the client wants to add a media processing resource to the

session, it issues a new SDP offer, according to the procedures of
RFC 3264 [RFC3264], in a SIP re-INVITE request. The SDP offer/answer

Burnett & Shanmugham Standards Track [Page 15]

RFC 6787 MRCPv2 November 2012

exchange carried by this SIP transaction contains one or more
additional control "m=" lines for the new resources to be allocated

to the session. The server, on seeing the new "m=" line, allocates
the resources (if they are available) and responds with a
corresponding control "m="line in the SDP answer carried in the SIP
response. If the new resources are not available, the re-INVITE
receives an error message, and existing media processing going on
before the re-INVITE will continue as it was before. It is not

possible to allocate more than one resource of each type. If a

client requests more than one resource of any type, the server MUST
behave as if the resources of that type (beyond the first one) are

not available.

MRCPvV2 clients and servers using TCP as a transport protocol MUST use
the procedures specified in RFC 4145 [RFC4145] for setting up the TCP
connection, with the considerations described hereby. Similarly,

MRCPvV2 clients and servers using TCP/TLS as a transport protocol MUST
use the procedures specified in RFC 4572 [RFC4572] for setting up the
TLS connection, with the considerations described hereby. The

a=setup attribute, as described in RFC 4145 [RFC4145], MUST be
"active" for the offer from the client and MUST be "passive" for the

answer from the MRCPV2 server. The a=connection attribute MUST have
a value of "new" on the very first control "m=" line offer from the

client to an MRCPV2 server. Subsequent control "m=" line offers from

the client to the MRCP server MAY contain "new" or "existing",

depending on whether the client wants to set up a new connection or
share an existing connection, respectively. If the client specifies

a value of "new", the server MUST respond with a value of "new". If

the client specifies a value of "existing", the server MUST respond.

The legal values in the response are "existing" if the server prefers

to share an existing connection or "new" if not. In the latter case,

the client MUST initiate a new transport connection.

When the client wants to deallocate the resource from this session,

it issues a new SDP offer, according to RFC 3264 [RFC3264], where the
control "m=" line port MUST be set to 0. This SDP offer is sentin a

SIP re-INVITE request. This deallocates the associated MRCPv2
identifier and resource. The server MUST NOT close the TCP or TLS
connection if it is currently being shared among multiple MRCP
channels. When all MRCP channels that may be sharing the connection
are released and/or the associated SIP dialog is terminated, the

client or server terminates the connection.

When the client wants to tear down the whole session and all its
resources, it MUST issue a SIP BYE request to close the SIP session.
This will deallocate all the control channels and resources allocated
under the session.

Burnett & Shanmugham Standards Track [Page 16]

RFC 6787 MRCPv2 November 2012

All servers MUST support TLS. Servers MAY use TCP without TLS in
controlled environments (e.g., not in the public Internet) where both
nodes are inside a protected perimeter, for example, preventing

access to the MRCP server from remote nodes outside the controlled
perimeter. Itis up to the client, through the SDP offer, to choose

which transport it wants to use for an MRCPv2 session. Aside from

the exceptions given above, when using TCP, the "m=" lines MUST
conform to RFC4145 [RFC4145], which describes the usage of SDP for
connection-oriented transport. When using TLS, the SDP "m="line for
the control stream MUST conform to Connection-Oriented Media
(COMEDIA) over TLS [RFC4572], which specifies the usage of SDP for
establishing a secure connection-oriented transport over TLS.

4.3. SIP Session Example

This first example shows the power of using SIP to route to the
appropriate resource. In the example, note the use of a request to a
domain’s speech server service in the INVITE to
mresources@example.com. The SIP routing machinery in the domain
locates the actual server, mresources@server.example.com, which gets
returned in the 200 OK. Note that "cmid" is defined in Section 4.4.

This example exchange adds a resource control channel for a
synthesizer. Since a synthesizer also generates an audio stream,
this interaction also creates a receive-only Real-Time Protocol (RTP)
[RFC3550] media session for the server to send audio to. The SIP
dialog with the media source/sink is independent of MRCP and is not
shown.

C->S: INVITE sip:mresources@example.com SIP/2.0
Via:SIP/2.0/TCP client.atlanta.example.com:5060;
branch=z9hG4bK74bf1
Max-Forwards:6
To:MediaServer <sip:mresources@example.com>
From:sarvi <sip:sarvi@example.com>;tag=1928301774
Call-1D:a84b4c76e66710
CSeq:314161 INVITE
Contact:<sip:sarvi@client.example.com>
Content-Type:application/sdp
Content-Length:...

v=0

o=sarvi 2890844526 2890844526 IN 1P4 192.0.2.12
S=-

c=IN IP4 192.0.2.12

t=00

m=application 9 TCP/MRCPv2 1

a=setup:active

Burnett & Shanmugham Standards Track [Page 17]

RFC 6787 MRCPv2 November 2012

a=connection:new
a=resource:speechsynth
a=cmid:1

m=audio 49170 RTP/AVP 0
a=rtpmap:0 pcmu/8000
a=recvonly

a=mid:1

S->C: SIP/2.0 200 OK
Via:SIP/2.0/TCP client.atlanta.example.com:5060;
branch=z9hG4bK74bf1;received=192.0.32.10
To:MediaServer <sip:mresources@example.com>;tag=62784
From:sarvi <sip:sarvi@example.com>;tag=1928301774
Call-1D:a84b4c76e66710
CSeq:314161 INVITE
Contact:<sip:mresources@server.example.com>
Content-Type:application/sdp
Content-Length:...

v=0

0=- 2890842808 2890842808 IN IP4 192.0.2.11
S=-

c=INIP4 192.0.2.11

t=00

m=application 32416 TCP/MRCPv2 1
a=setup:passive

a=connection:new
a=channel:32AECB234338@speechsynth
a=cmid:1

m=audio 48260 RTP/AVP 0

a=rtpmap:0 pcmu/8000

a=sendonly

a=mid:1

C->S: ACK sip:mresources@server.example.com SIP/2.0
Via:SIP/2.0/TCP client.atlanta.example.com:5060;
branch=z9hG4bK74bf2
Max-Forwards:6
To:MediaServer <sip:mresources@example.com>;tag=62784
From:Sarvi <sip:sarvi@example.com>;tag=1928301774
Call-ID:a84b4c76e66710
CSeq:314161 ACK
Content-Length:0

Example: Add Synthesizer Control Channel

Burnett & Shanmugham Standards Track [Page 18]

RFC 6787 MRCPv2 November 2012

This example exchange continues from the previous figure and
allocates an additional resource control channel for a recognizer.
Since a recognizer would need to receive an audio stream for
recognition, this interaction also updates the audio stream to
sendrecv, making it a two-way RTP media session.

C->S: INVITE sip:mresources@server.example.com SIP/2.0
Via:SIP/2.0/TCP client.atlanta.example.com:5060;
branch=z9hG4bK74bf3
Max-Forwards:6
To:MediaServer <sip:mresources@example.com>;tag=62784
From:sarvi <sip:sarvi@example.com>;tag=1928301774
Call-ID:a84b4c76e66710
CSeq:314162 INVITE
Contact:<sip:sarvi@client.example.com>
Content-Type:application/sdp
Content-Length:...

v=0

o=sarvi 2890844526 2890844527 IN IP4 192.0.2.12
S=-

c=IN IP4 192.0.2.12

t=00

m=application 9 TCP/MRCPV2 1
a=setup:active
a=connection:existing
a=resource:speechsynth
a=cmid:1

m=audio 49170 RTP/AVP 0 96
a=rtpmap:0 pcmu/8000
a=rtpmap:96 telephone-event/8000
a=fmtp:96 0-15

a=sendrecv

a=mid:1

m=application 9 TCP/MRCPv2 1
a=setup:active
a=connection:existing
a=resource:speechrecog
a=cmid:1

S->C: SIP/2.0 200 OK
Via:SIP/2.0/TCP client.atlanta.example.com:5060;
branch=z9hG4bK74bf3;received=192.0.32.10
To:MediaServer <sip:mresources@example.com>;tag=62784
From:sarvi <sip:sarvi@example.com>;tag=1928301774
Call-ID:a84b4c76e66710
CSe(:314162 INVITE

Burnett & Shanmugham Standards Track [Page 19]

RFC 6787 MRCPv2 November 2012

Contact:<sip:mresources@server.example.com>
Content-Type:application/sdp
Content-Length:...

v=0

0=- 2890842808 2890842809 IN 1P4 192.0.2.11
S=-

c=IN1P4192.0.2.11

t=00

m=application 32416 TCP/MRCPVv2 1
a=setup:passive

a=connection:existing
a=channel:32AECB234338@speechsynth
a=cmid:1

m=audio 48260 RTP/AVP 0 96
a=rtpmap:0 pcmu/8000

a=rtpmap:96 telephone-event/8000
a=fmtp:96 0-15

a=sendrecv

a=mid:1

m=application 32416 TCP/MRCPv2 1
a=setup:passive

a=connection:existing
a=channel:32AECB234338@speechrecog
a=cmid:1

C->S: ACK sip:mresources@server.example.com SIP/2.0
Via:SIP/2.0/TCP client.atlanta.example.com:5060;
branch=z9hG4bK74bf4
Max-Forwards:6
To:MediaServer <sip:mresources@example.com>;tag=62784
From:Sarvi <sip:sarvi@example.com>;tag=1928301774
Call-1D:a84b4c76e66710
CSeq:314162 ACK
Content-Length:0

Example: Add Recognizer

This example exchange continues from the previous figure and
deallocates the recognizer channel. Since a recognizer no longer
needs to receive an audio stream, this interaction also updates the
RTP media session to recvonly.

C->S: INVITE sip:mresources@server.example.com SIP/2.0
Via:SIP/2.0/TCP client.atlanta.example.com:5060;
branch=z9hG4bK74bf5
Max-Forwards:6

Burnett & Shanmugham Standards Track [Page 20]

RFC 6787 MRCPv2 November 2012

To:MediaServer <sip:mresources@example.com>;tag=62784
From:sarvi <sip:sarvi@example.com>;tag=1928301774
Call-1D:a84b4c76e66710

CSeq:314163 INVITE
Contact:<sip:sarvi@client.example.com>
Content-Type:application/sdp

Content-Length:...

v=0

o=sarvi 2890844526 2890844528 IN IP4 192.0.2.12
S=-

c=IN IP4 192.0.2.12

t=00

m=application 9 TCP/MRCPV2 1
a=resource:speechsynth
a=cmid:1

m=audio 49170 RTP/AVP 0
a=rtpmap:0 pcmu/8000
a=recvonly

a=mid:1

m=application 0 TCP/MRCPV2 1
a=resource:speechrecog
a=cmid:1

S->C: SIP/2.0 200 OK
Via:SIP/2.0/TCP client.atlanta.example.com:5060;
branch=z9hG4bK74bf5;received=192.0.32.10
To:MediaServer <sip:mresources@example.com>;tag=62784
From:sarvi <sip:sarvi@example.com>;tag=1928301774
Call-ID:a84b4c76e66710
CSeq:314163 INVITE
Contact:<sip:mresources@server.example.com>
Content-Type:application/sdp
Content-Length:...

v=0

0=- 2890842808 2890842810 IN IP4 192.0.2.11
S=-

c=INIP4 192.0.2.11

t=00

m=application 32416 TCP/MRCPV2 1
a=channel:32AECB234338@speechsynth
a=cmid:1

m=audio 48260 RTP/AVP 0

a=rtpmap:0 pcmu/8000

a=sendonly

a=mid:1

Burnett & Shanmugham Standards Track [Page 21]

RFC 6787 MRCPv2 November 2012

m=application 0 TCP/MRCPV2 1
a=channel:32AECB234338@speechrecog
a=cmid:1

C->S: ACK sip:mresources@server.example.com SIP/2.0
Via:SIP/2.0/TCP client.atlanta.example.com:5060;
branch=z9hG4bK74bf6
Max-Forwards:6
To:MediaServer <sip:mresources@example.com>;tag=62784
From:Sarvi <sip:sarvi@example.com>;tag=1928301774
Call-ID:a84b4c76e66710
CSe(:314163 ACK
Content-Length:0

Example: Deallocate Recognizer
4.4. Media Streams and RTP Ports

Since MRCPV2 resources either generate or consume media streams, the
client or the server needs to associate media sessions with their
corresponding resource or resources. More than one resource could be
associated with a single media session or each resource could be
assigned a separate media session. Also, note that more than one
media session can be associated with a single resource if need be,

but this scenario is not useful for the current set of resources.

For example, a synthesizer and a recognizer could be associated to

the same media session (m=audio line), if it is opened in "sendrecv"
mode. Alternatively, the recognizer could have its own "sendonly”
audio session, and the synthesizer could have its own "recvonly”

audio session.

The association between control channels and their corresponding
media sessions is established using a new "resource channel media
identifier" media-level attribute ("cmid"). Valid values of this
attribute are the values of the "mid" attribute defined in RFC 5888
[RFC5888]. If there is more than one audio "m="line, then each
audio "m="line MUST have a "mid" attribute. Each control "m=" line
MAY have one or more "cmid" attributes that match the resource
control channel to the "mid" attributes of the audio "m="lines it is
associated with. Note that if a control "m="line does not have a
"cmid" attribute it will not be associated with any media. The
operations on such a resource will hence be limited. For example, if
it was a recognizer resource, the RECOGNIZE method requires an
associated media to process while the INTERPRET method does not. The
formatting of the "cmid" attribute is described by the following

ABNF:

Burnett & Shanmugham Standards Track [Page 22]

RFC 6787 MRCPv2 November 2012

cmid-attribute = "a=cmid:" identification-tag
identification-tag = token

To allow this flexible mapping of media sessions to MRCPV2 control
channels, a single audio "m="line can be associated with multiple
resources, or each resource can have its own audio "m="line. For
example, if the client wants to allocate a recognizer and a
synthesizer and associate them with a single two-way audio stream,
the SDP offer would contain two control "m="lines and a single audio
"m="line with an attribute of "sendrecv". Each of the control "m="
lines would have a "cmid" attribute whose value matches the "mid" of
the audio "m="line. If, on the other hand, the client wants to

allocate a recognizer and a synthesizer each with its own separate
audio stream, the SDP offer would carry two control "m="lines (one
for the recognizer and another for the synthesizer) and two audio
"m="lines (one with the attribute "sendonly" and another with
attribute "recvonly"). The "cmid" attribute of the recognizer

control "m=" line would match the "mid" value of the "sendonly" audio
"m="line, and the "cmid" attribute of the synthesizer control "m="

line would match the "mid" attribute of the "recvonly" "m="line.

When a server receives media (e.g., audio) on a media session that is
associated with more than one media processing resource, it is the
responsibility of the server to receive and fork the media to the
resources that need to consume it. If multiple resources in an
MRCPvV2 session are generating audio (or other media) to be sent on a
single associated media session, it is the responsibility of the

server either to multiplex the multiple streams onto the single RTP
session or to contain an embedded RTP mixer (see RFC 3550 [RFC3550])
to combine the multiple streams into one. In the former case, the
media stream will contain RTP packets generated by different sources,
and hence the packets will have different Synchronization Source
Identifiers (SSRCs). In the latter case, the RTP packets will

contain multiple Contributing Source Identifiers (CSRCs)
corresponding to the original streams before being combined by the
mixer. If an MRCPv2 server implementation neither multiplexes nor
mixes, it MUST disallow the client from associating multiple such
resources to a single audio stream by rejecting the SDP offer with a
SIP 488 "Not Acceptable” error. Note that there is a large installed
base that will return a SIP 501 "Not Implemented” error in this case.
To facilitate interoperability with this installed base, new
implementations SHOULD treat a 501 in this context as a 488 when it
is received from an element known to be a legacy implementation.

