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EnvStats-package Package for Environmental Statistics, including US EPA Guidance

Description

EnvStats is a comprehensive R package for Environmental Statistics and is the successor to the
S-PLUS module EnvironmentalStats for S-PLUS, the first copy of which was sold in April, 1997.
EnvStats provides a set of powerful functions for performing graphical and statistical analyses of
environmental data, bringing major environmental statistical methods found in the literature and
regulatory guidance documents into one statistical package, along with an extensive hypertext help
system that explains what these methods do, how to use these methods, and where to find them in
the environmental statistics literature. Also included are numerous built-in data sets from regulatory
guidance documents and the environmental statistics literature. For a complete list of functions and
datasets, you can do any of the following:

• If you are in the on-line help, scroll to the bottom of this help page and click on the Index
link.

• See the help file Functions By Category for a listing of functions by category.

• Type library(help="EnvStats") at the command prompt.

Note: The names of all EnvStats functions start with a lowercase letter, and the names of all
EnvStats datasets and data objects start an uppercase letter. You can type newsEnvStats() at the
R command prompt for the latest news for the EnvStats package.

Details
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Package: EnvStats
Type: Package
Version: 1.0.2
Date: 2013-10-29
License: GPL (>=3)
LazyLoad: yes

A companion file EnvStats-manual.pdf containing a listing of all the current help files is located
in the doc subdirectory of the directory where the EnvStats package was installed. For example,
if you installed R under Windows, this file might be located in the directory C:\Program Files\R-
*.**.*\library\EnvStats\doc, where *.**.* denotes the version of R you are using (e.g., 3.0.1)
or in the directory C:\Users\Name\Documents\R\win-library\*.**.*\EnvStats\doc, where Name
denotes your user name on the Windows operating system.

EnvStats comes with companion scripts, located in the scripts subdirectory of the directory where
the package was installed. One set of scripts lets you reproduce the examples in the User’s Manual
(currently is still in preparation). There are also scripts that let you reproduce examples from US
EPA guidance documents.

See the References section below for documentation for the predecessor to EnvStats, Environmen-
talStats for S-PLUS for Windows.

Features of EnvStats include:

• New functions for computing summary statistics and creating summary plots to compare the
distributions of groups side-by-side.

• New probability distributions have been added to the ones already available in R, including
the extreme value distribution and the zero-modified lognormal (delta) distribution. You can
compute quantities associated with these probability distributions (probability density func-
tions, cumulative distribution functions, and quantiles), and generate random numbers from
these distributions.

• Plot probability distributions so you can see how they change with the value of the distribution
parameter(s).

• Estimate distribution parameters and distribution quantiles, and compute confidence intervals
for commonly used probability distributions, including special methods for the lognormal and
gamma distributions.

• Perform and plot the results of goodness-of-fit tests:

– Observed and Fitted Distributions
– Quantile-Quantile Plots
– Results of Shaprio-Wilk test, Kolmogorov-Smirnov test, etc.

Includes a new generalized goodness-of-fit test for any continuous distribution.

• Functions for assessing optimal Box-Cox data transformations.

• Compute parametric and non-parametric prediction intervals, simultaneous prediction inter-
vals, and tolerance intervals.

• New functions for hypothesis tests, including:

– Nonparametric estimation and tests for seasonal trend
– Fisher’s one-sample randomization (permutation) test for location
– Quantile test to detect a shift in the tail of one population relative to another
– Two-sample linear rank tests
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– Test for serial correlation based on von Neumann rank test

• Perform calibration based on a machine signal to determine decision and detection limits and
report estimated concentrations along with confidence intervals.

• Easily perform power and sample size computations and create companion plots for sampling
designs based on confidence intervals, hypothesis tests, prediction intervals, and tolerance
intervals.

• Handle singly and multiply censored (less-than-detection-limit) data:

– Empirical CDF and Quantile-Quantile Plots
– Parameter/Quantile Estimation and Confidence Intervals
– Prediction and Tolerance Intervals
– Goodness-of-Fit Tests
– Optimal Box-Cox Transformations
– Two-Sample Rank Tests

• Functions for performing Monte Carlo simulation and probabilistic risk assessement.

• Reproduce specific examples in EPA guidance documents by using built-in data sets from
these documents and running companion scripts.

Author(s)

Steven P. Millard

Maintainer: Steven P. Millard <EnvStats@ProbStatInfo.com>

References

Millard, S.P. (In Preparation). EnvStats: An R Package for Environmental Statistics. Springer-
Verlag, New York.

Millard, S.P. (2002). EnvironmentalStats for S-PLUS: User’s Manual for Version 2.0. Second
Edition. Springer-Verlag, New York.

Millard, S.P., and N.K. Neerchal. (2001). Environmental Statistics with S-PLUS. CRC Press, Boca
Raton, FL.

Examples

# Look at plots and summary statistics for the TcCB data given in
# USEPA (1994b), (the data are stored in EPA.94b.tccb.df).
# Arbitrarily set the one censored observation to the censoring level.
# Group by the variable Area.

EPA.94b.tccb.df
# TcCB.orig TcCB Censored Area
#1 0.22 0.22 FALSE Reference
#2 0.23 0.23 FALSE Reference
#...
#46 1.20 1.20 FALSE Reference
#47 1.33 1.33 FALSE Reference
#48 <0.09 0.09 TRUE Cleanup
#49 0.09 0.09 FALSE Cleanup
#...
#123 51.97 51.97 FALSE Cleanup
#124 168.64 168.64 FALSE Cleanup
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# First plot the data
#--------------------
dev.new()
stripChart(TcCB ~ Area, data = EPA.94b.tccb.df,

xlab = "Area", ylab = "TcCB (ppb)")
mtext("TcCB Concentrations by Area", line = 3, cex = 1.25, font = 2)

dev.new()
stripChart(log10(TcCB) ~ Area, data = EPA.94b.tccb.df,

p.value = TRUE,
xlab = "Area", ylab = expression(paste(log[10], " [ TcCB (ppb) ]")))

mtext(expression(paste(log[10], "(TcCB) Concentrations by Area")),
line = 3, cex = 1.25, font = 2)

#--------------------------------------------------------------------

# Now compute summary statistics
#-------------------------------

sum(EPA.94b.tccb.df$Censored)
#[1] 1

EPA.94b.tccb.df$TcCB[EPA.94b.tccb.df$Censored]
#0.09

# Summary statistics will treat the one censored value
# as assuming the detection limit.

summaryFull(TcCB ~ Area, data = EPA.94b.tccb.df)
# Cleanup Reference
#N 77 47
#Mean 3.915 0.5985
#Median 0.43 0.54
#10% Trimmed Mean 0.6846 0.5728
#Geometric Mean 0.5784 0.5382
#Skew 7.717 0.9019
#Kurtosis 62.67 0.132
#Min 0.09 0.22
#Max 168.6 1.33
#Range 168.5 1.11
#1st Quartile 0.23 0.39
#3rd Quartile 1.1 0.75
#Standard Deviation 20.02 0.2836
#Geometric Standard Deviation 3.898 1.597
#Interquartile Range 0.87 0.36
#Median Absolute Deviation 0.3558 0.2669
#Coefficient of Variation 5.112 0.4739

summaryStats(TcCB ~ Area, data = EPA.94b.tccb.df, digits = 1)
# N Mean SD Median Min Max
#Cleanup 77 3.9 20.0 0.4 0.1 168.6
#Reference 47 0.6 0.3 0.5 0.2 1.3

#----------------------------------------------------------------

# Compute Shapiro-Wilk Goodness-of-Fit statistic for the
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# Reference Area TcCB data assuming a lognormal distribution
#-----------------------------------------------------------

sw.list <- gofTest(TcCB ~ 1, data = EPA.94b.tccb.df,
subset = Area == "Reference", dist = "lnorm")

sw.list

# Results of Goodness-of-Fit Test
# -------------------------------
#
# Test Method: Shapiro-Wilk GOF
#
# Hypothesized Distribution: Lognormal
#
# Estimated Parameter(s): meanlog = -0.6195712
# sdlog = 0.4679530
#
# Estimation Method: mvue
#
# Data: TcCB
#
# Subset With: Area == "Reference"
#
# Data Source: EPA.94b.tccb.df
#
# Sample Size: 47
#
# Test Statistic: W = 0.978638
#
# Test Statistic Parameter: n = 47
#
# P-value: 0.5371935
#
# Alternative Hypothesis: True cdf does not equal the
# Lognormal Distribution.

#----------

# Plot results of GOF test
dev.new()
plot(sw.list)

#----------------------------------------------------------------

# Based on the Reference Area data, estimate 90th percentile
# and compute a 95% confidence limit for the 90th percentile
# assuming a lognormal distribution.
#------------------------------------------------------------

TcCB.ref <- EPA.94b.tccb.df$TcCB[EPA.94b.tccb.df$Area == "Reference"]
eqlnorm(TcCB.ref, p = 0.9, ci = TRUE)

# Results of Distribution Parameter Estimation
# --------------------------------------------
#
# Assumed Distribution: Lognormal
#
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# Estimated Parameter(s): meanlog = -0.6195712
# sdlog = 0.4679530
#
# Estimation Method: mvue
#
# Estimated Quantile(s): 90th %ile = 0.9803307
#
# Quantile Estimation Method: qmle
#
# Data: TcCB.ref
#
# Sample Size: 47
#
# Confidence Interval for: 90th %ile
#
# Confidence Interval Method: Exact
#
# Confidence Interval Type: two-sided
#
# Confidence Level: 95%
#
# Confidence Interval: LCL = 0.8358791

UCL = 1.2154977
#----------

# Cleanup
rm(TcCB.ref, sw.list)

anovaPE Compute Lack-of-Fit and Pure Error Anova Table for a Linear Model

Description

Compute a lack-of-fit and pure error anova table for a linear model with one predictor variable and
replicate observations for at least one value of the predictor variable.

Usage

anovaPE(object)

Arguments

object an object of class "lm". The object can have only one predictor variable in
the formula and must have replicate observations for at least one value of the
predictor variable.

Details

Produces an anova table with the the sums of squares partitioned by “Lack of Fit” and “Pure Er-
ror”. See Draper and Smith (1998, pp.47-53) for details. This function is called by the function
calibrate.



14 anovaPE

Value

An object of class "anova" inheriting from class "data.frame".

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Draper, N., and H. Smith. (1998). Applied Regression Analysis. Third Edition. John Wiley and
Sons, New York, pp.47-53.

Millard, S.P., and Neerchal, N.K. (2001). Environmental Statistics with S-PLUS. CRC Press, Boca
Raton, Florida.

See Also

anova.lm, lm, calibrate.

Examples

# The data frame EPA.97.cadmium.111.df contains calibration data for
# cadmium at mass 111 (ng/L) that appeared in Gibbons et al. (1997b)
# and were provided to them by the U.S. EPA.
# The Examples section of the help file for calibrate displays a plot
# of these data along with the fitted calibration line and 99%
# non-simultaneous prediction limits.
# Here we will just fit the linear model and produce the anova table
# to check for lack of fit.

fit <- lm(Cadmium ~ Spike, data = EPA.97.cadmium.111.df)

anova(fit)
#Analysis of Variance Table
#
#Response: Cadmium
# Df Sum Sq Mean Sq F value Pr(>F)
#Spike 1 43220 43220 9356.9 < 2.2e-16 ***
#Residuals 33 152 5
#---
#Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
#Analysis of Variance Table
#
#Response: Cadmium
#
#Terms added sequentially (first to last)
# Df Sum of Sq Mean Sq F Value Pr(F)
# Spike 1 43220.27 43220.27 9356.879 0
#Residuals 33 152.43 4.62

anovaPE(fit)
# Df Sum Sq Mean Sq F value Pr(>F)
#Spike 1 43220 43220 9341.559 <2e-16 ***
#Lack of Fit 3 14 5 0.982 0.4144
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#Pure Error 30 139 5
#---
#Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

rm(fit)

aovN Compute Sample Size Necessary to Achieve Specified Power for One-
Way Fixed-Effects Analysis of Variance

Description

Compute the sample sizes necessary to achieve a specified power for a one-way fixed-effects anal-
ysis of variance test, given the population means, population standard deviation, and significance
level.

Usage

aovN(mu.vec, sigma = 1, alpha = 0.05, power = 0.95,
round.up = TRUE, n.max = 5000, tol = 1e-07, maxiter = 1000)

Arguments

mu.vec required numeric vector of population means. The length of mu.vec must be at
least 2. Missing (NA), undefined (NaN), and infinite (Inf, -Inf) values are not
allowed.

sigma optional numeric scalar specifying the population standard deviation (σ) for
each group. The default value is sigma=1.

alpha optional numeric scalar between 0 and 1 indicating the Type I error level asso-
ciated with the hypothesis test. The default value is alpha=0.05.

power optional numeric scalar between 0 and 1 indicating the power associated with
the hypothesis test. The default value is power=0.95.

round.up optional logical scalar indicating whether to round up the value of the computed
sample size to the next smallest integer. The default value is round.up=TRUE.

n.max positive integer greater then 1 indicating the maximum sample size per group.
The default value is n.max=5000.

tol optional numeric scalar indicating the tolerance to use in the uniroot search
algorithm. The default value is tol=1e-7.

maxiter optional positive integer indicating the maximum number of iterations to use in
the uniroot search algorithm. The default value is maxiter=1000.

Details

The F-statistic to test the equality of k population means assuming each population has a normal
distribution with the same standard deviation σ is presented in most basic statistics texts, including
Zar (2010, Chapter 10), Berthouex and Brown (2002, Chapter 24), and Helsel and Hirsh (1992,
pp.164-169). The formula for the power of this test is given in Scheffe (1959, pp.38-39,62-65). The
power of the one-way fixed-effects ANOVA depends on the sample sizes for each of the k groups,
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the value of the population means for each of the k groups, the population standard deviation σ, and
the significance level α. See the help file for aovPower.

The function aovN assumes equal sample sizes for each of the k groups and uses a search algorithm
to determine the sample size n required to attain a specified power, given the values of the population
means and the significance level.

Value

numeric scalar indicating the required sample size for each group. (The number of groups is equal
to the length of the argument mu.vec.)

Note

The normal and lognormal distribution are probably the two most frequently used distributions
to model environmental data. Sometimes it is necessary to compare several means to determine
whether any are significantly different from each other (e.g., USEPA, 2009, p.6-38). In this case,
assuming normally distributed data, you perform a one-way parametric analysis of variance.

In the course of designing a sampling program, an environmental scientist may wish to determine
the relationship between sample size, Type I error level, power, and differences in means if one
of the objectives of the sampling program is to determine whether a particular mean differs from
a group of means. The functions aovPower, aovN, and plotAovDesign can be used to investigate
these relationships for the case of normally-distributed observations.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Berthouex, P.M., and L.C. Brown. (2002). Statistics for Environmental Engineers. Second Edition.
Lewis Publishers, Boca Raton, FL.

Helsel, D.R., and R.M. Hirsch. (1992). Statistical Methods in Water Resources Research. Elsevier,
New York, NY, Chapter 7.

Johnson, N. L., S. Kotz, and N. Balakrishnan. (1995). Continuous Univariate Distributions, Volume
2. Second Edition. John Wiley and Sons, New York, Chapters 27, 29, 30.

Millard, S.P., and Neerchal, N.K. (2001). Environmental Statistics with S-PLUS. CRC Press, Boca
Raton, Florida.

Scheffe, H. (1959). The Analysis of Variance. John Wiley and Sons, New York, 477pp.

USEPA. (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Uni-
fied Guidance. EPA 530/R-09-007, March 2009. Office of Resource Conservation and Recovery
Program Implementation and Information Division. U.S. Environmental Protection Agency, Wash-
ington, D.C. p.6-38.

Zar, J.H. (2010). Biostatistical Analysis. Fifth Edition. Prentice-Hall, Upper Saddle River, NJ,
Chapter 10.

See Also

aovPower, plotAovDesign, Normal, aov.
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Examples

# Look at how the required sample size for a one-way ANOVA
# increases with increasing power:

aovN(mu.vec = c(10, 12, 15), sigma = 5, power = 0.8)
#[1] 21

aovN(mu.vec = c(10, 12, 15), sigma = 5, power = 0.9)
#[1] 27

aovN(mu.vec = c(10, 12, 15), sigma = 5, power = 0.95)
#[1] 33

#----------------------------------------------------------------

# Look at how the required sample size for a one-way ANOVA,
# given a fixed power, decreases with increasing variability
# in the population means:

aovN(mu.vec = c(10, 10, 11), sigma=5)
#[1] 581

aovN(mu.vec = c(10, 10, 15), sigma = 5)
#[1] 25

aovN(mu.vec = c(10, 13, 15), sigma = 5)
#[1] 33

aovN(mu.vec = c(10, 15, 20), sigma = 5)
#[1] 10

#----------------------------------------------------------------

# Look at how the required sample size for a one-way ANOVA,
# given a fixed power, decreases with increasing values of
# Type I error:

aovN(mu.vec = c(10, 12, 14), sigma = 5, alpha = 0.001)
#[1] 89

aovN(mu.vec = c(10, 12, 14), sigma = 5, alpha = 0.01)
#[1] 67

aovN(mu.vec = c(10, 12, 14), sigma = 5, alpha = 0.05)
#[1] 50

aovN(mu.vec = c(10, 12, 14), sigma = 5, alpha = 0.1)
#[1] 42

aovPower Compute the Power of a One-Way Fixed-Effects Analysis of Variance
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Description

Compute the power of a one-way fixed-effects analysis of variance, given the sample sizes, popula-
tion means, population standard deviation, and significance level.

Usage

aovPower(n.vec, mu.vec = rep(0, length(n.vec)), sigma = 1,
alpha = 0.05)

Arguments

n.vec numeric vector of sample sizes for each group. The ith element of n.vec de-
notes the sample size for group i. The length of n.vec must be at least 2, and all
elements of n.vec must be greater than or equal to 2. Missing (NA), undefined
(NaN), and infinite (Inf, -Inf) values are not allowed.

mu.vec numeric vector of population means. The length of mu.vec must be the same
as the length of n.vec. The default value is a vector of zeros. Missing (NA),
undefined (NaN), and infinite (Inf, -Inf) values are not allowed.

sigma numeric scalar specifying the population standard deviation (σ) for each group.
The default value is sigma=1.

alpha numeric scalar between 0 and 1 indicating the Type I error level associated with
the hypothesis test. The default value is alpha=0.05.

Details

Consider k normally distributed populations with common standard deviation σ. Let µi denote
the mean of the i’th group (i = 1, 2, . . . , k), and let xi = xi1, xi2, . . . , xini denote a vector of ni
observations from the i’th group. The statistical method of analysis of variance (ANOVA) tests the
null hypothesis:

H0 : µ1 = µ2 = · · · = µk (1)

against the alternative hypothesis that at least one of the means is different from the rest by using
the F-statistic given by:

F =
[
∑k
i=1 ni(x̄i. − x̄..)2]/(k − 1)

[
∑k
i=1

∑ni
j=1(xij − x̄i.)2]/(N − k)

(2)

where

x̄i. =
1

ni

ni∑
j=1

xij (3)

x̄.. =
1

N

k∑
i=1

nix̄i. =
1

N

k∑
i=1

ni∑
j=1

xij (4)

N =

k∑
i=1

ni (5)

Under the null hypothesis (1), the F-statistic in (2) follows an F-distribution with k − 1 and N − k
degrees of freedom. Analysis of variance rejects the null hypothesis (1) at significance level α when

F > Fk−1,N−k(1− α) (6)
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where Fν1,ν2(p) denotes the p’th quantile of the F-distribution with ν1 and ν2 degrees of freedom
(Zar, 2010, Chapter 10; Berthouex and Brown, 2002, Chapter 24; Helsel and Hirsh, 1992, pp.
164–169).

The power of this test, denoted by 1−β, where β denotes the probability of a Type II error, is given
by:

1− β = Pr[Fk−1,N−k,∆ > Fk−1,N−k(1− α)] (7)

where

∆ =

∑k
i=1 ni(µi − µ̄.)2

σ2
(8)

µ̄. =
1

k

k∑
i=1

µi (9)

and Fν1,ν2,∆ denotes a non-central F random variable with ν1 and ν2 degrees of freedom and non-
centrality parameter ∆. Equation (7) can be re-written as:

1− β = 1−H[Fk−1,N−k(1− α), k − 1, N − k,∆] (10)

where H(x, ν1, ν2,∆) denotes the cumulative distribution function of this random variable evalu-
ated at x (Scheffe, 1959, pp.38–39, 62–65).

The power of the one-way fixed-effects ANOVA depends on the sample sizes for each of the k
groups, the value of the population means for each of the k groups, the population standard deviation
σ, and the significance level α.

Value

a numeric scalar indicating the power of the one-way fixed-effects ANOVA for the given sample
sizes, population means, population standard deviation, and significance level.

Note

The normal and lognormal distribution are probably the two most frequently used distributions
to model environmental data. Sometimes it is necessary to compare several means to determine
whether any are significantly different from each other (e.g., USEPA, 2009, p.6-38). In this case,
assuming normally distributed data, you perform a one-way parametric analysis of variance.

In the course of designing a sampling program, an environmental scientist may wish to determine
the relationship between sample size, Type I error level, power, and differences in means if one
of the objectives of the sampling program is to determine whether a particular mean differs from
a group of means. The functions aovPower, aovN, and plotAovDesign can be used to investigate
these relationships for the case of normally-distributed observations.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Berthouex, P.M., and L.C. Brown. (2002). Statistics for Environmental Engineers. Second Edition.
Lewis Publishers, Boca Raton, FL.

Helsel, D.R., and R.M. Hirsch. (1992). Statistical Methods in Water Resources Research. Elsevier,
New York, NY, Chapter 7.

Johnson, N. L., S. Kotz, and N. Balakrishnan. (1995). Continuous Univariate Distributions, Volume
2. Second Edition. John Wiley and Sons, New York, Chapters 27, 29, 30.
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Millard, S.P., and Neerchal, N.K. (2001). Environmental Statistics with S-PLUS. CRC Press, Boca
Raton, Florida.

Scheffe, H. (1959). The Analysis of Variance. John Wiley and Sons, New York, 477pp.

USEPA. (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Uni-
fied Guidance. EPA 530/R-09-007, March 2009. Office of Resource Conservation and Recovery
Program Implementation and Information Division. U.S. Environmental Protection Agency, Wash-
ington, D.C. p.6-38.

Zar, J.H. (2010). Biostatistical Analysis. Fifth Edition. Prentice-Hall, Upper Saddle River, NJ,
Chapter 10.

See Also

aovN, plotAovDesign, Normal, aov.

Examples

# Look at how the power of a one-way ANOVA increases
# with increasing sample size:

aovPower(n.vec = rep(5, 3), mu.vec = c(10, 15, 20), sigma = 5)
#[1] 0.7015083

aovPower(n.vec = rep(10, 3), mu.vec = c(10, 15, 20), sigma = 5)
#[1] 0.9732551

#----------------------------------------------------------------

# Look at how the power of a one-way ANOVA increases
# with increasing variability in the population means:

aovPower(n.vec = rep(5,3), mu.vec = c(10, 10, 11), sigma=5)
#[1] 0.05795739

aovPower(n.vec = rep(5, 3), mu.vec = c(10, 10, 15), sigma = 5)
#[1] 0.2831863

aovPower(n.vec = rep(5, 3), mu.vec = c(10, 13, 15), sigma = 5)
#[1] 0.2236093

aovPower(n.vec = rep(5, 3), mu.vec = c(10, 15, 20), sigma = 5)
#[1] 0.7015083

#----------------------------------------------------------------

# Look at how the power of a one-way ANOVA increases
# with increasing values of Type I error:

aovPower(n.vec = rep(10,3), mu.vec = c(10, 12, 14),
sigma = 5, alpha = 0.001)

#[1] 0.02655785

aovPower(n.vec = rep(10,3), mu.vec = c(10, 12, 14),
sigma = 5, alpha = 0.01)

#[1] 0.1223527
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aovPower(n.vec = rep(10,3), mu.vec = c(10, 12, 14),
sigma = 5, alpha = 0.05)

#[1] 0.3085313

aovPower(n.vec = rep(10,3), mu.vec = c(10, 12, 14),
sigma = 5, alpha = 0.1)

#[1] 0.4373292

#==========

# The example on pages 5-11 to 5-14 of USEPA (1989b) shows
# log-transformed concentrations of lead (mg/L) at two
# background wells and four compliance wells, where observations
# were taken once per month over four months (the data are
# stored in EPA.89b.loglead.df.) Assume the true mean levels
# at each well are 3.9, 3.9, 4.5, 4.5, 4.5, and 5, respectively.
# Compute the power of a one-way ANOVA to test for mean
# differences between wells. Use alpha=0.05, and assume the
# true standard deviation is equal to the one estimated from
# the data in this example.

# First look at the data
names(EPA.89b.loglead.df)
#[1] "LogLead" "Month" "Well" "Well.type"

dev.new()
stripChart(LogLead ~ Well, data = EPA.89b.loglead.df,

show.ci = FALSE, xlab = "Well Number",
ylab="Log [ Lead (ug/L) ]",
main="Lead Concentrations at Six Wells")

# Note: The assumption of a constant variance across
# all wells is suspect.

# Now perform the ANOVA and get the estimated sd
aov.list <- aov(LogLead ~ Well, data=EPA.89b.loglead.df)

summary(aov.list)
# Df Sum Sq Mean Sq F value Pr(>F)
#Well 5 5.7447 1.14895 3.3469 0.02599 *
#Residuals 18 6.1791 0.34328
#---
#Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

# Now call the function aovPower
aovPower(n.vec = rep(4, 6),

mu.vec = c(3.9,3.9,4.5,4.5,4.5,5), sigma=sqrt(0.34))
#[1] 0.5523148

# Clean up
rm(aov.list)

base Base b Representation of a Number
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Description

For any number represented in base 10, compute the representation in any user-specified base.

Usage

base(n, base = 10, num.digits = max(0, floor(log(n, base))) + 1)

Arguments

n a non-negative integer (base 10).

base a positive integer greater than 1 indicating what base to represent n in.

num.digits a positive integer indicating how many digits to use to represent n in base base.
By default, num.digits is equal to just the number of required digits (i.e.,
max(0, floor(log(n, base))) + 1). Setting num.digits to a larger num-
ber than this will result in 0’s padding the left.

Details

If b is a positive integer greater than 1, and n is a positive integer, then n can be expressed uniquely
in the form

n = akb
k + ak−1b

k−1 + . . .+ a1b+ a0

where k is a non-negative integer, the coefficients a0, a1, . . . , ak are non-negative integers less than
b, and ak > 0 (Rosen, 1988, p.105). The function base computes the coefficients a0, a1, . . . , ak.

Value

A numeric vector of length num.digits showing the representation of n in base base.

Note

The function base is included in EnvStats because it is called by the function
oneSamplePermutationTest.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Rosen, K.H. (1988). Discrete Mathematics and Its Applications. Random House, New York,
pp.105-107.

See Also

oneSamplePermutationTest.
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Examples

# Compute the value of 7 in base 2.

base(7, 2)
#[1] 1 1 1

base(7, 2, num.digits=5)
#[1] 0 0 1 1 1

Benthic.df Benthic Data from Monitoring Program in Chesapeake Bay

Description

Benthic data from a monitoring program in the Chesapeake Bay, Maryland, covering July 1994 -
December 1991.

Usage

Benthic.df

Format

A data frame with 585 observations on the following 7 variables.

Site.ID Site ID

Stratum Stratum Number (101-131)

Latitude Latitude (degrees North)

Longitude Longitude (negative values; degrees West)

Index Benthic Index (between 1 and 5)

Salinity Salinity (ppt)

Silt Silt Content (% clay in soil)

Details

Data from the Long Term Benthic Monitoring Program of the Chesapeake Bay. The data consist of
measurements of benthic characteristics and a computed index of benthic health for several locations
in the bay. Sampling methods and designs of the program are discussed in Ranasinghe et al. (1992).

The data represent observations collected at 585 separate point locations (sites). The sites are di-
vided into 31 different strata, numbered 101 through 131, each strata consisting of geographically
close sites of similar degradation conditions. The benthic index values range from 1 to 5 on a con-
tinuous scale, where high values correspond to healthier benthos. Salinity was measured in parts per
thousand (ppt), and silt content is expressed as a percentage of clay in the soil with high numbers
corresponding to muddy areas.

The United States Environmental Protection Agency (USEPA) established an initiative for the
Chesapeake Bay in partnership with the states bordering the bay in 1984. The goal of the initia-
tive is the restoration (abundance, health, and diversity) of living resources to the bay by reducing
nutrient loadings, reducing toxic chemical impacts, and enhancing habitats. USEPA’s Chesapeake
Bay Program Office is responsible for implementing this initiative and has established an extensive
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monitoring program that includes traditional water chemistry sampling, as well as collecting data
on living resources to measure progress towards meeting the restoration goals.

Sampling benthic invertebrate assemblages has been an integral part of the Chesapeake Bay mon-
itoring program due to their ecological importance and their value as biological indicators. The
condition of benthic assemblages is a measure of the ecological health of the bay, including the
effects of multiple types of environmental stresses. Nevertheless, regional-scale assessment of eco-
logical status and trends using benthic assemblages are limited by the fact that benthic assemblages
are strongly influenced by naturally variable habitat elements, such as salinity, sediment type, and
depth. Also, different state agencies and USEPA programs use different sampling methodolo-
gies, limiting the ability to integrate data into a unified assessment. To circumvent these limi-
tations, USEPA has standardized benthic data from several different monitoring programs into a
single database, and from that database developed a Restoration Goals Benthic Index that identifies
whether benthic restoration goals are being met.

Source

Ranasinghe, J.A., L.C. Scott, and R. Newport. (1992). Long-term Benthic Monitoring and Assess-
ment Program for the Maryland Portion of the Bay, Jul 1984-Dec 1991. Report prepared for the
Maryland Department of the Environment and the Maryland Department of Natural Resources by
Versar, Inc., Columbia, MD.

Examples

attach(Benthic.df)

# Show station locations
#-----------------------
dev.new()
plot(Longitude, Latitude,

xlab = "-Longitude (Degrees West)",
ylab = "Latitude",
main = "Sampling Station Locations")

# Scatterplot matrix of benthic index, salinity, and silt
#--------------------------------------------------------
dev.new()
pairs(~ Index + Salinity + Silt, data = Benthic.df)

# Contour and perspective plots based on loess fit
# showing only predicted values within the convex hull
# of station locations
#-----------------------------------------------------
library(sp)

loess.fit <- loess(Index ~ Longitude * Latitude,
data=Benthic.df, normalize=FALSE, span=0.25)

lat <- Benthic.df$Latitude
lon <- Benthic.df$Longitude
Latitude <- seq(min(lat), max(lat), length=50)
Longitude <- seq(min(lon), max(lon), length=50)
predict.list <- list(Longitude=Longitude,

Latitude=Latitude)
predict.grid <- expand.grid(predict.list)
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predict.fit <- predict(loess.fit, predict.grid)
index.chull <- chull(lon, lat)
inside <- point.in.polygon(point.x = predict.grid$Longitude,

point.y = predict.grid$Latitude,
pol.x = lon[index.chull],
pol.y = lat[index.chull])

predict.fit[inside == 0] <- NA

dev.new()
contour(Longitude, Latitude, predict.fit,

levels=seq(1, 5, by=0.5), labcex=0.75,
xlab="-Longitude (degrees West)",
ylab="Latitude (degrees North)")

title(main=paste("Contour Plot of Benthic Index",
"Based on Loess Smooth", sep="\n"))

dev.new()
persp(Longitude, Latitude, predict.fit,

xlim = c(-77.3, -75.9), ylim = c(38.1, 39.5), zlim = c(0, 6),
theta = -45, phi = 30, d = 0.5,
xlab="-Longitude (degrees West)",
ylab="Latitude (degrees North)",
zlab="Benthic Index", ticktype = "detailed")

title(main=paste("Surface Plot of Benthic Index",
"Based on Loess Smooth", sep="\n"))

detach("Benthic.df")

rm(loess.fit, lat, lon, Latitude, Longitude, predict.list,
predict.grid, predict.fit, index.chull, inside)

boxcox Boxcox Power Transformation

Description

boxcox is a generic function used to compute the value(s) of an objective for one or more Box-Cox
power transformations, or to compute an optimal power transformation based on a specified objec-
tive. The function invokes particular methods which depend on the class of the first argument.

Currently, there is a default method and a method for objects of class "lm".

Usage

boxcox(x, ...)

## Default S3 method:
boxcox(x,

lambda = {if (optimize) c(-2, 2) else seq(-2, 2, by = 0.5)},
optimize = FALSE, objective.name = "PPCC",
eps = .Machine$double.eps, include.x = TRUE, ...)

## S3 method for class lm
boxcox(x,
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lambda = {if (optimize) c(-2, 2) else seq(-2, 2, by = 0.5)},
optimize = FALSE, objective.name = "PPCC",
eps = .Machine$double.eps, include.x = TRUE, ...)

Arguments

x an object of class "lm" for which the response variable is all positive numbers,
or else a numeric vector of positive numbers. When x is an object of class "lm",
the object must have been created with a call to the function lm that includes the
data argument. When x is a numeric vector of positive observations, missing
(NA), undefined (NaN), and infinite (-Inf, Inf) values are allowed but will be
removed.

lambda numeric vector of finite values indicating what powers to use for the Box-Cox
transformation. When optimize=FALSE, the default value is lambda=seq(-2, 2, by=0.5).
When optimize=TRUE, lambda must be a vector with two values indicating the
range over which the optimization will occur and the range of these two values
must include 1. In this case, the default value is lambda=c(-2, 2).

optimize logical scalar indicating whether to simply evalute the objective function at the
given values of lambda (optimize=FALSE; the default), or to compute the opti-
mal power transformation within the bounds specified by lambda (optimize=TRUE).

objective.name character string indicating what objective to use. The possible values are "PPCC"
(probability plot correlation coefficient; the default), "Shapiro-Wilk" (the Shapiro-
Wilk goodness-of-fit statistic), and "Log-Likelihood" (the log-likelihood func-
tion).

eps finite, positive numeric scalar. When the absolute value of lambda is less than
eps, lambda is assumed to be 0 for the Box-Cox transformation. The default
value is eps=.Machine$double.eps.

include.x logical scalar indicating whether to include the finite, non-missing values of the
argument x with the returned object. The default value is include.x=TRUE.

... optional arguments for possible future methods. Currently not used.

Details

Two common assumptions for several standard parametric hypothesis tests are:

1. The observations all come from a normal distribution.

2. The observations all come from distributions with the same variance.

For example, the standard one-sample t-test assumes all the observations come from the same nor-
mal distribution, and the standard two-sample t-test assumes that all the observations come from a
normal distribution with the same variance, although the mean may differ between the two groups.

When the original data do not satisfy the above assumptions, data transformations are often used to
attempt to satisfy these assumptions. The rest of this section is divided into two parts: one that dis-
cusses Box-Cox transformations in the context of the original observations, and one that discusses
Box-Cox transformations in the context of linear models.

Box-Cox Transformations Based on the Original Observations
Box and Cox (1964) presented a formalized method for deciding on a data transformation. Given a
random variable X from some distribution with only positive values, the Box-Cox family of power
transformations is defined as:
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Y = Xλ−1
λ λ 6= 0

log(X) λ = 0 (1)

where Y is assumed to come from a normal distribution. This transformation is continuous in λ.
Note that this transformation also preserves ordering. See the help file for boxcoxTransform for
more information on data transformations.

Let x = x1, x2, . . . , xn denote a random sample of n observations from some distribution and
assume that there exists some value of λ such that the transformed observations

yi = xλi −1
λ λ 6= 0

log(xi) λ = 0 (2)

(i = 1, 2, . . . , n) form a random sample from a normal distribution.

Box and Cox (1964) proposed choosing the appropriate value of λ based on maximizing the likeli-
hood function. Alternatively, an appropriate value of λ can be chosen based on another objective,
such as maximizing the probability plot correlation coefficient or the Shapiro-Wilk goodness-of-fit
statistic.

In the case when optimize=TRUE, the function boxcox calls the R function nlminb to minimize the
negative value of the objective (i.e., maximize the objective) over the range of possible values of λ
specified in the argument lambda. The starting value for the optimization is always λ = 1 (i.e., no
transformation).

The rest of this sub-section explains how the objective is computed for the various options for
objective.name.

Objective Based on Probability Plot Correlation Coefficient (objective.name="PPCC")
When objective.name="PPCC", the objective is computed as the value of the normal probability
plot correlation coefficient based on the transformed data (see the description of the Probability
Plot Correlation Coefficient (PPCC) goodness-of-fit test in the help file for gofTest). That is, the
objective is the correlation coefficient for the normal quantile-quantile plot for the transformed data.
Large values of the PPCC tend to indicate a good fit to a normal distribution.

Objective Based on Shapiro-Wilk Goodness-of-Fit Statistic (objective.name="Shapiro-Wilk")
When objective.name="Shapiro-Wilk", the objective is computed as the value of the Shapiro-
Wilk goodness-of-fit statistic based on the transformed data (see the description of the Shapiro-Wilk
test in the help file for gofTest). Large values of the Shapiro-Wilk statistic tend to indicate a good
fit to a normal distribution.

Objective Based on Log-Likelihood Function (objective.name="Log-Likelihood")
When objective.name="Log-Likelihood", the objective is computed as the value of the log-
likelihood function. Assuming the transformed observations in Equation (2) above come from
a normal distribution with mean µ and standard deviation σ, we can use the change of variable
formula to write the log-likelihood function as:

log[L(λ, µ, σ)] =
−n
2
log(2π)− n

2
log(σ2)− 1

2σ2

n∑
i=1

(yi − µ)2 + (λ− 1)

n∑
i=1

log(xi) (3)
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where yi is defined in Equation (2) above (Box and Cox, 1964). For a fixed value of λ, the log-
likelihood function is maximized by replacing µ and σ with their maximum likelihood estimators:

µ̂ =
1

n

n∑
i=1

yi (4)

σ̂ = [
1

n

n∑
i=1

(yi − ȳ)2]1/2 (5)

Thus, when optimize=TRUE, Equation (3) is maximized by iteratively solving for λ using the val-
ues for µ and σ given in Equations (4) and (5). When optimize=FALSE, the value of the objective is
computed by using Equation (3), using the values of λ specified in the argument lambda, and using
the values for µ and σ given in Equations (4) and (5).

Box-Cox Transformation for Linear Models
In the case of a standard linear regression model with n observations and p predictors:

Yi = β0 + β1Xi1 + . . .+ βpXip + εi, i = 1, 2, . . . , n (6)

the standard assumptions are:

1. The error terms εi come from a normal distribution with mean 0.

2. The variance is the same for all of the error terms and does not depend on the predictor
variables.

Assuming Y is a random variable from some distribution that may depend on the predictor variables
and Y takes on only positive values, the Box-Cox family of power transformations is defined as:

Y ∗ = Y λ−1
λ λ 6= 0

log(Y ) λ = 0 (7)

where Y ∗ becomes the new response variable and the errors are now assumed to come from a
normal distribution with a mean of 0 and a constant variance.

In this case, the objective is computed as described above, but it is based on the residuals from the
fitted linear model in which the response variable is now Y ∗ instead of Y .

Value

When x is an object of class "lm", boxcox returns a list of class "boxcoxLm" containing the results.
See the help file for boxcoxLm.object for details.

When x is simply a numeric vector of positive numbers, boxcox returns a list of class "boxcox"
containing the results. See the help file for boxcox.object for details.

Note

Data transformations are often used to induce normality, homoscedasticity, and/or linearity, com-
mon assumptions of parametric statistical tests and estimation procedures. Transformations are not
“tricks” used by the data analyst to hide what is going on, but rather useful tools for understand-
ing and dealing with data (Berthouex and Brown, 2002, p.61). Hoaglin (1988) discusses “hidden”
transformations that are used everyday, such as the pH scale for measuring acidity. Johnson and
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Wichern (2007, p.192) note that "Transformations are nothing more than a reexpression of the data
in different units."

In the case of a linear model, there are at least two approaches to improving a model fit: trans-
form the Y and/or X variable(s), and/or use more predictor variables. Often in environmental data
analysis, we assume the observations come from a lognormal distribution and automatically take
logarithms of the data. For a simple linear regression (i.e., one predictor variable), if regression
diagnostic plots indicate that a straight line fit is not adequate, but that the variance of the errors ap-
pears to be fairly constant, you may only need to transform the predictor variable X or perhaps use
a quadratic or cubic model inX . On the other hand, if the diagnostic plots indicate that the constant
variance and/or normality assumptions are suspect, you probably need to consider transforming the
response variable Y . Data transformations for linear regression models are discussed in Draper and
Smith (1998, Chapter 13) and Helsel and Hirsch (1992, pp. 228-229).

One problem with data transformations is that translating results on the transformed scale back to
the original scale is not always straightforward. Estimating quantities such as means, variances,
and confidence limits in the transformed scale and then transforming them back to the original scale
usually leads to biased and inconsistent estimates (Gilbert, 1987, p.149; van Belle et al., 2004,
p.400). For example, exponentiating the confidence limits for a mean based on log-transformed
data does not yield a confidence interval for the mean on the original scale. Instead, this yields a
confidence interval for the median (see the help file for elnormAlt). It should be noted, however,
that quantiles (percentiles) and rank-based procedures are invariant to monotonic transformations
(Helsel and Hirsch, 1992, p.12).

Finally, there is no guarantee that a Box-Cox tranformation based on the “optimal” value of λ will
provide an adequate transformation to allow the assumption of approximate normality and constant
variance. Any set of transformed data should be inspected relative to the assumptions you want to
make about it (Johnson and Wichern, 2007, p.194).

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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See Also

boxcox.object, plot.boxcox, print.boxcox, boxcoxLm.object, plot.boxcoxLm, print.boxcoxLm,
boxcoxTransform, Data Transformations, Goodness-of-Fit Tests.

Examples

# Generate 30 observations from a lognormal distribution with
# mean=10 and cv=2. Look at some values of various objectives
# for various transformations. Note that for both the PPCC and
# the Log-Likelihood objective, the optimal value of lambda is
# about 0, indicating that a log transformation is appropriate.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(250)
x <- rlnormAlt(30, mean = 10, cv = 2)

# Using the PPCC objective:
#--------------------------

boxcox(x)
#Results of Box-Cox Transformation
#---------------------------------
#
#Objective Name: PPCC
#
#Data: x
#
#Sample Size: 30
#
# lambda PPCC
# -2.0 0.5423739
# -1.5 0.6402782
# -1.0 0.7818160
# -0.5 0.9272219
# 0.0 0.9921702
# 0.5 0.9581178
# 1.0 0.8749611
# 1.5 0.7827009
# 2.0 0.7004547

boxcox(x, optimize = TRUE)
#Results of Box-Cox Transformation
#---------------------------------
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#
#Objective Name: PPCC
#
#Data: x
#
#Sample Size: 30
#
#Bounds for Optimization: lower = -2
# upper = 2
#
#Optimal Value: lambda = 0.04530789
#
#Value of Objective: PPCC = 0.9925919

# Using the Log-Likelihodd objective
#-----------------------------------

boxcox(x, objective.name = "Log-Likelihood")
#Results of Box-Cox Transformation
#---------------------------------
#
#Objective Name: Log-Likelihood
#
#Data: x
#
#Sample Size: 30
#
# lambda Log-Likelihood
# -2.0 -154.94255
# -1.5 -128.59988
# -1.0 -106.23882
# -0.5 -90.84800
# 0.0 -85.10204
# 0.5 -88.69825
# 1.0 -99.42630
# 1.5 -115.23701
# 2.0 -134.54125

boxcox(x, objective.name = "Log-Likelihood", optimize = TRUE)
#Results of Box-Cox Transformation
#---------------------------------
#
#Objective Name: Log-Likelihood
#
#Data: x
#
#Sample Size: 30
#
#Bounds for Optimization: lower = -2
# upper = 2
#
#Optimal Value: lambda = 0.0405156
#
#Value of Objective: Log-Likelihood = -85.07123

#----------
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# Plot the results based on the PPCC objective
#---------------------------------------------
boxcox.list <- boxcox(x)
dev.new()
plot(boxcox.list)

#Look at QQ-Plots for the candidate values of lambda
#---------------------------------------------------
plot(boxcox.list, plot.type = "Q-Q Plots", same.window = FALSE)

#==========

# The data frame Environmental.df contains daily measurements of
# ozone concentration, wind speed, temperature, and solar radiation
# in New York City for 153 consecutive days between May 1 and
# September 30, 1973. In this example, well plot ozone vs.
# temperature and look at the Q-Q plot of the residuals. Then
# well look at possible Box-Cox transformations. The "optimal" one
# based on the PPCC looks close to a log-transformation
# (i.e., lambda=0). The power that produces the largest PPCC is
# about 0.2, so a cube root (lambda=1/3) transformation might work too.

# Fit the model with the raw Ozone data
#--------------------------------------
ozone.fit <- lm(ozone ~ temperature, data = Environmental.df)

# Plot Ozone vs. Temperature, with fitted line
#---------------------------------------------
dev.new()
with(Environmental.df,

plot(temperature, ozone, xlab = "Temperature (degrees F)",
ylab = "Ozone (ppb)", main = "Ozone vs. Temperature"))

abline(ozone.fit)

# Look at the Q-Q Plot for the residuals
#---------------------------------------
dev.new()
qqPlot(ozone.fit$residuals, add.line = TRUE)

# Look at Box-Cox transformations of Ozone
#-----------------------------------------
boxcox.list <- boxcox(ozone.fit)
boxcox.list
#Results of Box-Cox Transformation
#---------------------------------
#
#Objective Name: PPCC
#
#Linear Model: ozone.fit
#
#Sample Size: 116
#
# lambda PPCC
# -2.0 0.4286781
# -1.5 0.4673544
# -1.0 0.5896132
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# -0.5 0.8301458
# 0.0 0.9871519
# 0.5 0.9819825
# 1.0 0.9408694
# 1.5 0.8840770
# 2.0 0.8213675

# Plot PPCC vs. lambda based on Q-Q plots of residuals
#-----------------------------------------------------
dev.new()
plot(boxcox.list)

# Look at Q-Q plots of residuals for the various transformation
#--------------------------------------------------------------
plot(boxcox.list, plot.type = "Q-Q Plots", same.window = FALSE)

# Compute the "optimal" transformation
#-------------------------------------
boxcox(ozone.fit, optimize = TRUE)
#Results of Box-Cox Transformation
#---------------------------------
#
#Objective Name: PPCC
#
#Linear Model: ozone.fit
#
#Sample Size: 116
#
#Bounds for Optimization: lower = -2
# upper = 2
#
#Optimal Value: lambda = 0.2004305
#
#Value of Objective: PPCC = 0.9940222

#==========

# Clean up
#---------
rm(x, boxcox.list, ozone.fit)
graphics.off()

boxcox.object S3 Class "boxcox"

Description

Objects of S3 class "boxcox" are returned by the EnvStats function boxcox, which computes ob-
jective values for user-specified powers, or computes the optimal power for the specified objective.

Details

Objects of class "boxcox" are lists that contain information about the powers that were used, the ob-
jective that was used, the values of the objective for the given powers, and whether an optimization
was specified.
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Value

Required Components
The following components must be included in a legitimate list of class "boxcox".

lambda Numeric vector containing the powers used in the Box-Cox transformations. If
the value of the optimize component is FALSE, then lambda contains the values
of all of the powers at which the objective was evaluated. If the value of the
optimize component is TRUE, then lambda is a scalar containing the value of
the power that maximizes the objective.

objective Numeric vector containing the value(s) of the objective for the given value(s) of
λ that are stored in the component lambda.

objective.name character string indicating the objective that was used. The possible values are
"PPCC" (probability plot correlation coefficient; the default), "Shapiro-Wilk"
(the Shapiro-Wilk goodness-of-fit statistic), and "Log-Likelihood" (the log-
likelihood function).

optimize logical scalar indicating whether the objective was simply evaluted at the given
values of lambda (optimize=FALSE), or instead the optimal power transforma-
tion was computed within the bounds specified by lambda (optimize=TRUE).

optimize.bounds

Numeric vector of length 2 with a names attribute indicating the bounds within
which the optimization took place. When optimize=FALSE, this contains miss-
ing values.

eps finite, positive numeric scalar indicating what value of eps was used. When the
absolute value of lambda is less than eps, lambda is assumed to be 0 for the
Box-Cox transformation.

sample.size Numeric scalar indicating the number of finite, non-missing observations.

data.name The name of the data object used for the Box-Cox computations.

bad.obs The number of missing (NA), undefined (NaN) and/or infinite (Inf, -Inf) values
that were removed from the data object prior to performing the Box-Cox com-
putations.

Optional Component
The following component may optionally be included in a legitimate list of class "boxcox". It
must be included if you want to call the function plot.boxcox and specify Q-Q plots or Tukey
Mean-Difference Q-Q plots.

data Numeric vector containing the data actually used for the Box-Cox computations
(i.e., the original data without any missing or infinite values).

Methods

Generic functions that have methods for objects of class "boxcox" include:
link{plot}, print.

Note

Since objects of class "boxcox" are lists, you may extract their components with the $ and [[
operators.
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Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

See Also

boxcox, plot.boxcox, print.boxcox, boxcoxLm.object.

Examples

# Create an object of class "boxcox", then print it out.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(250)
x <- rlnormAlt(30, mean = 10, cv = 2)

boxcox.list <- boxcox(x)

data.class(boxcox.list)
#[1] "boxcox"

names(boxcox.list)
# [1] "lambda" "objective" "objective.name"
# [4] "optimize" "optimize.bounds" "eps"
# [7] "data" "sample.size" "data.name"
#[10] "bad.obs"

boxcox.list
#Results of Box-Cox Transformation
#---------------------------------
#
#Objective Name: PPCC
#
#Data: x
#
#Sample Size: 30
#
# lambda PPCC
# -2.0 0.5423739
# -1.5 0.6402782
# -1.0 0.7818160
# -0.5 0.9272219
# 0.0 0.9921702
# 0.5 0.9581178
# 1.0 0.8749611
# 1.5 0.7827009
# 2.0 0.7004547

boxcox(x, optimize = TRUE)
#Results of Box-Cox Transformation
#---------------------------------
#
#Objective Name: PPCC
#
#Data: x
#
#Sample Size: 30
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#
#Bounds for Optimization: lower = -2
# upper = 2
#
#Optimal Value: lambda = 0.04530789
#
#Value of Objective: PPCC = 0.9925919

#----------

# Clean up
#---------
rm(x, boxcox.list)

boxcoxCensored Boxcox Power Transformation for Type I Censored Data

Description

Compute the value(s) of an objective for one or more Box-Cox power transformations, or to com-
pute an optimal power transformation based on a specified objective, based on Type I censored
data.

Usage

boxcoxCensored(x, censored, censoring.side = "left",
lambda = {if (optimize) c(-2, 2) else seq(-2, 2, by = 0.5)}, optimize = FALSE,
objective.name = "PPCC", eps = .Machine$double.eps,
include.x.and.censored = TRUE, prob.method = "michael-schucany",
plot.pos.con = 0.375)

Arguments

x a numeric vector of positive numbers. Missing (NA), undefined (NaN), and infi-
nite (-Inf, Inf) values are allowed but will be removed.

censored numeric or logical vector indicating which values of x are censored. This must
be the same length as x. If the mode of censored is "logical", TRUE values
correspond to elements of x that are censored, and FALSE values correspond to
elements of x that are not censored. If the mode of censored is "numeric",
it must contain only 1’s and 0’s; 1 corresponds to TRUE and 0 corresponds to
FALSE. Missing (NA) values are allowed but will be removed.

censoring.side character string indicating on which side the censoring occurs. The possible
values are "left" (the default) and "right".

lambda numeric vector of finite values indicating what powers to use for the Box-Cox
transformation. When optimize=FALSE, the default value is lambda=seq(-2, 2, by=0.5).
When optimize=TRUE, lambda must be a vector with two values indicating the
range over which the optimization will occur and the range of these two values
must include 1. In this case, the default value is lambda=c(-2, 2).

optimize logical scalar indicating whether to simply evalute the objective function at the
given values of lambda (optimize=FALSE; the default), or to compute the opti-
mal power transformation within the bounds specified by lambda (optimize=TRUE).
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objective.name character string indicating what objective to use. The possible values are "PPCC"
(probability plot correlation coefficient; the default), "Shapiro-Wilk" (the Shapiro-
Wilk goodness-of-fit statistic), and "Log-Likelihood" (the log-likelihood func-
tion).

eps finite, positive numeric scalar. When the absolute value of lambda is less than
eps, lambda is assumed to be 0 for the Box-Cox transformation. The default
value is eps=.Machine$double.eps.

include.x.and.censored

logical scalar indicating whether to include the finite, non-missing values of the
argument x and the corresponding values of censored with the returned object.
The default value is include.x.and.censored=TRUE.

prob.method for multiply censored data, character string indicating what method to use to
compute the plotting positions (empirical probabilities) when objective.name="PPCC".
Possible values are "kaplan-meier" (product-limit method of Kaplan and Meier
(1958)), "modified kaplan-meier" (same as "kaplan-meier" with the max-
imum value included), "nelson" (hazard plotting method of Nelson (1972)),
"michael-schucany" (generalization of the product-limit method due to Michael
and Schucany (1986)), and "hirsch-stedinger" (generalization of the product-
limit method due to Hirsch and Stedinger (1987)). The default value is prob.method="michael-schucany".
The "nelson" method is only available for censoring.side="right", and
the "modified kaplan-meier" is only available for censoring.side="left".
See the DETAILS section for more explanation.
This argument is ignored if objective.name is not equal to "PPCC" and/or the
data are singly censored.

plot.pos.con for multiply censored data, numeric scalar between 0 and 1 containing the value
of the plotting position constant when objective.name="PPCC". The default
value is plot.pos.con=0.375. See the DETAILS section for more information.
This argument is used only if prob.method is equal to "michael-schucany" or
"hirsch-stedinger".
This argument is ignored if objective.name is not equal to "PPCC" and/or the
data are singly censored.

Details

Two common assumptions for several standard parametric hypothesis tests are:

1. The observations all come from a normal distribution.

2. The observations all come from distributions with the same variance.

For example, the standard one-sample t-test assumes all the observations come from the same nor-
mal distribution, and the standard two-sample t-test assumes that all the observations come from a
normal distribution with the same variance, although the mean may differ between the two groups.

When the original data do not satisfy the above assumptions, data transformations are often used
to attempt to satisfy these assumptions. Box and Cox (1964) presented a formalized method for
deciding on a data transformation. Given a random variable X from some distribution with only
positive values, the Box-Cox family of power transformations is defined as:

Y = Xλ−1
λ λ 6= 0

log(X) λ = 0 (1)
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where Y is assumed to come from a normal distribution. This transformation is continuous in λ.
Note that this transformation also preserves ordering. See the help file for boxcoxTransform for
more information on data transformations.

Box and Cox (1964) proposed choosing the appropriate value of λ based on maximizing the likeli-
hood function. Alternatively, an appropriate value of λ can be chosen based on another objective,
such as maximizing the probability plot correlation coefficient or the Shapiro-Wilk goodness-of-fit
statistic.

Shumway et al. (1989) investigated extending the method of Box and Cox (1964) to the case of
Type I censored data, motivated by the desire to produce estimated means and confidence intervals
for air monitoring data that included censored values.

In the case when optimize=TRUE, the function boxcoxCensored calls the R function nlminb to
minimize the negative value of the objective (i.e., maximize the objective) over the range of possible
values of λ specified in the argument lambda. The starting value for the optimization is always
λ = 1 (i.e., no transformation).

The next section explains assumptions and notation, and the section after that explains how the ob-
jective is computed for the various options for objective.name.

Assumptions and Notation
Let x denote a random sample of N observations from some continuous distribution. Assume n
(0 < n < N ) of these observations are known and c (c = N − n) of these observations are all
censored below (left-censored) or all censored above (right-censored) at k fixed censoring levels

T1, T2, . . . , TK ; K ≥ 1 (2)

For the case when K ≥ 2, the data are said to be Type I multiply censored. For the case when
K = 1, set T = T1. If the data are left-censored and all n known observations are greater than
or equal to T , or if the data are right-censored and all n known observations are less than or equal
to T , then the data are said to be Type I singly censored (Nelson, 1982, p.7), otherwise they are
considered to be Type I multiply censored.

Let cj denote the number of observations censored below or above censoring level Tj for j =
1, 2, . . . ,K, so that

K∑
i=1

cj = c (3)

Let x(1), x(2), . . . , x(N) denote the “ordered” observations, where now “observation” means either
the actual observation (for uncensored observations) or the censoring level (for censored observa-
tions). For right-censored data, if a censored observation has the same value as an uncensored one,
the uncensored observation should be placed first. For left-censored data, if a censored observation
has the same value as an uncensored one, the censored observation should be placed first.

Note that in this case the quantity x(i) does not necessarily represent the i’th “largest” observation
from the (unknown) complete sample.

Finally, let Ω (omega) denote the set of n subscripts in the “ordered” sample that correspond to
uncensored observations, and let Ωj denote the set of cj subscripts in the “ordered” sample that
correspond to the censored observations censored at censoring level Tj for j = 1, 2, . . . , k.

We assume that there exists some value of λ such that the transformed observations

yi = xλi −1
λ λ 6= 0

log(xi) λ = 0 (4)
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(i = 1, 2, . . . , n) form a random sample of Type I censored data from a normal distribution.

Note that for the censored observations, Equation (4) becomes:

y(i) = T ∗j =
Tλj −1

λ λ 6= 0

log(Tj) λ = 0 (5)

where i ∈ Ωj .

Computing the Objective

Objective Based on Probability Plot Correlation Coefficient (objective.name="PPCC")
When objective.name="PPCC", the objective is computed as the value of the normal probability
plot correlation coefficient based on the transformed data (see the description of the Probability Plot
Correlation Coefficient (PPCC) goodness-of-fit test in the help file for gofTestCensored). That is,
the objective is the correlation coefficient for the normal quantile-quantile plot for the transformed
data. Large values of the PPCC tend to indicate a good fit to a normal distribution.

Objective Based on Shapiro-Wilk Goodness-of-Fit Statistic (objective.name="Shapiro-Wilk")
When objective.name="Shapiro-Wilk", the objective is computed as the value of the Shapiro-
Wilk goodness-of-fit statistic based on the transformed data (see the description of the Shapiro-Wilk
test in the help file for gofTestCensored). Large values of the Shapiro-Wilk statistic tend to indi-
cate a good fit to a normal distribution.

Objective Based on Log-Likelihood Function (objective.name="Log-Likelihood")
When objective.name="Log-Likelihood", the objective is computed as the value of the log-
likelihood function. Assuming the transformed observations in Equation (4) above come from
a normal distribution with mean µ and standard deviation σ, we can use the change of variable
formula to write the log-likelihood function as follows.

For Type I left censored data, the likelihood function is given by:

log[L(λ, µ, σ)] = log[

(
N

c1c2 . . . ckn

)
]+

k∑
j=1

cj log[F (T ∗j )]+
∑
i∈Ω

log{f [y(i)]}+(λ−1)
∑
i∈Ω

log[x(i)] (6)

where f and F denote the probability density function (pdf) and cumulative distribution function
(cdf) of the population. That is,

f(t) = φ(
t− µ
σ

) (7)

F (t) = Φ(
t− µ
σ

) (8)

where φ and Φ denote the pdf and cdf of the standard normal distribution, respectively (Shumway
et al., 1989). For left singly censored data, Equation (6) simplifies to:

log[L(λ, µ, σ)] = log[

(
N

c

)
] + clog[F (T ∗)] +

N∑
i=c+1

log{f [y(i)]}+ (λ− 1)

N∑
i=c+1

log[x(i)] (9)

Similarly, for Type I right censored data, the likelihood function is given by:

log[L(λ, µ, σ)] = log[

(
N

c1c2 . . . ckn

)
]+

k∑
j=1

cj log[1−F (T ∗j )]+
∑
i∈Ω

log{f [y(i)]}+(λ−1)
∑
i∈Ω

log[x(i)] (10)
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and for right singly censored data this simplifies to:

log[L(λ, µ, σ)] = log[

(
N

c

)
] + clog[1−F (T ∗)] +

n∑
i=1

log{f [y(i)]}+ (λ−1)

n∑
i=1

log[x(i)] (11)

For a fixed value of λ, the log-likelihood function is maximized by replacing µ and σ with their
maximum likelihood estimators (see the section Maximum Likelihood Estimation in the help file for
enormCensored).

Thus, when optimize=TRUE, Equation (6) or (10) is maximized by iteratively solving for λ using
the MLEs for µ and σ. When optimize=FALSE, the value of the objective is computed by using
Equation (6) or (10), using the values of λ specified in the argument lambda, and using the MLEs
of µ and σ.

Value

boxcoxCensored returns a list of class "boxcoxCensored" containing the results. See the help file
for boxcoxCensored.object for details.

Note

Data transformations are often used to induce normality, homoscedasticity, and/or linearity, com-
mon assumptions of parametric statistical tests and estimation procedures. Transformations are not
“tricks” used by the data analyst to hide what is going on, but rather useful tools for understand-
ing and dealing with data (Berthouex and Brown, 2002, p.61). Hoaglin (1988) discusses “hidden”
transformations that are used everyday, such as the pH scale for measuring acidity. Johnson and
Wichern (2007, p.192) note that "Transformations are nothing more than a reexpression of the data
in different units."

Shumway et al. (1989) investigated extending the method of Box and Cox (1964) to the case of
Type I censored data, motivated by the desire to produce estimated means and confidence intervals
for air monitoring data that included censored values.

Stoline (1991) compared the goodness-of-fit of Box-Cox transformed data (based on using the “op-
timal” power transformation from a finite set of values between -1.5 and 1.5) with log-transformed
data for 17 groundwater chemistry variables. Using the Probability Plot Correlation Coefficient
statistic for censored data as a measure of goodness-of-fit (see gofTest), Stoline (1991) found that
only 6 of the variables were adequately modeled by a Box-Cox transformation (p >0.10 for these
6 variables). Of these variables, five were adequately modeled by a a log transformation. Ten of
variables were “marginally” fit by an optimal Box-Cox transformation, and of these 10 only 6 were
marginally fit by a log transformation. Based on these results, Stoline (1991) recommends checking
the assumption of lognormality before automatically assuming environmental data fit a lognormal
distribution.

One problem with data transformations is that translating results on the transformed scale back to
the original scale is not always straightforward. Estimating quantities such as means, variances, and
confidence limits in the transformed scale and then transforming them back to the original scale usu-
ally leads to biased and inconsistent estimates (Gilbert, 1987, p.149; van Belle et al., 2004, p.400).
For example, exponentiating the confidence limits for a mean based on log-transformed data does
not yield a confidence interval for the mean on the original scale. Instead, this yields a confidence
interval for the median (see the help file for elnormAltCensored). It should be noted, however,
that quantiles (percentiles) and rank-based procedures are invariant to monotonic transformations
(Helsel and Hirsch, 1992, p.12).

Finally, there is no guarantee that a Box-Cox tranformation based on the “optimal” value of λ will
provide an adequate transformation to allow the assumption of approximate normality and constant
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variance. Any set of transformed data should be inspected relative to the assumptions you want to
make about it (Johnson and Wichern, 2007, p.194).

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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See Also

boxcoxCensored.object, plot.boxcoxCensored, print.boxcoxCensored, boxcox, Data Trans-
formations, Goodness-of-Fit Tests.
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Examples

# Generate 15 observations from a lognormal distribution with
# mean=10 and cv=2 and censor the observations less than 2.
# Then generate 15 more observations from this distribution and
# censor the observations less than 4.
# Then Look at some values of various objectives for various transformations.
# Note that for both the PPCC objective the optimal value is about -0.3,
# whereas for the Log-Likelihood objective it is about 0.3.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(250)

x.1 <- rlnormAlt(15, mean = 10, cv = 2)
censored.1 <- x.1 < 2
x.1[censored.1] <- 2

x.2 <- rlnormAlt(15, mean = 10, cv = 2)
censored.2 <- x.2 < 4
x.2[censored.2] <- 4

x <- c(x.1, x.2)
censored <- c(censored.1, censored.2)

#--------------------------
# Using the PPCC objective:
#--------------------------

boxcoxCensored(x, censored)

#Results of Box-Cox Transformation
#Based on Type I Censored Data
#---------------------------------
#
#Objective Name: PPCC
#
#Data: x
#
#Censoring Variable: censored
#
#Censoring Side: left
#
#Censoring Level(s): 2 4
#
#Sample Size: 30
#
#Percent Censored: 26.7%
#
# lambda PPCC
# -2.0 0.8954683
# -1.5 0.9338467
# -1.0 0.9643680
# -0.5 0.9812969
# 0.0 0.9776834
# 0.5 0.9471025
# 1.0 0.8901990
# 1.5 0.8187488
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# 2.0 0.7480494

boxcoxCensored(x, censored, optimize = TRUE)

#Results of Box-Cox Transformation
#Based on Type I Censored Data
#---------------------------------
#
#Objective Name: PPCC
#
#Data: x
#
#Censoring Variable: censored
#
#Censoring Side: left
#
#Censoring Level(s): 2 4
#
#Sample Size: 30
#
#Percent Censored: 26.7%
#
#Bounds for Optimization: lower = -2
# upper = 2
#
#Optimal Value: lambda = -0.3194799
#
#Value of Objective: PPCC = 0.9827546

#-----------------------------------
# Using the Log-Likelihodd objective
#-----------------------------------

boxcoxCensored(x, censored, objective.name = "Log-Likelihood")

#Results of Box-Cox Transformation
#Based on Type I Censored Data
#---------------------------------
#
#Objective Name: Log-Likelihood
#
#Data: x
#
#Censoring Variable: censored
#
#Censoring Side: left
#
#Censoring Level(s): 2 4
#
#Sample Size: 30
#
#Percent Censored: 26.7%
#
# lambda Log-Likelihood
# -2.0 -95.38785
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# -1.5 -84.76697
# -1.0 -75.36204
# -0.5 -68.12058
# 0.0 -63.98902
# 0.5 -63.56701
# 1.0 -66.92599
# 1.5 -73.61638
# 2.0 -82.87970

boxcoxCensored(x, censored, objective.name = "Log-Likelihood",
optimize = TRUE)

#Results of Box-Cox Transformation
#Based on Type I Censored Data
#---------------------------------
#
#Objective Name: Log-Likelihood
#
#Data: x
#
#Censoring Variable: censored
#
#Censoring Side: left
#
#Censoring Level(s): 2 4
#
#Sample Size: 30
#
#Percent Censored: 26.7%
#
#Bounds for Optimization: lower = -2
# upper = 2
#
#Optimal Value: lambda = 0.3049744
#
#Value of Objective: Log-Likelihood = -63.2733

#----------

# Plot the results based on the PPCC objective
#---------------------------------------------
boxcox.list <- boxcoxCensored(x, censored)
dev.new()
plot(boxcox.list)

#Look at QQ-Plots for the candidate values of lambda
#---------------------------------------------------
plot(boxcox.list, plot.type = "Q-Q Plots", same.window = FALSE)

#==========

# Clean up
#---------
rm(x.1, censored.1, x.2, censored.2, x, censored, boxcox.list)
graphics.off()
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boxcoxCensored.object S3 Class "boxcoxCensored"

Description

Objects of S3 class "boxcoxCensored" are returned by the EnvStats function boxcoxCensored,
which computes objective values for user-specified powers, or computes the optimal power for the
specified objective, based on Type I censored data.

Details

Objects of class "boxcoxCensored" are lists that contain information about the powers that were
used, the objective that was used, the values of the objective for the given powers, and whether an
optimization was specified.

Value

Required Components
The following components must be included in a legitimate list of class "boxcoxCensored".

lambda Numeric vector containing the powers used in the Box-Cox transformations. If
the value of the optimize component is FALSE, then lambda contains the values
of all of the powers at which the objective was evaluated. If the value of the
optimize component is TRUE, then lambda is a scalar containing the value of
the power that maximizes the objective.

objective Numeric vector containing the value(s) of the objective for the given value(s) of
λ that are stored in the component lambda.

objective.name Character string indicating the objective that was used. The possible values are
"PPCC" (probability plot correlation coefficient; the default), "Shapiro-Wilk"
(the Shapiro-Wilk goodness-of-fit statistic), and "Log-Likelihood" (the log-
likelihood function).

optimize Logical scalar indicating whether the objective was simply evaluted at the given
values of lambda (optimize=FALSE), or instead the optimal power transforma-
tion was computed within the bounds specified by lambda (optimize=TRUE).

optimize.bounds

Numeric vector of length 2 with a names attribute indicating the bounds within
which the optimization took place. When optimize=FALSE, this contains miss-
ing values.

eps Finite, positive numeric scalar indicating what value of eps was used. When
the absolute value of lambda is less than eps, lambda is assumed to be 0 for the
Box-Cox transformation.

sample.size Numeric scalar indicating the number of finite, non-missing observations.

censoring.side Character string indicating the censoring side. Possible values are "left" and
"right".

censoring.levels

Numeric vector containing the censoring levels.
percent.censored

Numeric scalar indicating the percent of observations that are censored.
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data.name The name of the data object used for the Box-Cox computations.

censoring.name The name of the data object indicating which observations are censored.

bad.obs The number of missing (NA), undefined (NaN) and/or infinite (Inf, -Inf) values
that were removed from the data object prior to performing the Box-Cox com-
putations.

Optional Component
The following components may optionally be included in a legitimate list of class "boxcoxCensored".
They must be included if you want to call the function plot.boxcoxCensored and specify Q-Q
plots or Tukey Mean-Difference Q-Q plots.

data Numeric vector containing the data actually used for the Box-Cox computations
(i.e., the original data without any missing or infinite values).

censored Logical vector indicating which of the vales in the component data are cen-
sored.

Methods

Generic functions that have methods for objects of class "boxcoxCensored" include:
link{plot}, print.

Note

Since objects of class "boxcoxCensored" are lists, you may extract their components with the $
and [[ operators.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

See Also

boxcoxCensored, plot.boxcoxCensored, print.boxcoxCensored.

Examples

# Create an object of class "boxcoxCensored", then print it out.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(250)

x.1 <- rlnormAlt(15, mean = 10, cv = 2)
censored.1 <- x.1 < 2
x.1[censored.1] <- 2

x.2 <- rlnormAlt(15, mean = 10, cv = 2)
censored.2 <- x.2 < 4
x.2[censored.2] <- 4

x <- c(x.1, x.2)
censored <- c(censored.1, censored.2)

boxcox.list <- boxcoxCensored(x, censored)
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data.class(boxcox.list)
#[1] "boxcoxCensored"

names(boxcox.list)
# [1] "lambda" "objective" "objective.name"
# [4] "optimize" "optimize.bounds" "eps"
# [7] "data" "censored" "sample.size"
#[10] "censoring.side" "censoring.levels" "percent.censored"
#[13] "data.name" "censoring.name" "bad.obs"

boxcox.list

#Results of Box-Cox Transformation
#Based on Type I Censored Data
#---------------------------------
#
#Objective Name: PPCC
#
#Data: x
#
#Censoring Variable: censored
#
#Censoring Side: left
#
#Censoring Level(s): 2 4
#
#Sample Size: 30
#
#Percent Censored: 26.7%
#
# lambda PPCC
# -2.0 0.8954683
# -1.5 0.9338467
# -1.0 0.9643680
# -0.5 0.9812969
# 0.0 0.9776834
# 0.5 0.9471025
# 1.0 0.8901990
# 1.5 0.8187488
# 2.0 0.7480494

boxcox.list2 <- boxcox(x, optimize = TRUE)
names(boxcox.list2)
# [1] "lambda" "objective" "objective.name"
# [4] "optimize" "optimize.bounds" "eps"
# [7] "data" "sample.size" "data.name"
#[10] "bad.obs"

boxcox.list2
#Results of Box-Cox Transformation
#---------------------------------
#
#Objective Name: PPCC
#
#Data: x
#
#Sample Size: 30
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#
#Bounds for Optimization: lower = -2
# upper = 2
#
#Optimal Value: lambda = -0.5826431
#
#Value of Objective: PPCC = 0.9755402

#==========

# Clean up
#---------
rm(x.1, censored.1, x.2, censored.2, x, censored, boxcox.list, boxcox.list2)

boxcoxLm.object S3 Class "boxcoxLm"

Description

Objects of S3 class "boxcoxLm" are returned by the EnvStats function boxcox when the argument
x is an object of class "lm". In this case, boxcox computes values of an objective function for user-
specified powers, or computes the optimal power for the specified objective, based on residuals
from the linear model.

Details

Objects of class "boxcoxLm" are lists that contain information about the "lm" object that was su-
plied, the powers that were used, the objective that was used, the values of the objective for the
given powers, and whether an optimization was specified.

Value

The following components must be included in a legitimate list of class "boxcoxLm".

lambda Numeric vector containing the powers used in the Box-Cox transformations. If
the value of the optimize component is FALSE, then lambda contains the values
of all of the powers at which the objective was evaluated. If the value of the
optimize component is TRUE, then lambda is a scalar containing the value of
the power that maximizes the objective.

objective Numeric vector containing the value(s) of the objective for the given value(s) of
λ that are stored in the component lambda.

objective.name character string indicating the objective that was used. The possible values are
"PPCC" (probability plot correlation coefficient; the default), "Shapiro-Wilk"
(the Shapiro-Wilk goodness-of-fit statistic), and "Log-Likelihood" (the log-
likelihood function).

optimize logical scalar indicating whether the objective was simply evaluted at the given
values of lambda (optimize=FALSE), or instead the optimal power transforma-
tion was computed within the bounds specified by lambda (optimize=TRUE).

optimize.bounds

Numeric vector of length 2 with a names attribute indicating the bounds within
which the optimization took place. When optimize=FALSE, this contains miss-
ing values.



boxcoxLm.object 49

eps finite, positive numeric scalar indicating what value of eps was used. When the
absolute value of lambda is less than eps, lambda is assumed to be 0 for the
Box-Cox transformation.

lm.obj the value of the argument x provided to boxcox (an object that must inherit from
class "lm").

sample.size Numeric scalar indicating the number of finite, non-missing observations.

data.name The name of the data object used for the Box-Cox computations.

Methods

Generic functions that have methods for objects of class "boxcoxLm" include:
link{plot}, print.

Note

Since objects of class "boxcoxLm" are lists, you may extract their components with the $ and [[
operators.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

See Also

boxcox, plot.boxcoxLm, print.boxcoxLm, boxcox.object.

Examples

# Create an object of class "boxcoxLm", then print it out.

# The data frame Environmental.df contains daily measurements of
# ozone concentration, wind speed, temperature, and solar radiation
# in New York City for 153 consecutive days between May 1 and
# September 30, 1973. In this example, well plot ozone vs.
# temperature and look at the Q-Q plot of the residuals. Then
# well look at possible Box-Cox transformations. The "optimal" one
# based on the PPCC looks close to a log-transformation
# (i.e., lambda=0). The power that produces the largest PPCC is
# about 0.2, so a cube root (lambda=1/3) transformation might work too.

# Fit the model with the raw Ozone data
#--------------------------------------
ozone.fit <- lm(ozone ~ temperature, data = Environmental.df)

# Plot Ozone vs. Temperature, with fitted line
#---------------------------------------------
dev.new()
with(Environmental.df,

plot(temperature, ozone, xlab = "Temperature (degrees F)",
ylab = "Ozone (ppb)", main = "Ozone vs. Temperature"))

abline(ozone.fit)

# Look at the Q-Q Plot for the residuals
#---------------------------------------
dev.new()
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qqPlot(ozone.fit$residuals, add.line = TRUE)

# Look at Box-Cox transformations of Ozone
#-----------------------------------------
boxcox.list <- boxcox(ozone.fit)
boxcox.list
#Results of Box-Cox Transformation
#---------------------------------
#
#Objective Name: PPCC
#
#Linear Model: ozone.fit
#
#Sample Size: 116
#
# lambda PPCC
# -2.0 0.4286781
# -1.5 0.4673544
# -1.0 0.5896132
# -0.5 0.8301458
# 0.0 0.9871519
# 0.5 0.9819825
# 1.0 0.9408694
# 1.5 0.8840770
# 2.0 0.8213675

#----------

# Clean up
#---------
rm(ozone.fit, boxcox.list)

boxcoxTransform Apply a Box-Cox Power Transformation to a Set of Data

Description

Apply a Box-Cox power transformation to a set of data to attempt to induce normality and homo-
geneity of variance.

Usage

boxcoxTransform(x, lambda, eps = .Machine$double.eps)

Arguments

x a numeric vector of positive numbers.

lambda finite numeric scalar indicating what power to use for the Box-Cox transforma-
tion.

eps finite, positive numeric scalar. When the absolute value of lambda is less than
eps, lambda is assumed to be 0 for the Box-Cox transformation. The default
value is eps=.Machine$double.eps.
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Details

Two common assumptions for several standard parametric hypothesis tests are:

1. The observations all come from a normal distribution.

2. The observations all come from distributions with the same variance.

For example, the standard one-sample t-test assumes all the observations come from the same nor-
mal distribution, and the standard two-sample t-test assumes that all the observations come from a
normal distribution with the same variance, although the mean may differ between the two groups.
For standard linear regression models, these assumptions can be stated as: the error terms all come
from a normal distribution with mean 0 and and a constant variance.

Often, especially with environmental data, the above assumptions do not hold because the original
data are skewed and/or they follow a distribution that is not really shaped like a normal distribution.
It is sometimes possible, however, to transform the original data so that the transformed observa-
tions in fact come from a normal distribution or close to a normal distribution. The transformation
may also induce homogeneity of variance and, for the case of a linear regression model, a linear
relationship between the response and predictor variable(s).

Sometimes, theoretical considerations indicate an appropriate transformation. For example, count
data often follow a Poisson distribution, and it can be shown that taking the square root of obser-
vations from a Poisson distribution tends to make these data look more bell-shaped (Johnson et
al., 1992, p.163; Johnson and Wichern, 2007, p.192; Zar, 2010, p.291). A common example in
the environmental field is that chemical concentration data often appear to come from a lognormal
distribution or some other positively-skewed distribution (e.g., gamma). In this case, taking the
logarithm of the observations often appears to yield normally distributed data.

Ideally, a data transformation is chosen based on knowledge of the process generating the data, as
well as graphical tools such as quantile-quantile plots and histograms.

Box and Cox (1964) presented a formalized method for deciding on a data transformation. Given a
random variable X from some distribution with only positive values, the Box-Cox family of power
transformations is defined as:

Y = Xλ−1
λ λ 6= 0

log(X) λ = 0 (1)

where Y is assumed to come from a normal distribution. This transformation is continuous in λ.
Note that this transformation also preserves ordering; that is, if X1 < X2 then Y1 < Y2.

Box and Cox (1964) proposed choosing the appropriate value of λ based on maximizing a likelihood
function. See the help file for boxcox for details.

Note that for non-zero values of λ, instead of using the formula of Box and Cox in Equation (1),
you may simply use the power transformation:

Y = Xλ (2)

since these two equations differ only by a scale difference and origin shift, and the essential charac-
ter of the transformed distribution remains unchanged.

The value λ = 1 corresponds to no transformation. Values of λ less than 1 shrink large values ofX ,
and are therefore useful for transforming positively-skewed (right-skewed) data. Values of λ larger
than 1 inflate large values of X , and are therefore useful for transforming negatively-skewed (left-
skewed) data (Helsel and Hirsch, 1992, pp.13-14; Johnson and Wichern, 2007, p.193). Commonly
used values of λ include 0 (log transformation), 0.5 (square-root transformation), -1 (reciprocal),
and -0.5 (reciprocal root).
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It is often recommend that when dealing with several similar data sets, it is best to find a common
transformation that works reasonably well for all the data sets, rather than using slightly different
transformations for each data set (Helsel and Hirsch, 1992, p.14; Shumway et al., 1989).

Value

numeric vector of transformed observations.

Note

Data transformations are often used to induce normality, homoscedasticity, and/or linearity, com-
mon assumptions of parametric statistical tests and estimation procedures. Transformations are not
“tricks” used by the data analyst to hide what is going on, but rather useful tools for understand-
ing and dealing with data (Berthouex and Brown, 2002, p.61). Hoaglin (1988) discusses “hidden”
transformations that are used everyday, such as the pH scale for measuring acidity.

In the case of a linear model, there are at least two approaches to improving a model fit: trans-
form the Y and/or X variable(s), and/or use more predictor variables. Often in environmental data
analysis, we assume the observations come from a lognormal distribution and automatically take
logarithms of the data. For a simple linear regression (i.e., one predictor variable), if regression
diagnostic plots indicate that a straight line fit is not adequate, but that the variance of the errors ap-
pears to be fairly constant, you may only need to transform the predictor variable X or perhaps use
a quadratic or cubic model inX . On the other hand, if the diagnostic plots indicate that the constant
variance and/or normality assumptions are suspect, you probably need to consider transforming the
response variable Y . Data transformations for linear regression models are discussed in Draper and
Smith (1998, Chapter 13) and Helsel and Hirsch (1992, pp. 228-229).

One problem with data transformations is that translating results on the transformed scale back to
the original scale is not always straightforward. Estimating quantities such as means, variances,
and confidence limits in the transformed scale and then transforming them back to the original scale
usually leads to biased and inconsistent estimates (Gilbert, 1987, p.149; van Belle et al., 2004,
p.400). For example, exponentiating the confidence limits for a mean based on log-transformed
data does not yield a confidence interval for the mean on the original scale. Instead, this yields a
confidence interval for the median (see the help file for elnormAlt). It should be noted, however,
that quantiles (percentiles) and rank-based procedures are invariant to monotonic transformations
(Helsel and Hirsch, 1992, p.12).

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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See Also

boxcox, Data Transformations, Goodness-of-Fit Tests.

Examples

# Generate 30 observations from a lognormal distribution with
# mean=10 and cv=2, then look at some normal quantile-quantile
# plots for various transformations.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(250)
x <- rlnormAlt(30, mean = 10, cv = 2)

dev.new()
qqPlot(x, add.line = TRUE)

dev.new()
qqPlot(boxcoxTransform(x, lambda = 0.5), add.line = TRUE)

dev.new()
qqPlot(boxcoxTransform(x, lambda = 0), add.line = TRUE)

# Clean up
#---------
rm(x)
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calibrate Fit a Calibration Line or Curve

Description

Fit a calibration line or curve based on linear regression.

Usage

calibrate(formula, data, max.order = 4, p.crit = 0.05, weights,
subset, na.action, method = "qr", model = FALSE, x = FALSE,
y = FALSE, contrasts = NULL, ...)

Arguments

formula a formula object, with the response on the left of a ~ operator, and the single
predictor variable on the right. For example, Cadmium ~ Spike.

data an optional data frame, list or environment (or object coercible by
as.data.frame to a data frame) containing the variables in the model. If not
found in data, the variables are taken from environment(formula), typically
the environment from which calibrate is called.

max.order optional integer indicating the maximum order of the polynomial to consider for
the calibration curve. The default value is max.order=4.

p.crit optional numeric scaler between 0 and 1 indicating the p-value to use for the
stepwise regression when determining which polynomial model to use. The
default value is p.crit=0.05.

weights optional vector of observation weights; if supplied, the algorithm fits to mini-
mize the sum of the weights multiplied into the squared residuals. The length of
weights must be the same as the number of observations. The weights must be
nonnegative and it is strongly recommended that they be strictly positive, since
zero weights are ambiguous, compared to use of the subset argument.

subset optional expression saying which subset of the rows of the data should be used
in the fit. This can be a logical vector (which is replicated to have length equal
to the number of observations), or a numeric vector indicating which observa-
tion numbers are to be included, or a character vector of the row names to be
included. All observations are included by default.

na.action optional function which indicates what should happen when the data contain
NAs. The default is set by the na.action setting of options, and is
na.fail if that is unset. The ‘factory-fresh’ default is na.omit. Another possi-
ble value is NULL, no action. Value na.exclude can be useful.

method optional method to be used; for fitting, currently only method = "qr" is sup-
ported; method = "model.frame" returns the model frame (the same as with
model = TRUE, see below).

model, x, y, qr

optional logicals. If TRUE the corresponding components of the fit (the model
frame, the model matrix, the response, the QR decomposition) are returned.

contrasts an optional list. See the argument contrasts.arg of model.matrix.

... additional arguments to be passed to the low level regression fitting functions
(see lm).



calibrate 55

Details

A simple and frequently used calibration model is a straight line where the response variable S
denotes the signal of the machine and the predictor variable C denotes the true concentration in the
physical sample. The error term is assumed to follow a normal distribution with mean 0. Note that
the average value of the signal for a blank (C = 0) is the intercept. Other possible calibration models
include higher order polynomial models such as a quadratic or cubic model.

In a typical setup, a small number of samples (e.g., n = 6) with known concentrations are measured
and the signal is recorded. A sample with no chemical in it, called a blank, is also measured. (You
have to be careful to define exactly what you mean by a “blank.” A blank could mean a container
from the lab that has nothing in it but is prepared in a similar fashion to containers with actual
samples in them. Or it could mean a field blank: the container was taken out to the field and
subjected to the same process that all other containers were subjected to, except a physical sample
of soil or water was not placed in the container.) Usually, replicate measures at the same known
concentrations are taken. (The term “replicate” must be well defined to distinguish between for
example the same physical samples that are measured more than once vs. two different physical
samples of the same known concentration.)

The function calibrate initially fits a linear calibration model. If the argument max.order is
greater than 1, calibrate then performs forward stepwise linear regression to determine the “best”
polynomial model.

In the case where replicates are available, for each model calibrate computes the p-value of the
ANOVA for lack-of-fit vs. pure error (Draper and Smith, 1998, Chapters 2). If the p-value is
greater than or equal to p.crit, then this is the final model; otherwise the next higher-order term is
added to the polynomial and the model is re-fit.

In the case where replicates are not availble, calibrate uses standard stepwise ANOVA to compare
models (Draper and Smith, 1998, p.335). In this case, if the p-value for the partial F-test to compare
models is greater than or equal to p.crit, then the model with fewer terms is used as the final
model.

The stepwise algorithm terminates when either the p-value is greater than or equal to p.crit, or the
currently selected model in the algorithm is of order max.order.

Value

An object of class "lm" that includes a component called x that stores the model matrix (the values
of the predictor variables for the final calibration model).

Note

Almost always the process of determining the concentration of a chemical in a soil, water, or air
sample involves using some kind of machine that produces a signal, and this signal is related to the
concentration of the chemical in the physical sample. The process of relating the machine signal to
the concentration of the chemical is called calibration. Once calibration has been performed, esti-
mated concentrations in physical samples with unknown concentrations are computed using inverse
regression (see inversePredictCalibrate). The uncertainty in the process used to estimate the
concentration may be quantified with decision, detection, and quantitation limits.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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See Also

inversePredictCalibrate, detectionLimitCalibrate, lm.

Examples

# The data frame EPA.97.cadmium.111.df contains calibration data for
# cadmium at mass 111 (ng/L) that appeared in Gibbons et al. (1997b)
# and were provided to them by the U.S. EPA.
# Display a plot of these data along with the fitted calibration line
# and 99% non-simultaneous prediction limits. See
# Millard and Neerchal (2001, pp.566-569) for more details on this
# example.

Cadmium <- EPA.97.cadmium.111.df$Cadmium

Spike <- EPA.97.cadmium.111.df$Spike

calibrate.list <- calibrate(Cadmium ~ Spike,
data=EPA.97.cadmium.111.df)

newdata <- data.frame(Spike = seq(min(Spike), max(Spike), len=100))

pred.list <- predict(calibrate.list, newdata=newdata, se.fit=TRUE)

pointwise.list <- pointwise(pred.list, coverage=0.99,
individual=TRUE)

plot(Spike, Cadmium, ylim=c(min(pointwise.list$lower),
max(pointwise.list$upper)), xlab="True Concentration (ng/L)",
ylab="Observed Concentration (ng/L)")

abline(calibrate.list, lwd=2)

lines(newdata$Spike, pointwise.list$lower, lty=8, lwd=2)

lines(newdata$Spike, pointwise.list$upper, lty=8, lwd=2)

title(paste("Calibration Line and 99% Prediction Limits",
"for US EPA Cadmium 111 Data", sep="\n"))

rm(Cadmium, Spike, newdata, calibrate.list, pred.list,
pointwise.list)

CastilloAndHadi1994 Abstract: Castillo and Hadi (1994)
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Description

Detailed abstract of the manuscript:

Castillo, E., and A. Hadi. (1994). Parameter and Quantile Estimation for the Generalized Extreme-
Value Distribution. Environmetrics 5, 417–432.

Details

Abstract
Castillo and Hadi (1994) introduce a new way to estimate the parameters and quantiles of the gen-
eralized extreme value distribution (GEVD) with parameters location=η, scale=θ, and shape=κ.
The estimator is based on a two-stage procedure using order statistics, denoted here by “TSOE”,
which stands for two-stage order-statistics estimator. Castillo and Hadi (1994) compare the TSOE
to the maximum likelihood estimator (MLE; Jenkinson, 1969; Prescott and Walden, 1983) and
probability-weighted moments estimator (PWME; Hosking et al., 1985).

Castillo and Hadi (1994) note that for some samples the likelihood may not have a local maximum,
and also when κ > 1 the likelihood can be made infinite so the MLE does not exist. They also note,
as do Hosking et al., 1985), that when κ ≤ −1, the moments and probability-weighed moments
of the GEVD do not exist, hence neither does the PWME. (Hosking et al., however, claim that in
practice the shape parameter usually lies between -1/2 and 1/2.) On the other hand, the TSOE exists
for all values of κ.

Based on computer simulations, Castillo and Hadi (1994) found that the performance (bias and
root mean squared error) of the TSOE is comparable to the PWME for values of κ in the range
−1/2 ≤ κ ≤ 1/2. They also found that the TSOE is superior to the PWME for large values of κ.
Their results, however, are based on using the PWME computed using the approximation given in
equation (14) of Hosking et al. (1985, p.253). The true PWME is computed using equation (12)
of Hosking et al. (1985, p.253). Hosking et al. (1985) introduced the approximation as a matter
of computational convenience, and noted that it is valid in the range −1/2 ≤ κ ≤ 1/2. If Castillo
and Hadi (1994) had used the true PWME for values of κ larger than 1/2, they probably would have
gotten very different results for the PWME. (Note: the function egevd with method="pwme" uses
the exact equation (12) of Hosking et al. (1985), not the approximation (14)).

Castillo and Hadi (1994) suggest using the bootstrap or jackknife to obtain variance estimates and
confidence intervals for the distribution parameters based on the TSOE.

More Details Let x = (x1, x2, . . . , xn) be a vector of n observations from a generalized extreme
value distribution with parameters location=η, scale=θ, and shape=κ with cumulative distribu-
tion function F . Also, let x(1), x(2), . . . , x(n) denote the ordered values of x.

First Stage
Castillo and Hadi (1994) propose as initial estimates of the distribution parameters the solutions to
the following set of simultaneous equations based on just three observations from the total sample
of size n:

F [x(1); η, θ, κ] = p1,n

F [x(j); η, θ, κ] = pj,n

F [x(n); η, θ, κ] = pn,n (1)

where 2 ≤ j ≤ n− 1, and
pi,n = F̂ [x(i); η, θ, κ]
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denotes the i’th plotting position for a sample of size n; that is, a nonparametric estimate of the
value of F at x(i). Typically, plotting positions have the form:

pi,n =
i− a
n+ b

(2)

where b > −a > −1. In their simulation studies, Castillo and Hadi (1994) used a=0.35, b=0.

Since j is arbitrary in the above set of equations (1), denote the solutions to these equations by:

η̂j , θ̂j , κ̂j

There are thus n− 2 sets of estimates.

Castillo and Hadi (1994) show that the estimate of the shape parameter, κ, is the solution to the
equation:

x(j)− x(n)

x(1)− x(n)
=

1−Aκjn
1−Aκ1n

(3)

where
Aik = Ci/Ck (4)

Ci = −log(pi,n) (5)

Castillo and Hadi (1994) show how to easily solve equation (3) using the method of bisection.

Once the estimate of the shape parameter is obtained, the other estimates are given by:

θ̂j =
κ̂j [x(1)− x(n)]

(Cn)κ̂j − (C1)κ̂j
(6)

η̂j = x(1)− θ̂j [1− (C1)κ̂j ]

κ̂j
(7)

Second Stage
Apply a robust function to the n− 2 sets of estimates obtained in the first stage. Castillo and Hadi
(1994) suggest using either the median or the least median of squares (using a column of 1’s as
the predictor variable; see the help file for lmsreg in the package MASS). Using the median, for
example, the final distribution parameter estimates are given by:

η̂ = Median(η̂2, η̂3, . . . , η̂n−1)

θ̂ = Median(θ̂2, θ̂3, . . . , θ̂n−1)

κ̂ = Median(κ̂2, κ̂3, . . . , κ̂n−1)
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cdfCompare Plot Two Cumulative Distribution Functions

Description

For one sample, plots the empirical cumulative distribution function (ecdf) along with a theoretical
cumulative distribution function (cdf). For two samples, plots the two ecdf’s. These plots are used
to graphically assess goodness of fit.

Usage

cdfCompare(x, y = NULL, discrete = FALSE,
prob.method = ifelse(discrete, "emp.probs", "plot.pos"),
plot.pos.con = NULL, distribution = "norm", param.list = NULL,
estimate.params = is.null(param.list), est.arg.list = NULL, x.col = "blue",
y.or.fitted.col = "black", x.lwd = 3 * par("cex"), y.or.fitted.lwd = 3 * par("cex"),
x.lty = 1, y.or.fitted.lty = 2, digits = .Options$digits, ...,
type = ifelse(discrete, "s", "l"), main = NULL, xlab = NULL, ylab = NULL,
xlim = NULL, ylim = NULL)

Arguments

x numeric vector of observations. Missing (NA), undefined (NaN), and infinite (Inf,
-Inf) values are allowed but will be removed.

y a numeric vector (not necessarily of the same length as x). Missing (NA), un-
defined (NaN), and infinite (Inf, -Inf) values are allowed but will be removed.
The default value is y=NULL, in which case the empirical cdf of x will be plotted
along with the theoretical cdf specified by the argument distribution.

discrete logical scalar indicating whether the assumed parent distribution of x is discrete
(discrete=TRUE) or continuous (discrete=FALSE; the default).

prob.method character string indicating what method to use to compute the plotting positions
(empirical probabilities). Possible values are plot.pos (plotting positions, the
default if discrete=FALSE) and emp.probs (empirical probabilities, the default
if discrete=TRUE). See the help file for ecdfPlot for more explanation.
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plot.pos.con numeric scalar between 0 and 1 containing the value of the plotting position
constant. When y is supplied, the default value is plot.pos.con=0.375. When
y is not supplied, for the normal, lognormal, three-parameter lognormal, zero-
modified normal, and zero-modified lognormal distributions, the default value
is plot.pos.con=0.375. For the Type I extreme value (Gumbel) distribu-
tion (distribution="evd"), the default value is plot.pos.con=0.44. For all
other distributions, the default value is plot.pos.con=0.4. See the help files
for ecdfPlot and qqPlot for more information. This argument is ignored if
prob.method="emp.probs".

distribution when y is not supplied, a character string denoting the distribution abbreviation.
The default value is distribution="norm". See the help file for Distribution.df
for a list of possible distribution abbreviations. This argument is ignored if y is
supplied.

param.list when y is not supplied, a list with values for the parameters of the distribu-
tion. The default value is param.list=list(mean=0, sd=1). See the help
file for Distribution.df for the names and possible values of the parameters
associated with each distribution. This argument is ignored if y is supplied or
estimate.params=TRUE.

estimate.params

when y is not supplied, a logical scalar indicating whether to compute the cdf for
x based on estimating the distribution parameters (estimate.params=TRUE) or
using the known distribution parameters specified in param.list (estimate.params=FALSE).
The default value is TRUE unless the argument param.list is supplied. The ar-
gument estimate.params is ignored if y is supplied.

est.arg.list when y is not supplied and estimate.params=TRUE, a list whose components
are optional arguments associated with the function used to estimate the pa-
rameters of the assumed distribution (see the help file Estimating Distribution
Parameters). For example, all functions used to estimate distribution parame-
ters have an optional argument called method that specifies the method to use
to estimate the parameters. (See the help file for Distribution.df for a list of
available estimation methods for each distribution.) To override the default es-
timation method, supply the argument est.arg.list with a component called
method; for example est.arg.list=list(method="mle"). The default value
is est.arg.list=NULL so that all default values for the estimating function are
used. This argument is ignored if estimate.params=FALSE or y is supplied.

x.col a numeric scalar or character string determining the color of the empirical cdf
(based on x) line or points. The default value is x.col="blue". See the entry
for col in the help file for par for more information.

y.or.fitted.col

a numeric scalar or character string determining the color of the empirical cdf
(based on y) or the theoretical cdf line or points. The default value is y.or.fitted.col="black".
See the entry for col in the help file for par for more information.

x.lwd a numeric scalar determining the width of the empirical cdf (based on x) line.
The default value is x.lwd=3*par("cex"). See the entry for lwd in the help file
for par for more information.

y.or.fitted.lwd

a numeric scalar determining the width of the empirical cdf (based on y) or
theoretical cdf line. The default value is y.or.fitted.lwd=3*par("cex"). See
the entry for lwd in the help file for par for more information.
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x.lty a numeric scalar determining the line type of the empirical cdf (based on x) line.
The default value is x.lty=1. See the entry for lty in the help file for par for
more information.

y.or.fitted.lty

a numeric scalar determining the line type of the empirical cdf (based on y) or
theoretical cdf line. The default value is y.or.fitted.lty=2. See the entry for
lty in the help file for par for more information.

digits when y is not supplied, a scalar indicating how many significant digits to print
for the distribution parameters. The default value is digits=.Options$digits.

type, main, xlab, ylab, xlim, ylim, ...

additional graphical parameters (see lines and par). In particular, the argument
type specifies the kind of line type. By default, the function cdfCompare plots
a step function (type="s") when discrete=TRUE, and plots a straight line be-
tween points (type="l") when discrete=FALSE. The user may override these
defaults by supplying the graphics parameter type (type="s" for a step func-
tion, type="l" for linear interpolation, type="p" for points only, etc.).

Details

When both x and y are supplied, the function cdfCompare creates the empirical cdf plot of x and y
on the same plot by calling the function ecdfPlot.

When y is not supplied, the function cdfCompare creates the emprical cdf plot of x (by calling
ecdfPlot) and the theoretical cdf plot (by calling cdfPlot and using the argument distribution)
on the same plot.

Value

When y is supplied, cdfCompare invisibly returns a list with components x.ecdf.list and y.ecdf.list.
Each of these components is itself a list, with the components Order.Statistics and Cumulative.Probabilities,
giving coordinates of the points that have been plotted.

When y is not supplied, cdfCompare invisibly returns a list with components x.ecdf.list and
fitted.cdf.list. The component x.ecdf.list is itself a list with the components Order.Statistics
and Cumulative.Probabilities, giving coordinates of the points that have been plotted for the
x values. The component fitted.cdf.list is itself a list with the components Quantiles and
Cumulative.Probabilities, giving coordinates of the points that have been plotted for the fitted
cdf.

Note

An empirical cumulative distribution function (ecdf) plot is a graphical tool that can be used in
conjunction with other graphical tools such as histograms, strip charts, and boxplots to assess the
characteristics of a set of data. It is easy to determine quartiles and the minimum and maximum
values from such a plot. Also, ecdf plots allow you to assess local density: a higher density of
observations occurs where the slope is steep.

Chambers et al. (1983, pp.11-16) plot the observed order statistics on the y-axis vs. the ecdf on the
x-axis and call this a quantile plot.

Empirical cumulative distribution function (ecdf) plots are often plotted with theoretical cdf plots
(see cdfPlot and cdfCompare) to graphically assess whether a sample of observations comes from
a particular distribution. The Kolmogorov-Smirnov goodness-of-fit test (see gofTest) is the statis-
tical companion of this kind of comparison; it is based on the maximum vertical distance between
the empirical cdf plot and the theoretical cdf plot. More often, however, quantile-quantile (Q-Q)
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plots are used instead of ecdf plots to graphically assess departures from an assumed distribution
(see qqPlot).

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Chambers, J.M., W.S. Cleveland, B. Kleiner, and P.A. Tukey. (1983). Graphical Methods for Data
Analysis. Duxbury Press, Boston, MA, pp.11-16.

Cleveland, W.S. (1993). Visualizing Data. Hobart Press, Summit, New Jersey, 360pp.

D’Agostino, R.B. (1986a). Graphical Analysis. In: D’Agostino, R.B., and M.A. Stephens, eds.
Goodness-of Fit Techniques. Marcel Dekker, New York, Chapter 2, pp.7-62.

See Also

cdfPlot, ecdfPlot, qqPlot.

Examples

# Generate 20 observations from a normal (Gaussian) distribution
# with mean=10 and sd=2 and compare the empirical cdf with a
# theoretical normal cdf that is based on estimating the parameters.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(250)
x <- rnorm(20, mean = 10, sd = 2)
dev.new()
cdfCompare(x)

#----------

# Generate 30 observations from an exponential distribution with parameter
# rate=0.1 (see the R help file for Exponential) and compare the empirical
# cdf with the empirical cdf of the normal observations generated in the
# previous example:

set.seed(432)
y <- rexp(30, rate = 0.1)
dev.new()
cdfCompare(x, y)

#==========

# Generate 20 observations from a Poisson distribution with parameter lambda=10
# (see the R help file for Poisson) and compare the empirical cdf with a
# theoretical Poisson cdf based on estimating the distribution parameters.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(250)
x <- rpois(20, lambda = 10)
dev.new()
cdfCompare(x, dist = "pois")

#==========
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# Clean up
#---------
rm(x, y)
graphics.off()

cdfCompareCensored Plot Two Cumulative Distribution Functions Based on Censored Data

Description

For one sample, plots the empirical cumulative distribution function (ecdf) along with a theoretical
cumulative distribution function (cdf). For two samples, plots the two ecdf’s. These plots are used
to graphically assess goodness of fit.

Usage

cdfCompareCensored(x, censored, censoring.side = "left",
y = NULL, y.censored = NULL, y.censoring.side = censoring.side,
discrete = FALSE, prob.method = "michael-schucany",
plot.pos.con = NULL, distribution = "norm", param.list = NULL,
estimate.params = is.null(param.list), est.arg.list = NULL,
x.col = "blue", y.or.fitted.col = "black", x.lwd = 3 * par("cex"),
y.or.fitted.lwd = 3 * par("cex"), x.lty = 1, y.or.fitted.lty = 2,
include.x.cen = FALSE, x.cen.pch = ifelse(censoring.side == "left", 6, 2),
x.cen.cex = par("cex"), x.cen.col = "red",
include.y.cen = FALSE, y.cen.pch = ifelse(y.censoring.side == "left", 6, 2),
y.cen.cex = par("cex"), y.cen.col = "black", digits = .Options$digits, ...,
type = ifelse(discrete, "s", "l"), main = NULL, xlab = NULL, ylab = NULL,
xlim = NULL, ylim = NULL)

Arguments

x numeric vector of observations. Missing (NA), undefined (NaN), and infinite (Inf,
-Inf) values are allowed but will be removed.

censored numeric or logical vector indicating which values of x are censored. This must
be the same length as x. If the mode of censored is "logical", TRUE values
correspond to elements of x that are censored, and FALSE values correspond to
elements of x that are not censored. If the mode of censored is "numeric",
it must contain only 1’s and 0’s; 1 corresponds to TRUE and 0 corresponds to
FALSE. Missing (NA) values are allowed but will be removed.

censoring.side character string indicating on which side the censoring occurs. The possible
values are "left" (the default) and "right".

y a numeric vector (not necessarily of the same length as x). Missing (NA), un-
defined (NaN), and infinite (Inf, -Inf) values are allowed but will be removed.
The default value is y=NULL, in which case the empirical cdf of x will be plotted
along with the theoretical cdf specified by the argument distribution.

y.censored numeric or logical vector indicating which values of y are censored. This must
be the same length as y. If the mode of censored is "logical", TRUE values
correspond to elements of y that are censored, and FALSE values correspond to
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elements of y that are not censored. If the mode of censored is "numeric",
it must contain only 1’s and 0’s; 1 corresponds to TRUE and 0 corresponds to
FALSE. Missing (NA) values are allowed but will be removed.
This argument is ignored when y is not supplied. The default value is y.censored=NULL
since the default value of y is y=NULL.

y.censoring.side

character string indicating on which side the censoring occurs for the values of y.
The possible values are "left" (the default) and "right". This argument is ig-
nored when y is not supplied. The default value is y.censoring.side=censoring.side.

discrete logical scalar indicating whether the assumed parent distribution of x is discrete
(discrete=TRUE) or continuous (discrete=FALSE; the default).

prob.method character string indicating what method to use to compute the plotting posi-
tions (empirical probabilities). Possible values are "kaplan-meier" (product-
limit method of Kaplan and Meier (1958)), "nelson" (hazard plotting method
of Nelson (1972)), "michael-schucany" (generalization of the product-limit
method due to Michael and Schucany (1986)), and "hirsch-stedinger" (gen-
eralization of the product-limit method due to Hirsch and Stedinger (1987)). The
default value is prob.method="michael-schucany".
The "nelson" method is only available for censoring.side="right". See the
help file for ecdfPlotCensored for more explanation.

plot.pos.con numeric scalar between 0 and 1 containing the value of the plotting position
constant. When y is supplied, the default value is plot.pos.con=0.375. When
y is not supplied, for the normal, lognormal, three-parameter lognormal, zero-
modified normal, and zero-modified lognormal distributions, the default value
is plot.pos.con=0.375. For the Type I extreme value (Gumbel) distribution
(distribution="evd"), the default value is plot.pos.con=0.44. For all other
distributions, the default value is plot.pos.con=0.4. See the help files for
ecdfPlot and qqPlot for more information. This argument is used only if
prob.method is equal to "michael-schucany" or "hirsch-stedinger".

distribution when y is not supplied, a character string denoting the distribution abbreviation.
The default value is distribution="norm". See the help file for Distribution.df
for a list of possible distribution abbreviations. This argument is ignored if y is
supplied.

param.list when y is not supplied, a list with values for the parameters of the distribu-
tion. The default value is param.list=list(mean=0, sd=1). See the help
file for Distribution.df for the names and possible values of the parameters
associated with each distribution. This argument is ignored if y is supplied or
estimate.params=TRUE.

estimate.params

when y is not supplied, a logical scalar indicating whether to compute the cdf for
x based on estimating the distribution parameters (estimate.params=TRUE) or
using the known distribution parameters specified in param.list (estimate.params=FALSE).
The default value is TRUE unless the argument param.list is supplied. The ar-
gument estimate.params is ignored if y is supplied.

est.arg.list when y is not supplied and estimate.params=TRUE, a list whose components
are optional arguments associated with the function used to estimate the pa-
rameters of the assumed distribution (see the Section Estimating Distribution
Parameters in the help file Censored Data). For example, all functions used
to estimate distribution parameters have an optional argument called method
that specifies the method to use to estimate the parameters. (See the help file
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for Distribution.df for a list of available estimation methods for each dis-
tribution.) To override the default estimation method, supply the argument
est.arg.list with a component called method; for example est.arg.list=list(method="mle").
The default value is est.arg.list=NULL so that all default values for the esti-
mating function are used. This argument is ignored if estimate.params=FALSE
or y is supplied.

x.col a numeric scalar or character string determining the color of the empirical cdf
(based on x) line or points. The default value is x.col="blue". See the entry
for col in the help file for par for more information.

y.or.fitted.col

a numeric scalar or character string determining the color of the empirical cdf
(based on y) or the theoretical cdf line or points. The default value is y.or.fitted.col="black".
See the entry for col in the help file for par for more information.

x.lwd a numeric scalar determining the width of the empirical cdf (based on x) line.
The default value is x.lwd=3*par("cex"). See the entry for lwd in the help file
for par for more information.

y.or.fitted.lwd

a numeric scalar determining the width of the empirical cdf (based on y) or
theoretical cdf line. The default value is y.or.fitted.lwd=3*par("cex"). See
the entry for lwd in the help file for par for more information.

x.lty a numeric scalar determining the line type of the empirical cdf (based on x) line.
The default value is x.lty=1. See the entry for lty in the help file for par for
more information.

y.or.fitted.lty

a numeric scalar determining the line type of the empirical cdf (based on y) or
theoretical cdf line. The default value is y.or.fitted.lty=2. See the entry for
lty in the help file for par for more information.

include.x.cen logical scalar indicating whether to include censored values in x in the plot.
The default value is include.x.cen=FALSE. If include.x.cen=TRUE, censored
values in x are plotted using the plotting character indicated by the argument
x.cen.pch (see below). This argument is ignored if there are no censored values
in x.

x.cen.pch numeric scalar or character string indicating the plotting character to use to plot
censored values in x. The default value is x.cen.pch=2 (hollow triangle point-
ing up) when x.censoring.side="right", and x.cen.pch=6 (hollow trian-
gle pointing down) when x.censoring.side="left". See the R help file for
points for an explanation of how plotting symbols are specified. This argument
is ignored if include.x.cen=FALSE.

x.cen.cex numeric scalar that determines the size of the plotting character used to plot
censored values in x. The default value is the current value of the cex graphics
parameter. See the entry for cex in the R help file for par for more information.
This argument is ignored if include.x.cen=FALSE.

x.cen.col numeric scalar or character string that determines the color of the plotting char-
acter used to plot censored values in x. The default value is x.cen.col="red".
See the entry for col in the R help file for par for more information. This
argument is ignored if include.x.cen=FALSE.

include.y.cen logical scalar indicating whether to include censored values in y in the plot.
The default value is include.y.cen=FALSE. If include.y.cen=TRUE, censored
values in y are plotted using the plotting character indicated by the argument
y.cen.pch (see below). This argument is ignored if y is not supplied and/or
there are no censored values in y.
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y.cen.pch numeric scalar or character string indicating the plotting character to use to plot
censored values in y. The default value is y.cen.pch=2 (hollow triangle point-
ing up) when y.censoring.side="right", and y.cen.pch=6 (hollow trian-
gle pointing down) when y.censoring.side="left". See the R help file for
points for an explanation of how plotting symbols are specified. This argument
is ignored if include.y.cen=FALSE.

y.cen.cex numeric scalar that determines the size of the plotting character used to plot
censored values in y. The default value is the current value of the cex graphics
parameter. See the entry for cex in the R help file for par for more information.
This argument is ignored if include.y.cen=FALSE.

y.cen.col numeric scalar or character string that determines the color of the plotting char-
acter used to plot censored values in y. The default value is y.cen.col="black".
See the entry for col in the R help file for par for more information. This argu-
ment is ignored if include.y.cen=FALSE.

digits when y is not supplied, a scalar indicating how many significant digits to print
for the distribution parameters. The default value is digits=.Options$digits.

type, main, xlab, ylab, xlim, ylim, ...

additional graphical parameters (see lines and par). In particular, the argument
type specifies the kind of line type. By default, the function cdfCompareCensored
plots a step function (type="s") when discrete=TRUE, and plots a straight
line between points (type="l") when discrete=FALSE. The user may over-
ride these defaults by supplying the graphics parameter type (type="s" for a
step function, type="l" for linear interpolation, type="p" for points only, etc.).

Details

When both x and y are supplied, the function cdfCompareCensored creates the empirical cdf plot
of x and y on the same plot by calling the function ecdfPlotCensored.

When y is not supplied, the function cdfCompareCensored creates the emprical cdf plot of x (by
calling ecdfPlotCensored) and the theoretical cdf plot (by calling cdfPlot and using the argument
distribution) on the same plot.

Value

When y is supplied, cdfCompareCensored invisibly returns a list with components x.ecdf.list
and y.ecdf.list. Each of these components is itself a list, with the components Order.Statistics
and Cumulative.Probabilities, giving coordinates of the points that have been plotted.

When y is not supplied, cdfCompareCensored invisibly returns a list with components x.ecdf.list
and fitted.cdf.list. The component x.ecdf.list is itself a list with the components Order.Statistics
and Cumulative.Probabilities, giving coordinates of the points that have been plotted for the
x values. The component fitted.cdf.list is itself a list with the components Quantiles and
Cumulative.Probabilities, giving coordinates of the points that have been plotted for the fitted
cdf.

Note

An empirical cumulative distribution function (ecdf) plot is a graphical tool that can be used in
conjunction with other graphical tools such as histograms, strip charts, and boxplots to assess the
characteristics of a set of data. It is easy to determine quartiles and the minimum and maximum
values from such a plot. Also, ecdf plots allow you to assess local density: a higher density of
observations occurs where the slope is steep.
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Chambers et al. (1983, pp.11-16) plot the observed order statistics on the y-axis vs. the ecdf on the
x-axis and call this a quantile plot.

Censored observations complicate the procedures used to graphically explore data. Techniques from
survival analysis and life testing have been developed to generalize the procedures for constructing
plotting positions, empirical cdf plots, and q-q plots to data sets with censored observations (see
ppointsCensored).

Empirical cumulative distribution function (ecdf) plots are often plotted with theoretical cdf plots
to graphically assess whether a sample of observations comes from a particular distribution. More
often, however, quantile-quantile (Q-Q) plots are used instead of ecdf plots to graphically assess
departures from an assumed distribution (see qqPlotCensored).
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See Also

cdfPlot, ecdfPlotCensored, qqPlotCensored.

Examples

# Generate 20 observations from a normal distribution with mean=20 and sd=5,
# censor all observations less than 18, then compare the empirical cdf with a
# theoretical normal cdf that is based on estimating the parameters.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(333)
x <- sort(rnorm(20, mean=20, sd=5))
x
# [1] 9.743551 12.370197 14.375499 15.628482 15.883507 17.080124
# [7] 17.197588 18.097714 18.654182 19.585942 20.219308 20.268505
#[13] 20.552964 21.388695 21.763587 21.823639 23.168039 26.165269
#[19] 26.843362 29.673405

censored <- x < 18
x[censored] <- 18

sum(censored)
#[1] 7

dev.new()
cdfCompareCensored(x, censored)

# Clean up
#---------
rm(x, censored)

#==========

# Example 15-1 of USEPA (2009, page 15-10) gives an example of
# computing plotting positions based on censored manganese
# concentrations (ppb) in groundwater collected at 5 monitoring
# wells. The data for this example are stored in
# EPA.09.Ex.15.1.manganese.df. Here we will compare the empirical
# cdf based on Kaplan-Meier plotting positions or Michael-Schucany
# plotting positions with various assumed distributions
# (based on estimating the parameters of these distributions):
# 1) normal distribution
# 2) lognormal distribution
# 3) gamma distribution

# First look at the data:
#------------------------

EPA.09.Ex.15.1.manganese.df
# Sample Well Manganese.Orig.ppb Manganese.ppb Censored
#1 1 Well.1 <5 5.0 TRUE
#2 2 Well.1 12.1 12.1 FALSE
#3 3 Well.1 16.9 16.9 FALSE
#4 4 Well.1 21.6 21.6 FALSE
#5 5 Well.1 <2 2.0 TRUE
#...
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#21 1 Well.5 17.9 17.9 FALSE
#22 2 Well.5 22.7 22.7 FALSE
#23 3 Well.5 3.3 3.3 FALSE
#24 4 Well.5 8.4 8.4 FALSE
#25 5 Well.5 <2 2.0 TRUE

longToWide(EPA.09.Ex.15.1.manganese.df,
"Manganese.Orig.ppb", "Sample", "Well",
paste.row.name = TRUE)

# Well.1 Well.2 Well.3 Well.4 Well.5
#Sample.1 <5 <5 <5 6.3 17.9
#Sample.2 12.1 7.7 5.3 11.9 22.7
#Sample.3 16.9 53.6 12.6 10 3.3
#Sample.4 21.6 9.5 106.3 <2 8.4
#Sample.5 <2 45.9 34.5 77.2 <2

# Assume a normal distribution
#-----------------------------

# Michael-Schucany plotting positions:
dev.new()
with(EPA.09.Ex.15.1.manganese.df,

cdfCompareCensored(Manganese.ppb, Censored))

# Kaplan-Meier plotting positions:
dev.new()
with(EPA.09.Ex.15.1.manganese.df,

cdfCompareCensored(Manganese.ppb, Censored,
prob.method = "kaplan-meier"))

# Assume a lognormal distribution
#--------------------------------

# Michael-Schucany plotting positions:
dev.new()
with(EPA.09.Ex.15.1.manganese.df,

cdfCompareCensored(Manganese.ppb, Censored, dist = "lnorm"))

# Kaplan-Meier plotting positions:
dev.new()
with(EPA.09.Ex.15.1.manganese.df,

cdfCompareCensored(Manganese.ppb, Censored, dist = "lnorm",
prob.method = "kaplan-meier"))

# Assume a gamma distribution
#----------------------------

# Michael-Schucany plotting positions:
dev.new()
with(EPA.09.Ex.15.1.manganese.df,

cdfCompareCensored(Manganese.ppb, Censored, dist = "gamma"))

# Kaplan-Meier plotting positions:
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dev.new()
with(EPA.09.Ex.15.1.manganese.df,

cdfCompareCensored(Manganese.ppb, Censored, dist = "gamma",
prob.method = "kaplan-meier"))

# Clean up
#---------
graphics.off()

#==========

# Compare the distributions of copper and zinc between the Alluvial Fan Zone
# and the Basin-Trough Zone using the data of Millard and Deverel (1988).
# The data are stored in Millard.Deverel.88.df.

Millard.Deverel.88.df
# Cu.orig Cu Cu.censored Zn.orig Zn Zn.censored Zone Location
#1 < 1 1 TRUE <10 10 TRUE Alluvial.Fan 1
#2 < 1 1 TRUE 9 9 FALSE Alluvial.Fan 2
#3 3 3 FALSE NA NA FALSE Alluvial.Fan 3
#.
#.
#.
#116 5 5 FALSE 50 50 FALSE Basin.Trough 48
#117 14 14 FALSE 90 90 FALSE Basin.Trough 49
#118 4 4 FALSE 20 20 FALSE Basin.Trough 50

Cu.AF <- with(Millard.Deverel.88.df,
Cu[Zone == "Alluvial.Fan"])

Cu.AF.cen <- with(Millard.Deverel.88.df,
Cu.censored[Zone == "Alluvial.Fan"])

Cu.BT <- with(Millard.Deverel.88.df,
Cu[Zone == "Basin.Trough"])

Cu.BT.cen <- with(Millard.Deverel.88.df,
Cu.censored[Zone == "Basin.Trough"])

Zn.AF <- with(Millard.Deverel.88.df,
Zn[Zone == "Alluvial.Fan"])

Zn.AF.cen <- with(Millard.Deverel.88.df,
Zn.censored[Zone == "Alluvial.Fan"])

Zn.BT <- with(Millard.Deverel.88.df,
Zn[Zone == "Basin.Trough"])

Zn.BT.cen <- with(Millard.Deverel.88.df,
Zn.censored[Zone == "Basin.Trough"])

# First compare the copper concentrations
#----------------------------------------
dev.new()
cdfCompareCensored(x = Cu.AF, censored = Cu.AF.cen,

y = Cu.BT, y.censored = Cu.BT.cen)
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# Now compare the zinc concentrations
#------------------------------------
dev.new()
cdfCompareCensored(x = Zn.AF, censored = Zn.AF.cen,

y = Zn.BT, y.censored = Zn.BT.cen)

# Compare the Zinc concentrations again, but delete
# the one "outlier".
#--------------------------------------------------

summaryStats(Zn.AF)
# N Mean SD Median Min Max NAs N.Total
#Zn.AF 67 23.5075 74.4192 10 3 620 1 68

summaryStats(Zn.BT)
# N Mean SD Median Min Max
#Zn.BT 50 21.94 18.7044 18.5 3 90

which(Zn.AF == 620)
#[1] 38

summaryStats(Zn.AF[-38])
# N Mean SD Median Min Max NAs N.Total
#Zn.AF[-38] 66 14.4697 8.1604 10 3 50 1 67

dev.new()
cdfCompareCensored(x = Zn.AF[-38], censored = Zn.AF.cen[-38],

y = Zn.BT, y.censored = Zn.BT.cen)

#----------

# Clean up
#---------

rm(Cu.AF, Cu.AF.cen, Cu.BT, Cu.BT.cen,
Zn.AF, Zn.AF.cen, Zn.BT, Zn.BT.cen)

graphics.off()

cdfPlot Plot Cumulative Distribution Function

Description

Produce a cumulative distribution function (cdf) plot for a user-specified distribution.

Usage

cdfPlot(distribution = "norm", param.list = list(mean = 0, sd = 1),
left.tail.cutoff = ifelse(is.finite(supp.min), 0, 0.001),
right.tail.cutoff = ifelse(is.finite(supp.max), 0, 0.001), plot.it = TRUE,
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add = FALSE, n.points = 1000, cdf.col = "black", cdf.lwd = 3 * par("cex"),
cdf.lty = 1, curve.fill = FALSE, curve.fill.col = "cyan",
digits = .Options$digits, ..., type = ifelse(discrete, "s", "l"),
main = NULL, xlab = NULL, ylab = NULL, xlim = NULL, ylim = NULL)

Arguments

distribution a character string denoting the distribution abbreviation. The default value is
distribution="norm". See the help file for Distribution.df for a list of
possible distribution abbreviations.

param.list a list with values for the parameters of the distribution. The default value is
param.list=list(mean=0, sd=1). See the help file for Distribution.df
for the names and possible values of the parameters associated with each distri-
bution.

left.tail.cutoff

a numeric scalar indicating what proportion of the left-tail of the probability
distribution to omit from the plot. For densities with a finite support minimum
(e.g., Lognormal) the default value is 0; for all other densities the default value
is 0.001.

right.tail.cutoff

a scalar indicating what proportion of the right-tail of the probability distribu-
tion to omit from the plot. For densities with a finite support maximum (e.g.,
Binomial) the default value is 0; for all other densities the default value is 0.001.

plot.it a logical scalar indicating whether to create a plot or add to the existing plot (see
add) on the current graphics device. If plot.it=FALSE, no plot is produced, but
a list of (x, y) values is returned (see the section VALUE below). The default
value is plot.it=TRUE.

add a logical scalar indicating whether to add the cumulative distribution function
curve to the existing plot (add=TRUE), or to create a new plot (add=FALSE; the
default). This argument is ignored if plot.it=FALSE.

n.points a numeric scalar specifying at how many evenly-spaced points the cumulative
distribution function will be evaluated. The default value is n.points=1000.

cdf.col a numeric scalar or character string determining the color of the cdf line in the
plot. The default value is pdf.col="black". See the entry for col in the help
file for par for more information.

cdf.lwd a numeric scalar determining the width of the cdf line in the plot. The default
value is pdf.lwd=3*par("cex"). See the entry for lwd in the help file for par
for more information.

cdf.lty a numeric scalar determining the line type of the cdf line in the plot. The default
value is pdf.lty=1. See the entry for lty in the help file for par for more
information.

curve.fill a logical value indicating whether to fill in the area below the cumulative distri-
bution function curve with the color specified by curve.fill.col. The default
value is curve.fill=FALSE.

curve.fill.col when curve.fill=TRUE, a numeric scalar or character string indicating what
color to use to fill in the area below the cumulative distribution function curve.
The default value is curve.fill.col="cyan". See the entry for col in the help
file for par for more information.

digits a scalar indicating how many significant digits to print for the distribution pa-
rameters. The default value is digits=.Options$digits.
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type, main, xlab, ylab, xlim, ylim, ...

additional graphical parameters (see lines and par). In particular, the argument
type specifies the kind of line type. By default, the function cdfPlot plots a step
function (type="s") for discrete distributions, and plots a straight line between
points (type="l") otherwise. The user may override these defaults by supplying
the graphics parameter type (type="s" for a step function, type="l" for linear
interpolation, type="p" for points only, etc.).

Details

The cumulative distribution function (cdf) of a random variable X , usually denoted F , is defined
as:

F (x) = Pr(X ≤ x) (1)

That is, F (x) is the probability that X is less than or equal to x. This is the probability that the
random variable X takes on a value in the interval (−∞, x] and is simply the (Lebesgue) integral
of the pdf evaluated between −∞ and x. That is,

F (x) = Pr(X ≤ x) =

∫ x

−∞
f(t)dt (2)

where f(t) denotes the probability density function of X evaluated at t. For discrete distributions,
Equation (2) translates to summing up the probabilities of all values in this interval:

F (x) = Pr(X ≤ x) =
∑

t∈(−∞,x]

f(t) =
∑

t∈(−∞,x]

Pr(X = t) (3)

A cumulative distribution function (cdf) plot plots the values of the cdf against quantiles of the
specified distribution. Theoretical cdf plots are sometimes plotted along with empirical cdf plots to
visually assess whether data have a particular distribution.

Value

cdfPlot invisibly returns a list giving coordinates of the points that have been or would have been
plotted:

Quantiles The quantiles used for the plot.
Cumulative.Probabilities

The values of the cdf associated with the quantiles.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Forbes, C., M. Evans, N. Hastings, and B. Peacock. (2011). Statistical Distributions. Fourth
Edition. John Wiley and Sons, Hoboken, NJ.

Johnson, N. L., S. Kotz, and A.W. Kemp. (1992). Univariate Discrete Distributions, Second Edi-
tion. John Wiley and Sons, New York.

Johnson, N. L., S. Kotz, and N. Balakrishnan. (1994). Continuous Univariate Distributions, Volume
1. Second Edition. John Wiley and Sons, New York.

Johnson, N. L., S. Kotz, and N. Balakrishnan. (1995). Continuous Univariate Distributions, Volume
2. Second Edition. John Wiley and Sons, New York.
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See Also

Distribution.df, ecdfPlot, cdfCompare, pdfPlot.

Examples

# Plot the cdf of the standard normal distribution
#-------------------------------------------------
dev.new()
cdfPlot()

#==========

# Plot the cdf of the standard normal distribution
# and a N(2, 2) distribution on the sample plot.
#-------------------------------------------------
dev.new()
cdfPlot(param.list = list(mean=2, sd=2), main = "")

cdfPlot(add = TRUE, cdf.col = "red")

legend("topleft", legend = c("N(2,2)", "N(0,1)"),
col = c("black", "red"), lwd = 3 * par("cex"))

title("CDF Plots for Two Normal Distributions")

#==========

# Clean up
#---------
graphics.off()

chenTTest Chen’s Modified One-Sided t-test for Skewed Distributions

Description

For a skewed distribution, estimate the mean, standard deviation, and skew; test the null hypothesis
that the mean is equal to a user-specified value vs. a one-sided alternative; and create a one-sided
confidence interval for the mean.

Usage

chenTTest(x, y = NULL, alternative = "greater", mu = 0, paired = !is.null(y),
conf.level = 0.95, ci.method = "z")

Arguments

x numeric vector of observations. Missing (NA), undefined (NaN), and infinite (Inf,
-Inf) values are allowed but will be removed.

y optional numeric vector of observations that are paired with the observations in
x. The length of y must be the same as the length of x. Missing (NA), undefined
(NaN), and infinite (Inf, -Inf) values are allowed but will be removed. This
argument is ignored if paired=FALSE, and must be supplied if paired=TRUE.
The default value is y=NULL.
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alternative character string indicating the kind of alternative hypothesis. The possible val-
ues are "greater" (the default) and "less". The value "greater" should be
used for positively-skewed distributions, and the value "less" should be used
for negatively-skewed distributions.

mu numeric scalar indicating the hypothesized value of the mean. The default value
is mu=0.

paired character string indicating whether to perform a paired or one-sample t-test. The
possible values are paired=FALSE (the default; indicates a one-sample t-test)
and paired=TRUE.

conf.level numeric scalar between 0 and 1 indicating the confidence level associated with
the confidence interval for the population mean. The default value is conf.level=0.95.

ci.method character string indicating which critical value to use to construct the confi-
dence interval for the mean. The possible values are "z" (the default), "t", and
"Avg. of z and t". See the DETAILS section below for more information.

Details

One-Sample Case (paired=FALSE)
Let x = (x1, x2, . . . , xn) be a vector of n independent and identically distributed (i.i.d.) observa-
tions from some distribution with mean µ and standard deviation σ.

Background: The Conventional Student’s t-Test
Assume that the n observations come from a normal (Gaussian) distribution, and consider the test
of the null hypothesis:

H0 : µ = µ0 (1)

The three possible alternative hypotheses are the upper one-sided alternative (alternative="greater"):

Ha : µ > µ0 (2)

the lower one-sided alternative (alternative="less"):

Ha : µ < µ0 (3)

and the two-sided alternative:
Ha : µ 6= µ0 (4)

The test of the null hypothesis (1) versus any of the three alternatives (2)-(4) is usually based on the
Student t-statistic:

t =
x̄− µ0

s/
√
n

(5)

where

x̄ =
1

n

n∑
i=1

xi (6)

s2 =
1

n− 1

n∑
i=1

(xi − x̄)2 (7)

(see the R help file for t.test). Under the null hypothesis (1), the t-statistic in (5) follows a Stu-
dent’s t-distribution with n − 1 degrees of freedom (Zar, 2010, p.99; Johnson et al., 1995, pp.362-
363). The t-statistic is fairly robust to departures from normality in terms of maintaining Type I
error and power, provided that the sample size is sufficiently large.
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Chen’s Modified t-Test for Skewed Distributions
In the case when the underlying distribution of the n observations is positively skewed and the
sample size is small, the sampling distribution of the t-statistic under the null hypothesis (1) does
not follow a Student’s t-distribution, but is instead negatively skewed. For the test against the upper
alternative in (2) above, this leads to a Type I error smaller than the one assumed and a loss of power
(Chen, 1995b, p.767).

Similarly, in the case when the underlying distribution of the n observations is negatively skewed
and the sample size is small, the sampling distribution of the t-statistic is positively skewed. For the
test against the lower alternative in (3) above, this also leads to a Type I error smaller than the one
assumed and a loss of power.

In order to overcome these problems, Chen (1995b) proposed the following modified t-statistic that
takes into account the skew of the underlying distribution:

t2 = t+ a(1 + 2t2) + 4a2(t+ 2t3) (8)

where

a =

√
β̂1

6n
(9)

β̂1 =
µ̂3

σ̂3
(10)

µ̂3 =
n

(n− 1)(n− 2)

n∑
i=1

(xi − x̄)3 (11)

σ̂3 = s3 = [
1

n− 1

n∑
i=1

(xi − x̄)2]3/2 (12)

Note that the quantity
√
β̂1 in (9) is an estimate of the skew of the underlying distribution and is

based on unbiased estimators of central moments (see the help file for skewness).

For a positively-skewed distribution, Chen’s modified t-test rejects the null hypothesis (1) in favor
of the upper one-sided alternative (2) if the t-statistic in (8) is too large. For a negatively-skewed
distribution, Chen’s modified t-test rejects the null hypothesis (1) in favor of the lower one-sided
alternative (3) if the t-statistic in (8) is too small.

Chen’s modified t-test is not applicable to testing the two-sided alternative (4). It should also not
be used to test the upper one-sided alternative (2) based on negatively-skewed data, nor should it be
used to test the lower one-sided alternative (3) based on positively-skewed data.

Determination of Critical Values and p-Values
Chen (1995b) performed a simulation study in which the modified t-statistic in (8) was compared
to a critical value based on the normal distribution (z-value), a critical value based on Student’s
t-distribution (t-value), and the average of the critical z-value and t-value. Based on the simulation
study, Chen (1995b) suggests using either the z-value or average of the z-value and t-value when n
(the sample size) is small (e.g., n ≤ 10) or α (the Type I error) is small (e.g. α ≤ 0.01), and using
either the t-value or the average of the z-value and t-value when n ≥ 20 or α ≥ 0.05.

The function chenTTest returns three different p-values: one based on the normal distribution, one
based on Student’s t-distribution, and one based on the average of these two p-values. This last
p-value should roughly correspond to a p-value based on the distribution of the average of a normal
and Student’s t random variable.

Computing Confidence Intervals
The function chenTTest computes a one-sided confidence interval for the true mean µ based on
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finding all possible values of µ for which the null hypothesis (1) will not be rejected, with the
confidence level determined by the argument conf.level. The argument ci.method determines
which p-value is used in the algorithm to determine the bounds on µ. When ci.method="z", the p-
value is based on the normal distribution, when ci.method="t", the p-value is based on Student’s
t-distribution, and when ci.method="Avg. of z and t" the p-value is based on the average of
the p-values based on the normal and Student’s t-distribution.

Paired-Sample Case (paired=TRUE)
When the argument paired=TRUE, the arguments x and y are assumed to have the same length, and
the n differences

di = xi − yi, i = 1, 2, . . . , n

are assumed to be i.i.d. observations from some distribution with mean µ and standard deviation σ.
Chen’s modified t-test can then be applied to the differences.

Value

a list of class "htest" containing the results of the hypothesis test. See the help file for htest.object
for details.

Note

The presentation of Chen’s (1995b) method in USEPA (2002d) and Singh et al. (2010b, p. 52) is
incorrect for two reasons: it is based on an intermediate formula instead of the actual statistic that
Chen proposes, and it uses the intermediate formula to compute an upper confidence limit for the
mean when the sample data are positively skewed. As explained above, for the case of positively
skewed data, Chen’s method is appropriate to test the upper one-sided alternative hypothesis that the
population mean is greater than some specified value, and a one-sided upper alternative corresponds
to creating a one-sided lower confidence limit, not an upper confidence limit (see, for example,
Millard and Neerchal, 2001, p. 371).
A frequent question in environmental statistics is “Is the concentration of chemical X greater than
Y units?” For example, in groundwater assessment (compliance) monitoring at hazardous and solid
waste sites, the concentration of a chemical in the groundwater at a downgradient may be compared
to a groundwater protection standard (GWPS). If the concentration is “above” the GWPS, then the
site enters corrective action monitoring. As another example, soil screening at a Superfund site
involves comparing the concentration of a chemical in the soil with a pre-determined soil screening
level (SSL). If the concentration is “above” the SSL, then further investigation and possible remedial
action is required. Determining what it means for the chemical concentration to be “above” a GWPS
or an SSL is a policy decision: the average of the distribution of the chemical concentration must
be above the GWPS or SSL, or the median must be above the GWPS or SSL, or the 95’th percentile
must be above the GWPS or SSL, or something else. Often, the first interpretation is used.
The regulatory guidance document Soil Screening Guidance: Technical Background Document
(USEPA, 1996c, Part 4) recommends using Chen’s t-test as one possible method to compare chem-
ical concentrations in soil samples to a soil screening level (SSL). The document notes that the
distribution of chemical concentrations will almost always be positively-skewed, but not necessar-
ily fit a lognormal distribution well (USEPA, 1996c, pp.107, 117-119). It also notes that using a
confidence interval based on Land’s (1971) method is extremely sensitive to the assumption of a
lognormal distribution, while Chen’s test is robust with respect to maintaining Type I and Type II
errors for a variety of positively-skewed distributions (USEPA, 1996c, pp.99, 117-119, 123-125).
Hypothesis tests you can use to perform tests of location include: Student’s t-test, Fisher’s random-
ization test, the Wilcoxon signed rank test, Chen’s modified t-test, the sign test, and a test based
on a bootstrap confidence interval. For a discussion comparing the performance of these tests, see
Millard and Neerchal (2001, pp.408–409).
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See Also

t.test, elnorm, elnormAlt.

Examples

# The guidance document "Calculating Upper Confidence Limits for
# Exposure Point Concentrations at Hazardous Waste Sites"
# (USEPA, 2002d, Exhibit 9, p. 16) contains an example of 60 observations
# from an exposure unit. Here we will use Chens modified t-test to test
# the null hypothesis that the average concentration is less than 30 mg/L
# versus the alternative that it is greater than 30 mg/L.
# In EnvStats these data are stored in the vector EPA.02d.Ex.9.mg.per.L.vec.

sort(EPA.02d.Ex.9.mg.per.L.vec)
# [1] 16 17 17 17 18 18 20 20 20 21 21 21 21 21 21 22
#[17] 22 22 23 23 23 23 24 24 24 25 25 25 25 25 25 26
#[33] 26 26 26 27 27 28 28 28 28 29 29 30 30 31 32 32
#[49] 32 33 33 35 35 97 98 105 107 111 117 119

dev.new()
hist(EPA.02d.Ex.9.mg.per.L.vec, col = "cyan", xlab = "Concentration (mg/L)")

# The Shapiro-Wilk goodness-of-fit test rejects the null hypothesis of a
# normal, lognormal, and gamma distribution:

gofTest(EPA.02d.Ex.9.mg.per.L.vec)$p.value
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#[1] 2.496781e-12

gofTest(EPA.02d.Ex.9.mg.per.L.vec, dist = "lnorm")$p.value
#[1] 3.349035e-09

gofTest(EPA.02d.Ex.9.mg.per.L.vec, dist = "gamma")$p.value
#[1] 1.564341e-10

# Use Chens modified t-test to test the null hypothesis that
# the average concentration is less than 30 mg/L versus the
# alternative that it is greater than 30 mg/L.

chenTTest(EPA.02d.Ex.9.mg.per.L.vec, mu = 30)

#Results of Hypothesis Test
#--------------------------
#
#Null Hypothesis: mean = 30
#
#Alternative Hypothesis: True mean is greater than 30
#
#Test Name: One-sample t-Test
# Modified for
# Positively-Skewed Distributions
# (Chen, 1995)
#
#Estimated Parameter(s): mean = 34.566667
# sd = 27.330598
# skew = 2.365778
#
#Data: EPA.02d.Ex.9.mg.per.L.vec
#
#Sample Size: 60
#
#Test Statistic: t = 1.574075
#
#Test Statistic Parameter: df = 59
#
#P-values: z = 0.05773508
# t = 0.06040889
# Avg. of z and t = 0.05907199
#
#Confidence Interval for: mean
#
#Confidence Interval Method: Based on z
#
#Confidence Interval Type: Lower
#
#Confidence Level: 95%
#
#Confidence Interval: LCL = 29.82
# UCL = Inf

# The estimated mean, standard deviation, and skew are 35, 27, and 2.4,
# respectively. The p-value is 0.06, and the lower 95% confidence interval
# is [29.8, Inf). Depending on what you use for your Type I error rate, you
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# may or may not want to reject the null hypothesis.

Chi The Chi Distribution

Description

Density, distribution function, quantile function, and random generation for the chi distribution.

Usage

dchi(x, df)
pchi(q, df)
qchi(p, df)
rchi(n, df)

Arguments

x vector of (positive) quantiles.

q vector of (positive) quantiles.

p vector of probabilities between 0 and 1.

n sample size. If length(n) is larger than 1, then length(n) random values are
returned.

df vector of (positive) degrees of freedom (> 0). Non-integer values are allowed.

Details

Elements of x, q, p, or df that are missing will cause the corresponding elements of the result to be
missing.

The chi distribution with n degrees of freedom is the distribution of the positive square root of a
random variable having a chi-squared distribution with n degrees of freedom.

The chi density function is given by:

f(x, ν) = g(x2, ν)2x, x > 0

where g(x, ν) denotes the density function of a chi-square random variable with n degrees of free-
dom.

Value

density (dchi), probability (pchi), quantile (qchi), or random sample (rchi) for the chi distribution
with df degrees of freedom.

Note

The chi distribution takes on positive real values. It is important because for a sample of n obser-
vations from a normal distribution, the sample standard deviation multiplied by the square root of
the degrees of freedom ν and divided by the true standard deviation follows a chi distribution with
ν degrees of freedom. The chi distribution is also used in computing exact prediction intervals for
the next k observations from a normal distribution (see predIntNorm).
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Author(s)
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References

Forbes, C., M. Evans, N. Hastings, and B. Peacock. (2011). Statistical Distributions. Fourth
Edition. John Wiley and Sons, Hoboken, NJ.
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See Also

Chisquare, Normal, predIntNorm, Probability Distributions and Random Numbers.

Examples

# Density of a chi distribution with 4 degrees of freedom, evaluated at 3:

dchi(3, 4)
#[1] 0.1499715

#----------

# The 95th percentile of a chi distribution with 10 degrees of freedom:

qchi(.95, 10)
#[1] 4.278672

#----------

# The cumulative distribution function of a chi distribution with
# 5 degrees of freedom evaluated at 3:

pchi(3, 5)
#[1] 0.8909358

#----------

# A random sample of 2 numbers from a chi distribution with 7 degrees of freedom.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(20)
rchi(2, 7)
#[1] 3.271632 2.035179

ciBinomHalfWidth Half-Width of Confidence Interval for Binomial Proportion or Differ-
ence Between Two Proportions

Description

Compute the half-width of a confidence interval for a binomial proportion or the difference between
two proportions, given the sample size(s), estimated proportion(s), and confidence level.
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Usage

ciBinomHalfWidth(n.or.n1, p.hat.or.p1.hat = 0.5,
n2 = n.or.n1, p2.hat = 0.4, conf.level = 0.95,
sample.type = "one.sample", ci.method = "score",
correct = TRUE, warn = TRUE)

Arguments

n.or.n1 numeric vector of sample sizes.
When sample.type="one.sample", n.or.n1 denotes n, the number of obser-
vations in the single sample.
When sample.type="two.sample", n.or.n1 denotes n1, the number of obser-
vations from group 1.
Missing (NA), undefined (NaN), and infinite (Inf, -Inf) values are not allowed.

p.hat.or.p1.hat

numeric vector of estimated proportions.
When sample.type="one.sample", p.hat.or.p1.hat denotes the estimated
value of p, the probability of “success”.
When sample.type="two.sample", p.hat.or.p1.hat denotes the estimated
value of p1, the probability of “success” in group 1.
Missing (NA), undefined (NaN), and infinite (Inf, -Inf) values are not allowed.

n2 numeric vector of sample sizes for group 2. The default value is the value of
n.or.n1. This argument is ignored when sample.type="one.sample". Miss-
ing (NA), undefined (NaN), and infinite (Inf, -Inf) values are not allowed.

p2.hat numeric vector of estimated proportions for group 2. This argument is ignored
when sample.type="one.sample". Missing (NA), undefined (NaN), and infinite
(Inf, -Inf) values are not allowed.

conf.level numeric vector of numbers between 0 and 1 indicating the confidence level as-
sociated with the confidence interval(s). The default value is conf.level=0.95.

sample.type character string indicating whether this is a one-sample or two-sample confi-
dence interval. When sample.type="one.sample", the computed half-width
is based on a confidence interval for a single proportion. When
sample.type="two.sample", the computed half-width is based on a confi-
dence interval for the difference between two proportions. The default value
is sample.type="one.sample" unless the argument n2 or p2.hat is supplied.

ci.method character string indicating which method to use to construct the confidence in-
terval. Possible values are "score" (the default), "exact",
"adjusted Wald", and "Wald" (the "Wald" method is never recommended but
is included for historical purposes). The exact method is only available for the
one-sample case, i.e., when sample.type="one.sample".

correct logical scalar indicating whether to use the continuity correction when
ci.method="score" or ci.method="Wald".
The default value is correct=TRUE.

warn logical scalar indicating whether to issue a warning when
ci.method="Wald" for cases when the normal approximation to the binomial
distribution probably is not accurate. The default value is warn=TRUE.

Details

If the arguments n.or.n1, p.hat.or.p1.hat, n2, p2.hat, and conf.level are not all the same
length, they are replicated to be the same length as the length of the longest argument.
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The values of p.hat.or.p1.hat and p2.hat are automatically adjusted to the closest legitimate
values, given the user-supplied values of n.or.n1 and n2. For example, if n.or.n1=5, legiti-
mate values for p.hat.or.p1.hat are 0, 0.2, 0.4, 0.6, 0.8 and 1. In this case, if the user supplies
p.hat.or.p1.hat=0.45, then p.hat.or.p1.hat is reset to
p.hat.or.p1.hat=0.4, and if the user supplies p.hat.or.p1.hat=0.55,
then p.hat.or.p1.hat is reset to p.hat.or.p1.hat=0.6. In cases where the two closest legiti-
mate values are equal distance from the user-suppled value of p.hat.or.p1.hat or p2.hat, the
value closest to 0.5 is chosen since that will tend to yield the wider confidence interval.

One-Sample Case (sample.type="one.sample").

ci.method="score" The confidence interval for p based on the score method was developed by
Wilson (1927) and is discussed by Newcombe (1998a), Agresti and Coull (1998), and Agresti
and Caffo (2000). When ci=TRUE and ci.method="score", the function ebinom calls the
R function prop.test to compute the confidence interval. This method has been shown to
provide the best performance (in terms of actual coverage matching assumed coverage) of all
the methods provided here, although unlike the exact method, the actual coverage can fall
below the assumed coverage.

ci.method="exact" The confidence interval for p based on the exact (Clopper-Pearson) method is
discussed by Newcombe (1998a), Agresti and Coull (1998), and Zar (2010, pp.543-547). This
is the method used in the R function binom.test. This method ensures the actual coverage is
greater than or equal to the assumed coverage.

ci.method="Wald" The confidence interval for p based on the Wald method (with or without a
correction for continuity) is the usual “normal approximation” method and is discussed by
Newcombe (1998a), Agresti and Coull (1998), Agresti and Caffo (2000), and Zar (2010,
pp.543-547). This method is never recommended but is included for historical purposes.

ci.method="adjusted Wald" The confidence interval for p based on the adjusted Wald method is
discussed by Agresti and Coull (1998), Agresti and Caffo (2000), and Zar (2010, pp.543-547).
This is a simple modification of the Wald method and performs surpringly well.

Two-Sample Case (sample.type="two.sample").

ci.method="score" This method is presented in Newcombe (1998b) and is based on the score
method developed by Wilson (1927) for the one-sample case. This is the method used by
the R function prop.test. In a comparison of 11 methods, Newcombe (1998b) showed this
method performs remarkably well.

ci.method="Wald" The confidence interval for the difference between two proportions based on
the Wald method (with or without a correction for continuity) is the usual “normal approxi-
mation” method and is discussed by Newcombe (1998b), Agresti and Caffo (2000), and Zar
(2010, pp.549-552). This method is not recommended but is included for historical purposes.

ci.method="adjusted Wald" This method is discussed by Agresti and Caffo (2000), and Zar
(2010, pp.549-552). This is a simple modification of the Wald method and performs surpringly
well.

Value

a list with information about the half-widths, sample sizes, and estimated proportions.

One-Sample Case (sample.type="one.sample").
When sample.type="one.sample", the function ciBinomHalfWidth returns a list with these com-
ponents:

half.width the half-width(s) of the confidence interval(s)
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n the sample size(s) associated with the confidence interval(s)

p.hat the estimated proportion(s)

method the method used to construct the confidence interval(s)

Two-Sample Case (sample.type="two.sample").
When sample.type="two.sample", the function ciBinomHalfWidth returns a list with these com-
ponents:

half.width the half-width(s) of the confidence interval(s)

n1 the sample size(s) for group 1 associated with the confidence interval(s)

p1.hat the estimated proportion(s) for group 1

n2 the sample size(s) for group 2 associated with the confidence interval(s)

p2.hat the estimated proportion(s) for group 2

method the method used to construct the confidence interval(s)

Note

The binomial distribution is used to model processes with binary (Yes-No, Success-Failure, Heads-
Tails, etc.) outcomes. It is assumed that the outcome of any one trial is independent of any other
trial, and that the probability of “success”, p, is the same on each trial. A binomial discrete random
variable X is the number of “successes” in n independent trials. A special case of the binomial
distribution occurs when n = 1, in which case X is also called a Bernoulli random variable.

In the context of environmental statistics, the binomial distribution is sometimes used to model the
proportion of times a chemical concentration exceeds a set standard in a given period of time (e.g.,
Gilbert, 1987, p.143), or to compare the proportion of detects in a compliance well vs. a background
well (e.g., USEPA, 1989b, Chapter 8, p.3-7). (However, USEPA 2009, p.8-27 recommends using
the Wilcoxon rank sum test (wilcox.test) instead of comparing proportions.)

In the course of designing a sampling program, an environmental scientist may wish to determine
the relationship between sample size, confidence level, and half-width if one of the objectives of the
sampling program is to produce confidence intervals. The functions ciBinomHalfWidth, ciBinomN,
and plotCiBinomDesign can be used to investigate these relationships for the case of binomial
proportions.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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See Also

ciBinomN, plotCiBinomDesign, ebinom, binom.test, prop.test.

Examples

# Look at how the half-width of a one-sample confidence interval
# decreases with sample size:

ciBinomHalfWidth(n.or.n1 = c(10, 50, 100, 500))
#$half.width
#[1] 0.26340691 0.13355486 0.09616847 0.04365873
#
#$n
#[1] 10 50 100 500
#
#$p.hat
#[1] 0.5 0.5 0.5 0.5
#
#$method
#[1] "Score normal approximation, with continuity correction"

#----------------------------------------------------------------

# Look at how the half-width of a one-sample confidence interval
# tends to decrease as the estimated value of p decreases below
# 0.5 or increases above 0.5:

seq(0.2, 0.8, by = 0.1)
#[1] 0.2 0.3 0.4 0.5 0.6 0.7 0.8
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ciBinomHalfWidth(n.or.n1 = 30, p.hat = seq(0.2, 0.8, by = 0.1))
#$half.width
#[1] 0.1536299 0.1707256 0.1801322 0.1684587 0.1801322 0.1707256
#[7] 0.1536299
#
#$n
#[1] 30 30 30 30 30 30 30
#
#$p.hat
#[1] 0.2 0.3 0.4 0.5 0.6 0.7 0.8
#
#$method
#[1] "Score normal approximation, with continuity correction"

#----------------------------------------------------------------

# Look at how the half-width of a one-sample confidence interval
# increases with increasing confidence level:

ciBinomHalfWidth(n.or.n1 = 20, conf.level = c(0.8, 0.9, 0.95, 0.99))
#$half.width
#[1] 0.1377380 0.1725962 0.2007020 0.2495523
#
#$n
#[1] 20 20 20 20
#
#$p.hat
#[1] 0.5 0.5 0.5 0.5
#
#$method
#[1] "Score normal approximation, with continuity correction"

#----------------------------------------------------------------

# Compare the half-widths for a one-sample
# confidence interval based on the different methods:

ciBinomHalfWidth(n.or.n1 = 30, ci.method = "score")$half.width
#[1] 0.1684587

ciBinomHalfWidth(n.or.n1 = 30, ci.method = "exact")$half.width
#[1] 0.1870297

ciBinomHalfWidth(n.or.n1 = 30, ci.method = "adjusted Wald")$half.width
#[1] 0.1684587

ciBinomHalfWidth(n.or.n1 = 30, ci.method = "Wald")$half.width
#[1] 0.1955861

#----------------------------------------------------------------

# Look at how the half-width of a two-sample
# confidence interval decreases with increasing
# sample sizes:

ciBinomHalfWidth(n.or.n1 = c(10, 50, 100, 500), sample.type = "two")
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#$half.width
#[1] 0.53385652 0.21402654 0.14719748 0.06335658
#
#$n1
#[1] 10 50 100 500
#
#$p1.hat
#[1] 0.5 0.5 0.5 0.5
#
#$n2
#[1] 10 50 100 500
#
#$p2.hat
#[1] 0.4 0.4 0.4 0.4
#
#$method
#[1] "Score normal approximation, with continuity correction"

ciBinomN Sample Size for Specified Half-Width of Confidence Interval for Bino-
mial Proportion or Difference Between Two Proportions

Description

Compute the sample size necessary to achieve a specified half-width of a confidence interval for a
binomial proportion or the difference between two proportions, given the estimated proportion(s),
and confidence level.

Usage

ciBinomN(half.width, p.hat.or.p1.hat = 0.5, p2.hat = 0.4,
conf.level = 0.95, sample.type = "one.sample", ratio = 1,
ci.method = "score", correct = TRUE, warn = TRUE,
n.or.n1.min = 2, n.or.n1.max = 10000,
tol.half.width = 5e-04, tol.p.hat = 5e-04,
tol = 1e-7, maxiter = 1000)

Arguments

half.width numeric vector of (positive) half-widths. Missing (NA), undefined (NaN), and
infinite (Inf, -Inf) values are not allowed.

p.hat.or.p1.hat

numeric vector of estimated proportions.
When sample.type="one.sample", p.hat.or.p1.hat denotes the estimated
value of p, the probability of “success”.
When sample.type="two.sample", p.hat.or.p1.hat denotes the estimated
value of p1, the probability of “success” in group 1.
Missing (NA), undefined (NaN), and infinite (Inf, -Inf) values are not allowed.

p2.hat numeric vector of estimated proportions for group 2. This argument is ignored
when sample.type="one.sample". Missing (NA), undefined (NaN), and infinite
(Inf, -Inf) values are not allowed.
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conf.level numeric vector of numbers between 0 and 1 indicating the confidence level as-
sociated with the confidence interval(s). The default value is conf.level=0.95.

sample.type character string indicating whether this is a one-sample or two-sample confi-
dence interval.
When sample.type="one.sample", the computed half-width is based on a
confidence interval for a single proportion.
When sample.type="two.sample", the computed half-width is based on a
confidence interval for the difference between two proportions.
The default value is sample.type="one.sample" unless the argument p2.hat
or ratio is supplied.

ratio numeric vector indicating the ratio of sample size in group 2 to sample size in
group 1 (n2/n1). The default value is ratio=1. All values of ratio must be
greater than or equal to 1. This argument is ignored if
sample.type="one.sample".

ci.method character string indicating which method to use to construct the confidence in-
terval. Possible values are:

• "score" (the default),
• "exact",
• "adjusted Wald" and,
• "Wald" (the "Wald" method is never recommended but is included for his-

torical purposes).

The exact method is only available for the one-sample case, i.e., when
sample.type="one.sample".

correct logical scalar indicating whether to use the continuity correction when
ci.method="score" or ci.method="Wald". The default value is
correct=TRUE.

warn logical scalar indicating whether to issue a warning when ci.method="Wald"
for cases when the normal approximation to the binomial distribution probably
is not accurate. The default value is warn=TRUE.

n.or.n1.min integer indicating the minimum allowed value for
n (sample.type="one.sample") or
n1 (sample.type="two.sample").
The default value is n.or.n1.min=2.

n.or.n1.max integer indicating the maximum allowed value for
n (sample.type="one.sample") or
n1 (sample.type="two.sample").
The default value is n.or.n1.max=10000.

tol.half.width numeric scalar indicating the tolerance to use for the half width for the search
algorithm. The sample sizes are computed so that the actual half width is
less than or equal to half.width + tol.half.width. The default value is
tol.half.width=5e-04.

tol.p.hat numeric scalar indicating the tolerance to use for the estimated proportion(s)
for the search algorithm. For the one-sample case, the sample sizes are com-
puted so that the absolute value of the difference between the user supplied
value of p.hat.or.p1.hat and the actual estimated proportion is less than or
equal to tol.p.hat. For the two-sample case, the sample sizes are computed
so that the absolute value of the difference between the user supplied value of
p.hat.or.p1.hat and the actual estimated proportion for group 1 is less than
or equal to tol.p.hat, and the absolute value of the difference between the user
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supplied value of p2.hat and the actual estimated proportion for group 2 is less
than or equal to tol.p.hat. The default value is tol.p.hat=0.005.

tol positive scalar indicating the tolerance to use for the search algorithm (passed to
uniroot). The default value is tol=1e-7.

maxiter integer indicating the maximum number of iterations to use for the search algo-
rithm (passed to uniroot). The default value is maxiter=1000.

Details

If the arguments half.width, p.hat.or.p1.hat, p2.hat, conf.level and ratio are not all the
same length, they are replicated to be the same length as the length of the longest argument.

For the one-sample case, the arguments p.hat.or.p1.hat, tol.p.hat, half.width, and tol.half.width
must satisfy:
(p.hat.or.p1.hat + tol.p.hat + half.width + tol.half.width) <= 1,
and
(p.hat.or.p1.hat - tol.p.hat - half.width - tol.half.width) >= 0.

For the two-sample case, the arguments p.hat.or.p1.hat, p2.hat, tol.p.hat,
half.width, and tol.half.width must satisfy:
((p.hat.or.p1.hat + tol.p.hat) - (p2.hat - tol.p.hat) + half.width + tol.half.width) <= 1,
and
((p.hat.or.p1.hat - tol.p.hat) - (p2.hat + tol.p.hat) - half.width - tol.half.width) >= -1.

The function ciBinomN uses the search algorithm in the function uniroot to call the function
ciBinomHalfWidth to find the values of n (sample.type="one.sample") or n1 and n2

(sample.type="two.sample") that satisfy the requirements for the half-width, estimated propor-
tions, and confidence level. See the Details section of the help file for ciBinomHalfWidth for more
information.

Value

a list with information about the sample sizes, estimated proportions, and half-widths.

One-Sample Case (sample.type="one.sample").
When sample.type="one.sample", the function ciBinomN returns a list with these components:

n the sample size(s) associated with the confidence interval(s)

p.hat the estimated proportion(s)

half.width the half-width(s) of the confidence interval(s)

method the method used to construct the confidence interval(s)

Two-Sample Case (sample.type="two.sample").
When sample.type="two.sample", the function ciBinomN returns a list with these components:

n1 the sample size(s) for group 1 associated with the confidence interval(s)

n2 the sample size(s) for group 2 associated with the confidence interval(s)

p1.hat the estimated proportion(s) for group 1

p2.hat the estimated proportion(s) for group 2

half.width the half-width(s) of the confidence interval(s)

method the method used to construct the confidence interval(s)
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Note

The binomial distribution is used to model processes with binary (Yes-No, Success-Failure, Heads-
Tails, etc.) outcomes. It is assumed that the outcome of any one trial is independent of any other
trial, and that the probability of “success”, p, is the same on each trial. A binomial discrete random
variable X is the number of “successes” in n independent trials. A special case of the binomial
distribution occurs when n = 1, in which case X is also called a Bernoulli random variable.

In the context of environmental statistics, the binomial distribution is sometimes used to model the
proportion of times a chemical concentration exceeds a set standard in a given period of time (e.g.,
Gilbert, 1987, p.143), or to compare the proportion of detects in a compliance well vs. a background
well (e.g., USEPA, 1989b, Chapter 8, p.3-7). (However, USEPA 2009, p.8-27 recommends using
the Wilcoxon rank sum test (wilcox.test) instead of comparing proportions.)

In the course of designing a sampling program, an environmental scientist may wish to determine
the relationship between sample size, confidence level, and half-width if one of the objectives of the
sampling program is to produce confidence intervals. The functions ciBinomHalfWidth, ciBinomN,
and plotCiBinomDesign can be used to investigate these relationships for the case of binomial
proportions.
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See Also

ciBinomHalfWidth, uniroot, plotCiBinomDesign, ebinom,
binom.test, prop.test.