Burnett & Shanmugham Standards Track [Page 23]

RFC 6787 MRCPv2 November 2012

4.5. MRCPv2 Message Transport

The MRCPv2 messages defined in this document are transported over a
TCP or TLS connection between the client and the server. The method
for setting up this transport connection and the resource control

channel is discussed in Sections 4.1 and 4.2. Multiple resource

control channels between a client and a server that belong to

different SIP dialogs can share one or more TLS or TCP connections
between them; the server and client MUST support this mode of
operation. Clients and servers MUST use the MRCPVv2 channel
identifier, carried in the Channel-Identifier header field in

individual MRCPVv2 messages, to differentiate MRCPv2 messages from
different resource channels (see Section 6.2.1 for details). All

MRCPvV2 servers MUST support TLS. Servers MAY use TCP without TLS in
controlled environments (e.g., not in the public Internet) where both
nodes are inside a protected perimeter, for example, preventing

access to the MRCP server from remote nodes outside the controlled
perimeter. Itis up to the client to choose which mode of transport

it wants to use for an MRCPV2 session.

Most examples from here on show only the MRCPv2 messages and do not
show the SIP messages that may have been used to establish the MRCPv2
control channel.

4.6. MRCPv2 Session Termination

If an MRCP client notices that the underlying connection has been
closed for one of its MRCP channels, and it has not previously
initiated a re-INVITE to close that channel, it MUST send a BYE to
close down the SIP dialog and all other MRCP channels. If an MRCP
server notices that the underlying connection has been closed for one
of its MRCP channels, and it has not previously received and accepted
a re-INVITE closing that channel, then it MUST send a BYE to close
down the SIP dialog and all other MRCP channels.

5. MRCPvV2 Specification

Except as otherwise indicated, MRCPv2 messages are Unicode encoded in
UTF-8 (RFC 3629 [RFC3629]) to allow many different languages to be
represented. DEFINE-GRAMMAR (Section 9.8), for example, is one such
exception, since its body can contain arbitrary XML in arbitrary (but
specified via XML) encodings. MRCPV2 also allows message bodies to

be represented in other character sets (for example, ISO 8859-1
[1SO.8859-1.1987]) because, in some locales, other character sets are
already in widespread use. The MRCPvV2 headers (the first line of an
MRCP message) and header field names use only the US-ASCII subset of
UTF-8.

Burnett & Shanmugham Standards Track [Page 24]

RFC 6787 MRCPv2 November 2012

Lines are terminated by CRLF (carriage return, then line feed).

Also, some parameters in the message may contain binary data or a
record spanning multiple lines. Such fields have a length value
associated with the parameter, which indicates the number of octets
immediately following the parameter.

5.1. Common Protocol Elements

The MRCPv2 message set consists of requests from the client to the
server, responses from the server to the client, and asynchronous
events from the server to the client. All these messages consist of

a start-line, one or more header fields, an empty line (i.e., aline

with nothing preceding the CRLF) indicating the end of the header
fields, and an optional message body.

generic-message = start-line
message-header
CRLF
[message-body]

message-body = *OCTET
start-line = request-line / response-line / event-line
message-header = 1*(generic-header / resource-header / generic-field)

resource-header = synthesizer-header
| recognizer-header
| recorder-header
| verifier-header

The message-body contains resource-specific and message-specific
data. The actual media types used to carry the data are specified in
the sections defining the individual messages. Generic header fields
are described in Section 6.2.

If a message contains a message body, the message MUST contain
content-headers indicating the media type and encoding of the data in
the message body.

Request, response and event messages (described in following
sections) include the version of MRCP that the message conforms to.
Version compatibility rules follow [H3.1] regarding version ordering,
compliance requirements, and upgrading of version numbers. The
version information is indicated by "MRCP" (as opposed to "HTTP" in
[H3.1]) or "MRCP/2.0" (as opposed to "HTTP/1.1" in [H3.1]). To be
compliant with this specification, clients and servers sending MRCPv2

Burnett & Shanmugham Standards Track [Page 25]

RFC 6787 MRCPv2 November 2012

messages MUST indicate an mrcp-version of "MRCP/2.0". ABNF
productions using mrcp-version can be found in Sections 5.2, 5.3, and
5.5.

mrcp-version = "MRCP""/" 1*2DIGIT "." 1*2DIGIT

The message-length field specifies the length of the message in
octets, including the start-line, and MUST be the second token from
the beginning of the message. This is to make the framing and
parsing of the message simpler to do. This field specifies the

length of the message including data that may be encoded into the
body of the message. Note that this value MAY be given as a fixed-
length integer that is zero-padded (with leading zeros) in order to
eliminate or reduce inefficiency in cases where the message-length
value would change as a result of the length of the message-length
token itself. This value, as with all lengths in MRCP, is to be
interpreted as a base-10 number. In particular, leading zeros do not
indicate that the value is to be interpreted as a base-8 number.

message-length = 1*19DIGIT

The following sample MRCP exchange demonstrates proper message-length
values. The values for message-length have been removed from all

other examples in the specification and replaced by "..." to reduce

confusion in the case of minor message-length computation errors in

those examples.

C->S: MRCP/2.0 877 INTERPRET 543266
Channel-ldentifier:32AECB23433801@speechrecog
Interpret-Text:may | speak to Andre Roy
Content-Type:application/srgs+xml
Content-ID:<requestl@form-level.store>
Content-Length:661

<?xml version="1.0"?>
<l-- the default grammar language is US English -->
<grammar xmlIns="http://www.w3.0rg/2001/06/grammar
xml:lang="en-US" version="1.0" root="request">
<l-- single language attachment to tokens -->
<rule id="yes">
<one-of>
<item xml:lang="fr-CA">oui</item>
<item xml:lang="en-US">yes</item>
</one-of>
</rule>

Burnett & Shanmugham Standards Track [Page 26]

RFC 6787 MRCPv2 November 2012

<l-- single language attachment to a rule expansion -->
<rule id="request">
may | speak to
<one-of xml:lang="fr-CA">
<item>Michel Tremblay</item>
<item>Andre Roy</item>
</one-of>
</rule>
</grammar>

S->C: MRCP/2.0 82 543266 200 IN-PROGRESS
Channel-ldentifier:32AECB23433801@speechrecog

S->C: MRCP/2.0 634 INTERPRETATION-COMPLETE 543266 200 COMPLETE
Channel-ldentifier:32AECB23433801@speechrecog
Completion-Cause:000 success
Content-Type:application/nlsml+xml
Content-Length:441

<?xml version="1.0"?>
<result xmIns="urn:ietf:params:xml:ns:mrcpv2"
xmins:ex="http://www.example.com/example”
grammar="session:requestl@form-level.store">
<interpretation>
<instance name="Person">
<ex:Person>
<ex:Name> Andre Roy </ex:Name>
</ex:Person>
</instance>
<input> may | speak to Andre Roy </input>
</interpretation>
</result>

All MRCPv2 messages, responses and events MUST carry the Channel-
Identifier header field so the server or client can differentiate

messages from different control channels that may share the same
transport connection.

In the resource-specific header field descriptions in Sections 8-11,
a header field is disallowed on a method (request, response, or
event) for that resource unless specifically listed as being allowed.
Also, the phrasing "This header field MAY occur on method X"
indicates that the header field is allowed on that method but is not
required to be used in every instance of that method.

Burnett & Shanmugham Standards Track [Page 27]

RFC 6787 MRCPv2 November 2012

5.2. Request

An MRCPV2 request consists of a Request line followed by the message
header section and an optional message body containing data specific
to the request message.

The Request message from a client to the server includes within the
first line the method to be applied, a method tag for that request
and the version of the protocol in use.

request-line = mrcp-version SP message-length SP method-name
SP request-id CRLF

The mrcp-version field is the MRCP protocol version that is being
used by the client.

The message-length field specifies the length of the message,
including the start-line.

Details about the mrcp-version and message-length fields are given in
Section 5.1.

The method-name field identifies the specific request that the client
is making to the server. Each resource supports a subset of the
MRCPv2 methods. The subset for each resource is defined in the
section of the specification for the corresponding resource.

method-name = generic-method
[synthesizer-method
| recognizer-method
| recorder-method
| verifier-method

The request-id field is a unique identifier representable as an

unsigned 32-bit integer created by the client and sent to the server.
Clients MUST utilize monotonically increasing request-ids for
consecutive requests within an MRCP session. The request-id space is
linear (i.e., not mod(32)), so the space does not wrap, and validity

can be checked with a simple unsigned comparison operation. The
client may choose any initial value for its first request, but a

small integer is RECOMMENDED to avoid exhausting the space in long
sessions. If the server receives duplicate or out-of-order requests,

the server MUST reject the request with a response code of 410.

Since request-ids are scoped to the MRCP session, they are unique
across all TCP connections and all resource channels in the session.

The server resource MUST use the client-assigned identifier in its
response to the request. If the request does not complete

Burnett & Shanmugham Standards Track [Page 28]

RFC 6787 MRCPv2 November 2012

synchronously, future asynchronous events associated with this
request MUST carry the client-assigned request-id.

request-id = 1*10DIGIT
5.3. Response

After receiving and interpreting the request message for a method,

the server resource responds with an MRCPVv2 response message. The
response consists of a response line followed by the message header
section and an optional message body containing data specific to the
method.

response-line = mrcp-version SP message-length SP request-id
SP status-code SP request-state CRLF

The mrcp-version field MUST contain the version of the request if
supported; otherwise, it MUST contain the highest version of MRCP
supported by the server.

The message-length field specifies the length of the message,
including the start-line.

Details about the mrcp-version and message-length fields are given in
Section 5.1.

The request-id used in the response MUST match the one sent in the
corresponding request message.

The status-code field is a 3-digit code representing the success or
failure or other status of the request.

status-code = 3DIGIT

The request-state field indicates if the action initiated by the

Request is PENDING, IN-PROGRESS, or COMPLETE. The COMPLETE status
means that the request was processed to completion and that there

will be no more events or other messages from that resource to the

client with that request-id. The PENDING status means that the

request has been placed in a queue and will be processed in first-in-

first-out order. The IN-PROGRESS status means that the request is

being processed and is not yet complete. A PENDING or IN-PROGRESS
status indicates that further Event messages may be delivered with

that request-id.

request-state = "COMPLETE"

/ "IN-PROGRESS"
/ "PENDING"

Burnett & Shanmugham Standards Track [Page 29]

RFC 6787 MRCPv2 November 2012

5.4. Status Codes

The status codes are classified under the Success (2xx), Client
Failure (4xx), and Server Failure (5xx) codes.

+ + +

| Code | Meaning |

+ + +

| 200 | Success

| 201 | Success with some optional header fields ignored |
+ + +

Success (2xx)

+ + +
| Code | Meaning |

| 401 | Method not allowed |

| 402 | Method not valid in this state |

| 403 | Unsupported header field |

| 404 | lllegal value for header field. This is the error for a |

| | syntax violation. |

| 405 | Resource not allocated for this session or does not |

| | exist |

| 406 | Mandatory Header Field Missing |

| 407 | Method or Operation Failed (e.g., Grammar compilation |
| | failed in the recognizer. Detailed cause codes might be |

| | available through a resource-specific header.) |

| 408 | Unrecognized or unsupported message entity |

| 409 | Unsupported Header Field Value. This is a value that is |
| | syntactically legal but exceeds the implementation’s |

| | capabilities or expectations. |

| 410 | Non-Monotonic or Out-of-order sequence number in request.|

| 411-420| Reserved for future assignment |
E + +

Client Failure (4xx)

+ + +
| Code | Meaning |
+ +

4
T

501	Server Internal Error
502	Protocol Version not supported
503	Reserved for future assignment
504	Message too large

+ + +

Server Failure (5xx)

Burnett & Shanmugham Standards Track [Page 30]

RFC 6787 MRCPv2 November 2012

5.5. Events

The server resource may need to communicate a change in state or the
occurrence of a certain event to the client. These messages are used
when a request does not complete immediately and the response returns
a status of PENDING or IN-PROGRESS. The intermediate results and
events of the request are indicated to the client through the event
message from the server. The event message consists of an event
header line followed by the message header section and an optional
message body containing data specific to the event message. The
header line has the request-id of the corresponding request and

status value. The request-state value is COMPLETE if the request is
done and this was the last event, else it is IN-PROGRESS.

event-line = mrcp-version SP message-length SP event-name
SP request-id SP request-state CRLF

The mrcp-version used here is identical to the one used in the
Request/Response line and indicates the highest version of MRCP
running on the server.

The message-length field specifies the length of the message,
including the start-line.

Details about the mrcp-version and message-length fields are given in
Section 5.1.

The event-name identifies the nature of the event generated by the
media resource. The set of valid event names depends on the resource
generating it. See the corresponding resource-specific section of

the document.

event-name = synthesizer-event
/ recognizer-event
| recorder-event
|/ verifier-event

The request-id used in the event MUST match the one sent in the
request that caused this event.

The request-state indicates whether the Request/Command causing this
event is complete or still in progress and whether it is the same as

the one mentioned in Section 5.3. The final event for a request has

a COMPLETE status indicating the completion of the request.

Burnett & Shanmugham Standards Track [Page 31]

RFC 6787 MRCPv2 November 2012

6. MRCPv2 Generic Methods, Headers, and Result Structure

MRCPV2 supports a set of methods and header fields that are common to
all resources. These are discussed here; resource-specific methods

and header fields are discussed in the corresponding resource-

specific section of the document.

6.1. Generic Methods

MRCPvV2 supports two generic methods for reading and writing the state
associated with a resource.

generic-method = "SET-PARAMS"
/ "GET-PARAMS"

These are described in the following subsections.
6.1.1. SET-PARAMS

The SET-PARAMS method, from the client to the server, tells the
MRCPvV2 resource to define parameters for the session, such as voice
characteristics and prosody on synthesizers, recognition timers on
recognizers, etc. If the server accepts and sets all parameters, it
MUST return a response status-code of 200. If it chooses to ignore
some optional header fields that can be safely ignored without
affecting operation of the server, it MUST return 201.

If one or more of the header fields being sent is incorrect, error
403, 404, or 409 MUST be returned as follows:

o If one or more of the header fields being set has an illegal
value, the server MUST reject the request with a 404 lllegal Value
for Header Field.

o If one or more of the header fields being set is unsupported for
the resource, the server MUST reject the request with a 403
Unsupported Header Field, except as described in the next
paragraph.

o If one or more of the header fields being set has an unsupported
value, the server MUST reject the request with a 409 Unsupported
Header Field Value, except as described in the next paragraph.

If both error 404 and another error have occurred, only error 404

MUST be returned. If both errors 403 and 409 have occurred, but not
error 404, only error 403 MUST be returned.

Burnett & Shanmugham Standards Track [Page 32]

RFC 6787 MRCPv2 November 2012

If error 403, 404, or 409 is returned, the response MUST include the
bad or unsupported header fields and their values exactly as they
were sent from the client. Session parameters modified using
SET-PARAMS do not override parameters explicitly specified on
individual requests or requests that are IN-PROGRESS.

C->S: MRCP/2.0 ... SET-PARAMS 543256
Channel-ldentifier:32AECB23433802@speechsynth
Voice-gender:female
Voice-variant:3

S->C: MRCP/2.0 ... 543256 200 COMPLETE
Channel-ldentifier:32AECB23433802@speechsynth

6.1.2. GET-PARAMS

The GET-PARAMS method, from the client to the server, asks the MRCPv2
resource for its current session parameters, such as voice
characteristics and prosody on synthesizers, recognition timers on
recognizers, etc. For every header field the client sends in the

request without a value, the server MUST include the header field and

its corresponding value in the response. If no parameter header

fields are specified by the client, then the server MUST return all

the settable parameters and their values in the corresponding header
section of the response, including vendor-specific parameters. Such
wildcard parameter requests can be very processing-intensive, since

the number of settable parameters can be large depending on the
implementation. Hence, it is RECOMMENDED that the client not use the
wildcard GET-PARAMS operation very often. Note that GET-PARAMS
returns header field values that apply to the whole session and not
values that have a request-level scope. For example, Input-Waveform-
URI is a request-level header field and thus would not be returned by
GET-PARAMS.

If all of the header fields requested are supported, the server MUST
return a response status-code of 200. If some of the header fields
being retrieved are unsupported for the resource, the server MUST
reject the request with a 403 Unsupported Header Field. Such a
response MUST include the unsupported header fields exactly as they
were sent from the client, without values.

C->S: MRCP/2.0 ... GET-PARAMS 543256
Channel-ldentifier:32AECB23433802@speechsynth
Voice-gender:

Voice-variant:
Vendor-Specific-Parameters:com.example.parami;
com.example.param2

Burnett & Shanmugham Standards Track [Page 33]

RFC 6787 MRCPv2 November 2012

S->C: MRCP/2.0 ... 543256 200 COMPLETE
Channel-ldentifier:32AECB23433802@speechsynth
Voice-gender:female
Voice-variant:3
Vendor-Specific-Parameters:com.example.param1="Company Name";

com.example.param2="124324234@example.com”

6.2. Generic Message Headers

All MRCPvV2 header fields, which include both the generic-headers
defined in the following subsections and the resource-specific header
fields defined later, follow the same generic format as that given in
Section 3.1 of RFC 5322 [RFC5322]. Each header field consists of a
name followed by a colon (":") and the value. Header field names are
case-insensitive. The value MAY be preceded by any amount of LWS
(linear white space), though a single SP (space) is preferred.

Header fields may extend over multiple lines by preceding each extra
line with at least one SP or HT (horizontal tab).

generic-field = field-name ":" [field-value]
field-name = token
field-value =*LWS field-content *(CRLF 1*LWS field-content)
field-content = <the OCTETs making up the field-value
and consisting of either *TEXT or combinations
of token, separators, and quoted-string>

The field-content does not include any leading or trailing LWS (i.e.,
linear white space occurring before the first non-whitespace
character of the field-value or after the last non-whitespace

character of the field-value). Such leading or trailing LWS MAY be
removed without changing the semantics of the field value. Any LWS
that occurs between field-content MAY be replaced with a single SP
before interpreting the field value or forwarding the message
downstream.

MRCPvV2 servers and clients MUST NOT depend on header field order. It
is RECOMMENDED to send general-header fields first, followed by
request-header or response-header fields, and ending with the entity-
header fields. However, MRCPVv2 servers and clients MUST be prepared
to process the header fields in any order. The only exception to

this rule is when there are multiple header fields with the same name

in a message.

Multiple header fields with the same name MAY be present in a message

if and only if the entire value for that header field is defined as a
comma-separated list [i.e., #(values)].

Burnett & Shanmugham Standards Track [Page 34]

RFC 6787 MRCPv2 November 2012

Since vendor-specific parameters may be order-dependent, it MUST be
possible to combine multiple header fields of the same name into one
"name:value" pair without changing the semantics of the message, by
appending each subsequent value to the first, each separated by a
comma. The order in which header fields with the same name are
received is therefore significant to the interpretation of the

combined header field value, and thus an intermediary MUST NOT change
the order of these values when a message is forwarded.

generic-header = channel-identifier
| accept
active-request-id-list
proxy-sync-id
accept-charset
content-type
content-id
content-base
content-encoding
content-location
content-length
fetch-timeout
cache-control
logging-tag
set-cookie
vendor-specific

~ e e e e e~~~

6.2.1. Channel-ldentifier

All MRCPV2 requests, responses, and events MUST contain the Channel-
Identifier header field. The value is allocated by the server when a
control channel is added to the session and communicated to the

client by the "a=channel" attribute in the SDP answer from the

server. The header field value consists of 2 parts separated by the

'@’ symbol. The first part is an unambiguous string identifying the
MRCPv2 session. The second part is a string token that specifies one

of the media processing resource types listed in Section 3.1. The
unambiguous string (first part) MUST be difficult to guess, unique

among the resource instances managed by the server, and common to all
resource channels with that server established through a single SIP
dialog.

channel-identifier = "Channel-Identifier" ":" channel-id CRLF
channel-id = 1*alphanum "@" 1*alphanum

Burnett & Shanmugham Standards Track [Page 35]

RFC 6787 MRCPv2 November 2012

6.2.2. Accept

The Accept header field follows the syntax defined in [H14.1]. The
semantics are also identical, with the exception that if no Accept
header field is present, the server MUST assume a default value that

is specific to the resource type that is being controlled. This

default value can be changed for a resource on a session by sending
this header field in a SET-PARAMS method. The current default value
of this header field for a resource in a session can be found through

a GET-PARAMS method. This header field MAY occur on any request.

6.2.3. Active-Request-Id-List

In a request, this header field indicates the list of request-ids to

which the request applies. This is useful when there are multiple
requests that are PENDING or IN-PROGRESS and the client wants this
request to apply to one or more of these specifically.

In a response, this header field returns the list of request-ids that

the method modified or affected. There could be one or more requests
in a request-state of PENDING or IN-PROGRESS. When a method
affecting one or more PENDING or IN-PROGRESS requests is sent from
the client to the server, the response MUST contain the list of
request-ids that were affected or modified by this command in its

header section.

The Active-Request-Id-List is only used in requests and responses,
not in events.

For example, if a STOP request with no Active-Request-ld-List is sent
to a synthesizer resource that has one or more SPEAK requests in the
PENDING or IN-PROGRESS state, all SPEAK requests MUST be cancelled,
including the one IN-PROGRESS. The response to the STOP request
contains in the Active-Request-ld-List value the request-ids of all
the SPEAK requests that were terminated. After sending the STOP
response, the server MUST NOT send any SPEAK-COMPLETE or RECOGNITION-
COMPLETE events for the terminated requests.
active-request-id-list = "Active-Request-1d-List" ":"
request-id *("," request-id) CRLF

6.2.4. Proxy-Sync-Id

When any server resource generates a "barge-in-able" event, it also
generates a unique tag. The tag is sent as this header field’s value

in an event to the client. The client then acts as an intermediary

among the server resources and sends a BARGE-IN-OCCURRED method to
the synthesizer server resource with the Proxy-Sync-Id it received

Burnett & Shanmugham Standards Track [Page 36]

RFC 6787 MRCPv2 November 2012

from the server resource. When the recognizer and synthesizer

resources are part of the same session, they may choose to work

together to achieve quicker interaction and response. Here, the
Proxy-Sync-1d helps the resource receiving the event, intermediated

by the client, to decide if this event has been processed through a

direct interaction of the resources. This header field MAY occur

only on events and the BARGE-IN-OCCURRED method. The name of this
header field contains the word 'proxy’ only for historical reasons

and does not imply that a proxy server is involved.

proxy-sync-id = "Proxy-Sync-1d" ":" 1*VCHAR CRLF
6.2.5. Accept-Charset

See [H14.2]. This specifies the acceptable character sets for

entities returned in the response or events associated with this

request. This is useful in specifying the character set to use in

the Natural Language Semantic Markup Language (NLSML) results of a
RECOGNITION-COMPLETE event. This header field is only used on
requests.

6.2.6. Content-Type

See [H14.17]. MRCPV2 supports a restricted set of registered media
types for content, including speech markup, grammar, and recognition
results. The content types applicable to each MRCPV2 resource-type
are specified in the corresponding section of the document and are
registered in the MIME Media Types registry maintained by IANA. The
multipart content type "multipart/mixed” is supported to communicate
multiple of the above mentioned contents, in which case the body
parts MUST NOT contain any MRCPv2-specific header fields. This
header field MAY occur on all messages.

content-type = "Content-Type" ":" media-type-value CRLF

media-type-value = type "/" subtype *(";" parameter)

type = token

subtype = token

parameter = attribute "=" value
attribute = token

value = token / quoted-string

Burnett & Shanmugham Standards Track [Page 37]

RFC 6787 MRCPv2 November 2012

6.2.7. Content-ID

This header field contains an ID or name for the content by which it
can be referenced. This header field operates according to the
specification in RFC 2392 [RFC2392] and is required for content
disambiguation in multipart messages. In MRCPv2, whenever the
associated content is stored by either the client or the server, it
MUST be retrievable using this ID. Such content can be referenced
later in a session by addressing it with the 'session’ URI scheme
described in Section 13.6. This header field MAY occur on all
messages.

6.2.8. Content-Base

The Content-Base entity-header MAY be used to specify the base URI
for resolving relative URIs within the entity.

content-base = "Content-Base" ":" absoluteURI CRLF

Note, however, that the base URI of the contents within the entity-
body may be redefined within that entity-body. An example of this
would be multipart media, which in turn can have multiple entities

within it. This header field MAY occur on all messages.

6.2.9. Content-Encoding

The Content-Encoding entity-header is used as a modifier to the
Content-Type. When present, its value indicates what additional

content encoding has been applied to the entity-body, and thus what
decoding mechanisms must be applied in order to obtain the Media Type
referenced by the Content-Type header field. Content-Encoding is
primarily used to allow a document to be compressed without losing

the identity of its underlying media type. Note that the SIP session

can be used to determine accepted encodings (see Section 7). This
header field MAY occur on all messages.

content-encoding = "Content-Encoding" ":"
*WSP content-coding
*(*WSP "," *WSP content-coding *WSP)
CRLF

Content codings are defined in [H3.5]. An example of its use is
Content-Encoding:gzip

If multiple encodings have been applied to an entity, the content
encodings MUST be listed in the order in which they were applied.

Burnett & Shanmugham Standards Track [Page 38]

RFC 6787 MRCPv2 November 2012

6.2.10. Content-Location

The Content-Location entity-header MAY be used to supply the resource
location for the entity enclosed in the message when that entity is
accessible from a location separate from the requested resource’s
URI. Refer to [H14.14].
content-location = "Content-Location" ":"

(absoluteURI / relativeURI) CRLF

The Content-Location value is a statement of the location of the
resource corresponding to this particular entity at the time of the
request. This header field is provided for optimization purposes
only. The receiver of this header field MAY assume that the entity
being sent is identical to what would have been retrieved or might
already have been retrieved from the Content-Location URI.

For example, if the client provided a grammar markup inline, and it
had previously retrieved it from a certain URI, that URI can be
provided as part of the entity, using the Content-Location header
field. This allows a resource like the recognizer to look into its
cache to see if this grammar was previously retrieved, compiled, and
cached. In this case, it might optimize by using the previously
compiled grammar object.

If the Content-Location is a relative URI, the relative URI is
interpreted relative to the Content-Base URI. This header field MAY
occur on all messages.

6.2.11. Content-Length

This header field contains the length of the content of the message
body (i.e., after the double CRLF following the last header field).

Unlike in HTTP, it MUST be included in all messages that carry

content beyond the header section. If it is missing, a default value

of zero is assumed. Otherwise, it is interpreted according to

[H14.13]. When a message having no use for a message body contains
one, i.e., the Content-Length is non-zero, the receiver MUST ignore

the content of the message body. This header field MAY occur on all
messages.

content-length = "Content-Length" ":" 1*19DIGIT CRLF
6.2.12. Fetch Timeout
When the recognizer or synthesizer needs to fetch documents or other

resources, this header field controls the corresponding URI access
properties. This defines the timeout for content that the server may

Burnett & Shanmugham Standards Track [Page 39]

RFC 6787 MRCPv2 November 2012

need to fetch over the network. The value is interpreted to be in
milliseconds and ranges from 0 to an implementation-specific maximum
value. It is RECOMMENDED that servers be cautious about accepting
long timeout values. The default value for this header field is
implementation specific. This header field MAY occur in DEFINE-
GRAMMAR, RECOGNIZE, SPEAK, SET-PARAMS, or GET-PARAMS.

fetch-timeout = "Fetch-Timeout" ":" 1*19DIGIT CRLF
6.2.13. Cache-Control

If the server implements content caching, it MUST adhere to the cache
correctness rules of HTTP 1.1 [RFC2616] when accessing and caching
stored content. In particular, the "expires" and "cache-control"

header fields of the cached URI or document MUST be honored and take
precedence over the Cache-Control defaults set by this header field.
The Cache-Control directives are used to define the default caching
algorithms on the server for the session or request. The scope of

the directive is based on the method it is sent on. If the directive

is sent on a SET-PARAMS method, it applies for all requests for
external documents the server makes during that session, unless it is
overridden by a Cache-Control header field on an individual request.

If the directives are sent on any other requests, they apply only to
external document requests the server makes for that request. An
empty Cache-Control header field on the GET-PARAMS method is a
request for the server to return the current Cache-Control directives
setting on the server. This header field MAY occur only on requests.

cache-control = "Cache-Control" ™"
[*WSP cache-directive
*(*WSP "," *WSP cache-directive *WSP)]
CRLF
cache-directive = "max-age" "=" delta-seconds
/ "max-stale" ["=" delta-seconds]
/ "min-fresh" "=" delta-seconds

delta-seconds = 1*19DIGIT

Here, delta-seconds is a decimal time value specifying the number of
seconds since the instant the message response or data was received
by the server.

The different cache-directive options allow the client to ask the
server to override the default cache expiration mechanisms:

Burnett & Shanmugham Standards Track [Page 40]

RFC 6787 MRCPv2 November 2012

max-age Indicates that the client can tolerate the server
using content whose age is no greater than the
specified time in seconds. Unless a "max-stale"
directive is also included, the client is not willing
to accept a response based on stale data.

min-fresh Indicates that the client is willing to accept a
server response with cached data whose expiration is
no less than its current age plus the specified time
in seconds. If the server’s cache time-to-live
exceeds the client-supplied min-fresh value, the
server MUST NOT utilize cached content.

max-stale Indicates that the client is willing to allow a server
to utilize cached data that has exceeded its
expiration time. If "max-stale" is assigned a value,
then the client is willing to allow the server to use
cached data that has exceeded its expiration time by
no more than the specified number of seconds. If no
value is assigned to "max-stale”, then the client is
willing to allow the server to use stale data of any
age.

If the server cache is requested to use stale response/data without
validation, it MAY do so only if this does not conflict with any
"MUST"-level requirements concerning cache validation (e.g., a "must-
revalidate" Cache-Control directive in the HTTP 1.1 specification
pertaining to the corresponding URI).

If both the MRCPv2 Cache-Control directive and the cached entry on
the server include "max-age" directives, then the lesser of the two
values is used for determining the freshness of the cached entry for
that request.