Examples

# Look at how the required sample size of a one-sample
# confidence interval increases with decreasing
# required half-width:

ciBinomN(half.width = c(0.1, 0.05, 0.03))
#$n
#[1] 92 374 1030
#
#$p.hat
#[1] 0.5 0.5 0.5
#
#$half.width
#[1] 0.10010168 0.05041541 0.03047833
#
#$method
#[1] "Score normal approximation, with continuity correction"

#----------

# Note that the required sample size decreases if we are less
# stringent about how much the confidence interval width can
# deviate from the supplied value of the half.width argument:

ciBinomN(half.width = c(0.1, 0.05, 0.03), tol.half.width = 0.005)
#$n
#[1] 84 314 782
#
#$p.hat
#[1] 0.5 0.5 0.5
#
#$half.width
#[1] 0.10456066 0.05496837 0.03495833
#
#$method
#[1] "Score normal approximation, with continuity correction"

#--------------------------------------------------------------------

# Look at how the required sample size for a one-sample
# confidence interval tends to decrease as the estimated
# value of p decreases below 0.5 or increases above 0.5:
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seq(0.2, 0.8, by = 0.1)
#[1] 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ciBinomN(half.width = 0.1, p.hat = seq(0.2, 0.8, by = 0.1))
#$n
#[1] 70 90 100 92 100 90 70
#
#$p.hat
#[1] 0.2 0.3 0.4 0.5 0.6 0.7 0.8
#
#$half.width
#[1] 0.09931015 0.09839843 0.09910818 0.10010168 0.09910818 0.09839843
#[7] 0.09931015
#
#$method
#[1] "Score normal approximation, with continuity correction"

#----------------------------------------------------------------

# Look at how the required sample size for a one-sample
# confidence interval increases with increasing confidence level:

ciBinomN(half.width = 0.05, conf.level = c(0.8, 0.9, 0.95, 0.99))
#$n
#[1] 160 264 374 644
#
#$p.hat
#[1] 0.5 0.5 0.5 0.5
#
#$half.width
#[1] 0.05039976 0.05035948 0.05041541 0.05049152
#
#$method
#[1] "Score normal approximation, with continuity correction"

#----------------------------------------------------------------

# Compare required sample size for a one-sample
# confidence interval based on the different methods:

ciBinomN(half.width = 0.05, ci.method = "score")
#$n
#[1] 374
#
#$p.hat
#[1] 0.5
#
#$half.width
#[1] 0.05041541
#
#$method
#[1] "Score normal approximation, with continuity correction"

ciBinomN(half.width = 0.05, ci.method = "exact")
#$n
#[1] 394
#
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#$p.hat
#[1] 0.5
#
#$half.width
#[1] 0.05047916
#
#$method
#[1] "Exact"

ciBinomN(half.width = 0.05, ci.method = "adjusted Wald")
#$n
#[1] 374
#
#$p.hat
#[1] 0.5
#
#$half.width
#[1] 0.05041541
#
#$method
#[1] "Adjusted Wald normal approximation"

ciBinomN(half.width = 0.05, ci.method = "Wald")
#$n
#[1] 398
#
#$p.hat
#[1] 0.5
#
#$half.width
#[1] 0.05037834
#
#$method
#[1] "Wald normal approximation, with continuity correction"

#----------------------------------------------------------------

# Look at how the required sample size of a two-sample
# confidence interval increases with decreasing
# required half-width:

ciBinomN(half.width = c(0.1, 0.05, 0.03), sample.type = "two")
#$n1
#[1] 210 778 2089
#
#$n2
#[1] 210 778 2089
#
#$p1.hat
#[1] 0.5000000 0.5000000 0.4997607
#
#$p2.hat
#[1] 0.4000000 0.3997429 0.4001915
#
#$half.width
#[1] 0.09943716 0.05047044 0.03049753
#
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#$method
#[1] "Score normal approximation, with continuity correction"

ciNormHalfWidth Half-Width of Confidence Interval for Normal Distribution Mean or
Difference Between Two Means

Description

Compute the half-width of a confidence interval for the mean of a normal distribution or the dif-
ference between two means, given the sample size(s), estimated standard deviation, and confidence
level.

Usage

ciNormHalfWidth(n.or.n1, n2 = n.or.n1,
sigma.hat = 1, conf.level = 0.95,
sample.type = ifelse(missing(n2), "one.sample", "two.sample"))

Arguments

n.or.n1 numeric vector of sample sizes. When sample.type="one.sample", this ar-
gument denotes n, the number of observations in the single sample. When
sample.type="two.sample", this argument denotes n1, the number of obser-
vations from group 1. Missing (NA), undefined (NaN), and infinite (Inf, -Inf)
values are not allowed.

n2 numeric vector of sample sizes for group 2. The default value is the value of
n.or.n1. This argument is ignored when sample.type="one.sample". Miss-
ing (NA), undefined (NaN), and infinite (Inf, -Inf) values are not allowed.

sigma.hat numeric vector specifying the value(s) of the estimated standard deviation(s).
conf.level numeric vector of numbers between 0 and 1 indicating the confidence level as-

sociated with the confidence interval(s). The default value is conf.level=0.95.
sample.type character string indicating whether this is a one-sample

(sample.type="one.sample") or two-sample
(sample.type="two.sample") confidence interval.
When sample.type="one.sample", the computed half-width is based on a
confidence interval for a single mean.
When sample.type="two.sample", the computed half-width is based on a
confidence interval for the difference between two means.
The default value is sample.type="one.sample" unless the argument n2 is
supplied.

Details

If the arguments n.or.n1, n2, sigma.hat, and conf.level are not all the same length, they are
replicated to be the same length as the length of the longest argument.

One-Sample Case (sample.type="one.sample")
Let x = x1, x2, . . . , xn denote a vector of n observations from a normal distribution with mean µ
and standard deviation σ. A two-sided (1− α)100% confidence interval for µ is given by:

[µ̂− t(n− 1, 1− α/2)
σ̂√
n
, µ̂+ t(n− 1, 1− α/2)

σ̂√
n

] (1)
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where

µ̂ = x̄ =
1

n

n∑
i=1

xi (2)

σ̂2 = s2 =
1

n− 1

n∑
i=1

(xi − x̄)2 (3)

and t(ν, p) is the p’th quantile of Student’s t-distribution with ν degrees of freedom (Zar, 2010;
Gilbert, 1987; Ott, 1995; Helsel and Hirsch, 1992). Thus, the half-width of this confidence interval
is given by:

HW = t(n− 1, 1− α/2)
σ̂√
n

(4)

Two-Sample Case (sample.type="two.sample")
Let x1 = x11, x12, . . . , x1n1

denote a vector of n1 observations from a normal distribution with
mean µ1 and standard deviation σ, and let x2 = x21, x22, . . . , x2n2

denote a vector of n2 observa-
tions from a normal distribution with mean µ2 and standard deviation σ. A two-sided (1−α)100%
confidence interval for µ1 − µ2 is given by:

[(µ̂1−µ̂2)−t(n1+n2−2, 1−α/2)σ̂

√
1

n1
+

1

n2
, (µ̂1−µ̂2)+t(n1+n2−2, 1−α/2)σ̂

√
1

n1
+

1

n2
] (5)

where

µ̂1 = x̄1 =
1

n1

n1∑
i=1

x1i (6)

µ̂2 = x̄2 =
1

n2

n2∑
i=1

x2i (7)

σ̂2 = s2
p =

(n1 − 1)s2
1 + (n2 − 1)s2

2

n1 + n2 − 2
(8)

s2
1 =

1

n1 − 1

n1∑
i=1

(x1i − x̄1)2 (9)

s2
2 =

1

n2 − 1

n2∑
i=1

(x2i − x̄2)2 (10)

(Zar, 2010, p.142; Helsel and Hirsch, 1992, p.135, Berthouex and Brown, 2002, pp.157–158). Thus,
the half-width of this confidence interval is given by:

HW = t(n1 + n2 − 2, 1− α/2)σ̂

√
1

n1
+

1

n2
(11)

Note that for the two-sample case, the function ciNormHalfWidth assumes the two populations
have the same standard deviation.

Value

a numeric vector of half-widths.
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Note

The normal distribution and lognormal distribution are probably the two most frequently used dis-
tributions to model environmental data. In order to make any kind of probability statement about a
normally-distributed population (of chemical concentrations for example), you have to first estimate
the mean and standard deviation (the population parameters) of the distribution. Once you estimate
these parameters, it is often useful to characterize the uncertainty in the estimate of the mean. This
is done with confidence intervals.

In the course of designing a sampling program, an environmental scientist may wish to determine
the relationship between sample size, confidence level, and half-width if one of the objectives of the
sampling program is to produce confidence intervals. The functions ciNormHalfWidth, ciNormN,
and plotCiNormDesign can be used to investigate these relationships for the case of normally-
distributed observations.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Berthouex, P.M., and L.C. Brown. (2002). Statistics for Environmental Engineers. Second Edition.
Lewis Publishers, Boca Raton, FL.

Gilbert, R.O. (1987). Statistical Methods for Environmental Pollution Monitoring. Van Nostrand
Reinhold, New York, NY.

Helsel, D.R., and R.M. Hirsch. (1992). Statistical Methods in Water Resources Research. Elsevier,
New York, NY, Chapter 7.

Millard, S.P., and N. Neerchal. (2001). Environmental Statistics with S-PLUS. CRC Press, Boca
Raton, FL.

Ott, W.R. (1995). Environmental Statistics and Data Analysis. Lewis Publishers, Boca Raton, FL.

USEPA. (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Uni-
fied Guidance. EPA 530/R-09-007, March 2009. Office of Resource Conservation and Recovery
Program Implementation and Information Division. U.S. Environmental Protection Agency, Wash-
ington, D.C. p.21-3.

Zar, J.H. (2010). Biostatistical Analysis. Fifth Edition. Prentice-Hall, Upper Saddle River, NJ,
Chapters 7 and 8.

See Also

ciNormN, plotCiNormDesign, Normal, enorm, t.test
Estimating Distribution Parameters.

Examples

# Look at how the half-width of a one-sample confidence interval
# decreases with increasing sample size:

seq(5, 30, by = 5)
#[1] 5 10 15 20 25 30

hw <- ciNormHalfWidth(n.or.n1 = seq(5, 30, by = 5))

round(hw, 2)
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#[1] 1.24 0.72 0.55 0.47 0.41 0.37

#----------------------------------------------------------------

# Look at how the half-width of a one-sample confidence interval
# increases with increasing estimated standard deviation:

seq(0.5, 2, by = 0.5)
#[1] 0.5 1.0 1.5 2.0

hw <- ciNormHalfWidth(n.or.n1 = 20, sigma.hat = seq(0.5, 2, by = 0.5))

round(hw, 2)
#[1] 0.23 0.47 0.70 0.94

#----------------------------------------------------------------

# Look at how the half-width of a one-sample confidence interval
# increases with increasing confidence level:

seq(0.5, 0.9, by = 0.1)
#[1] 0.5 0.6 0.7 0.8 0.9

hw <- ciNormHalfWidth(n.or.n1 = 20, conf.level = seq(0.5, 0.9, by = 0.1))

round(hw, 2)
#[1] 0.15 0.19 0.24 0.30 0.39

#==========

# Modifying the example on pages 21-4 to 21-5 of USEPA (2009),
# determine how adding another four months of observations to
# increase the sample size from 4 to 8 will affect the half-width
# of a two-sided 95% confidence interval for the Aldicarb level at
# the first compliance well.
#
# Use the estimated standard deviation from the first four months
# of data. (The data are stored in EPA.09.Ex.21.1.aldicarb.df.)
# Note that the half-width changes from 34% of the observed mean to
# 18% of the observed mean by increasing the sample size from
# 4 to 8.

EPA.09.Ex.21.1.aldicarb.df
# Month Well Aldicarb.ppb
#1 1 Well.1 19.9
#2 2 Well.1 29.6
#3 3 Well.1 18.7
#4 4 Well.1 24.2
#...

mu.hat <- with(EPA.09.Ex.21.1.aldicarb.df,
mean(Aldicarb.ppb[Well=="Well.1"]))

mu.hat
#[1] 23.1

sigma.hat <- with(EPA.09.Ex.21.1.aldicarb.df,
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sd(Aldicarb.ppb[Well=="Well.1"]))

sigma.hat
#[1] 4.93491

hw.4 <- ciNormHalfWidth(n.or.n1 = 4, sigma.hat = sigma.hat)

hw.4
#[1] 7.852543

hw.8 <- ciNormHalfWidth(n.or.n1 = 8, sigma.hat = sigma.hat)

hw.8
#[1] 4.125688

100 * hw.4/mu.hat
#[1] 33.99369

100 * hw.8/mu.hat
#[1] 17.86012

#==========

# Clean up
#---------
rm(hw, mu.hat, sigma.hat, hw.4, hw.8)

ciNormN Sample Size for Specified Half-Width of Confidence Interval for Nor-
mal Distribution Mean or Difference Between Two Means

Description

Compute the sample size necessary to achieve a specified half-width of a confidence interval for the
mean of a normal distribution or the difference between two means, given the estimated standard
deviation and confidence level.

Usage

ciNormN(half.width, sigma.hat = 1, conf.level = 0.95,
sample.type = ifelse(is.null(n2), "one.sample", "two.sample"),
n2 = NULL, round.up = TRUE, n.max = 5000, tol = 1e-07, maxiter = 1000)

Arguments

half.width numeric vector of (positive) half-widths. Missing (NA), undefined (NaN), and
infinite (Inf, -Inf) values are not allowed.

sigma.hat numeric vector specifying the value(s) of the estimated standard deviation(s).

conf.level numeric vector of numbers between 0 and 1 indicating the confidence level as-
sociated with the confidence interval(s). The default value is conf.level=0.95.
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sample.type character string indicating whether this is a one-sample
(sample.type="one.sample") or two-sample
(sample.type="two.sample") confidence interval.
When sample.type="one.sample", the computed sample size is based on a
confidence interval for a single mean.
When sample.type="two.sample", the computed sample size is based on a
confidence interval for the difference between two means.
The default value is sample.type="one.sample" unless the argument n2 is
supplied.

n2 numeric vector of sample sizes for group 2. The default value is NULL, in which
case it is assumed that the sample sizes for groups 1 and 2 are equal. This argu-
ment is ignored when sample.type="one.sample". Missing (NA), undefined
(NaN), and infinite (Inf, -Inf) values are not allowed.

round.up logical scalar indicating whether to round up the values of the computed sample
size(s) to the next smallest integer. The default value is round.up=TRUE.

n.max positive integer greater than 1 specifying the maximum sample size for the single
group when sample.type="one.sample" or for group 1 when sample.type="two.sample".
The default value is n.max=5000.

tol numeric scalar indicating the tolerance to use in the uniroot search algorithm.
The default value is tol=1e-7.

maxiter positive integer indicating the maximum number of iterations to use in the uniroot
search algorithm. The default value is maxiter=1000.

Details

If the arguments half.width, n2, sigma.hat, and conf.level are not all the same length, they
are replicated to be the same length as the length of the longest argument.

The function ciNormN uses the formulas given in the help file for ciNormHalfWidth for the half-
width of the confidence interval to iteratively solve for the sample size. For the two-sample case,
the default is to assume equal sample sizes for each group unless the argument n2 is supplied.

Value

When sample.type="one.sample", or sample.type="two.sample" and n2 is not supplied (so
equal sample sizes for each group is assumed), the function ciNormN returns a numeric vector of
sample sizes. When sample.type="two.sample" and n2 is supplied, the function ciNormN returns
a list with two components called n1 and n2, specifying the sample sizes for each group.

Note

The normal distribution and lognormal distribution are probably the two most frequently used dis-
tributions to model environmental data. In order to make any kind of probability statement about a
normally-distributed population (of chemical concentrations for example), you have to first estimate
the mean and standard deviation (the population parameters) of the distribution. Once you estimate
these parameters, it is often useful to characterize the uncertainty in the estimate of the mean. This
is done with confidence intervals.

In the course of designing a sampling program, an environmental scientist may wish to determine
the relationship between sample size, confidence level, and half-width if one of the objectives of the
sampling program is to produce confidence intervals. The functions ciNormHalfWidth, ciNormN,
and plotCiNormDesign can be used to investigate these relationships for the case of normally-
distributed observations.
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Author(s)
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See Also

ciNormHalfWidth, plotCiNormDesign, Normal, enorm, t.test,
Estimating Distribution Parameters.

Examples

# Look at how the required sample size for a one-sample
# confidence interval decreases with increasing half-width:

seq(0.25, 1, by = 0.25)
#[1] 0.25 0.50 0.75 1.00

ciNormN(half.width = seq(0.25, 1, by = 0.25))
#[1] 64 18 10 7

ciNormN(seq(0.25, 1, by=0.25), round = FALSE)
#[1] 63.897899 17.832337 9.325967 6.352717

#----------------------------------------------------------------

# Look at how the required sample size for a one-sample
# confidence interval increases with increasing estimated
# standard deviation for a fixed half-width:

seq(0.5, 2, by = 0.5)
#[1] 0.5 1.0 1.5 2.0

ciNormN(half.width = 0.5, sigma.hat = seq(0.5, 2, by = 0.5))
#[1] 7 18 38 64

#----------------------------------------------------------------



ciNparConfLevel 101

# Look at how the required sample size for a one-sample
# confidence interval increases with increasing confidence
# level for a fixed half-width:

seq(0.5, 0.9, by = 0.1)
#[1] 0.5 0.6 0.7 0.8 0.9

ciNormN(half.width = 0.25, conf.level = seq(0.5, 0.9, by = 0.1))
#[1] 9 13 19 28 46

#----------------------------------------------------------------

# Modifying the example on pages 21-4 to 21-5 of USEPA (2009),
# determine the required sample size in order to achieve a
# half-width that is 10% of the observed mean (based on the first
# four months of observations) for the Aldicarb level at the first
# compliance well. Assume a 95% confidence level and use the
# estimated standard deviation from the first four months of data.
# (The data are stored in EPA.09.Ex.21.1.aldicarb.df.)
#
# The required sample size is 20, so almost two years of data are
# required assuming observations are taken once per month.

EPA.09.Ex.21.1.aldicarb.df
# Month Well Aldicarb.ppb
#1 1 Well.1 19.9
#2 2 Well.1 29.6
#3 3 Well.1 18.7
#4 4 Well.1 24.2
#...

mu.hat <- with(EPA.09.Ex.21.1.aldicarb.df,
mean(Aldicarb.ppb[Well=="Well.1"]))

mu.hat
#[1] 23.1

sigma.hat <- with(EPA.09.Ex.21.1.aldicarb.df,
sd(Aldicarb.ppb[Well=="Well.1"]))

sigma.hat
#[1] 4.93491

ciNormN(half.width = 0.1 * mu.hat, sigma.hat = sigma.hat)
#[1] 20

#----------
# Clean up
rm(mu.hat, sigma.hat)

ciNparConfLevel Compute Confidence Level Associated with a Nonparametric Confi-
dence Interval for a Quantile
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Description

Compute the confidence level associated with a nonparametric confidence interval for a quantile,
given the sample size and order statistics associated with the lower and upper bounds.

Usage

ciNparConfLevel(n, p = 0.5, lcl.rank = ifelse(ci.type == "upper", 0, 1),
n.plus.one.minus.ucl.rank = ifelse(ci.type == "lower", 0, 1),
ci.type = "two.sided")

Arguments

n numeric vector of sample sizes. Missing (NA), undefined (NaN), and infinite (Inf,
-Inf) values are not allowed.

p numeric vector of probabilities specifying which quantiles to consider for the
sample size calculation. All values of p must be between 0 and 1. The default
value is p=0.5.

lcl.rank, n.plus.one.minus.ucl.rank

numeric vectors of non-negative integers indicating the ranks of the order statis-
tics that are used for the lower and upper bounds of the confidence interval for
the specified quantile(s). When lcl.rank=1 that means use the smallest value as
the lower bound, when lcl.rank=2 that means use the second to smallest value
as the lower bound, etc. When n.plus.one.minus.ucl.rank=1 that means use
the largest value as the upper bound, when n.plus.one.minus.ucl.rank=2
that means use the second to largest value as the upper bound, etc. A value
of 0 for lcl.rank indicates no lower bound (i.e., -Inf) and a value of 0 for
n.plus.one.minus.ucl.rank indicates no upper bound (i.e., Inf). When ci.type="upper"
then lcl.rank is set to 0 by default, otherwise it is set to 1 by default. When
ci.type="lower" then n.plus.one.minus.ucl.rank is set to 0 by default,
otherwise it is set to 1 by default.

ci.type character string indicating what kind of confidence interval to compute. The
possible values are "two-sided" (the default), "lower", and "upper".

Details

If the arguments n, p, lcl.rank, and n.plus.one.minus.ucl.rank are not all the same length,
they are replicated to be the same length as the length of the longest argument.

The help file for eqnpar explains how nonparametric confidence intervals for quantiles are con-
structed and how the confidence level associated with the confidence interval is computed based on
specified values for the sample size and the ranks of the order statistics used for the bounds of the
confidence interval.

Value

A numeric vector of confidence levels.

Note

See the help file for eqnpar.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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References

See the help file for eqnpar.

See Also

eqnpar, ciNparN, plotCiNparDesign.

Examples

# Look at how the confidence level of a nonparametric confidence interval
# increases with increasing sample size for a fixed quantile:

seq(5, 25, by = 5)
#[1] 5 10 15 20 25

round(ciNparConfLevel(n = seq(5, 25, by = 5), p = 0.9), 2)
#[1] 0.41 0.65 0.79 0.88 0.93

#---------

# Look at how the confidence level of a nonparametric confidence interval
# decreases as the quantile moves away from 0.5:

seq(0.5, 0.9, by = 0.1)
#[1] 0.5 0.6 0.7 0.8 0.9

round(ciNparConfLevel(n = 10, p = seq(0.5, 0.9, by = 0.1)), 2)
#[1] 1.00 0.99 0.97 0.89 0.65

#==========

# Reproduce Example 21-6 on pages 21-21 to 21-22 of USEPA (2009).
# Use 12 measurements of nitrate (mg/L) at a well used for drinking water
# to determine with 95% confidence whether or not the infant-based, acute
# risk standard of 10 mg/L has been violated. Assume that the risk
# standard represents an upper 95th percentile limit on nitrate
# concentrations. So what we need to do is construct a one-sided
# lower nonparametric confidence interval for the 95th percentile
# that has associated confidence level of no more than 95%, and we will
# compare the lower confidence limit with the MCL of 10 mg/L.
#
# The data for this example are stored in EPA.09.Ex.21.6.nitrate.df.

# Look at the data:
#------------------

EPA.09.Ex.21.6.nitrate.df
# Sampling.Date Date Nitrate.mg.per.l.orig Nitrate.mg.per.l Censored
#1 7/28/1999 1999-07-28 <5.0 5.0 TRUE
#2 9/3/1999 1999-09-03 12.3 12.3 FALSE
#3 11/24/1999 1999-11-24 <5.0 5.0 TRUE
#4 5/3/2000 2000-05-03 <5.0 5.0 TRUE
#5 7/14/2000 2000-07-14 8.1 8.1 FALSE
#6 10/31/2000 2000-10-31 <5.0 5.0 TRUE
#7 12/14/2000 2000-12-14 11 11.0 FALSE
#8 3/27/2001 2001-03-27 35.1 35.1 FALSE
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#9 6/13/2001 2001-06-13 <5.0 5.0 TRUE
#10 9/16/2001 2001-09-16 <5.0 5.0 TRUE
#11 11/26/2001 2001-11-26 9.3 9.3 FALSE
#12 3/2/2002 2002-03-02 10.3 10.3 FALSE

# Determine what order statistic to use for the lower confidence limit
# in order to achieve no more than 95% confidence.
#---------------------------------------------------------------------

conf.levels <- ciNparConfLevel(n = 12, p = 0.95, lcl.rank = 1:12,
ci.type = "lower")

names(conf.levels) <- 1:12

round(conf.levels, 2)
# 1 2 3 4 5 6 7 8 9 10 11 12
#1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.88 0.54

# Using the 11th largest observation for the lower confidence limit
# yields a confidence level of 88%. Using the 10th largest
# observation yields a confidence level of 98%. The example in
# USEPA (2009) uses the 10th largest observation.
#
# The 10th largest observation is 11 mg/L which exceeds the
# MCL of 10 mg/L, so there is evidence of contamination.
#--------------------------------------------------------------------

with(EPA.09.Ex.21.6.nitrate.df,
eqnpar(Nitrate.mg.per.l, p = 0.95, ci = TRUE,

ci.type = "lower", lcl.rank = 10))

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: None
#
#Estimated Quantile(s): 95th %ile = 22.56
#
#Quantile Estimation Method: Nonparametric
#
#Data: Nitrate.mg.per.l
#
#Sample Size: 12
#
#Confidence Interval for: 95th %ile
#
#Confidence Interval Method: exact
#
#Confidence Interval Type: lower
#
#Confidence Level: 98.04317%
#
#Confidence Limit Rank(s): 10
#
#Confidence Interval: LCL = 11
# UCL = Inf

#==========
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# Clean up
#---------
rm(conf.levels)

ciNparN Sample Size for Nonparametric Confidence Interval for a Quantile

Description

Compute the sample size necessary to achieve a specified confidence level for a nonparametric
confidence interval for a quantile.

Usage

ciNparN(p = 0.5, lcl.rank = ifelse(ci.type == "upper", 0, 1),
n.plus.one.minus.ucl.rank = ifelse(ci.type == "lower", 0, 1),
ci.type = "two.sided", conf.level = 0.95)

Arguments

p numeric vector of probabilities specifying the quantiles. All values of p must be
between 0 and 1. The default value is p=0.5.

lcl.rank, n.plus.one.minus.ucl.rank

numeric vectors of non-negative integers indicating the ranks of the order statis-
tics that are used for the lower and upper bounds of the confidence interval for
the specified quantile(s). When lcl.rank=1 that means use the smallest value as
the lower bound, when lcl.rank=2 that means use the second to smallest value
as the lower bound, etc. When n.plus.one.minus.ucl.rank=1 that means use
the largest value as the upper bound, when n.plus.one.minus.ucl.rank=2
that means use the second to largest value as the upper bound, etc. A value
of 0 for lcl.rank indicates no lower bound (i.e., -Inf) and a value of 0 for
n.plus.one.minus.ucl.rank indicates no upper bound (i.e., Inf). When ci.type="upper"
then lcl.rank is set to 0 by default, otherwise it is set to 1 by default. When
ci.type="lower" then n.plus.one.minus.ucl.rank is set to 0 by default,
otherwise it is set to 1 by default.

ci.type character string indicating what kind of confidence interval to compute. The
possible values are "two-sided" (the default), "lower", and "upper".

conf.level numeric vector of numbers between 0 and 1 indicating the confidence level as-
sociated with the confidence interval(s). The default value is conf=0.95.

Details

If the arguments p, lcl.rank, n.plus.one.minus.ucl.rank and conf.level are not all the same
length, they are replicated to be the same length as the length of the longest argument.

The help file for eqnpar explains how nonparametric confidence intervals for quantiles are con-
structed and how the confidence level associated with the confidence interval is computed based on
specified values for the sample size and the ranks of the order statistics used for the bounds of the
confidence interval.

The function ciNparN determines the required the sample size via a nonlinear optimization.
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Value

numeric vector of sample sizes.

Note

See the help file for eqnpar.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

See the help file for eqnpar.

See Also

eqnpar, ciNparConfLevel, plotCiNparDesign.

Examples

# Look at how the required sample size for a confidence interval
# increases with increasing confidence level for a fixed quantile:

seq(0.5, 0.9, by = 0.1)
#[1] 0.5 0.6 0.7 0.8 0.9

ciNparN(p = 0.9, conf.level=seq(0.5, 0.9, by = 0.1))
#[1] 7 9 12 16 22

#----------

# Look at how the required sample size for a confidence interval increases
# as the quantile moves away from 0.5:

ciNparN(p = seq(0.5, 0.9, by = 0.1))
#[1] 6 7 9 14 29

ciTableMean Table of Confidence Intervals for Mean or Difference Between Two
Means

Description

Create a table of confidence intervals for the mean of a normal distribution or the difference be-
tween two means following Bacchetti (2010), by varying the estimated standard deviation and the
estimated mean or differene between the two estimated means given the sample size(s).

Usage

ciTableMean(n1 = 10, n2 = n1, diff.or.mean = 2:0, SD = 1:3,
sample.type = "two.sample", ci.type = "two.sided", conf.level = 0.95,
digits = 1)
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Arguments

n1 positive integer greater than 1 specifying the sample size when sample.type="one.sample"
or the sample size for group 1 when sample.type="two.sample". The default
value is n1=10.

n2 positive integer greater than 1 specifying the sample size for group 2 when
sample.type="two.sample". The default value is n2=n1, i.e., equal sample
sizes. This argument is ignored when sample.type="one.sample".

diff.or.mean numeric vector indicating either the assumed difference between the two sam-
ple means when sample.type="two.sample" or the value of the sample mean
when sample.type="one.sample". The default value is diff.or.mean=2:0.
Missing (NA), undefined (NaN), an infinite (-Inf, Inf) values are not allowed.

SD numeric vector of positive values specifying the assumed estimated standard de-
viation. The default value is SD=1:3. Missing (NA), undefined (NaN), an infinite
(-Inf, Inf) values are not allowed.

sample.type character string specifying whether to create confidence intervals for the differ-
ence between two means (sample.type="two.sample"; the default) or confi-
dence intervals for a single mean (sample.type="one.sample").

ci.type character string indicating what kind of confidence interval to compute. The
possible values are "two-sided" (the default), "lower", and "upper".

conf.level a scalar between 0 and 1 indicating the confidence level of the confidence inter-
val. The default value is conf.level=0.95.

digits positive integer indicating how many decimal places to display in the table. The
default value is digits=1.

Details

Following Bacchetti (2010) (see NOTE below), the function ciTableMean allows you to perform
sensitivity analyses while planning future studies by producing a table of confidence intervals for
the mean or the difference between two means by varying the estimated standard deviation and the
estimated mean or differene between the two estimated means given the sample size(s).

One Sample Case (sample.type="one.sample")
Let x = (x1, x2, . . . , xn) be a vector of n observations from an normal (Gaussian) distribution with
parameters mean=µ and sd=σ.

The usual confidence interval for µ is constructed as follows. If ci.type="two-sided", the (1 −
α)100% confidence interval for µ is given by:

[µ̂− t(n− 1, 1− α/2)
σ̂√
n
, µ̂+ t(n− 1, 1− α/2)

σ̂√
n

] (1)

where

µ̂ = x̄ =
1

n

n∑
i=1

xi (2)

σ̂2 = s2 =
1

n− 1

n∑
i=1

(xi − x̄)2 (3)

and t(ν, p) is the p’th quantile of Student’s t-distribution with ν degrees of freedom (Zar, 2010;
Gilbert, 1987; Ott, 1995; Helsel and Hirsch, 1992).

If ci.type="lower", the (1− α)100% confidence interval for µ is given by:

[µ̂− t(n− 1, 1− α)
σ̂√
n
, ∞] (4)
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and if ci.type="upper", the confidence interval is given by:

[−∞, µ̂+ t(n− 1, 1− α/2)
σ̂√
n

] (5)

For the one-sample case, the argument n1 corresponds to n in Equation (1), the argument diff.or.mean
corresponds to µ̂ = x̄ in Equation (2), and the argument SD corresponds to σ̂ = s in Equation (3).

Two Sample Case (sample.type="two.sample")
Let x1 = (x11, x21, . . . , xn11) be a vector of n1 observations from an normal (Gaussian) distri-
bution with parameters mean=µ1 and sd=σ, and let x2 = (x12, x22, . . . , xn22) be a vector of n2

observations from an normal (Gaussian) distribution with parameters mean=µ2 and sd=σ.

The usual confidence interval for the difference between the two population means µ1 − µ2 is
constructed as follows. If ci.type="two-sided", the (1−α)100% confidence interval for µ1−µ2

is given by:

[(µ̂1−µ̂2)−t(n1+n2−2, 1−α/2)σ̂

√
1

n1
+

1

n2
, (µ̂1−µ̂2)+t(n1+n2−2, 1−α/2)σ̂

√
1

n1
+

1

n2
] (6)

where

µ̂1 = x̄1 =
1

n1

n1∑
i=1

xi1 (7)

µ̂2 = x̄2 =
1

n2

n2∑
i=1

xi2 (8)

σ̂2 = s2
p =

(n1 − 1)s2
1 + (n2 − 1)s2

2

n1 + n2 − 2
(9)

s2
1 =

1

n1 − 1

n1∑
i=1

(xi1 − x̄1)2 (10)

s2
2 =

1

n2 − 1

n2∑
i=1

(xi2 − x̄2)2 (11)

and t(ν, p) is the p’th quantile of Student’s t-distribution with ν degrees of freedom (Zar, 2010;
Gilbert, 1987; Ott, 1995; Helsel and Hirsch, 1992).

If ci.type="lower", the (1− α)100% confidence interval for µ1 − µ2 is given by:

[(µ̂1 − µ̂2)− t(n1 + n2 − 2, 1− α)σ̂

√
1

n1
+

1

n2
, ∞] (12)

and if ci.type="upper", the confidence interval is given by:

[−∞, (µ̂1 − µ̂2)− t(n1 + n2 − 2, 1− α)σ̂

√
1

n1
+

1

n2
] (13)

For the two-sample case, the arguments n1 and n2 correspond to n1 and n2 in Equation (6), the
argument diff.or.mean corresponds to µ̂1 − µ̂2 = x̄1 − x̄2 in Equations (7) and (8), and the
argument SD corresponds to σ̂ = sp in Equation (9).

Value

a data frame with the rows varying the standard deviation and the columns varying the estimated
mean or difference between the means. Elements of the data frame are character strings indicating
the confidence intervals.
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Note

Bacchetti (2010) presents strong arguments against the current convention in scientific research for
computing sample size that is based on formulas that use a fixed Type I error (usually 5%) and a
fixed minimal power (often 80%) without regard to costs. He notes that a key input to these formulas
is a measure of variability (usually a standard deviation) that is difficult to measure accurately
"unless there is so much preliminary data that the study isn’t really needed." Also, study designers
often avoid defining what a scientifically meaningful difference is by presenting sample size results
in terms of the effect size (i.e., the difference of interest divided by the elusive standard deviation).
Bacchetti (2010) encourages study designers to use simple tables in a sensitivity analysis to see
what results of a study may look like for low, moderate, and high rates of variability and large,
intermediate, and no underlying differences in the populations or processes being studied.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Bacchetti, P. (2010). Current sample size conventions: Flaws, Harms, and Alternatives. BMC
Medicine 8, 17–23.

Berthouex, P.M., and L.C. Brown. (2002). Statistics for Environmental Engineers. Second Edition.
Lewis Publishers, Boca Raton, FL.

Gilbert, R.O. (1987). Statistical Methods for Environmental Pollution Monitoring. Van Nostrand
Reinhold, New York, NY.

Helsel, D.R., and R.M. Hirsch. (1992). Statistical Methods in Water Resources Research. Elsevier,
New York, NY.

Millard, S.P., and N.K. Neerchal. (2001). Environmental Statistics with S-PLUS. CRC Press, Boca
Raton, FL.

Ott, W.R. (1995). Environmental Statistics and Data Analysis. Lewis Publishers, Boca Raton, FL.

Zar, J.H. (2010). Biostatistical Analysis. Fifth Edition. Prentice-Hall, Upper Saddle River, NJ.

See Also

enorm, t.test, ciTableProp, ciNormHalfWidth, ciNormN, plotCiNormDesign.

Examples

# Show how potential confidence intervals for the difference between two means
# will look assuming standard deviations of 1, 2, or 3, differences between
# the two means of 2, 1, or 0, and a sample size of 10 in each group.

ciTableMean()
# Diff=2 Diff=1 Diff=0
#SD=1 [ 1.1, 2.9] [ 0.1, 1.9] [-0.9, 0.9]
#SD=2 [ 0.1, 3.9] [-0.9, 2.9] [-1.9, 1.9]
#SD=3 [-0.8, 4.8] [-1.8, 3.8] [-2.8, 2.8]

#==========

# Show how a potential confidence interval for a mean will look assuming
# standard deviations of 1, 2, or 5, a sample mean of 5, 3, or 1, and
# a sample size of 15.
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ciTableMean(n1 = 15, diff.or.mean = c(5, 3, 1), SD = c(1, 2, 5), sample.type = "one")
# Mean=5 Mean=3 Mean=1
#SD=1 [ 4.4, 5.6] [ 2.4, 3.6] [ 0.4, 1.6]
#SD=2 [ 3.9, 6.1] [ 1.9, 4.1] [-0.1, 2.1]
#SD=5 [ 2.2, 7.8] [ 0.2, 5.8] [-1.8, 3.8]

#==========

# The data frame EPA.09.Ex.16.1.sulfate.df contains sulfate concentrations
# (ppm) at one background and one downgradient well. The estimated
# mean and standard deviation for the background well are 536 and 27 ppm,
# respectively, based on a sample size of n = 8 quarterly samples taken over
# 2 years. A two-sided 95% confidence interval for this mean is [514, 559],
# which has a half-width of 23 ppm.
#
# The estimated mean and standard deviation for the downgradient well are
# 608 and 18 ppm, respectively, based on a sample size of n = 6 quarterly
# samples. A two-sided 95% confidence interval for the difference between
# this mean and the background mean is [44, 100] ppm.
#
# Suppose we want to design a future sampling program and are interested in
# the size of the confidence interval for the difference between the two means.
# We will use ciTableMean to generate a table of possible confidence intervals
# by varying the assumed standard deviation and assumed differences between
# the means.

# Look at the data
#-----------------

EPA.09.Ex.16.1.sulfate.df
# Month Year Well.type Sulfate.ppm
#1 Jan 1995 Background 560
#2 Apr 1995 Background 530
#3 Jul 1995 Background 570
#4 Oct 1995 Background 490
#5 Jan 1996 Background 510
#6 Apr 1996 Background 550
#7 Jul 1996 Background 550
#8 Oct 1996 Background 530
#9 Jan 1995 Downgradient NA
#10 Apr 1995 Downgradient NA
#11 Jul 1995 Downgradient 600
#12 Oct 1995 Downgradient 590
#13 Jan 1996 Downgradient 590
#14 Apr 1996 Downgradient 630
#15 Jul 1996 Downgradient 610
#16 Oct 1996 Downgradient 630

# Compute the estimated mean and standard deviation for the
# background well.
#-----------------------------------------------------------

Sulfate.back <- with(EPA.09.Ex.16.1.sulfate.df,
Sulfate.ppm[Well.type == "Background"])
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enorm(Sulfate.back, ci = TRUE)

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Normal
#
#Estimated Parameter(s): mean = 536.2500
# sd = 26.6927
#
#Estimation Method: mvue
#
#Data: Sulfate.back
#
#Sample Size: 8
#
#Confidence Interval for: mean
#
#Confidence Interval Method: Exact
#
#Confidence Interval Type: two-sided
#
#Confidence Level: 95%
#
#Confidence Interval: LCL = 513.9343
# UCL = 558.5657

# Compute the estimated mean and standard deviation for the
# downgradient well.
#----------------------------------------------------------

Sulfate.down <- with(EPA.09.Ex.16.1.sulfate.df,
Sulfate.ppm[Well.type == "Downgradient"])

enorm(Sulfate.down, ci = TRUE)

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Normal
#
#Estimated Parameter(s): mean = 608.33333
# sd = 18.34848
#
#Estimation Method: mvue
#
#Data: Sulfate.down
#
#Sample Size: 6
#
#Number NA/NaN/Infs: 2
#
#Confidence Interval for: mean
#
#Confidence Interval Method: Exact



112 ciTableMean

#
#Confidence Interval Type: two-sided
#
#Confidence Level: 95%
#
#Confidence Interval: LCL = 589.0778
# UCL = 627.5889

# Compute the estimated difference between the means and the confidence
# interval for the difference:
#----------------------------------------------------------------------

t.test(Sulfate.down, Sulfate.back, var.equal = TRUE)

#Results of Hypothesis Test
#--------------------------
#
#Null Hypothesis: difference in means = 0
#
#Alternative Hypothesis: True difference in means is not equal to 0
#
#Test Name: Two Sample t-test
#
#Estimated Parameter(s): mean of x = 608.3333
# mean of y = 536.2500
#
#Data: Sulfate.down and Sulfate.back
#
#Test Statistic: t = 5.660985
#
#Test Statistic Parameter: df = 12
#
#P-value: 0.0001054306
#
#95% Confidence Interval: LCL = 44.33974
# UCL = 99.82693

# Use ciTableMean to look how the confidence interval for the difference
# between the background and downgradient means in a future study using eight
# quarterly samples at each well varies with assumed value of the pooled standard
# deviation and the observed difference between the sample means.
#--------------------------------------------------------------------------------

# Our current estimate of the pooled standard deviation is 24 ppm:

summary(lm(Sulfate.ppm ~ Well.type, data = EPA.09.Ex.16.1.sulfate.df))$sigma
#[1] 23.57759

# We can see that if this is overly optimistic and in our next study the
# pooled standard deviation is around 50 ppm, then if the observed difference
# between the means is 50 ppm, the lower end of the confidence interval for
# the difference between the two means will include 0, so we may want to
# increase our sample size.

ciTableMean(n1 = 8, n2 = 8, diff = c(100, 50, 0), SD = c(15, 25, 50), digits = 0)
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# Diff=100 Diff=50 Diff=0
#SD=15 [ 84, 116] [ 34, 66] [-16, 16]
#SD=25 [ 73, 127] [ 23, 77] [-27, 27]
#SD=50 [ 46, 154] [ -4, 104] [-54, 54]

#==========

# Clean up
#---------
rm(Sulfate.back, Sulfate.down)

ciTableProp Table of Confidence Intervals for Proportion or Difference Between
Two Proportions

Description

Create a table of confidence intervals for probability of "success" for a binomial distribution or the
difference between two proportions following Bacchetti (2010), by varying the estimated proportion
or differene between the two estimated proportions given the sample size(s).

Usage

ciTableProp(n1 = 10, p1.hat = c(0.1, 0.2, 0.3), n2 = n1,
p2.hat.minus.p1.hat = c(0.2, 0.1, 0), sample.type = "two.sample",
ci.type = "two.sided", conf.level = 0.95, digits = 2, ci.method = "score",
correct = TRUE, tol = 10^-(digits + 1))

Arguments

n1 positive integer greater than 1 specifying the sample size when sample.type="one.sample"
or the sample size for group 1 when sample.type="two.sample". The default
value is n1=10.

p1.hat numeric vector of values between 0 and 1 indicating the estimated proportion
(sample.type="one.sample") or the estimated proportion for group 1 (sample.type="two.sample").
The default value is c(0.1, 0.2, 0.3). Missing (NA), undefined (NaN), an in-
finite (-Inf, Inf) values are not allowed.

n2 positive integer greater than 1 specifying the sample size for group 2 when
sample.type="two.sample". The default value is n2=n1, i.e., equal sample
sizes. This argument is ignored when sample.type="one.sample".

p2.hat.minus.p1.hat

numeric vector indicating the assumed difference between the two sample pro-
portions when sample.type="two.sample". The default value is c(0.2, 0.1, 0).
Missing (NA), undefined (NaN), an infinite (-Inf, Inf) values are not allowed.
This argument is ignored when sample.type="one.sample".

sample.type character string specifying whether to create confidence intervals for the dif-
ference between two proportions (sample.type="two.sample"; the default) or
confidence intervals for a single proportion (sample.type="one.sample").

ci.type character string indicating what kind of confidence interval to compute. The
possible values are "two-sided" (the default), "lower", and "upper".
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conf.level a scalar between 0 and 1 indicating the confidence level of the confidence inter-
val. The default value is conf.level=0.95.

digits positive integer indicating how many decimal places to display in the table. The
default value is digits=2.

ci.method character string indicating the method to use to construct the confidence interval.
The default value is ci.method="score" (i.e., the score method; see the help
file for prop.test), which is the only method available when sample.type="two.sample".
When sample.type="one.sample", you may also set ci.method="exact" (i.e.,
the exact method).

correct logical scalar indicating whether to use the correction for continuity when ci.method="score"
(see the help file for prop.test). The default value is correct=TRUE.

tol numeric scalar indicating how close the values of the adjusted elements of p2.hat.minus.p1.hat
have to be in order to provide a simply display of confidence intervals (see DE-
TAILS section below). The default value is tol=10^-(digits + 1).

Details

One-Sample Case (sample.type="one.sample")
For the one-sample case, the function ciTableProp calls the R function prop.test when ci.method="score",
and calls the R function binom.test, when ci.method="exact". To ensure that the user-supplied
values of p1.hat are valid for the given user-supplied values of n1, values for the argument x to the
function prop.test or binom.test are computed using the formula

x <- unique(round((p1.hat * n1), 0))

and the argument p.hat is then adjusted using the formula

p.hat <- x/n1

Two-Sample Case (sample.type="two.sample")
For the two-sample case, the function ciTableProp calls the R function prop.test. To ensure that
the user-supplied values of p1.hat are valid for the given user-supplied values of n1, the values for
the first component of the argument x to the function prop.test are computed using the formula

x1 <- unique(round((p1.hat * n1), 0))

and the argument p1.hat is then adjusted using the formula

p1.hat <- x1/n1

Next, the estimated proportions from group 2 are computed by adding together all possible com-
binations from the elements of p1.hat and p2.hat.minus.p1.hat. These estimated proportions
from group 2 are then adjusted using the formulas:

x2.rep <- round((p2.hat.rep * n2), 0)
p2.hat.rep <- x2.rep/n2

If any of these adjusted proportions from group 2 are ≤ 0 or ≥ 1 the function terminates with a
message indicating that impossible values have been supplied.

In cases where the sample sizes are small there may be instances where the user-supplied values of
p1.hat and/or p2.hat.minus.p1.hat are not attainable. The argument tol is used to determine
whether to return the table in conventional form or whether it is necessary to modify the table to
include twice as many columns (see EXAMPLES section below).
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Value

a data frame with elements that are character strings indicating the confidence intervals.

When sample.type="two.sample", a data frame with the rows varying the estimated proportion
for group 1 (i.e., the values of p1.hat) and the columns varying the estimated difference between
the proportions from group 2 and group 1 (i.e., the values of p2.hat.minus.p1.hat). In cases
where the sample sizes are small, it may not be possible to obtain certain differences for given
values of p1.hat, in which case the returned data frame contains twice as many columns indicating
the actual difference in one column and the compute confidence interval next to it (see EXAMPLES
section below).

When sample.type="one.sample", a 1-row data frame with the columns varying the estimated
proportion (i.e., the values of p1.hat).

Note

Bacchetti (2010) presents strong arguments against the current convention in scientific research for
computing sample size that is based on formulas that use a fixed Type I error (usually 5%) and a
fixed minimal power (often 80%) without regard to costs. He notes that a key input to these formulas
is a measure of variability (usually a standard deviation) that is difficult to measure accurately
"unless there is so much preliminary data that the study isn’t really needed." Also, study designers
often avoid defining what a scientifically meaningful difference is by presenting sample size results
in terms of the effect size (i.e., the difference of interest divided by the elusive standard deviation).
Bacchetti (2010) encourages study designers to use simple tables in a sensitivity analysis to see
what results of a study may look like for low, moderate, and high rates of variability and large,
intermediate, and no underlying differences in the populations or processes being studied.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Bacchetti, P. (2010). Current sample size conventions: Flaws, Harms, and Alternatives. BMC
Medicine 8, 17–23.

Also see the references in the help files for prop.test and binom.test.

See Also

prop.test, binom.test, ciTableMean, ciBinomHalfWidth, ciBinomN, plotCiBinomDesign.

Examples

# Reproduce Table 1 in Bacchetti (2010). This involves planning a study with
# n1 = n2 = 935 subjects per group, where Group 1 is the control group and
# Group 2 is the treatment group. The outcome in the study is proportion of
# subjects with serious outcomes or death. A negative value for the difference
# in proportions between groups (Group 2 proportion - Group 1 proportion)
# indicates the treatment group has a better outcome. In this table, the
# proportion of subjects in Group 1 with serious outcomes or death is set
# to 3%, 6.5%, and 12%, and the difference in proportions between the two
# groups is set to -2.8 percentage points, -1.4 percentage points, and 0.

ciTableProp(n1 = 935, p1.hat = c(0.03, 0.065, 0.12), n2 = 935,
p2.hat.minus.p1.hat = c(-0.028, -0.014, 0), digits = 3)
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# Diff=-0.028 Diff=-0.014 Diff=0
#P1.hat=0.030 [-0.040, -0.015] [-0.029, 0.001] [-0.015, 0.015]
#P1.hat=0.065 [-0.049, -0.007] [-0.036, 0.008] [-0.022, 0.022]
#P1.hat=0.120 [-0.057, 0.001] [-0.044, 0.016] [-0.029, 0.029]

#==========

# Show how the returned data frame has to be modified for cases of small
# sample sizes where not all user-supplied differenes are possible.

ciTableProp(n1 = 5, n2 = 5, p1.hat = c(0.3, 0.6, 0.12), p2.hat = c(0.2, 0.1, 0))
# Diff CI Diff CI Diff CI
#P1.hat=0.4 0.2 [-0.61, 1.00] 0.0 [-0.61, 0.61] 0 [-0.61, 0.61]
#P1.hat=0.6 0.2 [-0.55, 0.95] 0.2 [-0.55, 0.95] 0 [-0.61, 0.61]
#P1.hat=0.2 0.2 [-0.55, 0.95] 0.2 [-0.55, 0.95] 0 [-0.50, 0.50]

#==========

# Suppose we are planning a study to compare the proportion of nondetects at
# a background and downgradient well, and we can use ciTableProp to look how
# the confidence interval for the difference between the two proportions using
# say 36 quarterly samples at each well varies with the observed estimated
# proportions. Here well let the argument "p1.hat" denote the proportion of
# nondetects observed at the downgradient well and set this equal to
# 20%, 40% and 60%. The argument "p2.hat.minus.p1.hat" represents the proportion
# of nondetects at the background well minus the proportion of nondetects at the
# downgradient well.

ciTableProp(n1 = 36, p1.hat = c(0.2, 0.4, 0.6), n2 = 36,
p2.hat.minus.p1.hat = c(0.3, 0.15, 0))

# Diff=0.31 Diff=0.14 Diff=0
#P1.hat=0.19 [ 0.07, 0.54] [-0.09, 0.37] [-0.18, 0.18]
#P1.hat=0.39 [ 0.06, 0.55] [-0.12, 0.39] [-0.23, 0.23]
#P1.hat=0.61 [ 0.09, 0.52] [-0.10, 0.38] [-0.23, 0.23]

# We see that even if the observed difference in the proportion of nondetects
# is about 15 percentage points, all of the confidence intervals for the
# difference between the proportions of nondetects at the two wells contain 0,
# so if a difference of 15 percentage points is important to substantiate, we
# may need to increase our sample sizes.

cv Sample Coefficient of Variation.

Description

Compute the sample coefficient of variation.

Usage

cv(x, method = "moments", sd.method = "sqrt.unbiased",
l.moment.method = "unbiased", plot.pos.cons = c(a = 0.35, b = 0),
na.rm = FALSE)
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Arguments

x numeric vector of observations.

method character string specifying what method to use to compute the sample coeffi-
cient of variation. The possible values are "moments" (product moment ratio
estimator; the default), or "l.moments" (L-moment ratio estimator).

sd.method character string specifying what method to use to compute the sample standard
deviation when method="moments". The possible values are "sqrt.ubiased"
(the square root of the unbiased estimate of variance; the default), or "moments"
(the method of moments estimator).

l.moment.method

character string specifying what method to use to compute the L-moments when
method="l.moments". The possible values are "ubiased" (method based on
the U -statistic; the default), or "plotting.position" (method based on the
plotting position formula).

plot.pos.cons numeric vector of length 2 specifying the constants used in the formula for the
plotting positions when method="l.moments" and l.moment.method="plotting.position".
The default value is plot.pos.cons=c(a=0.35, b=0). If this vector has a
names attribute with the value c("a","b") or c("b","a"), then the elements
will be matched by name in the formula for computing the plotting positions.
Otherwise, the first element is mapped to the name "a" and the second element
to the name "b".

na.rm logical scalar indicating whether to remove missing values from x. If na.rm=FALSE
(the default) and x contains missing values, then a missing value (NA) is returned.
If na.rm=TRUE, missing values are removed from x prior to computing the coef-
ficient of variation.

Details

Let x denote a random sample of n observations from some distribution with mean µ and standard
deviation σ.

Product Moment Coefficient of Variation (method="moments")
The coefficient of variation (sometimes denoted CV) of a distribution is defined as the ratio of the
standard deviation to the mean. That is:

CV =
σ

µ
(1)

The coefficient of variation measures how spread out the distribution is relative to the size of the
mean. It is usually used to characterize positive, right-skewed distributions such as the lognormal
distribution.

When sd.method="sqrt.unbiased", the coefficient of variation is estimated using the sample
mean and the square root of the unbaised estimator of variance:

ĈV =
s

x̄
(2)

where

x̄ =
1

n

n∑
i=1

xi (3)

s = [
1

n− 1

n∑
i=1

(xi − x̄)2]1/2 (4)
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Note that the estimator of standard deviation in equation (4) is not unbiased.

When sd.method="moments", the coefficient of variation is estimated using the sample mean and
the square root of the method of moments estimator of variance:

ĈV =
sm
x̄

(5)

s = [
1

n

n∑
i=1

(xi − x̄)2]1/2 (6)

L-Moment Coefficient of Variation (method="l.moments")
Hosking (1990) defines an L-moment analog of the coefficient of variation (denoted the L-CV) as:

τ =
l2
l1

(7)

that is, the second L-moment divided by the first L-moment. He shows that for a positive-valued
random variable, the L-CV lies in the interval (0, 1).

When l.moment.method="unbiased", the L-CV is estimated by:

t =
l2
l1

(8)

that is, the unbiased estimator of the second L-moment divided by the unbiased estimator of the
first L-moment.

When l.moment.method="plotting.position", the L-CV is estimated by:

t̃ =
l̃2

l̃1
(9)

that is, the plotting-position estimator of the second L-moment divided by the plotting-position
estimator of the first L-moment.

See the help file for lMoment for more information on estimating L-moments.

Value

A numeric scalar – the sample coefficient of variation.

Note

Traditionally, the coefficient of variation has been estimated using product moment estimators.
Hosking (1990) introduced the idea ofL-moments and theL-CV. Vogel and Fennessey (1993) argue
that L-moment ratios should replace product moment ratios because of their superior performance
(they are nearly unbiased and better for discriminating between distributions).

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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See Also

Summary Statistics, summaryFull, var, sd, skewness, kurtosis.

Examples

# Generate 20 observations from a lognormal distribution with
# parameters mean=10 and cv=1, and estimate the coefficient of variation.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(250)
dat <- rlnormAlt(20, mean = 10, cv = 1)

cv(dat)
#[1] 0.5077981

cv(dat, sd.method = "moments")
#[1] 0.4949403

cv(dat, method = "l.moments")
#[1] 0.2804148

#----------
# Clean up
rm(dat)

detectionLimitCalibrate

Determine Detection Limit

Description

Determine the detection limit based on using a calibration line (or curve) and inverse regression.

Usage

detectionLimitCalibrate(object, coverage = 0.99,
simultaneous = FALSE)
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Arguments

object an object that is the result of calling the function calibrate.

coverage optional numeric scalar between 0 and 1 indicating the confidence level associ-
ated with the prediction intervals used in determining the detection limit. The
default value is coverage=0.99.

simultaneous optional logical scalar indicating whether to base the prediction intervals on
simultaneous or non-simultaneous prediction limits. The default value is
simultaneous=FALSE.

Details

The idea of a decision limit and detection limit is directly related to calibration and can be framed
in terms of a hypothesis test, as shown in the table below. The null hypothesis is that the chemical
is not present in the physical sample, i.e., H0 : C = 0, where C denotes the concentration.

Your Decision H0 True (C = 0) H0 False (C > 0)

Reject H0 Type I Error
(Declare Chemical Present) (Probability = α)

Do Not Reject H0 Type II Error
(Declare Chemical Absent) (Probability = β)

Ideally, you would like to minimize both the Type I and Type II error rates. Just as we use critical
values to compare against the test statistic for a hypothesis test, we need to use a critical signal level
SD called the decision limit to decide whether the chemical is present or absent. If the signal is
less than or equal to SD we will declare the chemical is absent, and if the signal is greater than SD
we will declare the chemical is present.

First, suppose no chemical is present (i.e., the null hypothesis is true). If we want to guard against
the mistake of declaring that the chemical is present when in fact it is absent (Type I error), then we
should choose SD so that the probability of this happening is some small value α. Thus, the value
of SD depends on what we want to use for α (the Type I error rate), and the true (but unknown)
value of σ (the standard deviation of the errors assuming a constant standard deviation) (Massart et
al., 1988, p. 111).

When the true concentration is 0, the decision limit is the (1-α)100th percentile of the distribution
of the signal S. Note that the decision limit is on the scale of and in units of the signal S.

Now suppose that in fact the chemical is present in some concentration C (i.e., the null hypothesis
is false). If we want to guard against the mistake of declaring that the chemical is absent when in
fact it is present (Type II error), then we need to determine a minimal concentration CDL called the
detection limit (DL) that we know will yield a signal less than the decision limit SD only a small
fraction of the time (β).

In practice we do not know the true value of the standard deviation of the errors (σ), so we cannot
compute the true decision limit. Also, we do not know the true values of the intercept and slope of
the calibration line, so we cannot compute the true detection limit. Instead, we usually set α = β
and estimate the decision and detection limits by computing prediction limits for the calibration line
and using inverse regression.

The estimated detection limit corresponds to the upper confidence bound on concentration given
that the signal is equal to the estimated decision limit. Currie (1997) discusses other ways to define
the detection limit, and Glaser et al. (1981) define a quantity called the method detection limit.
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Value

A numeric scalar indicating the detection limit. This scalar has two attributes called coverage and
simultaneous indicating the values of these arguments that were used in the call to
detectionLimitCalibrate.

Note

Perhaps no other topic in environmental statistics has generated as much confusion or controversy
as the topic of detection limits. After decades of disparate terminology, ISO and IUPAC provided
harmonized guidance on the topic in 1995 (Currie, 1997). Intuitively, the idea of a detection limit
is simple to grasp: the detection limit is “the smallest amount or concentration of a particular
substance that can be reliably detected in a given type of sample or medium by a specific measure-
ment process” (Currie, 1997, p. 152). Unfortunately, because of the exceedingly complex nature of
measuring chemical concentrations, this simple idea is difficult to apply in practice.

Detection and quantification capabilities are fundamental performance characteristics of the Chem-
ical Measurement Process (CMP) (Currie, 1996, 1997). In this help file we discuss some currently
accepted definitions of the terms decision, detection, and quantification limits. For more details, the
reader should consult the references listed in this help file.

The quantification limit is defined as the concentration C at which the coefficient of variation
(also called relative standard deviation or RSD) for the distribution of the signal S is some small
value, usually taken to be 10% (Currie, 1968, 1997). In practice the quantification limit is difficult
to estimate because we have to estimate both the mean and the standard deviation of the signal
S for any particular concentration, and usually the standard deviation varies with concentration.
Variations of the quantification limit include the quantitation limit (Keith, 1991, p. 109), minimum
level (USEPA, 1993), and alternative minimum level (Gibbons et al., 1997a).

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Clark, M.J.R., and P.H. Whitfield. (1994). Conflicting Perspectives About Detection Limits and
About the Censoring of Environmental Data. Water Resources Bulletin 30(6), 1063–1079.

Clayton, C.A., J.W. Hines, and P.D. Elkins. (1987). Detection Limits with Specified Assurance
Probabilities. Analytical Chemistry 59, 2506–2514.

Code of Federal Regulations. (1996). Definition and Procedure for the Determination of the Method
Detection Limit–Revision 1.11. Title 40, Part 136, Appendix B, 7-1-96 Edition, pp.265–267.

Currie, L.A. (1968). Limits for Qualitative Detection and Quantitative Determination: Application
to Radiochemistry. Annals of Chemistry 40, 586–593.

Currie, L.A. (1988). Detection in Analytical Chemistry: Importance, Theory, and Practice. Ameri-
can Chemical Society, Washington, D.C.

Currie, L.A. (1995). Nomenclature in Evaluation of Analytical Methods Including Detection and
Quantification Capabilities. Pure & Applied Chemistry 67(10), 1699-1723.

Currie, L.A. (1996). Foundations and Future of Detection and Quantification Limits. Proceedings
of the Section on Statistics and the Environment, American Statistical Association, Alexandria, VA.

Currie, L.A. (1997). Detection: International Update, and Some Emerging Di-Lemmas Involving
Calibration, the Blank, and Multiple Detection Decisions. Chemometrics and Intelligent Labora-
tory Systems 37, 151-181.



122 detectionLimitCalibrate

Davis, C.B. (1994). Environmental Regulatory Statistics. In Patil, G.P., and C.R. Rao, eds., Hand-
book of Statistics, Vol. 12: Environmental Statistics. North-Holland, Amsterdam, a division of
Elsevier, New York, NY, Chapter 26, 817–865.

Davis, C.B. (1997). Challenges in Regulatory Environmetrics. Chemometrics and Intelligent Lab-
oratory Systems 37, 43–53.

Gibbons, R.D. (1995). Some Statistical and Conceptual Issues in the Detection of Low-Level Envi-
ronmental Pollutants (with Discussion). Environmetrics 2, 125-167.

Gibbons, R.D., D.E. Coleman, and R.F. Maddalone. (1997a). An Alternative Minimum Level
Definition for Analytical Quantification. Environmental Science & Technology 31(7), 2071–2077.
Comments and Discussion in Volume 31(12), 3727–3731, and Volume 32(15), 2346–2353.

Gibbons, R.D., D.E. Coleman, and R.F. Maddalone. (1997b). Response to Comment on “An Al-
ternative Minimum Level Definition for Analytical Quantification”. Environmental Science and
Technology 31(12), 3729–3731.

Gibbons, R.D., D.E. Coleman, and R.F. Maddalone. (1998). Response to Comment on “An Al-
ternative Minimum Level Definition for Analytical Quantification”. Environmental Science and
Technology 32(15), 2349–2353.

Gibbons, R.D., N.E. Grams, F.H. Jarke, and K.P. Stoub. (1992). Practical Quantitation Limits.
Chemometrics Intelligent Laboratory Systems 12, 225–235.

Gibbons, R.D., F.H. Jarke, and K.P. Stoub. (1991). Detection Limits: For Linear Calibration Curves
with Increasing Variance and Multiple Future Detection Decisions. In Tatsch, D.E., editor. Waste
Testing and Quality Assurance: Volume 3. American Society for Testing and Materials, Philadelphi,
PA.

Glasser, J.A., D.L. Foerst, G.D. McKee, S.A. Quave, and W.L. Budde. (1981). Trace Analyses for
Wastewaters. Environmental Science and Technology 15, 1426–1435.

Hubaux, A., and G. Vos. (1970). Decision and Detection Limits for Linear Calibration Curves.
Annals of Chemistry 42, 849–855.

Kahn, H.D., C.E. White, K. Stralka, and R. Kuznetsovski. (1997). Alternative Estimates of De-
tection. Proceedings of the Twentieth Annual EPA Conference on Analysis of Pollutants in the
Environment, May 7-8, Norfolk, VA. U.S. Environmental Protection Agency, Washington, D.C.

Kahn, H.D., W.A. Telliard, and C.E. White. (1998). Comment on “An Alternative Minimum Level
Definition for Analytical Quantification” (with Response). Environmental Science & Technology
32(5), 2346–2353.

Kaiser, H. (1965). Zum Problem der Nachweisgrenze. Fresenius’ Z. Anal. Chem. 209, 1.

Keith, L.H. (1991). Environmental Sampling and Analysis: A Practical Guide. Lewis Publishers,
Boca Raton, FL, Chapter 10.

Kimbrough, D.E. (1997). Comment on “An Alternative Minimum Level Definition for Analytical
Quantification” (with Response). Environmental Science & Technology 31(12), 3727–3731.

Lambert, D., B. Peterson, and I. Terpenning. (1991). Nondetects, Detection Limits, and the Proba-
bility of Detection. Journal of the American Statistical Association 86(414), 266–277.

Massart, D.L., B.G.M. Vandeginste, S.N. Deming, Y. Michotte, and L. Kaufman. (1988). Chemo-
metrics: A Textbook. Elsevier, New York, Chapter 7.

Millard, S.P., and Neerchal, N.K. (2001). Environmental Statistics with S-PLUS. CRC Press, Boca
Raton, Florida.

Porter, P.S., R.C. Ward, and H.F. Bell. (1988). The Detection Limit. Environmental Science &
Technology 22(8), 856–861.

Rocke, D.M., and S. Lorenzato. (1995). A Two-Component Model for Measurement Error in
Analytical Chemistry. Technometrics 37(2), 176–184.



detectionLimitCalibrate 123

Singh, A. (1993). Multivariate Decision and Detection Limits. Analytica Chimica Acta 277, 205-
214.

Spiegelman, C.H. (1997). A Discussion of Issues Raised by Lloyd Currie and a Cross Disciplinary
View of Detection Limits and Estimating Parameters That Are Often At or Near Zero. Chemomet-
rics and Intelligent Laboratory Systems 37, 183–188.

USEPA. (1987c). List (Phase 1) of Hazardous Constituents for Ground-Water Monitoring; Final
Rule. Federal Register 52(131), 25942–25953 (July 9, 1987).

Zorn, M.E., R.D. Gibbons, and W.C. Sonzogni. (1997). Weighted Least-Squares Approach to
Calculating Limits of Detection and Quantification by Modeling Variability as a Function of Con-
centration. Analytical Chemistry 69, 3069–3075.

See Also

calibrate, inversePredictCalibrate, pointwise.

Examples

# The data frame EPA.97.cadmium.111.df contains calibration
# data for cadmium at mass 111 (ng/L) that appeared in
# Gibbons et al. (1997b) and were provided to them by the U.S. EPA.
#
# The Example section in the help file for calibrate shows how to
# plot these data along with the fitted calibration line and 99%
# non-simultaneous prediction limits.
#
# For the current example, we will compute the decision limit (7.68)
# and detection limit (12.36 ng/L) based on using alpha = beta = 0.01
# and a linear calibration line with constant variance. See
# Millard and Neerchal (2001, pp.566-575) for more details on this
# example.

calibrate.list <- calibrate(Cadmium ~ Spike,
data = EPA.97.cadmium.111.df)

# Compute decision limit

pred.list <- predict(calibrate.list, newdata = data.frame(Spike=0),
se.fit = TRUE)

decision.limit <- pointwise(pred.list, coverage = 0.99,
individual = TRUE)$upper

decision.limit
# 1
#7.677842

# Compute detection limit

detection.limit <- detectionLimitCalibrate(calibrate.list)

detection.limit
#[1] 12.36467
#attr(, "coverage"):
#[1] 0.99
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#attr(, "simultaneous"):
#[1] FALSE

rm(calibrate.list, pred.list, decision.limit, detection.limit)

Distribution.df Data Frame Summarizing Available Probability Distributions and Es-
timation Methods

Description

Data frame summarizing information about available probability distributions in R and the EnvS-
tats package, and which distributions have associated functions for estimating distribution parame-
ters.

Usage

Distribution.df

Format

A data frame with 35 rows corresponding to 35 different available probability distributions, and 25
columns containing information associated with these probability distributions.

Name a character vector containing the name of the probability distribution (see the column labeled
Name in the table below).

Type a character vector indicating the type of distribution (see the column labeled Type in the table
below). Possible values are "Finite Discrete", "Discrete", "Continuous", and "Mixed".

Support.Min a character vector indicating the minimum value the random variable can assume
(see the column labeled Range in the table below). The reason this is a character vector
instead of a numeric vector is because some distributions have a lower bound that depends
on the value of a distribution parameter. For example, the minimum value for a Uniform
distribution is given by the value of the parameter min.

Support.Max a character vector indicating the maximum value the random variable can assume
(see the column labeled Range in the table below). The reason this is a character vector
instead of a numeric vector is because some distributions have an upper bound that depends
on the value of a distribution parameter. For example, the maximum value for a Uniform
distribution is given by the value of the parameter max.

Estimation.Method(s) a character vector indicating the names of the methods available to esti-
mate the distribution parameter(s) (see the column labeled Estimation Method(s) in the table
below). Possible values include "mle" (maximum likelihood), "mme" (method of moments),
"mmue" (method of moments based on the unbiased estimate of variance), "mvue" (minimum
variance unbiased), "qmle" (quasi-mle), etc., or some combination of these. In cases where
an estimator is more than one kind, a slash (/) is used to denote all methods covered by the
single estimator. For example, for the Binomial distribution, the sample proportion is the
maximum likelihood, method of moments, and minimum variance unbiased estimator, so this
method is denoted as "mle/mme/mvue". See the help files for the specific function listed under
Estimating Distribution Parameters for an explanation of each of these estimation methods.
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Quantile.Estimation.Method(s) a character vector indicating the names of the methods avail-
able to estimate the distribution quantiles. For many distributions, these are the same as
Estimation.Method(s). See the help files for the specific function listed under Estimating
Distribution Quantiles for an explanation of each of these estimation methods.

Prediction.Interval.Method(s) a character vector indicating the names of the methods avail-
able to create prediction intervals. See the help files for the specific function listed under
Prediction Intervals for an explanation of each of these estimation methods.

Singly.Censored.Estimation.Method(s) a character vector indicating the names of the meth-
ods available to estimate the distribution parameter(s) for Type I singly-censored data. See the
help files for the specific function listed under Estimating Distribution Parameters in the help
file for Censored Data for an explanation of each of these estimation methods.

Multiply.Censored.Estimation.Method(s) a character vector indicating the names of the meth-
ods available to estimate the distribution parameter(s) for Type I multiply-censored data. See
the help files for the specific function listed under Estimating Distribution Parameters in the
help file for Censored Data for an explanation of each of these estimation methods.

Number.parameters a numeric vector indicating the number of parameters associated with the
distribution (see the column labeled Parameters in the table below).

Parameter.1 the columns labeled Parameter.1, Parameter.2, . . . , Parameter.5 are character
vectors containing the names of the distribution parameters (see the column labeled Parame-
ters in the table below). If a distribution has n parameters and n < 5, then the columns labeled
Parameter.n+1, . . . , Parameter.5 are empty. For example, the Normal distribution has only
two parameters associated with it (mean and sd), so the fields in Parameter.3, Parameter.4,
and Parameter.5 are empty.

Parameter.2 see Parameter.1

Parameter.3 see Parameter.1

Parameter.4 see Parameter.1

Parameter.5 see Parameter.1

Parameter.1.Min the columns labeled Parameter.1.Min, Parameter.2.Min, . . . ,
Parameter.5.Min are character vectors containing the minimum values that can be assumed
by the distribution parameters (see the column labeled Parameter Range(s) in the table be-
low).
The reason these are character vectors instead of numeric vectors is because some parameters
have a lower bound of 0 but must be strictly bigger than 0 (e.g., the parameter sd for the
Normal distribution), in which case the lower bound is .Machine$double.eps, which may
vary from machine to machine. Also, some parameters have a lower bound that depends on
the value of another parameter. For example, the parameter max for a Uniform distribution is
bounded below by the value of the parameter min.
If a distribution has n parameters and n < 5, then the columns labeled Parameter.n+1.Min,
. . . , Parameter.5.Min have the missing value code (NA). For example, the Normal distribution
has only two parameters associated with it (mean and sd) so the fields in
Parameter.3.Min, Parameter.4.Min, and Parameter.5.Min have NAs in them.

Parameter.2.Min see Parameter.1.Min

Parameter.3.Min see Parameter.1.Min

Parameter.4.Min see Parameter.1.Min

Parameter.5.Min see Parameter.1.Min

Parameter.1.Max the columns labeled Parameter.1.Max, Parameter.2.Max, . . . ,
Parameter.5.Max are character vectors containing the maximum values that can be assumed
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by the distribution parameters (see the column labeled Parameter Range(s) in the table be-
low).
The reason these are character vectors instead of numeric vectors is because some parame-
ters have an upper bound that depends on the value of another parameter. For example, the
parameter min for a Uniform distribution is bounded above by the value of the parameter max.
If a distribution has n parameters and n < 5, then the columns labeled Parameter.n+1.Max,
. . . , Parameter.5.Max have the missing value code (NA). For example, the Normal distribution
has only two parameters associated with it (mean and sd) so the fields in
Parameter.3.Max, Parameter.4.Max, and Parameter.5.Max have NAs in them.

Parameter.2.Max see Parameter.1.Max

Parameter.3.Max see Parameter.1.Max

Parameter.4.Max see Parameter.1.Max

Parameter.5.Max see Parameter.1.Max

Details

The table below summarizes the probability distributions available in R and EnvStats. For each
distribution, there are four associated functions for computing density values, percentiles, quan-
tiles, and random numbers. The form of the names of these functions are dabb, pabb, qabb, and
rabb, where abb is the abbreviated name of the distribution (see table below). These functions are
described in the help file with the name of the distribution (see the first column of the table below).
For example, the help file for Beta describes the behavior of dbeta, pbeta, qbeta, and rbeta.

For most distributions, there is also an associated function for estimating the distribution parameters,
and the form of the names of these functions is eabb, where abb is the abbreviated name of the
distribution (see table below). All of these functions are listed in the help file Estimating Distribution
Parameters. For example, the function ebeta estimates the shape parameters of a Beta distribution
based on a random sample of observations from this distribution.

For some distributions, there are functions to estimate distribution parameters based on Type I cen-
sored data. The form of the names of these functions is eabbSinglyCensored for singly censored
data and eabbMultiplyCensored for multiply censored data. All of these functions are listed under
the heading Estimating Distribution Parameters in the help file Censored Data.

Table 1a. Available Distributions: Name, Abbreviation, Type, and Range

Name Abbreviation Type Range
Beta beta Continuous [0, 1]

Binomial binom Finite [0, size]
Discrete (integer)

Cauchy cauchy Continuous (−∞,∞)

Chi chi Continuous [0,∞)

Chi-square chisq Continuous [0,∞)

Exponential exp Continuous [0,∞)

Extreme evd Continuous (−∞,∞)
Value



Distribution.df 127

F f Continuous [0,∞)

Gamma gamma Continuous [0,∞)

Gamma gammaAlt Continuous [0,∞)
(Alternative)

Generalized gevd Continuous (−∞,∞)
Extreme for shape = 0
Value

(−∞, location+ scale
shape ]

for shape > 0

[location+ scale
shape ,∞)

for shape < 0

Geometric geom Discrete [0,∞)
(integer)

Hypergeometric hyper Finite [0,min(k,m)]
Discrete (integer)

Logistic logis Continuous (−∞,∞)

Lognormal lnorm Continuous [0,∞)

Lognormal lnormAlt Continuous [0,∞)
(Alternative)

Lognormal lnormMix Continuous [0,∞)
Mixture

Lognormal lnormMixAlt Continuous [0,∞)
Mixture
(Alternative)

Three- lnorm3 Continuous [threshold,∞)
Parameter
Lognormal

Truncated lnormTrunc Continuous [min,max]
Lognormal

Truncated lnormTruncAlt Continuous [min,max]
Lognormal
(Alternative)

Negative nbinom Discrete [0,∞)
Binomial (integer)

Normal norm Continuous (−∞,∞)
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Normal normMix Continuous (−∞,∞)
Mixture

Truncated normTrunc Continuous [min,max]
Normal

Pareto pareto Continuous [location,∞)

Poisson pois Discrete [0,∞)
(integer)

Student’s t t Continuous (−∞,∞)

Triangular tri Continuous [min,max]

Uniform unif Continuous [min,max]

Weibull weibull Continuous [0,∞)

Wilcoxon wilcox Finite [0,mn]
Rank Sum Discrete (integer)

Zero-Modified zmlnorm Mixed [0,∞)
Lognormal
(Delta)

Zero-Modified zmlnormAlt Mixed [0,∞)
Lognormal
(Delta)
(Alternative)

Zero-Modified zmnorm Mixed (−∞,∞)
Normal

Table 1b. Available Distributions: Name, Parameters, Parameter Default Values, Parameter
Ranges, Estimation Method(s)

Default Parameter Estimation
Name Parameter(s) Value(s) Range(s) Method(s)
Beta shape1 (0,∞) mle, mme, mmue

shape2 (0,∞)
ncp 0 (0,∞)

Binomial size [0,∞) mle/mme/mvue
prob [0, 1]

Cauchy location 0 (−∞,∞)
scale 1 (0,∞)

Chi df (0,∞)
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Chi-square df (0,∞)
ncp 0 (−∞,∞)

Exponential rate 1 (0,∞) mle/mme

Extreme location 0 (−∞,∞) mle, mme, mmue, pwme
Value scale 1 (0,∞)

F df1 (0,∞)
df2 (0,∞)
ncp 0 (0,∞)

Gamma shape (0,∞) mle, bcmle, mme, mmue
scale 1 (0,∞)

Gamma mean (0,∞) mle, bcmle, mme, mmue
(Alternative) cv 1 (0,∞)

Generalized location 0 (−∞,∞) mle, pwme, tsoe
Extreme scale 1 (0,∞)
Value shape 0 (−∞,∞)

Geometric prob (0, 1) mle/mme, mvue

Hypergeometric m [0,∞) mle, mvue
n [0,∞)
k [1,m+ n]

Logistic location 0 (−∞,∞) mle, mme, mmue
scale 1 (0,∞)

Lognormal meanlog 0 (−∞,∞) mle/mme, mvue
sdlog 1 (0,∞)

Lognormal mean exp(1/2) (0,∞) mle, mme, mmue,
(Alternative) cv sqrt(exp(1)-1) (0,∞) mvue, qmle

Lognormal meanlog1 0 (−∞,∞)
Mixture sdlog1 1 (0,∞)

meanlog2 0 (−∞,∞)
sdlog2 1 (0,∞)
p.mix 0.5 [0, 1]

Lognormal mean1 exp(1/2) (0,∞)
Mixture cv1 sqrt(exp(1)-1) (0,∞)
(Alternative) mean2 exp(1/2) (0,∞)

cv2 sqrt(exp(1)-1) (0,∞)
p.mix 0.5 [0, 1]

Three- meanlog 0 (−∞,∞) lmle, mme,
Parameter sdlog 1 (0,∞) mmue, mmme,
Lognormal threshold 0 (−∞,∞) royston.skew,
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zero.skew

Truncated meanlog 0 (−∞,∞)
Lognormal sdlog 1 (0,∞)

min 0 [0,max)
max Inf (min,∞)

Truncated mean exp(1/2) (0,∞)
Lognormal cv sqrt(exp(1)-1) (0,∞)
(Alternative) min 0 [0,max)

max Inf (min,∞)

Negative size [1,∞) mle/mme, mvue
Binomial prob (0, 1]

mu (0,∞)

Normal mean 0 (−∞,∞) mle/mme, mvue
sd 1 (0,∞)

Normal mean1 0 (−∞,∞)
Mixture sd1 1 (0,∞)

mean2 0 (−∞,∞)
sd2 1 (0,∞)
p.mix 0.5 [0, 1]

Truncated mean 0 (−∞,∞)
Normal sd 1 (0,∞)

min -Inf (−∞,max)
max Inf (min,∞)

Pareto location (0,∞) lse, mle
shape 1 (0,∞)

Poisson lambda (0,∞) mle/mme/mvue

Student’s t df (0,∞)
ncp 0 (−∞,∞)

Triangular min 0 (−∞,max)
max 1 (min,∞)
mode 0.5 (min,max)

Uniform min 0 (−∞,max) mle, mme, mmue
max 1 (min,∞)

Weibull shape (0,∞) mle, mme, mmue
scale 1 (0,∞)

Wilcoxon m [1,∞)
Rank Sum n [1,∞)

Zero-Modified meanlog 0 (−∞,∞) mvue
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Lognormal sdlog 1 (0,∞)
(Delta) p.zero 0.5 [0, 1]

Zero-Modified mean exp(1/2) (0,∞) mvue
Lognormal cv sqrt(exp(1)-1) (0,∞)
(Delta) p.zero 0.5 [0, 1]
(Alternative)

Zero-Modified mean 0 (−∞,∞) mvue
Normal sd 1 (0,∞)

p.zero 0.5 [0, 1]

Source

The EnvStats package.