6.2.14. Logging-Tag

This header field MAY be sent as part of a SET-PARAMS/GET-PARAMS
method to set or retrieve the logging tag for logs generated by the
server. Once set, the value persists until a new value is set or the
session ends. The MRCPv2 server MAY provide a mechanism to create
subsets of its output logs so that system administrators can examine

or extract only the log file portion during which the logging tag was

set to a certain value.

It is RECOMMENDED that clients include in the logging tag information
to identify the MRCPvV2 client User Agent, so that one can determine
which MRCPV2 client request generated a given log message at the
server. Itis also RECOMMENDED that MRCPV2 clients not log

Burnett & Shanmugham Standards Track [Page 41]

RFC 6787 MRCPv2 November 2012

personally identifiable information such as credit card numbers and
national identification numbers.

logging-tag = "Logging-Tag" ":" 1*UTFCHAR CRLF
6.2.15. Set-Cookie

Since the associated HTTP client on an MRCPV2 server fetches
documents for processing on behalf of the MRCPv2 client, the cookie
store in the HTTP client of the MRCPV2 server is treated as an
extension of the cookie store in the HTTP client of the MRCPv2

client. This requires that the MRCPV2 client and server be able to
synchronize their common cookie store as needed. To enable the
MRCPV2 client to push its stored cookies to the MRCPv2 server and get
new cookies from the MRCPV2 server stored back to the MRCPv2 client,
the Set-Cookie entity-header field MAY be included in MRCPV2 requests
to update the cookie store on a server and be returned in final

MRCPvV2 responses or events to subsequently update the client’'s own
cookie store. The stored cookies on the server persist for the

duration of the MRCPV2 session and MUST be destroyed at the end of
the session. To ensure support for cookies, MRCPV2 clients and
servers MUST support the Set-Cookie entity-header field.

Note that it is the MRCPV2 client that determines which, if any,

cookies are sent to the server. There is no requirement that all

cookies be shared. Rather, itis RECOMMENDED that MRCPvV2 clients
communicate only cookies needed by the MRCPV2 server to process its
requests.

set-cookie = "Set-Cookie:" cookies CRLF
cookies = cookie *("," *LWS cookie)
cookie = attribute "=" value *(";" cookie-av)
cookie-av = "Comment" "=" value

/ "Domain" "=" value

/ "Max-Age" "=" value

/ "Path" "=" value

/ "Secure"

/ "Version" "=" 1*19DIGIT

/ "Age" "=" delta-seconds
set-cookie = "Set-Cookie:" SP set-cookie-string
set-cookie-string = cookie-pair *(";" SP cookie-av)
cookie-pair = cookie-name "=" cookie-value
cookie-name = token

cookie-value = *cookie-octet / (DQUOTE *cookie-octet DQUOTE)
cookie-octet = %x21 / %x23-2B / %x2D-3A / %x3C-5B / %x5D-7E
token = <token, defined in [RFC2616], Section 2.2>

Burnett & Shanmugham Standards Track [Page 42]

RFC 6787 MRCPv2 November 2012

cookie-av = expires-av / max-age-av / domain-av /
path-av / secure-av / httponly-av /
extension-av / age-av

expires-av = "Expires=" sane-cookie-date
sane-cookie-date = <rfc1123-date, defined in [RFC2616], Section 3.3.1>
max-age-av = "Max-Age=" non-zero-digit *DIGIT
non-zero-digit = %x31-39

domain-av ="Domain=" domain-value
domain-value = <subdomain>

path-av = "Path=" path-value

path-value = <any CHAR except CTLs or ";">
secure-av = "Secure"

httponly-av = "HttpOnly"

extension-av = <any CHAR except CTLs or ";">
age-av = "Age=" delta-seconds

The Set-Cookie header field is specified in RFC 6265 [RFC6265]. The
"Age" attribute is introduced in this specification to indicate the

age of the cookie and is OPTIONAL. An MRCPV2 client or server MUST
calculate the age of the cookie according to the age calculation

rules in the HTTP/1.1 specification [RFC2616] and append the "Age"
attribute accordingly. This attribute is provided because time may
have passed since the client received the cookie from an HTTP server.
Rather than having the client reduce Max-Age by the actual age, it
passes Max-Age verbatim and appends the "Age" attribute, thus
maintaining the cookie as received while still accounting for the

fact that time has passed.

The MRCPv2 client or server MUST supply defaults for the "Domain” and
"Path" attributes, as specified in RFC 6265, if they are omitted by

the HTTP origin server. Note that there is no leading dot present in

the "Domain" attribute value in this case. Although an explicitly

specified "Domain" value received via the HTTP protocol may be
modified to include a leading dot, an MRCPV2 client or server MUST
NOT modify the "Domain” value when received via the MRCPv2 protocol.

An MRCPV2 client or server MAY combine multiple cookie header fields
of the same type into a single "field-name:field-value" pair as
described in Section 6.2.

The Set-Cookie header field MAY be specified in any request that
subsequently results in the server performing an HTTP access. When a
server receives new cookie information from an HTTP origin server,

and assuming the cookie store is modified according to RFC 6265, the
server MUST return the new cookie information in the MRCPv2 COMPLETE
response or event, as appropriate, to allow the client to update its

own cookie store.

Burnett & Shanmugham Standards Track [Page 43]

RFC 6787 MRCPv2 November 2012

The SET-PARAMS request MAY specify the Set-Cookie header field to
update the cookie store on a server. The GET-PARAMS request MAY be
used to return the entire cookie store of "Set-Cookie" type cookies

to the client.

6.2.16. Vendor-Specific Parameters

This set of header fields allows for the client to set or retrieve
vendor-specific parameters.

vendor-specific = "Vendor-Specific-Parameters” ":"
[vendor-specific-av-pair
*(";" vendor-specific-av-pair)] CRLF
vendor-specific-av-pair = vendor-av-pair-name "="
value

vendor-av-pair-name = 1*UTFCHAR

Header fields of this form MAY be sent in any method (request) and
are used to manage implementation-specific parameters on the server
side. The vendor-av-pair-name follows the reverse Internet Domain
Name convention (see Section 13.1.6 for syntax and registration
information). The value of the vendor attribute is specified after

the "=" symbol and MAY be quoted. For example:

com.example.companyA.paramxyz=256
com.example.companyA.paramabc=High
com.example.companyB.paramxyz=Low

When used in GET-PARAMS to get the current value of these parameters
from the server, this header field value MAY contain a semicolon-
separated list of implementation-specific attribute names.

6.3. Generic Result Structure

Result data from the server for the Recognizer and Verifier resources

is carried as a typed media entity in the MRCPv2 message body of
various events. The Natural Language Semantics Markup Language
(NLSML), an XML markup based on an early draft from the W3C, is the
default standard for returning results back to the client. Hence,

all servers implementing these resource types MUST support the media
type "application/nlsml+xml’. The Extensible MultiModal Annotation
(EMMA) [W3C.REC-emma-20090210] format can be used to return results
as well. This can be done by negotiating the format at session
establishment time with SDP (a=resultformat:application/emma-+xml) or
with SIP (Allow/Accept). With SIP, for example, if a client wants

Burnett & Shanmugham Standards Track [Page 44]

RFC 6787 MRCPv2 November 2012

results in EMMA, an MRCPV2 server can route the request to another
server that supports EMMA by inspecting the SIP header fields, rather
than having to inspect the SDP.

MRCPv2 uses this representation to convey content among the clients
and servers that generate and make use of the markup. MRCPv2 uses
NSLML specifically to convey recognition, enroliment, and

verification results between the corresponding resource on the MRCPv2
server and the MRCPV2 client. Details of this result format are

fully described in Section 6.3.1.

Content-Type:application/nlsml+xml
Content-Length:...

<?xml version="1.0"?>
<result xmlns="urn:ietf:params:xml:ns:mrcpv2"
xmins:ex="http://www.example.com/example”
grammar="http://theYesNoGrammar">
<interpretation>
<instance>
<ex:response>yes</ex:response>
</instance>
<input>OK</input>
</interpretation>
</result>

Result Example
6.3.1. Natural Language Semantics Markup Language

The Natural Language Semantics Markup Language (NLSML) is an XML data
structure with elements and attributes designed to carry result
information from recognizer (including enrolliment) and verifier
resources. The normative definition of NLSML is the RelaxNG schema
in Section 16.1. Note that the elements and attributes of this

format are defined in the MRCPv2 namespace. In the result structure,
they must either be prefixed by a namespace prefix declared within

the result or must be children of an element identified as belonging

to the respective namespace. For details on how to use XML
Namespaces, see [W3C.REC-xml-names11-20040204]. Section 2 of
[W3C.REC-xml-names11-20040204] provides details on how to declare
namespaces and namespace prefixes.

The root element of NLSML is <result>. Optional child elements are
<interpretation>, <enrollment-result>, and <verification-result>, at
least one of which must be present. A single <result> MAY contain
any or all of the optional child elements. Details of the <result>

and <interpretation> elements and their subelements and attributes

Burnett & Shanmugham Standards Track [Page 45]

RFC 6787 MRCPv2 November 2012

can be found in Section 9.6. Details of the <enrollment-result>
element and its subelements can be found in Section 9.7. Details of
the <verification-result> element and its subelements can be found in
Section 11.5.2.

7. Resource Discovery

Server resources may be discovered and their capabilities learned by
clients through standard SIP machinery. The client MAY issue a SIP
OPTIONS transaction to a server, which has the effect of requesting

the capabilities of the server. The server MUST respond to such a

request with an SDP-encoded description of its capabilities according

to RFC 3264 [RFC3264]. The MRCPV2 capabilities are described by a
single "m="line containing the media type "application" and

transport type "TCP/TLS/MRCPvV2" or "TCP/MRCPv2". There MUST be one
"resource" attribute for each media resource that the server

supports, and it has the resource type identifier as its value.

The SDP description MUST also contain "m=" lines describing the audio
capabilities and the coders the server supports.

In this example, the client uses the SIP OPTIONS method to query the
capabilities of the MRCPV2 server.

C->S:
OPTIONS sip:mrcp@server.example.com SIP/2.0
Via:SIP/2.0/TCP client.atlanta.example.com:5060;
branch=z9hG4bK74bf7
Max-Forwards:6
To:<sip:mrcp@example.com>
From:Sarvi <sip:sarvi@example.com>;tag=1928301774
Call-ID:a84b4c76e66710
CSeq:63104 OPTIONS
Contact:<sip:sarvi@client.example.com>
Accept:application/sdp
Content-Length:0

S->C:
SIP/2.0 200 OK
Via:SIP/2.0/TCP client.atlanta.example.com:5060;
branch=z9hG4bK74bf7;received=192.0.32.10
To:<sip:mrcp@example.com>;tag=62784
From:Sarvi <sip:sarvi@example.com>;tag=1928301774
Call-ID:a84b4c76e66710
CSeq:63104 OPTIONS
Contact:<sip:mrcp@server.example.com>
Allow:INVITE, ACK, CANCEL, OPTIONS, BYE

Burnett & Shanmugham Standards Track [Page 46]

RFC 6787 MRCPv2 November 2012

Accept:application/sdp
Accept-Encoding:gzip
Accept-Language:en
Supported:foo
Content-Type:application/sdp
Content-Length:...

v=0

o=sarvi 2890844536 2890842811 IN IP4 192.0.2.12
S=-

i=MRCPV2 server capabilities

c=IN IP4 192.0.2.12/127

t=00

m=application 0 TCP/TLS/MRCPV2 1
a=resource:speechsynth
a=resource:speechrecog
a=resource:speakverify

m=audio 0 RTP/AVP 0 3

a=rtpmap:0 PCMU/8000

a=rtpmap:3 GSM/8000

Using SIP OPTIONS for MRCPVv2 Server Capability Discovery

8. Speech Synthesizer Resource
This resource processes text markup provided by the client and
generates a stream of synthesized speech in real time. Depending
upon the server implementation and capability of this resource, the
client can also dictate parameters of the synthesized speech such as
voice characteristics, speaker speed, etc.
The synthesizer resource is controlled by MRCPv2 requests from the
client. Similarly, the resource can respond to these requests or
generate asynchronous events to the client to indicate conditions of
interest to the client during the generation of the synthesized
speech stream.
This section applies for the following resource types:
0 speechsynth
0 basicsynth

The capabilities of these resources are defined in Section 3.1.

Burnett & Shanmugham Standards Track [Page 47]

RFC 6787 MRCPv2 November 2012

8.1. Synthesizer State Machine

The synthesizer maintains a state machine to process MRCPv2 requests
from the client. The state transitions shown below describe the

states of the synthesizer and reflect the state of the request at the

head of the synthesizer resource queue. A SPEAK request in the
PENDING state can be deleted or stopped by a STOP request without
affecting the state of the resource.

Idle Speaking Paused
State State State
| | I
[---------- SPEAK-------- >| [--------
[<------ STOP----------—-- CONTROL |
|<----SPEAK-COMPLETE-----| |------- >
|<----BARGE-IN-OCCURRED--| [
N | |
| CONTROL [------m--- PAUSE--------- >|
| | >|< RESUME--------- |
| | Jrreeeeeeee |
[---------- | | PAUSE |
| BARGE-IN-OCCURRED | [--------- >|
e N
| | SPEECH-MARKER |
| - |
— | — | |
| STOP | RESUME |
| R |
Sa— | |
|< STOP |
---mmmee	
DEFINE-LEXICON	
I	
<-mmmeeee	
[<--mmmmm - BARGE-IN-OCCURRED------------------

Synthesizer State Machine
8.2. Synthesizer Methods

The synthesizer supports the following methods.

Burnett & Shanmugham Standards Track [Page 48]

RFC 6787 MRCPv2 November 2012

synthesizer-method = "SPEAK"
"STOP"

"PAUSE"

"RESUME"
"BARGE-IN-OCCURRED"
"CONTROL"
"DEFINE-LEXICON"

~ O~~~ ~— ~—

8.3. Synthesizer Events
The synthesizer can generate the following events.

synthesizer-event = "SPEECH-MARKER"
/ "SPEAK-COMPLETE"

8.4. Synthesizer Header Fields

A synthesizer method can contain header fields containing request
options and information to augment the Request, Response, or Event it
is associated with.

synthesizer-header = jump-size
/ kill-on-barge-in
speaker-profile
completion-cause
completion-reason
voice-parameter
prosody-parameter
speech-marker
speech-language
fetch-hint
audio-fetch-hint
failed-uri
failed-uri-cause
speak-restart
speak-length
load-lexicon
lexicon-search-order

T e e e

8.4.1. Jump-Size

This header field MAY be specified in a CONTROL method and controls
the amount to jump forward or backward in an active SPEAK request. A
'+” or -’ indicates a relative value to what is being currently

played. This header field MAY also be specified in a SPEAK request

as a desired offset into the synthesized speech. In this case, the
synthesizer MUST begin speaking from this amount of time into the
speech markup. Note that an offset that extends beyond the end of

Burnett & Shanmugham Standards Track [Page 49]

RFC 6787 MRCPv2 November 2012

the produced speech will result in audio of length zero. The
different speech length units supported are dependent on the
synthesizer implementation. If the synthesizer resource does not
support a unit for the operation, the resource MUST respond with a
status-code of 409 "Unsupported Header Field Value".

jump-size = "Jump-Size" ":" speech-length-value CRLF

speech-length-value = numeric-speech-length
| text-speech-length

text-speech-length = 1*UTFCHAR SP "Tag"
numeric-speech-length = ("+"/"-") positive-speech-length

positive-speech-length = 1*19DIGIT SP numeric-speech-unit

numeric-speech-unit = "Second"
/ "Word"
["Sentence"

/ "Paragraph"
8.4.2. Kill-On-Barge-In

This header field MAY be sent as part of the SPEAK method to enable
"kill-on-barge-in" support. If enabled, the SPEAK method is
interrupted by DTMF input detected by a signal detector resource or
by the start of speech sensed or recognized by the speech recognizer
resource.

kill-on-barge-in = "Kill-On-Barge-In"":" BOOLEAN CRLF

The client MUST send a BARGE-IN-OCCURRED method to the synthesizer
resource when it receives a barge-in-able event from any source.