References

Millard, S.P. (In Preparation). EnvStats: An R Package for Environmental Statistics. Springer-
Verlag, New York.

ebeta Estimate Parameters of a Beta Distribution

Description

Estimate the shape parameters of a beta distribution.

Usage

ebeta(x, method = "mle")

Arguments

x numeric vector of observations. All observations must be between greater than
0 and less than 1.

method character string specifying the method of estimation. The possible values are
"mle" (maximum likelihood; the default), "mme" (method of moments), and
"mmue" (method of moments based on the unbiased estimator of variance). See
the DETAILS section for more information on these estimation methods.

Details

If x contains any missing (NA), undefined (NaN) or infinite (Inf, -Inf) values, they will be removed
prior to performing the estimation.

Let x = (x1, x2, . . . , xn) be a vector of n observations from a beta distribution with parameters
shape1=ν and shape2=ω.
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Maximum Likelihood Estimation (method="mle")
The maximum likelihood estimators (mle’s) of the shape parameters ν and ω are the solutions of
the simultaneous equations:

Ψ(ν̂)−Ψ(ν̂ + ω̂) = (1/n)

n∑
i=1

log(xi)

Ψ(ν̂)−Ψ(ν̂ + ω̂) = (1/n)

n∑
i=1

log(1− xi)

where Ψ() is the digamma function (Forbes et al., 2011).

Method of Moments Estimators (method="mme")
The method of moments estimators (mme’s) of the shape parameters ν and ω are given by (Forbes
et al., 2011):

ν̂ = x̄{[x̄(1− x̄)/s2
m]− 1}

ω̂ = (1− x̄){[x̄(1− x̄)/s2
m]− 1}

where

x̄ =
1

n

n∑
i=1

xi; s
2
m =

1

n

n∑
i=1

(xi − x̄)2

Method of Moments Estimators Based on the Unbiased Estimator of Variance (method="mmue")
These estimators are the same as the method of moments estimators except that the method of
moments estimator of variance is replaced with the unbiased estimator of variance:

s2 =
1

n− 1

n∑
i=1

(xi − x̄)2

Value

a list of class "estimate" containing the estimated parameters and other information. See estimate.object
for details.

Note

The beta distribution takes real values between 0 and 1. Special cases of the beta are the Uni-
form[0,1] when shape1=1 and shape2=1, and the arcsin distribution when shape1=0.5 and shape2=0.5.
The arcsin distribution appears in the theory of random walks. The beta distribution is used in
Bayesian analyses as a conjugate to the binomial distribution.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Forbes, C., M. Evans, N. Hastings, and B. Peacock. (2011). Statistical Distributions. Fourth
Edition. John Wiley and Sons, Hoboken, NJ.

Johnson, N. L., S. Kotz, and N. Balakrishnan. (1995). Continuous Univariate Distributions, Volume
2. Second Edition. John Wiley and Sons, New York.

See Also

Beta.
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Examples

# Generate 20 observations from a beta distribution with parameters
# shape1=2 and shape2=4, then estimate the parameters via
# maximum likelihood.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(250)
dat <- rbeta(20, shape1 = 2, shape2 = 4)
ebeta(dat)

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Beta
#
#Estimated Parameter(s): shape1 = 5.392221
# shape2 = 11.823233
#
#Estimation Method: mle
#
#Data: dat
#
#Sample Size: 20

#==========

# Repeat the above, but use the method of moments estimators:

ebeta(dat, method = "mme")

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Beta
#
#Estimated Parameter(s): shape1 = 5.216311
# shape2 = 11.461341
#
#Estimation Method: mme
#
#Data: dat
#
#Sample Size: 20

#==========

# Clean up
#---------
rm(dat)

ebinom Estimate Parameter of a Binomial Distribution
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Description

Estimate p (the probability of “success”) for a binomial distribution, and optionally construct a
confidence interval for p.

Usage

ebinom(x, size = NULL, method = "mle/mme/mvue", ci = FALSE,
ci.type = "two-sided", ci.method = "score", correct = TRUE,
var.denom = "n", conf.level = 0.95, warn = TRUE)

Arguments

x numeric or logical vector of observations. When size is not supplied, x must
be a numeric vector of 0s (“failures”) and 1s (“successes”), or else a logical
vector of FALSE values (“failures”) and TRUE values (“successes”). When size is
supplied, x must be a non-negative integer containing the number of “successes”
out of the number of trials indicated by size. Missing (NA), undefined (NaN), and
infinite (Inf, -Inf) values are allowed but will be removed.

size positive integer indicating the of number of trials; size must be at least as large
as the value of x.

method character string specifying the method of estimation. The only possible value
is "mle/mme/mvue" (maximum likelihood, method of moments, and minimum
variance unbiased). See the DETAILS section for more information.

ci logical scalar indicating whether to compute a confidence interval for the mean.
The default value is ci=FALSE.

ci.type character string indicating what kind of confidence interval to compute. The
possible values are "two-sided" (the default), "lower", and "upper". This
argument is ignored if ci=FALSE.

ci.method character string indicating which method to use to construct the confidence in-
terval. Possible values are "score" (the default), "exact", "adjusted Wald",
and "Wald". This argument is ignored if ci=FALSE.

correct logical scalar indicating whether to use the continuity correction when
ci.method="score" or ci.method="Wald".
The default value is correct=TRUE.

var.denom character string indicating what value to use in the denominator of the variance
estimator when ci.method="Wald". Possible values are "n" (the default) and
"n-1". This argument is ignored if ci=FALSE.

conf.level a scalar between 0 and 1 indicating the confidence level of the confidence in-
terval. The default value is conf.level=0.95. This argument is ignored if
ci=FALSE.

warn a logical scalar indicating whether to issue a waning in the case when ci=TRUE,
ci.method="Wald", and any of the following conditions is true: the estimated
proportion is less than 0.2, the estimated proportion is greater than 0.8, the num-
ber of successes or failures is less than 5. The default value is warn=TRUE.

Details

If x contains any missing (NA), undefined (NaN) or infinite (Inf, -Inf) values, they will be removed
prior to performing the estimation.
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If x is a vector of n observations from a binomial distribution with parameters size=1 and prob=p,
then the sum of all the values in x is an observation from a binomial distribution with parameters
size=n and prob=p.

If x is an observation from a binomial distribution with parameters size=n and prob=p, the max-
imum likelihood estimator (mle), method of moments estimator (mme), and minimum variance
unbiased estimator (mvue) of p is simply x/n.

Confidence Intervals.

ci.method="score" The confidence interval for p based on the score method was developed by
Wilson (1927) and is discussed by Newcombe (1998a), Agresti and Coull (1998), and Agresti
and Caffo (2000). When ci=TRUE and ci.method="score", the function ebinom calls the
R function prop.test to compute the confidence interval. This method has been shown to
provide the best performance (in terms of actual coverage matching assumed coverage) of all
the methods provided here, although unlike the exact method, the actual coverage can fall
below the assumed coverage.

ci.method="exact" The confidence interval for p based on the exact (Clopper-Pearson) method is
discussed by Newcombe (1998a), Agresti and Coull (1998), and Zar (2010, pp.543-547). This
is the method used in the R function binom.test. This method ensures the actual coverage is
greater than or equal to the assumed coverage.

ci.method="Wald" The confidence interval for p based on the Wald method (with or without a
correction for continuity) is the usual “normal approximation” method and is discussed by
Newcombe (1998a), Agresti and Coull (1998), Agresti and Caffo (2000), and Zar (2010,
pp.543-547). This method is never recommended but is included for historical purposes.

ci.method="adjusted Wald" The confidence interval for p based on the adjusted Wald method is
discussed by Agresti and Coull (1998), Agresti and Caffo (2000), and Zar (2010, pp.543-547).
This is a simple modification of the Wald method and performs surpringly well.

Value

a list of class "estimate" containing the estimated parameters and other information. See estimate.object
for details.

Note

The binomial distribution is used to model processes with binary (Yes-No, Success-Failure, Heads-
Tails, etc.) outcomes. It is assumed that the outcome of any one trial is independent of any other
trial, and that the probability of “success”, p, is the same on each trial. A binomial discrete random
variable X is the number of “successes” in n independent trials. A special case of the binomial
distribution occurs when n = 1, in which case X is also called a Bernoulli random variable.

In the context of environmental statistics, the binomial distribution is sometimes used to model the
proportion of times a chemical concentration exceeds a set standard in a given period of time (e.g.,
Gilbert, 1987, p.143). The binomial distribution is also used to compute an upper bound on the
overall Type I error rate for deciding whether a facility or location is in compliance with some set
standard. Assume the null hypothesis is that the facility is in compliance. If a test of hypothesis is
conducted periodically over time to test compliance and/or several tests are performed during each
time period, and the facility or location is always in compliance, and each single test has a Type I
error rate of α, and the result of each test is independent of the result of any other test (usually not
a reasonable assumption), then the number of times the facility is declared out of compliance when
in fact it is in compliance is a binomial random variable with probability of “success” p = α being
the probability of being declared out of compliance (see USEPA, 2009).
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Author(s)
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See Also

Binomial, prop.test, binom.test, ciBinomHalfWidth, ciBinomN, plotCiBinomDesign.

Examples

# Generate 20 observations from a binomial distribution with
# parameters size=1 and prob=0.2, then estimate the prob parameter.
# (Note: the call to set.seed simply allows you to reproduce this
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# example. Also, the only parameter estimated is prob; size is
# specified in the call to ebinom. The parameter size is printed
# inorder to show all of the parameters associated with the
# distribution.)

set.seed(251)
dat <- rbinom(20, size = 1, prob = 0.2)
ebinom(dat)

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Binomial
#
#Estimated Parameter(s): size = 20.0
# prob = 0.1
#
#Estimation Method: mle/mme/mvue for prob
#
#Data: dat
#
#Sample Size: 20

#----------------------------------------------------------------

# Generate one observation from a binomial distribution with
# parameters size=20 and prob=0.2, then estimate the "prob"
# parameter and compute a confidence interval:

set.seed(763)
dat <- rbinom(1, size=20, prob=0.2)
ebinom(dat, size = 20, ci = TRUE)

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Binomial
#
#Estimated Parameter(s): size = 20.00
# prob = 0.35
#
#Estimation Method: mle/mme/mvue for prob
#
#Data: dat
#
#Sample Size: 20
#
#Confidence Interval for: prob
#
#Confidence Interval Method: Score normal approximation
# (With continuity correction)
#
#Confidence Interval Type: two-sided
#
#Confidence Level: 95%
#
#Confidence Interval: LCL = 0.1630867
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# UCL = 0.5905104

#----------------------------------------------------------------

# Using the data from the last example, compare confidence
# intervals based on the various methods

ebinom(dat, size = 20, ci = TRUE,
ci.method = "score", correct = TRUE)$interval$limits

# LCL UCL
#0.1630867 0.5905104

ebinom(dat, size = 20, ci = TRUE,
ci.method = "score", correct = FALSE)$interval$limits

# LCL UCL
#0.1811918 0.5671457

ebinom(dat, size = 20, ci = TRUE,
ci.method = "exact")$interval$limits

# LCL UCL
#0.1539092 0.5921885

ebinom(dat, size = 20, ci = TRUE,
ci.method = "adjusted Wald")$interval$limits

# LCL UCL
#0.1799264 0.5684112

ebinom(dat, size = 20, ci = TRUE,
ci.method = "Wald", correct = TRUE)$interval$limits

# LCL UCL
#0.1159627 0.5840373

ebinom(dat, size = 20, ci = TRUE,
ci.method = "Wald", correct = FALSE)$interval$limits

# LCL UCL
#0.1409627 0.5590373

#----------------------------------------------------------------

# Use the cadmium data on page 8-6 of USEPA (1989b) to compute
# two-sided 95% confidence intervals for the probability of
# detection at background and compliance wells. The data are
# stored in EPA.89b.cadmium.df.

EPA.89b.cadmium.df
# Cadmium.orig Cadmium Censored Well.type
#1 0.1 0.100 FALSE Background
#2 0.12 0.120 FALSE Background
#3 BDL 0.000 TRUE Background
#...
#86 BDL 0.000 TRUE Compliance
#87 BDL 0.000 TRUE Compliance
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#88 BDL 0.000 TRUE Compliance

attach(EPA.89b.cadmium.df)

# Probability of detection at Background well:
#--------------------------------------------

ebinom(!Censored[Well.type=="Background"], ci=TRUE)

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Binomial
#
#Estimated Parameter(s): size = 24.0000000
# prob = 0.3333333
#
#Estimation Method: mle/mme/mvue for prob
#
#Data: !Censored[Well.type == "Background"]
#
#Sample Size: 24
#
#Confidence Interval for: prob
#
#Confidence Interval Method: Score normal approximation
# (With continuity correction)
#
#Confidence Interval Type: two-sided
#
#Confidence Level: 95%
#
#Confidence Interval: LCL = 0.1642654
# UCL = 0.5530745

# Probability of detection at Compliance well:
#--------------------------------------------

ebinom(!Censored[Well.type=="Compliance"], ci=TRUE)

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Binomial
#
#Estimated Parameter(s): size = 64.000
# prob = 0.375
#
#Estimation Method: mle/mme/mvue for prob
#
#Data: !Censored[Well.type == "Compliance"]
#
#Sample Size: 64
#
#Confidence Interval for: prob
#
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#Confidence Interval Method: Score normal approximation
# (With continuity correction)
#
#Confidence Interval Type: two-sided
#
#Confidence Level: 95%
#
#Confidence Interval: LCL = 0.2597567
# UCL = 0.5053034

#----------------------------------------------------------------

# Clean up
rm(dat)
detach("EPA.89b.cadmium.df")

ecdfPlot Empirical Cumulative Distribution Function Plot

Description

Produce an empirical cumulative distribution function plot.

Usage

ecdfPlot(x, discrete = FALSE,
prob.method = ifelse(discrete, "emp.probs", "plot.pos"),
plot.pos.con = 0.375, plot.it = TRUE, add = FALSE, ecdf.col = "black",
ecdf.lwd = 3 * par("cex"), ecdf.lty = 1, curve.fill = FALSE,
curve.fill.col = "cyan", ..., type = ifelse(discrete, "s", "l"),
main = NULL, xlab = NULL, ylab = NULL, xlim = NULL, ylim = NULL)

Arguments

x numeric vector of observations. Missing (NA), undefined (NaN), and infinite (Inf,
-Inf) values are allowed but will be removed.

discrete logical scalar indicating whether the assumed parent distribution of x is discrete
(discrete=TRUE) or continuous (discrete=FALSE; the default).

prob.method character string indicating what method to use to compute the plotting positions
(empirical probabilities). Possible values are plot.pos (plotting positions, the
default if discrete=FALSE) and emp.probs (empirical probabilities, the default
if discrete=TRUE). See the DETAILS section for more explanation.

plot.pos.con numeric scalar between 0 and 1 containing the value of the plotting position
constant. The default value is plot.pos.con=0.375. See the DETAILS section
for more information. This argument is ignored if prob.method="emp.probs".

plot.it logical scalar indicating whether to produce a plot or add to the current plot (see
add) on the current graphics device. The default value is plot.it=TRUE.

add logical scalar indicating whether to add the empirical cdf to the current plot
(add=TRUE) or generate a new plot (add=FALSE; the default). This argument is
ignored if plot.it=FALSE.
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ecdf.col a numeric scalar or character string determining the color of the empirical cdf
line or points. The default value is ecdf.col=1. See the entry for col in the
help file for par for more information.

ecdf.lwd a numeric scalar determining the width of the empirical cdf line. The default
value is ecdf.lwd=3*par("cex"). See the entry for lwd in the help file for par
for more information.

ecdf.lty a numeric scalar determining the line type of the empirical cdf line. The default
value is ecdf.lty=1. See the entry for lty in the help file for par for more
information.

curve.fill a logical scalar indicating whether to fill in the area below the empirical cdf
curve with the color specified by curve.fill.col. The default value is
curve.fill=FALSE.

curve.fill.col a numeric scalar or character string indicating what color to use to fill in the area
below the empirical cdf curve. The default value is curve.fill.col=5. This
argument is ignored if curve.fill=FALSE.

type, main, xlab, ylab, xlim, ylim, ...

additional graphical parameters (see lines and par). In particular, the argument
type specifies the kind of line type. By default, the function ecdfPlot plots a
step function (type="s") when discrete=TRUE, and plots a straight line be-
tween points (type="l") when discrete=FALSE. The user may override these
defaults by supplying the graphics parameter type (type="s" for a step func-
tion, type="l" for linear interpolation, type="p" for points only, etc.).

Details

The cumulative distribution function (cdf) of a random variable X is the function F such that

F (x) = Pr(X ≤ x) (1)

for all values of x. That is, if p = F (x), then p is the proportion of the population that is less than
or equal to x, and x is called the p’th quantile, or the 100p’th percentile. A plot of quantiles on
the x-axis (i.e., the possible value for the random variable X) vs. the fraction of the population less
than or equal to that number on the y-axis is called the cumulative distribution function plot, and
the y-axis is usually labeled as the “cumulative probability” or “cumulative frequency”.

When we have a sample of data from some population, we usually do not know what percentiles our
observations correspond to because we do not know the form of the cumulative distribution function
F , so we have to use the sample data to estimate the cdf F . An emprical cumulative distribution
function (ecdf) plot, also called a quantile plot, is a plot of the observed quantiles (i.e., the ordered
observations) on the x-axis vs. the estimated cumulative probabilities on the y-axis (Chambers et
al., 1983, pp. 11-19; Cleveland, 1993, pp. 17-20; Cleveland, 1994, pp. 136-139; Helsel and Hirsch,
1992, pp. 21-24).

(Note: Some authors (e.g., Chambers et al., 1983, pp.11-16; Cleveland, 1993, pp.17-20) reverse the
axes on a quantile plot, i.e., the observed order statistics from the random sample are on the y-axis
and the estimated cumulative probabilities are on the x-axis.)

The empirical cumulative distribution function (ecdf) is an estimate of the cdf based on a random
sample of n observations from the distribution. Let x1, x2, . . . , xn denote the n observations, and
let x(1), x(2), . . . , x(n) denote the ordered observations (i.e., the order statistics). The cdf is usually
estimated by either the empirical probabilities estimator or the plotting-position estimator. The
empirical probabilities estimator is given by:

F̂ [x(i)] = p̂i =
#[xj ≤ x(i)]

n
(2)
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where #[xj ≤ x(i)] denotes the number of observations less than or equal to x(i). The plotting-
position estimator is given by:

F̂ [x(i)] = p̂i =
i− a

n− 2a+ 1
(3)

where 0 ≤ a ≤ 1 (Cleveland, 1993, p. 18; D’Agostino, 1986a, pp. 8,25).

For any value x such that x(1) < x < x(n), the ecdf is usually defined as either a step function:

F̂ (x) = F̂ [x(i)], x(i) ≤ x < x(i+1) (4)

(e.g., D’Agostino, 1986a), or linear interpolation between order statistics is used:

F̂ (x) = (1− r)F̂ [x(i)] + rF̂ [x(i+1)], x(i) ≤ x < x(i+1) (5)

where
r =

x− x(i)

x(i+1) − x(i)
(6)

(e.g., Chambers et al., 1983). For the step function version, the ecdf stays flat until it hits a value
on the x-axis corresponding to one of the order statistics, then it makes a jump. For the linear
interpolation version, the ecdf plot looks like lines connecting the points. By default, the function
ecdfPlot uses the step function version when discrete=TRUE, and the linear interpolation version
when discrete=FALSE. The user may override these defaults by supplying the graphics parameter
type (type="s" for a step function, type="l" for linear interpolation, type="p" for points only,
etc.).

The empirical probabilities estimator is intuitively appealing. This is the estimator used when
prob.method="emp.probs". The disadvantage of this estimator is that it implies the largest ob-
served value is the maximum possible value of the distribution (i.e., the 100’th percentile). This
may be satisfactory if the underlying distribution is known to be discrete, but it is usually not satis-
factory if the underlying distribution is known to be continuous.

The plotting-position estimator with various values of a is often used when the goal is to produce a
probability plot (see qqPlot) rather than an empirical cdf plot. It is used to compute the estimated
expected values or medians of the order statistics for a probability plot. This is the estimator used
when prob.method="plot.pos". The argument plot.pos.con refers to the variable a. Based on
certain principles from statistical theory, certain values of the constant a make sense for specific
underlying distributions (see the help file for qqPlot for more information).

Because x is a random sample, the emprical cdf changes from sample to sample and the variability
in these estimates can be dramatic for small sample sizes.

Value

ecdfPlot invisibly returns a list with the following components:

Order.Statistics

numeric vector of the ordered observations.
Cumulative.Probabilities

numeric vector of the associated plotting positions.

Note

An empirical cumulative distribution function (ecdf) plot is a graphical tool that can be used in
conjunction with other graphical tools such as histograms, strip charts, and boxplots to assess the
characteristics of a set of data. It is easy to determine quartiles and the minimum and maximum
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values from such a plot. Also, ecdf plots allow you to assess local density: a higher density of
observations occurs where the slope is steep.

Chambers et al. (1983, pp.11-16) plot the observed order statistics on the y-axis vs. the ecdf on the
x-axis and call this a quantile plot.

Empirical cumulative distribution function (ecdf) plots are often plotted with theoretical cdf plots
(see cdfPlot and cdfCompare) to graphically assess whether a sample of observations comes from
a particular distribution. The Kolmogorov-Smirnov goodness-of-fit test (see gofTest) is the statis-
tical companion of this kind of comparison; it is based on the maximum vertical distance between
the empirical cdf plot and the theoretical cdf plot. More often, however, quantile-quantile (Q-Q)
plots are used instead of ecdf plots to graphically assess departures from an assumed distribution
(see qqPlot).

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Chambers, J.M., W.S. Cleveland, B. Kleiner, and P.A. Tukey. (1983). Graphical Methods for Data
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See Also

ppoints, cdfPlot, cdfCompare, qqPlot, ecdfPlotCensored.

Examples

# Generate 20 observations from a normal distribution with
# mean=0 and sd=1 and create an ecdf plot.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(250)
x <- rnorm(20)
dev.new()
ecdfPlot(x)

#----------

# Repeat the above example, but fill in the area under the
# empirical cdf curve.

dev.new()
ecdfPlot(x, curve.fill = TRUE)

#----------

# Repeat the above example, but plot only the points.

dev.new()
ecdfPlot(x, type = "p")



144 ecdfPlotCensored

#----------

# Repeat the above example, but force a step function.

dev.new()
ecdfPlot(x, type = "s")

#----------

# Clean up
rm(x)

#-------------------------------------------------------------------------------------

# The guidance document USEPA (1994b, pp. 6.22--6.25)
# contains measures of 1,2,3,4-Tetrachlorobenzene (TcCB)
# concentrations (in parts per billion) from soil samples
# at a Reference area and a Cleanup area. These data are strored
# in the data frame EPA.94b.tccb.df.
#
# Create an empirical CDF plot for the reference area data.

dev.new()
with(EPA.94b.tccb.df,

ecdfPlot(TcCB[Area == "Reference"], xlab = "TcCB (ppb)"))

#==========

# Clean up
#---------
graphics.off()

ecdfPlotCensored Empirical Cumulative Distribution Function Plot Based on Type I
Censored Data

Description

Produce an empirical cumulative distribution function plot for Type I left-censored or right-censored
data.

Usage

ecdfPlotCensored(x, censored, censoring.side = "left", discrete = FALSE,
prob.method = "michael-schucany", plot.pos.con = 0.375, plot.it = TRUE,
add = FALSE, ecdf.col = 1, ecdf.lwd = 3 * par("cex"), ecdf.lty = 1,
include.cen = FALSE, cen.pch = ifelse(censoring.side == "left", 6, 2),
cen.cex = par("cex"), cen.col = 4, ...,
type = ifelse(discrete, "s", "l"), main = NULL, xlab = NULL, ylab = NULL,
xlim = NULL, ylim = NULL)
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Arguments

x numeric vector of observations. Missing (NA), undefined (NaN), and infinite (Inf,
-Inf) values are allowed but will be removed.

censored numeric or logical vector indicating which values of x are censored. This must
be the same length as x. If the mode of censored is "logical", TRUE values
correspond to elements of x that are censored, and FALSE values correspond to
elements of x that are not censored. If the mode of censored is "numeric",
it must contain only 1’s and 0’s; 1 corresponds to TRUE and 0 corresponds to
FALSE. Missing (NA) values are allowed but will be removed.

censoring.side character string indicating on which side the censoring occurs. The possible
values are "left" (the default) and "right".

discrete logical scalar indicating whether the assumed parent distribution of x is discrete
(discrete=TRUE) or continuous (discrete=FALSE; the default).

prob.method character string indicating what method to use to compute the plotting posi-
tions (empirical probabilities). Possible values are "kaplan-meier" (product-
limit method of Kaplan and Meier (1958)), "nelson" (hazard plotting method
of Nelson (1972)), "michael-schucany" (generalization of the product-limit
method due to Michael and Schucany (1986)), and "hirsch-stedinger" (gen-
eralization of the product-limit method due to Hirsch and Stedinger (1987)). The
default value is prob.method="michael-schucany".
The "nelson" method is only available for censoring.side="right". See the
DETAILS section for more explanation.

plot.pos.con numeric scalar between 0 and 1 containing the value of the plotting position
constant. The default value is plot.pos.con=0.375. See the DETAILS section
for more information. This argument is used only if prob.method is equal to
"michael-schucany" or "hirsch-stedinger".

plot.it logical scalar indicating whether to produce a plot or add to the current plot (see
add) on the current graphics device. The default value is plot.it=TRUE.

add logical scalar indicating whether to add the empirical cdf to the current plot
(add=TRUE) or generate a new plot (add=FALSE; the default). This argument is
ignored if plot.it=FALSE.

ecdf.col a numeric scalar or character string determining the color of the empirical cdf
line or points. The default value is ecdf.col=1. See the entry for col in the
help file for par for more information.

ecdf.lwd a numeric scalar determining the width of the empirical cdf line. The default
value is ecdf.lwd=3*par("cex"). See the entry for lwd in the help file for par
for more information.

ecdf.lty a numeric scalar determining the line type of the empirical cdf line. The default
value is ecdf.lty=1. See the entry for lty in the help file for par for more
information.

include.cen logical scalar indicating whether to include censored values in the plot. The
default value is include.cen=FALSE. If include.cen=TRUE, censored values
are plotted using the plotting character indicated by the argument cen.pch (see
below).

cen.pch numeric scalar or character string indicating the plotting character to use to
plot censored values. The default value is cen.pch=2 (hollow triangle pointing
up) when censoring.side="right", and cen.pch=6 (hollow triangle pointing
down) when censoring.side="left". See the help file for points for a list of
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other possible plotting characters. This argument is ignored if
include.cen=FALSE.

cen.cex numeric scalar that determines the size of the plotting character used to plot
censored values. The default value is the current value of the cex graphics pa-
rameter. See the entry for cex in the help file for par for more information. This
argument is ignored if include.cen=FALSE.

cen.col numeric scalar or character string that determines the color of the plotting char-
acter used to plot censored values. The default value is cen.col=4. See the
entry for col in the help file for par for more information. This argument is
ignored if include.cen=FALSE.

type, main, xlab, ylab, xlim, ylim, ...

additional graphical parameters (see lines and par). In particular, the argument
type specifies the kind of line type. By default, the function ecdfPlotCensored
plots a step function (type="s") when discrete=TRUE, and plots a straight
line between points (type="l") when discrete=FALSE. The user may over-
ride these defaults by supplying the graphics parameter type (type="s" for a
step function, type="l" for linear interpolation, type="p" for points only, etc.).

Details

The function ecdfPlotCensored does exactly the same thing as ecdfPlot, except it calls the func-
tion ppointsCensored to compute the plotting positions (estimated cumulative probabilities) for
the uncensored observations.

If plot.it=TRUE, the estimated cumulative probabilities for the uncensored observations are plot-
ted against the uncensored observations. By default, the function ecdfPlotCensored plots a step
function when discrete=TRUE, and plots a straight line between points when discrete=FALSE.
The user may override these defaults by supplying the graphics parameter type (type="s" for a
step function, type="l" for linear interpolation, type="p" for points only, etc.).

If include.cen=TRUE, censored observations are included on the plot as points. The arguments
cen.pch, cen.cex, and cen.col control the appearance of these points.

In cases where x is a random sample, the emprical cdf will change from sample to sample and
the variability in these estimates can be dramatic for small sample sizes. Caution must be used in
interpreting the empirical cdf when a large percentage of the observations are censored.

Value

ecdfPlotCensored returns a list with the following components:

Order.Statistics

numeric vector of the “ordered” observations.
Cumulative.Probabilities

numeric vector of the associated plotting positions.
Censored logical vector indicating which of the ordered observations are censored.
Censoring.Side character string indicating whether the data are left- or right-censored. This is

same value as the argument censoring.side.
Prob.Method character string indicating what method was used to compute the plotting posi-

tions. This is the same value as the argument prob.method.

Optional Component (only present when prob.method="michael-schucany" or
prob.method="hirsch-stedinger"):

Plot.Pos.Con numeric scalar containing the value of the plotting position constant that was
used. This is the same as the argument plot.pos.con.
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Note

An empirical cumulative distribution function (ecdf) plot is a graphical tool that can be used in
conjunction with other graphical tools such as histograms, strip charts, and boxplots to assess the
characteristics of a set of data.

Censored observations complicate the procedures used to graphically explore data. Techniques from
survival analysis and life testing have been developed to generalize the procedures for constructing
plotting positions, empirical cdf plots, and q-q plots to data sets with censored observations (see
ppointsCensored).

Empirical cumulative distribution function (ecdf) plots are often plotted with theoretical cdf plots
(see cdfPlot and cdfCompareCensored) to graphically assess whether a sample of observations
comes from a particular distribution. More often, however, quantile-quantile (Q-Q) plots are used
instead (see qqPlot and qqPlotCensored).
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See Also

ppoints, ppointsCensored, ecdfPlot, qqPlot, qqPlotCensored, cdfPlot, cdfCompareCensored.

Examples

# Generate 20 observations from a normal distribution with mean=20 and sd=5,
# censor all observations less than 18, then generate an empirical cdf plot
# for the complete data set and the censored data set. Note that the empirical
# cdf plot for the censored data set starts at the first ordered uncensored
# observation, and that for values of x > 18 the two emprical cdf plots are
# exactly the same. This is because there is only one censoring level and
# no uncensored observations fall below the censored observations.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(333)
x <- rnorm(20, mean=20, sd=5)
censored <- x < 18

sum(censored)
#[1] 7

new.x <- x
new.x[censored] <- 18

dev.new()
ecdfPlot(x, xlim = range(pretty(x)),

main = "Empirical CDF Plot for\nComplete Data Set")

dev.new()
ecdfPlotCensored(new.x, censored, xlim = range(pretty(x)),

main="Empirical CDF Plot for\nCensored Data Set")

# Clean up
#---------
rm(x, censored, new.x)

#------------------------------------------------------------------------------------

# Example 15-1 of USEPA (2009, page 15-10) gives an example of
# computing plotting positions based on censored manganese
# concentrations (ppb) in groundwater collected at 5 monitoring
# wells. The data for this example are stored in
# EPA.09.Ex.15.1.manganese.df. Here we will create an empirical
# CDF plot based on the Kaplan-Meier method.

EPA.09.Ex.15.1.manganese.df
# Sample Well Manganese.Orig.ppb Manganese.ppb Censored
#1 1 Well.1 <5 5.0 TRUE
#2 2 Well.1 12.1 12.1 FALSE
#3 3 Well.1 16.9 16.9 FALSE
#4 4 Well.1 21.6 21.6 FALSE
#5 5 Well.1 <2 2.0 TRUE
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#...
#21 1 Well.5 17.9 17.9 FALSE
#22 2 Well.5 22.7 22.7 FALSE
#23 3 Well.5 3.3 3.3 FALSE
#24 4 Well.5 8.4 8.4 FALSE
#25 5 Well.5 <2 2.0 TRUE

dev.new()
with(EPA.09.Ex.15.1.manganese.df,

ecdfPlotCensored(Manganese.ppb, Censored,
prob.method = "kaplan-meier", ecdf.col = "blue",
main = "Empirical CDF of Manganese Data\nBased on Kaplan-Meier"))

#==========

# Clean up
#---------
graphics.off()

eevd Estimate Parameters of an Extreme Value (Gumbel) Distribution

Description

Estimate the location and scale parameters of an extreme value distribution, and optionally construct
a confidence interval for one of the parameters.

Usage

eevd(x, method = "mle", pwme.method = "unbiased",
plot.pos.cons = c(a = 0.35, b = 0), ci = FALSE,
ci.parameter = "location", ci.type = "two-sided",
ci.method = "normal.approx", conf.level = 0.95)

Arguments

x numeric vector of observations.

method character string specifying the method of estimation. Possible values are "mle"
(maximum likelihood; the default), "mme" (methods of moments), "mmue" (method
of moments based on the unbiased estimator of variance), and "pwme" (probability-
weighted moments). See the DETAILS section for more information on these
estimation methods.

pwme.method character string specifying what method to use to compute the probability-weighted
moments when method="pwme". The possible values are "ubiased" (method
based on the U-statistic; the default), or "plotting.position" (method based
on the plotting position formula). See the DETAILS section in this help file and
the help file for pwMoment for more information. This argument is ignored if
method is not equal to "pwme".

plot.pos.cons numeric vector of length 2 specifying the constants used in the formula for the
plotting positions when method="pwme" and pwme.method="plotting.position".
The default value is plot.pos.cons=c(a=0.35, b=0). If this vector has a
names attribute with the value c("a","b") or c("b","a"), then the elements
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will be matched by name in the formula for computing the plotting positions.
Otherwise, the first element is mapped to the name "a" and the second element
to the name "b". See the DETAILS section in this help file and the help file
for pwMoment for more information. This argument is ignored if method is not
equal to "pwme" or if pwme.method="ubiased".

ci logical scalar indicating whether to compute a confidence interval for the loca-
tion or scale parameter. The default value is FALSE.

ci.parameter character string indicating the parameter for which the confidence interval is
desired. The possible values are "location" (the default) and "scale". This
argument is ignored if ci=FALSE.

ci.type character string indicating what kind of confidence interval to compute. The
possible values are "two-sided" (the default), "lower", and "upper". This
argument is ignored if ci=FALSE.

ci.method character string indicating what method to use to construct the confidence in-
terval for the location or scale parameter. Currently, the only possible value is
"normal.approx" (the default). See the DETAILS section for more informa-
tion. This argument is ignored if ci=FALSE.

conf.level a scalar between 0 and 1 indicating the confidence level of the confidence in-
terval. The default value is conf.level=0.95. This argument is ignored if
ci=FALSE.

Details

If x contains any missing (NA), undefined (NaN) or infinite (Inf, -Inf) values, they will be removed
prior to performing the estimation.

Let x = (x1, x2, . . . , xn) be a vector of n observations from an extreme value distribution with
parameters location=η and scale=θ.

Estimation

Maximum Likelihood Estimation (method="mle")
The maximum likelihood estimators (mle’s) of η and θ are the solutions of the simultaneous equa-
tions (Forbes et al., 2011):

η̂mle = θ̂mle log[
1

n

n∑
i=1

exp(
−xi
θ̂mle

)]

θ̂mle = x̄−

∑n
i=1 xiexp(

−xi
θ̂mle

)∑n
i=1 exp(

−xi
θ̂mle

)

where

x̄ =
1

n

n∑
i=1

xi

.

Method of Moments Estimation (method="mme")
The method of moments estimators (mme’s) of η and θ are given by (Johnson et al., 1995, p.27):

η̂mme = x̄− εθ̂mme

θ̂mme =

√
6

π
sm
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where ε denotes Euler’s constant and sm denotes the square root of the method of moments estima-
tor of variance:

s2
m =

1

n

n∑
i=1

(xi − x̄)2

Method of Moments Estimators Based on the Unbiased Estimator of Variance (method="mmue")
These estimators are the same as the method of moments estimators except that the method of
moments estimator of variance is replaced with the unbiased estimator of variance:

s2 =
1

n− 1

n∑
i=1

(xi − x̄)2

Probability-Weighted Moments Estimation (method="pwme")
Greenwood et al. (1979) show that the relationship between the distribution parameters η and θ and
the probability-weighted moments is given by:

η = M(1, 0, 0)− εθ

θ =
M(1, 0, 0)− 2M(1, 0, 1)

log(2)

where M(i, j, k) denotes the ijk’th probability-weighted moment and ε denotes Euler’s constant.
The probability-weighted moment estimators (pwme’s) of η and θ are computed by simply replacing
the M(i, j, k)’s in the above two equations with estimates of the M(i, j, k)’s (and for the estimate
of η, replacing θ with its estimated value). See the help file for pwMoment for more information on
how to estimate the M(i, j, k)’s. Also, see Landwehr et al. (1979) for an example of this method of
estimation using the unbiased (U-statistic type) probability-weighted moment estimators. Hosking
et al. (1985) note that this method of estimation using the U-statistic type probability-weighted
moments is equivalent to Downton’s (1966) linear estimates with linear coefficients.

Confidence Intervals
When ci=TRUE, an approximate (1 − α)100% confidence intervals for η can be constructed as-
suming the distribution of the estimator of η is approximately normally distributed. A two-sided
confidence interval is constructed as:

[η̂ − t(n− 1, 1− α/2)σ̂η̂, η̂ + t(n− 1, 1− α/2)σ̂η̂]

where t(ν, p) is the p’th quantile of Student’s t-distribution with ν degrees of freedom, and the
quantity

σ̂η̂

denotes the estimated asymptotic standard deviation of the estimator of η.

Similarly, a two-sided confidence interval for θ is constructed as:

[θ̂ − t(n− 1, 1− α/2)σ̂θ̂, θ̂ + t(n− 1, 1− α/2)σ̂θ̂]

One-sided confidence intervals for η and θ are computed in a similar fashion.

Maximum Likelihood (method="mle")
Downton (1966) shows that the estimated asymptotic variances of the mle’s of η and θ are given by:

σ̂2
η̂mle =

θ̂mle
2

n
[1 +

6(1− ε)2

π2
] =

1.10867θ̂mle
2

n

σ̂2
θ̂mle

=
6

π2

θ̂mle
2

n
=

0.60793θ̂mle
2

n
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where ε denotes Euler’s constant.

Method of Moments (method="mme" or method="mmue")
Tiago de Oliveira (1963) and Johnson et al. (1995, p.27) show that the estimated asymptotic vari-
ance of the mme’s of η and θ are given by:

σ̂2
η̂mme =

θ̂mme
2

n
[
π2

6
+
ε2

4
(β2 − 1)− πε

√
β1√
6

] =
1.1678θ̂mme

2

n

σ̂2
θ̂mme

=
θ̂mle

2

n

(β2 − 1)

4
=

1.1θ̂mme
2

n

where the quantities √
β1, β2

denote the skew and kurtosis of the distribution, and ε denotes Euler’s constant.

The estimated asymptotic variances of the mmue’s of η and θ are the same, except replace the mme
of θ in the above equations with the mmue of θ.

Probability-Weighted Moments (method="pwme")
As stated above, Hosking et al. (1985) note that this method of estimation using the U-statistic
type probability-weighted moments is equivalent to Downton’s (1966) linear estimates with linear
coefficients. Downton (1966) provides exact values of the variances of the estimates of location
and scale parameters for the smallest extreme value distribution. For the largest extreme value
distribution, the formula for the estimate of scale is the same, but the formula for the estimate of
location must be modified. Thus, Downton’s (1966) equation (3.4) is modified to:

η̂pwme =
(n− 1)log(2) + (n+ 1)ε

n(n− 1)log(2)
v − 2ε

n(n− 1)log(2)
w

where ε denotes Euler’s constant, and v andw are defined in Downton (1966, p.8). Using Downton’s
(1966) equations (3.9)-(3.12), the exact variance of the pwme of η can be derived. Note that when
method="pwme" and pwme.method="plotting.position", these are only the asymptotically cor-
rect variances.

Value

a list of class "estimate" containing the estimated parameters and other information. See estimate.object
for details.

Note

There are three families of extreme value distributions. The one described here is the Type I, also
called the Gumbel extreme value distribution or simply Gumbel distribution. The name “extreme
value” comes from the fact that this distribution is the limiting distribution (as n approaches infinity)
of the greatest value among n independent random variables each having the same continuous
distribution.

The Gumbel extreme value distribution is related to the exponential distribution as follows. Let Y
be an exponential random variable with parameter rate=λ. Then X = η − log(Y ) has an extreme
value distribution with parameters location=η and scale=1/λ.

The distribution described above and assumed by eevd is the largest extreme value distribution.
The smallest extreme value distribution is the limiting distribution (as n approaches infinity) of the
smallest value among n independent random variables each having the same continuous distribu-
tion. If X has a largest extreme value distribution with parameters location=η and scale=θ, then
Y = −X has a smallest extreme value distribution with parameters location=−η and scale=θ.
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The smallest extreme value distribution is related to the Weibull distribution as follows. Let Y be a
Weibull random variable with parameters shape=β and scale=α. ThenX = log(Y ) has a smallest
extreme value distribution with parameters location=log(α) and scale=1/β.

The extreme value distribution has been used extensively to model the distribution of streamflow,
flooding, rainfall, temperature, wind speed, and other meteorological variables, as well as material
strength and life data.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Castillo, E. (1988). Extreme Value Theory in Engineering. Academic Press, New York, pp.184–198.

Downton, F. (1966). Linear Estimates of Parameters in the Extreme Value Distribution. Technomet-
rics 8(1), 3–17.

Forbes, C., M. Evans, N. Hastings, and B. Peacock. (2011). Statistical Distributions. Fourth
Edition. John Wiley and Sons, Hoboken, NJ.

Greenwood, J.A., J.M. Landwehr, N.C. Matalas, and J.R. Wallis. (1979). Probability Weighted
Moments: Definition and Relation to Parameters of Several Distributions Expressible in Inverse
Form. Water Resources Research 15(5), 1049–1054.

Hosking, J.R.M., J.R. Wallis, and E.F. Wood. (1985). Estimation of the Generalized Extreme-Value
Distribution by the Method of Probability-Weighted Moments. Technometrics 27(3), 251–261.

Johnson, N. L., S. Kotz, and N. Balakrishnan. (1995). Continuous Univariate Distributions, Volume
2. Second Edition. John Wiley and Sons, New York.

Landwehr, J.M., N.C. Matalas, and J.R. Wallis. (1979). Probability Weighted Moments Com-
pared With Some Traditional Techniques in Estimating Gumbel Parameters and Quantiles. Water
Resources Research 15(5), 1055–1064.

Tiago de Oliveira, J. (1963). Decision Results for the Parameters of the Extreme Value (Gumbel)
Distribution Based on the Mean and Standard Deviation. Trabajos de Estadistica 14, 61–81.

See Also

Extreme Value Distribution, Euler’s Constant.

Examples

# Generate 20 observations from an extreme value distribution with
# parameters location=2 and scale=1, then estimate the parameters
# and construct a 90% confidence interval for the location parameter.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(250)
dat <- revd(20, location = 2)
eevd(dat, ci = TRUE, conf.level = 0.9)

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Extreme Value
#
#Estimated Parameter(s): location = 1.9684093
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# scale = 0.7481955
#
#Estimation Method: mle
#
#Data: dat
#
#Sample Size: 20
#
#Confidence Interval for: location
#
#Confidence Interval Method: Normal Approximation
# (t Distribution)
#
#Confidence Interval Type: two-sided
#
#Confidence Level: 90%
#
#Confidence Interval: LCL = 1.663809
# UCL = 2.273009

#----------

#Compare the values of the different types of estimators:

eevd(dat, method = "mle")$parameters
# location scale
#1.9684093 0.7481955

eevd(dat, method = "mme")$parameters
# location scale
#1.9575980 0.8339256

eevd(dat, method = "mmue")$parameters
# location scale
#1.9450932 0.8555896

eevd(dat, method = "pwme")$parameters
# location scale
#1.9434922 0.8583633

#----------

# Clean up
#---------
rm(dat)

eexp Estimate Rate Parameter of an Exponential Distribution

Description

Estimate the rate parameter of an exponential distribution, and optionally construct a confidence
interval for the rate parameter.
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Usage

eexp(x, method = "mle/mme", ci = FALSE, ci.type = "two-sided",
ci.method = "exact", conf.level = 0.95)

Arguments

x numeric vector of observations.

method character string specifying the method of estimation. Currently the only possible
value is "mle/mme" (maximum likelihood/method of moments; the default). See
the DETAILS section for more information.

ci logical scalar indicating whether to compute a confidence interval for the loca-
tion or scale parameter. The default value is FALSE.

ci.type character string indicating what kind of confidence interval to compute. The
possible values are "two-sided" (the default), "lower", and "upper". This
argument is ignored if ci=FALSE.

ci.method character string indicating what method to use to construct the confidence in-
terval for the location or scale parameter. Currently, the only possible value is
"exact" (the default). See the DETAILS section for more information. This
argument is ignored if ci=FALSE.

conf.level a scalar between 0 and 1 indicating the confidence level of the confidence in-
terval. The default value is conf.level=0.95. This argument is ignored if
ci=FALSE.

Details

If x contains any missing (NA), undefined (NaN) or infinite (Inf, -Inf) values, they will be removed
prior to performing the estimation.

Let x = (x1, x2, . . . , xn) be a vector of n observations from an exponential distribution with pa-
rameter rate=λ.

Estimation
The maximum likelihood estimator (mle) of λ is given by:

λ̂mle =
1

x̄

where

x̄ =
1

n

n∑
i=1

xi

(Forbes et al., 2011). That is, the mle is the reciprocal of the sample mean.

Sometimes the exponential distribution is parameterized with a scale parameter instead of a rate
parameter. The scale parameter is the reciprocal of the rate parameter, and the sample mean is both
the mle and the minimum variance unbiased estimator (mvue) of the scale parameter.

Confidence Interval
When ci=TRUE, an exact (1 − α)100% confidence intervals for λ can be constructed based on
the relationship between the exponential distribution, the gamma distribution, and the chi-square
distribution. An exponential distribution with parameter rate=λ is equivalent to a gamma distri-
bution with parameters shape=1 and scale=1/λ. The sum of n iid gamma random variables with
parameters shape=1 and scale=1/λ is a gamma random variable with parameters shape=n and
scale=1/λ. Finally, a gamma distribution with parameters shape=n and scale=1/λ is equivalent
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to 0.5 times a chi-square distribution with degrees of freedom df=2n. Thus, the quantity 2nx̄ has a
chi-square distribution with degrees of freedom df=2n.

A two-sided (1− α)100% confidence interval for λ is therefore constructed as:

[
χ2(2n, α/2)

2nx̄
,
chi2(2n, 1− α/2)

2nx̄
]

where χ2(ν, p) is the p’th quantile of a chi-square distribution with ν degrees of freedom.

One-sided confidence intervals are computed in a similar fashion.

Value

a list of class "estimate" containing the estimated parameters and other information. See estimate.object
for details.

Note

The exponential distribution is a special case of the gamma distribution, and takes on positive real
values. A major use of the exponential distribution is in life testing where it is used to model the
lifetime of a product, part, person, etc.

The exponential distribution is the only continuous distribution with a “lack of memory” property.
That is, if the lifetime of a part follows the exponential distribution, then the distribution of the time
until failure is the same as the distribution of the time until failure given that the part has survived
to time t.

The exponential distribution is related to the double exponential (also called Laplace) distribution,
and to the extreme value distribution.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Forbes, C., M. Evans, N. Hastings, and B. Peacock. (2011). Statistical Distributions. Fourth
Edition. John Wiley and Sons, Hoboken, NJ.

Johnson, N. L., S. Kotz, and N. Balakrishnan. (1994). Continuous Univariate Distributions, Volume
1. Second Edition. John Wiley and Sons, New York.

See Also

Exponential.

Examples

# Generate 20 observations from an exponential distribution with parameter
# rate=2, then estimate the parameter and construct a 90% confidence interval.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(250)
dat <- rexp(20, rate = 2)
eexp(dat, ci=TRUE, conf = 0.9)

#Results of Distribution Parameter Estimation
#--------------------------------------------
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#
#Assumed Distribution: Exponential
#
#Estimated Parameter(s): rate = 2.260587
#
#Estimation Method: mle/mme
#
#Data: dat
#
#Sample Size: 20
#
#Confidence Interval for: rate
#
#Confidence Interval Method: Exact
#
#Confidence Interval Type: two-sided
#
#Confidence Level: 90%
#
#Confidence Interval: LCL = 1.498165
# UCL = 3.151173

#----------

# Clean up
#---------
rm(dat)

egamma Estimate Parameters of Gamma Distribution

Description

Estimate the shape and scale parameters (or the mean and coefficient of variation) of a Gamma
distribution.

Usage

egamma(x, method = "mle", ci = FALSE,
ci.type = "two-sided", ci.method = "normal.approx",
normal.approx.transform = "kulkarni.powar", conf.level = 0.95)

egammaAlt(x, method = "mle", ci = FALSE,
ci.type = "two-sided", ci.method = "normal.approx",
normal.approx.transform = "kulkarni.powar", conf.level = 0.95)

Arguments

x numeric vector of non-negative observations. Missing (NA), undefined (NaN),
and infinite (Inf, -Inf) values are allowed but will be removed.

method character string specifying the method of estimation. The possible values are:
"mle" (maximum likelihood; the default),
"bcmle" (bias-corrected mle),
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"mme" (method of moments), and
"mmue" (method of moments based on the unbiased estimator of variance).
See the DETAILS section for more information.

ci logical scalar indicating whether to compute a confidence interval for the mean.
The default value is ci=FALSE.

ci.type character string indicating what kind of confidence interval to compute. The
possible values are "two-sided" (the default), "lower", and "upper". This
argument is ignored if ci=FALSE.

ci.method character string indicating which method to use to construct the confidence inter-
val. Possible values are "normal.approx" (the default), "profile.likelihood",
and "chisq.approx". This argument is ignored if ci=FALSE.

normal.approx.transform

character string indicating which power transformation to use when
ci.method="normal.approx". Possible values are
"kulkarni.powar" (the default), "cube.root", and "fourth.root". See the
DETAILS section for more informaiton. This argument is ignored if ci=FALSE
or ci.method="chisq.approx".

conf.level a scalar between 0 and 1 indicating the confidence level of the confidence in-
terval. The default value is conf.level=0.95. This argument is ignored if
ci=FALSE.

Details

If x contains any missing (NA), undefined (NaN) or infinite (Inf, -Inf) values, they will be removed
prior to performing the estimation.

Let x = x1, x2, . . . , xn denote a random sample of n observations from a gamma distribution
with parameters shape=α and scale=β. The relationship between these parameters and the mean
(mean=µ) and coefficient of variation (cv=τ ) of this distribution is given by:

α = τ−2 (1)

β = µ/α (2)

µ = α β (3)

τ = α−1/2 (4)

The function egamma returns estimates of the shape and scale parameters. The function egammaAlt
returns estimates of the mean (µ) and coefficient of variation (cv) based on the estimates of the
shape and scale parameters.

Estimation

Maximum Likelihood Estimation (method="mle")
The maximum likelihood estimators (mle’s) of the shape and scale parameters α and β are solutions
of the simultaneous equations:

α̂mle =
1

n

n∑
i=1

log(xi)− log(x̄) = ψ(α̂mle)− log(α̂mle) (5)

β̂mle = x̄/α̂ (6)
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where ψ denotes the digamma function, and x̄ denotes the sample mean:

x̄ =
1

n

n∑
i=1

xi (7)

(Forbes et al., 2011, chapter 22; Johnson et al., 1994, chapter 17).

Bias-Corrected Maximum Likelihood Estimation (method="bcmle")
The “bias-corrected” maximum likelihood estimator of the shape parameter is based on the sug-
gestion of Anderson and Ray (1975; see also Johnon et al., 1994, p.366 and Singh et al., 2010b,
p.48), who noted that the bias of the maximum likelihood estimator of the shape parameter can be
considerable when the sample size is small. This estimator is given by:

α̂bcmle =
n− 3

n
α̂mle +

2

3n
(8)

The estimate of the scale paramter is not modified (i.e., the mle of β is returned).

Method of Moments Estimation (method="mme")
The method of moments estimators (mme’s) of the shape and scale parameters α and β are:

α̂mme = (x̄/sm)2 (9)

β̂mme = s2
m/x̄ (10)

where s2
m denotes the method of moments estimator of variance:

s2
m =

1

n

n∑
i=1

(xi − x̄)2 (11)

Method of Moments Estimation Based on the Unbiased Estimator of Variance (method="mmue")
The method of moments estimators based on the unbiased estimator of variance are exactly the same
as the method of moments estimators, except that the method of moments estimator of variance is
replaced with the unbiased estimator of variance:

α̂mmue = (x̄/s)2 (12)

β̂mmue = s2/x̄ (13)

where s2 denotes the unbiased estimator of variance:

s2 =
1

n− 1

n∑
i=1

(xi − x̄)2 (14)

Confidence Intervals
This section discusses how confidence intervals for the mean µ are computed.

Normal Approximation (ci.method="normal.approx")
The normal approximation method is based on the method of Kulkarni and Powar (2010), who use
a power transformation of the the original data to approximate a sample from a normal distribuiton,
compute the confidence interval for the mean on the transformed scale using the usual formula for
a confidence interval for the mean of a normal distribuiton, and then tranform the limits back to the
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original space using equations based on the expected value of a gamma random variable raised to a
power.

The particular power used for the normal approximation is defined by the argument
normal.approx.transform. The value normal.approx.transform="cube.root" uses the cube
root transformation suggested by Wilson and Hilferty (1931), and the value
"fourth.root" uses the fourth root transformation suggested by Hawkins and Wixley (1986). The
default value "kulkarni.powar" uses the “Optimum Power Normal Approximation Method” of
Kulkarni and Powar (2010), who show this method performs the best in terms of maintining cov-
erage and minimizing confidence interval width compared to eight other methods. The “optimum”
power p is determined by:

p = −0.0705− 0.178α̂+ 0.475
√
α̂ if α̂ ≤ 1.5

p = 0.246 if α̂ > 1.5 (15)

where α̂ denotes the estimate of the shape parameter. Kulkarni and Powar (2010) derived this equa-
tion by determining what power transformation yields a skew closest to 0 and a kurtosis closest to 3
for a gamma random variable with a given shape parameter. Although Kulkarni and Powar (2010)
use the maximum likelihood estimate of shape to determine the power to use to induce approximate
normality, for the functions egamma and egammaAlt the power is based on whatever estimate of
shape is used (e.g., method="mle", method="bcmle", etc.).

Likelihood Profile (ci.method="profile.likelihood")
This method was proposed by Cox (1970, p.88), and Venzon and Moolgavkar (1988) introduced an
efficient method of computation. This method is also discussed by Stryhn and Christensen (2003)
and Royston (2007). The idea behind this method is to invert the likelihood-ratio test to obtain
a confidence interval for the mean µ while treating the coefficient of variation τ as a nuisance
parameter.

The likelihood function is given by:

L(θ, τ |x) =

n∏
i=1

xα−1
i e−xi/β

βαΓ(α)
(16)

where α and β are defined in Equations (1) and (2) above, and Γ(t) denotes the Gamma function
evaluated at t.

Following Stryhn and Christensen (2003), denote the maximum likelihood estimates of the mean
and coefficient of variation by (θ∗, τ∗). The likelihood ratio test statistic (G2) of the hypothesis
H0 : θ = θ0 (where θ0 is a fixed value) equals the drop in 2log(L) between the “full” model and
the reduced model with θ fixed at θ0, i.e.,

G2 = 2{log[L(θ∗, τ∗)]− log[L(θ0, τ
∗
0 )]} (17)

where τ∗0 is the maximum likelihood estimate of τ for the reduced model (i.e., when θ = θ0). Under
the null hypothesis, the test statisticG2 follows a chi-squared distribution with 1 degree of freedom.

Alternatively, we may express the test statistic in terms of the profile likelihood function L1 for the
mean θ, which is obtained from the usual likelihood function by maximizing over the parameter τ ,
i.e.,

L1(θ) = maxτL(θ, τ) (18)

Then we have
G2 = 2{log[L1(θ∗)]− log[L1(θ0)]} (19)
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A two-sided (1− α)100% confidence interval for the mean θ consists of all values of θ0 for which
the test is not significant at level alpha:

θ0 : G2 ≤ χ2
1,1−α (20)

where χ2
ν,p denotes the p’th quantile of the chi-squared distribution with ν degrees of freedom.

Chi-Square Approximation (ci.method="chisq.approx")
This method is based on the relationship between the sample mean of the gamma distribution and
the chi-squared distribution (Grice and Bain, 1980). Because this method is exact only when the
shape parameter α is known, the method used here is called the “chi-square approximation” method
because the estimate of the shape parameter is used. This method is not the method proposed by
Grice and Bain (1980) in which the confidence interval is adjusted based on adjusting for the fact
that the shape parameter is estimated. The chi-square approximation method used by egamma and
egammaAlt is equivalent to the “Approximate gamma” method of Singh et al. (2010b, equation
(2-34), p.51).

Value

a list of class "estimate" containing the estimated parameters and other information. See
estimate.object for details.

Warning

When ci=TRUE and ci.method="normal.approx", it is possible for the lower confidence limit
based on the transformed data to be less than 0. In this case, the lower confidence limit on the
original scale is set to 0 and a warning is issued stating that the normal approximation is not accurate
in this case.

Note

The gamma distribution takes values on the positive real line. Special cases of the gamma are the
exponential distribution and the chi-square distributions. Applications of the gamma include life
testing, statistical ecology, queuing theory, inventory control, and precipitation processes. A gamma
distribution starts to resemble a normal distribution as the shape parameter a tends to infinity.

Some EPA guidance documents (e.g., Singh et al., 2002; Singh et al., 2010a,b) strongly recom-
mend against using a lognormal model for environmental data and recommend trying a gamma
distribuiton instead.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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See Also

GammaDist, estimate.object, eqgamma, predIntGamma, tolIntGamma.

Examples

# Generate 20 observations from a gamma distribution with parameters
# shape=3 and scale=2, then estimate the parameters.
# (Note: the call to set.seed simply allows you to reproduce this
# example.)

set.seed(250)
dat <- rgamma(20, shape = 3, scale = 2)
egamma(dat, ci = TRUE)

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Gamma
#
#Estimated Parameter(s): shape = 2.203862
# scale = 2.174928
#
#Estimation Method: mle
#
#Data: dat
#
#Sample Size: 20
#
#Confidence Interval for: mean
#
#Confidence Interval Method: Optimum Power Normal Approximation
# of Kulkarni & Powar (2010)
# using mle of shape
#
#Normal Transform Power: 0.246
#
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#Confidence Interval Type: two-sided
#
#Confidence Level: 95%
#
#Confidence Interval: LCL = 3.361652
# UCL = 6.746794

# Clean up
rm(dat)

#----------------------------------------------------------------

# Using the reference area TcCB data in EPA.94b.tccb.df, assume a
# gamma distribution, estimate the parameters based on the
# bias-corrected mle of shape, and compute a one-sided upper 90%
# confidence interval for the mean.

attach(EPA.94b.tccb.df)

#----------
# First test to see whether the data appear to follow a gamma
# distribution.

gofTest(TcCB[Area == "Reference"], dist = "gamma",
est.arg.list = list(method = "bcmle"))

#Results of Goodness-of-Fit Test
#-------------------------------
#
#Test Method: Shapiro-Wilk GOF Based on
# Chen & Balakrisnan (1995)
#
#Hypothesized Distribution: Gamma
#
#Estimated Parameter(s): shape = 4.5695247
# scale = 0.1309788
#
#Estimation Method: bcmle
#
#Data: TcCB[Area == "Reference"]
#
#Sample Size: 47
#
#Test Statistic: W = 0.9703827
#
#Test Statistic Parameter: n = 47
#
#P-value: 0.2739512
#
#Alternative Hypothesis: True cdf does not equal the
# Gamma Distribution.

#----------
# Now estimate the paramters and compute the upper confidence
# limit.

egamma(TcCB[Area == "Reference"], method = "bcmle", ci = TRUE,



164 egamma

ci.type = "upper", conf.level = 0.9)

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Gamma
#
#Estimated Parameter(s): shape = 4.5695247
# scale = 0.1309788
#
#Estimation Method: bcmle
#
#Data: TcCB[Area == "Reference"]
#
#Sample Size: 47
#
#Confidence Interval for: mean
#
#Confidence Interval Method: Optimum Power Normal Approximation
# of Kulkarni & Powar (2010)
# using bcmle of shape
#
#Normal Transform Power: 0.246
#
#Confidence Interval Type: upper
#
#Confidence Level: 90%
#
#Confidence Interval: LCL = 0.0000000
# UCL = 0.6561838

#----------------------------------------------------------------

# Repeat the above example but use the alternative
# parameterization.

egammaAlt(TcCB[Area == "Reference"], method = "bcmle", ci = TRUE,
ci.type = "upper", conf.level = 0.9)

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Gamma
#
#Estimated Parameter(s): mean = 0.5985106
# cv = 0.4678046
#
#Estimation Method: bcmle of shape
#
#Data: TcCB[Area == "Reference"]
#
#Sample Size: 47
#
#Confidence Interval for: mean
#
#Confidence Interval Method: Optimum Power Normal Approximation
# of Kulkarni & Powar (2010)
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# using bcmle of shape
#
#Normal Transform Power: 0.246
#
#Confidence Interval Type: upper
#
#Confidence Level: 90%
#
#Confidence Interval: LCL = 0.0000000
# UCL = 0.6561838

#----------

# Clean up
#---------
detach("EPA.94b.tccb.df")

egammaAltCensored Estimate Mean and Coefficient of Variation for a Gamma Distribution
Based on Type I Censored Data

Description

Estimate the mean and coefficient of variation of a gamma distribution given a sample of data that
has been subjected to Type I censoring, and optionally construct a confidence interval for the mean.

Usage

egammaAltCensored(x, censored, method = "mle", censoring.side = "left",
ci = FALSE, ci.method = "profile.likelihood", ci.type = "two-sided",
conf.level = 0.95, n.bootstraps = 1000, use.acc.con = FALSE,
pivot.statistic = "z", ci.sample.size = sum(!censored))

Arguments

x numeric vector of observations. Missing (NA), undefined (NaN), and infinite (Inf,
-Inf) values are allowed but will be removed.

censored numeric or logical vector indicating which values of x are censored. This must
be the same length as x. If the mode of censored is "logical", TRUE values
correspond to elements of x that are censored, and FALSE values correspond to
elements of x that are not censored. If the mode of censored is "numeric",
it must contain only 1’s and 0’s; 1 corresponds to TRUE and 0 corresponds to
FALSE. Missing (NA) values are allowed but will be removed.

method character string specifying the method of estimation. Currently, the only avail-
able method is maximum likelihood (method="mle").

censoring.side character string indicating on which side the censoring occurs. The possible
values are "left" (the default) and "right".

ci logical scalar indicating whether to compute a confidence interval for the mean
or variance. The default value is ci=FALSE.
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ci.method character string indicating what method to use to construct the confidence in-
terval for the mean. The possible values are "profile.likelihood" (pro-
file likelihood; the default), "normal.approx" (normal approximation), and
"bootstrap" (based on bootstrapping). See the DETAILS section for more
information. This argument is ignored if ci=FALSE.

ci.type character string indicating what kind of confidence interval to compute. The
possible values are "two-sided" (the default), "lower", and "upper". This
argument is ignored if ci=FALSE.

conf.level a scalar between 0 and 1 indicating the confidence level of the confidence in-
terval. The default value is conf.level=0.95. This argument is ignored if
ci=FALSE.

n.bootstraps numeric scalar indicating how many bootstraps to use to construct the confi-
dence interval for the mean when ci.type="bootstrap". This argument is
ignored if ci=FALSE and/or ci.method does not equal "bootstrap".

use.acc.con logical scalar indicating whether to use the acceleration constant when com-
puting the bias-corrected bootstrap confidence interval (see the DETAILS sec-
tion). The default value is FALSE. This argument is ignored if ci=FALSE and/or
ci.method does not equal "bootstrap".

pivot.statistic

character string indicating which pivot statistic to use in the construction of
the confidence interval for the mean when ci.method="normal.approx" or
ci.method="normal.approx.w.cov" (see the DETAILS section). The possi-
ble values are pivot.statistic="z" (the default) and pivot.statistic="t".
When pivot.statistic="t" you may supply the argument ci.sample size
(see below). The argument pivot.statistic is ignored if ci=FALSE.

ci.sample.size numeric scalar indicating what sample size to assume to construct the confidence
interval for the mean if pivot.statistic="t" and ci.method="normal.approx".
The default value is the number of uncensored observations.

Details

If x or censored contain any missing (NA), undefined (NaN) or infinite (Inf, -Inf) values, they will
be removed prior to performing the estimation.

Let x denote a vector of N observations from a gamma distribution with parameters shape=α and
scale=β. The relationship between these parameters and the mean µ and coefficient of variation τ
of this distribution is given by:

α = τ−2 (1)

β = µ/α (2)

µ = α β (3)

τ = α−1/2 (4)

Assume n (0 < n < N ) of these observations are known and c (c = N − n) of these observations
are all censored below (left-censored) or all censored above (right-censored) at k fixed censoring
levels

T1, T2, . . . , Tk; k ≥ 1 (5)

For the case when k ≥ 2, the data are said to be Type I multiply censored. For the case when k = 1,
set T = T1. If the data are left-censored and all n known observations are greater than or equal to
T , or if the data are right-censored and all n known observations are less than or equal to T , then
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the data are said to be Type I singly censored (Nelson, 1982, p.7), otherwise they are considered to
be Type I multiply censored.

Let cj denote the number of observations censored below or above censoring level Tj for j =
1, 2, . . . , k, so that

k∑
i=1

cj = c (6)

Let x(1), x(2), . . . , x(N) denote the “ordered” observations, where now “observation” means either
the actual observation (for uncensored observations) or the censoring level (for censored observa-
tions). For right-censored data, if a censored observation has the same value as an uncensored one,
the uncensored observation should be placed first. For left-censored data, if a censored observation
has the same value as an uncensored one, the censored observation should be placed first.

Note that in this case the quantity x(i) does not necessarily represent the i’th “largest” observation
from the (unknown) complete sample.

Finally, let Ω (omega) denote the set of n subscripts in the “ordered” sample that correspond to
uncensored observations.

Estimation

Maximum Likelihood Estimation (method="mle")
For Type I left censored data, the likelihood function is given by:

L(µ, τ |x) =

(
N

c1c2 . . . ckn

) k∏
j=1

[F (Tj)]
cj
∏
i∈Ω

f [x(i)] (7)

where f and F denote the probability density function (pdf) and cumulative distribution function
(cdf) of the population (Cohen, 1963; Cohen, 1991, pp.6, 50). That is,

f(t) =
tα−1e−t/β

βαΓ(α)
(8)

(Johnson et al., 1994, p.343), where α and β are defined in terms of µ and τ by Equations (1) and
(2) above.

For left singly censored data, equation (7) simplifies to:

L(µ, τ |x) =

(
N

c

)
[F (T )]c

n∏
i=c+1

f [x(i)] (9)

Similarly, for Type I right censored data, the likelihood function is given by:

L(µ, τ |x) =

(
N

c1c2 . . . ckn

) k∏
j=1

[1− F (Tj)]
cj
∏
i∈Ω

f [x(i)] (10)

and for right singly censored data this simplifies to:

L(α, β|x) =

(
N

c

)
[1− F (T )]c

n∏
i=1

f [x(i)] (11)

The maximum likelihood estimators are computed by minimizing the negative log-likelihood func-
tion.
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Confidence Intervals
This section explains how confidence intervals for the mean µ are computed. In this section, do
not confuse the parameter α used to define the confidence level of the confidence interval with the
parameter α that was used earlier to denote the shape parameter of the gamma distribution.

Likelihood Profile (ci.method="profile.likelihood")
This method was proposed by Cox (1970, p.88), and Venzon and Moolgavkar (1988) introduced an
efficient method of computation. This method is also discussed by Stryhn and Christensen (2003)
and Royston (2007). The idea behind this method is to invert the likelihood-ratio test to obtain
a confidence interval for the mean µ while treating the coefficient of variation τ as a nuisance
parameter. Equation (7) above shows the form of the likelihood function L(µ, τ |x) for multiply
left-censored data, where µ and τ are defined by Equations (3) and (4), and Equation (10) shows
the function for multiply right-censored data.

Following Stryhn and Christensen (2003), denote the maximum likelihood estimates of the mean
and coefficient of variation by (µ∗, τ∗). The likelihood ratio test statistic (G2) of the hypothesis
H0 : µ = µ0 (where µ0 is a fixed value) equals the drop in 2log(L) between the “full” model and
the reduced model with µ fixed at µ0, i.e.,

G2 = 2{log[L(µ∗, τ∗)]− log[L(µ0, τ
∗
0 )]} (12)

where τ∗0 is the maximum likelihood estimate of τ for the reduced model (i.e., when µ = µ0).
Under the null hypothesis, the test statistic G2 follows a chi-squared distribution with 1 degree of
freedom.

Alternatively, we may express the test statistic in terms of the profile likelihood function L1 for the
mean µ, which is obtained from the usual likelihood function by maximizing over the parameter τ ,
i.e.,

L1(µ) = maxτL(µ, τ) (13)

Then we have
G2 = 2{log[L1(µ∗)]− log[L1(µ0)]} (14)

A two-sided (1− α)100% confidence interval for the mean µ consists of all values of µ0 for which
the test is not significant at level alpha:

µ0 : G2 ≤ χ2
1,1−α (15)

where χ2
ν,p denotes the p’th quantile of the chi-squared distribution with ν degrees of freedom.

Normal Approximation (ci.method="normal.approx")
This method constructs approximate (1− α)100% confidence intervals for µ based on the assump-
tion that the estimator of µ is approximately normally distributed. That is, a two-sided (1−α)100%
confidence interval for µ is constructed as:

[µ̂− t1−α/2,m−1σ̂µ̂, µ̂+ t1−α/2,m−1σ̂µ̂] (16)

where µ̂ denotes the estimate of µ, σ̂µ̂ denotes the estimated asymptotic standard deviation of the
estimator of µ, m denotes the assumed sample size for the confidence interval, and tp,ν denotes the
p’th quantile of Student’s t-distribuiton with ν degrees of freedom. One-sided confidence intervals
are computed in a similar fashion.

The argument ci.sample.size determines the value of m and by default is equal to the number of
uncensored observations. This is simply an ad-hoc method of constructing confidence intervals and
is not based on any published theoretical results.

When pivot.statistic="z", the p’th quantile from the standard normal distribution is used in
place of the p’th quantile from Student’s t-distribution.
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The standard deviation of the mle of µ is estimated based on the inverse of the Fisher Information
matrix.

Bootstrap and Bias-Corrected Bootstrap Approximation (ci.method="bootstrap")
The bootstrap is a nonparametric method of estimating the distribution (and associated distribution
parameters and quantiles) of a sample statistic, regardless of the distribution of the population from
which the sample was drawn. The bootstrap was introduced by Efron (1979) and a general reference
is Efron and Tibshirani (1993).

In the context of deriving an approximate (1−α)100% confidence interval for the population mean
µ, the bootstrap can be broken down into the following steps:

1. Create a bootstrap sample by taking a random sample of size N from the observations in x,
where sampling is done with replacement. Note that because sampling is done with replace-
ment, the same element of x can appear more than once in the bootstrap sample. Thus, the
bootstrap sample will usually not look exactly like the original sample (e.g., the number of
censored observations in the bootstrap sample will often differ from the number of censored
observations in the original sample).

2. Estimate µ based on the bootstrap sample created in Step 1, using the same method that was
used to estimate µ using the original observations in x. Because the bootstrap sample usually
does not match the original sample, the estimate of µ based on the bootstrap sample will
usually differ from the original estimate based on x.

3. Repeat Steps 1 and 2B times, whereB is some large number. For the function egammaAltCensored,
the number of bootstraps B is determined by the argument n.bootstraps (see the section
ARGUMENTS above). The default value of n.bootstraps is 1000.

4. Use the B estimated values of µ to compute the empirical cumulative distribution function of
this estimator of µ (see ecdfPlot), and then create a confidence interval for µ based on this
estimated cdf.

The percentile interval (Efron and Tibshirani, 1993, p.170) is computed as:

[Ĝ−1(
α

2
), Ĝ−1(

1− α
2

)] (17)

where Ĝ(t) denotes the empirical cdf evaluated at t and thus Ĝ−1(p) denotes the p’th empirical
quantile, that is, the p’th quantile associated with the empirical cdf. The function egammaAltCensored
calls the R function quantile to compute the empirical quantiles used in equation (17).

The percentile method bootstrap confidence interval is only first-order accurate (Efron and Tibshi-
rani, 1993, pp.187-188), meaning that the probability that the confidence interval will contain the
true value of µ can be off by k/

√
N , where kis some constant. Efron and Tibshirani (1993, pp.184-

188) proposed a bias-corrected and accelerated interval that is second-order accurate, meaning that
the probability that the confidence interval will contain the true value of µ may be off by k/N
instead of k/

√
N . The bias-corrected and accelerated confidence interval is computed as:

[Ĝ−1(α1), Ĝ−1(α2)] (18)

where

α1 = Φ[ẑ0 +
ẑ0 + zα/2

1− â(z0 + zα/2)
] (19)

α2 = Φ[ẑ0 +
ẑ0 + z1−α/2

1− â(z0 + z1−α/2)
] (20)

ẑ0 = Φ−1[Ĝ(µ̂)] (21)
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â =

∑N
i=1(µ̂(·) − µ̂(i))

3

6[
∑N
i=1(µ̂(·) − µ̂(i))2]3/2

(22)

where the quantity µ̂(i) denotes the estimate of µ using all the values in x except the i’th one, and

µ̂(·) =
1

N

N∑
i=1

ˆµ(i) (23)

The constant ẑ0 incorporates the bias correction, and the constant â is the acceleration constant. The
term “acceleration” refers to the rate of change of the standard error of the estimate of µwith respect
to the true value of µ (Efron and Tibshirani, 1993, p.186). For a normal (Gaussian) distribution, the
standard error of the estimate of µ does not depend on the value of µ, hence the acceleration constant
is not really necessary. The argument use.acc.con (see the section ARGUMENTS above) deter-
mines whether the acceleration constant â is computed as in equation (22) (use.acc.con=TRUE) or
is set to 0 (use.acc.con=FALSE). The default value is use.acc.con=FALSE.

When ci.method="bootstrap", the function egammaAltCensored computes both the percentile
method and bias-corrected bootstrap confidence intervals.

Value

a list of class "estimateCensored" containing the estimated parameters and other information.
See estimateCensored.object for details.

Note

A sample of data contains censored observations if some of the observations are reported only as
being below or above some censoring level. In environmental data analysis, Type I left-censored
data sets are common, with values being reported as “less than the detection limit” (e.g., Helsel,
2012). Data sets with only one censoring level are called singly censored; data sets with multiple
censoring levels are called multiply or progressively censored.

Statistical methods for dealing with censored data sets have a long history in the field of survival
analysis and life testing. More recently, researchers in the environmental field have proposed al-
ternative methods of computing estimates and confidence intervals in addition to the classical ones
such as maximum likelihood estimation. Helsel (2012, Chapter 6) gives an excellent review of past
studies of the properties of various estimators for parameters of a normal or lognormal distribution
based on censored environmental data.

In practice, it is better to use a confidence interval for the mean or a joint confidence region for the
mean and standard deviation (or coefficient of variation), rather than rely on a single point-estimate
of the mean. Few studies have been done to evaluate the performance of methods for construct-
ing confidence intervals for the mean or joint confidence regions for the mean and coefficient of
variation of a gamma distribution when data are subjected to single or multiple censoring. See, for
example, Singh et al. (2006).

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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See Also

egammaCensored, GammaDist, egamma, estimateCensored.object.

Examples

# Chapter 15 of USEPA (2009) gives several examples of estimating the mean
# and standard deviation of a lognormal distribution on the log-scale using
# manganese concentrations (ppb) in groundwater at five background wells.
# In EnvStats these data are stored in the data frame
# EPA.09.Ex.15.1.manganese.df.

# Here we will estimate the mean and coefficient of variation
# ON THE ORIGINAL SCALE using the MLE and
# assuming a gamma distribution.

# First look at the data:
#-----------------------

EPA.09.Ex.15.1.manganese.df

# Sample Well Manganese.Orig.ppb Manganese.ppb Censored
#1 1 Well.1 <5 5.0 TRUE
#2 2 Well.1 12.1 12.1 FALSE

http://people.upei.ca/hstryhn/stryhn208.pdf


172 egammaAltCensored

#3 3 Well.1 16.9 16.9 FALSE
#...
#23 3 Well.5 3.3 3.3 FALSE
#24 4 Well.5 8.4 8.4 FALSE
#25 5 Well.5 <2 2.0 TRUE

longToWide(EPA.09.Ex.15.1.manganese.df,
"Manganese.Orig.ppb", "Sample", "Well",
paste.row.name = TRUE)

# Well.1 Well.2 Well.3 Well.4 Well.5
#Sample.1 <5 <5 <5 6.3 17.9
#Sample.2 12.1 7.7 5.3 11.9 22.7
#Sample.3 16.9 53.6 12.6 10 3.3
#Sample.4 21.6 9.5 106.3 <2 8.4
#Sample.5 <2 45.9 34.5 77.2 <2

# Now estimate the mean and coefficient of variation
# using the MLE, and compute a confidence interval
# for the mean using the profile-likelihood method.
#---------------------------------------------------

with(EPA.09.Ex.15.1.manganese.df,
egammaAltCensored(Manganese.ppb, Censored, ci = TRUE))

#Results of Distribution Parameter Estimation
#Based on Type I Censored Data
#--------------------------------------------
#
#Assumed Distribution: Gamma
#
#Censoring Side: left
#
#Censoring Level(s): 2 5
#
#Estimated Parameter(s): mean = 19.664797
# cv = 1.252936
#
#Estimation Method: MLE
#
#Data: Manganese.ppb
#
#Censoring Variable: Censored
#
#Sample Size: 25
#
#Percent Censored: 24%
#
#Confidence Interval for: mean
#
#Confidence Interval Method: Profile Likelihood
#
#Confidence Interval Type: two-sided
#
#Confidence Level: 95%
#
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#Confidence Interval: LCL = 12.25151
# UCL = 34.35332

#----------

# Compare the confidence interval for the mean
# based on assuming a lognormal distribution versus
# assuming a gamma distribution.

with(EPA.09.Ex.15.1.manganese.df,
elnormAltCensored(Manganese.ppb, Censored,

ci = TRUE))$interval$limits
# LCL UCL
#12.37629 69.87694

with(EPA.09.Ex.15.1.manganese.df,
egammaAltCensored(Manganese.ppb, Censored,

ci = TRUE))$interval$limits
# LCL UCL
#12.25151 34.35332

egammaCensored Estimate Shape and Scale Parameters for a Gamma Distribution
Based on Type I Censored Data

Description

Estimate the shape and scale parameters of a gamma distribution given a sample of data that has
been subjected to Type I censoring, and optionally construct a confidence interval for the mean.

Usage

egammaCensored(x, censored, method = "mle", censoring.side = "left",
ci = FALSE, ci.method = "profile.likelihood", ci.type = "two-sided",
conf.level = 0.95, n.bootstraps = 1000, use.acc.con = FALSE,
pivot.statistic = "z", ci.sample.size = sum(!censored))

Arguments

x numeric vector of observations. Missing (NA), undefined (NaN), and infinite (Inf,
-Inf) values are allowed but will be removed.

censored numeric or logical vector indicating which values of x are censored. This must
be the same length as x. If the mode of censored is "logical", TRUE values
correspond to elements of x that are censored, and FALSE values correspond to
elements of x that are not censored. If the mode of censored is "numeric",
it must contain only 1’s and 0’s; 1 corresponds to TRUE and 0 corresponds to
FALSE. Missing (NA) values are allowed but will be removed.

method character string specifying the method of estimation. Currently, the only avail-
able method is maximum likelihood (method="mle").

censoring.side character string indicating on which side the censoring occurs. The possible
values are "left" (the default) and "right".
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ci logical scalar indicating whether to compute a confidence interval for the mean
or variance. The default value is ci=FALSE.

ci.method character string indicating what method to use to construct the confidence in-
terval for the mean. The possible values are "profile.likelihood" (pro-
file likelihood; the default), "normal.approx" (normal approximation), and
"bootstrap" (based on bootstrapping). See the DETAILS section for more
information. This argument is ignored if ci=FALSE.

ci.type character string indicating what kind of confidence interval to compute. The
possible values are "two-sided" (the default), "lower", and "upper". This
argument is ignored if ci=FALSE.

conf.level a scalar between 0 and 1 indicating the confidence level of the confidence in-
terval. The default value is conf.level=0.95. This argument is ignored if
ci=FALSE.

n.bootstraps numeric scalar indicating how many bootstraps to use to construct the confi-
dence interval for the mean when ci.type="bootstrap". This argument is
ignored if ci=FALSE and/or ci.method does not equal "bootstrap".

use.acc.con logical scalar indicating whether to use the acceleration constant when com-
puting the bias-corrected bootstrap confidence interval (see the DETAILS sec-
tion). The default value is FALSE. This argument is ignored if ci=FALSE and/or
ci.method does not equal "bootstrap".

pivot.statistic

character string indicating which pivot statistic to use in the construction of
the confidence interval for the mean when ci.method="normal.approx" or
ci.method="normal.approx.w.cov" (see the DETAILS section). The possi-
ble values are pivot.statistic="z" (the default) and pivot.statistic="t".
When pivot.statistic="t" you may supply the argument ci.sample size
(see below). The argument pivot.statistic is ignored if ci=FALSE.

ci.sample.size numeric scalar indicating what sample size to assume to construct the confidence
interval for the mean if pivot.statistic="t" and ci.method="normal.approx".
The default value is the number of uncensored observations.

Details

If x or censored contain any missing (NA), undefined (NaN) or infinite (Inf, -Inf) values, they will
be removed prior to performing the estimation.

Let x denote a vector of N observations from a gamma distribution with parameters shape=α and
scale=β. The relationship between these parameters and the mean µ and coefficient of variation τ
of this distribution is given by:

α = τ−2 (1)

β = µ/α (2)

µ = α β (3)

τ = α−1/2 (4)

Assume n (0 < n < N ) of these observations are known and c (c = N − n) of these observations
are all censored below (left-censored) or all censored above (right-censored) at k fixed censoring
levels

T1, T2, . . . , Tk; k ≥ 1 (5)

For the case when k ≥ 2, the data are said to be Type I multiply censored. For the case when k = 1,
set T = T1. If the data are left-censored and all n known observations are greater than or equal to
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T , or if the data are right-censored and all n known observations are less than or equal to T , then
the data are said to be Type I singly censored (Nelson, 1982, p.7), otherwise they are considered to
be Type I multiply censored.

Let cj denote the number of observations censored below or above censoring level Tj for j =
1, 2, . . . , k, so that

k∑
i=1

cj = c (6)

Let x(1), x(2), . . . , x(N) denote the “ordered” observations, where now “observation” means either
the actual observation (for uncensored observations) or the censoring level (for censored observa-
tions). For right-censored data, if a censored observation has the same value as an uncensored one,
the uncensored observation should be placed first. For left-censored data, if a censored observation
has the same value as an uncensored one, the censored observation should be placed first.

Note that in this case the quantity x(i) does not necessarily represent the i’th “largest” observation
from the (unknown) complete sample.

Finally, let Ω (omega) denote the set of n subscripts in the “ordered” sample that correspond to
uncensored observations.

Estimation

Maximum Likelihood Estimation (method="mle")
For Type I left censored data, the likelihood function is given by:

L(α, β|x) =

(
N

c1c2 . . . ckn

) k∏
j=1

[F (Tj)]
cj
∏
i∈Ω

f [x(i)] (7)

where f and F denote the probability density function (pdf) and cumulative distribution function
(cdf) of the population (Cohen, 1963; Cohen, 1991, pp.6, 50). That is,

f(t) =
tα−1e−t/β

βαΓ(α)
(8)

(Johnson et al., 1994, p.343). For left singly censored data, equation (7) simplifies to:

L(α, β|x) =

(
N

c

)
[F (T )]c

n∏
i=c+1

f [x(i)] (9)

Similarly, for Type I right censored data, the likelihood function is given by:

L(α, β|x) =

(
N

c1c2 . . . ckn

) k∏
j=1

[1− F (Tj)]
cj
∏
i∈Ω

f [x(i)] (10)

and for right singly censored data this simplifies to:

L(α, β|x) =

(
N

c

)
[1− F (T )]c

n∏
i=1

f [x(i)] (11)

The maximum likelihood estimators are computed by minimizing the negative log-likelihood func-
tion.
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Confidence Intervals
This section explains how confidence intervals for the mean µ are computed. In this section, do
not confuse the parameter α used to define the confidence level of the confidence interval with the
parameter α that was used earlier to denote the shape parameter of the gamma distribution.

Likelihood Profile (ci.method="profile.likelihood")
This method was proposed by Cox (1970, p.88), and Venzon and Moolgavkar (1988) introduced an
efficient method of computation. This method is also discussed by Stryhn and Christensen (2003)
and Royston (2007). The idea behind this method is to invert the likelihood-ratio test to obtain
a confidence interval for the mean µ while treating the coefficient of variation τ as a nuisance
parameter. Equation (7) above shows the form of the likelihood function L(µ, τ |x) for multiply
left-censored data, where µ and τ are defined by Equations (3) and (4), and Equation (10) shows
the function for multiply right-censored data.

Following Stryhn and Christensen (2003), denote the maximum likelihood estimates of the mean
and coefficient of variation by (µ∗, τ∗). The likelihood ratio test statistic (G2) of the hypothesis
H0 : µ = µ0 (where µ0 is a fixed value) equals the drop in 2log(L) between the “full” model and
the reduced model with µ fixed at µ0, i.e.,

G2 = 2{log[L(µ∗, τ∗)]− log[L(µ0, τ
∗
0 )]} (12)

where τ∗0 is the maximum likelihood estimate of τ for the reduced model (i.e., when µ = µ0).
Under the null hypothesis, the test statistic G2 follows a chi-squared distribution with 1 degree of
freedom.

Alternatively, we may express the test statistic in terms of the profile likelihood function L1 for the
mean µ, which is obtained from the usual likelihood function by maximizing over the parameter τ ,
i.e.,

L1(µ) = maxτL(µ, τ) (13)

Then we have
G2 = 2{log[L1(µ∗)]− log[L1(µ0)]} (14)

A two-sided (1− α)100% confidence interval for the mean µ consists of all values of µ0 for which
the test is not significant at level alpha:

µ0 : G2 ≤ χ2
1,1−α (15)

where χ2
ν,p denotes the p’th quantile of the chi-squared distribution with ν degrees of freedom.

Normal Approximation (ci.method="normal.approx")
This method constructs approximate (1− α)100% confidence intervals for µ based on the assump-
tion that the estimator of µ is approximately normally distributed. That is, a two-sided (1−α)100%
confidence interval for µ is constructed as:

[µ̂− t1−α/2,m−1σ̂µ̂, µ̂+ t1−α/2,m−1σ̂µ̂] (16)

where µ̂ denotes the estimate of µ, σ̂µ̂ denotes the estimated asymptotic standard deviation of the
estimator of µ, m denotes the assumed sample size for the confidence interval, and tp,ν denotes the
p’th quantile of Student’s t-distribuiton with ν degrees of freedom. One-sided confidence intervals
are computed in a similar fashion.

The argument ci.sample.size determines the value of m and by default is equal to the number of
uncensored observations. This is simply an ad-hoc method of constructing confidence intervals and
is not based on any published theoretical results.

When pivot.statistic="z", the p’th quantile from the standard normal distribution is used in
place of the p’th quantile from Student’s t-distribution.
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The standard deviation of the mle of µ is estimated based on the inverse of the Fisher Information
matrix.

Bootstrap and Bias-Corrected Bootstrap Approximation (ci.method="bootstrap")
The bootstrap is a nonparametric method of estimating the distribution (and associated distribution
parameters and quantiles) of a sample statistic, regardless of the distribution of the population from
which the sample was drawn. The bootstrap was introduced by Efron (1979) and a general reference
is Efron and Tibshirani (1993).

In the context of deriving an approximate (1−α)100% confidence interval for the population mean
µ, the bootstrap can be broken down into the following steps:

1. Create a bootstrap sample by taking a random sample of size N from the observations in x,
where sampling is done with replacement. Note that because sampling is done with replace-
ment, the same element of x can appear more than once in the bootstrap sample. Thus, the
bootstrap sample will usually not look exactly like the original sample (e.g., the number of
censored observations in the bootstrap sample will often differ from the number of censored
observations in the original sample).

2. Estimate µ based on the bootstrap sample created in Step 1, using the same method that was
used to estimate µ using the original observations in x. Because the bootstrap sample usually
does not match the original sample, the estimate of µ based on the bootstrap sample will
usually differ from the original estimate based on x.

3. Repeat Steps 1 and 2B times, whereB is some large number. For the function egammaCensored,
the number of bootstraps B is determined by the argument n.bootstraps (see the section
ARGUMENTS above). The default value of n.bootstraps is 1000.

4. Use the B estimated values of µ to compute the empirical cumulative distribution function of
this estimator of µ (see ecdfPlot), and then create a confidence interval for µ based on this
estimated cdf.

The percentile interval (Efron and Tibshirani, 1993, p.170) is computed as:

[Ĝ−1(
α

2
), Ĝ−1(

1− α
2

)] (17)

where Ĝ(t) denotes the empirical cdf evaluated at t and thus Ĝ−1(p) denotes the p’th empirical
quantile, that is, the p’th quantile associated with the empirical cdf. The function egammaCensored
calls the R function quantile to compute the empirical quantiles used in equation (17).

The percentile method bootstrap confidence interval is only first-order accurate (Efron and Tibshi-
rani, 1993, pp.187-188), meaning that the probability that the confidence interval will contain the
true value of µ can be off by k/

√
N , where kis some constant. Efron and Tibshirani (1993, pp.184-

188) proposed a bias-corrected and accelerated interval that is second-order accurate, meaning that
the probability that the confidence interval will contain the true value of µ may be off by k/N
instead of k/

√
N . The bias-corrected and accelerated confidence interval is computed as:

[Ĝ−1(α1), Ĝ−1(α2)] (18)

where

α1 = Φ[ẑ0 +
ẑ0 + zα/2

1− â(z0 + zα/2)
] (19)

α2 = Φ[ẑ0 +
ẑ0 + z1−α/2

1− â(z0 + z1−α/2)
] (20)

ẑ0 = Φ−1[Ĝ(µ̂)] (21)
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â =

∑N
i=1(µ̂(·) − µ̂(i))

3

6[
∑N
i=1(µ̂(·) − µ̂(i))2]3/2

(22)

where the quantity µ̂(i) denotes the estimate of µ using all the values in x except the i’th one, and

µ̂(·) =
1

N

N∑
i=1

ˆµ(i) (23)

The constant ẑ0 incorporates the bias correction, and the constant â is the acceleration constant. The
term “acceleration” refers to the rate of change of the standard error of the estimate of µwith respect
to the true value of µ (Efron and Tibshirani, 1993, p.186). For a normal (Gaussian) distribution, the
standard error of the estimate of µ does not depend on the value of µ, hence the acceleration constant
is not really necessary. The argument use.acc.con (see the section ARGUMENTS above) deter-
mines whether the acceleration constant â is computed as in equation (22) (use.acc.con=TRUE) or
is set to 0 (use.acc.con=FALSE). The default value is use.acc.con=FALSE.

When ci.method="bootstrap", the function egammaCensored computes both the percentile method
and bias-corrected bootstrap confidence intervals.

Value

a list of class "estimateCensored" containing the estimated parameters and other information.
See estimateCensored.object for details.

Note

A sample of data contains censored observations if some of the observations are reported only as
being below or above some censoring level. In environmental data analysis, Type I left-censored
data sets are common, with values being reported as “less than the detection limit” (e.g., Helsel,
2012). Data sets with only one censoring level are called singly censored; data sets with multiple
censoring levels are called multiply or progressively censored.

Statistical methods for dealing with censored data sets have a long history in the field of survival
analysis and life testing. More recently, researchers in the environmental field have proposed al-
ternative methods of computing estimates and confidence intervals in addition to the classical ones
such as maximum likelihood estimation. Helsel (2012, Chapter 6) gives an excellent review of past
studies of the properties of various estimators for parameters of a normal or lognormal distribution
based on censored environmental data.

In practice, it is better to use a confidence interval for the mean or a joint confidence region for the
mean and standard deviation (or coefficient of variation), rather than rely on a single point-estimate
of the mean. Few studies have been done to evaluate the performance of methods for construct-
ing confidence intervals for the mean or joint confidence regions for the mean and coefficient of
variation of a gamma distribution when data are subjected to single or multiple censoring. See, for
example, Singh et al. (2006).
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See Also

egammaAltCensored, GammaDist, egamma, estimateCensored.object.

Examples

# Chapter 15 of USEPA (2009) gives several examples of estimating the mean
# and standard deviation of a lognormal distribution on the log-scale using
# manganese concentrations (ppb) in groundwater at five background wells.
# In EnvStats these data are stored in the data frame
# EPA.09.Ex.15.1.manganese.df.

# Here we will estimate the shape and scale parameters using
# the data ON THE ORIGINAL SCALE, using the MLE and
# assuming a gamma distribution.

# First look at the data:
#-----------------------

EPA.09.Ex.15.1.manganese.df

# Sample Well Manganese.Orig.ppb Manganese.ppb Censored
#1 1 Well.1 <5 5.0 TRUE
#2 2 Well.1 12.1 12.1 FALSE

http://people.upei.ca/hstryhn/stryhn208.pdf
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#3 3 Well.1 16.9 16.9 FALSE
#...
#23 3 Well.5 3.3 3.3 FALSE
#24 4 Well.5 8.4 8.4 FALSE
#25 5 Well.5 <2 2.0 TRUE

longToWide(EPA.09.Ex.15.1.manganese.df,
"Manganese.Orig.ppb", "Sample", "Well",
paste.row.name = TRUE)

# Well.1 Well.2 Well.3 Well.4 Well.5
#Sample.1 <5 <5 <5 6.3 17.9
#Sample.2 12.1 7.7 5.3 11.9 22.7
#Sample.3 16.9 53.6 12.6 10 3.3
#Sample.4 21.6 9.5 106.3 <2 8.4
#Sample.5 <2 45.9 34.5 77.2 <2

# Now estimate the shape and scale parameters
# using the MLE, and compute a confidence interval
# for the mean using the profile-likelihood method.
#---------------------------------------------------

with(EPA.09.Ex.15.1.manganese.df,
egammaCensored(Manganese.ppb, Censored, ci = TRUE))

#Results of Distribution Parameter Estimation
#Based on Type I Censored Data
#--------------------------------------------
#
#Assumed Distribution: Gamma
#
#Censoring Side: left
#
#Censoring Level(s): 2 5
#
#Estimated Parameter(s): shape = 0.6370043
# scale = 30.8707533
#
#Estimation Method: MLE
#
#Data: Manganese.ppb
#
#Censoring Variable: Censored
#
#Sample Size: 25
#
#Percent Censored: 24%
#
#Confidence Interval for: mean
#
#Confidence Interval Method: Profile Likelihood
#
#Confidence Interval Type: two-sided
#
#Confidence Level: 95%
#
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#Confidence Interval: LCL = 12.25151
# UCL = 34.35332

#----------

# Compare the confidence interval for the mean
# based on assuming a lognormal distribution versus
# assuming a gamma distribution.

with(EPA.09.Ex.15.1.manganese.df,
elnormAltCensored(Manganese.ppb, Censored,

ci = TRUE))$interval$limits
# LCL UCL
#12.37629 69.87694

with(EPA.09.Ex.15.1.manganese.df,
egammaCensored(Manganese.ppb, Censored,

ci = TRUE))$interval$limits
# LCL UCL
#12.25151 34.35332

egeom Estimate Probability Parameter of a Geometric Distribution

Description

Estimate the probability parameter of a geometric distribution.

Usage

egeom(x, method = "mle/mme")

Arguments

x vector of non-negative integers indicating the number of trials that took place
before the first “success” occurred. (The total number of trials that took place is
x+1). Missing (NA), undefined (NaN), and infinite (Inf, -Inf) values are allowed
but will be removed. If length(x)=n and n is greater than 1, it is assumed that
x represents observations from n separate geometric experiments that all had the
same probability of success (prob).

method character string specifying the method of estimation. Possible values are "mle/mme"
(maximum likelihood and method of moments; the default) and "mvue" (mini-
mum variance unbiased). You cannot use method="mvue" if length(x)=1. See
the DETAILS section for more information on these estimation methods.

Details

If x contains any missing (NA), undefined (NaN) or infinite (Inf, -Inf) values, they will be removed
prior to performing the estimation.

Let x = (x1, x2, . . . , xn) be a vector of n independent observations from a geometric distribution
with parameter prob=p.
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It can be shown (e.g., Forbes et al., 2011) that if X is defined as:

X =

n∑
i=1

xi

thenX is an observation from a negative binomial distribution with parameters prob=p and size=n.

Estimation
The maximum likelihood and method of moments estimator (mle/mme) of p is given by:

p̂mle =
n

X + n

and the minimum variance unbiased estimator (mvue) of p is given by:

p̂mvue =
n− 1

X + n− 1

(Forbes et al., 2011). Note that the mvue of p is not defined for n = 1.

Value

a list of class "estimate" containing the estimated parameters and other information. See estimate.object
for details.

Note

The geometric distribution with parameter prob=p is a special case of the negative binomial distri-
bution with parameters size=1 and prob=p.

The negative binomial distribution has its roots in a gambling game where participants would bet on
the number of tosses of a coin necessary to achieve a fixed number of heads. The negative binomial
distribution has been applied in a wide variety of fields, including accident statistics, birth-and-death
processes, and modeling spatial distributions of biological organisms.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References
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Edition. John Wiley and Sons, Hoboken, NJ.
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See Also

Geometric, enbinom, NegBinomial.

Examples

# Generate an observation from a geometric distribution with parameter
# prob=0.2, then estimate the parameter prob.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(250)
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dat <- rgeom(1, prob = 0.2)
dat
#[1] 4

egeom(dat)
#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Geometric
#
#Estimated Parameter(s): prob = 0.2
#
#Estimation Method: mle/mme
#
#Data: dat
#
#Sample Size: 1

#----------

# Generate 3 observations from a geometric distribution with parameter
# prob=0.2, then estimate the parameter prob with the mvue.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(200)
dat <- rgeom(3, prob = 0.2)
dat
#[1] 0 1 2

egeom(dat, method = "mvue")
#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Geometric
#
#Estimated Parameter(s): prob = 0.4
#
#Estimation Method: mvue
#
#Data: dat
#
#Sample Size: 3

#----------

# Clean up
#---------
rm(dat)

egevd Estimate Parameters of a Generalized Extreme Value Distribution

Description

Estimate the location, scale and shape parameters of a generalized extreme value distribution, and
optionally construct a confidence interval for one of the parameters.
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Usage

egevd(x, method = "mle", pwme.method = "unbiased", tsoe.method = "med",
plot.pos.cons = c(a = 0.35, b = 0), ci = FALSE, ci.parameter = "location",
ci.type = "two-sided", ci.method = "normal.approx", information = "observed",
conf.level = 0.95)

Arguments

x numeric vector of observations.

method character string specifying the method of estimation. Possible values are "mle"
(maximum likelihood; the default), "pwme" (probability-weighted moments),
and "tsoe" (two-stage order-statistics estimator of Castillo and Hadi (1994)).
See the DETAILS section for more information on these estimation methods.

pwme.method character string specifying what method to use to compute the probability-weighted
moments when method="pwme". The possible values are "ubiased" (method
based on the U-statistic; the default), or "plotting.position" (method based
on the plotting position formula). See the DETAILS section in this help file and
the help file for pwMoment for more information. This argument is ignored if
method is not equal to "pwme".

tsoe.method character string specifying the robust function to apply in the second stage of
the two-stage order-statistics estimator when method="tsoe". Possible values
are "med" (median; the default), and "lms" (least median of squares). See the
DETAILS section for more information on these estimation methods. This ar-
gument is ignored if method is not equal to "tsoe".

plot.pos.cons numeric vector of length 2 specifying the constants used in the formula for the
plotting positions when method="pwme" and pwme.method="plotting.position".
The default value is plot.pos.cons=c(a=0.35, b=0). If this vector has a
names attribute with the value c("a","b") or c("b","a"), then the elements
will be matched by name in the formula for computing the plotting positions.
Otherwise, the first element is mapped to the name "a" and the second element
to the name "b". See the DETAILS section in this help file and the help file for
pwMoment for more information. This argument is used only if method="tsoe",
or if both method="pwme" and pwme.method="plotting.position".

ci logical scalar indicating whether to compute a confidence interval for the loca-
tion, scale, or shape parameter. The default value is FALSE.

ci.parameter character string indicating the parameter for which the confidence interval is de-
sired. The possible values are "location" (the default), "scale", or "shape".
This argument is ignored if ci=FALSE.

ci.type character string indicating what kind of confidence interval to compute. The
possible values are "two-sided" (the default), "lower", and "upper". This
argument is ignored if ci=FALSE.

ci.method character string indicating what method to use to construct the confidence in-
terval for the location or scale parameter. Currently, the only possible value is
"normal.approx" (the default). See the DETAILS section for more informa-
tion. This argument is ignored if ci=FALSE.

information character string indicating which kind of Fisher information to use when com-
puting the variance-covariance matrix of the maximum likelihood estimators.
The possible values are "observed" (the default) and "expected". See the
DETAILS section for more information. This argument is used only when
method="mle" and ci=TRUE.
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conf.level a scalar between 0 and 1 indicating the confidence level of the confidence in-
terval. The default value is conf.level=0.95. This argument is ignored if
ci=FALSE.

Details

If x contains any missing (NA), undefined (NaN) or infinite (Inf, -Inf) values, they will be removed
prior to performing the estimation.

Let x = (x1, x2, . . . , xn) be a vector of n observations from a generalized extreme value distribu-
tion with parameters location=η, scale=θ, and shape=κ.

Estimation
Maximum Likelihood Estimation (method="mle")
The log likelihood function is given by:

L(η, θ, κ) = −n log(θ)− (1− κ)

n∑
i=1

yi −
n∑
i=1

eyi

where

yi = − 1

κ
log[

1− κ(xi − η)

θ
]

(see, for example, Jenkinson, 1969; Prescott and Walden, 1980; Prescott and Walden, 1983; Hosk-
ing, 1985; MacLeod, 1989). The maximum likelihood estimators (MLE’s) of η, θ, and κ are those
values that maximize the likelihood function, subject to the following constraints:

θ > 0

κ ≤ 1

xi < η +
θ

κ
ifκ > 0

xi > η +
θ

κ
ifκ < 0

Although in theory the value of κ may lie anywhere in the interval (−∞,∞) (see GEVD), the
constraint κ ≤ 1 is imposed because when κ > 1 the likelihood can be made infinite and thus
the MLE does not exist (Castillo and Hadi, 1994). Hence, this method of estimation is not valid
when the true value of κ is larger than 1. Hosking (1985) and Hosking et al. (1985) note that in
practice the value of κ tends to lie in the interval −1/2 < κ < 1/2.

The value of −L is minimized using the R function nlminb. Prescott and Walden (1983) give
formulas for the gradient and Hessian. Only the gradient is supplied in the call to nlminb. The
values of the PWME (see below) are used as the starting values. If the starting value of κ is less
than 0.001 in absolute value, it is reset to sign(k) * 0.001, as suggested by Hosking (1985).

Probability-Weighted Moments Estimation (method="pwme")
The idea of probability-weighted moments was introduced by Greenwood et al. (1979). Landwehr
et al. (1979) derived probability-weighted moment estimators (PWME’s) for the parameters of the
Type I (Gumbel) extreme value distribution. Hosking et al. (1985) extended these results to the
generalized extreme value distribution. See the abstract for Hosking et al. (1985) for details on how
these estimators are computed.

Two-Stage Order Statistics Estimation (method="tsoe")
The two-stage order statistics estimator (TSOE) was introduced by Castillo and Hadi (1994) as an
alternative to the MLE and PWME. Unlike the MLE and PWME, the TSOE of κ exists for all
combinations of sample values and possible values of κ. See the abstract for Castillo and Hadi
(1994) for details on how these estimators are computed. In the second stage, Castillo and Hadi
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(1984) suggest using either the median or the least median of squares as the robust function. The
function egevd allows three options for the robust function: median (tsoe.method="med"; see
the R help file for median), least median of squares (tsoe.method="lms"; see the help file for
lmsreg in the package MASS), and least trimmed squares (tsoe.method="lts"; see the help file
for ltsreg in the package MASS).

Confidence Intervals
When ci=TRUE, an approximate (1 − α)100% confidence intervals for η can be constructed as-
suming the distribution of the estimator of η is approximately normally distributed. A two-sided
confidence interval is constructed as:

[η̂ − t(n− 1, 1− α/2)σ̂η̂, η̂ + t(n− 1, 1− α/2)σ̂η̂]

where t(ν, p) is the p’th quantile of Student’s t-distribution with ν degrees of freedom, and the
quantity

σ̂η̂

denotes the estimated asymptotic standard deviation of the estimator of η.

Similarly, a two-sided confidence interval for θ is constructed as:

[θ̂ − t(n− 1, 1− α/2)σ̂θ̂, θ̂ + t(n− 1, 1− α/2)σ̂θ̂]

and a two-sided confidence interval for κ is constructed as:

[κ̂− t(n− 1, 1− α/2)σ̂κ̂, κ̂+ t(n− 1, 1− α/2)σ̂κ̂]

One-sided confidence intervals for η, θ, and κ are computed in a similar fashion.

Maximum Likelihood Estimator (method="mle")
Prescott and Walden (1980) derive the elements of the Fisher information matrix (the expected infor-
mation). The inverse of this matrix, evaluated at the values of the MLE, is the estimated asymptotic
variance-covariance matrix of the MLE. This method is used to estimate the standard deviations of
the estimated distribution parameters when information="expected". The necessary regularity
conditions hold for κ < 1/2. Thus, this method of constructing confidence intervals is not valid
when the true value of κ is greater than or equal to 1/2.

Prescott and Walden (1983) derive expressions for the observed information matrix (i.e., the Hes-
sian). This matrix is used to compute the estimated asymptotic variance-covariance matrix of the
MLE when information="observed".

In computer simulations, Prescott and Walden (1983) found that the variance-covariance matrix
based on the observed information gave slightly more accurate estimates of the variance of MLE of
κ compared to the estimated variance based on the expected information.

Probability-Weighted Moments Estimator (method="pwme")
Hosking et al. (1985) show that these estimators are asymptotically multivariate normal and derive
the asymptotic variance-covariance matrix. See the abstract for Hosking et al. (1985) for details on
how this matrix is computed.

Two-Stage Order Statistics Estimator (method="tsoe")
Currently there is no built-in method in EnvStats for computing confidence intervals when method="tsoe".
Castillo and Hadi (1994) suggest using the bootstrap or jackknife method.

Value

a list of class "estimate" containing the estimated parameters and other information. See estimate.object
for details.
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Note

Two-parameter extreme value distributions (EVD) have been applied extensively since the 1930’s
to several fields of study, including the distributions of hydrological and meteorological variables,
human lifetimes, and strength of materials. The three-parameter generalized extreme value dis-
tribution (GEVD) was introduced by Jenkinson (1955) to model annual maximum and minimum
values of meteorological events. Since then, it has been used extensively in the hydological and
meteorological fields.

The three families of EVDs are all special kinds of GEVDs. When the shape parameter κ = 0, the
GEVD reduces to the Type I extreme value (Gumbel) distribution. (The function zTestGevdShape
allows you to test the null hypothesis H0 : κ = 0.) When κ > 0, the GEVD is the same as the
Type II extreme value distribution, and when κ < 0 it is the same as the Type III extreme value
distribution.

Hosking et al. (1985) compare the asymptotic and small-sample statistical properties of the PWME
with the MLE and Jenkinson’s (1969) method of sextiles. Castillo and Hadi (1994) compare the
small-sample statistical properties of the MLE, PWME, and TSOE. Hosking and Wallis (1995)
compare the small-sample properties of unbaised L-moment estimators vs. plotting-position L-
moment estimators. (PWMEs can be written as linear combinations of L-moments and thus have
equivalent statistical properties.) Hosking and Wallis (1995) conclude that unbiased estimators
should be used for almost all applications.

Author(s)
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See Also

Generalized Extreme Value Distribution, zTestGevdShape, Extreme Value Distribution, eevd.

Examples

# Generate 20 observations from a generalized extreme value distribution
# with parameters location=2, scale=1, and shape=0.2, then compute the
# MLE and construct a 90% confidence interval for the location parameter.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(498)
dat <- rgevd(20, location = 2, scale = 1, shape = 0.2)
egevd(dat, ci = TRUE, conf.level = 0.9)

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Generalized Extreme Value
#
#Estimated Parameter(s): location = 1.6144631
# scale = 0.9867007
# shape = 0.2632493
#
#Estimation Method: mle
#
#Data: dat
#
#Sample Size: 20
#
#Confidence Interval for: location
#
#Confidence Interval Method: Normal Approximation
# (t Distribution) based on
# observed information
#
#Confidence Interval Type: two-sided
#
#Confidence Level: 90%
#
#Confidence Interval: LCL = 1.225249
# UCL = 2.003677

#----------

# Compare the values of the different types of estimators:

egevd(dat, method = "mle")$parameters
# location scale shape
#1.6144631 0.9867007 0.2632493
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egevd(dat, method = "pwme")$parameters
# location scale shape
#1.5785779 1.0187880 0.2257948

egevd(dat, method = "pwme", pwme.method = "plotting.position")$parameters
# location scale shape
#1.5509183 0.9804992 0.1657040

egevd(dat, method = "tsoe")$parameters
# location scale shape
#1.5372694 1.0876041 0.2927272

egevd(dat, method = "tsoe", tsoe.method = "lms")$parameters
#location scale shape
#1.519469 1.081149 0.284863

egevd(dat, method = "tsoe", tsoe.method = "lts")$parameters
# location scale shape
#1.4840198 1.0679549 0.2691914

#----------

# Clean up
#---------
rm(dat)

ehyper Estimate Parameter of a Hypergeometric Distribution

Description

Estimate m, the number of white balls in the urn, or m+ n, the total number of balls in the urn, for
a hypergeometric distribution.

Usage

ehyper(x, m = NULL, total = NULL, k, method = "mle")

Arguments

x non-negative integer indicating the number of white balls out of a sample of size
k drawn without replacement from the urn. Missing (NA), undefined (NaN), and
infinite (Inf, -Inf) values are not allowed.

m non-negative integer indicating the number of white balls in the urn. You must
supply m or total, but not both. Missing values (NAs) are not allowed.

total positive integer indicating the total number of balls in the urn (i.e., m+n). You
must supply m or total, but not both. Missing values (NAs) are not allowed.

k positive integer indicating the number of balls drawn without replacement from
the urn. Missing values (NAs) are not allowed.
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method character string specifying the method of estimation. Possible values are "mle"
(maximum likelihood; the default) and "mvue" (minimum variance unbiased).
The mvue method is only available when you are estimating m (i.e., when you
supply the argument total). See the DETAILS section for more information on
these estimation methods.

Details

Missing (NA), undefined (NaN), and infinite (Inf, -Inf) values are not allowed.

Let x be an observation from a hypergeometric distribution with parameters m=M , n=N , and k=K.
In R nomenclature, x represents the number of white balls drawn out of a sample of K balls drawn
without replacement from an urn containing M white balls and N black balls. The total number of
balls in the urn is thus M +N . Denote the total number of balls by T = M +N .

Estimation

Estimating M, Given T and K are known
When T and K are known, the maximum likelihood estimator (mle) of M is given by (Forbes et
al., 2011):

M̂mle = floor[(T + 1)x/K] (1)

where floor() represents the floor function. That is, floor(y) is the largest integer less than or
equal to y.

If the quantity floor[(T + 1)x/K] is an integer, then the mle of M is also given by (Johnson et al.,
1992, p.263):

M̂mle = [(T + 1)x/K]− 1 (2)

which is what the function ehyper uses for this case.

The minimum variance unbiased estimator (mvue) of M is given by (Forbes et al., 2011):

M̂mvue = (Tx/K) (3)

Estimating T, given M and K are known
When M and K are known, the maximum likelihood estimator (mle) of T is given by (Forbes et
al., 2011):

T̂mle = floor(KM/x) (4)

Value

a list of class "estimate" containing the estimated parameters and other information. See estimate.object
for details.

Note

The hypergeometric distribution can be described by an urn model with M white balls and N black
balls. If K balls are drawn with replacement, then the number of white balls in the sample of size
K follows a binomial distribution with parameters size=K and prob=M/(M + N). If K balls
are drawn without replacement, then the number of white balls in the sample of size K follows a
hypergeometric distribution with parameters m=M , n=N , and k=K.

The name “hypergeometric” comes from the fact that the probabilities associated with this distribu-
tion can be written as successive terms in the expansion of a function of a Gaussian hypergeometric
series.
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The hypergeometric distribution is applied in a variety of fields, including quality control and es-
timation of animal population size. It is also the distribution used to compute probabilities for
Fishers’s exact test for a 2x2 contingency table.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Forbes, C., M. Evans, N. Hastings, and B. Peacock. (2011). Statistical Distributions. Fourth
Edition. John Wiley and Sons, Hoboken, NJ.

Johnson, N. L., S. Kotz, and A. Kemp. (1992). Univariate Discrete Distributions. Second Edition.
John Wiley and Sons, New York, Chapter 6.

See Also

Hypergeometric.

Examples

# Generate an observation from a hypergeometric distribution with
# parameters m=10, n=30, and k=5, then estimate the parameter m.
# Note: the call to set.seed simply allows you to reproduce this example.
# Also, the only parameter actually estimated is m; once m is estimated,
# n is computed by subtracting the estimated value of m (8 in this example)
# from the given of value of m+n (40 in this example). The parameters
# n and k are shown in the output in order to provide information on
# all of the parameters associated with the hypergeometric distribution.

set.seed(250)
dat <- rhyper(nn = 1, m = 10, n = 30, k = 5)
dat
#[1] 1

ehyper(dat, total = 40, k = 5)

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Hypergeometric
#
#Estimated Parameter(s): m = 8
# n = 32
# k = 5
#
#Estimation Method: mle for m
#
#Data: dat
#
#Sample Size: 1

#----------

# Use the same data as in the previous example, but estimate m+n instead.
# Note: The only parameter estimated is m+n. Once this is estimated,
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# n is computed by subtracting the given value of m (10 in this case)
# from the estimated value of m+n (50 in this example).

ehyper(dat, m = 10, k = 5)

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Hypergeometric
#
#Estimated Parameter(s): m = 10
# n = 40
# k = 5
#
#Estimation Method: mle for m+n
#
#Data: dat
#
#Sample Size: 1

#----------

# Clean up
#---------
rm(dat)

elnorm Estimate Parameters of a Lognormal Distribution (Log-Scale)

Description

Estimate the mean and standard deviation parameters of the logarithm of a lognormal distribution,
and optionally construct a confidence interval for the mean.

Usage

elnorm(x, method = "mvue", ci = FALSE, ci.type = "two-sided",
ci.method = "exact", conf.level = 0.95)

Arguments

x numeric vector of observations.

method character string specifying the method of estimation. Possible values are "mvue"
(minimum variance unbiased; the default), and "mle/mme" (maximum likeli-
hood/method of moments). See the DETAILS section for more information on
these estimation methods.

ci logical scalar indicating whether to compute a confidence interval for the mean.
The default value is FALSE.

ci.type character string indicating what kind of confidence interval to compute. The
possible values are "two-sided" (the default), "lower", and "upper". This
argument is ignored if ci=FALSE.
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ci.method character string indicating what method to use to construct the confidence inter-
val for the mean or variance. The only possible value is "exact" (the default).
See the DETAILS section for more information. This argument is ignored if
ci=FALSE.

conf.level a scalar between 0 and 1 indicating the confidence level of the confidence in-
terval. The default value is conf.level=0.95. This argument is ignored if
ci=FALSE.

Details

If x contains any missing (NA), undefined (NaN) or infinite (Inf, -Inf) values, they will be removed
prior to performing the estimation.

Let X denote a random variable with a lognormal distribution with parameters meanlog=µ and
sdlog=σ. Then Y = log(X) has a normal (Gaussian) distribution with parameters mean=µ and
sd=σ. Thus, the function elnorm simply calls the function enorm using the log-transformed values
of x.

Value

a list of class "estimate" containing the estimated parameters and other information. See estimate.object
for details.

Note

The normal and lognormal distribution are probably the two most frequently used distributions to
model environmental data. In order to make any kind of probability statement about a normally-
distributed population (of chemical concentrations for example), you have to first estimate the mean
and standard deviation (the population parameters) of the distribution. Once you estimate these
parameters, it is often useful to characterize the uncertainty in the estimate of the mean or variance.
This is done with confidence intervals.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Aitchison, J., and J.A.C. Brown (1957). The Lognormal Distribution (with special references to its
uses in economics). Cambridge University Press, London, Chapter 5.

Crow, E.L., and K. Shimizu. (1988). Lognormal Distributions: Theory and Applications. Marcel
Dekker, New York, Chapter 2.

Forbes, C., M. Evans, N. Hastings, and B. Peacock. (2011). Statistical Distributions. Fourth
Edition. John Wiley and Sons, Hoboken, NJ.

Gilbert, R.O. (1987). Statistical Methods for Environmental Pollution Monitoring. Van Nostrand
Reinhold, New York, NY.

Johnson, N. L., S. Kotz, and N. Balakrishnan. (1994). Continuous Univariate Distributions, Volume
1. Second Edition. John Wiley and Sons, New York.

Limpert, E., W.A. Stahel, and M. Abbt. (2001). Log-Normal Distributions Across the Sciences:
Keys and Clues. BioScience 51, 341–352.

Millard, S.P., and N.K. Neerchal. (2001). Environmental Statistics with S-PLUS. CRC Press, Boca
Raton, FL.
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Ott, W.R. (1995). Environmental Statistics and Data Analysis. Lewis Publishers, Boca Raton, FL.

USEPA. (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Uni-
fied Guidance. EPA 530/R-09-007, March 2009. Office of Resource Conservation and Recovery
Program Implementation and Information Division. U.S. Environmental Protection Agency, Wash-
ington, D.C.

See Also

Lognormal, LognormalAlt, Normal.

Examples

# Using the Reference area TcCB data in the data frame EPA.94b.tccb.df,
# estimate the mean and standard deviation of the log-transformed distribution,
# and construct a 95% confidence interval for the mean.

with(EPA.94b.tccb.df, elnorm(TcCB[Area == "Reference"], ci = TRUE))

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Lognormal
#
#Estimated Parameter(s): meanlog = -0.6195712
# sdlog = 0.4679530
#
#Estimation Method: mvue
#
#Data: TcCB[Area == "Reference"]
#
#Sample Size: 47
#
#Confidence Interval for: mean
#
#Confidence Interval Method: Exact
#
#Confidence Interval Type: two-sided
#
#Confidence Level: 95%
#
#Confidence Interval: LCL = -0.7569673
# UCL = -0.4821751

elnorm3 Estimate Parameters of a Three-Parameter Lognormal Distribution
(Log-Scale)

Description

Estimate the mean, standard deviation, and threshold parameters for a three-parameter lognormal
distribution, and optionally construct a confidence interval for the threshold or the median of the
distribution.
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Usage

elnorm3(x, method = "lmle", ci = FALSE, ci.parameter = "threshold",
ci.method = "avar", ci.type = "two-sided", conf.level = 0.95,
threshold.lb.sd = 100)

Arguments

x numeric vector of observations.

method character string specifying the method of estimation. Possible values are "lmle"
(local maximum likelihood; the default), "mme" (method of moments), "mmue"
(method of moments using an unbaised estimate of variance), "mmme" (modified
method of moments due to Cohen and Whitten (1980)), "zero.skew" (zero-
skewness estimator due to Griffiths (1980)), and "royston.skew" (estimator
based on Royston’s (1992b) index of skewness). See the DETAILS section for
more information on these estimation methods.

ci logical scalar indicating whether to compute a confidence interval for either the
threshold or median of the distribution. The default value is FALSE.

ci.parameter character string indicating the parameter for which the confidence interval is
desired. The possible values are "threshold" (the default) and "median". This
argument is ignored if ci=FALSE.

ci.method character string indicating the method to use to construct the confidence interval.
The possible values are "avar" (asymptotic variance; the default), "likelihood.profile",
and "skewness" (method suggested by Royston (1992b) for method="zero.skew").
This argument is ignored if ci=FALSE.

ci.type character string indicating what kind of confidence interval to compute. The
possible values are "two-sided" (the default), "lower", and "upper". This
argument is ignored if ci=FALSE.

conf.level a scalar between 0 and 1 indicating the confidence level of the confidence in-
terval. The default value is conf.level=0.95. This argument is ignored if
ci=FALSE.

threshold.lb.sd

a positive numeric scalar specifying the range over which to look for the local
maximum likelihood (method="lmle") or zero-skewness (method="zero.skewness")
estimator of threshold. The range is set to [ mean(x) - threshold.lb.sd * sd(x), min(x) ].
If you receive a warning message that elnorm3 is unable to find an acceptable
estimate of threshold in this range, it may be because of convergence prob-
lems specific to the data in x. When this occurs, try changing the value of
threshold.lb.sd. This same range is used in constructing confidence intervals
for the threshold parameter. The default value is threshold.lb.sd=100. This
argument is relevant only if method="lmle", method="zero.skew", ci.method="likelihood.profile",
and/or ci.method="skewness".

Details

If x contains any missing (NA), undefined (NaN) or infinite (Inf, -Inf) values, they will be removed
prior to performing the estimation.

Let X denote a random variable from a three-parameter lognormal distribution with parameters
meanlog=µ, sdlog=σ, and threshold=γ. Let x denote a vector of n observations from this distri-
bution. Furthermore, let x(i) denote the i’th order statistic in the sample, so that x(1) denotes the
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smallest value and x(n) denote the largest value in x. Finally, denote the sample mean and variance
by:

x̄ =
1

n

n∑
i=1

xi (1)

s2 =
1

n− 1

n∑
i=1

(xi − x̄)2 (2)

Note that the sample variance is the unbiased version. Denote the method of moments estimator of
variance by:

s2
m =

1

n

n∑
i=1

(xi − x̄)2 (3)

Estimation

Local Maximum Likelihood Estimation (method="lmle")
Hill (1963) showed that the likelihood function approaches infinity as γ approaches x(1), so that
the global maximum likelihood estimators of (µ, σ, γ) are (−∞,∞, x(1)), which are inadmissible,
since γ must be smaller than x(1). Cohen (1951) suggested using local maximum likelihood esti-
mators (lmle’s), derived by equating partial derivatives of the log-likelihood function to zero. These
estimators were studied by Harter and Moore (1966), Calitz (1973), Cohen and Whitten (1980), and
Griffiths (1980), and appear to possess most of the desirable properties ordinarily associated with
maximum likelihood estimators.

Cohen (1951) showed that the lmle of γ is given by the solution to the following equation:

[

n∑
i=1

wi] {
n∑
i=1

yi −
n∑
i=1

y2
i +

1

n
[

n∑
i=1

yi]
2} − n

n∑
i=1

yi
wi

= 0 (4)

where
wi = xi − γ̂ (5)

yi = log(xi − γ̂) = log(wi) (6)

and that the lmle’s of µ and σ then follow as:

µ̂ =
1

n

n∑
i=1

yi = ȳ (7)

σ̂2 =
1

n

n∑
i=1

(yi − ȳ)2 (8)

Unfortunately, while equation (4) simplifies the task of computing the lmle’s, for certain data sets
there still may be convergence problems (Calitz, 1973), and occasionally multiple roots of equation
(4) may exist. When multiple roots to equation (4) exisit, Cohen and Whitten (1980) recommend
using the one that results in closest agreement between the mle of µ (equation (7)) and the sample
mean (equation (1)).

On the other hand, Griffiths (1980) showed that for a given value of the threshold parameter γ, the
maximized value of the log-likelihood (the “profile likelihood” for γ) is given by:

log[L(γ)] =
−n
2

[1 + log(2π) + 2µ̂+ log(σ̂2)] (9)

where the estimates of µ and σ are defined in equations (7) and (8), so the lmle of γ reduces to
an iterative search over the values of γ. Griffiths (1980) noted that the distribution of the lmle of
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γ is far from normal and that log[L(γ)] is not quadratic near the lmle of γ. He suggested a better
parameterization based on

η = −log(x(1) − γ) (10)

Thus, once the lmle of η is found using equations (9) and (10), the lmle of γ is given by:

γ̂ = x(1) − exp(−η̂) (11)

When method="lmle", the function elnorm3 uses the function nlminb to search for the minimum
of −2log[L(η)], using the modified method of moments estimator (method="mmme"; see below) as
the starting value for γ. Equation (11) is then used to solve for the lmle of γ, and equation (4)
is used to “fine tune” the estimated value of γ. The lmle’s of µ and σ are then computed using
equations (6)-(8).

Method of Moments Estimation (method="mme")
Denote the r’th sample central moment by:

mr =
1

n

n∑
i=1

(xi − x̄)r (12)

and note that
s2
m = m2 (13)

Equating the sample first moment (the sample mean) with its population value (the population
mean), and equating the second and third sample central moments with their population values
yields (Johnson et al., 1994, p.228):

x̄ = γ + β
√
ω (14)

m2 = s2
m = β2ω(ω − 1) (15)

m3 = β3ω3/2(ω − 1)2(ω + 2) (16)

where
β = exp(µ) (17)

ω = exp(σ2) (18)

Combining equations (15) and (16) yields:

b1 =
m3

m
3/2
2

= (ω + 2)
√
ω − 1 (19)

The quantity on the left-hand side of equation (19) is the usual estimator of skewness. Solving
equation (19) for ω yields:

ω̂ = (d+ h)1/3 + (d− h)1/3 − 1 (20)

where

d = 1 +
b1
2

(21)

h = sqrtd2 − 1 (22)

Using equation (18), the method of moments estimator of σ is then computed as:

σ̂2 = log(ω̂) (23)
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Combining equations (15) and (17), the method of moments estimator of µ is computed as:

µ̂ =
1

2
log[

s2
m

ˆomega(ω̂ − 1)
] (24)

Finally, using equations (14), (17), and (18), the method of moments estimator of γ is computed as:

x̄− exp(m̂u+
σ̂2

2
) (25)

There are two major problems with using method of moments estimators for the three-parameter
lognormal distribution. First, they are subject to very large sampling error due to the use of sec-
ond and third sample moments (Cohen, 1988, p.121; Johnson et al., 1994, p.228). Second, Heyde
(1963) showed that the lognormal distribution is not uniquely determined by its moments.

Method of Moments Estimators Using an Unbiased Estimate of Variance (method="mmue")
This method of estimation is exactly the same as the method of moments (method="mme"), except
that the unbiased estimator of variance (equation (3)) is used in place of the method of moments
one (equation (4)). This modification is given in Cohen (1988, pp.119-120).

Modified Method of Moments Estimation (method="mmme")
This method of estimation is described by Cohen (1988, pp.125-132). It was introduced by Cohen
and Whitten (1980; their MME-II with r=1) and was further investigated by Cohen et al. (1985). It
is motivated by the fact that the first order statistic in the sample, x(1), contains more information
about the threshold parameter γ than any other observation and often more information than all of
the other observations combined (Cohen, 1988, p.125).

The first two sets of equations are the same as for the modified method of moments estimators
(method="mmme"), i.e., equations (14) and (15) with the unbiased estimator of variance (equation
(3)) used in place of the method of moments one (equation (4)). The third equation replaces equation
(16) by equating a function of the first order statistic with its expected value:

log(x(1) − γ) = µ+ σE[Z(1,n)] (26)

whereE[Z(i,n)] denotes the expected value of the i’th order statistic in a random sample of n obser-
vations from a standard normal distribution. (See the help file for evNormOrdStats for information
on how E[Z(i,n)] is computed.) Using equations (17) and (18), equation (26) can be rewritten as:

x(1) = γ + βexp{
√
log(ω)E[Z(i,n)]} (27)

Combining equations (14), (15), (17), (18), and (27) yields the following equation for the estimate
of ω:

s2

[x̄− x(1)]2
=

ω̂(ω̂ − 1)

[
√
ω̂ − exp{

√
log(ω)E[Z(i,n)]}]2

(28)

After equation (28) is solved for ω̂, the estimate of σ is again computed using equation (23), and
the estimate of µ is computed using equation (24), where the unbiased estimate of variaince is used
in place of the biased one (just as for method="mmue").

Zero-Skewness Estimation (method="zero.skew")
This method of estimation was introduced by Griffiths (1980), and elaborated upon by Royston
(1992b). The idea is that if the threshold parameter γ were known, then the distribution of:

Y = log(X − γ) (29)
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is normal, so the skew of Y is 0. Thus, the threshold parameter γ is estimated as that value that
forces the sample skew (defined in equation (19)) of the observations defined in equation (6) to be
0. That is, the zero-skewness estimator of γ is the value that satisfies the following equation:

0 =
1
n

∑n
i=1(yi − ȳ)3

[ 1
n

∑n
i=1(yi − ȳ)2]3/2

(30)

where
yi = log(xi − γ̂) (31)

Note that since the denominator in equation (30) is always positive (assuming there are at least two
unique values in x), only the numerator needs to be used to determine the value of γ̂.

Once the value of γ̂ has been determined, µ and σ are estimated using equations (7) and (8), except
the unbiased estimator of variance is used in equation (8).

Royston (1992b) developed a modification of the Shaprio-Wilk goodness-of-fit test for normal-
ity based on tranforming the data using equation (6) and the zero-skewness estimator of γ (see
gofTest).

Estimators Based on Royston’s Index of Skewness (method="royston.skew")
This method of estimation is discussed by Royston (1992b), and is similar to the zero-skewness
method discussed above, except a different measure of skewness is used. Royston’s (1992b) index
of skewness is given by:

q =
y(n) − ỹ
ỹ − y(1)

(32)

where y(i) denotes the i’th order statistic of y and y is defined in equation (31) above, and ỹ denotes
the median of y. Royston (1992b) shows that the value of γ that yields a value of q = 0 is given by:

γ̂ =
y(1)y(n) − ỹ2

y(1) + y(n) − 2ỹ
(33)

Again, as for the zero-skewness method, once the value of γ̂ has been determined, µ and σ are
estimated using equations (7) and (8), except the unbiased estimator of variance is used in equation
(8).

Royston (1992b) developed this estimator as a quick way to estimate γ.

Confidence Intervals
This section explains three different methods for constructing confidence intervals for the threshold
parameter γ, or the median of the three-parameter lognormal distribution, which is given by:

Med[X] = γ + exp(µ) = γ + β (34)

Normal Approximation Based on Asymptotic Variances and Covariances (ci.method="avar")
Formulas for asymptotic variances and covariances for the three-parameter lognormal distribution,
based on the information matrix, are given in Cohen (1951), Cohen and Whitten (1980), Cohen et
al., (1985), and Cohen (1988). The relevant quantities for γ and the median are:

V ar(γ̂) = σ2
γ̂ =

σ2

n
(
β2

ω
)H (35)

V ar(β̂) = σ2
β̂

=
σ2

n
β2(1 +H) (36)
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Cov(γ̂, β̂) = σγ̂,β̂ =
−σ3

n
(
β2

√
ω

)H (37)

where
H = [ω(1 + σ2)− 2σ2 − 1]−1 (38)

A two-sided (1− α)100% confidence interval for γ is computed as:

γ̂ − tn−2,1−α/2σ̂γ̂ , γ̂ + tn−2,1−α/2σ̂γ̂ (39)

where tν,p denotes the p’th quantile of Student’s t-distribution with n degrees of freedom, and the
quantity σ̂γ̂ is computed using equations (35) and (38) and substituting estimated values of β, ω,
and σ. One-sided confidence intervals are computed in a similar manner.

A two-sided (1−α)100% confidence interval for the median (see equation (34) above) is computed
as:

γ̂ + β̂ − tn−2,1−α/2σ̂γ̂+β̂ , γ̂ + β̂ + tn−2,1−α/2σ̂γ̂+β̂ (40)

where
σ̂2
γ̂+β̂

= σ̂2
γ̂ + σ̂2

β̂
+ σ̂γ̂,β̂ (41)

is computed using equations (35)-(38) and substituting estimated values of β, ω, and σ. One-sided
confidence intervals are computed in a similar manner.

This method of constructing confidence intervals is analogous to using the Wald test (e.g., Silvey,
1975, pp.115-118) to test hypotheses on the parameters.

Because of the regularity problems associated with the global maximum likelihood estimators, it
is questionble whether the asymptotic variances and covariances shown above apply to local max-
imum likelihood estimators. Simulation studies, however, have shown that these estimates of vari-
ance and covariance perform reasonably well (Harter and Moore, 1966; Cohen and Whitten, 1980).

Note that this method of constructing confidence intervals can be used with estimators other than
the lmle’s. Cohen and Whitten (1980) and Cohen et al. (1985) found that the asymptotic variances
and covariances are reasonably close to corresponding simulated variances and covariances for the
modified method of moments estimators (method="mmme").

Likelihood Profile (ci.method="likelihood.profile")
Griffiths (1980) suggested constructing confidence intervals for the threshold parameter γ based on
the profile likelihood function given in equations (9) and (10). Royston (1992b) further elaborated
upon this procedure. A two-sided (1− α)100% confidence interval for η is constructed as:

[ηLCL, ηUCL] (42)

by finding the two values of η (one larger than the lmle of η and one smaller than the lmle of η) that
satisfy:

log[L(η)] = log[L(η̂lmle)]−
1

2
χ2

1,α/2 (43)

where χ2
ν,p denotes the p’th quantile of the chi-square distribution with ν degrees of freedom. Once

these values are found, the two-sided confidence for γ is computed as:

[γLCL, γUCL] (44)

where
γLCL = x(1) − exp(−ηLCL) (45)

γUCL = x(1) − exp(−ηUCL) (46)

One-sided intervals are construced in a similar manner.
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This method of constructing confidence intervals is analogous to using the likelihood-ratio test (e.g.,
Silvey, 1975, pp.108-115) to test hypotheses on the parameters.

To construct a two-sided (1 − α)100% confidence interval for the median (see equation (34)),
Royston (1992b) suggested the following procedure:

1. Construct a confidence interval for γ using the likelihood profile procedure.

2. Construct a confidence interval for β as:

[βLCL, βUCL] = [exp(µ̂− tn−2,1−α/2
σ̂

n
), exp(µ̂+ tn−2,1−α/2

σ̂

n
)] (47)

3. Construct the confidence interval for the median as:

[γLCL + βLCL, γUCL + βUCL] (48)

Royston (1992b) actually suggested using the quantile from the standard normal distribution instead
of Student’s t-distribution in step 2 above. The function elnorm3, however, uses the Student’s t
quantile.

Note that this method of constructing confidence intervals can be used with estimators other than
the lmle’s.

Royston’s Confidence Interval Based on Significant Skewness (ci.method="skewness")
Royston (1992b) suggested constructing confidence intervals for the threshold parameter γ based
on the idea behind the zero-skewness estimator (method="zero.skew"). A two-sided (1−α)100%
confidence interval for γ is constructed by finding the two values of γ that yield a p-value of α/2 for
the test of zero-skewness on the observations y defined in equation (6) (see gofTest). One-sided
confidence intervals are constructed in a similar manner.

To construct (1 − α)100% confidence intervals for the median (see equation (34)), the exact same
procedure is used as for ci.method="likelihood.profile", except that the confidence interval
for γ is based on the zero-skewness method just described instead of the likelihood profile method.

Value

a list of class "estimate" containing the estimated parameters and other information. See estimate.object
for details.

Note

The problem of estimating the parameters of a three-parameter lognormal distribution has been
extensively discussed by Aitchison and Brown (1957, Chapter 6), Calitz (1973), Cohen (1951),
Cohen (1988), Cohen and Whitten (1980), Cohen et al. (1985), Griffiths (1980), Harter and Moore
(1966), Hill (1963), and Royston (1992b). Stedinger (1980) and Hoshi et al. (1984) discuss fitting
the three-parameter lognormal distribution to hydrologic data.

The global maximum likelihood estimates are inadmissible. In the past, several researchers have
found that the local maximum likelihood estimates (lmle’s) occasionally fail because of convergence
problems, but they were not using the likelihood profile and reparameterization of Griffiths (1980).
Cohen (1988) recommends the modified methods of moments estimators over lmle’s because they
are easy to compute, they are unbiased with respect to µ and σ2 (the mean and standard deviation on
the log-scale), their variances are minimal or near minimal, and they do not suffer from regularity
problems.

Because the distribution of the lmle of the threshold parameter γ is far from normal for mod-
erate sample sizes (Griffiths, 1980), it is questionable whether confidence intervals for γ or the
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median based on asymptotic variances and covariances will perform well. Cohen and Whitten
(1980) and Cohen et al. (1985), however, found that the asymptotic variances and covariances are
reasonably close to corresponding simulated variances and covariances for the modified method
of moments estimators (method="mmme"). In a simulation study (5000 monte carlo trials), Roys-
ton (1992b) found that the coverage of confidence intervals for γ based on the likelihood profile
(ci.method="likelihood.profile") was very close the nominal level (94.1% for a nominal level
of 95%), although not symmetric. Royston (1992b) also found that the coverage of confidence in-
tervals for γ based on the skewness method (ci.method="skewness") was also very close (95.4%)
and symmetric.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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See Also

Lognormal3, Lognormal, LognormalAlt, Normal.

Examples

# Generate 20 observations from a 3-parameter lognormal distribution
# with parameters meanlog=1.5, sdlog=1, and threshold=10, then use
# Cohen and Whittens (1980) modified moments estimators to estimate
# the parameters, and construct a confidence interval for the
# threshold based on the estimated asymptotic variance.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(250)
dat <- rlnorm3(20, meanlog = 1.5, sdlog = 1, threshold = 10)
elnorm3(dat, method = "mmme", ci = TRUE)

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: 3-Parameter Lognormal
#
#Estimated Parameter(s): meanlog = 1.5206664
# sdlog = 0.5330974
# threshold = 9.6620403
#
#Estimation Method: mmme
#
#Data: dat
#
#Sample Size: 20
#
#Confidence Interval for: threshold
#
#Confidence Interval Method: Normal Approximation
# Based on Asymptotic Variance
#
#Confidence Interval Type: two-sided
#
#Confidence Level: 95%
#
#Confidence Interval: LCL = 6.985258
# UCL = 12.338823

#----------

# Repeat the above example using the other methods of estimation
# and compare.

round(elnorm3(dat, "lmle")$parameters, 1)
#meanlog sdlog threshold
# 1.3 0.7 10.5

round(elnorm3(dat, "mme")$parameters, 1)
#meanlog sdlog threshold
# 2.1 0.3 6.0
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round(elnorm3(dat, "mmue")$parameters, 1)
#meanlog sdlog threshold
# 2.2 0.3 5.8

round(elnorm3(dat, "mmme")$parameters, 1)
#meanlog sdlog threshold
# 1.5 0.5 9.7

round(elnorm3(dat, "zero.skew")$parameters, 1)
#meanlog sdlog threshold
# 1.3 0.6 10.3

round(elnorm3(dat, "royston")$parameters, 1)
#meanlog sdlog threshold
# 1.4 0.6 10.1

#----------

# Compare methods for computing a two-sided 95% confidence interval
# for the threshold:
# modified method of moments estimator using asymptotic variance,
# lmle using asymptotic variance,
# lmle using likelihood profile, and
# zero-skewness estimator using the skewness method.

elnorm3(dat, method = "mmme", ci = TRUE,
ci.method = "avar")$interval$limits

# LCL UCL
# 6.985258 12.338823

elnorm3(dat, method = "lmle", ci = TRUE,
ci.method = "avar")$interval$limits

# LCL UCL
# 9.017223 11.980107

elnorm3(dat, method = "lmle", ci = TRUE,
ci.method="likelihood.profile")$interval$limits

# LCL UCL
# 3.699989 11.266029

elnorm3(dat, method = "zero.skew", ci = TRUE,
ci.method = "skewness")$interval$limits

# LCL UCL
#-25.18851 11.18652

#----------

# Now construct a confidence interval for the median of the distribution
# based on using the modified method of moments estimator for threshold
# and the asymptotic variances and covariances. Note that the true median
# is given by threshold + exp(meanlog) = 10 + exp(1.5) = 14.48169.

elnorm3(dat, method = "mmme", ci = TRUE, ci.parameter = "median")

#Results of Distribution Parameter Estimation
#--------------------------------------------
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#
#Assumed Distribution: 3-Parameter Lognormal
#
#Estimated Parameter(s): meanlog = 1.5206664
# sdlog = 0.5330974
# threshold = 9.6620403
#
#Estimation Method: mmme
#
#Data: dat
#
#Sample Size: 20
#
#Confidence Interval for: median
#
#Confidence Interval Method: Normal Approximation
# Based on Asymptotic Variance
#
#Confidence Interval Type: two-sided
#
#Confidence Level: 95%
#
#Confidence Interval: LCL = 11.20541
# UCL = 17.26922

#----------

# Compare methods for computing a two-sided 95% confidence interval
# for the median:
# modified method of moments estimator using asymptotic variance,
# lmle using asymptotic variance,
# lmle using likelihood profile, and
# zero-skewness estimator using the skewness method.

elnorm3(dat, method = "mmme", ci = TRUE, ci.parameter = "median",
ci.method = "avar")$interval$limits

# LCL UCL
#11.20541 17.26922

elnorm3(dat, method = "lmle", ci = TRUE, ci.parameter = "median",
ci.method = "avar")$interval$limits

# LCL UCL
#12.28326 15.87233

elnorm3(dat, method = "lmle", ci = TRUE, ci.parameter = "median",
ci.method = "likelihood.profile")$interval$limits

# LCL UCL
# 6.314583 16.165525

elnorm3(dat, method = "zero.skew", ci = TRUE, ci.parameter = "median",
ci.method = "skewness")$interval$limits

# LCL UCL
#-22.38322 16.33569

#----------

# Clean up
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#---------

rm(dat)

elnormAlt Estimate Parameters of a Lognormal Distribution (Original Scale)

Description

Estimate the mean and coefficient of variation of a lognormal distribution, and optionally construct
a confidence interval for the mean.

Usage

elnormAlt(x, method = "mvue", ci = FALSE, ci.type = "two-sided",
ci.method = "land", conf.level = 0.95, parkin.list = NULL)

Arguments

x numeric vector of positive observations.

method character string specifying the method of estimation. Possible values are "mvue"
(minimum variance unbiased; the default), "qmle" (quasi maximum likelihood),
"mle" (maximum likelihood), "mme" (method of moments), and "mmue" (method
of moments based on the unbiased estimate of variance). See the DETAILS sec-
tion for more information on these estimation methods.

ci logical scalar indicating whether to compute a confidence interval for the mean.
The default value is FALSE.

ci.type character string indicating what kind of confidence interval to compute. The
possible values are "two-sided" (the default), "lower", and "upper". This
argument is ignored if ci=FALSE.

ci.method character string indicating what method to use to construct the confidence inter-
val for the mean. The possible values are "land" (Land’s method; the default),
zou (Zou et al.’s method), "parkin" (Parkin et al.’s method), "cox" (Cox’s
approximation), and "normal.approx" (normal approximation). See the DE-
TAILS section for more information. This argument is ignored if ci=FALSE.

conf.level a scalar between 0 and 1 indicating the confidence level of the confidence in-
terval. The default value is conf.level=0.95. This argument is ignored if
ci=FALSE.

parkin.list a list containing arguments for the function eqnpar. The components of this
list are lcl.rank (set to NULL by default), ucl.rank (set to NULL by default),
ci.method (set to "exact" if the sample size is≤ 20, otherwise set to "normal.approx"),
and approx.conf.level (set to the value of conf.level). This argument is ig-
nored unless ci=TRUE and ci.method="parkin".
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Details

If x contains any missing (NA), undefined (NaN) or infinite (Inf, -Inf) values, they will be removed
prior to performing the estimation.

Let x be a vector of n observations from a lognormal distribution with parameters mean=θ and cv=τ .
Let η denote the standard deviation of this distribution, so that η = θτ . Set y = log(x). Then y is a
vector of observations from a normal distribution with parameters mean=µ and sd=σ. See the help
file for LognormalAlt for the relationship between θ, τ, η, µ, and σ.

Estimation
This section explains how each of the estimators of mean=θ and cv=τ are computed. The approach
is to first compute estimates of θ and η2 (the mean and variance of the lognormal distribution), say
θ̂ and η̂2, then compute the estimate of the cv τ by τ̂ = η̂/θ̂.

Minimum Variance Unbiased Estimation (method="mvue")
The minimum variance unbiased estimators (mvue’s) of θ and η2 were derived by Finney (1941)
and are discussed in Gilbert (1987, pp. 164-167) and Cohn et al. (1989). These estimators are
computed as:

θ̂mvue = eȳgn−1(
s2

2
) (1)

η̂2
mvue = e2ȳ{gn−1(2s2)− gn−1[

(n− 2)s2

n− 1
]} (2)

where

ȳ =
1

n

n∑
i=1

yi (3)

s2 =
1

n− 1

n∑
i=1

(yi − ȳ)2 (4)

gm(z) =

∞∑
i=0

mi(m+ 2i)

m(m+ 2) · · · (m+ 2i)
(

m

m+ 1
)i(
zi

i!
) (5)

The expected value and variance of the mvue of θ are (Bradu and Mundlak, 1970; Cohn et al.,
1989):

E[θ̂mvue] = θ (6)

V ar[θ̂mvue] = e2µ{e[(2+n−1)σ2]/ngn−1(
σ4

4n
)− eσ

2

} (7)

Maximum Likelihood Estimation (method="mle")
The maximum likelihood estimators (mle’s) of θ and η2 are given by:

θ̂mle = exp(ȳ +
σ̂2
mle

2
) (8)

η̂2
mle = θ̂2

mleτ̂
2
mle (9)

where
τ̂2
mle = exp(σ̂2

mle)− 1 (10)

σ̂2
mle =

n− 1

n
s2 (11)

The expected value and variance of the mle of θ are (after Cohn et al., 1989):

E[θ̂mle] = θexp[
−(n− 1)σ2

2n
](1− σ2

n
)−(n−1)/2 (12)
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V ar[θ̂mle] = exp(2µ+
σ2

n
){exp(σ

2

n
)[1− 2σ2

n
]−(n−1)/2 − [1− σ2

n
]−(n−1)} (13)

As can be seen from equation (12), the expected value of the mle of θ does not exist when σ2 > n.
In general, the p’th moment of the mle of θ does not exist when σ2 > n/p.

Quasi Maximum Likelihood Estimation (method="qmle")
The quasi maximum likelihood estimators (qmle’s; Cohn et al., 1989; Gilbert, 1987, p.167) of θ
and η2 are the same as the mle’s, except the mle of σ2 in equations (8) and (10) is replaced with the
more commonly used mvue of σ2 shown in equation (4):

θ̂qmle = exp(ȳ +
s2

2
) (14)

η̂2
qmle = θ̂2

qmleτ̂
2
qmle (15)

τ̂2
qmle = exp(s2)− 1 (16)

The expected value and variance of the qmle of θ are (Cohn et al., 1989):

E[θ̂mle] = θexp[
−(n− 1)σ2

2n
](1− σ2

n− 1
)−(n−1)/2 (17)

V ar[θ̂mle] = exp(2µ+
σ2

n
){exp(σ

2

n
)[1− 2σ2

n− 1
]−(n−1)/2 − [1− σ2

n− 1
]−(n−1)} (18)

As can be seen from equation (17), the expected value of the qmle of θ does not exist when σ2 >
(n− 1). In general, the p’th moment of the mle of θ does not exist when σ2 > (n− 1)/p.

Note that Gilbert (1987, p. 167) incorrectly presents equation (12) rather than equation (17) as the
expected value of the qmle of θ. For large values of n relative to σ2, however, equations (12) and
(17) are virtually identical.

Method of Moments Estimation (method="mme")
The method of moments estimators (mme’s) of θ and η2 are found by equating the sample mean
and variance with their population values:

θ̂mme = x̄ =
1

n

n∑
i=1

xi (19)

η̂mme =
1

n

n∑
i=1

(xi − x̄)2 (20)

Note that the estimator of variance in equation (20) is biased.

The expected value and variance of the mme of θ are:

E[θ̂mme] = θ (21)

V ar[θ̂mme] =
η2

n
=

1

n
exp(2µ+ σ2)[exp(σ2)− 1] (22)

Method of Moments Estimation Based on the Unbiased Estimate of Variance (method="mmue")
These estimators are exactly the same as the method of moments estimators described above, except
that the usual unbiased estimate of variance is used:

θ̂mmue = x̄ =
1

n

n∑
i=1

xi (23)
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η̂mmue =
1

n− 1

n∑
i=1

(xi − x̄)2 (24)

Since the mmue of θ is equivalent to the mme of θ, so are its mean and varaince.

Confidence Intervals
This section explains the different methods for constructing confidence intervals for θ, the mean of
the lognormal distribution.

Land’s Method (ci.method="land")
Land (1971, 1975) derived a method for computing one-sided (lower or upper) uniformly most
accurate unbiased confidence intervals for θ. A two-sided confidence interval can be constructed
by combining an optimal lower confidence limit with an optimal upper confidence limit. This
procedure for two-sided confidence intervals is only asymptotically optimal, but for most purposes
should be acceptable (Land, 1975, p.387).

As shown in equation (3) in the help file for LognormalAlt, the mean θ of a lognormal random
variable is related to the mean µ and standard deviation σ of the log-transformed random variable
by the following relationship:

θ = eβ (25)

where

β = µ+
σ2

2
(26)

Land (1971) developed confidence bounds for the quantity β. The mvue of β is given by:

β̂mvue = ȳ +
s2

2
(27)

Note that θ̂qmle = exp(β̂mvue). The (1− α)100% two-sided confidence interval for β is given by:

[β̂mvue + s
Cα/2√
n− 1

, β̂mvue + s
C1−α/2√
n− 1

] (28)

the (1− α)100% one-sided upper confidence interval for β is given by:

[−∞, β̂mvue + s
C1−α√
n− 1

] (29)

and the (1− α)100% one-sided lower confidence interval for β is given by:

[β̂mvue + s
Cα√
n− 1

, ∞] (30)

where s is the estimate of σ (see equation (4) above), and the factor C is given in tables in Land
(1975).

Thus, by equations (25)-(30), the two-sided (1− α)100% confidence interval for θ is given by:

{θ̂qmleexp[s
Cα/2√
n− 1

], θ̂qmleexp[s
C1−α/2√
n− 1

]} (31)

the (1− α)100% one-sided upper confidence interval for θ is given by:

{0, θ̂qmleexp[s
C1−α√
n− 1

]} (32)
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and the (1− α)100% one-sided lower confidence interval for θ is given by:

{θ̂qmleexp[s
Cα√
n− 1

], ∞} (33)

Note that Gilbert (1987, pp. 169-171, 264-265) denotes the quantity C above as H and reproduces
a subset of Land’s (1975) tables. Some guidance documents (e.g., USEPA, 1992d) refer to this
quantity as the H-statistic.

Zou et al.’s Method (ci.method="zou")
Zou et al. (2009) proposed the following approximation for the two-sided (1−α)100% confidence
intervals for θ. The lower limit LL is given by:

LL = θ̂qmleexp{−[
z2

1−α/2s
2

n
+ (

s2

2
− (n− 1)s2

2χ2
1−α/2,n−1

)2]1/2} (34)

and the upper limit UL is given by:

UL = θ̂qmleexp{[
z2

1−α/2s
2

n
+ (

(n− 1)s2

2χ2
α/2,n−1

− s2

2
)2]1/2} (35)

where zp denotes the p’th quantile of the standard normal distribuiton, and χp,ν denotes the p’th
quantile of the chi-square distribution with ν degrees of freedom. The (1 − α)100% one-sided
lower confidence limit and one-sided upper confidence limit are given by equations (34) and (35),
respectively, with α/2 replaced by α.

Parkin et al.’s Method (ci.method="parkin")
This method was developed by Parkin et al. (1990). It can be shown that the mean of a lognormal
distribution corresponds to the p’th quantile, where

p = Φ(
σ

2
) (36)

and Φ denotes the cumulative distribution function of the standard normal distribution. Parkin et
al. (1990) suggested estimating p by replacing σ in equation (36) with the estimate s as computed
in equation (4). Once an estimate of p is obtained, a nonparametric confidence interval can be
constructed for p, assuming p is equal to its estimated value (see eqnpar).

Cox’s Method (ci.method="cox")
This method was suggested by Professor D.R. Cox and is illustrated in Land (1972). El-Shaarawi
(1989) adapts this method to the case of censored water quality data. Cox’s idea is to construct an
approximate (1 − α)100% confidence interval for the quantity β defined in equation (26) above
assuming the estimate of β is approximately normally distributed, and then exponentiate the confi-
dence limits. That is, a two-sided (1− α)100% confidence interval for θ is constructed as:

[exp(β̂ − t1−α/2,n−1σ̂β̂), exp(β̂ + t1−α/2,n−1σ̂β̂)] (37)

where t(p, ν) denotes the p’th quantile of Student’s t-distribution with ν degrees of freedom. Note
that this method, unlike the normal approximation method discussed below, guarantees a positive
value for the lower confidence limit. One-sided confidence intervals are computed in a similar
fashion.

Define an estimator of β by:

β̂ = µ̂+
σ̂2

2
(38)

Then the variance of this estimator is given by:

V ar(β̂) = V ar(µ̂) + Cov(µ̂, σ̂2) +
1

4
V ar(σ̂2) (39)
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The function elnormAlt follows Land (1972) and uses the minimum variance unbiased estimator
for β shown in equation (27) above, so the variance and estimated variance of this estimator are:

V ar(β̂mvue) =
σ2

n
+

σ4

2(n− 1)
(40)

σ̂2
β̂

=
s2

n
+

s4

2(n+ 1)
(41)

Note that El-Shaarawi (1989, equation 5) simply replaces the value of s2 in equation (41) with some
estimator of σ2 (the mle or mvue of σ2), rather than using the mvue of the variance of β as shown
in equation (41).

Normal Approximation (ci.method="normal.approx") This method constructs approximate (1−
α)100% confidence intervals for θ based on the assumption that the estimator of θ is approximately
normally distributed. That is, a two-sided (1− α)100% confidence interval for θ is constructed as:

[θ̂ − t1−α/2,n−1σ̂θ̂, θ̂ + t1−α/2,n−1σ̂θ̂] (42)

One-sided confidence intervals are computed in a similar fashion.

When method="mvue" is used to estimate θ, an unbiased estimate of the variance of the estimator of
θ is used in equation (42) (Bradu and Mundlak, 1970, equation 4.3; Gilbert, 1987, equation 13.5):

σ̂2
θ̂ = e2ȳ{[gn−1(

s2

2
)]2 − gn−1[

s2(n− 2)

n− 1
]} (43)

When method="mle" is used to estimate θ, the estimate of the variance of the estimator of θ is
computed by replacing µ and σ2 in equation (13) with their mle’s:

σ̂2
θ̂

= exp(2ȳ +
σ̂2
mle

n
){exp( σ̂

2
mle

n
)[1− 2σ̂2

mle

n
]−(n−1)/2 − [1− σ̂2

mle

n
]−(n−1)} (44)

When method="qmle" is used to estimate θ, the estimate of the variance of the estimator of θ is
computed by replacing µ and σ2 in equation (18) with their mvue’s:

σ̂2
θ̂

= exp(2ȳ +
s2

n
){exp(s

2

n
)[1− 2s2

n− 1
]−(n−1)/2 − [1− s2

n− 1
]−(n−1)} (45)

Note that equation (45) is exactly the same as Gilbert’s (1987, p. 167) equation 13.8a, except that
Gilbert (1987) erroneously uses n where he should use n− 1 instead. For large values of n relative
to s2, however, this makes little difference.

When method="mme", the estimate of the variance of the estimator of θ is computed by replacing
eta2 in equation (22) with the mme of η2 defined in equation (20):

σ̂2
θ̂

=
η̂2
mme

n
=

1

n2

n∑
i=1

(xi − x̄)2 (46)

When method="mmue", the estimate of the variance of the estimator of θ is computed by replacing
eta2 in equation (22) with the mmue of η2 defined in equation (24):

σ̂2
θ̂

=
η̂2
mmue

n
=

1

n(n− 1)

n∑
i=1

(xi − x̄)2 (47)

Value

a list of class "estimate" containing the estimated parameters and other information. See estimate.object
for details.
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Note

The normal and lognormal distribution are probably the two most frequently used distributions to
model environmental data. In order to make any kind of probability statement about a normally-
distributed population (of chemical concentrations for example), you have to first estimate the mean
and standard deviation (the population parameters) of the distribution. Once you estimate these
parameters, it is often useful to characterize the uncertainty in the estimate of the mean or variance.
This is done with confidence intervals.

Some EPA guidance documents (e.g., Singh et al., 2002; Singh et al., 2010a,b) strongly recom-
mend against using a lognormal model for environmental data and recommend trying a gamma
distribuiton instead.

USEPA (1992d) directs persons involved in risk assessment for Superfund sites to use Land’s (1971,
1975) method (ci.method="land") for computing the upper 95% confidence interval for the mean,
assuming the data follow a lognormal distribution (the guidance document cites Gilbert (1987) as
a source of descriptions and tables for this method). The last example in the EXAMPLES section
below reproduces an example from this guidance document.

In the past, some authors suggested using the geometric mean, also called the "rating curve" esti-
mator (Cohn et al., 1989), as the estimator of the mean, θ. This estimator is computed as:

θ̂rc = eȳ (48)

Cohn et al. (1989) cite several authors who have pointed out this estimator is biased and is not even
a consistent estimator of the mean. In fact, it is the maximum likelihood estimator of the median of
the distribution (see eqlnorm.)