This source could be a synthesizer resource or signal detector

resource and MAY be either local or distributed. If this header

field is not specified in a SPEAK request or explicitly set by a
SET-PARAMS, the default value for this header field is "true".

If the recognizer or signal detector resource is on the same server
as the synthesizer and both are part of the same session, the server
MAY work with both to provide internal notification to the
synthesizer so that audio may be stopped without having to wait for
the client's BARGE-IN-OCCURRED event.

It is generally RECOMMENDED when playing a prompt to the user with

Kill-On-Barge-In and asking for input, that the client issue the
RECOGNIZE request ahead of the SPEAK request for optimum performance

Burnett & Shanmugham Standards Track [Page 50]

RFC 6787 MRCPv2 November 2012

and user experience. This way, it is guaranteed that the recognizer
is online before the prompt starts playing and the user’s speech will
not be truncated at the beginning (especially for power users).

8.4.3. Speaker-Profile

This header field MAY be part of the SET-PARAMS/GET-PARAMS or SPEAK
request from the client to the server and specifies a URI that

references the profile of the speaker. Speaker profiles are

collections of voice parameters like gender, accent, etc.

speaker-profile = "Speaker-Profile" ":" uri CRLF

8.4.4. Completion-Cause
This header field MUST be specified in a SPEAK-COMPLETE event coming
from the synthesizer resource to the client. This indicates the

reason the SPEAK request completed.

completion-cause = "Completion-Cause" ":" 3DIGIT SP
1*VCHAR CRLF

+ + + +

| Cause-Code | Cause-Name | Description |

+ + + +
| 000 | normal | SPEAK completed normally. |
| 001 | barge-in | SPEAK request was terminated |
| because of barge-in. |
002 | parse-failure | SPEAK request terminated |

| | because of a failureto |
| | parse the speech markup |

|

|

|

| | text. |

| 003 | uri-failure | SPEAK request terminated |
| | | because access to one of the |

| | | URIs failed.

| 004 | error | SPEAK request terminated |

| | | prematurely due to |

| | | synthesizer error. |

005	language-unsupported	Language not supported.
006	lexicon-load-failure	Lexicon loading failed.
007	cancelled	A prior SPEAK request failed
		while this one was still in

| | the queue. |

+ + + +

Synthesizer Resource Completion Cause Codes

Burnett & Shanmugham Standards Track [Page 51]

RFC 6787 MRCPv2 November 2012

8.4.5. Completion-Reason

This header field MAY be specified in a SPEAK-COMPLETE event coming
from the synthesizer resource to the client. This contains the

reason text behind the SPEAK request completion. This header field
communicates text describing the reason for the failure, such as an

error in parsing the speech markup text.

completion-reason = "Completion-Reason" ":"
guoted-string CRLF

The completion reason text is provided for client use in logs and for
debugging and instrumentation purposes. Clients MUST NOT interpret
the completion reason text.

8.4.6. Voice-Parameter
This set of header fields defines the voice of the speaker.
voice-parameter = voice-gender
| voice-age

| voice-variant
| voice-name

voice-gender = "Voice-Gender:" voice-gender-value CRLF
voice-gender-value = "male"

["female"

/ "neutral"
voice-age = "Voice-Age:" 1*3DIGIT CRLF
voice-variant = "Voice-Variant:" 1*19DIGIT CRLF
voice-name = "Voice-Name:"

1*UTFCHAR *(1*WSP 1*UTFCHAR) CRLF

The "Voice-" parameters are derived from the similarly named
attributes of the voice element specified in W3C’s Speech Synthesis
Markup Language Specification (SSML)
[W3C.REC-speech-synthesis-20040907]. Legal values for these
parameters are as defined in that specification.

These header fields MAY be sent in SET-PARAMS or GET-PARAMS requests
to define or get default values for the entire session or MAY be sent

in the SPEAK request to define default values for that SPEAK request.

Note that SSML content can itself set these values internal to the

SSML document, of course.

Burnett & Shanmugham Standards Track [Page 52]

RFC 6787 MRCPv2 November 2012

Voice parameter header fields MAY also be sent in a CONTROL method to
affect a SPEAK request in progress and change its behavior on the

fly. If the synthesizer resource does not support this operation, it

MUST reject the request with a status-code of 403 "Unsupported Header
Field".

8.4.7. Prosody-Parameters
This set of header fields defines the prosody of the speech.

prosody-parameter = "Prosody-" prosody-param-name ":"
prosody-param-value CRLF

prosody-param-name = 1*VCHAR
prosody-param-value = 1*VCHAR

prosody-param-name is any one of the attribute names under the
prosody element specified in W3C'’s Speech Synthesis Markup Language
Specification [W3C.REC-speech-synthesis-20040907]. The prosody-
param-value is any one of the value choices of the corresponding
prosody element attribute from that specification.

These header fields MAY be sent in SET-PARAMS or GET-PARAMS requests
to define or get default values for the entire session or MAY be sent

in the SPEAK request to define default values for that SPEAK request.
Furthermore, these attributes can be part of the speech text marked

up in SSML.

The prosody parameter header fields in the SET-PARAMS or SPEAK
request only apply if the speech data is of type 'text/plain’ and
does not use a speech markup format.

These prosody parameter header fields MAY also be sentin a CONTROL
method to affect a SPEAK request in progress and change its behavior
on the fly. If the synthesizer resource does not support this

operation, it MUST respond back to the client with a status-code of

403 "Unsupported Header Field".

8.4.8. Speech-Marker

This header field contains timestamp information in a "timestamp"
field. This is a Network Time Protocol (NTP) [RFC5905] timestamp, a
64-bit number in decimal form. It MUST be synced with the Real-Time
Protocol (RTP) [RFC3550] timestamp of the media stream through the
Real-Time Control Protocol (RTCP) [RFC3550].

Burnett & Shanmugham Standards Track [Page 53]

RFC 6787 MRCPv2 November 2012

Markers are bookmarks that are defined within the markup. Most

speech markup formats provide mechanisms to embed marker fields

within speech texts. The synthesizer generates SPEECH-MARKER events
when it reaches these marker fields. This header field MUST be part

of the SPEECH-MARKER event and contain the marker tag value after the
timestamp, separated by a semicolon. In these events, the timestamp
marks the time the text corresponding to the marker was emitted as
speech by the synthesizer.

This header field MUST also be returned in responses to STOP,

CONTROL, and BARGE-IN-OCCURRED methods, in the SPEAK-COMPLETE event,
and in an IN-PROGRESS SPEAK response. In these messages, if any

markers have been encountered for the current SPEAK, the marker tag

value MUST be the last embedded marker encountered. If no markers

have yet been encountered for the current SPEAK, only the timestamp

is REQUIRED. Note that in these events, the purpose of this header

field is to provide timestamp information associated with important

events within the lifecycle of a request (start of SPEAK processing,

end of SPEAK processing, receipt of CONTROL/STOP/BARGE-IN-OCCURRED).

timestamp = "timestamp" "=" time-stamp-value

time-stamp-value = 1*20DIGIT

speech-marker = "Speech-Marker" ":"
timestamp

["" 1*(UTFCHAR / %x20)] CRLF
8.4.9. Speech-Language

This header field specifies the default language of the speech data

if the language is not specified in the markup. The value of this

header field MUST follow RFC 5646 [RFC5646] for its values. The

header field MAY occur in SPEAK, SET-PARAMS, or GET-PARAMS requests.

speech-language = "Speech-Language"":" 1*VCHAR CRLF
8.4.10. Fetch-Hint

When the synthesizer needs to fetch documents or other resources like
speech markup or audio files, this header field controls the
corresponding URI access properties. This provides client policy on
when the synthesizer should retrieve content from the server. A

value of "prefetch" indicates the content MAY be downloaded when the
request is received, whereas "safe" indicates that content MUST NOT

Burnett & Shanmugham Standards Track [Page 54]

RFC 6787 MRCPv2 November 2012

be downloaded until actually referenced. The default value is
"prefetch”. This header field MAY occur in SPEAK, SET-PARAMS, or
GET-PARAMS requests.

fetch-hint = "Fetch-Hint" ":" ("prefetch" / "safe™) CRLF
8.4.11. Audio-Fetch-Hint

When the synthesizer needs to fetch documents or other resources like
speech audio files, this header field controls the corresponding URI
access properties. This provides client policy whether or not the
synthesizer is permitted to attempt to optimize speech by pre-

fetching audio. The value is either "safe" to say that audio is only
fetched when it is referenced, never before; "prefetch" to permit,

but not require the implementation to pre-fetch the audio; or

"stream" to allow it to stream the audio fetches. The default value

is "prefetch”. This header field MAY occur in SPEAK, SET-PARAMS, or
GET-PARAMS requests.

audio-fetch-hint = "Audio-Fetch-Hint" ":"
("prefetch" / "safe" / "stream") CRLF

8.4.12. Failed-URI

When a synthesizer method needs a synthesizer to fetch or access a
URI and the access fails, the server SHOULD provide the failed URI in
this header field in the method response, unless there are multiple
URI failures, in which case the server MUST provide one of the failed
URIs in this header field in the method response.

failed-uri = "Failed-URI" ":" absoluteURI CRLF
8.4.13. Failed-URI-Cause

When a synthesizer method needs a synthesizer to fetch or access a
URI and the access fails, the server MUST provide the URI-specific or
protocol-specific response code for the URI in the Failed-URI header
field in the method response through this header field. The value
encoding is UTF-8 (RFC 3629 [RFC3629]) to accommodate any access
protocol -- some access protocols might have a response string

instead of a numeric response code.

failed-uri-cause = "Failed-URI-Cause" ":" 1*UTFCHAR CRLF

Burnett & Shanmugham Standards Track [Page 55]

RFC 6787 MRCPv2 November 2012

8.4.14. Speak-Restart

When a client issues a CONTROL request to a currently speaking
synthesizer resource to jump backward, and the target jump point is
before the start of the current SPEAK request, the current SPEAK
request MUST restart from the beginning of its speech data and the
server's response to the CONTROL request MUST contain this header
field with a value of "true" indicating a restart.

speak-restart = "Speak-Restart" ":" BOOLEAN CRLF
8.4.15. Speak-Length

This header field MAY be specified in a CONTROL method to control the
maximum length of speech to speak, relative to the current speaking
point in the currently active SPEAK request. If numeric, the value
MUST be a positive integer. If a header field with a Tag unit is
specified, then the speech output continues until the tag is reached
or the SPEAK request is completed, whichever comes first. This
header field MAY be specified in a SPEAK request to indicate the
length to speak from the speech data and is relative to the point in
speech that the SPEAK request starts. The different speech length
units supported are synthesizer implementation dependent. If a
server does not support the specified unit, the server MUST respond
with a status-code of 409 "Unsupported Header Field Value".

speak-length = "Speak-Length" ":" positive-length-value
CRLF

positive-length-value = positive-speech-length
| text-speech-length

text-speech-length = 1*UTFCHAR SP "Tag"

positive-speech-length = 1*19DIGIT SP numeric-speech-unit

numeric-speech-unit = "Second"
/ "Word"
/ "Sentence"

/ "Paragraph”

Burnett & Shanmugham Standards Track [Page 56]

RFC 6787 MRCPv2 November 2012

8.4.16. Load-Lexicon

This header field is used to indicate whether a lexicon has to be
loaded or unloaded. The value "true" means to load the lexicon if
not already loaded, and the value "false” means to unload the lexicon
if it is loaded. The default value for this header field is "true".

This header field MAY be specified in a DEFINE-LEXICON method.

load-lexicon = "Load-Lexicon"":" BOOLEAN CRLF
8.4.17. Lexicon-Search-Order

This header field is used to specify a list of active pronunciation
lexicon URIs and the search order among the active lexicons.
Lexicons specified within the SSML document take precedence over the
lexicons specified in this header field. This header field MAY be
specified in the SPEAK, SET-PARAMS, and GET-PARAMS methods.
lexicon-search-order = "Lexicon-Search-Order" ":"

"<" absoluteURI ">" *(" " "<" absoluteURI ">") CRLF

8.5. Synthesizer Message Body

A synthesizer message can contain additional information associated
with the Request, Response, or Event in its message body.

8.5.1. Synthesizer Speech Data

Marked-up text for the synthesizer to speak is specified as a typed
media entity in the message body. The speech data to be spoken by
the synthesizer can be specified inline by embedding the data in the
message body or by reference by providing a URI for accessing the
data. In either case, the data and the format used to markup the
speech needs to be of a content type supported by the server.

All MRCPV2 servers containing synthesizer resources MUST support both
plain text speech data and W3C’s Speech Synthesis Markup Language
[W3C.REC-speech-synthesis-20040907] and hence MUST support the media
types 'text/plain’ and 'application/ssml+xml’. Other formats MAY be
supported.

If the speech data is to be fetched by URI reference, the media type
‘text/uri-list’ (see RFC 2483 [RFC2483]) is used to indicate one or
more URIs that, when dereferenced, will contain the content to be
spoken. If a list of speech URIs is specified, the resource MUST
speak the speech data provided by each URI in the order in which the
URIs are specified in the content.

Burnett & Shanmugham Standards Track [Page 57]

RFC 6787 MRCPv2 November 2012

MRCPvV2 clients and servers MUST support the 'multipart/mixed’ media
type. This is the appropriate media type to use when providing a mix
of URI and inline speech data. Embedded within the multipart content
block, there MAY be content for the "text/uri-list’, 'application/
ssml+xml’, and/or 'text/plain’ media types. The character set and
encoding used in the speech data is specified according to standard
media type definitions. The multipart content MAY also contain

actual audio data. Clients may have recorded audio clips stored in
memory or on a local device and wish to play it as part of the SPEAK
request. The audio portions MAY be sent by the client as part of the
multipart content block. This audio is referenced in the speech
markup data that is another part in the multipart content block
according to the 'multipart/mixed’ media type specification.

Content-Type:text/uri-list
Content-Length:...

http://www.example.com/ASR-Introduction.ssml
http://www.example.com/ASR-Document-Partl.ssmi
http://www.example.com/ASR-Document-Part2.ssml
http://www.example.com/ASR-Conclusion.ssml

URI List Example

Content-Type:application/ssml+xml
Content-Length:...

<?xml version="1.0"?>
<speak version="1.0"
xmins="http://www.w3.0rg/2001/10/synthesis"
xmlins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://www.w3.0rg/2001/10/synthesis
http://www.w3.0rg/TR/speech-synthesis/synthesis.xsd"
xml:lang="en-US">
<p>

<s>You have 4 new messages.</s>

<s>The first is from Aldine Turnbet

and arrived at <break/>

<say-as interpret-as="vxml:time">0345p</say-as>.</s>

<s>The subject is <prosody
rate="-20%">ski trip</prosody></s>
</p>
</speak>

SSML Example

Burnett & Shanmugham Standards Track [Page 58]

RFC 6787 MRCPv2 November 2012

Content-Type:multipart/mixed; boundary="break"

--break
Content-Type:text/uri-list
Content-Length:...

http://www.example.com/ASR-Introduction.ssml
http://www.example.com/ASR-Document-Partl.ssml
http://www.example.com/ASR-Document-Part2.ssml
http://www.example.com/ASR-Conclusion.ssml

--break
Content-Type:application/ssml+xml
Content-Length:....