Finney (1941) computed the efficiency of the method of moments estimators of the mean (θ) and
variance (η2) of the lognormal distribution (equations (19)-(20)) relative to the mvue’s (equations
(1)-(2)) as a function of σ2 (the variance of the log-transformed observations), and found that while
the mme of θ is reasonably efficient compared to the mvue of θ, the mme of η2 performs quite
poorly relative to the mvue of η2.

Cohn et al. (1989) and Parkin et al. (1988) have shown that the qmle and the mle of the mean can
be severely biased for typical environmental data, and suggest always using the mvue.

Parkin et al. (1990) studied the performance of various methods for constructing a confidence in-
terval for the mean via Monte Carlo simulation. They compared approximate methods to Land’s
optimal method (ci.method="land"). They used four parent lognormal distributions to generate
observations; all had mean 10, but differed in coefficient of variation: 50, 100, 200, and 500%. They
also generated sample sizes from 6 to 100 in increments of 2. For each combination of parent distri-
bution and sample size, they generated 25,000 Monte Carlo trials. Parkin et al. found that for small
sample sizes (n < 20), none of the approximate methods ("parkin", "cox", "normal.approx")
worked very well. For n > 20, their method ("parkin") provided reasonably accurate coverage.
Cox’s method ("cox") worked well for n > 60, and performed slightly better than Parkin et al.’s
method ("parkin") for highly skewed populations.

Zou et al. (2009) used Monte Carlo simulation to compare the performance of their method with the
CGI method of Krishnamoorthy and Mathew (2003) and the modified Cox method of Armstrong
(1992) and El-Shaarawi and Lin (2007). Performance was assessed based on 1) percentage of times
the interval contained the parameter value (coverage%), 2) balance between left and right tail errors,
and 3) confidence interval width. All three methods showed acceptable coverage percentages. The
modified Cox method showed unbalanced tail errors, and Zou et al.’s method showed consistently
narrower average width.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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Examples

# Using the Reference area TcCB data in the data frame EPA.94b.tccb.df,
# estimate the mean and coefficient of variation,
# and construct a 95% confidence interval for the mean.

with(EPA.94b.tccb.df, elnormAlt(TcCB[Area == "Reference"], ci = TRUE))

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Lognormal
#
#Estimated Parameter(s): mean = 0.5989072
# cv = 0.4899539
#
#Estimation Method: mvue
#
#Data: TcCB[Area == "Reference"]
#
#Sample Size: 47
#
#Confidence Interval for: mean
#
#Confidence Interval Method: Land
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#
#Confidence Interval Type: two-sided
#
#Confidence Level: 95%
#
#Confidence Interval: LCL = 0.5243787
# UCL = 0.7016992

#----------

# Compare the different methods of estimating the distribution parameters using the
# Reference area TcCB data.

with(EPA.94b.tccb.df, elnormAlt(TcCB[Area == "Reference"], method = "mvue"))$parameters
# mean cv
#0.5989072 0.4899539

with(EPA.94b.tccb.df, elnormAlt(TcCB[Area == "Reference"], method = "qmle"))$parameters
# mean cv
#0.6004468 0.4947791

with(EPA.94b.tccb.df, elnormAlt(TcCB[Area == "Reference"], method = "mle"))$parameters
# mean cv
#0.5990497 0.4888968

with(EPA.94b.tccb.df, elnormAlt(TcCB[Area == "Reference"], method = "mme"))$parameters
# mean cv
#0.5985106 0.4688423

with(EPA.94b.tccb.df, elnormAlt(TcCB[Area == "Reference"], method = "mmue"))$parameters
# mean cv
#0.5985106 0.4739110

#----------

# Compare the different methods of constructing the confidence interval for
# the mean using the Reference area TcCB data.

with(EPA.94b.tccb.df, elnormAlt(TcCB[Area == "Reference"],
method = "mvue", ci = TRUE, ci.method = "land"))$interval$limits

# LCL UCL
#0.5243787 0.7016992

with(EPA.94b.tccb.df, elnormAlt(TcCB[Area == "Reference"],
method = "mvue", ci = TRUE, ci.method = "zou"))$interval$limits

# LCL UCL
#0.5230444 0.6962071

with(EPA.94b.tccb.df, elnormAlt(TcCB[Area == "Reference"],
method = "mvue", ci = TRUE, ci.method = "parkin"))$interval$limits

# LCL UCL
#0.50 0.74

with(EPA.94b.tccb.df, elnormAlt(TcCB[Area == "Reference"],
method = "mvue", ci = TRUE, ci.method = "cox"))$interval$limits

# LCL UCL
#0.5196213 0.6938444
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with(EPA.94b.tccb.df, elnormAlt(TcCB[Area == "Reference"],
method = "mvue", ci = TRUE, ci.method = "normal.approx"))$interval$limits

# LCL UCL
#0.5130160 0.6847984

#----------

# Reproduce the example in Highlights 7 and 8 of USEPA (1992d). This example shows
# how to compute the upper 95% confidence limit of the mean of a lognormal distribution
# and compares it to the result of computing the upper 95% confidence limit assuming a
# normal distribution. The data for this example are chromium concentrations (mg/kg) in
# soil samples collected randomly over a Superfund site, and are stored in the data frame
# EPA.92d.chromium.vec.

# First look at the data

EPA.92d.chromium.vec
# [1] 10 13 20 36 41 59 67 110 110 136 140 160 200 230 1300

stripChart(EPA.92d.chromium.vec, ylab = "Chromium (mg/kg)")

# Note there is one very large "outlier" (1300).
# Perform a goodness-of-fit test to determine whether a lognormal distribution
# is appropriate:

gof.list <- gofTest(EPA.92d.chromium.vec, dist = lnormAlt)
gof.list

#Results of Goodness-of-Fit Test
#-------------------------------
#
#Test Method: Shapiro-Wilk GOF
#
#Hypothesized Distribution: Lognormal
#
#Estimated Parameter(s): mean = 159.855185
# cv = 1.493994
#
#Estimation Method: mvue
#
#Data: EPA.92d.chromium.vec
#
#Sample Size: 15
#
#Test Statistic: W = 0.9607179
#
#Test Statistic Parameter: n = 15
#
#P-value: 0.7048747
#
#Alternative Hypothesis: True cdf does not equal the
# Lognormal Distribution.

plot(gof.list, digits = 2)

# The lognormal distribution seems to provide an adequate fit, although the largest
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# observation (1300) is somewhat suspect, and given the small sample size there is
# not much power to detect any kind of mild deviation from a lognormal distribution.

# Now compute the one-sided 95% upper confidence limit for the mean.
# Note that the value of 502 mg/kg shown in Hightlight 7 of USEPA (1992d) is a bit
# larger than the exact value of 496.6 mg/kg shown below.
# This is simply due to rounding error.

elnormAlt(EPA.92d.chromium.vec, ci = TRUE, ci.type = "upper")

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Lognormal
#
#Estimated Parameter(s): mean = 159.855185
# cv = 1.493994
#
#Estimation Method: mvue
#
#Data: EPA.92d.chromium.vec
#
#Sample Size: 15
#
#Confidence Interval for: mean
#
#Confidence Interval Method: Land
#
#Confidence Interval Type: upper
#
#Confidence Level: 95%
#
#Confidence Interval: LCL = 0
# UCL = 496.6282

# Now compare this result with the upper 95% confidence limit based on assuming
# a normal distribution. Again note that the value of 325 mg/kg shown in
# Hightlight 8 is slightly larger than the exact value of 320.3 mg/kg shown below.
# This is simply due to rounding error.

enorm(EPA.92d.chromium.vec, ci = TRUE, ci.type = "upper")

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Normal
#
#Estimated Parameter(s): mean = 175.4667
# sd = 318.5440
#
#Estimation Method: mvue
#
#Data: EPA.92d.chromium.vec
#
#Sample Size: 15
#
#Confidence Interval for: mean
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#
#Confidence Interval Method: Exact
#
#Confidence Interval Type: upper
#
#Confidence Level: 95%
#
#Confidence Interval: LCL = -Inf
# UCL = 320.3304

#----------

# Clean up
#---------

rm(gof.list)

elnormAltCensored Estimate Parameters for a Lognormal Distribution (Original Scale)
Based on Type I Censored Data

Description

Estimate the mean and coefficient of variation of a lognormal distribution given a sample of data
that has been subjected to Type I censoring, and optionally construct a confidence interval for the
mean.

Usage

elnormAltCensored(x, censored, method = "mle", censoring.side = "left",
ci = FALSE, ci.method = "profile.likelihood", ci.type = "two-sided",
conf.level = 0.95, n.bootstraps = 1000, use.acc.con = FALSE,
pivot.statistic = "z", ...)

Arguments

x numeric vector of observations. Missing (NA), undefined (NaN), and infinite (Inf,
-Inf) values are allowed but will be removed.

censored numeric or logical vector indicating which values of x are censored. This must
be the same length as x. If the mode of censored is "logical", TRUE values
correspond to elements of x that are censored, and FALSE values correspond to
elements of x that are not censored. If the mode of censored is "numeric",
it must contain only 1’s and 0’s; 1 corresponds to TRUE and 0 corresponds to
FALSE. Missing (NA) values are allowed but will be removed.

method character string specifying the method of estimation.
For singly censored data, the possible values are: "mle" (maximum likelihood;
the default), "qmvue" (quasi minimum variance unbiased estimation) "bcmle"
(bias-corrected maximum likelihood), "impute.w.qq.reg" (moment estima-
tion based on imputation using the qq.reg method), "impute.w.qq.reg.w.cen.level"
(moment estimation based on imputation using the qq.reg.w.cen.level method),
"impute.w.mle" (moment estimation based on imputation using the mle), and
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"half.cen.level" (moment estimation based on setting the censored observa-
tions to half the censoring level).
For multiply censored data, the possible values are: "mle" (maximum like-
lihood; the default), "qmvue" (quasi minimum variance unbiased estimation),
"bcmle" (bias-corrected maximum likelihood), "impute.w.qq.reg" (moment
estimation based on imputation using quantile-quantile regression), and "half.cen.level"
(moment estimation based on setting the censored observations to half the cen-
soring level).
See the DETAILS section for more information.

censoring.side character string indicating on which side the censoring occurs. The possible
values are "left" (the default) and "right".

ci logical scalar indicating whether to compute a confidence interval for the mean
or variance. The default value is ci=FALSE.

ci.method character string indicating what method to use to construct the confidence inter-
val for the mean. The possible values are "profile.likelihood" (profile like-
lihood; the default), "cox" (Cox’s approximation), "delta" (normal approxi-
mation based on the delta method), "normal.approx" (normal approximation),
and "bootstrap" (based on bootstrapping).
The confidence interval methods "delta" and "cox" are valid only when method
is one of "mle", "bcmle", or "qmvue". The confidence interval method "normal.approx"
is valid only when method is one of "impute.w.qq.reg", "impute.w.qq.reg.w.cen.level",
"impute.w.mle", or "half.cen.level".
See the DETAILS section for more information. This argument is ignored if
ci=FALSE.

ci.type character string indicating what kind of confidence interval to compute. The
possible values are "two-sided" (the default), "lower", and "upper". This
argument is ignored if ci=FALSE.

conf.level a scalar between 0 and 1 indicating the confidence level of the confidence in-
terval. The default value is conf.level=0.95. This argument is ignored if
ci=FALSE.

n.bootstraps numeric scalar indicating how many bootstraps to use to construct the confi-
dence interval for the mean when ci.type="bootstrap". This argument is
ignored if ci=FALSE and/or ci.method does not equal "bootstrap".

use.acc.con logical scalar indicating whether to use the acceleration constant when com-
puting the bias-corrected bootstrap confidence interval (see the DETAILS sec-
tion). The default value is FALSE. This argument is ignored if ci=FALSE and/or
ci.method does not equal "bootstrap".

pivot.statistic

character string indicating which pivot statistic to use in the construction of
the confidence interval for the mean when ci.method is equal to "delta",
"cox", or "normal.approx" (see the DETAILS section). The possible val-
ues are pivot.statistic="z" (the default) and pivot.statistic="t". When
pivot.statistic="t" you may supply the argument ci.sample size (see be-
low). The argument pivot.statistic is ignored if ci=FALSE.

... additional arguments to pass to other functions.

• prob.method. Character string indicating what method to use to com-
pute the plotting positions (empirical probabilities) when method is one of
"impute.w.qq.reg", "impute.w.qq.reg.w.cen.level", or "impute.w.mle".
Possible values are "kaplan-meier" (product-limit method of Kaplan and
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Meier (1958)), "nelson" (hazard plotting method of Nelson (1972)), "michael-schucany"
(generalization of the product-limit method due to Michael and Schucany
(1986)), and "hirsch-stedinger" (generalization of the product-limit method
due to Hirsch and Stedinger (1987)). The default value is prob.method="michael-schucany".
The "nelson" method is only available for censoring.side="right".
See the DETAILS section and the help file for ppointsCensored for more
information.

• plot.pos.con. Numeric scalar between 0 and 1 containing the value of the
plotting position constant to use when method is one of "impute.w.qq.reg",
"impute.w.qq.reg.w.cen.level", or "impute.w.mle". The default value
is plot.pos.con=0.375. See the DETAILS section and the help file for
ppointsCensored for more information.

• ci.sample.size. Numeric scalar indicating what sample size to assume
to construct the confidence interval for the mean if pivot.statistic="t"
and ci.method is equal to "delta", "cox", or "normal.approx". When
method equals "mle", "bcmle", or "qmvue", the default value is the ex-
pected number of uncensored observations, otherwise it is the observed
number of uncensored observations.

• lb.impute. Numeric scalar indicating the lower bound for imputed obser-
vations when method is one of "impute.w.qq.reg", "impute.w.qq.reg.w.cen.level",
or "impute.w.mle". Imputed values smaller than this value will be set to
this value. The default is lb.impute=-Inf.

• ub.impute. Numeric scalar indicating the upper bound for imputed obser-
vations when method is one of "impute.w.qq.reg", "impute.w.qq.reg.w.cen.level",
or "impute.w.mle". Imputed values larger than this value will be set to this
value. The default is ub.impute=Inf.

Details

If x or censored contain any missing (NA), undefined (NaN) or infinite (Inf, -Inf) values, they will
be removed prior to performing the estimation.

Let x be a vector of n observations from a lognormal distribution with parameters mean=θ and cv=τ .
Let η denote the standard deviation of this distribution, so that η = θτ . Set y = log(x). Then y is a
vector of observations from a normal distribution with parameters mean=µ and sd=σ. See the help
file for LognormalAlt for the relationship between θ, τ, η, µ, and σ.

Let x denote a vector of N observations from a lognormal distribution with parameters mean=θ and
cv=τ . Let η denote the standard deviation of this distribution, so that η = θτ . Set y = log(x). Then
y is a vector of observations from a normal distribution with parameters mean=µ and sd=σ. See the
help file for LognormalAlt for the relationship between θ, τ, η, µ, and σ.

Assume n (0 < n < N ) of the N observations are known and c (c = N − n) of the observations
are all censored below (left-censored) or all censored above (right-censored) at k fixed censoring
levels

T1, T2, . . . , Tk; k ≥ 1 (1)

For the case when k ≥ 2, the data are said to be Type I multiply censored. For the case when k = 1,
set T = T1. If the data are left-censored and all n known observations are greater than or equal to
T , or if the data are right-censored and all n known observations are less than or equal to T , then
the data are said to be Type I singly censored (Nelson, 1982, p.7), otherwise they are considered to
be Type I multiply censored.

Let cj denote the number of observations censored below or above censoring level Tj for j =
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1, 2, . . . , k, so that
k∑
i=1

cj = c (2)

Let x(1), x(2), . . . , x(N) denote the “ordered” observations, where now “observation” means either
the actual observation (for uncensored observations) or the censoring level (for censored observa-
tions). For right-censored data, if a censored observation has the same value as an uncensored one,
the uncensored observation should be placed first. For left-censored data, if a censored observation
has the same value as an uncensored one, the censored observation should be placed first.

Note that in this case the quantity x(i) does not necessarily represent the i’th “largest” observation
from the (unknown) complete sample.

Finally, let Ω (omega) denote the set of n subscripts in the “ordered” sample that correspond to
uncensored observations.

ESTIMATION
This section explains how each of the estimators of mean=θ and cv=τ are computed. The approach
is to first compute estimates of θ and η2 (the mean and variance of the lognormal distribution), say
θ̂ and η̂2, then compute the estimate of the cv τ by τ̂ = η̂/θ̂.

Maximum Likelihood Estimation (method="mle")
The maximum likelihood estimators of θ, τ , and η are computed as:

θ̂mle = exp(µ̂mle +
σ̂2
mle

2
) (3)

τ̂mle = [exp(σ̂2
mle)− 1]1/2 (4)

η̂mle = θ̂mle τ̂mle (5)

where µ̂mle and σ̂mle denote the maximum likelihood estimators of µ and σ. See the help for for
enormCensored for information on how µ̂mle and σ̂mle are computed.

Quasi Minimum Variance Unbiased Estimation Based on the MLE’s (method="qmvue")
The maximum likelihood estimators of θ and η2 are biased. Even for complete (uncensored) sam-
ples these estimators are biased (see equation (12) in the help file for elnormAlt). The bias tends
to 0 as the sample size increases, but it can be considerable for small sample sizes. (Cohn et al.,
1989, demonstrate the bias for complete data sets.) For the case of complete samples, the minimum
variance unbiased estimators (mvue’s) of θ and η2 were derived by Finney (1941) and are discussed
in Gilbert (1987, pp.164-167) and Cohn et al. (1989). These estimators are computed as:

θ̂mvue = eȳgn−1(
s2

2
) (6)

η̂2
mvue = e2ȳ{gn−1(2s2)− gn−1[

(n− 2)s2

n− 1
]} (7)

where

ȳ =
1

n

n∑
i=1

yi (8)

s2 =
1

n− 1

n∑
i=1

(yi − ȳ)2 (9)

gm(z) =

∞∑
i=0

mi(m+ 2i)

m(m+ 2) · · · (m+ 2i)
(

m

m+ 1
)i(
zi

i!
) (10)
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(see the help file for elnormAlt).

For Type I censored samples, the quasi minimum variance unbiased estimators (qmvue’s) of θ
and η2 are computed using equations (6) and (7) and estimating µ and σ with their mle’s (see
elnormCensored).

For singly censored data, this is apparently the LM method of Gilliom and Helsel (1986, p.137) (it is
not clear from their description on page 137 whether their LM method is the straight method="mle"
described above or method="qmvue" described here). This method was also used by Newman et al.
(1989, p.915, equations 10-11).

For multiply censored data, this is apparently the MM method of Helsel and Cohn (1988, p.1998).
(It is not clear from their description on page 1998 and the description in Gilliom and Helsel, 1986,
page 137 whether Helsel and Cohn’s (1988) MM method is the straight method="mle" described
above or method="qmvue" described here.)

Bias-Corrected Maximum Likelihood Estimation (method="bcmle")
This method was derived by El-Shaarawi (1989) and can be applied to complete or censored data
sets. For complete data, the exact relative bias of the mle of the mean θ is given as:

Bmle =
E[θ̂mle]

θ
= exp[

−(n− 1)σ2

2n
](1− σ2

n
)−(n−1)/2 (11)

(see equation (12) in the help file for elnormAlt).

For the case of complete or censored data, El-Shaarawi (1989) proposed the following “bias-
corrected” maximum likelihood estimator:

θ̂bcmle =
θ̂mle

B̂mle
(12)

where
B̂mle = exp[

1

2
(V̂11 + 2σ̂mleV̂12 + σ̂2

mleV̂22)] (13)

and V denotes the asymptotic variance-covariance of the mle’s of µ and σ, which is based on the
observed information matrix, formulas for which are given in Cohen (1991). El-Shaarawi (1989)
does not propose a bias-corrected estimator of the variance η2, so the mle of η is computed when
method="bcmle".

Imputation Using Quantile-Quantile Regression (method ="impute.w.qq.reg")
This method involves using quantile-quantile regression on the log-transformed observations to fit
a regression line (and thus initially estimate the mean µ and standard deviation σ in log-space),
imputing the log-transformed values of the c censored observations by predicting them from the
regression equation, transforming the log-scale imputed values back to the original scale, and then
computing the method of moments estimates of the mean and standard deviation based on the
observed and imputed values.

The steps are:

1. Estimate µ and σ by computing the least-squares estimates in the following model:

y(i) = µ+ σΦ−1(pi) + εi, i ∈ Ω (14)

where pi denotes the plotting position associated with the i’th largest value, a is a constant
such that 0 ≤ a ≤ 1 (the default value is 0.375), Φ denotes the cumulative distribution func-
tion (cdf) of the standard normal distribution and Ω denotes the set of n subscripts associated
with the uncensored observations in the ordered sample. The plotting positions are computed
by calling the function ppointsCensored.
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2. Compute the log-scale imputed values as:

ŷ(i) = µ̂qqreg + σ̂qqregΦ
−1(pi), i 6∈ Ω (15)

3. Retransform the log-scale imputed values:

x̂(i) = exp[ŷ(i)], i 6∈ Ω (16)

4. Compute the usual method of moments estimates of the mean and variance.

θ̂ =
1

N
[
∑
i 6∈Ω

x̂(i) +
∑
i∈Ω

x(i)] (17)

η̂2 =
1

N − 1
[
∑
i 6∈Ω

(x̂(i) − θ̂2) +
∑
i∈Ω

(x(i) − θ̂2)] (18)

Note that the estimate of variance is actually the usual unbiased one (not the method of mo-
ments one) in the case of complete data.

For sinlgy censored data, this method is discussed by Hashimoto and Trussell (1983), Gilliom and
Helsel (1986), and El-Shaarawi (1989), and is referred to as the LR (Log-Regression) or Log-
Probability Method.

For multiply censored data, this is the MR method of Helsel and Cohn (1988, p.1998). They used
it with the probability method of Hirsch and Stedinger (1987) and Weibull plotting positions (i.e.,
prob.method="hirsch-stedinger" and plot.pos.con=0).

The argument plot.pos.con (see the entry for . . . in the ARGUMENTS section above) deter-
mines the value of the plotting positions computed in equations (14) and (15) when method equals
"hirsch-stedinger" or "michael-schucany". The default value is plot.pos.con=0.375. See
the help file for ppointsCensored for more information.

The arguments lb.impute and ub.impute (see the entry for . . . in the ARGUMENTS section
above) determine the lower and upper bounds for the imputed values. Imputed values smaller than
lb.impute are set to this value. Imputed values larger than ub.impute are set to this value. The
default values are lb.impute=0 and ub.impute=Inf.

Imputation Using Quantile-Quantile Regression Including the Censoring Level (method ="impute.w.qq.reg.w.cen.level")
This method is only available for sinlgy censored data. This method was proposed by El-
Shaarawi (1989), which he denoted as the Modified LR Method. It is exactly the same method
as imputation using quantile-quantile regression (method="impute.w.qq.reg"), except that the
quantile-quantile regression includes the censoring level. For left singly censored data, the modi-
fication involves adding the point [Φ−1(pc), T ] to the plot before fitting the least-squares line. For
right singly censored data, the point [Φ−1(pn+1), T ] is added to the plot before fitting the least-
squares line.

Imputation Using Maximum Likelihood (method ="impute.w.mle")
This method is only available for sinlgy censored data. This is exactly the same method as impu-
tation with quantile-quantile regression (method="impute.w.qq.reg"), except that the maximum
likelihood method (method="mle") is used to compute the initial estimates of the mean and stan-
dard deviation. In the context of lognormal data, this method is discussed by El-Shaarawi (1989),
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which he denotes as the Modified Maximum Likelihood Method.

Setting Censored Observations to Half the Censoring Level (method="half.cen.level")
This method is applicable only to left censored data that is bounded below by 0. This method
involves simply replacing all the censored observations with half their detection limit, and then
computing the usual moment estimators of the mean and variance. That is, all censored observations
are imputed to be half the detection limit, and then Equations (17) and (18) are used to estimate the
mean and varaince.

This method is included only to allow comparison of this method to other methods. Setting left-
censored observations to half the censoring level is not recommended. In particular, El-Shaarawi
and Esterby (1992) show that these estimators are biased and inconsistent (i.e., the bias remains
even as the sample size increases).

CONFIDENCE INTERVALS
This section explains how confidence intervals for the mean θ are computed.

Likelihood Profile (ci.method="profile.likelihood")
This method was proposed by Cox (1970, p.88), and Venzon and Moolgavkar (1988) introduced an
efficient method of computation. This method is also discussed by Stryhn and Christensen (2003)
and Royston (2007). The idea behind this method is to invert the likelihood-ratio test to obtain
a confidence interval for the mean θ while treating the coefficient of variation τ as a nuisance
parameter.

For Type I left censored data, the likelihood function is given by:

L(θ, τ |x) =

(
N

c1c2 . . . ckn

) k∏
j=1

[F (Tj)]
cj
∏
i∈Ω

f [x(i)] (19)

where f and F denote the probability density function (pdf) and cumulative distribution function
(cdf) of the population. That is,

f(t) = φ(
t− µ
σ

) (20)

F (t) = Φ(
t− µ
σ

) (21)

where

µ = log(
θ√

τ2 + 1
) (22)

σ = [log(τ2 + 1)]1/2 (23)

and φ and Φ denote the pdf and cdf of the standard normal distribution, respectively (Cohen, 1963;
1991, pp.6, 50). For left singly censored data, equation (3) simplifies to:

L(µ, σ|x) =

(
N

c

)
[F (T )]c

n∏
i=c+1

f [x(i)] (24)

Similarly, for Type I right censored data, the likelihood function is given by:

L(µ, σ|x) =

(
N

c1c2 . . . ckn

) k∏
j=1

[1− F (Tj)]
cj
∏
i∈Ω

f [x(i)] (25)
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and for right singly censored data this simplifies to:

L(µ, σ|x) =

(
N

c

)
[1− F (T )]c

n∏
i=1

f [x(i)] (26)

Following Stryhn and Christensen (2003), denote the maximum likelihood estimates of the mean
and coefficient of variation by (θ∗, τ∗). The likelihood ratio test statistic (G2) of the hypothesis
H0 : θ = θ0 (where θ0 is a fixed value) equals the drop in 2log(L) between the “full” model and
the reduced model with θ fixed at θ0, i.e.,

G2 = 2{log[L(θ∗, τ∗)]− log[L(θ0, τ
∗
0 )]} (27)

where τ∗0 is the maximum likelihood estimate of τ for the reduced model (i.e., when θ = θ0). Under
the null hypothesis, the test statisticG2 follows a chi-squared distribution with 1 degree of freedom.

Alternatively, we may express the test statistic in terms of the profile likelihood function L1 for the
mean θ, which is obtained from the usual likelihood function by maximizing over the parameter τ ,
i.e.,

L1(θ) = maxτL(θ, τ) (28)

Then we have
G2 = 2{log[L1(θ∗)]− log[L1(θ0)]} (29)

A two-sided (1− α)100% confidence interval for the mean θ consists of all values of θ0 for which
the test is not significant at level alpha:

θ0 : G2 ≤ χ2
1,1−α (30)

where χ2
ν,p denotes the p’th quantile of the chi-squared distribution with ν degrees of freedom.

Direct Normal Approximations (ci.method="delta" or ci.method="normal.approx")
An approximate (1−α)100% confidence interval for θ can be constructed assuming the distribution
of the estimator of θ is approximately normally distributed. That is, a two-sided (1 − α)100%
confidence interval for θ is constructed as:

[θ̂ − t1−α/2,m−1σ̂θ̂, θ̂ + t1−α/2,m−1σ̂θ̂] (31)

where θ̂ denotes the estimate of θ, σ̂θ̂ denotes the estimated asymptotic standard deviation of the
estimator of θ, m denotes the assumed sample size for the confidence interval, and tp,ν denotes the
p’th quantile of Student’s t-distribuiton with ν degrees of freedom. One-sided confidence intervals
are computed in a similar fashion.

The argument ci.sample.size determines the value of m (see see the entry for . . . in the ARGU-
MENTS section above). When method equals "mle", "qmvue", or "bcmle" and the data are singly
censored, the default value is the expected number of uncensored observations, otherwise it is n,
the observed number of uncensored observations. This is simply an ad-hoc method of constructing
confidence intervals and is not based on any published theoretical results.

When pivot.statistic="z", the p’th quantile from the standard normal distribution is used in
place of the p’th quantile from Student’s t-distribution.

Direct Normal Approximation Based on the Delta Method (ci.method="delta")
This method is usually applied with the maximum likelihood estimators (method="mle"). It should
also work approximately for the quasi minimum variance unbiased estimators (method="qmvue")
and the bias-corrected maximum likelihood estimators (method="bcmle").
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When method="mle", the variance of the mle of θ can be estimated based on the variance-covariance
matrix of the mle’s of µ and σ (denoted V ), and the delta method:

σ̂2
θ̂

= (
∂θ

∂λ
)
′

λ̂
V̂ (

∂θ

∂λ
)λ̂ (32)

where
λ′ = (µ, σ) (33)

∂θ

∂µ
= exp(µ+

σ2

2
) (34)

∂θ

∂σ
= σexp(µ+

σ2

2
) (35)

(Shumway et al., 1989). The variance-covariance matrix V of the mle’s of µ and σ is estimated
based on the inverse of the observed Fisher Information matrix, formulas for which are given in
Cohen (1991).

Direct Normal Approximation Based on the Moment Estimators (ci.method="normal.approx")
This method is valid only for the moment estimators based on imputed values (i.e., method="impute.w.qq.reg"
or method="half.cen.level"). For these cases, the standard deviation of the estimated mean is
assumed to be approximated by

σ̂θ̂ =
η̂√
m

(36)

where, as already noted, m denotes the assumed sample size. This is simply an ad-hoc method of
constructing confidence intervals and is not based on any published theoretical results.

Cox’s Method (ci.method="cox")
This method may be applied with the maximum likelihood estimators (method="mle"), the quasi
minimum variance unbiased estimators (method="qmvue"), and the bias-corrected maximum like-
lihood estimators (method="bcmle").

This method was proposed by El-Shaarawi (1989) and is an extension of the method derived by Cox
and presented in Land (1972) for the case of complete data (see the explanation of ci.method="cox"
in the help file for elnormAlt). The idea is to construct an approximate (1 − α)100% confidence
interval for the quantity

β = exp(µ+
σ2

2
) (37)

assuming the estimate of β

β̂ = exp(µ̂+
σ̂2

2
) (38)

is approximately normally distributed, and then exponentiate the confidence limits. That is, a two-
sided (1− α)100% confidence interval for θ is constructed as:

[exp(β̂ − h), exp(β̂ + h)] (39)

where
h = t1−α/2,m−1σ̂β̂ (40)

and σ̂β̂ denotes the estimated asymptotic standard deviation of the estimator of β, m denotes the
assumed sample size for the confidence interval, and tp,ν denotes the p’th quantile of Student’s
t-distribuiton with ν degrees of freedom.

El-Shaarawi (1989) shows that the standard deviation of the mle of β can be estimated by:

σ̂β̂ =

√
V̂11 + 2σ̂V̂12 + σ̂2V̂22 (41)
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where V denotes the variance-covariance matrix of the mle’s of µ and σ and is estimated based on
the inverse of the Fisher Information matrix.

One-sided confidence intervals are computed in a similar fashion.

Bootstrap and Bias-Corrected Bootstrap Approximation (ci.method="bootstrap")
The bootstrap is a nonparametric method of estimating the distribution (and associated distribution
parameters and quantiles) of a sample statistic, regardless of the distribution of the population from
which the sample was drawn. The bootstrap was introduced by Efron (1979) and a general reference
is Efron and Tibshirani (1993).

In the context of deriving an approximate (1−α)100% confidence interval for the population mean
θ, the bootstrap can be broken down into the following steps:

1. Create a bootstrap sample by taking a random sample of size N from the observations in x,
where sampling is done with replacement. Note that because sampling is done with replace-
ment, the same element of x can appear more than once in the bootstrap sample. Thus, the
bootstrap sample will usually not look exactly like the original sample (e.g., the number of
censored observations in the bootstrap sample will often differ from the number of censored
observations in the original sample).

2. Estimate θ based on the bootstrap sample created in Step 1, using the same method that was
used to estimate θ using the original observations in x. Because the bootstrap sample usually
does not match the original sample, the estimate of θ based on the bootstrap sample will
usually differ from the original estimate based on x.

3. Repeat Steps 1 and 2 B times, where B is some large number. The number of bootstraps B
is determined by the argument n.bootstraps (see the section ARGUMENTS above). The
default value of n.bootstraps is 1000.

4. Use the B estimated values of θ to compute the empirical cumulative distribution function of
this estimator of θ (see ecdfPlot), and then create a confidence interval for θ based on this
estimated cdf.

The percentile interval (Efron and Tibshirani, 1993, p.170) is computed as:

[Ĝ−1(
α

2
), Ĝ−1(

1− α
2

)] (42)

where Ĝ(t) denotes the empirical cdf evaluated at t and thus Ĝ−1(p) denotes the p’th empirical
quantile, that is, the p’th quantile associated with the empirical cdf. The function enormCensored
calls the R function quantile to compute the empirical quantiles used in equation (42).

The percentile method bootstrap confidence interval is only first-order accurate (Efron and Tibshi-
rani, 1993, pp.187-188), meaning that the probability that the confidence interval will contain the
true value of θ can be off by k/

√
N , where kis some constant. Efron and Tibshirani (1993, pp.184-

188) proposed a bias-corrected and accelerated interval that is second-order accurate, meaning that
the probability that the confidence interval will contain the true value of θ may be off by k/N
instead of k/

√
N . The bias-corrected and accelerated confidence interval is computed as:

[Ĝ−1(α1), Ĝ−1(α2)] (43)

where

α1 = Φ[ẑ0 +
ẑ0 + zα/2

1− â(z0 + zα/2)
] (44)

α2 = Φ[ẑ0 +
ẑ0 + z1−α/2

1− â(z0 + z1−α/2)
] (45)
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ẑ0 = Φ−1[Ĝ(θ̂)] (46)

â =

∑N
i=1(θ̂(·) − θ̂(i))

3

6[
∑N
i=1(θ̂(·) − θ̂(i))2]3/2

(47)

where the quantity θ̂(i) denotes the estimate of θ using all the values in x except the i’th one, and

θ̂(·) =
1

N

N∑
i=1

ˆθ(i) (48)

The constant ẑ0 incorporates the bias correction, and the constant â is the acceleration constant. The
term “acceleration” refers to the rate of change of the standard error of the estimate of θ with respect
to the true value of θ (Efron and Tibshirani, 1993, p.186). For a normal (Gaussian) distribution, the
standard error of the estimate of θ does not depend on the value of θ, hence the acceleration constant
is not really necessary. The argument use.acc.con (see the section ARGUMENTS above) deter-
mines whether the acceleration constant â is computed as in equation (47) (use.acc.con=TRUE) or
is set to 0 (use.acc.con=FALSE). The default value is use.acc.con=FALSE.

When ci.method="bootstrap", the function enormCensored computes both the percentile method
and bias-corrected bootstrap confidence intervals.

This method of constructing confidence intervals for censored data was studied by Shumway et al.
(1989).

Value

a list of class "estimateCensored" containing the estimated parameters and other information.
See estimateCensored.object for details.

Note

A sample of data contains censored observations if some of the observations are reported only as
being below or above some censoring level. In environmental data analysis, Type I left-censored
data sets are common, with values being reported as “less than the detection limit” (e.g., Helsel,
2012). Data sets with only one censoring level are called singly censored; data sets with multiple
censoring levels are called multiply or progressively censored.

Statistical methods for dealing with censored data sets have a long history in the field of survival
analysis and life testing. More recently, researchers in the environmental field have proposed al-
ternative methods of computing estimates and confidence intervals in addition to the classical ones
such as maximum likelihood estimation.

Helsel (2012, Chapter 6) gives an excellent review of past studies of the properties of various esti-
mators based on censored environmental data.

In practice, it is better to use a confidence interval for the mean or a joint confidence region for
the mean and standard deviation, rather than rely on a single point-estimate of the mean. Since
confidence intervals and regions depend on the properties of the estimators for both the mean and
standard deviation, the results of studies that simply evaluated the performance of the mean and
standard deviation separately cannot be readily extrapolated to predict the performance of various
methods of constructing confidence intervals and regions. Furthermore, for several of the methods
that have been proposed to estimate the mean based on type I left-censored data, standard errors of
the estimates are not available, hence it is not possible to construct confidence intervals (El-Shaarawi
and Dolan, 1989).

Few studies have been done to evaluate the performance of methods for constructing confidence in-
tervals for the mean or joint confidence regions for the mean and standard deviation on the original
scale, not the log-scale, when data are subjected to single or multiple censoring. See, for example,
Singh et al. (2006).
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See Also

LognormalAlt, elnormAlt, elnormCensored, enormCensored, estimateCensored.object.

Examples

# Chapter 15 of USEPA (2009) gives several examples of estimating the mean
# and standard deviation of a lognormal distribution on the log-scale using
# manganese concentrations (ppb) in groundwater at five background wells.
# In EnvStats these data are stored in the data frame
# EPA.09.Ex.15.1.manganese.df.

# Here we will estimate the mean and coefficient of variation
# ON THE ORIGINAL SCALE using the MLE, QMVUE,
# and imputation with Q-Q regression (also called robust ROS).

# First look at the data:
#-----------------------

EPA.09.Ex.15.1.manganese.df

# Sample Well Manganese.Orig.ppb Manganese.ppb Censored
#1 1 Well.1 <5 5.0 TRUE
#2 2 Well.1 12.1 12.1 FALSE
#3 3 Well.1 16.9 16.9 FALSE
#...
#23 3 Well.5 3.3 3.3 FALSE
#24 4 Well.5 8.4 8.4 FALSE
#25 5 Well.5 <2 2.0 TRUE

longToWide(EPA.09.Ex.15.1.manganese.df,
"Manganese.Orig.ppb", "Sample", "Well",
paste.row.name = TRUE)

# Well.1 Well.2 Well.3 Well.4 Well.5
#Sample.1 <5 <5 <5 6.3 17.9
#Sample.2 12.1 7.7 5.3 11.9 22.7
#Sample.3 16.9 53.6 12.6 10 3.3
#Sample.4 21.6 9.5 106.3 <2 8.4
#Sample.5 <2 45.9 34.5 77.2 <2

# Now estimate the mean and coefficient of variation
# using the MLE:
#---------------------------------------------------

with(EPA.09.Ex.15.1.manganese.df,
elnormAltCensored(Manganese.ppb, Censored))

#Results of Distribution Parameter Estimation
#Based on Type I Censored Data
#--------------------------------------------
#
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#Assumed Distribution: Lognormal
#
#Censoring Side: left
#
#Censoring Level(s): 2 5
#
#Estimated Parameter(s): mean = 23.003987
# cv = 2.300772
#
#Estimation Method: MLE
#
#Data: Manganese.ppb
#
#Censoring Variable: Censored
#
#Sample Size: 25
#
#Percent Censored: 24%

# Now compare the MLE with the QMVUE and the
# estimator based on imputation with Q-Q regression
#--------------------------------------------------

with(EPA.09.Ex.15.1.manganese.df,
elnormAltCensored(Manganese.ppb, Censored))$parameters

# mean cv
#23.003987 2.300772

with(EPA.09.Ex.15.1.manganese.df,
elnormAltCensored(Manganese.ppb, Censored,
method = "qmvue"))$parameters

# mean cv
#21.566945 1.841366

with(EPA.09.Ex.15.1.manganese.df,
elnormAltCensored(Manganese.ppb, Censored,
method = "impute.w.qq.reg"))$parameters

# mean cv
#19.886180 1.298868

#----------

# The method used to estimate quantiles for a Q-Q plot is
# determined by the argument prob.method. For the function
# elnormCensoredAlt, for any estimation method that involves
# Q-Q regression, the default value of prob.method is
# "hirsch-stedinger" and the default value for the
# plotting position constant is plot.pos.con=0.375.

# Both Helsel (2012) and USEPA (2009) also use the Hirsch-Stedinger
# probability method but set the plotting position constant to 0.

with(EPA.09.Ex.15.1.manganese.df,
elnormAltCensored(Manganese.ppb, Censored,
method = "impute.w.qq.reg", plot.pos.con = 0))$parameters

# mean cv
#19.827673 1.304725
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#----------

# Using the same data as above, compute a confidence interval
# for the mean using the profile-likelihood method.

with(EPA.09.Ex.15.1.manganese.df,
elnormAltCensored(Manganese.ppb, Censored, ci = TRUE))

#Results of Distribution Parameter Estimation
#Based on Type I Censored Data
#--------------------------------------------
#
#Assumed Distribution: Lognormal
#
#Censoring Side: left
#
#Censoring Level(s): 2 5
#
#Estimated Parameter(s): mean = 23.003987
# cv = 2.300772
#
#Estimation Method: MLE
#
#Data: Manganese.ppb
#
#Censoring Variable: Censored
#
#Sample Size: 25
#
#Percent Censored: 24%
#
#Confidence Interval for: mean
#
#Confidence Interval Method: Profile Likelihood
#
#Confidence Interval Type: two-sided
#
#Confidence Level: 95%
#
#Confidence Interval: LCL = 12.37629
# UCL = 69.87694

elnormCensored Estimate Parameters for a Lognormal Distribution (Log-Scale) Based
on Type I Censored Data

Description

Estimate the mean and standard deviation parameters of the logarithm of a lognormal distribution
given a sample of data that has been subjected to Type I censoring, and optionally construct a
confidence interval for the mean.
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Usage

elnormCensored(x, censored, method = "mle", censoring.side = "left",
ci = FALSE, ci.method = "profile.likelihood", ci.type = "two-sided",
conf.level = 0.95, n.bootstraps = 1000, use.acc.con = FALSE,
pivot.statistic = "z", nmc = 1000, seed = NULL, ...)

Arguments

x numeric vector of observations. Missing (NA), undefined (NaN), and infinite (Inf,
-Inf) values are allowed but will be removed.

censored numeric or logical vector indicating which values of x are censored. This must
be the same length as x. If the mode of censored is "logical", TRUE values
correspond to elements of x that are censored, and FALSE values correspond to
elements of x that are not censored. If the mode of censored is "numeric",
it must contain only 1’s and 0’s; 1 corresponds to TRUE and 0 corresponds to
FALSE. Missing (NA) values are allowed but will be removed.

method character string specifying the method of estimation.
For singly censored data, the possible values are: "mle" (maximum likelihood;
the default), "bcmle" (bias-corrected maximum likelihood), "qq.reg" (quantile-
quantile regression), "qq.reg.w.cen.level" (quantile-quantile regression in-
cluding the censoring level), "impute.w.qq.reg" (moment estimation based
on imputation using the qq.reg method), "impute.w.qq.reg.w.cen.level"
(moment estimation based on imputation using the qq.reg.w.cen.level method),
"impute.w.mle" (moment estimation based on imputation using the mle), "iterative.impute.w.qq.reg"
(moment estimation based on iterative imputation using the qq.reg method),
"m.est" (robust M-estimation), and "half.cen.level" (moment estimation
based on setting the censored observations to half the censoring level).
For multiply censored data, the possible values are: "mle" (maximum likeli-
hood; the default), "qq.reg" (quantile-quantile regression), "impute.w.qq.reg"
(moment estimation based on imputation using the qq.reg method), and "half.cen.level"
(moment estimation based on setting the censored observations to half the cen-
soring level).
See the DETAILS section for more information.

censoring.side character string indicating on which side the censoring occurs. The possible
values are "left" (the default) and "right".

ci logical scalar indicating whether to compute a confidence interval for the mean
or variance. The default value is ci=FALSE.

ci.method character string indicating what method to use to construct the confidence inter-
val for the mean. The possible values are "profile.likelihood" (profile like-
lihood; the default), "normal.approx" (normal approximation), "normal.approx.w.cov"
(normal approximation taking into account the covariance between the esti-
mated mean and standard deviation; only available for singly censored data),
"gpq" (generalized pivotal quantity), and "bootstrap" (based on bootstrap-
ping). See the DETAILS section for more information. This argument is ignored
if ci=FALSE.

ci.type character string indicating what kind of confidence interval to compute. The
possible values are "two-sided" (the default), "lower", and "upper". This
argument is ignored if ci=FALSE.

conf.level a scalar between 0 and 1 indicating the confidence level of the confidence in-
terval. The default value is conf.level=0.95. This argument is ignored if
ci=FALSE.
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n.bootstraps numeric scalar indicating how many bootstraps to use to construct the confi-
dence interval for the mean when ci.type="bootstrap". This argument is
ignored if ci=FALSE and/or ci.method does not equal "bootstrap".

use.acc.con logical scalar indicating whether to use the acceleration constant when com-
puting the bias-corrected bootstrap confidence interval (see the DETAILS sec-
tion). The default value is FALSE. This argument is ignored if ci=FALSE and/or
ci.method does not equal "bootstrap".

pivot.statistic

character string indicating which pivot statistic to use in the construction of
the confidence interval for the mean when ci.method="normal.approx" or
ci.method="normal.approx.w.cov" (see the DETAILS section). The possi-
ble values are pivot.statistic="z" (the default) and pivot.statistic="t".
When pivot.statistic="t" you may supply the argument ci.sample size
(see below). The argument pivot.statistic is ignored if ci=FALSE.

nmc numeric scalar indicating the number of Monte Carlo simulations to run when
ci.method="gpq". The default is nmc=1000. This argument is ignored if ci=FALSE.

seed integer supplied to the function set.seed and used when ci.method="bootstrap"
or ci.method="gpq". The default value is seed=NULL, in which case the current
value of .Random.seed is used. This argument is ignored when ci=FALSE.

... additional arguments to pass to other functions.

• prob.method. Character string indicating what method to use to com-
pute the plotting positions (empirical probabilities) when method is one of
"qq.reg", "qq.reg.w.cen.level", "impute.w.qq.reg", "impute.w.qq.reg.w.cen.level",
"impute.w.mle", or "iterative.impute.w.qq.reg". Possible values
are "kaplan-meier" (product-limit method of Kaplan and Meier (1958)),
"nelson" (hazard plotting method of Nelson (1972)), "michael-schucany"
(generalization of the product-limit method due to Michael and Schucany
(1986)), and "hirsch-stedinger" (generalization of the product-limit method
due to Hirsch and Stedinger (1987)). The default value is prob.method="michael-schucany".
The "nelson" method is only available for censoring.side="right".
See the DETAILS section and the help file for ppointsCensored for more
information.

• plot.pos.con. Numeric scalar between 0 and 1 containing the value of
the plotting position constant to use when method is one of "qq.reg",
"qq.reg.w.cen.level", "impute.w.qq.reg", "impute.w.qq.reg.w.cen.level",
"impute.w.mle", or "iterative.impute.w.qq.reg". The default value
is plot.pos.con=0.375. See the DETAILS section and the help file for
ppointsCensored for more information.

• ci.sample.size. Numeric scalar indicating what sample size to assume
to construct the confidence interval for the mean if pivot.statistic="t"
and ci.method="normal.approx" or ci.method="normal.approx.w.cov".
When method equals "mle" or "bcmle", the default value is the expected
number of uncensored observations, otherwise it is the observed number of
uncensored observations.

• lb.impute. Numeric scalar indicating the lower bound for imputed obser-
vations when method is one of "impute.w.qq.reg", "impute.w.qq.reg.w.cen.level",
"impute.w.mle", or "iterative.impute.w.qq.reg". Imputed values
smaller than this value will be set to this value. The default is lb.impute=-Inf.

• ub.impute. Numeric scalar indicating the upper bound for imputed obser-
vations when method is one of "impute.w.qq.reg", "impute.w.qq.reg.w.cen.level",
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"impute.w.mle", or "iterative.impute.w.qq.reg". Imputed values
larger than this value will be set to this value. The default is ub.impute=Inf.

• convergence. Character string indicating the kind of convergence criterion
when method="iterative.impute.w.qq.reg". The possible values are
"relative" (the default) and "absolute". See the DETAILS section for
more information.

• tol. Numeric scalar indicating the convergence tolerance when method="iterative.impute.w.qq.reg".
The default value is tol=1e-6. If convergence="relative", then the rela-
tive difference in the old and new estimates of the mean and the relative dif-
ference in the old and new estimates of the standard deviation must be less
than tol for convergence to be achieved. If convergence="absolute",
then the absolute difference in the old and new estimates of the mean and
the absolute difference in the old and new estimates of the standard devia-
tion must be less than tol for convergence to be achieved.

• max.iter. Numeric scalar indicating the maximum number of iterations
when method="iterative.impute.w.qq.reg".

• t.df. Numeric scalar greater than or equal to 1 that determines the robust-
ness and efficiency properties of the estimator when method="m.est". The
default value is t.df=3.

Details

If x or censored contain any missing (NA), undefined (NaN) or infinite (Inf, -Inf) values, they will
be removed prior to performing the estimation.

Let X denote a random variable with a lognormal distribution with parameters meanlog=µ and
sdlog=σ. Then Y = log(X) has a normal (Gaussian) distribution with parameters mean=µ and
sd=σ. Thus, the function elnormCensored simply calls the function enormCensored using the
log-transformed values of x.

Value

a list of class "estimateCensored" containing the estimated parameters and other information.
See estimateCensored.object for details.

Note

A sample of data contains censored observations if some of the observations are reported only as
being below or above some censoring level. In environmental data analysis, Type I left-censored
data sets are common, with values being reported as “less than the detection limit” (e.g., Helsel,
2012). Data sets with only one censoring level are called singly censored; data sets with multiple
censoring levels are called multiply or progressively censored.

Statistical methods for dealing with censored data sets have a long history in the field of survival
analysis and life testing. More recently, researchers in the environmental field have proposed al-
ternative methods of computing estimates and confidence intervals in addition to the classical ones
such as maximum likelihood estimation.

Helsel (2012, Chapter 6) gives an excellent review of past studies of the properties of various esti-
mators based on censored environmental data.

In practice, it is better to use a confidence interval for the mean or a joint confidence region for
the mean and standard deviation, rather than rely on a single point-estimate of the mean. Since
confidence intervals and regions depend on the properties of the estimators for both the mean and
standard deviation, the results of studies that simply evaluated the performance of the mean and
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standard deviation separately cannot be readily extrapolated to predict the performance of various
methods of constructing confidence intervals and regions. Furthermore, for several of the methods
that have been proposed to estimate the mean based on type I left-censored data, standard errors of
the estimates are not available, hence it is not possible to construct confidence intervals (El-Shaarawi
and Dolan, 1989).

Few studies have been done to evaluate the performance of methods for constructing confidence
intervals for the mean or joint confidence regions for the mean and standard deviation when data
are subjected to single or multiple censoring. See, for example, Singh et al. (2006).

Schmee et al. (1985) studied Type II censoring for a normal distribution and noted that the bias and
variances of the maximum likelihood estimators are of the order 1/N , and that the bias is negligible
for N = 100 and as much as 90% censoring. (If the proportion of censored observations is less
than 90%, the bias becomes negligible for smaller sample sizes.) For small samples with moderate
to high censoring, however, the bias of the mle’s causes confidence intervals based on them using
a normal approximation (e.g., method="mle" and ci.method="normal.approx") to be too short.
Schmee et al. (1985) provide tables for exact confidence intervals for sample sizes up to N = 100
that were created based on Monte Carlo simulation. Schmee et al. (1985) state that these tables
should work well for Type I censored data as well.

Shumway et al. (1989) evaluated the coverage of 90% confidence intervals for the mean based
on using a Box-Cox transformation to induce normality, computing the mle’s based on the normal
distribution, then computing the mean in the original scale. They considered three methods of
constructing confidence intervals: the delta method, the bootstrap, and the bias-corrected bootstrap.
Shumway et al. (1989) used three parent distributions in their study: Normal(3,1), the square of
this distribuiton, and the exponentiation of this distribution (i.e., a lognormal distribution). Based
on sample sizes of 10 and 50 with a censoring level at the 10’th or 20’th percentile, Shumway et al.
(1989) found that the delta method performed quite well and was superior to the bootstrap method.

Millard et al. (2014; in preparation) show that the coverage of profile likelihood method is excellent.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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See Also

enormCensored, Lognormal, elnorm, estimateCensored.object.

Examples

# Chapter 15 of USEPA (2009) gives several examples of estimating the mean
# and standard deviation of a lognormal distribution on the log-scale using
# manganese concentrations (ppb) in groundwater at five background wells.
# In EnvStats these data are stored in the data frame
# EPA.09.Ex.15.1.manganese.df.

# Here we will estimate the mean and standard deviation using the MLE,
# Q-Q regression (also called parametric regression on order statistics
# or ROS; e.g., USEPA, 2009 and Helsel, 2012), and imputation with Q-Q
# regression (also called robust ROS).

# First look at the data:
#-----------------------

EPA.09.Ex.15.1.manganese.df

# Sample Well Manganese.Orig.ppb Manganese.ppb Censored
#1 1 Well.1 <5 5.0 TRUE
#2 2 Well.1 12.1 12.1 FALSE

http://people.upei.ca/hstryhn/stryhn208.pdf
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#3 3 Well.1 16.9 16.9 FALSE
#...
#23 3 Well.5 3.3 3.3 FALSE
#24 4 Well.5 8.4 8.4 FALSE
#25 5 Well.5 <2 2.0 TRUE

longToWide(EPA.09.Ex.15.1.manganese.df,
"Manganese.Orig.ppb", "Sample", "Well",
paste.row.name = TRUE)

# Well.1 Well.2 Well.3 Well.4 Well.5
#Sample.1 <5 <5 <5 6.3 17.9
#Sample.2 12.1 7.7 5.3 11.9 22.7
#Sample.3 16.9 53.6 12.6 10 3.3
#Sample.4 21.6 9.5 106.3 <2 8.4
#Sample.5 <2 45.9 34.5 77.2 <2

# Now estimate the mean and standard deviation on the log-scale
# using the MLE:
#---------------------------------------------------------------

with(EPA.09.Ex.15.1.manganese.df,
elnormCensored(Manganese.ppb, Censored))

#Results of Distribution Parameter Estimation
#Based on Type I Censored Data
#--------------------------------------------
#
#Assumed Distribution: Lognormal
#
#Censoring Side: left
#
#Censoring Level(s): 2 5
#
#Estimated Parameter(s): meanlog = 2.215905
# sdlog = 1.356291
#
#Estimation Method: MLE
#
#Data: Manganese.ppb
#
#Censoring Variable: Censored
#
#Sample Size: 25
#
#Percent Censored: 24%

# Now compare the MLE with the estimators based on
# Q-Q regression and imputation with Q-Q regression
#--------------------------------------------------

with(EPA.09.Ex.15.1.manganese.df,
elnormCensored(Manganese.ppb, Censored))$parameters

# meanlog sdlog
#2.215905 1.356291



elnormCensored 241

with(EPA.09.Ex.15.1.manganese.df,
elnormCensored(Manganese.ppb, Censored,
method = "qq.reg"))$parameters

# meanlog sdlog
#2.293742 1.283635

with(EPA.09.Ex.15.1.manganese.df,
elnormCensored(Manganese.ppb, Censored,
method = "impute.w.qq.reg"))$parameters

# meanlog sdlog
#2.298656 1.238104

#----------

# The method used to estimate quantiles for a Q-Q plot is
# determined by the argument prob.method. For the functions
# enormCensored and elnormCensored, for any estimation
# method that involves Q-Q regression, the default value of
# prob.method is "hirsch-stedinger" and the default value for the
# plotting position constant is plot.pos.con=0.375.

# Both Helsel (2012) and USEPA (2009) also use the Hirsch-Stedinger
# probability method but set the plotting position constant to 0.

with(EPA.09.Ex.15.1.manganese.df,
elnormCensored(Manganese.ppb, Censored,
method = "impute.w.qq.reg", plot.pos.con = 0))$parameters

# meanlog sdlog
#2.277175 1.261431

#----------

# Using the same data as above, compute a confidence interval
# for the mean on the log-scale using the profile-likelihood
# method.

with(EPA.09.Ex.15.1.manganese.df,
elnormCensored(Manganese.ppb, Censored, ci = TRUE))

#Results of Distribution Parameter Estimation
#Based on Type I Censored Data
#--------------------------------------------
#
#Assumed Distribution: Lognormal
#
#Censoring Side: left
#
#Censoring Level(s): 2 5
#
#Estimated Parameter(s): meanlog = 2.215905
# sdlog = 1.356291
#
#Estimation Method: MLE
#
#Data: Manganese.ppb
#
#Censoring Variable: Censored
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#
#Sample Size: 25
#
#Percent Censored: 24%
#
#Confidence Interval for: meanlog
#
#Confidence Interval Method: Profile Likelihood
#
#Confidence Interval Type: two-sided
#
#Confidence Level: 95%
#
#Confidence Interval: LCL = 1.595062
# UCL = 2.771197

elogis Estimate Parameters of a Logistic Distribution

Description

Estimate the location and scale parameters of a logistic distribution, and optionally construct a
confidence interval for the location parameter.

Usage

elogis(x, method = "mle", ci = FALSE, ci.type = "two-sided",
ci.method = "normal.approx", conf.level = 0.95)

Arguments

x numeric vector of observations.

method character string specifying the method of estimation. Possible values are "mle"
(maximum likelihood; the default), "mme" (methods of moments), and "mmue"
(method of moments based on the unbiased estimator of variance). See the
DETAILS section for more information on these estimation methods.

ci logical scalar indicating whether to compute a confidence interval for the loca-
tion or scale parameter. The default value is FALSE.

ci.type character string indicating what kind of confidence interval to compute. The
possible values are "two-sided" (the default), "lower", and "upper". This
argument is ignored if ci=FALSE.

ci.method character string indicating what method to use to construct the confidence in-
terval for the location or scale parameter. Currently, the only possible value is
"normal.approx" (the default). See the DETAILS section for more informa-
tion. This argument is ignored if ci=FALSE.

conf.level a scalar between 0 and 1 indicating the confidence level of the confidence in-
terval. The default value is conf.level=0.95. This argument is ignored if
ci=FALSE.
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Details

If x contains any missing (NA), undefined (NaN) or infinite (Inf, -Inf) values, they will be removed
prior to performing the estimation.

Let x = (x1, x2, . . . , xn) be a vector of n observations from an logistic distribution with parameters
location=η and scale=θ.

Estimation

Maximum Likelihood Estimation (method="mle")
The maximum likelihood estimators (mle’s) of η and θ are the solutions of the simultaneous equa-
tions (Forbes et al., 2011):

n∑
i=1

1

1 + ezi
=
n

2
(1)

n∑
i=1

zi [
1− ezi
1 + ezi

= n (2)

where

zi =
xi − ˆetamle

θ̂mle
(3)

Method of Moments Estimation (method="mme")
The method of moments estimators (mme’s) of η and θ are given by:

η̂mme = x̄ (4)

θ̂mme =

√
3

π
sm (5)

where

x̄ =

n∑
i=1

xi (6)

s2
m =

1

n

n∑
i=1

(xi − x̄)2 (7)

that is, sm denotes the square root of the method of moments estimator of variance.

Method of Moments Estimators Based on the Unbiased Estimator of Variance (method="mmue")
These estimators are exactly the same as the method of moments estimators given in equations (4-7)
above, except that the method of moments estimator of variance in equation (7) is replaced with the
unbiased estimator of variance:

s2 =
1

n− 1

n∑
i=1

(xi − x̄)2 (8)

Confidence Intervals
When ci=TRUE, an approximate (1 − α)100% confidence intervals for η can be constructed as-
suming the distribution of the estimator of η is approximately normally distributed. A two-sided
confidence interval is constructed as:

[η̂ − t(n− 1, 1− α/2)σ̂η̂, η̂ + t(n− 1, 1− α/2)σ̂η̂]
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where t(ν, p) is the p’th quantile of Student’s t-distribution with ν degrees of freedom, and the
quantity

σ̂η̂ =
πθ̂√
3n

(9)

denotes the estimated asymptotic standard deviation of the estimator of η.

One-sided confidence intervals for η and θ are computed in a similar fashion.

Value

a list of class "estimate" containing the estimated parameters and other information. See estimate.object
for details.

Note

The logistic distribution is defined on the real line and is unimodal and symmetric about its location
parameter (the mean). It has longer tails than a normal (Gaussian) distribution. It is used to model
growth curves and bioassay data.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Forbes, C., M. Evans, N. Hastings, and B. Peacock. (2011). Statistical Distributions. Fourth
Edition. John Wiley and Sons, Hoboken, NJ.

Johnson, N. L., S. Kotz, and N. Balakrishnan. (1995). Continuous Univariate Distributions, Volume
2. Second Edition. John Wiley and Sons, New York.

See Also

Logistic.

Examples

# Generate 20 observations from a logistic distribution with
# parameters location=0 and scale=1, then estimate the parameters
# and construct a 90% confidence interval for the location parameter.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(250)
dat <- rlogis(20)
elogis(dat, ci = TRUE, conf.level = 0.9)

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Logistic
#
#Estimated Parameter(s): location = -0.2181845
# scale = 0.8152793
#
#Estimation Method: mle
#
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#Data: dat
#
#Sample Size: 20
#
#Confidence Interval for: location
#
#Confidence Interval Method: Normal Approximation
# (t Distribution)
#
#Confidence Interval Type: two-sided
#
#Confidence Level: 90%
#
#Confidence Interval: LCL = -0.7899382
# UCL = 0.3535693

#----------

# Clean up
#---------
rm(dat)

Empirical The Empirical Distribution Based on a Set of Observations

Description

Density, distribution function, quantile function, and random generation for the empirical distribu-
tion based on a set of observations

Usage

demp(x, obs, discrete = FALSE, density.arg.list = NULL)
pemp(q, obs, discrete = FALSE,
prob.method = ifelse(discrete, "emp.probs", "plot.pos"),
plot.pos.con = 0.375)

qemp(p, obs, discrete = FALSE,
prob.method = ifelse(discrete, "emp.probs", "plot.pos"),
plot.pos.con = 0.375)

remp(n, obs)

Arguments

x vector of quantiles.

q vector of quantiles.

p vector of probabilities between 0 and 1.

n sample size. If length(n) is larger than 1, then length(n) random values are
returned.

obs numeric vector of observations. Missing (NA), undefined (NaN), and infinite (Inf,
-Inf) values are allowed but will be removed.

discrete logical scalar indicating whether the assumed parent distribution of x is discrete
(discrete=TRUE) or continuous (discrete=FALSE). The default value is FALSE.
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density.arg.list

list with arguments to the R density function. The default value is NULL. (See
the help file for density for more information on the arguments to density.) The
argument density.arg.list is ignored if discrete=TRUE.

prob.method character string indicating what method to use to compute the empirical prob-
abilities. Possible values are "emp.probs" (empirical probabilities, default if
discrete=TRUE) and "plot.pos" (plotting positions, default if discrete=FALSE).
See the DETAILS section for more explanation.

plot.pos.con numeric scalar between 0 and 1 containing the value of the plotting position
constant. The default value is plot.pos.con=0.375. See the DETAILS section
for more information. This argument is ignored if prob.method="emp.probs".

Details

Let x1, x2, . . . , xn denote a random sample of n observations from some unknown probability dis-
tribution (i.e., the elements of the argument obs), and let x(i) denote the ith order statistic, that is,
the ith largest observation, for i = 1, 2, . . . , n.

Estimating Density
The function demp computes the empirical probability density function. If the observations are
assumed to come from a discrete distribution, the probability density (mass) function is estimated
by:

f̂(x) = P̂ r(X = x) =

∑n
i=1 I[x](xi)

n

where I is the indicator function:

I[x](y) = 1 if y = x,
0 if y 6= x

That is, the estimated probability of observing the value x is simply the observed proportion of
observations equal to x.

If the observations are assumed to come from a continuous distribution, the function demp calls the
R function density to compute the estimated density based on the values specified in the argument
obs, and then uses linear interpolation to estimate the density at the values specified in the argument
x. See the R help file for density for more information on how the empirical density is computed
in the continuous case.

Estimating Probabilities
The function pemp computes the estimated cumulative distribution function (cdf), also called the
empirical cdf (ecdf). If the observations are assumed to come from a discrete distribution, the value
of the cdf evaluated at the ith order statistic is usually estimated by:

F̂ [x(i)] = P̂ r(X ≤ x(i)) = p̂i =

∑n
j=1 I(−∞,x(i)](xj)

n

where:

I(−∞,x](y) = 1 if y ≤ x,
0 if y > x

(D’Agostino, 1986a). That is, the estimated value of the cdf at the ith order statistic is simply the
observed proportion of observations less than or equal to the ith order statistic. This estimator is
sometimes called the “empirical probabilities” estimator and is intuitively appealing. The function
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pemp uses the above equations to compute the empirical cdf when prob.method="emp.probs".

For any general value of x, when the observations are assumed to come from a discrete distribution,
the value of the cdf is estimated by:

F̂ (x) = 0 if x < x(1),
p̂i if x(i) ≤ x < x(i+1),
1 if x ≥ x(n)

The function pemp uses the above equation when discrete=TRUE.

If the observations are assumed to come from a continuous distribution, the value of the cdf evalu-
ated at the ith order statistic is usually estimated by:

F̂ [x(i)] = p̂i =
i− a

n− 2a+ 1

where a denotes the plotting position constant and 0 ≤ a ≤ 1 (Cleveland, 1993, p.18; D’Agostino,
1986a, pp.8,25). The estimators defined by the above equation are called plotting positions and are
used to construct probability plots. The function pemp uses the above equation when prob.method="plot.pos".

For any general value of x, the value of the cdf is estimated by linear interpolation:

F̂ (x) = p̂1 if x < x(1),
(1− r)p̂i + rp̂i+1 if x(i) ≤ x < x(i+1),
p̂n if x ≥ x(n)

where
r =

x− x(i)

x(i+1) − x(i)

(Chambers et al., 1983). The function pemp uses the above two equations when discrete=FALSE.

Estimating Quantiles
The function qemp computes the estimated quantiles based on the observed data. If the observations
are assumed to come from a discrete distribution, the pth quantile is usually estimated by:

x̂p = x(1) if p ≤ p̂1,
x(i) if p̂i−1 < p ≤ p̂i,
xn if p > p̂n

The function qemp uses the above equation when discrete=TRUE.

If the observations are assumed to come from a continuous distribution, the pth quantile is usually
estimated by linear interpolation:

x̂p = x(1) if p ≤ p̂1,
(1− r)x(i−1) + rx(i) if p̂i−1 < p ≤ p̂i,
xn if p > p̂n

where

r =
p− p̂i−1

p̂i − p̂i−1

The function qemp uses the above two equations when discrete=FALSE.



248 Empirical

Generating Random Numbers From the Empirical Distribution
The function remp simply calls the R function sample to sample the elements of obs with replace-
ment.

Value

density (demp), probability (pemp), quantile (qemp), or random sample (remp) for the empirical
distribution based on the data contained in the vector obs.

Note

The function demp let’s you perform nonparametric density estimation. The function pemp computes
the value of the empirical cumulative distribution function (ecdf) for user-specified quantiles. The
ecdf is a nonparametric estimate of the true cdf (see ecdfPlot). The function qemp computes non-
parametric estimates of quantiles (see the help files for eqnpar and quantile). The function remp
let’s you sample a set of observations with replacement, which is often done while bootstrapping or
performing some other kind of Monte Carlo simulation.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Chambers, J.M., W.S. Cleveland, B. Kleiner, and P.A. Tukey. (1983). Graphical Methods for Data
Analysis. Duxbury Press, Boston, MA, pp.11–16.

Cleveland, W.S. (1993). Visualizing Data. Hobart Press, Summit, New Jersey, 360pp.

D’Agostino, R.B. (1986a). Graphical Analysis. In: D’Agostino, R.B., and M.A. Stephens, eds.
Goodness-of Fit Techniques. Marcel Dekker, New York, Chapter 2, pp.7–62.

Scott, D. W. (1992). Multivariate Density Estimation: Theory, Practice and Visualization. John
Wiley and Sons, New York.

Sheather, S. J. and Jones M. C. (1991). A Reliable Data-Based Bandwidth Selection Method for
Kernel Density Estimation. Journal of the Royal Statististical Society B, 683–690.

Silverman, B.W. (1986). Density Estimation for Statistics and Data Analysis. Chapman and Hall,
London.

Wegman, E.J. (1972). Nonparametric Probability Density Estimation. Technometrics 14, 533-546.

See Also

density, approx, epdfPlot, ecdfPlot, cdfCompare, qqplot, eqnpar, quantile, sample, simulateVector,
simulateMvMatrix.

Examples

# Create a set of 100 observations from a gamma distribution with
# parameters shape=4 and scale=5.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(3)
obs <- rgamma(100, shape=4, scale=5)

# Now plot the empirical distribution (with a histogram) and the true distribution:
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dev.new()
hist(obs, col = "cyan", xlim = c(0, 65), freq = FALSE,

ylab = "Relative Frequency")

pdfPlot(gamma, list(shape = 4, scale = 5), add = TRUE)

box()

# Now plot the empirical distribution (based on demp) with the
# true distribution:

x <- qemp(p = seq(0, 1, len = 100), obs = obs)
y <- demp(x, obs)

dev.new()
plot(x, y, xlim = c(0, 65), type = "n",

xlab = "Value of Random Variable",
ylab = "Relative Frequency")

lines(x, y, lwd = 2, col = "cyan")

pdfPlot(gamma, list(shape = 4, scale = 5), add = TRUE)

# Alternatively, you can create the above plot with the function
# epdfPlot:

dev.new()
epdfPlot(obs, xlim = c(0, 65), epdf.col = "cyan",

xlab = "Value of Random Variable",
main = "Empirical and Theoretical PDFs")

pdfPlot(gamma, list(shape = 4, scale = 5), add = TRUE)

# Clean Up
#---------
rm(obs, x, y)

enbinom Estimate Probability Parameter of a Negative Binomial Distribution

Description

Estimate the probability parameter of a negative binomial distribution.

Usage

enbinom(x, size, method = "mle/mme")
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Arguments

x vector of non-negative integers indicating the number of trials that took place
before size “successes” occurred. (The total number of trials that took place is
x+1). Missing (NA), undefined (NaN), and infinite (Inf, -Inf) values are allowed
but will be removed. If length(x)=n and n is greater than 1, it is assumed that
x represents observations from n separate negative binomial experiments that
all had the same probability of success (prob), but possibly different values of
size.

size vector of positive integers indicating the number of “successes” that must be ob-
served before the trials are stopped. Missing (NA), undefined (NaN), and infinite
(Inf, -Inf) values are allowed but will be removed. The length of size must
be 1 or else the same length as x.

method character string specifying the method of estimation. Possible values are "mle/mme"
(maximum likelihood and method of moments; the default) and "mvue" (min-
imum variance unbiased). You cannot use method="mvue" if the sum of the
elements in size is 1. See the DETAILS section for more information on these
estimation methods.

Details

If x contains any missing (NA), undefined (NaN) or infinite (Inf, -Inf) values, they will be removed
prior to performing the estimation.

Let x = (x1, x2, . . . , xn) be a vector of n independent observations from negative binomial distri-
butions with parameters prob=p and size=k, where where k = c(k1, k2, . . . , kn) is a vector of n
(possibly different) values.

It can be shown (e.g., Forbes et al., 2011) that if X is defined as:

X =

n∑
i=1

xi

thenX is an observation from a negative binomial distribution with parameters prob=p and size=K,
where

K =

n∑
i=1

ki

Estimation
The maximum likelihood and method of moments estimator (mle/mme) of p is given by:

p̂mle =
K

X +K

and the minimum variance unbiased estimator (mvue) of p is given by:

p̂mvue =
K − 1

X +K − 1

(Forbes et al., 2011). Note that the mvue of p is not defined for K = 1.

Value

a list of class "estimate" containing the estimated parameters and other information. See estimate.object
for details.
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Note

The negative binomial distribution has its roots in a gambling game where participants would bet on
the number of tosses of a coin necessary to achieve a fixed number of heads. The negative binomial
distribution has been applied in a wide variety of fields, including accident statistics, birth-and-death
processes, and modeling spatial distributions of biological organisms.

The geometric distribution with parameter prob=p is a special case of the negative binomial distri-
bution with parameters size=1 and prob=p.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Forbes, C., M. Evans, N. Hastings, and B. Peacock. (2011). Statistical Distributions. Fourth
Edition. John Wiley and Sons, Hoboken, NJ.

Johnson, N. L., S. Kotz, and A. Kemp. (1992). Univariate Discrete Distributions. Second Edition.
John Wiley and Sons, New York, Chapter 5.

See Also

NegBinomial, egeom, Geometric.

Examples

# Generate an observation from a negative binomial distribution with
# parameters size=2 and prob=0.2, then estimate the parameter prob.
# Note: the call to set.seed simply allows you to reproduce this example.
# Also, the only parameter that is estimated is prob; the parameter
# size is supplied in the call to enbinom. The parameter size is printed in
# order to show all of the parameters associated with the distribution.

set.seed(250)
dat <- rnbinom(1, size = 2, prob = 0.2)
dat
#[1] 5

enbinom(dat, size = 2)
#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Negative Binomial
#
#Estimated Parameter(s): size = 2.0000000
# prob = 0.2857143
#
#Estimation Method: mle/mme for prob
#
#Data: dat, 2
#
#Sample Size: 1

#----------

# Generate 3 observations from negative binomial distributions with
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# parameters size=c(2,3,4) and prob=0.2, then estimate the parameter
# prob using the mvue.
# (Note: the call to set.seed simply allows you to reproduce this example.)

size.vec <- 2:4
set.seed(250)
dat <- rnbinom(3, size = size.vec, prob = 0.2)
dat
#[1] 5 19 12

enbinom(dat, size = size.vec, method = "mvue")
#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Negative Binomial
#
#Estimated Parameter(s): size = 9.0000000
# prob = 0.1818182
#
#Estimation Method: mvue for prob
#
#Data: dat, size.vec
#
#Sample Size: 3

#----------

# Clean up
#---------
rm(dat)

enorm Estimate Parameters of a Normal (Gaussian) Distribution

Description

Estimate the mean and standard deviation parameters of a normal (Gaussian) distribution, and op-
tionally construct a confidence interval for the mean or the variance.

Usage

enorm(x, method = "mvue", ci = FALSE, ci.type = "two-sided",
ci.method = "exact", conf.level = 0.95, ci.param = "mean")

Arguments

x numeric vector of observations.

method character string specifying the method of estimation. Possible values are "mvue"
(minimum variance unbiased; the default), and "mle/mme" (maximum likeli-
hood/method of moments). See the DETAILS section for more information on
these estimation methods.

ci logical scalar indicating whether to compute a confidence interval for the mean
or variance. The default value is FALSE.
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ci.type character string indicating what kind of confidence interval to compute. The
possible values are "two-sided" (the default), "lower", and "upper". This
argument is ignored if ci=FALSE.

ci.method character string indicating what method to use to construct the confidence inter-
val for the mean or variance. The only possible value is "exact" (the default).
See the DETAILS section for more information. This argument is ignored if
ci=FALSE.

conf.level a scalar between 0 and 1 indicating the confidence level of the confidence in-
terval. The default value is conf.level=0.95. This argument is ignored if
ci=FALSE.

ci.param character string indicating which parameter to create a confidence interval for.
The possible values are ci.param="mean" (the default) and ci.param="variance".
This argument is ignored if ci=FALSE.

Details

If x contains any missing (NA), undefined (NaN) or infinite (Inf, -Inf) values, they will be removed
prior to performing the estimation.

Let x = (x1, x2, . . . , xn) be a vector of n observations from an normal (Gaussian) distribution with
parameters mean=µ and sd=σ.

Estimation

Minimum Variance Unbiased Estimation (method="mvue")
The minimum variance unbiased estimators (mvue’s) of the mean and variance are:

µ̂mvue = x̄ =
1

n

n∑
i=1

xi (1)

ˆsigma
2

mvue = s2 =
1

n− 1

n∑
i=1

(xi − x̄)2 (2)

(Johnson et al., 1994; Forbes et al., 2011). Note that when method="mvue", the estimated standard
deviation is the square root of the mvue of the variance, but is not itself an mvue.

Maximum Likelihood/Method of Moments Estimation (method="mle/mme")
The maximum likelihood estimator (mle) and method of moments estimator (mme) of the mean
are both the same as the mvue of the mean given in equation (1) above. The mle and mme of the
variance is given by:

ˆsigma
2

mle = s2
m =

n− 1

n
s2 =

1

n

n∑
i=1

(xi − x̄)2 (3)

When method="mle/mme", the estimated standard deviation is the square root of the mle of the
variance, and is itself an mle.

Confidence Intervals

Confidence Interval for the Mean (ci.param="mean")
When ci=TRUE and ci.param = "mean", the usual confidence interval for µ is constructed as fol-
lows. If ci.type="two-sided", a the (1− α)100% confidence interval for µ is given by:

[µ̂− t(n− 1, 1− α/2)
σ̂√
n
, µ̂+ t(n− 1, 1− α/2)

σ̂√
n

] (4)
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where t(ν, p) is the p’th quantile of Student’s t-distribution with ν degrees of freedom (Zar, 2010;
Gilbert, 1987; Ott, 1995; Helsel and Hirsch, 1992).

If ci.type="lower", the (1− α)100% confidence interval for µ is given by:

[µ̂− t(n− 1, 1− α)
σ̂√
n
, ∞] (5)

and if ci.type="upper", the confidence interval is given by:

[−∞, µ̂+ t(n− 1, 1− α/2)
σ̂√
n

] (6)

Confidence Interval for the Variance (ci.param="variance")
When ci=TRUE and ci.param = "variance", the usual confidence interval for σ2 is constructed
as follows. A two-sided (1− α)100% confidence interval for σ2 is given by:

[
(n− 1)s2

χ2
n−1,1−α/2

,
(n− 1)s2

χ2
n−1,α/2

] (7)

Similarly, a one-sided upper (1 − α)100% confidence interval for the population variance is given
by:

[0,
(n− 1)s2

χ2
n−1,α

] (8)

and a one-sided lower (1− α)100% confidence interval for the population variance is given by:

[
(n− 1)s2

χ2
n−1,1−α

, ∞] (9)

(van Belle et al., 2004; Zar, 2010).

Value

a list of class "estimate" containing the estimated parameters and other information. See estimate.object
for details.

Note

The normal and lognormal distribution are probably the two most frequently used distributions to
model environmental data. In order to make any kind of probability statement about a normally-
distributed population (of chemical concentrations for example), you have to first estimate the mean
and standard deviation (the population parameters) of the distribution. Once you estimate these
parameters, it is often useful to characterize the uncertainty in the estimate of the mean or variance.
This is done with confidence intervals.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Berthouex, P.M., and L.C. Brown. (2002). Statistics for Environmental Engineers. Second Edition.
Lewis Publishers, Boca Raton, FL.

Forbes, C., M. Evans, N. Hastings, and B. Peacock. (2011). Statistical Distributions. Fourth
Edition. John Wiley and Sons, Hoboken, NJ.
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Gilbert, R.O. (1987). Statistical Methods for Environmental Pollution Monitoring. Van Nostrand
Reinhold, New York, NY.

Helsel, D.R., and R.M. Hirsch. (1992). Statistical Methods in Water Resources Research. Elsevier,
New York, NY, Chapter 7.

Johnson, N. L., S. Kotz, and N. Balakrishnan. (1994). Continuous Univariate Distributions, Volume
1. Second Edition. John Wiley and Sons, New York.

Millard, S.P., and N.K. Neerchal. (2001). Environmental Statistics with S-PLUS. CRC Press, Boca
Raton, FL.

Ott, W.R. (1995). Environmental Statistics and Data Analysis. Lewis Publishers, Boca Raton, FL.

USEPA. (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Uni-
fied Guidance. EPA 530/R-09-007, March 2009. Office of Resource Conservation and Recovery
Program Implementation and Information Division. U.S. Environmental Protection Agency, Wash-
ington, D.C.

van Belle, G., L.D. Fisher, Heagerty, P.J., and Lumley, T. (2004). Biostatistics: A Methodology for
the Health Sciences, 2nd Edition. John Wiley & Sons, New York.

Zar, J.H. (2010). Biostatistical Analysis. Fifth Edition. Prentice-Hall, Upper Saddle River, NJ.

See Also

Normal.

Examples

# Generate 20 observations from a N(3, 2) distribution, then estimate
# the parameters and create a 95% confidence interval for the mean.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(250)
dat <- rnorm(20, mean = 3, sd = 2)
enorm(dat, ci = TRUE)

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Normal
#
#Estimated Parameter(s): mean = 2.861160
# sd = 1.180226
#
#Estimation Method: mvue
#
#Data: dat
#
#Sample Size: 20
#
#Confidence Interval for: mean
#
#Confidence Interval Method: Exact
#
#Confidence Interval Type: two-sided
#
#Confidence Level: 95%
#
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#Confidence Interval: LCL = 2.308798
# UCL = 3.413523

#----------

# Using the same data, construct an upper 90% confidence interval for
# the variance.

enorm(dat, ci = TRUE, ci.type = "upper", ci.param = "variance")$interval

#Confidence Interval for: variance
#
#Confidence Interval Method: Exact
#
#Confidence Interval Type: upper
#
#Confidence Level: 95%
#
#Confidence Interval: LCL = 0.000000
# UCL = 2.615963

#----------

# Clean up
#---------
rm(dat)

#----------

# Using the Reference area TcCB data in the data frame EPA.94b.tccb.df,
# estimate the mean and standard deviation of the log-transformed data,
# and construct a 95% confidence interval for the mean.

with(EPA.94b.tccb.df, enorm(log(TcCB[Area == "Reference"]), ci = TRUE))

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Normal
#
#Estimated Parameter(s): mean = -0.6195712
# sd = 0.4679530
#
#Estimation Method: mvue
#
#Data: log(TcCB[Area == "Reference"])
#
#Sample Size: 47
#
#Confidence Interval for: mean
#
#Confidence Interval Method: Exact
#
#Confidence Interval Type: two-sided
#
#Confidence Level: 95%
#
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#Confidence Interval: LCL = -0.7569673
# UCL = -0.4821751

enormCensored Estimate Parameters for a Normal Distribution Based on Type I Cen-
sored Data

Description

Estimate the mean and standard deviation of a normal (Gaussian) distribution given a sample of
data that has been subjected to Type I censoring, and optionally construct a confidence interval for
the mean.

Usage

enormCensored(x, censored, method = "mle", censoring.side = "left",
ci = FALSE, ci.method = "profile.likelihood", ci.type = "two-sided",
conf.level = 0.95, n.bootstraps = 1000, use.acc.con = FALSE,
pivot.statistic = "z", nmc = 1000, seed = NULL, ...)

Arguments

x numeric vector of observations. Missing (NA), undefined (NaN), and infinite (Inf,
-Inf) values are allowed but will be removed.

censored numeric or logical vector indicating which values of x are censored. This must
be the same length as x. If the mode of censored is "logical", TRUE values
correspond to elements of x that are censored, and FALSE values correspond to
elements of x that are not censored. If the mode of censored is "numeric",
it must contain only 1’s and 0’s; 1 corresponds to TRUE and 0 corresponds to
FALSE. Missing (NA) values are allowed but will be removed.

method character string specifying the method of estimation.
For singly censored data, the possible values are: "mle" (maximum likelihood;
the default), "bcmle" (bias-corrected maximum likelihood), "qq.reg" (quantile-
quantile regression), "qq.reg.w.cen.level" (quantile-quantile regression in-
cluding the censoring level), "impute.w.qq.reg" (moment estimation based
on imputation using the qq.reg method), "impute.w.qq.reg.w.cen.level"
(moment estimation based on imputation using the qq.reg.w.cen.level method),
"impute.w.mle" (moment estimation based on imputation using the mle), "iterative.impute.w.qq.reg"
(moment estimation based on iterative imputation using the qq.reg method),
"m.est" (robust M-estimation), and "half.cen.level" (moment estimation
based on setting the censored observations to half the censoring level).
For multiply censored data, the possible values are: "mle" (maximum likeli-
hood; the default), "qq.reg" (quantile-quantile regression), "impute.w.qq.reg"
(moment estimation based on imputation using the qq.reg method), and "half.cen.level"
(moment estimation based on setting the censored observations to half the cen-
soring level).
See the DETAILS section for more information.

censoring.side character string indicating on which side the censoring occurs. The possible
values are "left" (the default) and "right".
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ci logical scalar indicating whether to compute a confidence interval for the mean
or variance. The default value is ci=FALSE.

ci.method character string indicating what method to use to construct the confidence inter-
val for the mean. The possible values are "profile.likelihood" (profile like-
lihood; the default), "normal.approx" (normal approximation), "normal.approx.w.cov"
(normal approximation taking into account the covariance between the esti-
mated mean and standard deviation; only available for singly censored data),
"gpq" (generalized pivotal quantity), and "bootstrap" (based on bootstrap-
ping). See the DETAILS section for more information. This argument is ignored
if ci=FALSE.

ci.type character string indicating what kind of confidence interval to compute. The
possible values are "two-sided" (the default), "lower", and "upper". This
argument is ignored if ci=FALSE.

conf.level a scalar between 0 and 1 indicating the confidence level of the confidence in-
terval. The default value is conf.level=0.95. This argument is ignored if
ci=FALSE.

n.bootstraps numeric scalar indicating how many bootstraps to use to construct the confi-
dence interval for the mean when ci.type="bootstrap". This argument is
ignored if ci=FALSE and/or ci.method does not equal "bootstrap".

use.acc.con logical scalar indicating whether to use the acceleration constant when com-
puting the bias-corrected bootstrap confidence interval (see the DETAILS sec-
tion). The default value is FALSE. This argument is ignored if ci=FALSE and/or
ci.method does not equal "bootstrap".

pivot.statistic

character string indicating which pivot statistic to use in the construction of
the confidence interval for the mean when ci.method="normal.approx" or
ci.method="normal.approx.w.cov" (see the DETAILS section). The possi-
ble values are pivot.statistic="z" (the default) and pivot.statistic="t".
When pivot.statistic="t" you may supply the argument ci.sample size
(see below). The argument pivot.statistic is ignored if ci=FALSE.

nmc numeric scalar indicating the number of Monte Carlo simulations to run when
ci.method="gpq". The default is nmc=1000. This argument is ignored if ci=FALSE.

seed integer supplied to the function set.seed and used when ci.method="bootstrap"
or ci.method="gpq". The default value is seed=NULL, in which case the current
value of .Random.seed is used. This argument is ignored when ci=FALSE.

... additional arguments to pass to other functions.

• prob.method. Character string indicating what method to use to com-
pute the plotting positions (empirical probabilities) when method is one of
"qq.reg", "qq.reg.w.cen.level", "impute.w.qq.reg", "impute.w.qq.reg.w.cen.level",
"impute.w.mle", or "iterative.impute.w.qq.reg". Possible values
are "kaplan-meier" (product-limit method of Kaplan and Meier (1958)),
"nelson" (hazard plotting method of Nelson (1972)), "michael-schucany"
(generalization of the product-limit method due to Michael and Schucany
(1986)), and "hirsch-stedinger" (generalization of the product-limit method
due to Hirsch and Stedinger (1987)). The default value is prob.method="michael-schucany".
The "nelson" method is only available for censoring.side="right".
See the DETAILS section and the help file for ppointsCensored for more
information.

• plot.pos.con. Numeric scalar between 0 and 1 containing the value of
the plotting position constant to use when method is one of "qq.reg",
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"qq.reg.w.cen.level", "impute.w.qq.reg", "impute.w.qq.reg.w.cen.level",
"impute.w.mle", or "iterative.impute.w.qq.reg". The default value
is plot.pos.con=0.375. See the DETAILS section and the help file for
ppointsCensored for more information.

• ci.sample.size. Numeric scalar indicating what sample size to assume
to construct the confidence interval for the mean if pivot.statistic="t"
and ci.method="normal.approx" or ci.method="normal.approx.w.cov".
When method equals "mle" or "bcmle", the default value is the expected
number of uncensored observations, otherwise it is the observed number of
uncensored observations.

• lb.impute. Numeric scalar indicating the lower bound for imputed obser-
vations when method is one of "impute.w.qq.reg", "impute.w.qq.reg.w.cen.level",
"impute.w.mle", or "iterative.impute.w.qq.reg". Imputed values
smaller than this value will be set to this value. The default is lb.impute=-Inf.

• ub.impute. Numeric scalar indicating the upper bound for imputed obser-
vations when method is one of "impute.w.qq.reg", "impute.w.qq.reg.w.cen.level",
"impute.w.mle", or "iterative.impute.w.qq.reg". Imputed values
larger than this value will be set to this value. The default is ub.impute=Inf.

• convergence. Character string indicating the kind of convergence criterion
when method="iterative.impute.w.qq.reg". The possible values are
"relative" (the default) and "absolute". See the DETAILS section for
more information.

• tol. Numeric scalar indicating the convergence tolerance when method="iterative.impute.w.qq.reg".
The default value is tol=1e-6. If convergence="relative", then the rela-
tive difference in the old and new estimates of the mean and the relative dif-
ference in the old and new estimates of the standard deviation must be less
than tol for convergence to be achieved. If convergence="absolute",
then the absolute difference in the old and new estimates of the mean and
the absolute difference in the old and new estimates of the standard devia-
tion must be less than tol for convergence to be achieved.

• max.iter. Numeric scalar indicating the maximum number of iterations
when method="iterative.impute.w.qq.reg".

• t.df. Numeric scalar greater than or equal to 1 that determines the robust-
ness and efficiency properties of the estimator when method="m.est". The
default value is t.df=3.

Details

If x or censored contain any missing (NA), undefined (NaN) or infinite (Inf, -Inf) values, they will
be removed prior to performing the estimation.

Let x denote a vector of N observations from a normal distribution with mean µ and standard
deviation σ. Assume n (0 < n < N ) of these observations are known and c (c = N − n) of these
observations are all censored below (left-censored) or all censored above (right-censored) at k fixed
censoring levels

T1, T2, . . . , Tk; k ≥ 1 (1)

For the case when k ≥ 2, the data are said to be Type I multiply censored. For the case when k = 1,
set T = T1. If the data are left-censored and all n known observations are greater than or equal to
T , or if the data are right-censored and all n known observations are less than or equal to T , then
the data are said to be Type I singly censored (Nelson, 1982, p.7), otherwise they are considered to
be Type I multiply censored.
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Let cj denote the number of observations censored below or above censoring level Tj for j =
1, 2, . . . , k, so that

k∑
i=1

cj = c (2)

Let x(1), x(2), . . . , x(N) denote the “ordered” observations, where now “observation” means either
the actual observation (for uncensored observations) or the censoring level (for censored observa-
tions). For right-censored data, if a censored observation has the same value as an uncensored one,
the uncensored observation should be placed first. For left-censored data, if a censored observation
has the same value as an uncensored one, the censored observation should be placed first.

Note that in this case the quantity x(i) does not necessarily represent the i’th “largest” observation
from the (unknown) complete sample.

Finally, let Ω (omega) denote the set of n subscripts in the “ordered” sample that correspond to
uncensored observations.

ESTIMATION

Estimation Methods for Multiply and Singly Censored Data
The following methods are available for multiply and singly censored data.

Maximum Likelihood Estimation (method="mle")
For Type I left censored data, the likelihood function is given by:

L(µ, σ|x) =

(
N

c1c2 . . . ckn

) k∏
j=1

[F (Tj)]
cj
∏
i∈Ω

f [x(i)] (3)

where f and F denote the probability density function (pdf) and cumulative distribution function
(cdf) of the population. That is,

f(t) = φ(
t− µ
σ

) (4)

F (t) = Φ(
t− µ
σ

) (5)

where φ and Φ denote the pdf and cdf of the standard normal distribution, respectively (Cohen,
1963; 1991, pp.6, 50). For left singly censored data, Equation (3) simplifies to:

L(µ, σ|x) =

(
N

c

)
[F (T )]c

n∏
i=c+1

f [x(i)] (6)

Similarly, for Type I right censored data, the likelihood function is given by:

L(µ, σ|x) =

(
N

c1c2 . . . ckn

) k∏
j=1

[1− F (Tj)]
cj
∏
i∈Ω

f [x(i)] (7)

and for right singly censored data this simplifies to:

L(µ, σ|x) =

(
N

c

)
[1− F (T )]c

n∏
i=1

f [x(i)] (8)

The maximum likelihood estimators are computed by maximizing the likelihood function. For
right-censored data, Cohen (1963; 1991, pp.50-51) shows that taking partial derivatives of the log-
likelihood function with respect to µ and σ and setting these to 0 produces the following two simul-
taneous equations:

x̄− µ = −σ
k∑
i=1

(
cj
n

)Qj (9)
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s2 + (x̄− µ)2 = σ2[1−
k∑
j=1

ζj(
cj
n

)Qj ] (10)

where
x̄ =

1

n

∑
i∈Ω

x(i) (11)

s2 =
1

n

∑
i∈Ω

(x(i) − x̄)2 (12)

Qj = Q(ζj) (13)

ζj =
Tj − µ
σ

(14)

Q(t) =
φ(t)

1− Φ(t)
(15)

Note that the quantity defined in Equation (11) is simply the mean of the uncensored observations,
the quantity defined in Equation (12) is simply the method of moments estimator of variance based
on the uncensored observations, and the functionQ() defined in Equation (15) is the hazard function
for the standard normal distribution.

For left-censored data, Equations (9) and (10) stay the same, except ζ is replaced with −ζ.

The function enormCensored computes the maximum likelihood estimators by solving Equations
(9) and (10) and uses the quantile-quantile regression estimators (see below) as initial values.

Quantile-Quantile Regression (method="qq.reg")
This method is sometimes called the probability plot method (Nelson, 1982, Chapter 3; Gilbert,
1987, pp.134-136; Helsel and Hirsch, 1992, p. 361), and more recently also called parametric
regression on order statistics or ROS (USEPA, 2009; Helsel, 2012). In the case of no censoring,
it is well known (e.g., Nelson, 1982, p.113; Cleveland, 1993, p.31) that for the standard normal
(Gaussian) quantile-quantile plot (i.e., the plot of the sorted observations (empirical quantiles) ver-
sus standard normal quantiles; see qqPlot), the intercept and slope of the fitted least-squares line
estimate the mean and standard deviation, respectively. Specifically, the estimates of µ and σ are
found by computing the least-squares estimates in the following model:

x(i) = µ+ σΦ−1(pi) + εi, i = 1, 2, . . . , N (16)

where

pi =
i− a

N − 2a+ 1
(17)

denotes the plotting position associated with the i’th largest value, a is a constant such that 0 ≤ a ≤
1 (the plotting position constant), and Φ denotes the cumulative distribution function (cdf) of the
standard normal distribution. The default value of a is 0.375 (see below).

This method can be adapted to the case of left (right) singly censored data as follows. Plot the n un-
censored observations against the n largest (smallest) normal quantiles, where the normal quantiles
are computed based on a sample size of N , fit the least-squares line to this plot, and estimate the
mean and standard deviation from the intercept and slope, respectively. That is, use Equations (16)
and (17), but for right singly censored data use i = 1, 2, . . . , n, and for left singly censored data use
i = (c+ 1), (c+ 2), . . . , N .

The argument plot.pos.con (see the entry for . . . in the ARGUMENTS section above) determines
the value of the plotting positions computed in Equation (18). The default value is plot.pos.con=0.375.
See the help file for qqPlot for more information.
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This method is discussed by Haas and Scheff (1990). In the context of lognormal data, Travis
and Land (1990) suggest exponentiating the predicted 50’th percentile from this fit to estimate the
geometric mean (i.e., the median of the lognormal distribution).

This method is easily extended to multiply censored data. Equation (16) becomes

x(i) = µ+ σΦ−1(pi) + εi, i ∈ Ω (18)

where Ω denotes the set of n subscripts associated with the uncensored observations in the ordered
sample. The plotting positions are computed by calling the EnvStats function ppointsCensored.
The argument prob.method determines the method of computing the plotting positions (default
is prob.method="hirsch-stedinger"), and the argument plot.pos.con determines the plotting
position constant (default is plot.pos.con=0.375). (See the entry for . . . in the ARGUMENTS
section above.) Both Helsel (2012) and USEPA (2009) also use the Hirsch-Stedinger probability
method but set the plotting position constant to 0.

Imputation Using Quantile-Quantile Regression (method="impute.w.qq.reg")
This method is also called robust ROS (USEPA, 2009; Helsel, 2012). It involves using the quantile-
quantile regression method (method="qq.reg") to fit a regression line (and thus initially estimate
the mean and standard deviation), and then imputing the values of the censored observations by pre-
dicting them from the regression equation. The final estimates of the mean and standard deviation
are then computed using the usual formulas (see enorm) based on the observed and imputed values.

The imputed values are computed as:

x̂(i) = µ̂qqreg + σ̂qqregΦ
−1(pi), i 6∈ Ω (19)

See the help file for ppointsCensored for information on how the plotting positions for the cen-
sored observations are computed.

The argument prob.method determines the method of computing the plotting positions (default
is prob.method="hirsch-stedinger"), and the argument plot.pos.con determines the plotting
position constant (default is plot.pos.con=0.375). (See the entry for . . . in the ARGUMENTS
section above.) Both Helsel (2012) and USEPA (2009) also use the Hirsch-Stedinger probability
method but set the plotting position constant to 0.

The arguments lb.impute and ub.impute determine the lower and upper bounds for the imputed
values. Imputed values smaller than lb.impute are set to this value. Imputed values larger than
ub.impute are set to this value. The default values are lb.impute=-Inf and ub.impute=Inf. See
the entry for . . . in the ARGUMENTS section above.

For singly censored data, this is the NR method of Gilliom and Helsel (1986, p. 137). In the context
of lognormal data, this method is discussed by Hashimoto and Trussell (1983), Gilliom and Helsel
(1986), and El-Shaarawi (1989), and is referred to as the LR or Log-Probability Method.

For multiply censored data, this method was developed in the context of lognormal data by Helsel
and Cohn (1988) using the formulas for plotting positions given in Hirsch and Stedinger (1987) and
Weibull plotting positions (i.e., prob.method="hirsch-stedinger" and plot.pos.con=0).

Setting Censored Observations to Half the Censoring Level (method="half.cen.level")
This method is applicable only to left censored data that is bounded below by 0. This method
involves simply replacing all the censored observations with half their detection limit, and then
computing the mean and standard deviation with the usual formulas (see enorm).

This method is included only to allow comparison of this method to other methods. Setting left-
censored observations to half the censoring level is not recommended.
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For singly censored data, this method is discussed by Gleit (1985), Haas and Scheff (1990), and
El-Shaarawi and Esterby (1992). El-Shaarawi and Esterby (1992) show that these estimators are
biased and inconsistent (i.e., the bias remains even as the sample size increases).

For multiply censored data, this method was studied by Helsel and Cohn (1988).

Estimation Methods for Singly Censored Data
The following methods are available only for singly censored data.

Bias-Corrected Maximum Likelihood Estimation (method="bcmle")
The maximum likelihood estimates of µ and σ are biased. The bias tends to 0 as the sample size
increases, but it can be considerable for small sample sizes, especially in the case of a large percent-
age of censored observations (Saw, 1961b). Schmee et al. (1985) note that bias and variances of the
mle’s are of the order 1/N (see for example, Bain and Engelhardt, 1991), and that for 90% censor-
ing the bias is negligible if N is at least 100. (For less intense censoring, even fewer observations
are needed.)

The exact bias of each estimator is extremely difficult to compute. Saw (1961b), however, derived
the first-order term (i.e., the term of order 1/N ) in the bias of the mle’s of µ and σ and proposed
bias-corrected mle’s. His bias-corrected estimators were derived for the case of Type II singly
censored data. Schneider (1986, p.110) and Haas and Scheff (1990), however, state that this bias
correction should reduce the bias of the estimators in the case of Type I censoring as well.

Based on the tables of bias-correction terms given in Saw (1961b), Schneider (1986, pp.107-110)
performed a least-squares fit to produce the following computational formulas for right-censored
data:

Bµ = −exp[2.692− 5.493
n

N + 1
] (20)

Bσ = −[0.312 + 0.859
n

N + 1
]−2 (21)

µ̂bcmle = µ̂mle −
σ̂mle
N + 1

Bµ (22)

σ̂bcmle = σ̂mle −
σ̂mle
N + 1

Bσ (23)

For left-censored data, Equation (22) becomes:

µ̂bcmle = µ̂mle +
σ̂mle
N + 1

Bµ (22)

Quantile-Quantile Regression Including the Censoring Level (method="qq.reg.w.cen.level")
This is a modification of the quantile-quantile regression method and was proposed by El-Shaarawi
(1989) in the context of lognormal data. El-Shaarawi’s idea is to include the censoring level and an
associated plotting position, along with the uncensored observations and their associated plotting
positions, in order to include information about the value of the censoring level T .

For left singly censored data, the modification involves adding the point [Φ−1(pc), T ] to the plot
before fitting the least-squares line. For right singly censored data, the point [Φ−1(pn+1), T ] is
added to the plot before fitting the least-squares line.

El-Shaarawi (1989) also proposed replacing the estimated normal quantiles with the exact expected
values of normal order statistics, and using the values in their variance-covariance matrix to perform
a weighted least least-squared regression. These last two modifications are not incorporated here.
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Imputation Using Quantile-Quantile Regression Including the Censoring Level (method ="impute.w.qq.reg.w.cen.level")
This is exactly the same method as imputation using quantile-quantile regression (method="impute.w.qq.reg"),
except that the quantile-quantile regression including the censoring level method (method="qq.reg.w.cen.level")
is used to fit the regression line. In the context of lognormal data, this method is discussed by El-
Shaarawi (1989), which he denotes as the Modified LR Method.

Imputation Using Maximum Likelihood (method ="impute.w.mle")
This is exactly the same method as imputation with quantile-quantile regression (method="impute.w.qq.reg"),
except that the maximum likelihood method (method="mle") is used to compute the initial esti-
mates of the mean and standard deviation. In the context of lognormal data, this method is discussed
by El-Shaarawi (1989), which he denotes as the Modified Maximum Likelihood Method.

Iterative Imputation Using Quantile-Quantile Regression (method="iterative.impute.w.qq.reg")
This method is similar to the imputation with quantile-quantile regression method (method="impute.w.qq.reg"),
but iterates until the estimates of the mean and standard deviation converge. The algorithm is:

1. Compute the initial estimates of µ and σ using the "impute.w.qq.reg" method. (Actually,
any suitable estimates will do.)

2. Using the current values of µ and σ and Equation (19), compute new imputed values of the
censored observations.

3. Use the new imputed values along with the uncensored observations to compute new estimates
of µ and σ based on the usual formulas (see enorm).

4. Repeat Steps 2 and 3 until the estimates converge (the convergence criterion is determined
by the arguments tol and convergence; see the entry for . . . in the ARGUMENTS section
above).

This method is discussed by Gleit (1985), which he denotes as “Fill-In with Expected Values”.

M-Estimators (method="m.est")
This method was contributed by Leo R. Korn (Korn and Tyler, 2001). This method finds location
and scale estimates that are consistent at the normal model and robust to deviations from the normal
model, including both outliers on the right and outliers on the left above and below the limit of
detection. The estimates are found by solving the simultaneous equations:

c∑
i=1

hν(
T − µ
σ

) +

N∑
i=c+1

ψν(
xi − µ
σ

) = 0 (23)

c∑
i=1

λν(
T − µ
σ

) +

N∑
i=c+1

χν(
xi − µ
σ

) = 0 (24)

where
Hν(r) = −log[Fν(r)] (25)

hν(r) =
d

dr
Hν(r) = H ′ν(r) (26)

ρν(r) = −log[fν(r)] (27)

ψν(r) =
d

dr
ρν(r) = ρ′ν(r) (28)

λν(r) = rhν(r) (29)

χν(r) = rψν(r)− 1 (30)
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and fν and Fν denote the probability density function (pdf) and cumulative distribution function
(cdf) of Student’s t-distribution with ν degrees of freedom.

This results in an M-estimating equation based on the t-density function (Korn and Tyler., 2001).
Since the t-density has heavier tails than the normal density, this M-estimator will tend to down-
weight values that are far away from the center of the data. When censoring is present, neither the
location nor the scale estimates are consistent at the normal model. A computational correction
is performed that converts the above M-estimator to another M-estimator that is consistent at the
normal model, even under censoring.

The degrees of freedom parameter ν is set by the argument t.df and may be viewed as a tuning
parameter that will determine the robustness and efficiency properties. When t.df is large, the esti-
mator is similar to the usual mle and the output will then be very close to that when method="mle".
As t.df decreases, the efficiency will decline and the outlier rejection property will increase in
strength. Choosing t.df=3 (the default) provides a good combination of efficiency and robustness.
A reasonable strategy is to transform the data so that they are approximately symmetric (often the
log transformation for environmental data is appropriate) and then apply the M-estimator using
t.df=3.

CONFIDENCE INTERVALS
This section explains how confidence intervals for the mean µ are computed.

Likelihood Profile (ci.method="profile.likelihood")
This method was proposed by Cox (1970, p.88), and Venzon and Moolgavkar (1988) introduced an
efficient method of computation. This method is also discussed by Stryhn and Christensen (2003)
and Royston (2007). The idea behind this method is to invert the likelihood-ratio test to obtain a
confidence interval for the mean µ while treating the standard deviation σ as a nuisance parameter.
Equation (3) above shows the form of the likelihood function L(µ, σ|x) for multiply left-censored
data, and Equation (7) shows the function for multiply right-censored data.

Following Stryhn and Christensen (2003), denote the maximum likelihood estimates of the mean
and standard deviation by (µ∗, σ∗). The likelihood ratio test statistic (G2) of the hypothesis H0 :
µ = µ0 (where µ0 is a fixed value) equals the drop in 2log(L) between the “full” model and the
reduced model with µ fixed at µ0, i.e.,

G2 = 2{log[L(µ∗, σ∗)]− log[L(µ0, σ
∗
0)]} (30)

where σ∗0 is the maximum likelihood estimate of σ for the reduced model (i.e., when µ = µ0).
Under the null hypothesis, the test statistic G2 follows a chi-squared distribution with 1 degree of
freedom.

Alternatively, we may express the test statistic in terms of the profile likelihood function L1 for the
mean µ, which is obtained from the usual likelihood function by maximizing over the parameter σ,
i.e.,

L1(µ) = maxσL(µ, σ) (31)

Then we have
G2 = 2{log[L1(µ∗)]− log[L1(µ0)]} (32)

A two-sided (1− α)100% confidence interval for the mean µ consists of all values of µ0 for which
the test is not significant at level alpha:

µ0 : G2 ≤ χ2
1,1−α (33)

where χ2
ν,p denotes the p’th quantile of the chi-squared distribution with ν degrees of freedom.
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Normal Approximation (ci.method="normal.approx")
This method constructs approximate (1− α)100% confidence intervals for µ based on the assump-
tion that the estimator of µ is approximately normally distributed. That is, a two-sided (1−α)100%
confidence interval for µ is constructed as:

[µ̂− t1−α/2,m−1σ̂µ̂, µ̂+ t1−α/2,m−1σ̂µ̂] (34)

where µ̂ denotes the estimate of µ, σ̂µ̂ denotes the estimated asymptotic standard deviation of the
estimator of µ, m denotes the assumed sample size for the confidence interval, and tp,ν denotes the
p’th quantile of Student’s t-distribuiton with ν degrees of freedom. One-sided confidence intervals
are computed in a similar fashion.

The argument ci.sample.size determines the value of m (see see the entry for . . . in the ARGU-
MENTS section above). When method equals "mle" or "bcmle", the default value is the expected
number of uncensored observations, otherwise it is the observed number of uncensored observa-
tions. This is simply an ad-hoc method of constructing confidence intervals and is not based on any
published theoretical results.

When pivot.statistic="z", the p’th quantile from the standard normal distribution is used in
place of the p’th quantile from Student’s t-distribution.

Approximate Confidence Interval Based on Maximum Likelihood Estimators
When method="mle", the standard deviation of the mle of µ is estimated based on the inverse of
the Fisher Information matrix. The estimated variance-covariance matrix for the estimates of µ and
σ are based on the observed information matrix, formulas for which are given in Cohen (1991).

Approximate Confidence Interval Based on Bias-Corrected Maximum Likelihood Estimators
When method="bcmle" (available only for singly censored data), the same procedures are used
to construct the confidence interval as for method="mle". The true variance of the bias-corrected
mle of µ is necessarily larger than the variance of the mle of µ (although the differences in the
variances goes to 0 as the sample size gets large). Hence this method of constructing a confidence
interval leads to intervals that are too short for small sample sizes, but these intervals should be
better centered about the true value of µ.

Approximate Confidence Interval Based on Other Estimators
When method is some value other than "mle", the standard deviation of the estimated mean is
approximated by

σ̂µ̂ =
σ̂√
m

(35)

where, as already noted, m denotes the assumed sample size. This is simply an ad-hoc method of
constructing confidence intervals and is not based on any published theoretical results.

Normal Approximation Using Covariance (ci.method="normal.approx.w.cov") This method is
only available for singly censored data and only applicable when method="mle" or method="bcmle".
It was proposed by Schneider (1986, pp. 191-193) for the case of Type II censoring, but is applica-
ble to any situation where the estimated mean and standard deviation are consistent estimators and
are correlated. In particular, the mle’s of µ and σ are correlated under Type I censoring as well.

Schneider’s idea is to determine two positive quantities z1, z2 such that

Pr(µ̂+ z1σ̂ < µ) =
α

2
(36)

Pr(µ̂− z2σ̂ > µ) =
α

2
(37)

so that
[µ̂− z2σ̂, µ̂+ z1σ̂] (38)
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is a (1− α)100% confidence interval for µ.

For cases where the estimators of µ and σ are independent (e.g., complete samples), it is well known
that setting

z1 = z2 =
t1−α/2,N√

N
(39)

yields an exact confidence interval and setting

z1 = z2 =
z1−α/2√

N
(40)

where zp denotes the p’th quantile of the standard normal distribution yields an approximate confi-
dence interval that is asymptotically correct.

For the general case, Schneider (1986) considers the random variable

W (z) = µ̂+ zσ̂ (41)

and provides formulas for z1 and z2.

Note that the resulting confidence interval for the mean is not symmetric about the estimated mean.
Also note that the quantity m is a random variable for Type I censoring, while Schneider (1986)
assumed it to be fixed since he derived the result for Type II censoring (in which case m = n).

Bootstrap and Bias-Corrected Bootstrap Approximation (ci.method="bootstrap")
The bootstrap is a nonparametric method of estimating the distribution (and associated distribution
parameters and quantiles) of a sample statistic, regardless of the distribution of the population from
which the sample was drawn. The bootstrap was introduced by Efron (1979) and a general reference
is Efron and Tibshirani (1993).

In the context of deriving an approximate (1−α)100% confidence interval for the population mean
µ, the bootstrap can be broken down into the following steps:

1. Create a bootstrap sample by taking a random sample of size N from the observations in x,
where sampling is done with replacement. Note that because sampling is done with replace-
ment, the same element of x can appear more than once in the bootstrap sample. Thus, the
bootstrap sample will usually not look exactly like the original sample (e.g., the number of
censored observations in the bootstrap sample will often differ from the number of censored
observations in the original sample).

2. Estimate µ based on the bootstrap sample created in Step 1, using the same method that was
used to estimate µ using the original observations in x. Because the bootstrap sample usually
does not match the original sample, the estimate of µ based on the bootstrap sample will
usually differ from the original estimate based on x.

3. Repeat Steps 1 and 2B times, whereB is some large number. For the function enormCensored,
the number of bootstraps B is determined by the argument n.bootstraps (see the section
ARGUMENTS above). The default value of n.bootstraps is 1000.

4. Use the B estimated values of µ to compute the empirical cumulative distribution function of
this estimator of µ (see ecdfPlot), and then create a confidence interval for µ based on this
estimated cdf.

The percentile interval (Efron and Tibshirani, 1993, p.170) is computed as:

[Ĝ−1(
α

2
), Ĝ−1(

1− α
2

)] (42)

where Ĝ(t) denotes the empirical cdf evaluated at t and thus Ĝ−1(p) denotes the p’th empirical
quantile, that is, the p’th quantile associated with the empirical cdf. The function enormCensored
calls the R function quantile to compute the empirical quantiles used in Equation (42).
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The percentile method bootstrap confidence interval is only first-order accurate (Efron and Tibshi-
rani, 1993, pp.187-188), meaning that the probability that the confidence interval will contain the
true value of µ can be off by k/

√
N , where k is some constant. Efron and Tibshirani (1993, pp.184-

188) proposed a bias-corrected and accelerated interval that is second-order accurate, meaning that
the probability that the confidence interval will contain the true value of µ may be off by k/N
instead of k/

√
N . The bias-corrected and accelerated confidence interval is computed as:

[Ĝ−1(α1), Ĝ−1(α2)] (43)

where

α1 = Φ[ẑ0 +
ẑ0 + zα/2

1− â(z0 + zα/2)
] (44)

α2 = Φ[ẑ0 +
ẑ0 + z1−α/2

1− â(z0 + z1−α/2)
] (45)

ẑ0 = Φ−1[Ĝ(µ̂)] (46)

â =

∑N
i=1(µ̂(·) − µ̂(i))

3

6[
∑N
i=1(µ̂(·) − µ̂(i))2]3/2

(47)

where the quantity µ̂(i) denotes the estimate of µ using all the values in x except the i’th one, and

µ̂(·) =
1

N

N∑
i=1

ˆµ(i) (48)

The constant ẑ0 incorporates the bias correction, and the constant â is the acceleration constant. The
term “acceleration” refers to the rate of change of the standard error of the estimate of µwith respect
to the true value of µ (Efron and Tibshirani, 1993, p.186). For a normal (Gaussian) distribution, the
standard error of the estimate of µ does not depend on the value of µ, hence the acceleration constant
is not really necessary. The argument use.acc.con (see the section ARGUMENTS above) deter-
mines whether the acceleration constant â is computed as in Equation (47) (use.acc.con=TRUE) or
is set to 0 (use.acc.con=FALSE). The default value is use.acc.con=FALSE.

When ci.method="bootstrap", the function enormCensored computes both the percentile method
and bias-corrected bootstrap confidence intervals.

This method of constructing confidence intervals for censored data was studied by Shumway et al.
(1989).

Generalized Pivotal Quantity (ci.method="gpq")
This method was introduced by Schmee et al. (1985) and is discussed by Krishnamoorthy and
Mathew (2009). The idea is essentially to use a parametric bootstrap to estimate the correct pivotal
quantities z1 and z2 in Equation (38) above. For singly censored data, these quantities are computed
as follows:

1. Generate a random sample ofN observations from a standard normal (i.e., N(0,1)) distribution
and let z(1), z(2), . . . , z(N) denote the ordered (sorted) observations.

2. Set the smallest c observations to be censored.

3. Compute the estimates of µ and σ using the method specified by the method argument, and
denote these estimates as µ̂∗, σ̂∗.

4. Compute the t-like pivotal quantity t̂ = µ̂∗/σ̂∗.

5. Repeat steps 1-4 nmc times to produce an empirical distribution of the t-like pivotal quantity.
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The function enormCensored calls the function gpqCiNormSinglyCensored to generate the distri-
bution of pivotal quantities in the case of singly censored data. A two-sided (1−α)100% confidence
interval for µ is then computed as:

[µ̂− t̂1−(α/2)σ̂, µ̂− t̂α/2σ̂] (49)

where t̂p denotes the p’th empirical quantile of the nmc generated t̂ values.

Schmee at al. (1985) derived this method in the context of Type II singly censored data (for which
these limits are exact within Monte Carlo error), but state that according to Regal (1982) this method
produces confidence intervals that are close apporximations to the correct limits for Type I censored
data.

For multiply censored data, this method has been extended as follows. The algorithm stays the
same, except that Step 2 becomes:

2. Set the i’th ordered generated observation to be censored or not censored according to whether
the i’th observed observation in the original data is censored or not censored.

The function enormCensored calls the function gpqCiNormMultiplyCensored to generate the dis-
tribution of pivotal quantities in the case of multiply censored data.

Value

a list of class "estimateCensored" containing the estimated parameters and other information.
See estimateCensored.object for details.

Note

A sample of data contains censored observations if some of the observations are reported only as
being below or above some censoring level. In environmental data analysis, Type I left-censored
data sets are common, with values being reported as “less than the detection limit” (e.g., Helsel,
2012). Data sets with only one censoring level are called singly censored; data sets with multiple
censoring levels are called multiply or progressively censored.

Statistical methods for dealing with censored data sets have a long history in the field of survival
analysis and life testing. More recently, researchers in the environmental field have proposed al-
ternative methods of computing estimates and confidence intervals in addition to the classical ones
such as maximum likelihood estimation.

Helsel (2012, Chapter 6) gives an excellent review of past studies of the properties of various esti-
mators based on censored environmental data.

In practice, it is better to use a confidence interval for the mean or a joint confidence region for
the mean and standard deviation, rather than rely on a single point-estimate of the mean. Since
confidence intervals and regions depend on the properties of the estimators for both the mean and
standard deviation, the results of studies that simply evaluated the performance of the mean and
standard deviation separately cannot be readily extrapolated to predict the performance of various
methods of constructing confidence intervals and regions. Furthermore, for several of the methods
that have been proposed to estimate the mean based on type I left-censored data, standard errors of
the estimates are not available, hence it is not possible to construct confidence intervals (El-Shaarawi
and Dolan, 1989).

Few studies have been done to evaluate the performance of methods for constructing confidence
intervals for the mean or joint confidence regions for the mean and standard deviation when data
are subjected to single or multiple censoring. See, for example, Singh et al. (2006).

Schmee et al. (1985) studied Type II censoring for a normal distribution and noted that the bias and
variances of the maximum likelihood estimators are of the order 1/N , and that the bias is negligible
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for N = 100 and as much as 90% censoring. (If the proportion of censored observations is less
than 90%, the bias becomes negligible for smaller sample sizes.) For small samples with moderate
to high censoring, however, the bias of the mle’s causes confidence intervals based on them using
a normal approximation (e.g., method="mle" and ci.method="normal.approx") to be too short.
Schmee et al. (1985) provide tables for exact confidence intervals for sample sizes up to N = 100
that were created based on Monte Carlo simulation. Schmee et al. (1985) state that these tables
should work well for Type I censored data as well.

Shumway et al. (1989) evaluated the coverage of 90% confidence intervals for the mean based
on using a Box-Cox transformation to induce normality, computing the mle’s based on the normal
distribution, then computing the mean in the original scale. They considered three methods of
constructing confidence intervals: the delta method, the bootstrap, and the bias-corrected bootstrap.
Shumway et al. (1989) used three parent distributions in their study: Normal(3,1), the square of
this distribuiton, and the exponentiation of this distribution (i.e., a lognormal distribution). Based
on sample sizes of 10 and 50 with a censoring level at the 10’th or 20’th percentile, Shumway et al.
(1989) found that the delta method performed quite well and was superior to the bootstrap method.

Millard et al. (2014; in preparation) show that the coverage of profile likelihood method is excellent.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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See Also

Normal, enorm, estimateCensored.object.

Examples

# Chapter 15 of USEPA (2009) gives several examples of estimating the mean
# and standard deviation of a lognormal distribution on the log-scale using
# manganese concentrations (ppb) in groundwater at five background wells.
# In EnvStats these data are stored in the data frame
# EPA.09.Ex.15.1.manganese.df.

# Here we will estimate the mean and standard deviation using the MLE,
# Q-Q regression (also called parametric regression on order statistics
# or ROS; e.g., USEPA, 2009 and Helsel, 2012), and imputation with Q-Q
# regression (also called robust ROS).

# We will log-transform the original observations and then call
# enormCensored. Alternatively, we could have more simply called
# elnormCensored.

# First look at the data:
#-----------------------

EPA.09.Ex.15.1.manganese.df

# Sample Well Manganese.Orig.ppb Manganese.ppb Censored
#1 1 Well.1 <5 5.0 TRUE
#2 2 Well.1 12.1 12.1 FALSE
#3 3 Well.1 16.9 16.9 FALSE
#...
#23 3 Well.5 3.3 3.3 FALSE
#24 4 Well.5 8.4 8.4 FALSE
#25 5 Well.5 <2 2.0 TRUE

http://people.upei.ca/hstryhn/stryhn208.pdf
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longToWide(EPA.09.Ex.15.1.manganese.df,
"Manganese.Orig.ppb", "Sample", "Well",
paste.row.name = TRUE)

# Well.1 Well.2 Well.3 Well.4 Well.5
#Sample.1 <5 <5 <5 6.3 17.9
#Sample.2 12.1 7.7 5.3 11.9 22.7
#Sample.3 16.9 53.6 12.6 10 3.3
#Sample.4 21.6 9.5 106.3 <2 8.4
#Sample.5 <2 45.9 34.5 77.2 <2

# Now estimate the mean and standard deviation on the log-scale
# using the MLE:
#---------------------------------------------------------------

with(EPA.09.Ex.15.1.manganese.df,
enormCensored(log(Manganese.ppb), Censored))

#Results of Distribution Parameter Estimation
#Based on Type I Censored Data
#--------------------------------------------
#
#Assumed Distribution: Normal
#
#Censoring Side: left
#
#Censoring Level(s): 0.6931472 1.6094379
#
#Estimated Parameter(s): mean = 2.215905
# sd = 1.356291
#
#Estimation Method: MLE
#
#Data: log(Manganese.ppb)
#
#Censoring Variable: Censored
#
#Sample Size: 25
#
#Percent Censored: 24%

# Now compare the MLE with the estimators based on
# Q-Q regression and imputation with Q-Q regression
#--------------------------------------------------

with(EPA.09.Ex.15.1.manganese.df,
enormCensored(log(Manganese.ppb), Censored))$parameters

# mean sd
#2.215905 1.356291

with(EPA.09.Ex.15.1.manganese.df,
enormCensored(log(Manganese.ppb), Censored,
method = "qq.reg"))$parameters

# mean sd
#2.293742 1.283635
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with(EPA.09.Ex.15.1.manganese.df,
enormCensored(log(Manganese.ppb), Censored,
method = "impute.w.qq.reg"))$parameters

# mean sd
#2.298656 1.238104

#----------

# The method used to estimate quantiles for a Q-Q plot is
# determined by the argument prob.method. For the functions
# enormCensored and elnormCensored, for any estimation
# method that involves Q-Q regression, the default value of
# prob.method is "hirsch-stedinger" and the default value for the
# plotting position constant is plot.pos.con=0.375.

# Both Helsel (2012) and USEPA (2009) also use the Hirsch-Stedinger
# probability method but set the plotting position constant to 0.

with(EPA.09.Ex.15.1.manganese.df,
enormCensored(log(Manganese.ppb), Censored,
method = "impute.w.qq.reg", plot.pos.con = 0))$parameters

# mean sd
#2.277175 1.261431

#----------

# Using the same data as above, compute a confidence interval
# for the mean on the log-scale using the profile-likelihood
# method.

with(EPA.09.Ex.15.1.manganese.df,
enormCensored(log(Manganese.ppb), Censored, ci = TRUE))

#Results of Distribution Parameter Estimation
#Based on Type I Censored Data
#--------------------------------------------
#
#Assumed Distribution: Normal
#
#Censoring Side: left
#
#Censoring Level(s): 0.6931472 1.6094379
#
#Estimated Parameter(s): mean = 2.215905
# sd = 1.356291
#
#Estimation Method: MLE
#
#Data: log(Manganese.ppb)
#
#Censoring Variable: Censored
#
#Sample Size: 25
#
#Percent Censored: 24%
#
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#Confidence Interval for: mean
#
#Confidence Interval Method: Profile Likelihood
#
#Confidence Interval Type: two-sided
#
#Confidence Level: 95%
#
#Confidence Interval: LCL = 1.595062
# UCL = 2.771197

enparCensored Estimate Mean, Standard Deviation, and Standard Error Nonparamet-
rically Based on Censored Data

Description

Estimate the mean, standard deviation, and standard error of the mean nonparametrically given a
sample of data from a positive-valued distribution that has been subjected to left- or right-censoring,
and optionally construct a confidence interval for the mean.

Usage

enparCensored(x, censored, censoring.side = "left", correct.se = FALSE,
left.censored.min = "DL", right.censored.max = "DL", ci = FALSE,
ci.method = "normal.approx", ci.type = "two-sided", conf.level = 0.95,
pivot.statistic = "z", ci.sample.size = NULL, n.bootstraps = 1000,
use.acc.con = FALSE)

Arguments

x numeric vector of positive-valued observations. Missing (NA), undefined (NaN),
and infinite (Inf, -Inf) values are allowed but will be removed.

censored numeric or logical vector indicating which values of x are censored. This must
be the same length as x. If the mode of censored is "logical", TRUE values
correspond to elements of x that are censored, and FALSE values correspond to
elements of x that are not censored. If the mode of censored is "numeric",
it must contain only 1’s and 0’s; 1 corresponds to TRUE and 0 corresponds to
FALSE. Missing (NA) values are allowed but will be removed.

censoring.side character string indicating on which side the censoring occurs. The possible
values are "left" (the default) and "right".

correct.se logical scalar indicating whether to multiply the estimated standard error by
a factor to correct for bias. The default value is correct.se=FALSE. See the
DETAILS section below.

left.censored.min

Only relevant for the case when censoring.side="left" and the smallest cen-
sored value is less than the smallest uncensored value. In this case, left.censored.min
must be a character string with the possible values "DL" (detection limit; the de-
fault), "DL/2" (half the detection limit), or "Ignore", or else a numeric scalar
between 0 and the smallest censored value. See the DETAILS section for more
information.
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right.censored.max

Only relevant for the case when censoring.side="right" and the largest cen-
sored value is greater than the largest uncensored value. In this case, right.censored.max
must be a character string with the possible values "DL" (detection limit; the de-
fault) or "Ignore", or else a numeric scalar greater than or equal to the largest
censored value. See the DETAILS section for more information.

ci logical scalar indicating whether to compute a confidence interval for the mean
or variance. The default value is ci=FALSE.

ci.method character string indicating what method to use to construct the confidence in-
terval for the mean. The possible values are "normal.approx" (normal ap-
proximation; the default), and "bootstrap" (based on bootstrapping). See the
DETAILS section for more information. This argument is ignored if ci=FALSE.

ci.type character string indicating what kind of confidence interval to compute. The
possible values are "two-sided" (the default), "lower", and "upper". This
argument is ignored if ci=FALSE.

conf.level a scalar between 0 and 1 indicating the confidence level of the confidence in-
terval. The default value is conf.level=0.95. This argument is ignored if
ci=FALSE.

pivot.statistic

character string indicating which statistic to use for the confidence interval for
the mean when ci.method="normal.approx". Possible values are "z" (confi-
dence interval based on the z-statistic; the default), and "t" (confidence interval
based on the t-statistic). When pivot.statistic="t" you may supply the ar-
gument ci.sample size (see below). This argument is ignored if ci=FALSE.

ci.sample.size numeric scalar or a NULL object indicating what sample size to assume when
computing the confidence interval for the mean when ci.method="normal.approx"
and pivot.statistic="t". The default value is ci.sample.size=NULL, in
which case ci.sample.size is equal to the number of uncensored observations.
This argument is ignored if ci=FALSE.

n.bootstraps numeric scalar indicating how many bootstraps to use to construct the confi-
dence interval for the mean when ci.type="bootstrap". This argument is
ignored if ci=FALSE and/or ci.method does not equal "bootstrap".

use.acc.con logical scalar indicating whether to use the acceleration constant when com-
puting the bias-corrected bootstrap confidence interval (see the DETAILS sec-
tion). The default value is FALSE. This argument is ignored if ci=FALSE and/or
ci.method does not equal "bootstrap".

Details

Let x = (x1, x2, . . . , xN ) denote a vector ofN observations from some positive-valued distribution
with mean µ and standard deviation σ. Assume n (0 < n < N ) of these observations are known
and c (c = N−n) of these observations are all censored below (left-censored) or all censored above
(right-censored) at k censoring levels

T1, T2, . . . , Tk; k ≥ 1 (1)

Finally, let y1, y2, . . . , yn denote the n ordered uncensored observations.

Estimation
It can be shown that the mean of a positive-valued distribution is equal to the area under the survival
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curve (Klein and Moeschberger, 2003, p.33):

µ =

∫ ∞
0

[1− F (t)]dt =

∫ ∞
0

S(t)dt = (2)

where F (t) denotes the cumulative distribution function evaluated at t and S(t) = 1−F (t) denotes
the survival function evaluated at t. When the Kaplan-Meier estimator is used to construct the sur-
vival function, you can use the area under this curve to estimate the mean of the distribution, and the
estimator can be as efficient or more efficient than parametric estimators of the mean (Meier, 2004;
Helsel, 2012; Lee and Wang, 2003). Let F̂ (t) denote the Kaplan-Meier estimator of the empirical
cumulative distribution function (ecdf) evaluated at t, and let Ŝ(t) = 1− F̂ (t) denote the estimated
survival function evaluated at t. (See the help files for ecdfPlotCensored and qqPlotCensored
for an explanation of how the Kaplan-Meier estimator of the ecdf is computed.)

The formula for the estimated mean is given by (Lee and Wang, 2003, p. 74):

µ̂ =

n∑
i=1

Ŝ(yi−1)(yi − yi−1) (3)

where y0 = 0 and Ŝ(y0) = 1 by definition. It can be shown that this formula is eqivalent to:

µ̂ =

n∑
i=1

yi[F̂ (yi)− F̂ (yi−1)] (4)

where F̂ (y0) = F̂ (0) = 0 by definition (USEPA, 2009, p. 15-10; Singh et al., 2010, pp. 109–111;
Beal, 2010).

The formula for the estimated standard deviation is:

σ̂ = {
n∑
i=1

(yi − µ̂)2[F̂ (yi)− F̂ (yi−1)]}1/2 (5)

(USEPA, 2009, p. 15-10), and the formula for the estimated standard error of the mean is:

σ̂µ̂ = [

n−1∑
r=1

A2
r

(N − r)(N − r + 1)
]1/2 (6)

where

Ar =

n−1∑
i=r

Ŝ(yi)(yi+1 − yi) (7)

(Lee and Wang, 2003, p. 74). Kaplan and Meier suggest using a bias correction of n/(n− 1) (Lee
and Wang, 2003, p.75):

σ̂µ̂,BC =
n

n− 1
σ̂µ̂ (8)

When correct.se=TRUE, Equation (8) is used instead of Equation (6).

If the smallest value for left-censored data is censored and less than or equal to the smallest uncen-
sored value then the estimated mean will be biased high, and if the largest value for right-censored
data is censored and greater than or equal to the largest uncensored value, the the estimated mean
will be biased low. In these cases, the above formulas can and should be modified (Barker, 2009;
Lee and Wang, 2003, p. 74). For left-censored data, the smallest censored observation can be
treated as observed and set to the smallest censoring level (left.censored.min="DL"), half of
the smallest censoring level (left.censored.min="DL/2"), or some other value greater than 0
and the smallest censoring level. Setting left.censored.min="Ignore" uses the formulas given
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above (biased in this case) and is what is presented in Singh et al. (2010, pp. 109–111) and
Beal (2010). USEPA (2009, pp. 15–7 to 15-10) on the other hand uses the method associated with
left.censored.min="DL". For right-censored data, the largest censored observation can be treated
as observed and set to the censoring level (right.censored.max="DL") or some value greater than
the largest censoring level. In the survival analysis literature, this method of dealing with this situ-
ation is called estimating the restricted mean (Miller, 1981; Meier, 2004; Barker, 2009).

Confidence Intervals
This section explains how confidence intervals for the mean µ are computed.

Normal Approximation (ci.method="normal.approx")
This method constructs approximate (1− α)100% confidence intervals for µ based on the assump-
tion that the estimator of µ is approximately normally distributed. That is, a two-sided (1−α)100%
confidence interval for µ is constructed as:

[µ̂− t1−α/2,m−1σ̂µ̂, µ̂+ t1−α/2,m−1σ̂µ̂] (9)

where µ̂ denotes the estimate of µ, σ̂µ̂ denotes the estimated asymptotic standard deviation of the
estimator of µ, m denotes the assumed sample size for the confidence interval, and tp,ν denotes the
p’th quantile of Student’s t-distribuiton with ν degrees of freedom. One-sided confidence intervals
are computed in a similar fashion.

The argument ci.sample.size determines the value of m. By default, it is the observed number
of uncensored observations. This is simply an ad-hoc method of constructing confidence intervals
and is not based on any published theoretical results.

When pivot.statistic="z", the p’th quantile from the standard normal distribution is used in
place of the p’th quantile from Student’s t-distribution.

Bootstrap and Bias-Corrected Bootstrap Approximation (ci.method="bootstrap")
The bootstrap is a nonparametric method of estimating the distribution (and associated distribution
parameters and quantiles) of a sample statistic, regardless of the distribution of the population from
which the sample was drawn. The bootstrap was introduced by Efron (1979) and a general reference
is Efron and Tibshirani (1993).

In the context of deriving an approximate (1−α)100% confidence interval for the population mean
µ, the bootstrap can be broken down into the following steps:

1. Create a bootstrap sample by taking a random sample of size N from the observations in x,
where sampling is done with replacement. Note that because sampling is done with replace-
ment, the same element of x can appear more than once in the bootstrap sample. Thus, the
bootstrap sample will usually not look exactly like the original sample (e.g., the number of
censored observations in the bootstrap sample will often differ from the number of censored
observations in the original sample).

2. Estimate µ based on the bootstrap sample created in Step 1, using the same method that was
used to estimate µ using the original observations in x. Because the bootstrap sample usually
does not match the original sample, the estimate of µ based on the bootstrap sample will
usually differ from the original estimate based on x.

3. Repeat Steps 1 and 2B times, whereB is some large number. For the function enparCensored,
the number of bootstraps B is determined by the argument n.bootstraps (see the section
ARGUMENTS above). The default value of n.bootstraps is 1000.

4. Use the B estimated values of µ to compute the empirical cumulative distribution function of
this estimator of µ (see ecdfPlot), and then create a confidence interval for µ based on this
estimated cdf.
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The percentile interval (Efron and Tibshirani, 1993, p.170) is computed as:

[Ĝ−1(
α

2
), Ĝ−1(

1− α
2

)] (10)

where Ĝ(t) denotes the empirical cdf evaluated at t and thus Ĝ−1(p) denotes the p’th empirical
quantile, that is, the p’th quantile associated with the empirical cdf. The function enparCensored
calls the R function quantile to compute the empirical quantiles used in Equation (10).

The percentile method bootstrap confidence interval is only first-order accurate (Efron and Tibshi-
rani, 1993, pp.187-188), meaning that the probability that the confidence interval will contain the
true value of µ can be off by k/

√
N , where k is some constant. Efron and Tibshirani (1993, pp.184–

188) proposed a bias-corrected and accelerated interval that is second-order accurate, meaning that
the probability that the confidence interval will contain the true value of µ may be off by k/N
instead of k/

√
N . The bias-corrected and accelerated confidence interval is computed as:

[Ĝ−1(α1), Ĝ−1(α2)] (11)

where

α1 = Φ[ẑ0 +
ẑ0 + zα/2

1− â(z0 + zα/2)
] (12)

α2 = Φ[ẑ0 +
ẑ0 + z1−α/2

1− â(z0 + z1−α/2)
] (13)

ẑ0 = Φ−1[Ĝ(µ̂)] (14)

â =

∑N
i=1(µ̂(·) − µ̂(i))

3

6[
∑N
i=1(µ̂(·) − µ̂(i))2]3/2

(15)

where the quantity µ̂(i) denotes the estimate of µ using all the values in x except the i’th one, and

µ̂(·) =
1

N

N∑
i=1

ˆµ(i) (16)

The constant ẑ0 incorporates the bias correction, and the constant â is the acceleration constant. The
term “acceleration” refers to the rate of change of the standard error of the estimate of µwith respect
to the true value of µ (Efron and Tibshirani, 1993, p.186). For a normal (Gaussian) distribution, the
standard error of the estimate of µ does not depend on the value of µ, hence the acceleration constant
is not really necessary. The argument use.acc.con (see the section ARGUMENTS above) deter-
mines whether the acceleration constant â is computed as in Equation (15) (use.acc.con=TRUE) or
is set to 0 (use.acc.con=FALSE). The default value is use.acc.con=FALSE.

When ci.method="bootstrap", the function enparCensored computes both the percentile method
and bias-corrected bootstrap confidence intervals.

Value

a list of class "estimateCensored" containing the estimated parameters and other information.
See estimateCensored.object for details.

Note

A sample of data contains censored observations if some of the observations are reported only as
being below or above some censoring level. In environmental data analysis, Type I left-censored
data sets are common, with values being reported as “less than the detection limit” (e.g., Helsel,
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2012). Data sets with only one censoring level are called singly censored; data sets with multiple
censoring levels are called multiply or progressively censored.

Statistical methods for dealing with censored data sets have a long history in the field of survival
analysis and life testing. More recently, researchers in the environmental field have proposed al-
ternative methods of computing estimates and confidence intervals in addition to the classical ones
such as maximum likelihood estimation.

Helsel (2012, Chapter 6) gives an excellent review of past studies of the properties of various esti-
mators based on censored environmental data.

In practice, it is better to use a confidence interval for the mean or a joint confidence region for
the mean and standard deviation, rather than rely on a single point-estimate of the mean. Since
confidence intervals and regions depend on the properties of the estimators for both the mean and
standard deviation, the results of studies that simply evaluated the performance of the mean and
standard deviation separately cannot be readily extrapolated to predict the performance of various
methods of constructing confidence intervals and regions. Furthermore, for several of the methods
that have been proposed to estimate the mean based on type I left-censored data, standard errors of
the estimates are not available, hence it is not possible to construct confidence intervals (El-Shaarawi
and Dolan, 1989).

Few studies have been done to evaluate the performance of methods for constructing confidence
intervals for the mean or joint confidence regions for the mean and standard deviation when data
are subjected to single or multiple censoring. See, for example, Singh et al. (2006).

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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See Also

ecdfPlotCensored, qqPlotCensored, estimateCensored.object.

Examples

# Example 15-1 of USEPA (2009, page 15-10) gives an example of
# estimating the mean and standard deviation nonparametrically
# using the Kaplan-Meier estimators based on censored manganese
# concentrations (ppb) in groundwater collected at 5 monitoring
# wells. The data for this example are stored in
# EPA.09.Ex.15.1.manganese.df.

# First look at the data:
#-----------------------

EPA.09.Ex.15.1.manganese.df

# Sample Well Manganese.Orig.ppb Manganese.ppb Censored
#1 1 Well.1 <5 5.0 TRUE
#2 2 Well.1 12.1 12.1 FALSE
#3 3 Well.1 16.9 16.9 FALSE
#...
#23 3 Well.5 3.3 3.3 FALSE
#24 4 Well.5 8.4 8.4 FALSE
#25 5 Well.5 <2 2.0 TRUE

longToWide(EPA.09.Ex.15.1.manganese.df,
"Manganese.Orig.ppb", "Sample", "Well",
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paste.row.name = TRUE)

# Well.1 Well.2 Well.3 Well.4 Well.5
#Sample.1 <5 <5 <5 6.3 17.9
#Sample.2 12.1 7.7 5.3 11.9 22.7
#Sample.3 16.9 53.6 12.6 10 3.3
#Sample.4 21.6 9.5 106.3 <2 8.4
#Sample.5 <2 45.9 34.5 77.2 <2

#----------

# Following Example 15-1 in USEPA (2009, p.15-10),
# estimate the log-scale mean and standard deviation
# nonparametrically using the Kaplan-Meier method
#------------------------------------------------
with(EPA.09.Ex.15.1.manganese.df,

enparCensored(log(Manganese.ppb), Censored, ci = TRUE))

#Results of Distribution Parameter Estimation
#Based on Type I Censored Data
#--------------------------------------------
#
#Assumed Distribution: None
#
#Censoring Side: left
#
#Censoring Level(s): 0.6931472 1.6094379
#
#Estimated Parameter(s): mean = 2.3092890
# sd = 1.1816102
# se.mean = 0.1682862
#
#Estimation Method: Kaplan-Meier
#
#Data: log(Manganese.ppb)
#
#Censoring Variable: Censored
#
#Sample Size: 25
#
#Percent Censored: 24%
#
#Confidence Interval for: mean
#
#Confidence Interval Method: Normal Approximation
#
#Confidence Interval Type: two-sided
#
#Confidence Level: 95%
#
#Confidence Interval: LCL = 1.979454
# UCL = 2.639124

#----------

# Now estimate the mean and standard deviation on the
# original scale nonparametrically using the
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# Kaplan-Meier method.
#-----------------------------------------------------

with(EPA.09.Ex.15.1.manganese.df,
enparCensored(Manganese.ppb, Censored, ci = TRUE))

#Results of Distribution Parameter Estimation
#Based on Type I Censored Data
#--------------------------------------------
#
#Assumed Distribution: None
#
#Censoring Side: left
#
#Censoring Level(s): 2 5
#
#Estimated Parameter(s): mean = 19.867000
# sd = 25.317737
# se.mean = 4.689888
#
#Estimation Method: Kaplan-Meier
#
#Data: Manganese.ppb
#
#Censoring Variable: Censored
#
#Sample Size: 25
#
#Percent Censored: 24%
#
#Confidence Interval for: mean
#
#Confidence Interval Method: Normal Approximation
#
#Confidence Interval Type: two-sided
#
#Confidence Level: 95%
#
#Confidence Interval: LCL = 10.67499
# UCL = 29.05901

Environmental Atmospheric Environmental Conditions in New York City

Description

Daily measurements of ozone concentration, wind speed, temperature, and solar radiation in New
York City for 153 consecutive days between May 1 and September 30, 1973.

Usage

Environmental.df
Air.df
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Format

The data frame Environmental.df has 153 observations on the following 4 variables.

ozone Average ozone concentration (of hourly measurements) of in parts per billion.

radiation Solar radiation (from 08:00 to 12:00) in langleys.

temperature Maximum daily temperature in degrees Fahrenheit.

wind Average wind speed (at 07:00 and 10:00) in miles per hour.

Row names are the dates the data were collected.

The data frame Air.df is the same as Environmental.df except that the column ozone is the cube
root of average ozone concentration.

Details

Data on ozone (ppb), solar radiation (langleys), temperature (degrees Fahrenheit), and wind speed
(mph) for 153 consecutive days between May 1 and September 30, 1973. These data are a superset
of the data contained in the data frame environmental in the package lattice.

Source

Chambers et al. (1983), pp. 347-349.

References
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Analysis. Duxbury Press, Boston, MA, 395pp.

Cleveland, W.S. (1993). Visualizing Data. Hobart Press, Summit, New Jersey, 360pp.

Cleveland, W.S. (1994). The Elements of Graphing Data. Revised Edition. Hobart Press, Summit,
New Jersey, 297pp.

Examples

# Scatterplot matrix
pairs(Environmental.df)

pairs(Air.df)

# Time series plot for ozone
attach(Environmental.df)
dates <- as.Date(row.names(Environmental.df), format = "%m/%d/%Y")
plot(dates, ozone, type = "l",

xlab = "Time (Year = 1973)", ylab = "Ozone (ppb)",
main = "Time Series Plot of Daily Ozone Measures")

detach("Environmental.df")
rm(dates)
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EPA.02d.Ex.2.ug.per.L.vec

Concentrations in Exhibit 2 of 2002d USEPA Guidance Document

Description

Concentrations (mug/L) from an exposure unit.

Usage

data(EPA.02d.Ex.2.ug.per.L.vec)

Format

a numeric vector of concentrations (mug/L)

Source

USEPA. (2002d). Calculating Upper Confidence Limits for Exposure Point Concentrations at Haz-
ardous Waste Sites. OSWER 9285.6-10, December 2002. Office of Emergency and Remedial
Response, U.S. Environmental Protection Agency, Washington, D.C., p. 9.

EPA.02d.Ex.4.mg.per.kg.vec

Concentrations in Exhibit 4 of 2002d USEPA Guidance Document

Description

Concentrations (mg/kg) from an exposure unit.

Usage

data(EPA.02d.Ex.4.mg.per.kg.vec)

Format

a numeric vector of concentrations (mg/kg)

Source

USEPA. (2002d). Calculating Upper Confidence Limits for Exposure Point Concentrations at Haz-
ardous Waste Sites. OSWER 9285.6-10, December 2002. Office of Emergency and Remedial
Response, U.S. Environmental Protection Agency, Washington, D.C., p. 11.



286 EPA.02d.Ex.9.mg.per.L.vec

EPA.02d.Ex.6.mg.per.kg.vec

Concentrations in Exhibit 6 of 2002d USEPA Guidance Document

Description

Concentrations (mg/kg) from an exposure unit.

Usage

data(EPA.02d.Ex.6.mg.per.kg.vec)

Format

a numeric vector of concentrations (mg/kg)

Source

USEPA. (2002d). Calculating Upper Confidence Limits for Exposure Point Concentrations at Haz-
ardous Waste Sites. OSWER 9285.6-10, December 2002. Office of Emergency and Remedial
Response, U.S. Environmental Protection Agency, Washington, D.C., p. 13.

EPA.02d.Ex.9.mg.per.L.vec

Concentrations in Exhibit 9 of 2002d USEPA Guidance Document

Description

Concentrations (mg/L) from an exposure unit.

Usage

data(EPA.02d.Ex.9.mg.per.L.vec)

Format

a numeric vector of concentrations (mg/L)

Source

USEPA. (2002d). Calculating Upper Confidence Limits for Exposure Point Concentrations at Haz-
ardous Waste Sites. OSWER 9285.6-10, December 2002. Office of Emergency and Remedial
Response, U.S. Environmental Protection Agency, Washington, D.C., p. 16.
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EPA.09.Ex.10.1.nickel.df

Nickel Concentrations from Example 10-1 of 2009 USEPA Guidance
Document

Description

Nickel concentrations (ppb) from four wells (five observations per year for each well). The Guid-
ance Document has the label “Year” instead of “Well”; corrected in Errata.

Usage

EPA.09.Ex.10.1.nickel.df

Format

A data frame with 20 observations on the following 3 variables.

Month a numeric vector indicating the month the sample was taken

Well a factor indicating the well number

Nickel.ppb a numeric vector of nickel concentrations (ppb)

Source

USEPA. (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Uni-
fied Guidance. EPA 530/R-09-007, March 2009. Office of Resource Conservation and Recovery,
Program Implementation and Information Division. U.S. Environmental Protection Agency, Wash-
ington, D.C., p.10-12.

USEPA. (2010). Errata Sheet - March 2009 Unified Guidance. EPA 530/R-09-007a, August 9,
2010. Office of Resource Conservation and Recovery, Program Information and Implementation
Division. U.S. Environmental Protection Agency, Washington, D.C.

EPA.09.Ex.11.1.arsenic.df

Arsenic Concentrations from Example 11-1 of 2009 USEPA Guidance
Document

Description

Arsenic concentrations (ppb) at six wells (four observations per well).

Usage

EPA.09.Ex.11.1.arsenic.df
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Format

A data frame with 24 observations on the following 3 variables.

Arsenic.ppb a numeric vector of arsenic concentrations (ppb)

Month a factor indicating the month of collection

Well a factor indicating the well number

Source

USEPA. (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Uni-
fied Guidance. EPA 530/R-09-007, March 2009. Office of Resource Conservation and Recovery
Program Implementation and Information Division. U.S. Environmental Protection Agency, Wash-
ington, D.C. p.11-3.

USEPA. (2010). Errata Sheet - March 2009 Unified Guidance. EPA 530/R-09-007a, August 9,
2010. Office of Resource Conservation and Recovery, Program Information and Implementation
Division. U.S. Environmental Protection Agency, Washington, D.C.

EPA.09.Ex.12.1.ccl4.df

Carbon Tetrachloride Concentrations from Example 12-1 of 2009
USEPA Guidance Document

Description

Carbon tetrachloride (CCL4) concentrations (ppb) at five background wells (four measures at each
well).

Usage

EPA.09.Ex.12.1.ccl4.df

Format

A data frame with 20 observations on the following 2 variables.

Well a factor indicating the well number

CCL4.ppb a numeric vector of CCL4 concentrations (ppb)

Source

USEPA. (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Uni-
fied Guidance. EPA 530/R-09-007, March 2009. Office of Resource Conservation and Recovery
Program Implementation and Information Division. U.S. Environmental Protection Agency, Wash-
ington, D.C. p.12-3.

USEPA. (2010). Errata Sheet - March 2009 Unified Guidance. EPA 530/R-09-007a, August 9,
2010. Office of Resource Conservation and Recovery, Program Information and Implementation
Division. U.S. Environmental Protection Agency, Washington, D.C.
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EPA.09.Ex.12.4.naphthalene.df

Naphthalene Concentrations from Example 12-4 of 2009 USEPA
Guidance Document

Description

Naphthalene concentrations (ppb) at five background wells (five quarterly measures at each well).

Usage

EPA.09.Ex.12.4.naphthalene.df

Format

A data frame with 25 observations on the following 3 variables.

Quarter a numeric vector indicating the quarter the sample was taken

Well a factor indicating the well number

Naphthalene.ppb a numeric vector of naphthalene concentrations (ppb)

Source

USEPA. (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Uni-
fied Guidance. EPA 530/R-09-007, March 2009. Office of Resource Conservation and Recovery
Program Implementation and Information Division. U.S. Environmental Protection Agency, Wash-
ington, D.C. p.12-12.

USEPA. (2010). Errata Sheet - March 2009 Unified Guidance. EPA 530/R-09-007a, August 9,
2010. Office of Resource Conservation and Recovery, Program Information and Implementation
Division. U.S. Environmental Protection Agency, Washington, D.C.

EPA.09.Ex.13.1.iron.df

Iron Concentrations from Example 13-1 of 2009 USEPA Guidance
Document

Description

Dissolved iron (Fe) concentrations (ppm) at six upgradient wells (four quarterly measures at each
well).

Usage

EPA.09.Ex.13.1.iron.df
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Format

A data frame with 24 observations on the following 4 variables.

Month a numeric vector indicating the month the sample was taken

Year a numeric vector indicating the year the sample was taken

Well a factor indicating the well number

Iron.ppm a numeric vector if iron concentrations (ppm)

Source

USEPA. (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Uni-
fied Guidance. EPA 530/R-09-007, March 2009. Office of Resource Conservation and Recovery
Program Implementation and Information Division. U.S. Environmental Protection Agency, Wash-
ington, D.C. p.13-3.

USEPA. (2010). Errata Sheet - March 2009 Unified Guidance. EPA 530/R-09-007a, August 9,
2010. Office of Resource Conservation and Recovery, Program Information and Implementation
Division. U.S. Environmental Protection Agency, Washington, D.C.

EPA.09.Ex.14.1.manganese.df

Manganese Concentrations from Example 14-1 of 2009 USEPA Guid-
ance Document

Description

Manganese concentrations (ppm) at four background wells (eight quarterly measures at each well).

Usage

EPA.09.Ex.14.1.manganese.df

Format

A data frame with 32 observations on the following 3 variables.

Quarter a numeric vector indicating the quarter the sample was taken

Well a factor indicating the well number

Manganese.ppm a numeric vector of manganese concentrations (ppm)

Source

USEPA. (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Uni-
fied Guidance. EPA 530/R-09-007, March 2009. Office of Resource Conservation and Recovery
Program Implementation and Information Division. U.S. Environmental Protection Agency, Wash-
ington, D.C. p.14-5.

USEPA. (2010). Errata Sheet - March 2009 Unified Guidance. EPA 530/R-09-007a, August 9,
2010. Office of Resource Conservation and Recovery, Program Information and Implementation
Division. U.S. Environmental Protection Agency, Washington, D.C.
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EPA.09.Ex.14.3.alkalinity.df

Alkalinity Measures from Example 14-3 of 2009 USEPA Guidance
Document

Description

Alkalinity measures (mg/L) collected from leachate at a solid waste landfill during a four and a half
year period.

Usage

EPA.09.Ex.14.3.alkalinity.df

Format

A data frame with 54 observations on the following 2 variables.

Date a Date object indicating the date of collection
Alkalinity.mg.per.L a numeric vector of alkalinity measures (mg/L)

Source

USEPA. (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Uni-
fied Guidance. EPA 530/R-09-007, March 2009. Office of Resource Conservation and Recovery
Program Implementation and Information Division. U.S. Environmental Protection Agency, Wash-
ington, D.C. p.14-14.

USEPA. (2010). Errata Sheet - March 2009 Unified Guidance. EPA 530/R-09-007a, August 9,
2010. Office of Resource Conservation and Recovery, Program Information and Implementation
Division. U.S. Environmental Protection Agency, Washington, D.C.

EPA.09.Ex.14.4.arsenic.df

Arsenic Concentrations from Example 14-4 of 2009 USEPA Guidance
Document

Description

Sixteen quarterly measures of arsenic concentrations (ppb).

Usage

EPA.09.Ex.14.4.arsenic.df

Format

A data frame with 16 observations on the following 4 variables.

Sample.Date a factor indicating the month and year of collection
Month a factor indicating the month of collection
Year a factor indicating the year of collection
Arsenic.ppb a numeric vector of arsenic concentrations (ppb)
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Source

USEPA. (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Uni-
fied Guidance. EPA 530/R-09-007, March 2009. Office of Resource Conservation and Recovery
Program Implementation and Information Division. U.S. Environmental Protection Agency, Wash-
ington, D.C. p.14-18.

USEPA. (2010). Errata Sheet - March 2009 Unified Guidance. EPA 530/R-09-007a, August 9,
2010. Office of Resource Conservation and Recovery, Program Information and Implementation
Division. U.S. Environmental Protection Agency, Washington, D.C.

EPA.09.Ex.14.8.df Analyte Concentrations from Example 14-8 of 2009 USEPA Guidance
Document

Description

Monthly unadjusted and adjusted analyte concentrations over a 3-year period. Adjusted concentra-
tions are computed by subtracting the monthly mean and adding the overall mean.

Usage

EPA.09.Ex.14.8.df

Format

A data frame with 36 observations on the following 4 variables.

Month a factor indicating the month of collection

Year a numeric vector indicating the year of collection

Unadj.Conc a numeric vector of unadjusted concentrations

Adj.Conc a numeric vector adjusted concentrations

Source

USEPA. (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Uni-
fied Guidance. EPA 530/R-09-007, March 2009. Office of Resource Conservation and Recovery
Program Implementation and Information Division. U.S. Environmental Protection Agency, Wash-
ington, D.C. p.14-32.

USEPA. (2010). Errata Sheet - March 2009 Unified Guidance. EPA 530/R-09-007a, August 9,
2010. Office of Resource Conservation and Recovery, Program Information and Implementation
Division. U.S. Environmental Protection Agency, Washington, D.C.
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EPA.09.Ex.15.1.manganese.df

Manganese Concentrations from Example 15-1 of 2009 USEPA Guid-
ance Document

Description

Manganese concentrations (ppb) at five background wells (five measures at each well).

Usage

EPA.09.Ex.15.1.manganese.df

Format

A data frame with 25 observations on the following 5 variables.

Sample a numeric vector indicating the sample number (1-5)

Well a factor indicating the well number

Manganese.Orig.ppb a character vector of the original manganese concentrations (ppb)

Manganese.ppb a numeric vector of manganese concentrations with non-detects coded to their
detecion limit

Censored a logical vector indicating which observations are censored

Source

USEPA. (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Uni-
fied Guidance. EPA 530/R-09-007, March 2009. Office of Resource Conservation and Recovery
Program Implementation and Information Division. U.S. Environmental Protection Agency, Wash-
ington, D.C. p.15-10.

USEPA. (2010). Errata Sheet - March 2009 Unified Guidance. EPA 530/R-09-007a, August 9,
2010. Office of Resource Conservation and Recovery, Program Information and Implementation
Division. U.S. Environmental Protection Agency, Washington, D.C.

EPA.09.Ex.16.1.sulfate.df

Sulfate Concentrations from Example 16-1 of 2009 USEPA Guidance
Document

Description

Sulfate concentrations (ppm) at one background well and one downgradient well (eight quarterly
measures at each well).

Usage

EPA.09.Ex.16.1.sulfate.df
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Format

A data frame with 16 observations on the following 4 variables.

Month a factor indicating the month of collection

Year a factor indicating the year of collection

Well.type a factor indicating the well type (background vs. downgradient)

Sulfate.ppm a numeric vector of sulfate concentrations (ppm)

Source

USEPA. (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Uni-
fied Guidance. EPA 530/R-09-007, March 2009. Office of Resource Conservation and Recovery
Program Implementation and Information Division. U.S. Environmental Protection Agency, Wash-
ington, D.C. p.16-6.

USEPA. (2010). Errata Sheet - March 2009 Unified Guidance. EPA 530/R-09-007a, August 9,
2010. Office of Resource Conservation and Recovery, Program Information and Implementation
Division. U.S. Environmental Protection Agency, Washington, D.C.

EPA.09.Ex.16.2.benzene.df

Benzene Concentrations from Example 16-2 of 2009 USEPA Guidance
Document

Description

Benzene concentrations (ppb) at one background and one downgradient well (eight monthly mea-
sures at each well).

Usage

EPA.09.Ex.16.2.benzene.df

Format

A data frame with 16 observations on the following 3 variables.

Month a factor indicating the month of collection

Well.type a factor indicating the well type (background vs. downgradient)

Benzene.ppb a numeric vector of benzene concentrations (ppb)

Source

USEPA. (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Uni-
fied Guidance. EPA 530/R-09-007, March 2009. Office of Resource Conservation and Recovery
Program Implementation and Information Division. U.S. Environmental Protection Agency, Wash-
ington, D.C. p.16-9.

USEPA. (2010). Errata Sheet - March 2009 Unified Guidance. EPA 530/R-09-007a, August 9,
2010. Office of Resource Conservation and Recovery, Program Information and Implementation
Division. U.S. Environmental Protection Agency, Washington, D.C.
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EPA.09.Ex.16.4.copper.df

Copper Concentrations from Example 16-4 of 2009 USEPA Guidance
Document

Description

Copper concentrations (ppb) at two background wells and one compliance well (six measures at
each well).

Usage

EPA.09.Ex.16.4.copper.df

Format

A data frame with 18 observations on the following 4 variables.

Month a factor indicating the month of collection

Well a factor indicating the well number

Well.type a factor indicating the well type (background vs. compliance)

Copper.ppb a numeric vector of copper concentrations (ppb)

Source

USEPA. (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Uni-
fied Guidance. EPA 530/R-09-007, March 2009. Office of Resource Conservation and Recovery
Program Implementation and Information Division. U.S. Environmental Protection Agency, Wash-
ington, D.C. p.16-19.

USEPA. (2010). Errata Sheet - March 2009 Unified Guidance. EPA 530/R-09-007a, August 9,
2010. Office of Resource Conservation and Recovery, Program Information and Implementation
Division. U.S. Environmental Protection Agency, Washington, D.C.