<?xml version="1.0"?>
<speak version="1.0"
xmins="http://www.w3.0rg/2001/10/synthesis"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemal.ocation="http://www.w3.0rg/2001/10/synthesis
http://www.w3.0rg/TR/speech-synthesis/synthesis.xsd"
xml:lang="en-US">
<p>

<s>You have 4 new messages.</s>

<s>The first is from Stephanie Williams

and arrived at <break/>

<say-as interpret-as="vxml:time">0342p</say-as>.</s>

<s>The subject is <prosody
rate="-20%">ski trip</prosody></s>
</p>
</speak>
--break--

Multipart Example
8.5.2. Lexicon Data

Synthesizer lexicon data from the client to the server can be

provided inline or by reference. Either way, they are carried as

typed media in the message body of the MRCPv2 request message (see
Section 8.14).

When a lexicon is specified inline in the message, the client MUST
provide a Content-ID for that lexicon as part of the content header
fields. The server MUST store the lexicon associated with that
Content-ID for the duration of the session. A stored lexicon can be
overwritten by defining a new lexicon with the same Content-ID.

Burnett & Shanmugham Standards Track [Page 59]

RFC 6787 MRCPv2 November 2012

Lexicons that have been associated with a Content-ID can be
referenced through the 'session’ URI scheme (see Section 13.6).

If lexicon data is specified by external URI reference, the media

type 'text/uri-list’ (see RFC 2483 [RFC2483]) is used to list the

one or more URIs that may be dereferenced to obtain the lexicon data.
All MRCPV2 servers MUST support the "http" and "https" URI access
mechanisms, and MAY support other mechanisms.

If the data in the message body consists of a mix of URI and inline
lexicon data, the 'multipart/mixed’ media type is used. The

character set and encoding used in the lexicon data may be specified
according to standard media type definitions.

8.6. SPEAK Method

The SPEAK request provides the synthesizer resource with the speech
text and initiates speech synthesis and streaming. The SPEAK method
MAY carry voice and prosody header fields that alter the behavior of
the voice being synthesized, as well as a typed media message body
containing the actual marked-up text to be spoken.

The SPEAK method implementation MUST do a fetch of all external URIs
that are part of that operation. If caching is implemented, this URI

fetching MUST conform to the cache-control hints and parameter header
fields associated with the method in deciding whether it is to be

fetched from cache or from the external server. If these hints/

parameters are not specified in the method, the values set for the

session using SET-PARAMS/GET-PARAMS apply. If it was not set for the
session, their default values apply.

When applying voice parameters, there are three levels of precedence.
The highest precedence are those specified within the speech markup
text, followed by those specified in the header fields of the SPEAK
request and hence that apply for that SPEAK request only, followed by
the session default values that can be set using the SET-PARAMS
request and apply for subsequent methods invoked during the session.

If the resource was idle at the time the SPEAK request arrived at the
server and the SPEAK method is being actively processed, the resource
responds immediately with a success status code and a request-state
of IN-PROGRESS.

If the resource is in the speaking or paused state when the SPEAK
method arrives at the server, i.e., it is in the middle of processing

a previous SPEAK request, the status returns success with a request-
state of PENDING. The server places the SPEAK request in the
synthesizer resource request queue. The request queue operates

Burnett & Shanmugham Standards Track [Page 60]

RFC 6787 MRCPv2 November 2012

strictly FIFO: requests are processed serially in order of receipt.

If the current SPEAK fails, all SPEAK methods in the pending queue
are cancelled and each generates a SPEAK-COMPLETE event with a
Completion-Cause of "cancelled".

For the synthesizer resource, SPEAK is the only method that can

return a request-state of IN-PROGRESS or PENDING. When the text has
been synthesized and played into the media stream, the resource

issues a SPEAK-COMPLETE event with the request-id of the SPEAK
request and a request-state of COMPLETE.

C->S: MRCP/2.0 ... SPEAK 543257
Channel-ldentifier:32AECB23433802@speechsynth
Voice-gender:neutral
Voice-Age:25
Prosody-volume:medium
Content-Type:application/ssml+xml
Content-Length:...

<?xml version="1.0"?>
<speak version="1.0"
xmins="http://www.w3.0rg/2001/10/synthesis"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance”
xsi:schemalLocation="http://www.w3.0rg/2001/10/synthesis
http://www.w3.0rg/TR/speech-synthesis/synthesis.xsd"
xml:lang="en-US">
<p>
<s>You have 4 new messages.</s>
<s>The first is from Stephanie Williams and arrived at
<break/>
<say-as interpret-as="vxml:time">0342p</say-as>.
</s>
<s>The subject is
<prosody rate="-20%">ski trip</prosody>
</s>
</p>
</speak>

S->C: MRCP/2.0 ... 543257 200 IN-PROGRESS
Channel-ldentifier:32AECB23433802@speechsynth
Speech-Marker:timestamp=857206027059

S->C: MRCP/2.0 ... SPEAK-COMPLETE 543257 COMPLETE
Channel-ldentifier:32AECB23433802@speechsynth
Completion-Cause:000 normal
Speech-Marker:timestamp=857206027059

SPEAK Example

Burnett & Shanmugham Standards Track [Page 61]

RFC 6787 MRCPv2 November 2012

8.7. STOP

The STOP method from the client to the server tells the synthesizer
resource to stop speaking if it is speaking something.

The STOP request can be sent with an Active-Request-Id-List header
field to stop the zero or more specific SPEAK requests that may be in
gueue and return a response status-code of 200 "Success". If no
Active-Request-Id-List header field is sent in the STOP request, the
server terminates all outstanding SPEAK requests.

If a STOP request successfully terminated one or more PENDING or
IN-PROGRESS SPEAK requests, then the response MUST contain an Active-
Request-1d-List header field enumerating the SPEAK request-ids that

were terminated. Otherwise, there is no Active-Request-1d-List

header field in the response. No SPEAK-COMPLETE events are sent for
such terminated requests.

If a SPEAK request that was IN-PROGRESS and speaking was stopped, the
next pending SPEAK request, if any, becomes IN-PROGRESS at the
resource and enters the speaking state.

If a SPEAK request that was IN-PROGRESS and paused was stopped, the
next pending SPEAK request, if any, becomes IN-PROGRESS and enters
the paused state.

C->S: MRCP/2.0 ... SPEAK 543258
Channel-ldentifier:32AECB23433802@speechsynth
Content-Type:application/ssml+xml
Content-Length:...

<?xml version="1.0"?>
<speak version="1.0"
xmins="http://www.w3.0rg/2001/10/synthesis"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance”
xsi:schemalLocation="http://www.w3.0rg/2001/10/synthesis
http://www.w3.0org/TR/speech-synthesis/synthesis.xsd"
xml:lang="en-US">
<p>
<s>You have 4 new messages.</s>
<s>The first is from Stephanie Williams and arrived at
<break/>
<say-as interpret-as="vxml:time">0342p</say-as>.</s>
<s>The subject is
<prosody rate="-20%">ski trip</prosody></s>
</p>
</speak>

Burnett & Shanmugham Standards Track [Page 62]

RFC 6787 MRCPv2 November 2012

S->C: MRCP/2.0 ... 543258 200 IN-PROGRESS
Channel-ldentifier:32AECB23433802@speechsynth
Speech-Marker:timestamp=857206027059

C->S: MRCP/2.0 ... STOP 543259
Channel-ldentifier:32AECB23433802@speechsynth

S->C: MRCP/2.0 ... 543259 200 COMPLETE
Channel-ldentifier:32AECB23433802@speechsynth
Active-Request-ld-List:543258
Speech-Marker:timestamp=857206039059

STOP Example
8.8. BARGE-IN-OCCURRED

The BARGE-IN-OCCURRED method, when used with the synthesizer
resource, provides a client that has detected a barge-in-able event a
means to communicate the occurrence of the event to the synthesizer
resource.

This method is useful in two scenarios:

1. The client has detected DTMF digits in the input media or some
other barge-in-able event and wants to communicate that to the
synthesizer resource.

2. The recognizer resource and the synthesizer resource are in
different servers. In this case, the client acts as an
intermediary for the two servers. It receives an event from the
recognition resource and sends a BARGE-IN-OCCURRED request to the
synthesizer. In such cases, the BARGE-IN-OCCURRED method would
also have a Proxy-Sync-ld header field received from the resource
generating the original event.

If a SPEAK request is active with kill-on-barge-in enabled (see

Section 8.4.2), and the BARGE-IN-OCCURRED event is received, the
synthesizer MUST immediately stop streaming out audio. It MUST also
terminate any speech requests queued behind the current active one,
irrespective of whether or not they have barge-in enabled. If a
barge-in-able SPEAK request was playing and it was terminated, the
response MUST contain an Active-Request-Id-List header field listing
the request-ids of all SPEAK requests that were terminated. The
server generates no SPEAK-COMPLETE events for these requests.

Burnett & Shanmugham Standards Track [Page 63]

RFC 6787 MRCPv2 November 2012

If there were no SPEAK requests terminated by the synthesizer

resource as a result of the BARGE-IN-OCCURRED method, the server MUST
respond to the BARGE-IN-OCCURRED with a status-code of 200 "Success",
and the response MUST NOT contain an Active-Request-Id-List header

field.

If the synthesizer and recognizer resources are part of the same

MRCPV2 session, they can be optimized for a quicker kill-on-barge-in
response if the recognizer and synthesizer interact directly. In

these cases, the client MUST still react to a START-OF-INPUT event

from the recognizer by invoking the BARGE-IN-OCCURRED method to the
synthesizer. The client MUST invoke the BARGE-IN-OCCURRED if it has
any outstanding requests to the synthesizer resource in either the
PENDING or IN-PROGRESS state.

C->S: MRCP/2.0 ... SPEAK 543258
Channel-ldentifier:32AECB23433802@speechsynth
Voice-gender:neutral
Voice-Age:25
Prosody-volume:medium
Content-Type:application/ssml+xml
Content-Length:...

<?xml version="1.0"?>
<speak version="1.0"
xmlns="http://www.w3.0rg/2001/10/synthesis"
xmlins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemal ocation="http://www.w3.0rg/2001/10/synthesis
http://www.w3.0rg/TR/speech-synthesis/synthesis.xsd"
xml:lang="en-US">
<p>
<s>You have 4 new messages.</s>
<s>The first is from Stephanie Williams and arrived at
<break/>
<say-as interpret-as="vxml:time">0342p</say-as>.</s>
<s>The subject is
<prosody rate="-20%">ski trip</prosody></s>
</p>
</speak>

S->C: MRCP/2.0 ... 543258 200 IN-PROGRESS
Channel-ldentifier:32AECB23433802@speechsynth
Speech-Marker:timestamp=857206027059

C->S: MRCP/2.0 ... BARGE-IN-OCCURRED 543259

Channel-ldentifier:32AECB23433802@speechsynth
Proxy-Sync-1d:987654321

Burnett & Shanmugham Standards Track [Page 64]

RFC 6787 MRCPv2 November 2012

S->C:MRCP/2.0 ... 543259 200 COMPLETE
Channel-ldentifier:32AECB23433802@speechsynth
Active-Request-Id-List:543258
Speech-Marker:timestamp=857206039059

BARGE-IN-OCCURRED Example
8.9. PAUSE

The PAUSE method from the client to the server tells the synthesizer
resource to pause speech output if it is speaking something. If a
PAUSE method is issued on a session when a SPEAK is not active, the
server MUST respond with a status-code of 402 "Method not valid in
this state". If a PAUSE method is issued on a session when a SPEAK
is active and paused, the server MUST respond with a status-code of
200 "Success". If a SPEAK request was active, the server MUST return
an Active-Request-Id-List header field whose value contains the
request-id of the SPEAK request that was paused.

C->S: MRCP/2.0 ... SPEAK 543258
Channel-ldentifier:32AECB23433802@speechsynth
Voice-gender:neutral
Voice-Age:25
Prosody-volume:medium
Content-Type:application/ssml+xml
Content-Length:...

<?xml version="1.0"?>
<speak version="1.0"
xmlns="http://www.w3.0rg/2001/10/synthesis"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemal ocation="http://www.w3.0rg/2001/10/synthesis
http://www.w3.0rg/TR/speech-synthesis/synthesis.xsd"
xml:lang="en-US">
<p>
<s>You have 4 new messages.</s>
<s>The first is from Stephanie Williams and arrived at
<break/>
<say-as interpret-as="vxml:time">0342p</say-as>.</s>

<s>The subject is
<prosody rate="-20%">ski trip</prosody></s>
</p>
</speak>

S->C: MRCP/2.0 ... 543258 200 IN-PROGRESS

Channel-ldentifier:32AECB23433802@speechsynth
Speech-Marker:timestamp=857206027059

Burnett & Shanmugham Standards Track [Page 65]

RFC 6787 MRCPv2 November 2012

C->S: MRCP/2.0 ... PAUSE 543259
Channel-ldentifier:32AECB23433802@speechsynth

S->C: MRCP/2.0 ... 543259 200 COMPLETE
Channel-ldentifier:32AECB23433802@speechsynth
Active-Request-ld-List:543258

PAUSE Example
8.10. RESUME

The RESUME method from the client to the server tells a paused
synthesizer resource to resume speaking. If a RESUME request is
issued on a session with no active SPEAK request, the server MUST
respond with a status-code of 402 "Method not valid in this state".

If a RESUME request is issued on a session with an active SPEAK
request that is speaking (i.e., not paused), the server MUST respond
with a status-code of 200 "Success". If a SPEAK request was paused,
the server MUST return an Active-Request-ld-List header field whose
value contains the request-id of the SPEAK request that was resumed.

C->S: MRCP/2.0 ... SPEAK 543258
Channel-ldentifier:32AECB23433802@speechsynth
Voice-gender:neutral
Voice-age:25
Prosody-volume:medium
Content-Type:application/ssml+xml
Content-Length:...

<?xml version="1.0"?>
<speak version="1.0"
xmlns="http://www.w3.0rg/2001/10/synthesis"
xmlins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemal ocation="http://www.w3.0rg/2001/10/synthesis
http://www.w3.0rg/TR/speech-synthesis/synthesis.xsd"
xml:lang="en-US">
<p>
<s>You have 4 new messages.</s>
<s>The first is from Stephanie Williams and arrived at
<break/>
<say-as interpret-as="vxml:itime">0342p</say-as>.</s>
<s>The subject is
<prosody rate="-20%">ski trip</prosody></s>
</p>
</speak>

Burnett & Shanmugham Standards Track [Page 66]

RFC 6787 MRCPv2 November 2012

S->C: MRCP/2.0 ... 543258 200 IN-PROGRESS@speechsynth
Channel-ldentifier:32AECB23433802
Speech-Marker:timestamp=857206027059

C->S: MRCP/2.0 ... PAUSE 543259
Channel-ldentifier:32AECB23433802@speechsynth

S->C: MRCP/2.0 ... 543259 200 COMPLETE
Channel-ldentifier:32AECB23433802@speechsynth
Active-Request-ld-List:543258

C->S: MRCP/2.0 ... RESUME 543260
Channel-ldentifier:32AECB23433802@speechsynth

S->C: MRCP/2.0 ... 543260 200 COMPLETE
Channel-ldentifier:32AECB23433802@speechsynth
Active-Request-ld-List:543258

RESUME Example
8.11. CONTROL

The CONTROL method from the client to the server tells a synthesizer
that is speaking to modify what it is speaking on the fly. This

method is used to request the synthesizer to jump forward or backward
in what it is speaking, change speaker rate, speaker parameters, etc.

It affects only the currently IN-PROGRESS SPEAK request. Depending
on the implementation and capability of the synthesizer resource, it
may or may not support the various modifications indicated by header
fields in the CONTROL request.

When a client invokes a CONTROL method to jump forward and the
operation goes beyond the end of the active SPEAK method’s text, the
CONTROL request still succeeds. The active SPEAK request completes
and returns a SPEAK-COMPLETE event following the response to the
CONTROL method. If there are more SPEAK requests in the queue, the
synthesizer resource starts at the beginning of the next SPEAK

request in the queue.

When a client invokes a CONTROL method to jump backward and the
operation jumps to the beginning or beyond the beginning of the
speech data of the active SPEAK method, the CONTROL request still
succeeds. The response to the CONTROL request contains the speak-
restart header field, and the active SPEAK request restarts from the
beginning of its speech data.

Burnett & Shanmugham Standards Track [Page 67]

RFC 6787 MRCPv2 November 2012

These two behaviors can be used to rewind or fast-forward across
multiple speech requests, if the client wants to break up a speech
markup text into multiple SPEAK requests.

If a SPEAK request was active when the CONTROL method was received,
the server MUST return an Active-Request-ld-List header field
containing the request-id of the SPEAK request that was active.

C->S: MRCP/2.0 ... SPEAK 543258
Channel-ldentifier:32AECB23433802@speechsynth
Voice-gender:neutral
Voice-age:25
Prosody-volume:medium
Content-Type:application/ssml+xml
Content-Length:...

<?xml version="1.0"?>
<speak version="1.0"
xmlns="http://www.w3.0rg/2001/10/synthesis"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemal ocation="http://www.w3.0rg/2001/10/synthesis
http://www.w3.0rg/TR/speech-synthesis/synthesis.xsd"
xml:lang="en-US">
<p>
<s>You have 4 new messages.</s>
<s>The first is from Stephanie Williams
and arrived at <break/>
<say-as interpret-as="vxml:time">0342p</say-as>.</s>

<s>The subject is <prosody
rate="-20%">ski trip</prosody></s>
</p>
</speak>

S->C: MRCP/2.0 ... 543258 200 IN-PROGRESS
Channel-ldentifier:32AECB23433802@speechsynth
Speech-Marker:timestamp=857205016059

C->S: MRCP/2.0 ... CONTROL 543259
Channel-ldentifier:32AECB23433802@speechsynth
Prosody-rate:fast

S->C: MRCP/2.0 ... 543259 200 COMPLETE
Channel-ldentifier:32AECB23433802@speechsynth
Active-Request-Id-List:543258
Speech-Marker:timestamp=857206027059

Burnett & Shanmugham Standards Track [Page 68]

RFC 6787 MRCPv2 November 2012

C->S: MRCP/2.0 ... CONTROL 543260
Channel-ldentifier:32AECB23433802@speechsynth
Jump-Size:-15 Words

S->C: MRCP/2.0 ... 543260 200 COMPLETE
Channel-ldentifier:32AECB23433802@speechsynth
Active-Request-ld-List:543258
Speech-Marker:timestamp=857206039059

CONTROL Example
8.12. SPEAK-COMPLETE

This is an Event message from the synthesizer resource to the client
that indicates the corresponding SPEAK request was completed. The
request-id field matches the request-id of the SPEAK request that
initiated the speech that just completed. The request-state field is

set to COMPLETE by the server, indicating that this is the last event
with the corresponding request-id. The Completion-Cause header field
specifies the cause code pertaining to the status and reason of

request completion, such as the SPEAK completed normally or because
of an error, kill-on-barge-in, etc.

C->S: MRCP/2.0 ... SPEAK 543260
Channel-ldentifier:32AECB23433802@speechsynth
Voice-gender:neutral
Voice-age:25
Prosody-volume:medium
Content-Type:application/ssml+xml
Content-Length:...

<?xml version="1.0"?>
<speak version="1.0"
xmins="http://www.w3.0rg/2001/10/synthesis"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance”
xsi:schemalLocation="http://www.w3.0rg/2001/10/synthesis
http://www.w3.0org/TR/speech-synthesis/synthesis.xsd"
xml:lang="en-US">
<p>
<s>You have 4 new messages.</s>
<s>The first is from Stephanie Williams
and arrived at <break/>
<say-as interpret-as="vxml:time">0342p</say-as>.</s>
<s>The subject is
<prosody rate="-20%">ski trip</prosody></s>
</p>
</speak>

Burnett & Shanmugham Standards Track [Page 69]

RFC 6787 MRCPv2 November 2012

S->C: MRCP/2.0 ... 543260 200 IN-PROGRESS
Channel-ldentifier:32AECB23433802@speechsynth
Speech-Marker:timestamp=857206027059

S->C: MRCP/2.0 ... SPEAK-COMPLETE 543260 COMPLETE
Channel-ldentifier:32AECB23433802@speechsynth
Completion-Cause:000 normal
Speech-Marker:timestamp=857206039059

SPEAK-COMPLETE Example
8.13. SPEECH-MARKER

This is an event generated by the synthesizer resource to the client

when the synthesizer encounters a marker tag in the speech markup it

is currently processing. The value of the request-id field MUST

match that of the corresponding SPEAK request. The request-state

field MUST have the value "IN-PROGRESS" as the speech is still not
complete. The value of the speech marker tag hit, describing where

the synthesizer is in the speech markup, MUST be returned in the
Speech-Marker header field, along with an NTP timestamp indicating

the instant in the output speech stream that the marker was

encountered. The SPEECH-MARKER event MUST also be generated with a
null marker value and output NTP timestamp when a SPEAK request in
Pending-State (i.e., in the queue) changes state to IN-PROGRESS and
starts speaking. The NTP timestamp MUST be synchronized with the RTP
timestamp used to generate the speech stream through standard RTCP
machinery.

C->S: MRCP/2.0 ... SPEAK 543261
Channel-ldentifier:32AECB23433802@speechsynth
Voice-gender:neutral
Voice-age:25
Prosody-volume:medium
Content-Type:application/ssml+xml
Content-Length:...

<?xml version="1.0"?>
<speak version="1.0"
xmins="http://www.w3.0rg/2001/10/synthesis"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance”
xsi:schemalocation="http://www.w3.0rg/2001/10/synthesis
http://www.w3.0org/TR/speech-synthesis/synthesis.xsd"
xml:lang="en-US">
<p>
<s>You have 4 new messages.</s>
<s>The first is from Stephanie Williams
and arrived at <break/>

Burnett & Shanmugham Standards Track [Page 70]

RFC 6787 MRCPv2 November 2012

<say-as interpret-as="vxml:time">0342p</say-as>.</s>
<mark name="here"/>
<s>The subject is
<prosody rate="-20%">ski trip</prosody>
</s>
<mark name="ANSWER"/>
</p>
</speak>

S->C: MRCP/2.0 ... 543261 200 IN-PROGRESS
Channel-ldentifier:32AECB23433802@speechsynth
Speech-Marker:timestamp=857205015059

S->C: MRCP/2.0 ... SPEECH-MARKER 543261 IN-PROGRESS
Channel-ldentifier:32AECB23433802@speechsynth
Speech-Marker:timestamp=857206027059;here

S->C: MRCP/2.0 ... SPEECH-MARKER 543261 IN-PROGRESS
Channel-ldentifier:32AECB23433802@speechsynth
Speech-Marker:timestamp=857206039059;ANSWER

S->C: MRCP/2.0 ... SPEAK-COMPLETE 543261 COMPLETE
Channel-ldentifier:32AECB23433802@speechsynth
Completion-Cause:000 normal
Speech-Marker:timestamp=857207689259;ANSWER

SPEECH-MARKER Example
8.14. DEFINE-LEXICON

The DEFINE-LEXICON method, from the client to the server, provides a
lexicon and tells the server to load or unload the lexicon (see

Section 8.4.16). The media type of the lexicon is provided in the
Content-Type header (see Section 8.5.2). One such media type is
"application/pls+xml" for the Pronunciation Lexicon Specification

(PLS) [W3C.REC-pronunciation-lexicon-20081014] [RFC4267].

If the server resource is in the speaking or paused state, the server
MUST respond with a failure status-code of 402 "Method not valid in
this state".

If the resource is in the idle state and is able to successfully

load/unload the lexicon, the status MUST return a 200 "Success"
status-code and the request-state MUST be COMPLETE.

Burnett & Shanmugham Standards Track [Page 71]

RFC 6787 MRCPv2 November 2012

If the synthesizer could not define the lexicon for some reason, for
example, because the download failed or the lexicon was in an
unsupported form, the server MUST respond with a failure status-code
of 407 and a Completion-Cause header field describing the failure
reason.

9. Speech Recognizer Resource

The speech recognizer resource receives an incoming voice stream and
provides the client with an interpretation of what was spoken in
textual form.

The recognizer resource is controlled by MRCPv2 requests from the
client. The recognizer resource can both respond to these requests
and generate asynchronous events to the client to indicate conditions
of interest during the processing of the method.

This section applies to the following resource types.
1. speechrecog
2. dtmfrecog

The difference between the above two resources is in their level of
support for recognition grammars. The "dtmfrecog" resource type is
capable of recognizing only DTMF digits and hence accepts only DTMF
grammars. It only generates barge-in for DTMF inputs and ignores
speech. The "speechrecog" resource type can recognize regular speech
as well as DTMF digits and hence MUST support grammars describing
either speech or DTMF. This resource generates barge-in events for
speech and/or DTMF. By analyzing the grammars that are activated by
the RECOGNIZE method, it determines if a barge-in should occur for
speech and/or DTMF. When the recognizer decides it needs to generate
a barge-in, it also generates a START-OF-INPUT event to the client.

The recognizer resource MAY support recognition in the normal or
hotword modes or both (although note that a single "speechrecog"
resource does not perform normal and hotword mode recognition
simultaneously). For implementations where a single recognizer
resource does not support both modes, or simultaneous normal and
hotword recognition is desired, the two modes can be invoked through
separate resources allocated to the same SIP dialog (with different
MRCP session identifiers) and share the RTP audio feed.

The capabilities of the recognizer resource are enumerated below:
Normal Mode Recognition Normal mode recognition tries to match all

of the speech or DTMF against the grammar and returns a no-match
status if the input fails to match or the method times out.

Burnett & Shanmugham Standards Track [Page 72]

RFC 6787 MRCPv2 November 2012

Hotword Mode Recognition Hotword mode is where the recognizer looks
for a match against specific speech grammar or DTMF sequence and
ignores speech or DTMF that does not match. The recognition
completes only if there is a successful match of grammatr, if the
client cancels the request, or if there is a non-input or
recognition timeout.

Voice Enrolled Grammars A recognizer resource MAY optionally support
Voice Enrolled Grammars. With this functionality, enrollment is
performed using a person’s voice. For example, a list of contacts
can be created and maintained by recording the person’s names
using the caller’s voice. This technique is sometimes also called
speaker-dependent recognition.

Interpretation A recognizer resource MAY be employed strictly for
its natural language interpretation capabilities by supplying it
with a text string as input instead of speech. In this mode, the
resource takes text as input and produces an "interpretation” of
the input according to the supplied grammar.

Voice enrollment has the concept of an enroliment session. A session
to add a new phrase to a personal grammar involves the initial
enrollment followed by a repeat of enough utterances before
committing the new phrase to the personal grammar. Each time an
utterance is recorded, it is compared for similarity with the other
samples and a clash test is performed against other entries in the
personal grammar to ensure there are no similar and confusable
entries.

Enrollment is done using a recognizer resource. Controlling which
utterances are to be considered for enrollment of a new phrase is
done by setting a header field (see Section 9.4.39) in the Recognize
request.

Interpretation is accomplished through the INTERPRET method
(Section 9.20) and the Interpret-Text header field (Section 9.4.30).

Burnett & Shanmugham Standards Track [Page 73]

RFC 6787 MRCPv2 November 2012

9.1. Recognizer State Machine

The recognizer resource maintains a state machine to process MRCPv2
requests from the client.

Idle Recognizing Recognized
State State State

I | | I
START-OF-INPUT | GET-RESULT |

[E— | | START-INPUT-TIMERS |
| — |

| INTERPRET | |

e T |

| | RECOGNIZE |

o < |

| STOP [

— |

|< STOP |

[— DEFINE-GRAMMAR----------------

Recognizer State Machine

If a recognizer resource supports voice enrolled grammars, starting

an enrollment session does not change the state of the recognizer
resource. Once an enrollment session is started, then utterances are
enrolled by calling the RECOGNIZE method repeatedly. The state of
the speech recognizer resource goes from IDLE to RECOGNIZING state
each time RECOGNIZE is called.

9.2. Recognizer Methods
The recognizer supports the following methods.

recognizer-method = recog-only-method
/ enrollment-method

Burnett & Shanmugham Standards Track [Page 74]

RFC 6787 MRCPv2 November 2012

recog-only-method = "DEFINE-GRAMMAR"
/ "RECOGNIZE"
/ "INTERPRET"
/ "GET-RESULT"
/ "START-INPUT-TIMERS"
/ "STOP"
Itis OPTIONAL for a recognizer resource to support voice enrolled
grammars. If the recognizer resource does support voice enrolled
grammars, it MUST support the following methods.

enrollment-method = "START-PHRASE-ENROLLMENT"
/ "ENROLLMENT-ROLLBACK"
/| "END-PHRASE-ENROLLMENT"
/ "MODIFY-PHRASE"
/ "DELETE-PHRASE"

9.3. Recognizer Events
The recognizer can generate the following events.

recognizer-event = "START-OF-INPUT"
/ "RECOGNITION-COMPLETE"
/ "INTERPRETATION-COMPLETE"

9.4. Recognizer Header Fields

A recognizer message can contain header fields containing request
options and information to augment the Method, Response, or Event
message it is associated with.

recognizer-header = recog-only-header
/ enrollment-header

recog-only-header = confidence-threshold
/ sensitivity-level
speed-vs-accuracy
n-best-list-length
no-input-timeout
input-type
recognition-timeout
waveform-uri
input-waveform-uri
completion-cause
completion-reason
recognizer-context-block
start-input-timers

/
/
/
/
/
/
/
/
/
/
/
/ speech-complete-timeout

Burnett & Shanmugham Standards Track [Page 75]

RFC 6787

T N S N

MRCPv2 November 2012

speech-incomplete-timeout
dtmf-interdigit-timeout
dtmf-term-timeout
dtmf-term-char
failed-uri
failed-uri-cause
save-waveform
media-type
new-audio-channel
speech-language
ver-buffer-utterance
recognition-mode
cancel-if-queue
hotword-max-duration
hotword-min-duration
interpret-text
dtmf-buffer-time
clear-dtmf-buffer
early-no-match

If a recognizer resource supports voice enrolled grammars, the
following header fields are also used.

enrollment-header = num-min-consistent-pronunciations

/

e e e T

consistency-threshold
clash-threshold
personal-grammar-uri
enroll-utterance
phrase-id

phrase-ni

weight
save-best-waveform
new-phrase-id
confusable-phrases-uri
abort-phrase-enrollment

For enroliment-specific header fields that can appear as part of
SET-PARAMS or GET-PARAMS methods, the following general rule applies:
the START-PHRASE-ENROLLMENT method MUST be invoked before these
header fields may be set through the SET-PARAMS method or retrieved
through the GET-PARAMS method.

Note that the Waveform-URI header field of the Recognizer resource
can also appear in the response to the END-PHRASE-ENROLLMENT method.

Burnett & Shanmugham Standards Track [Page 76]

RFC 6787 MRCPv2 November 2012

9.4.1. Confidence-Threshold

When a recognizer resource recognizes or matches a spoken phrase with
some portion of the grammar, it associates a confidence level with

that match. The Confidence-Threshold header field tells the

recognizer resource what confidence level the client considers a
successful match. This is a float value between 0.0-1.0 indicating

the recognizer’s confidence in the recognition. If the recognizer
determines that there is no candidate match with a confidence that is
greater than the confidence threshold, then it MUST return no-match

as the recognition result. This header field MAY occur in RECOGNIZE,
SET-PARAMS, or GET-PARAMS. The default value for this header field
is implementation specific, as is the interpretation of any specific

value for this header field. Although values for servers from

different vendors are not comparable, it is expected that clients

will tune this value over time for a given server.

confidence-threshold = "Confidence-Threshold" ":" FLOAT CRLF
9.4.2. Sensitivity-Level

To filter out background noise and not mistake it for speech, the
recognizer resource supports a variable level of sound sensitivity.
The Sensitivity-Level header field is a float value between 0.0 and
1.0 and allows the client to set the sensitivity level for the
recognizer. This header field MAY occur in RECOGNIZE, SET-PARAMS, or
GET-PARAMS. A higher value for this header field means higher
sensitivity. The default value for this header field is
implementation specific, as is the interpretation of any specific
value for this header field. Although values for servers from
different vendors are not comparable, it is expected that clients
will tune this value over time for a given server.

sensitivity-level = "Sensitivity-Level" ":" FLOAT CRLF
9.4.3. Speed-Vs-Accuracy

Depending on the implementation and capability of the recognizer
resource it may be tunable towards Performance or Accuracy. Higher
accuracy may mean more processing and higher CPU utilization, meaning
fewer active sessions per server and vice versa. The value is a

float between 0.0 and 1.0. A value of 0.0 means fastest recognition.

A value of 1.0 means best accuracy. This header field MAY occur in
RECOGNIZE, SET-PARAMS, or GET-PARAMS. The default value for this

Burnett & Shanmugham Standards Track [Page 77]

RFC 6787 MRCPv2 November 2012

header field is implementation specific. Although values for servers
from different vendors are not comparable, it is expected that
clients will tune this value over time for a given server.

speed-vs-accuracy = "Speed-Vs-Accuracy" ":" FLOAT CRLF
9.4.4. N-Best-List-Length

When the recognizer matches an incoming stream with the grammar, it
may come up with more than one alternative match because of
confidence levels in certain words or conversation paths. If this
header field is not specified, by default, the recognizer resource
returns only the best match above the confidence threshold. The
client, by setting this header field, can ask the recognition

resource to send it more than one alternative. All alternatives must

still be above the Confidence-Threshold. A value greater than one
does not guarantee that the recognizer will provide the requested
number of alternatives. This header field MAY occur in RECOGNIZE,
SET-PARAMS, or GET-PARAMS. The minimum value for this header field
is 1. The default value for this header field is 1.

n-best-list-length = "N-Best-List-Length" ":" 1*19DIGIT CRLF
9.4.5. Input-Type

When the recognizer detects barge-in-able input and generates a
START-OF-INPUT event, that event MUST carry this header field to
specify whether the input that caused the barge-in was DTMF or
speech.

input-type = "Input-Type" ":" inputs CRLF
inputs = "speech" / "dtmf"

9.4.6. No-Input-Timeout

When recognition is started and there is no speech detected for a

certain period of time, the recognizer can send a RECOGNITION-

COMPLETE event to the client with a Completion-Cause of "no-input-

timeout" and terminate the recognition operation. The client can use

the No-Input-Timeout header field to set this timeout. The value is

in milliseconds and can range from 0 to an implementation-specific

maximum value. This header field MAY occur in RECOGNIZE, SET-PARAMS,
or GET-PARAMS. The default value is implementation specific.

no-input-timeout = "No-Input-Timeout" ":* 1*19DIGIT CRLF

Burnett & Shanmugham Standards Track [Page 78]

RFC 6787 MRCPv2 November 2012

9.4.7. Recognition-Timeout

When recognition is started and there is no match for a certain

period of time, the recognizer can send a RECOGNITION-COMPLETE event
to the client and terminate the recognition operation. The
Recognition-Timeout header field allows the client to set this

timeout value. The value is in milliseconds. The value for this

header field ranges from 0 to an implementation-specific maximum

value. The default value is 10 seconds. This header field MAY occur

in RECOGNIZE, SET-PARAMS, or GET-PARAMS.

recognition-timeout = "Recognition-Timeout" ":" 1*19DIGIT CRLF
9.4.8. Waveform-URI

If the Save-Waveform header field is set to "true", the recognizer

MUST record the incoming audio stream of the recognition into a

stored form and provide a URI for the client to access it. This

header field MUST be present in the RECOGNITION-COMPLETE event if the
Save-Waveform header field was set to "true". The value of the

header field MUST be empty if there was some error condition

preventing the server from recording. Otherwise, the URI generated

by the server MUST be unambiguous across the server and all its

recognition sessions. The content associated with the URI MUST be
available to the client until the MRCPV2 session terminates.

Similarly, if the Save-Best-Waveform header field is set to "true”,

the recognizer MUST save the audio stream for the best repetition of
the phrase that was used during the enrollment session. The
recognizer MUST then record the recognized audio and make it
available to the client by returning a URI in the Waveform-URI header
field in the response to the END-PHRASE-ENROLLMENT method. The value
of the header field MUST be empty if there was some error condition
preventing the server from recording. Otherwise, the URI generated
by the server MUST be unambiguous across the server and all its
recognition sessions. The content associated with the URI MUST be
available to the client until the MRCPV2 session terminates. See the
discussion on the sensitivity of saved waveforms in Section 12.

The server MUST also return the size in octets and the duration in
milliseconds of the recorded audio waveform as parameters associated
with the header field.

waveform-uri = "Waveform-URI" ":" ["<" uri ">"

"' "size" "=" 1*19DIGIT
" "duration” "=" 1*19DIGIT] CRLF

Burnett & Shanmugham Standards Track [Page 79]

RFC 6787 MRCPv2 November 2012

9.4.9. Media-Type

This header field MAY be specified in the SET-PARAMS, GET-PARAMS, or
the RECOGNIZE methods and tells the server resource the media type in
which to store captured audio or video, such as the one captured and
returned by the Waveform-URI header field.

media-type = "Media-Type" ":" media-type-value
CRLF

9.4.10. Input-Waveform-URI

This optional header field specifies a URI pointing to audio content
to be processed by the RECOGNIZE operation. This enables the client
to request recognition from a specified buffer or audio file.

input-waveform-uri = "Input-Waveform-URI" ":" uri CRLF
9.4.11. Completion-Cause

This header field MUST be part of a RECOGNITION-COMPLETE event coming
from the recognizer resource to the client. It indicates the reason

behind the RECOGNIZE method completion. This header field MUST be

sent in the DEFINE-GRAMMAR and RECOGNIZE responses, if they return
with a failure status and a COMPLETE state. In the ABNF below, the
cause-code contains a numerical value selected from the Cause-Code

column of the following table. The cause-name contains the

corresponding token selected from the Cause-Name column.

completion-cause = "Completion-Cause" ";" cause-code SP
cause-name CRLF

cause-code = 3DIGIT

cause-name = *YCHAR

Burnett & Shanmugham Standards Track [Page 80]

RFC 6787 MRCPv2 November 2012

+

+ + +

| Cause-Code | Cause-Name | Description |

+

+ + +

| 000

001

002

003

004

o
ol

0

006

007

008

009

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
| 010
I

| success | RECOGNIZE completed with a |
| match or DEFINE-GRAMMAR |
| succeeded in downloading and |
| compiling the grammar. |

|
| no-match | RECOGNIZE completed, but no |
| | match was found. |

| |
| no-input-timeout | RECOGNIZE completed without |
| @ match due to a |
| | no-input-timeout. |

| |
| hotword-maxtime | RECOGNIZE in hotword mode |
| completed without a match |
| due to a |
| recognition-timeout. |

I
| grammar-load-failure | RECOGNIZE failed due to |
| grammar load failure. |

|
| | |

| grammar-compilation- | RECOGNIZE failed dueto |
| failure | grammar compilation failure. |
I

| recognizer-error | RECOGNIZE request terminated |
| | prematurely due to a |

| recognizer error. |

|
| speech-too-early | RECOGNIZE request terminated |
| because speech was too |
| early. This happens when the |
| audio stream is already |
| "in-speech” when the |
| RECOGNIZE request was |
| received. |
|
| success-maxtime | RECOGNIZE request terminated |
| because speech was too long |
| but whatever was spoken till |
| that point was a full match. |

| uri-failure | Failure accessing a URI. |

| language-unsupported | Language not supported. |

Burnett & Shanmugham Standards Track [Page 81]

RFC 6787 MRCPv2 November 2012

011 | cancelled | A new RECOGNIZE cancelled |
| this one, or a prior |

| RECOGNIZE failed while this |

| one was still in the queue. |

012 | semantics-failure | Recognition succeeded, but |
| semantic interpretation of |

| the recognized input failed. |

| The RECOGNITION-COMPLETE |

| event MUST contain the |

| Recognition result with only |

| input text and no |

| interpretation. |

013 | partial-match | Speech Incomplete Timeout |
| expired before there was a |

| full match. But whatever was |

| spoken till that point was a |

| partial match to one or more |

| grammars. |

014 | partial-match-maxtime | The Recognition-Timeout |
| expired before full match |

| was achieved. But whatever |

| was spoken till that point |

| was a partial match to one |

| or more grammars. [

015 | no-match-maxtime | The Recognition-Timeout |
| expired. Whatever was spoken |

| till that point did not |

| match any of the grammars. |

| This cause could also be |

| returned if the recognizer |

| does not support detecting |

| partial grammar matches. |

| |
016 | grammar-definition- | Any DEFINE-GRAMMAR error |
| failure | other than
| | grammar-load-failure and |
| | grammar-compilation-failure. |
+ + +

Burnett & Shanmugham Standards Track [Page 82]

RFC 6787 MRCPv2 November 2012

9.4.12. Completion-Reason

This header field MAY be specified in a RECOGNITION-COMPLETE event
coming from the recognizer resource to the client. This contains the
reason text behind the RECOGNIZE request completion. The server uses
this header field to communicate text describing the reason for the

failure, such as the specific error encountered in parsing a grammar
markup.

The completion reason text is provided for client use in logs and for
debugging and instrumentation purposes. Clients MUST NOT interpret
the completion reason text.

completion-reason = "Completion-Reason" ":"
quoted-string CRLF

9.4.13. Recognizer-Context-Block

This header field MAY be sent as part of the SET-PARAMS or GET-PARAMS
request. If the GET-PARAMS method contains this header field with no
value, then it is a request to the recognizer to return the

recognizer context block. The response to such a message MAY contain

a recognizer context block as a typed media message body. If the

server returns a recognizer context block, the response MUST contain

this header field and its value MUST match the Content-ID of the
corresponding media block.

If the SET-PARAMS method contains this header field, it MUST also
contain a message body containing the recognizer context data and a
Content-ID matching this header field value. This Content-ID MUST
match the Content-ID that came with the context data during the
GET-PARAMS operation.

An implementation choosing to use this mechanism to hand off
recognizer context data between servers MUST distinguish its
implementation-specific block of data by using an IANA-registered
content type in the IANA Media Type vendor tree.

recognizer-context-block = "Recognizer-Context-Block" ":"
[1*VCHAR] CRLF

9.4.14. Start-Input-Timers

This header field MAY be sent as part of the RECOGNIZE request. A
value of false tells the recognizer to start recognition but not to

start the no-input timer yet. The recognizer MUST NOT start the
timers until the client sends a START-INPUT-TIMERS request to the
recognizer. This is useful in the scenario when the recognizer and

Burnett & Shanmugham Standards Track [Page 83]

RFC 6787 MRCPv2 November 2012

synthesizer engines are not part of the same session. In such
configurations, when a kill-on-barge-in prompt is being played (see
Section 8.4.2), the client wants the RECOGNIZE request to be
simultaneously active so that it can detect and implement kill-on-
barge-in. However, the recognizer SHOULD NOT start the no-input
timers until the prompt is finished. The default value is "true".

start-input-timers = "Start-Input-Timers" ":* BOOLEAN CRLF
9.4.15. Speech-Complete-Timeout

This header field specifies the length of silence required following

user speech before the speech recognizer finalizes a result (either
accepting it or generating a no-match result). The Speech-Complete-
Timeout value applies when the recognizer currently has a complete
match against an active grammar, and specifies how long the
recognizer MUST wait for more input before declaring a match. By
contrast, the Speech-Incomplete-Timeout is used when the speech is an
incomplete match to an active grammar. The value is in milliseconds.

speech-complete-timeout = "Speech-Complete-Timeout" ":" 1*19DIGIT CRLF

A long Speech-Complete-Timeout value delays the result to the client
and therefore makes the application’s response to a user slow. A

short Speech-Complete-Timeout may lead to an utterance being broken
up inappropriately. Reasonable speech complete timeout values are
typically in the range of 0.3 seconds to 1.0 seconds. The value for

this header field ranges from 0 to an implementation-specific maximum
value. The default value for this header field is implementation

specific. This header field MAY occur in RECOGNIZE, SET-PARAMS, or
GET-PARAMS.

9.4.16. Speech-Incomplete-Timeout

This header field specifies the required length of silence following
user speech after which a recognizer finalizes a result. The
incomplete timeout applies when the speech prior to the silence is an
incomplete match of all active grammars. In this case, once the
timeout is triggered, the partial result is rejected (with a
Completion-Cause of "partial-match"). The value is in milliseconds.
The value for this header field ranges from 0 to an implementation-
specific maximum value. The default value for this header field is
implementation specific.

speech-incomplete-timeout = "Speech-Incomplete-Timeout" ":" 1*19DIGIT
CRLF

Burnett & Shanmugham Standards Track [Page 84]

RFC 6787 MRCPv2 November 2012

The Speech-Incomplete-Timeout also applies when the speech prior to
the silence is a complete match of an active grammar, but where it is
possible to speak further and still match the grammar. By contrast,

the Speech-Complete-Timeout is used when the speech is a complete
match to an active grammar and no further spoken words can continue
to represent a match.

A long Speech-Incomplete-Timeout value delays the result to the
client and therefore makes the application’s response to a user slow.
A short Speech-Incomplete-Timeout may lead to an utterance being
broken up inappropriately.

The Speech-Incomplete-Timeout is usually longer than the Speech-
Complete-Timeout to allow use