EPA.09.Ex.16.5.PCE.df Tetrachloroethylene Concentrations from Example 16-5 of 2009
USEPA Guidance Document

Description

Tetrachloroethylene (PCE) concentrations (ppb) at one background well and one compliance well.

Usage

EPA.09.Ex.16.5.PCE.df
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Format

A data frame with 14 observations on the following 4 variables.

Well.type a factor with levels Background Compliance

PCE.Orig.ppb a character vector of original PCE concentrations (ppb)

PCE.ppb a numeric vector of PCE concentrations (ppb) with nondetects set to their detection limit

Censored a logical vector indicating which observations are censored

Source

USEPA. (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Uni-
fied Guidance. EPA 530/R-09-007, March 2009. Office of Resource Conservation and Recovery
Program Implementation and Information Division. U.S. Environmental Protection Agency, Wash-
ington, D.C. p.16-22.

USEPA. (2010). Errata Sheet - March 2009 Unified Guidance. EPA 530/R-09-007a, August 9,
2010. Office of Resource Conservation and Recovery, Program Information and Implementation
Division. U.S. Environmental Protection Agency, Washington, D.C.

EPA.09.Ex.17.1.loglead.df

Log-transformed Lead Concentrations from Example 17-1 of 2009
USEPA Guidance Document

Description

Log-transformed lead concentrations (ppb) at two background and four compliance wells (four
quarterly measures at each well).

Usage

EPA.09.Ex.17.1.loglead.df

Format

A data frame with 24 observations on the following 4 variables.

Month a factor indicating the month of collection; 1 = Jan, 2 = Apr, 3 = Jul, 4 = Oct

Well a factor indicating the well number

Well.type a factor indicating the well type (background vs. compliance)

LogLead a numeric vector of log-transformed lead concentrations (ppb)

Source

USEPA. (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Uni-
fied Guidance. EPA 530/R-09-007, March 2009. Office of Resource Conservation and Recovery
Program Implementation and Information Division. U.S. Environmental Protection Agency, Wash-
ington, D.C. p.17-7.

USEPA. (2010). Errata Sheet - March 2009 Unified Guidance. EPA 530/R-09-007a, August 9,
2010. Office of Resource Conservation and Recovery, Program Information and Implementation
Division. U.S. Environmental Protection Agency, Washington, D.C.
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EPA.09.Ex.17.2.toluene.df

Toluene Concentrations from Example 17-2 of 2009 USEPA Guidance
Document

Description

Toluene concentrations (ppb) at two background and three compliance wells (five monthly measures
at each well).

Usage

EPA.09.Ex.17.2.toluene.df

Format

A data frame with 25 observations on the following 6 variables.

Month a factor indicating the month of collection

Well a factor indicating the well number

Well.type a factor indicating the well type (background vs. compliance)

Toluene.ppb.orig a character vector of original toluene concentrations (ppb)

Toluene.ppb a numeric vector of toluene concentrations (ppb) with nondetects set to their detec-
tion limit

Censored a logical vector indicating which observations are censored

Source

USEPA. (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Uni-
fied Guidance. EPA 530/R-09-007, March 2009. Office of Resource Conservation and Recovery
Program Implementation and Information Division. U.S. Environmental Protection Agency, Wash-
ington, D.C. p.17-13.

USEPA. (2010). Errata Sheet - March 2009 Unified Guidance. EPA 530/R-09-007a, August 9,
2010. Office of Resource Conservation and Recovery, Program Information and Implementation
Division. U.S. Environmental Protection Agency, Washington, D.C.

EPA.09.Ex.17.3.chrysene.df

Chrysene Concentrations from Example 17-3 of 2009 USEPA Guid-
ance Document

Description

Chrysene concentrations (ppb) at two background and three compliance wells (four monthly mea-
sures at each well).

Usage

EPA.09.Ex.17.3.chrysene.df
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Format

A data frame with 20 observations on the following 4 variables.

Month a factor indicating the month of collection

Well a factor indicating the well number

Well.type a factor indicating the well type (background vs. compliance)

Chrysene.ppb a numeric vector of chrysene concentrations (ppb)

Source

USEPA. (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Uni-
fied Guidance. EPA 530/R-09-007, March 2009. Office of Resource Conservation and Recovery
Program Implementation and Information Division. U.S. Environmental Protection Agency, Wash-
ington, D.C. p.17-17.

USEPA. (2010). Errata Sheet - March 2009 Unified Guidance. EPA 530/R-09-007a, August 9,
2010. Office of Resource Conservation and Recovery, Program Information and Implementation
Division. U.S. Environmental Protection Agency, Washington, D.C.

EPA.09.Ex.17.3.log.chrysene.df

Log-transformed Chrysene Concentrations from Example 17-3 of
2009 USEPA Guidance Document

Description

Log-transformed chrysene concentrations (ppb) at two background and three compliance wells (four
monthly measures at each well).

Usage

EPA.09.Ex.17.3.log.chrysene.df

Format

A data frame with 20 observations on the following 4 variables.

Month a factor indicating the month of collection

Well a factor indicating the well number

Well.type a factor indicating the well type (background vs. compliance)

Log.Chrysene.ppb a numeric vector of log-transformed chrysene concentrations (ppb)

Source

USEPA. (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Uni-
fied Guidance. EPA 530/R-09-007, March 2009. Office of Resource Conservation and Recovery
Program Implementation and Information Division. U.S. Environmental Protection Agency, Wash-
ington, D.C. p.17-18.

USEPA. (2010). Errata Sheet - March 2009 Unified Guidance. EPA 530/R-09-007a, August 9,
2010. Office of Resource Conservation and Recovery, Program Information and Implementation
Division. U.S. Environmental Protection Agency, Washington, D.C.
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EPA.09.Ex.17.4.copper.df

Copper Concentrations from Example 17-4 of 2009 USEPA Guidance
Document

Description

Copper concentrations (ppb) at three background and two compliance wells (eight monthly mea-
sures at the background wells, four monthly measures at the compliance wells).

Usage

EPA.09.Ex.17.4.copper.df

Format

A data frame with 40 observations on the following 6 variables.

Month a factor indicating the month of collection

Well a factor indicating the well number

Well.type a factor indicating the well type (background vs. compliance)

Copper.ppb.orig a character vector of original copper concentrations (ppb)

Copper.ppb a numeric vector of copper concentrations with nondetects set to their detection limit

Censored a logical vector indicating which observations are censored

Source

USEPA. (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Uni-
fied Guidance. EPA 530/R-09-007, March 2009. Office of Resource Conservation and Recovery
Program Implementation and Information Division. U.S. Environmental Protection Agency, Wash-
ington, D.C. p.17-21.

USEPA. (2010). Errata Sheet - March 2009 Unified Guidance. EPA 530/R-09-007a, August 9,
2010. Office of Resource Conservation and Recovery, Program Information and Implementation
Division. U.S. Environmental Protection Agency, Washington, D.C.

EPA.09.Ex.17.5.chloride.df

Chloride Concentrations from Example 17-5 of 2009 USEPA Guid-
ance Document

Description

Chloride concentrations (ppm) collected over a five-year period at a solid waste landfill.

Usage

EPA.09.Ex.17.5.chloride.df
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Format

A data frame with 19 observations on the following 4 variables.

Date a Date object indicating the date of collection

Chloride.ppm a numeric vector of chloride concentrations (ppm)

Elapsed.Days a numeric vector indicating the number of days since January 1, 2002

Residuals a numeric vector of residuals from a linear regression trend fit

Source

USEPA. (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Uni-
fied Guidance. EPA 530/R-09-007, March 2009. Office of Resource Conservation and Recovery
Program Implementation and Information Division. U.S. Environmental Protection Agency, Wash-
ington, D.C. p.17-26.

USEPA. (2010). Errata Sheet - March 2009 Unified Guidance. EPA 530/R-09-007a, August 9,
2010. Office of Resource Conservation and Recovery, Program Information and Implementation
Division. U.S. Environmental Protection Agency, Washington, D.C.

EPA.09.Ex.17.6.sulfate.df

Sulfate Concentrations from Example 17-6 of 2009 USEPA Guidance
Document

Description

Sulfate concentrations (ppm) collected over several years. The date of collection is simply indicated
by month and year of collection. The column Date is a Date object where the day of the month has
been arbitrarily set to 1.

Usage

EPA.09.Ex.17.6.sulfate.df

Format

A data frame with 23 observations on the following 6 variables.

Sample.No a numeric vector indicating the sample number

Year a numeric vector indicating the year of collection

Month a numeric vector indicating the month of collection

Sampling.Date a numeric vector indicating the year and month of collection

Date a Date object indicating the date of collection, where the day of the month is arbitrarily set to
1

Sulfate.ppm a numeric vector of sulfate concentrations (ppm)
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Source

USEPA. (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Uni-
fied Guidance. EPA 530/R-09-007, March 2009. Office of Resource Conservation and Recovery
Program Implementation and Information Division. U.S. Environmental Protection Agency, Wash-
ington, D.C. p.17-33.

USEPA. (2010). Errata Sheet - March 2009 Unified Guidance. EPA 530/R-09-007a, August 9,
2010. Office of Resource Conservation and Recovery, Program Information and Implementation
Division. U.S. Environmental Protection Agency, Washington, D.C.

EPA.09.Ex.17.7.sodium.df

Sodium Concentrations from Example 17-7 of 2009 USEPA Guidance
Document

Description

Sodium concentrations (ppm) collected over several years. The sample dates are recorded as the
year of collection (2-digit format) plus a fractional part indicating when during the year the sample
was collected.

Usage

EPA.09.Ex.17.7.sodium.df

Format

A data frame with 10 observations on the following 2 variables.

Year a numeric vector indicating the year of collection (a fractional number)

Sodium.ppm a numeric vector of sodium concentrations (ppm)

Source

USEPA. (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Uni-
fied Guidance. EPA 530/R-09-007, March 2009. Office of Resource Conservation and Recovery
Program Implementation and Information Division. U.S. Environmental Protection Agency, Wash-
ington, D.C. p.17-36.

USEPA. (2010). Errata Sheet - March 2009 Unified Guidance. EPA 530/R-09-007a, August 9,
2010. Office of Resource Conservation and Recovery, Program Information and Implementation
Division. U.S. Environmental Protection Agency, Washington, D.C.
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EPA.09.Ex.18.1.arsenic.df

Arsenic Concentrations from Example 18-1 of 2009 USEPA Guidance
Document

Description

Arsenic concentrations (ppb) in a single well at a solid waste landfill. Four observations per year
over four years. Years 1-3 are the background period and Year 4 is the compliance period.

Usage

EPA.09.Ex.18.1.arsenic.df

Format

A data frame with 16 observations on the following 3 variables.

Year a factor indicating the year of collection

Sampling.Period a factor indicating the sampling period (background vs. compliance)

Arsenic.ppb a numeric vector of arsenic concentrations (ppb)

Source

USEPA. (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Uni-
fied Guidance. EPA 530/R-09-007, March 2009. Office of Resource Conservation and Recovery
Program Implementation and Information Division. U.S. Environmental Protection Agency, Wash-
ington, D.C. p.18-10.

USEPA. (2010). Errata Sheet - March 2009 Unified Guidance. EPA 530/R-09-007a, August 9,
2010. Office of Resource Conservation and Recovery, Program Information and Implementation
Division. U.S. Environmental Protection Agency, Washington, D.C.

EPA.09.Ex.18.2.chrysene.df

Chrysene Concentrations from Example 18-2 of 2009 USEPA Guid-
ance Document

Description

Chrysene concentrations (ppb) at two background wells and one compliance well (four monthly
measures at each well).

Usage

EPA.09.Ex.18.2.chrysene.df
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Format

A data frame with 12 observations on the following 4 variables.

Month a factor indicating the month of collection
Well a factor indicating the well number
Well.type a factor indicating the well type (background vs. compliance)
Chrysene.ppb a numeric vector of chrysene concentrations (ppb)

Source

USEPA. (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Uni-
fied Guidance. EPA 530/R-09-007, March 2009. Office of Resource Conservation and Recovery
Program Implementation and Information Division. U.S. Environmental Protection Agency, Wash-
ington, D.C. p.18-15.

USEPA. (2010). Errata Sheet - March 2009 Unified Guidance. EPA 530/R-09-007a, August 9,
2010. Office of Resource Conservation and Recovery, Program Information and Implementation
Division. U.S. Environmental Protection Agency, Washington, D.C.

EPA.09.Ex.18.3.TCE.df Trichloroethylene Concentrations from Example 18-3 of 2009 USEPA
Guidance Document

Description

Trichloroethylene (TCE) concentrations (ppb) at three background wells and one compliance well.
Six monthly measures at each background well, three monthly measures at the compliance well.

Usage

EPA.09.Ex.18.3.TCE.df

Format

A data frame with 24 observations on the following 6 variables.

Month a factor indicating the month of collection
Well a factor indicating the well number
Well.type a factor indicating the well type (background vs. compliance)
TCE.ppb.orig a character vector of original TCE concentrations (ppb)
TCE.ppb a numeric vector of TCE concentrations (ppb) with nondetects set to their detection limit
Censored a logical vector indicating which observations are censored

Source

USEPA. (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Uni-
fied Guidance. EPA 530/R-09-007, March 2009. Office of Resource Conservation and Recovery
Program Implementation and Information Division. U.S. Environmental Protection Agency, Wash-
ington, D.C. p.18-19.

USEPA. (2010). Errata Sheet - March 2009 Unified Guidance. EPA 530/R-09-007a, August 9,
2010. Office of Resource Conservation and Recovery, Program Information and Implementation
Division. U.S. Environmental Protection Agency, Washington, D.C.
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EPA.09.Ex.18.4.xylene.df

Xylene Concentrations from Example 18-4 of 2009 USEPA Guidance
Document

Description

Xylene concentrations (ppb) at three background wells and one compliance well. Eight monthly
measures at each complaince well; three monthly measures at the compliance well.

Usage

EPA.09.Ex.18.4.xylene.df

Format

A data frame with 32 observations on the following 6 variables.

Month a factor indicating the month of collection

Well a factor indicating the well number

Well.type a factor indicating the well type (background vs. compliance)

Xylene.ppb.orig a character vector of original xylene concentrations (ppb)

Xylene.ppb a numeric vector of xylene concentrations (ppb) with nondetects set to their detection
limit

Censored a logical vector indicating which observations are censored

Source

USEPA. (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Uni-
fied Guidance. EPA 530/R-09-007, March 2009. Office of Resource Conservation and Recovery
Program Implementation and Information Division. U.S. Environmental Protection Agency, Wash-
ington, D.C. p.18-22.

USEPA. (2010). Errata Sheet - March 2009 Unified Guidance. EPA 530/R-09-007a, August 9,
2010. Office of Resource Conservation and Recovery, Program Information and Implementation
Division. U.S. Environmental Protection Agency, Washington, D.C.

EPA.09.Ex.19.1.sulfate.df

Sulfate Concentrations from Example 19-1 of 2009 USEPA Guidance
Document

Description

Sulfate concentrations (mg/L) at four background wells.

Usage

EPA.09.Ex.19.1.sulfate.df
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Format

A data frame with 25 observations on the following 7 variables.

Well a factor indicating the well number
Month a numeric vector indicating the month of collection
Day a numeric vector indicating the day of the month of collection
Year a numeric vector indicating the year of collection
Date a Date object indicating the date of collection
Sulfate.mg.per.l a numeric vector of sulfate concentrations (mg/L)
log.Sulfate.mg.per.l a numeric vector of log-transformed sulfate concentrations (mg/L)

Source

USEPA. (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Uni-
fied Guidance. EPA 530/R-09-007, March 2009. Office of Resource Conservation and Recovery
Program Implementation and Information Division. U.S. Environmental Protection Agency, Wash-
ington, D.C. p.19-17.

USEPA. (2010). Errata Sheet - March 2009 Unified Guidance. EPA 530/R-09-007a, August 9,
2010. Office of Resource Conservation and Recovery, Program Information and Implementation
Division. U.S. Environmental Protection Agency, Washington, D.C.

EPA.09.Ex.19.2.chloride.df

Chloride Concentrations from Example 19-2 of 2009 USEPA Guid-
ance Document

Description

Chloride concentrations (mg/L) at 10 compliance wells at a solid waste landfill. One year of quar-
terly measures at each well.

Usage

EPA.09.Ex.19.2.chloride.df

Format

A data frame with 40 observations on the following 2 variables.

Well a factor indicating the well number
Chloride.mg.per.l a numeric vector of chloride concentrations (mg/L)

Source

USEPA. (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Uni-
fied Guidance. EPA 530/R-09-007, March 2009. Office of Resource Conservation and Recovery
Program Implementation and Information Division. U.S. Environmental Protection Agency, Wash-
ington, D.C. p.19-19.

USEPA. (2010). Errata Sheet - March 2009 Unified Guidance. EPA 530/R-09-007a, August 9,
2010. Office of Resource Conservation and Recovery, Program Information and Implementation
Division. U.S. Environmental Protection Agency, Washington, D.C.
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EPA.09.Ex.19.5.mercury.df

Mercury Concentrations from Example 19-5 of 2009 USEPA Guidance
Document

Description

Mercury concentrations (ppb) at four background and two compliance wells.

Usage

EPA.09.Ex.19.5.mercury.df

Format

A data frame with 36 observations on the following 6 variables.

Event a factor indicating the time of collection

Well a factor indicating the well number

Well.type a factor indicating the well type (background vs. compliance)

Mercury.ppb.orig a character vector of original mercury concentrations (ppb)

Mercury.ppb a numeric vector of mercury concentrations (ppb) with nondetects set to their detec-
tion limit

Censored a logical vector indicating which observations are censored

Source

USEPA. (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Uni-
fied Guidance. EPA 530/R-09-007, March 2009. Office of Resource Conservation and Recovery
Program Implementation and Information Division. U.S. Environmental Protection Agency, Wash-
ington, D.C. p.19-33.

USEPA. (2010). Errata Sheet - March 2009 Unified Guidance. EPA 530/R-09-007a, August 9,
2010. Office of Resource Conservation and Recovery, Program Information and Implementation
Division. U.S. Environmental Protection Agency, Washington, D.C.

EPA.09.Ex.20.1.nickel.df

Nickel Concentrations from Example 20-1 of 2009 USEPA Guidance
Document

Description

Nickel concentrations (ppb) at a single well. Eight monthly measures during the background period
and eight monthly measures during the compliance period.

Usage

EPA.09.Ex.20.1.nickel.df
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Format

A data frame with 16 observations on the following 4 variables.

Month a factor indicating the month of collection

Year a factor indicating the year of collection

Period a factor indicating the period (baseline vs. compliance)

Nickel.ppb a numeric vector of nickel concentrations (ppb)

Source

USEPA. (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Uni-
fied Guidance. EPA 530/R-09-007, March 2009. Office of Resource Conservation and Recovery
Program Implementation and Information Division. U.S. Environmental Protection Agency, Wash-
ington, D.C. p.20-4.

USEPA. (2010). Errata Sheet - March 2009 Unified Guidance. EPA 530/R-09-007a, August 9,
2010. Office of Resource Conservation and Recovery, Program Information and Implementation
Division. U.S. Environmental Protection Agency, Washington, D.C.

EPA.09.Ex.21.1.aldicarb.df

Aldicarb Concentrations from Example 21-1 of 2009 USEPA Guid-
ance Document

Description

Aldicarb concentrations (ppb) at three compliance wells (four monthly measures at each well).

Usage

EPA.09.Ex.21.1.aldicarb.df

Format

A data frame with 12 observations on the following 3 variables.

Month a factor indicating the month of collection

Well a factor indicating the well number

Aldicarb.ppb a numeric vector of aldicarb concentrations (ppb)

Source

USEPA. (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Uni-
fied Guidance. EPA 530/R-09-007, March 2009. Office of Resource Conservation and Recovery
Program Implementation and Information Division. U.S. Environmental Protection Agency, Wash-
ington, D.C. p.21-4.

USEPA. (2010). Errata Sheet - March 2009 Unified Guidance. EPA 530/R-09-007a, August 9,
2010. Office of Resource Conservation and Recovery, Program Information and Implementation
Division. U.S. Environmental Protection Agency, Washington, D.C.
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EPA.09.Ex.21.2.benzene.df

Benzene Concentrations from Example 21-2 of 2009 USEPA Guidance
Document

Description

Benzene concentrations (ppb) collected at a landfill that previously handled smelter waste and is
now undergoing remediation efforts.

Usage

EPA.09.Ex.21.2.benzene.df

Format

A data frame with 8 observations on the following 4 variables.

Month a numeric vector indicating the month of collection

Benzene.ppb.orig a character vector of original benzene concentrations (ppb)

Benzene.ppb a numeric vector of benzene concentrations (ppb) with nondetects set to their detec-
tion limit

Censored a logical vector indicating which observations are censored

Source

USEPA. (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Uni-
fied Guidance. EPA 530/R-09-007, March 2009. Office of Resource Conservation and Recovery
Program Implementation and Information Division. U.S. Environmental Protection Agency, Wash-
ington, D.C. p.21-7.

USEPA. (2010). Errata Sheet - March 2009 Unified Guidance. EPA 530/R-09-007a, August 9,
2010. Office of Resource Conservation and Recovery, Program Information and Implementation
Division. U.S. Environmental Protection Agency, Washington, D.C.

EPA.09.Ex.21.5.beryllium.df

Beryllium Concentrations from Example 21-5 of 2009 USEPA Guid-
ance Document

Description

Beryllium concentrations (ppb) at one well (four years of quarterly measures).

Usage

data(EPA.09.Ex.21.5.beryllium.df)
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Format

A data frame with 16 observations on the following 3 variables.

Year a factor indicating the year of collection

Quarter a factor indicating the quarter of collection

Beryllium.ppb a numeric vector of beryllium concentrations (ppb)

Source

USEPA. (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Uni-
fied Guidance. EPA 530/R-09-007, March 2009. Office of Resource Conservation and Recovery
Program Implementation and Information Division. U.S. Environmental Protection Agency, Wash-
ington, D.C. p.21-18.

USEPA. (2010). Errata Sheet - March 2009 Unified Guidance. EPA 530/R-09-007a, August 9,
2010. Office of Resource Conservation and Recovery, Program Information and Implementation
Division. U.S. Environmental Protection Agency, Washington, D.C.

EPA.09.Ex.21.6.nitrate.df

Nitrate Concentrations from Example 21-6 of 2009 USEPA Guidance
Document

Description

Nitrate concentrations (mg/L) at a well used for drinking water.

Usage

EPA.09.Ex.21.6.nitrate.df

Format

A data frame with 12 observations on the following 5 variables.

Sampling.Date a character vector indicating the sampling date

Date a Date object indicating the sampling date

Nitrate.mg.per.l.orig a character vector of original nitrate concentrations (mg/L)

Nitrate.mg.per.l a numeric vector of nitrate concentrations (mg/L) with nondetects set to their
detection limit

Censored a logical vector indicating which observations are censored

Source

USEPA. (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Uni-
fied Guidance. EPA 530/R-09-007, March 2009. Office of Resource Conservation and Recovery
Program Implementation and Information Division. U.S. Environmental Protection Agency, Wash-
ington, D.C. p.21-22.

USEPA. (2010). Errata Sheet - March 2009 Unified Guidance. EPA 530/R-09-007a, August 9,
2010. Office of Resource Conservation and Recovery, Program Information and Implementation
Division. U.S. Environmental Protection Agency, Washington, D.C.
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EPA.09.Ex.21.7.TCE.df Trichloroethylene Concentrations from Example 21-7 of 2009 USEPA
Guidance Document

Description

Trichloroethylene (TCE) concentrations (ppb) at a site undergoing remediation.

Usage

EPA.09.Ex.21.7.TCE.df

Format

A data frame with 10 observations on the following 2 variables.

Month a numeric vector indicating the month of collection
TCE.ppb a numeric vector of TCE concentrations (ppb)

Source

USEPA. (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Uni-
fied Guidance. EPA 530/R-09-007, March 2009. Office of Resource Conservation and Recovery
Program Implementation and Information Division. U.S. Environmental Protection Agency, Wash-
ington, D.C. p.21-26.

USEPA. (2010). Errata Sheet - March 2009 Unified Guidance. EPA 530/R-09-007a, August 9,
2010. Office of Resource Conservation and Recovery, Program Information and Implementation
Division. U.S. Environmental Protection Agency, Washington, D.C.

EPA.09.Ex.22.1.VC.df Vinyl Chloride Concentrations from Example 22-1 of 2009 USEPA
Guidance Document

Description

Vinyl Chloride (VC) concentrations (ppb) during detection monitoring for two compliance wells.
Four years of quarterly measures at each well. Compliance monitoring began with Year 2 of the
sampling record.

Usage

EPA.09.Ex.22.1.VC.df

Format

A data frame with 32 observations on the following 5 variables.

Year a factor indicating the year of collection
Quarter a factor indicating the quarter of collection
Period a factor indicating the period (background vs. compliance)
Well a factor indicating the well number
VC.ppb a numeric vector of VC concentrations (ppb)
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Source

USEPA. (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Uni-
fied Guidance. EPA 530/R-09-007, March 2009. Office of Resource Conservation and Recovery
Program Implementation and Information Division. U.S. Environmental Protection Agency, Wash-
ington, D.C. p.22-6.

USEPA. (2010). Errata Sheet - March 2009 Unified Guidance. EPA 530/R-09-007a, August 9,
2010. Office of Resource Conservation and Recovery, Program Information and Implementation
Division. U.S. Environmental Protection Agency, Washington, D.C.

EPA.09.Ex.22.2.Specific.Conductance.df

Specific Conductance from Example 22-2 of 2009 USEPA Guidance
Document

Description

Specific conductance (µmho) collected over several years at two wells at a hazardous waste facility.

Usage

EPA.09.Ex.22.2.Specific.Conductance.df

Format

A data frame with 43 observations on the following 3 variables.

Well a factor indicating the well number

Date a Date object indicating the date of collection

Specific.Conductance.umho a numeric vector of specific conductance (µmho)

Source

USEPA. (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Uni-
fied Guidance. EPA 530/R-09-007, March 2009. Office of Resource Conservation and Recovery
Program Implementation and Information Division. U.S. Environmental Protection Agency, Wash-
ington, D.C. p.22-11.

USEPA. (2010). Errata Sheet - March 2009 Unified Guidance. EPA 530/R-09-007a, August 9,
2010. Office of Resource Conservation and Recovery, Program Information and Implementation
Division. U.S. Environmental Protection Agency, Washington, D.C.
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EPA.09.Ex.6.3.sulfate.df

Sulfate Concentrations from Example 6-3 of 2009 USEPA Guidance
Document

Description

Sulfate concentrations (ppm) at two background wells (five quarterly measures at each well).

Usage

EPA.09.Ex.6.3.sulfate.df

Format

A data frame with 10 observations on the following 4 variables.

Month a numeric vector indicating the month the observations was taken

Year a numeric vector indicating the year the observation was taken

Well a factor indicating the well number

Sulfate.ppm a numeric vector of sulfate concentrations (ppm)

Source

USEPA. (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Uni-
fied Guidance. EPA 530/R-09-007, March 2009. Office of Resource Conservation and Recovery
Program Implementation and Information Division. U.S. Environmental Protection Agency, Wash-
ington, D.C. p.6-20.

USEPA. (2010). Errata Sheet - March 2009 Unified Guidance. EPA 530/R-09-007a, August 9,
2010. Office of Resource Conservation and Recovery, Program Information and Implementation
Division. U.S. Environmental Protection Agency, Washington, D.C.

EPA.09.Ex.7.1.arsenic.df

Arsenic concentrations from Example 7.1 of 2009 USEPA Guidance
Document

Description

Arsenic concentrations (µg/L) at a single well, consisting of: 8 historical observations, 4 future
observations for Case 1, and 4 future observations for Case 2.

Usage

EPA.09.Ex.7.1.arsenic.df
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Format

A data frame with 16 observations on the following 2 variables.

Data.Source a factor with levels Historical, Case.1, Case.2

Arsenic.ug.per.l a numeric vector of arsenic concentrations (µg/L)

Source

USEPA. (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Uni-
fied Guidance. EPA 530/R-09-007, March 2009. Office of Resource Conservation and Recovery
Program Implementation and Information Division. U.S. Environmental Protection Agency, Wash-
ington, D.C. p.7-26.

USEPA. (2010). Errata Sheet - March 2009 Unified Guidance. EPA 530/R-09-007a, August 9,
2010. Office of Resource Conservation and Recovery, Program Information and Implementation
Division. U.S. Environmental Protection Agency, Washington, D.C.

EPA.09.Table.9.1.TCE.df

Trichloroethene concentrations in Table 9.1 of 2009 USEPA Guidance
Document

Description

Time series of trichloroethene (TCE) concentrations (mg/L) taken at 2 separate wells. Some obser-
vations are annotated with a data qualifier of U (nondetect) or J (estimated detected concentration).

Usage

EPA.09.Table.9.1.TCE.df

Format

A data frame with 30 observations on the following 5 variables.

Date.Collected a factor indicating the date of collection

Date a Date object indicating the date of collection

Well a factor indicating the well number

TCE.mg.per.L a numeric vector indicating the TCE concnetrations (mg/L)

Data.Qualifier a factor indicating the data qualifier

Source

USEPA. (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Uni-
fied Guidance. EPA 530/R-09-007, March 2009. Office of Resource Conservation and Recovery
Program Implementation and Information Division. U.S. Environmental Protection Agency, Wash-
ington, D.C. p.9-3.

USEPA. (2010). Errata Sheet - March 2009 Unified Guidance. EPA 530/R-09-007a, August 9,
2010. Office of Resource Conservation and Recovery, Program Information and Implementation
Division. U.S. Environmental Protection Agency, Washington, D.C.
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EPA.09.Table.9.3.df Arsenic, Mercury and Strontium Concentrations in Table 9-3 of 2009
USEPA Guidance Document

Description

Arsenic, mercury, and strontium concentrations (mg/L) from a single well collected approximately
quarterly. Nondetects are indicated by the data qualifier U.

Usage

EPA.09.Table.9.3.df

Format

A data frame with 15 observations on the following 8 variables.

Date.Collected a factor indicating the date of collection

Date a Date object indicating the date of collection

Arsenic.mg.per.L a numeric vector of arsenic concentrations (mg/L)

Arsenic.Data.Qualifier a factor indicating the data qualifier for arsenic

Mercury.mg.per.L a numeric vector of mercury concentrations (mg/L)

Mercury.Data.Qualifier a factor indicating the data qualifier for mercury

Strontium.mg.per.L a numeric vector of strontium concentrations

Strontium.Data.Qualifier a factor indicating the data qualifier for strontium

Source

USEPA. (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Uni-
fied Guidance. EPA 530/R-09-007, March 2009. Office of Resource Conservation and Recovery
Program Implementation and Information Division. U.S. Environmental Protection Agency, Wash-
ington, D.C. p.9-13.

USEPA. (2010). Errata Sheet - March 2009 Unified Guidance. EPA 530/R-09-007a, August 9,
2010. Office of Resource Conservation and Recovery, Program Information and Implementation
Division. U.S. Environmental Protection Agency, Washington, D.C.

EPA.09.Table.9.4.nickel.vec

Nickel Concentrations in Table 9-4 of 2009 USEPA Guidance Docu-
ment

Description

Nickel concentrations (ppb) from a single well.

Usage

EPA.09.Table.9.4.nickel.vec
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Format

a numeric vector of nickel concentrations (ppb)

Source

USEPA. (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Uni-
fied Guidance. EPA 530/R-09-007, March 2009. Office of Resource Conservation and Recovery
Program Implementation and Information Division. U.S. Environmental Protection Agency, Wash-
ington, D.C. p.9-18.

USEPA. (2010). Errata Sheet - March 2009 Unified Guidance. EPA 530/R-09-007a, August 9,
2010. Office of Resource Conservation and Recovery, Program Information and Implementation
Division. U.S. Environmental Protection Agency, Washington, D.C.

EPA.89b.aldicarb1.df Aldicarb Concentrations from 1989 USEPA Guidance Document

Description

Aldicarb concentrations (ppb) at three compliance wells (four monthly samples at each well).

Usage

EPA.89b.aldicarb1.df

Format

A data frame with 12 observations on the following 3 variables.

Aldicarb Aldicarb concentrations (ppb)

Month a factor indicating the month of collection

Well a factor indicating the well number

Source

USEPA. (1989b). Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, In-
terim Final Guidance. EPA/530-SW-89-026. Office of Solid Waste, U.S. Environmental Protection
Agency, Washington, D.C. p.6-4.
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EPA.89b.aldicarb2.df Aldicarb Concentrations from 1989 USEPA Guidance Document

Description

Aldicarb concentrations (ppm) at three compliance wells (four monthly samples at each well).

Usage

EPA.89b.aldicarb2.df

Format

A data frame with 12 observations on the following 3 variables.

Aldicarb Aldicarb concentrations (ppm)

Month a factor indicating the month of collection

Well a factor indicating the well number

Source

USEPA. (1989b). Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, In-
terim Final Guidance. EPA/530-SW-89-026. Office of Solid Waste, U.S. Environmental Protection
Agency, Washington, D.C. p.6-13.

EPA.89b.benzene.df Benzene Concentrations from 1989 USEPA Guidance Document

Description

Benzene concentrations (ppm) at one background and five compliance wells (four monthly samples
for each well).

Usage

EPA.89b.benzene.df

Format

A data frame with 24 observations on the following 6 variables.

Benzene.orig a character vector of the original observations

Benzene a numeric vector with <1 observations coded as 1

Censored a logical vector indicating which observations are censored

Month a factor indicating the month of collection

Well a factor indicating the well number

Well.type a factor indicating the well type (background vs. compliance)
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Source

USEPA. (1989b). Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, In-
terim Final Guidance. EPA/530-SW-89-026. Office of Solid Waste, U.S. Environmental Protection
Agency, Washington, D.C. p.5-18.

EPA.89b.cadmium.df Cadmium Concentrations from 1989 USEPA Guidance Document

Description

Cadmium concentrations (mg/L) at one set of background and one set of compliance wells. Non-
detects reported as "BDL". Detection limit not given.

Usage

EPA.89b.cadmium.df

Format

A data frame with 88 observations on the following 4 variables.

Cadmium.orig a character vector of the original cadmium observations (mg/L)

Cadmium a numeric vector with BDL coded as 0

Censored a logical vector indicating which observations are censored

Well.type a factor indicating the well type (background vs. compliance)

Source

USEPA. (1989b). Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, In-
terim Final Guidance. EPA/530-SW-89-026. Office of Solid Waste, U.S. Environmental Protection
Agency, Washington, D.C. p.8-6.

EPA.89b.chlordane1.df Chlordane Concentrations from 1989 USEPA Guidance Document

Description

Chlordane concentrations (ppm) in 24 water samples. Two possible phases: dissolved (18 observa-
tions) and immiscible (6 observations).

Usage

EPA.89b.chlordane1.df

Format

A data frame with 24 observations on the following 2 variables.

Chlordane Chlordane concentrations (ppm)

Phase a factor indicating the phase (dissolved vs. immiscible)
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Source

USEPA. (1989b). Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, In-
terim Final Guidance. EPA/530-SW-89-026. Office of Solid Waste, U.S. Environmental Protection
Agency, Washington, D.C. p.4-8.

EPA.89b.chlordane2.df Chlordane Concentrations from 1989 USEPA Guidance Document

Description

Chlordane concentrations (ppb) at one background and one compliance well. Observations taken
during four separate months over two years. Four replicates taken for each “month/year/well type”
combination.

Usage

data(EPA.89b.chlordane2.df)

Format

A data frame with 32 observations on the following 5 variables.

Chlordane Chlordane concentration (ppb)

Month a factor indicating the month of collection

Year a numeric vector indicating the year of collection (85 or 86)

Replicate a factor indicating the replicate number

Well.type a factor indicating the well type (background vs. compliance)

Source

USEPA. (1989b). Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, In-
terim Final Guidance. EPA/530-SW-89-026. Office of Solid Waste, U.S. Environmental Protection
Agency, Washington, D.C. p.5-27.

EPA.89b.edb.df EDB Concentrations from 1989 USEPA Guidance Document

Description

EDB concentrations (ppb) at three compliance wells (four monthly samples at each well).

Usage

EPA.89b.edb.df
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Format

A data frame with 12 observations on the following 3 variables.

EDB EDB concentrations (ppb)

Month a factor indicating the month of collection

Well a factor indicating the well number

Source

USEPA. (1989b). Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, In-
terim Final Guidance. EPA/530-SW-89-026. Office of Solid Waste, U.S. Environmental Protection
Agency, Washington, D.C. p.6-6.

EPA.89b.lead.df Lead Concentrations from 1989 USEPA Guidance Document

Description

Lead concentrations (ppm) at two background and four compliance wells (four monthly samples
for each well).

Usage

EPA.89b.lead.df

Format

A data frame with 24 observations on the following 4 variables.

Lead Lead concentrations (ppm)

Month a factor indicating the month of collection

Well a factor indicating the well number

Well.type a factor indicating the well type (background vs. compliance)

Source

USEPA. (1989b). Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, In-
terim Final Guidance. EPA/530-SW-89-026. Office of Solid Waste, U.S. Environmental Protection
Agency, Washington, D.C. p.5-23.
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EPA.89b.loglead.df Log-transformed Lead Concentrations from 1989 USEPA Guidance
Document

Description

Log-transformed lead concentrations (µg/L) at two background and four compliance wells (four
monthly samples for each well).

Usage

EPA.89b.loglead.df

Format

A data frame with 24 observations on the following 4 variables.

LogLead Natural logarithm of lead concentrations (µg/L)
Month a factor indicating the month of collection
Well a factor indicating the well number
Well.type a factor indicating the well type (background vs. compliance)

Source

USEPA. (1989b). Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, In-
terim Final Guidance. EPA/530-SW-89-026. Office of Solid Waste, U.S. Environmental Protection
Agency, Washington, D.C. p.5-11.

EPA.89b.manganese.df Manganese Concentrations from 1989 USEPA Guidance Document

Description

Manganese concentrations at six monitoring wells (four monthly samples for each well).

Usage

EPA.89b.manganese.df

Format

A data frame with 24 observations on the following 3 variables.

Manganese Manganese concentrations
Month a factor indicating the month of collection
Well a factor indicating the well number

Source

USEPA. (1989b). Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, In-
terim Final Guidance. EPA/530-SW-89-026. Office of Solid Waste, U.S. Environmental Protection
Agency, Washington, D.C. p.4-19.
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EPA.89b.sulfate.df Sulfate Concentrations from 1989 USEPA Guidance Document

Description

Sulfate concentrations (mg/L). Nondetects reported as <1450.

Usage

data(EPA.89b.sulfate.df)

Format

A data frame with 24 observations on the following 3 variables.

Sulfate.orig a character vector of original sulfate concentration (mg/L)

Sulfate a numeric vector of sulfate concentations with <1450 coded as 1450

Censored a logical vector indicating which observations are censored

Source

USEPA. (1989b). Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, In-
terim Final Guidance. EPA/530-SW-89-026. Office of Solid Waste, U.S. Environmental Protection
Agency, Washington, D.C. p.8-9.

EPA.89b.t29.df T-29 Concentrations from 1989 USEPA Guidance Document

Description

T-29 concentrations (ppm) at two compliance wells (four monthly samples at each well, four repli-
cates within each month). Detection limit is not given.

Usage

EPA.89b.t29.df

Format

A data frame with 32 observations on the following 6 variables.

T29.orig a character vector of the original T-29 concentrations (ppm)

T29 a numeric vector of T-29 concentrations with <? coded as 0

Censored a logical vector indicating which observations are censored

Month a factor indicating the month of collection

Replicate a factor indicating the replicate number

Well a factor indicating the well number
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Source

USEPA. (1989b). Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, In-
terim Final Guidance. EPA/530-SW-89-026. Office of Solid Waste, U.S. Environmental Protection
Agency, Washington, D.C. p.6-10.

EPA.89b.toc.vec Total Organic Carbon Concentrations from 1989 USEPA Guidance
Document

Description

Numeric vector containing total organic carbon (TOC) concentrations (mg/L).

Usage

EPA.89b.toc.vec

Format

A numeric vector with 19 elements containing TOC concentrations (mg/L).

Source

USEPA. (1989b). Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, In-
terim Final Guidance. EPA/530-SW-89-026. Office of Solid Waste, U.S. Environmental Protection
Agency, Washington, D.C. p.8-13.

EPA.92c.arsenic1.df Arsenic Concentrations from 1992 USEPA Guidance Document

Description

Arsenic concentrations (ppm) at six monitoring wells (four monthly samples for each well).

Usage

EPA.92c.arsenic1.df

Format

A data frame with 24 observations on the following 3 variables.

Arsenic Arsenic concentrations (ppm)
Month a factor indicating the month of collection
Well a factor indicating the well number

Source

USEPA. (1992c). Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities: Ad-
dendum to Interim Final Guidance. Office of Solid Waste, U.S. Environmental Protection Agency,
Washington, D.C. p.21.
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EPA.92c.arsenic2.df Arsenic Concentrations from 1992 USEPA Guidance Document

Description

Arsenic concentrations (ppb) at three background wells and one compliance well (six monthly sam-
ples for each well; first four missing at compliance well). Nondetects reported as <5.

Usage

EPA.92c.arsenic2.df

Format

A data frame with 24 observations on the following 6 variables.

Arsenic.orig a character vector of original arsenic concentrations (ppb)

Arsenic a numeric vector of arsenic concentrations with <5 coded as 5

Censored a logical vector indicating which observations are censored

Month a factor indicating the month of collection

Well a factor indicating the well number

Well.type a factor indicating the well type (background vs. compliance)

Source

USEPA. (1992c). Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities: Ad-
dendum to Interim Final Guidance. Office of Solid Waste, U.S. Environmental Protection Agency,
Washington, D.C. p.60.

EPA.92c.arsenic3.df Arsenic Concentrations from 1992 USEPA Guidance Document

Description

Arsenic concentrations at one background and one compliance monitoring well. Three years of
observations for background well, two years of observations for compliance well, four samples per
year for each well.

Usage

EPA.92c.arsenic3.df

Format

A data frame with 20 observations on the following 3 variables.

Arsenic a numeric vector of arsenic concentrations

Year a factor indicating the year of collection

Well.type a factor indicating the well type (background vs. compliance)
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Source

USEPA. (1992c). Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities: Ad-
dendum to Interim Final Guidance. Office of Solid Waste, U.S. Environmental Protection Agency,
Washington, D.C.

EPA.92c.benzene1.df Benzene Concentrations from 1992 USEPA Guidance Document

Description

Benzene concentrations (ppb) at six background wells (six monthly samples for each well). Non-
detects reported as <2.

Usage

EPA.92c.benzene1.df

Format

A data frame with 36 observations on the following 5 variables.

Benzene.orig a character vector of original benzene concentrations (ppb)

Benzene a numeric vector of benzene concentrations with <2 coded as 2

Censored a logical vector indicating which observations are censored

Month a factor indicating the month of collection

Well a factor indicating the well number

Source

USEPA. (1992c). Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities: Ad-
dendum to Interim Final Guidance. Office of Solid Waste, U.S. Environmental Protection Agency,
Washington, D.C. p.36.

EPA.92c.benzene2.df Benzene Concentrations from 1992 USEPA Guidance Document

Description

Benzene concentrations (ppb) at one background and one compliance well. Four observations per
month for each well. Background well sampled in months 1,2, and 3; compliance well sampled in
months 4 and 5.

Usage

EPA.92c.benzene2.df
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Format

A data frame with 20 observations on the following 3 variables.

Benzene a numeric vector of benzene concentrations (ppb)

Month a factor indicating the month of collection

Well.type a factor indicating the well type (background vs. compliance)

Source

USEPA. (1992c). Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities: Ad-
dendum to Interim Final Guidance. Office of Solid Waste, U.S. Environmental Protection Agency,
Washington, D.C. p.56.

EPA.92c.ccl4.df Carbon Tetrachloride Concentrations from 1992 USEPA Guidance
Document

Description

Carbon tetrachloride (CCL4) concentrations (ppb) at five wells (four monthly samples at each well).

Usage

EPA.92c.ccl4.df

Format

A data frame with 20 observations on the following 3 variables.

CCL4 a numeric vector of carbon tetrachloride concentrations (ppb)

Month a factor indicating the month of collection

Well a factor indicating the well number

Source

USEPA. (1992c). Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities: Ad-
dendum to Interim Final Guidance. Office of Solid Waste, U.S. Environmental Protection Agency,
Washington, D.C. p.80.
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EPA.92c.chrysene.df Chrysene Concentrations from 1992 USEPA Guidance Document

Description

Chrysene concentrations (ppb) at five compliance wells (four monthly samples for each well).

Usage

EPA.92c.chrysene.df

Format

A data frame with 20 observations on the following 3 variables.

Chrysene a numeric vector of chrysene concentrations (ppb)
Month a factor indicating the month of collection
Well a factor indicating the well number

Source

USEPA. (1992c). Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities: Ad-
dendum to Interim Final Guidance. Office of Solid Waste, U.S. Environmental Protection Agency,
Washington, D.C. p.52.

EPA.92c.copper1.df Copper Concentrations from 1992 USEPA Guidance Document

Description

Copper concentrations (ppb) at two background and one compliance wells (six monthly samples
for each well).

Usage

EPA.92c.copper1.df

Format

A data frame with 18 observations on the following 4 variables.

Copper a numeric vector of copper concentrations (ppb)
Month a factor indicating the month of collection
Well a factor indicating the well number
Well.type a factor indicating the well type (background vs. compliance)

Source

USEPA. (1992c). Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities: Ad-
dendum to Interim Final Guidance. Office of Solid Waste, U.S. Environmental Protection Agency,
Washington, D.C. p.47.
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EPA.92c.copper2.df Copper Concentrations from 1992 USEPA Guidance Document

Description

Copper concentrations (ppb) at three background and two compliance wells (eight monthly samples
for each well; first four missing at compliance wells). Nondetects reported as <5.

Usage

EPA.92c.copper2.df

Format

A data frame with 40 observations on the following 6 variables.

Copper.orig a character vector of original copper concentrations (ppb)

Copper a numeric vector of copper concentrations with <5 coded as 5

Censored a logical vector indicating which observations are censored

Month a factor indicating the month of collection

Well a factor indicating the well number

Well.type a factor indicating the well type (background vs. compliance)

Source

USEPA. (1992c). Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities: Ad-
dendum to Interim Final Guidance. Office of Solid Waste, U.S. Environmental Protection Agency,
Washington, D.C. p.55.

EPA.92c.lognickel1.df Log-transformed Nickel Concentrations from 1992 USEPA Guidance
Document

Description

Log-transformed nickel concentrations (ppb) at four monitoring wells (five monthly samples for
each well).

Usage

EPA.92c.lognickel1.df

Format

A data frame with 20 observations on the following 3 variables.

LogNickel a numeric vector of log-transformed nickel concentrations (ppb)

Month a factor indicating the month of collection

Well a factor indicating the well number
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Source

USEPA. (1992c). Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities: Ad-
dendum to Interim Final Guidance. Office of Solid Waste, U.S. Environmental Protection Agency,
Washington, D.C. p.15.

EPA.92c.nickel1.df Nickel Concentrations from 1992 USEPA Guidance Document

Description

Nickel concentrations (ppb) at four monitoring wells (five monthly samples for each well).

Usage

EPA.92c.nickel1.df

Format

A data frame with 20 observations on the following 3 variables.

Nickel a numeric vector of nickel concentrations (ppb)

Month a factor indicating the month of collection

Well a factor indicating the well number

Source

USEPA. (1992c). Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities: Ad-
dendum to Interim Final Guidance. Office of Solid Waste, U.S. Environmental Protection Agency,
Washington, D.C. p.7.

EPA.92c.nickel2.df Nickel Concentrations from 1992 USEPA Guidance Document

Description

Nickel concentrations (ppb) at a monitoring well (eight months of samples, two samples for each
sampling occasion).

Usage

EPA.92c.nickel2.df

Format

A data frame with 16 observations on the following 3 variables.

Nickel a numeric vector of nickel concentrations (ppb)

Month a factor indicating the month of collection

Sample a factor indicating the sample (replicate) number
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Source

USEPA. (1992c). Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities: Ad-
dendum to Interim Final Guidance. Office of Solid Waste, U.S. Environmental Protection Agency,
Washington, D.C. p.78.

EPA.92c.toluene.df Toluene Concentrations from 1992 USEPA Guidance Document

Description

Toluene concentrations (ppb) at two background and three compliance wells (five monthly samples
at each well). Nondetects reported as <5.

Usage

EPA.92c.toluene.df

Format

A data frame with 25 observations on the following 6 variables.

Toluene.orig a character vector of original toluene concentrations (ppb)

Toluene a numeric vector of toluene concentrations with <5 coded as 5

Censored a logical vector indicating which observations are censored

Month a factor indicating the month of collection

Well a factor indicating the well number

Well.type a factor indicating the well type (background vs. compliance)

Source

USEPA. (1992c). Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities: Ad-
dendum to Interim Final Guidance. Office of Solid Waste, U.S. Environmental Protection Agency,
Washington, D.C. p.43.

EPA.92c.zinc.df Zinc Concentrations from 1992 USEPA Guidance Document

Description

Zinc concentrations (ppb) at five background wells (eight samples for each well). Nondetects re-
ported as <7.

Usage

EPA.92c.zinc.df
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Format

A data frame with 40 observations on the following 5 variables.

Zinc.orig a character vector of original zinc concentrations (ppb)

Zinc a numeric vector of zinc concentrations with <7 coded as 7

Censored a logical vector indicating which observations are censored

Sample a factor indicating the sample number

Well a factor indicating the well number

Source

USEPA. (1992c). Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities: Ad-
dendum to Interim Final Guidance. Office of Solid Waste, U.S. Environmental Protection Agency,
Washington, D.C. p.30.

EPA.92d.chromium.df Chromium Concentrations from 1992 USEPA Guidance Document

Description

Chromium concentrations (mg/kg) in soil samples collected randomly over a Superfund site.

Usage

EPA.92d.chromium.df

Format

A data frame with 15 observations on the following variable.

Cr a numeric vector of chromium concentrations (mg/kg)

Source

USEPA. (1992d). Supplemental Guidance to RAGS: Calculating the Concentration Term. Publi-
cation 9285.7-081, May 1992. Intermittent Bulletin, Volume 1, Number 1. Office of Emergency
and Remedial Response, Hazardous Site Evaluation Division, OS-230. Office of Solid Waste and
Emergency Response, U.S. Environmental Protection Agency, Washington, D.C.
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EPA.92d.chromium.vec Chromium Concentrations from 1992 USEPA Guidance Document

Description

Chromium concentrations (mg/kg) in soil samples collected randomly over a Superfund site.

Usage

EPA.92d.chromium.vec

Format

A numeric vector with 15 observations.

Source

USEPA. (1992d). Supplemental Guidance to RAGS: Calculating the Concentration Term. Publi-
cation 9285.7-081, May 1992. Intermittent Bulletin, Volume 1, Number 1. Office of Emergency
and Remedial Response, Hazardous Site Evaluation Division, OS-230. Office of Solid Waste and
Emergency Response, U.S. Environmental Protection Agency, Washington, D.C.

EPA.94b.lead.df Lead Concentrations from 1994 USEPA Guidance Document

Description

Lead concentrations (mg/Kg) in soil samples at a reference area and a cleanup area. Nondetects
reported as <39. There are 14 observations for each area.

Usage

EPA.94b.lead.df

Format

A data frame with 28 observations on the following 4 variables.

Lead.orig a character vector of original lead concentrations (mg/Kg)

Lead a numeric vector of lead concentrations with <39 coded as 39

Censored a logical vector indicating which observations are censored

Area a factor indicating the area (cleanup vs. reference)

Source

USEPA. (1994b). Statistical Methods for Evaluating the Attainment of Cleanup Standards, Volume
3: Reference-Based Standards for Soils and Solid Media. EPA/230-R-94-004. Office of Policy,
Planning, and Evaluation, U.S. Environmental Protection Agency, Washington, D.C. pp.6.20–6.21.
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EPA.94b.tccb.df 1,2,3,4-Tetrachlorobenzene Concentrations from 1994 USEPA Guid-
ance Document

Description

1,2,3,4-Tetrachlorobenzene (TcCB) concentrations (ppb) in soil samples at a reference area and a
cleanup area. There are 47 observations for the reference area and 77 for the cleanup area. There
is only one nondetect in the dataset (it’s in the cleanup area), and it is reported as ND. Here it is
assumed the nondetect is less than the smallest reported value, which is 0.09 ppb. Note that on page
6.23 of USEPA (1994b), a value of 25.5 for the Cleanup Unit was erroneously omitted.

Usage

EPA.94b.tccb.df

Format

A data frame with 124 observations on the following 4 variables.

TcCB.orig a character vector with the original tetrachlorobenzene concentrations (ppb)

TcCB a numeric vector of tetrachlorobenzene with <0.99 coded as 0.99

Censored a logical vector indicating which observations are censored

Area a factor indicating the area (cleanup vs. reference)

Source

USEPA. (1994b). Statistical Methods for Evaluating the Attainment of Cleanup Standards, Volume
3: Reference-Based Standards for Soils and Solid Media. EPA/230-R-94-004. Office of Policy,
Planning, and Evaluation, U.S. Environmental Protection Agency, Washington, D.C. pp.6.22-6.25.

EPA.97.cadmium.111.df Calibration Data for Cadmium at Mass 111

Description

Calibration data for cadmium at mass 111 (ng/L; method 1638 ICPMS) that appeared in Gibbons
et al. (1997b) and were provided to them by the U.S. EPA.

Usage

EPA.97.cadmium.111.df

Format

A data frame with 35 observations on the following 2 variables.

Cadmium Observed concentation of cadmium (ng/L)

Spike “True” concentration of cadmium taken from a standard (ng/L)
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Source

Gibbons, R.D., D.E. Coleman, and R.F. Maddalone. (1997b). Response to Comment on "An
Alternative Minimum Level Definition for Analytical Quantification". Environmental Science and
Technology, 31(12), 3729–3731.

epareto Estimate Parameters of a Pareto Distribution

Description

Estimate the location and shape parameters of a Pareto distribution.

Usage

epareto(x, method = "mle", plot.pos.con = 0.375)

Arguments

x numeric vector of observations.

method character string specifying the method of estimation. Possible values are "mle"
(maximum likelihood; the default), and "lse" (least-squares). See the DE-
TAILS section for more information on these estimation methods.

plot.pos.con numeric scalar between 0 and 1 containing the value of the plotting position
constant used to construct the values of the empirical cdf. The default value is
plot.pos.con=0.375. This argument is used only when method="lse".

Details

If x contains any missing (NA), undefined (NaN) or infinite (Inf, -Inf) values, they will be removed
prior to performing the estimation.

Let x = (x1, x2, . . . , xn) be a vector of n observations from a Pareto distribution with parameters
location=η and shape=θ.

Maximum Likelihood Estimatation (method="mle")
The maximum likelihood estimators (mle’s) of η and θ are given by (Evans et al., 1993; p.122;
Johnson et al., 1994, p.581):

η̂mle = x(1) (1)

θ̂mle = n[

n∑
i=1

log(
xi
η̂mle

)]−1 (2)

where x(1) denotes the first order statistic (i.e., the minimum value).

Least-Squares Estimation (method="lse")
The least-squares estimators (lse’s) of η and θ are derived as follows. LetX denote a Pareto random
variable with parameters location=η and shape=θ. It can be shown that

log[1− F (x)] = θlog(η)− θlog(x) (3)

where F denotes the cumulative distribution function of X . Set

yi = log[1− F̂ (xi)] (4)
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zi = log(xi) (5)

where F̂ (x) denotes the empirical cumulative distribution function evaluated at x. The least-squares
estimates of η and θ are obtained by solving the regression equation

yi = β0 + β1zi (6)

and setting
θ̂lse = −β̂1 (7)

η̂lse = exp(
β̂0

θ̂lse
) (8)

(Johnson et al., 1994, p.580).

Value

a list of class "estimate" containing the estimated parameters and other information. See estimate.object
for details.

Note

The Pareto distribution is named after Vilfredo Pareto (1848-1923), a professor of economics. It is
derived from Pareto’s law, which states that the number of persons N having income ≥ x is given
by:

N = Ax−θ

where θ denotes Pareto’s constant and is the shape parameter for the probability distribution.

The Pareto distribution takes values on the positive real line. All values must be larger than the
“location” parameter η, which is really a threshold parameter. There are three kinds of Pareto
distributions. The one described here is the Pareto distribution of the first kind. Stable Pareto
distributions have 0 < θ < 2. Note that the r’th moment only exists if r < θ.

The Pareto distribution is related to the exponential distribution and logistic distribution as follows.
Let X denote a Pareto random variable with location=η and shape=θ. Then log(X/η) has an
exponential distribution with parameter rate=θ, and−log{[(X/η)θ]−1} has a logistic distribution
with parameters location=0 and scale=1.

The Pareto distribution has a very long right-hand tail. It is often applied in the study of socioeco-
nomic data, including the distribution of income, firm size, population, and stock price fluctuations.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Forbes, C., M. Evans, N. Hastings, and B. Peacock. (2011). Statistical Distributions. Fourth
Edition. John Wiley and Sons, Hoboken, NJ.

Johnson, N. L., S. Kotz, and N. Balakrishnan. (1994). Continuous Univariate Distributions, Volume
1. Second Edition. John Wiley and Sons, New York.

See Also

Pareto.
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Examples

# Generate 30 observations from a Pareto distribution with parameters
# location=1 and shape=1 then estimate the parameters.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(250)
dat <- rpareto(30, location = 1, shape = 1)
epareto(dat)

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Pareto
#
#Estimated Parameter(s): location = 1.009046
# shape = 1.079850
#
#Estimation Method: mle
#
#Data: dat
#
#Sample Size: 30

#----------

# Compare the results of using the least-squares estimators:

epareto(dat, method="lse")$parameters
#location shape
#1.085924 1.144180

#----------

# Clean up
#---------

rm(dat)

epdfPlot Plot Empirical Probability Density Function

Description

Produces an empirical probability density function plot.

Usage

epdfPlot(x, discrete = FALSE, density.arg.list = NULL, plot.it = TRUE,
add = FALSE, epdf.col = "black", epdf.lwd = 3 * par("cex"), epdf.lty = 1,
curve.fill = FALSE, curve.fill.col = "cyan", ...,
type = ifelse(discrete, "h", "l"), main = NULL, xlab = NULL, ylab = NULL,
xlim = NULL, ylim = NULL)
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Arguments

x numeric vector of observations. Missing (NA), undefined (NaN), and infinite (Inf,
-Inf) values are allowed but will be removed.

discrete logical scalar indicating whether the assumed parent distribution of x is discrete
(discrete=TRUE) or continuous (discrete=FALSE; the default).

density.arg.list

list with arguments to the density function. The default value is density.arg.list=NULL.
This argument is ignored if discrete=TRUE.

plot.it logical scalar indicating whether to produce a plot or add to the current plot (see
add) on the current graphics device. The default value is plot.it=TRUE.

add logical scalar indicating whether to add the empirical pdf to the current plot
(add=TRUE) or generate a new plot (add=FALSE; the default). This argument is
ignored if plot.it=FALSE.

epdf.col a numeric scalar or character string determining the color of the empirical pdf
line or points. The default value is epdf.col="black". See the entry for col in
the help file for par for more information.

epdf.lwd a numeric scalar determining the width of the empirical pdf line. The default
value is epdf.lwd=3*par("cex"). See the entry for lwd in the help file for par
for more information.

epdf.lty a numeric scalar determining the line type of the empirical pdf line. The default
value is ecdf.lty=1. See the entry for lty in the help file for par for more
information.

curve.fill a logical scalar indicating whether to fill in the area below the empirical pdf
curve with the color specified by curve.fill.col. The default value is
curve.fill=FALSE.

curve.fill.col a numeric scalar or character string indicating what color to use to fill in the area
below the empirical pdf curve. The default value is curve.fill.col="cyan".
This argument is ignored if curve.fill=FALSE.

type, main, xlab, ylab, xlim, ylim, ...

additional graphical parameters (see lines and par). In particular, the argu-
ment type specifies the kind of line type. By default, the function epdfPlot
plots histogram-like vertical lines (type="h") when discrete=TRUE, and plots
a straight line between points (type="l") when discrete=FALSE. The user may
override these defaults by supplying the graphics parameter type (type="h" for
histogram-like vertical lines, type="l" for linear interpolation, type="p" for
points only, etc.).

Details

When a distribution is discrete and can only take on a finite number of values, the empirical pdf plot
is the same as the standard relative frequency histogram; that is, each bar of the histogram represents
the proportion of the sample equal to that particular number (or category). When a distribution is
continuous, the function epdfPlot calls the R function density to compute the estimated proba-
bility density at a number of evenly spaced points between the minimum and maximum values.

Value

epdfPlot invisibly returns a list with the following components:

x numeric vector of ordered quantiles.
f.x numeric vector of the associated estimated values of the pdf.
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Note

An empirical probability density function (epdf) plot is a graphical tool that can be used in con-
junction with other graphical tools such as histograms and boxplots to assess the characteristics of
a set of data.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Chambers, J.M., W.S. Cleveland, B. Kleiner, and P.A. Tukey. (1983). Graphical Methods for Data
Analysis. Duxbury Press, Boston, MA.

See the REFERENCES section in the help file for density.

See Also

Empirical, pdfPlot, ecdfPlot, cdfPlot, cdfCompare, qqPlot.

Examples

# Using Reference Area TcCB data in EPA.94b.tccb.df,
# create a histogram of the log-transformed observations,
# then superimpose the empirical pdf plot.

dev.new()
log.TcCB <- with(EPA.94b.tccb.df, log(TcCB[Area == "Reference"]))

hist(log.TcCB, freq = FALSE, xlim = c(-2, 1),
col = "cyan", xlab = "log [ TcCB (ppb) ]",
ylab = "Relative Frequency",
main = "Reference Area TcCB with Empirical PDF")

epdfPlot(log.TcCB, add = TRUE)

#==========

# Generate 20 observations from a Poisson distribution with
# parameter lambda = 10, and plot the empirical PDF.

set.seed(875)
x <- rpois(20, lambda = 10)
dev.new()
epdfPlot(x, discrete = TRUE)

#==========

# Clean up
#---------
rm(log.TcCB, x)
graphics.off()
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epois Estimate Parameter of a Poisson Distribution

Description

Estimate the mean of a Poisson distribution, and optionally construct a confidence interval for the
mean.

Usage

epois(x, method = "mle/mme/mvue", ci = FALSE, ci.type = "two-sided",
ci.method = "exact", conf.level = 0.95)

Arguments

x numeric vector of observations.

method character string specifying the method of estimation. Currently the only possible
value is "mle/mme/mvue" (maximum likelihood/method of moments/minimum
variance unbiased; the default). See the DETAILS section for more information.

ci logical scalar indicating whether to compute a confidence interval for the loca-
tion or scale parameter. The default value is FALSE.

ci.type character string indicating what kind of confidence interval to compute. The
possible values are "two-sided" (the default), "lower", and "upper". This
argument is ignored if ci=FALSE.

ci.method character string indicating what method to use to construct the confidence in-
terval for the location or scale parameter. Possible values are "exact" (the
default), "pearson.hartley.approx" (Pearson-Hartley approximation), and
"normal.approx" (normal approximation). See the DETAILS section for more
information. This argument is ignored if ci=FALSE.

conf.level a scalar between 0 and 1 indicating the confidence level of the confidence in-
terval. The default value is conf.level=0.95. This argument is ignored if
ci=FALSE.

Details

If x contains any missing (NA), undefined (NaN) or infinite (Inf, -Inf) values, they will be removed
prior to performing the estimation.

Let x = (x1, x2, . . . , xn) be a vector of n observations from a Poisson distribution with parameter
lambda=λ. It can be shown (e.g., Forbes et al., 2009) that if y is defined as:

y =

n∑
i=1

xi (1)

then y is an observation from a Poisson distribution with parameter lambda=nλ.

Estimation
The maximum likelihood, method of moments, and minimum variance unbiased estimator (mle/mme/mvue)
of λ is given by:

λ̂ = x̄ (2)
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where

x̄ =
1

n

n∑
i=1

xi =
y

n
(3)

Confidence Intervals
There are three possible ways to construct a confidence interval for λ: based on the exact distribu-
tion of the estimator of λ (ci.type="exact"), based on an approximation of Pearson and Hartley
(ci.type="pearson.hartley.approx"), or based on the normal approximation (ci.type="normal.approx").

Exact Confidence Interval (ci.method="exact")
If ci.type="two-sided", an exact (1 − α)100% confidence interval for λ can be constructed as
[LCL,UCL], where the confidence limits are computed such that:

Pr[Y ≥ y‖λ = LCL] =
α

2
(4)

Pr[Y ≤ y‖λ = UCL] =
α

2
(5)

where y is defined in equation (1) and Y denotes a Poisson random variable with parameter lambda=nλ.

If ci.type="lower", α/2 is replaced with α in equation (4) and UCL is set to∞.

If ci.type="upper", α/2 is replaced with α in equation (5) and LCL is set to 0.

Note that an exact upper confidence bound can be computed even when all observations are 0.

Pearson-Hartley Approximation (ci.method="pearson.hartley.approx")
For a two-sided (1 − α)100% confidence interval for λ, the Pearson and Hartley approximation
(Zar, 2010, p.587; Pearson and Hartley, 1970, p.81) is given by:

[
χ2

2nx̄,α/2

2n
,
χ2

2nx̄+2,1−α/2

2n
] (6)

where χ2
ν,p denotes the p’th quantile of the chi-square distribution with ν degrees of freedom. One-

sided confidence intervals are computed in a similar fashion.

Normal Approximation (ci.method="normal.approx") An approximate (1−α)100% confidence
interval for λ can be constructed assuming the distribution of the estimator of λ is approximately
normally distributed. A two-sided confidence interval is constructed as:

[λ̂− z1−α/2σ̂λ̂, λ̂+ z1−α/2σ̂λ̂] (7)

where zp is the p’th quantile of the standard normal distribution, and the quantity

σ̂λ̂ =

√
λ̂/n (8)

denotes the estimated asymptotic standard deviation of the estimator of λ.

One-sided confidence intervals are constructed in a similar manner.

Value

a list of class "estimate" containing the estimated parameters and other information. See estimate.object
for details.
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Note

The Poisson distribution is named after Poisson, who derived this distribution as the limiting distri-
bution of the binomial distribution with parameters size=N and prob=p, where N tends to infinity,
p tends to 0, and Np stays constant.

In this context, the Poisson distribution was used by Bortkiewicz (1898) to model the number of
deaths (per annum) from kicks by horses in Prussian Army Corps. In this case, p, the probability of
death from this cause, was small, but the number of soldiers exposed to this risk, N , was large.

The Poisson distribution has been applied in a variety of fields, including quality control (model-
ing number of defects produced in a process), ecology (number of organisms per unit area), and
queueing theory. Gibbons (1987b) used the Poisson distribution to model the number of detected
compounds per scan of the 32 volatile organic priority pollutants (VOC), and also to model the
distribution of chemical concentration (in ppb).

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Forbes, C., M. Evans, N. Hastings, and B. Peacock. (2011). Statistical Distributions. Fourth
Edition. John Wiley and Sons, Hoboken, NJ.

Gibbons, R.D. (1987b). Statistical Models for the Analysis of Volatile Organic Compounds in
Waste Disposal Sites. Ground Water 25, 572-580.

Gibbons, R.D., D.K. Bhaumik, and S. Aryal. (2009). Statistical Methods for Groundwater Moni-
toring, Second Edition. John Wiley & Sons, Hoboken.

Johnson, N. L., S. Kotz, and A. Kemp. (1992). Univariate Discrete Distributions. Second Edition.
John Wiley and Sons, New York, Chapter 4.

Pearson, E.S., and H.O. Hartley, eds. (1970). Biometrika Tables for Statisticians, Volume 1. Cam-
bridge Universtiy Press, New York, p.81.

Zar, J.H. (2010). Biostatistical Analysis. Fifth Edition. Prentice-Hall, Upper Saddle River, NJ, pp.
585–586.

See Also

Poisson.

Examples

# Generate 20 observations from a Poisson distribution with parameter
# lambda=2, then estimate the parameter and construct a 90% confidence
# interval.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(250)
dat <- rpois(20, lambda = 2)
epois(dat, ci = TRUE, conf.level = 0.9)

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Poisson
#
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#Estimated Parameter(s): lambda = 1.8
#
#Estimation Method: mle/mme/mvue
#
#Data: dat
#
#Sample Size: 20
#
#Confidence Interval for: lambda
#
#Confidence Interval Method: exact
#
#Confidence Interval Type: two-sided
#
#Confidence Level: 90%
#
#Confidence Interval: LCL = 1.336558
# UCL = 2.377037

#----------

# Compare the different ways of constructing confidence intervals for
# lambda using the same data as in the previous example:

epois(dat, ci = TRUE, ci.method = "pearson",
conf.level = 0.9)$interval$limits

# LCL UCL
#1.336558 2.377037

epois(dat, ci = TRUE, ci.method = "normal.approx",
conf.level = 0.9)$interval$limits

# LCL UCL
#1.306544 2.293456

#----------

# Clean up
#---------

rm(dat)

epoisCensored Estimate Mean of a Poisson Distribution Based on Type I Censored
Data

Description

Estimate the mean of a Poisson distribution given a sample of data that has been subjected to Type
I censoring, and optionally construct a confidence interval for the mean.

Usage

epoisCensored(x, censored, method = "mle", censoring.side = "left",
ci = FALSE, ci.method = "profile.likelihood", ci.type = "two-sided",
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conf.level = 0.95, n.bootstraps = 1000, use.acc.con = FALSE,
pivot.statistic = "z", ci.sample.size = sum(!censored))

Arguments

x numeric vector of observations. Missing (NA), undefined (NaN), and infinite (Inf,
-Inf) values are allowed but will be removed.

censored numeric or logical vector indicating which values of x are censored. This must
be the same length as x. If the mode of censored is "logical", TRUE values
correspond to elements of x that are censored, and FALSE values correspond to
elements of x that are not censored. If the mode of censored is "numeric",
it must contain only 1’s and 0’s; 1 corresponds to TRUE and 0 corresponds to
FALSE. Missing (NA) values are allowed but will be removed.

method character string specifying the method of estimation. The possible values are:
"mle" (maximum likelihood; the default), and "half.cen.level" (moment es-
timation based on setting the censored observations to half the censoring level).

censoring.side character string indicating on which side the censoring occurs. The possible
values are "left" (the default) and "right".

ci logical scalar indicating whether to compute a confidence interval for the mean
or variance. The default value is ci=FALSE.

ci.method character string indicating what method to use to construct the confidence in-
terval for the mean. The possible values are "profile.likelihood" (pro-
file likelihood; the default), "normal.approx" (normal approximation), and
"bootstrap" (based on bootstrapping). See the DETAILS section for more
information. This argument is ignored if ci=FALSE.

ci.type character string indicating what kind of confidence interval to compute. The
possible values are "two-sided" (the default), "lower", and "upper". This
argument is ignored if ci=FALSE.

conf.level a scalar between 0 and 1 indicating the confidence level of the confidence in-
terval. The default value is conf.level=0.95. This argument is ignored if
ci=FALSE.

n.bootstraps numeric scalar indicating how many bootstraps to use to construct the confi-
dence interval for the mean when ci.type="bootstrap". This argument is
ignored if ci=FALSE and/or ci.method does not equal "bootstrap".

use.acc.con logical scalar indicating whether to use the acceleration constant when com-
puting the bias-corrected bootstrap confidence interval (see the DETAILS sec-
tion). The default value is FALSE. This argument is ignored if ci=FALSE and/or
ci.method does not equal "bootstrap".

pivot.statistic

character string indicating which pivot statistic to use in the construction of the
confidence interval for the mean when ci.method="normal.approx" (see the
DETAILS section). The possible values are pivot.statistic="z" (the de-
fault) and pivot.statistic="t". When pivot.statistic="t" you may sup-
ply the argument ci.sample size (see below). The argument pivot.statistic
is ignored if ci=FALSE.

ci.sample.size numeric scalar indicating what sample size to assume to construct the confidence
interval for the mean if pivot.statistic="t" and ci.method="normal.approx".
The default value is the number of uncensored observations.
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Details

If x or censored contain any missing (NA), undefined (NaN) or infinite (Inf, -Inf) values, they will
be removed prior to performing the estimation.

Let x denote a vector of N observations from a Poisson distribution with mean lambda=λ.

Assume n (0 < n < N ) of these observations are known and c (c = N − n) of these observations
are all censored below (left-censored) or all censored above (right-censored) at k fixed censoring
levels

T1, T2, . . . , Tk; k ≥ 1 (1)

For the case when k ≥ 2, the data are said to be Type I multiply censored. For the case when k = 1,
set T = T1. If the data are left-censored and all n known observations are greater than or equal to
T , or if the data are right-censored and all n known observations are less than or equal to T , then
the data are said to be Type I singly censored (Nelson, 1982, p.7), otherwise they are considered to
be Type I multiply censored.

Let cj denote the number of observations censored below or above censoring level Tj for j =
1, 2, . . . , k, so that

k∑
i=1

cj = c (2)

Let x(1), x(2), . . . , x(N) denote the “ordered” observations, where now “observation” means either
the actual observation (for uncensored observations) or the censoring level (for censored observa-
tions). For right-censored data, if a censored observation has the same value as an uncensored one,
the uncensored observation should be placed first. For left-censored data, if a censored observation
has the same value as an uncensored one, the censored observation should be placed first.

Note that in this case the quantity x(i) does not necessarily represent the i’th “largest” observation
from the (unknown) complete sample.

Finally, let Ω (omega) denote the set of n subscripts in the “ordered” sample that correspond to
uncensored observations.

Estimation

Maximum Likelihood Estimation (method="mle")
For Type I left censored data, the likelihood function is given by:

L(λ|x) =

(
N

c1c2 . . . ckn

) k∏
j=1

[F (Tj)]
cj
∏
i∈Ω

f [x(i)] (3)

where f and F denote the probability density function (pdf) and cumulative distribution function
(cdf) of the population (Cohen, 1963; Cohen, 1991, pp.6, 50). That is,

f(t) =
e−λλt

t!
, x = 0, 1, 2, . . . (4)

F (t) =

t∑
i=0

f(i) =

t∑
i=0

e−λλi

i!
(5)

(Johnson et al., 1992, p.151). For left singly censored data, equation (3) simplifies to:

L(λ|x) =

(
N

c

)
[F (T )]c

n∏
i=c+1

f [x(i)] (6)
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Similarly, for Type I right censored data, the likelihood function is given by:

L(λ|x) =

(
N

c1c2 . . . ckn

) k∏
j=1

[1− F (Tj)]
cj
∏
i∈Ω

f [x(i)] (7)

and for right singly censored data this simplifies to:

L(λ|x) =

(
N

c

)
[1− F (T )]c

n∏
i=1

f [x(i)] (8)

The maximum likelihood estimators are computed by maximizing the likelihood function. For
right-censored data, taking the derivative of the log-likelihood function with respect to λ and setting
this to 0 produces the following equation:

x̄ = λ{1−
K∑
j=1

cj
n

[
f(Tj)

1− F (Tj)
]} (9)

where
x̄ =

1

n

∑
i ∈ Ωxi (10)

Note that the quantity defined in equation (10) is simply the mean of the uncensored observations.

For left-censored data, taking the derivative of the log-likelihood function with respect to λ and
setting this to 0 produces the following equation:

x̄ = λ{1 +

K∑
j=1

cj
n

[
f(Tj − 1)

F (Tj − 1)
]} (11)

The function epoisCensored computes the maximum likelihood estimator of λ by solving Equa-
tion (9) (right-censored data) or Equation (11) (left-censored data); it uses the sample mean of the
uncensored observations as the initial value.

Setting Censored Observations to Half the Censoring Level (method="half.cen.level")
This method is applicable only to left censored data. This method involves simply replacing all the
censored observations with half their detection limit, and then computing the mean and standard
deviation with the usual formulas (see epois).

This method is included only to allow comparison of this method to other methods. Setting left-
censored observations to half the censoring level is not recommended.

Confidence Intervals
This section explains how confidence intervals for the mean λ are computed.

Likelihood Profile (ci.method="profile.likelihood")
This method was proposed by Cox (1970, p.88), and Venzon and Moolgavkar (1988) introduced an
efficient method of computation. This method is also discussed by Stryhn and Christensen (2003)
and Royston (2007). The idea behind this method is to invert the likelihood-ratio test to obtain a
confidence interval for the mean λ. Equation (3) above shows the form of the likelihood function
L(λ|x) for multiply left-censored data, and Equation (7) shows the function for multiply right-
censored data.
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Following Stryhn and Christensen (2003), denote the maximum likelihood estimate of the mean by
λ∗. The likelihood ratio test statistic (G2) of the hypothesisH0 : λ = λ0 (where λ0 is a fixed value)
equals the drop in 2log(L) between the “full” model and the reduced model with λ fixed at µ0, i.e.,

G2 = 2{log[L(λ∗)]− log[L(λ0)]} (11)

. Under the null hypothesis, the test statistic G2 follows a chi-squared distribution with 1 degree of
freedom.

A two-sided (1− α)100% confidence interval for the mean λ consists of all values of λ0 for which
the test is not significant at level alpha:

λ0 : G2 ≤ χ2
1,1−α (12)

where χ2
ν,p denotes the p’th quantile of the chi-squared distribution with ν degrees of freedom.

Normal Approximation (ci.method="normal.approx")
This method constructs approximate (1− α)100% confidence intervals for λ based on the assump-
tion that the estimator of λ is approximately normally distributed. That is, a two-sided (1−α)100%
confidence interval for λ is constructed as:

[λ̂− t1−α/2,m−1σ̂λ̂, λ̂+ t1−α/2,m−1σ̂λ̂] (13)

where λ̂ denotes the estimate of λ, σ̂λ̂ denotes the estimated asymptotic standard deviation of the
estimator of λ, m denotes the assumed sample size for the confidence interval, and tp,ν denotes the
p’th quantile of Student’s t-distribuiton with ν degrees of freedom. One-sided confidence intervals
are computed in a similar fashion.

The argument ci.sample.size determines the value of m and by default is equal to the number of
uncensored observations. This is simply an ad-hoc method of constructing confidence intervals and
is not based on any published theoretical results.

When pivot.statistic="z", the p’th quantile from the standard normal distribution is used in
place of the p’th quantile from Student’s t-distribution.

When λ is estimated with the maximum likelihood estimator (method="mle"), the variance of λ̂
is estimated based on the inverse of the Fisher Information matrix. When λ is estimated using the
half-censoring-level method (method="half.cen.level"), the variance of λ̂ is estimated as:

σ̂2
λ̂

=
λ̂

m
(14)

where m denotes the assumed sample size (see above).

Bootstrap and Bias-Corrected Bootstrap Approximation (ci.method="bootstrap")
The bootstrap is a nonparametric method of estimating the distribution (and associated distribution
parameters and quantiles) of a sample statistic, regardless of the distribution of the population from
which the sample was drawn. The bootstrap was introduced by Efron (1979) and a general reference
is Efron and Tibshirani (1993).

In the context of deriving an approximate (1−α)100% confidence interval for the population mean
λ, the bootstrap can be broken down into the following steps:

1. Create a bootstrap sample by taking a random sample of size N from the observations in x,
where sampling is done with replacement. Note that because sampling is done with replace-
ment, the same element of x can appear more than once in the bootstrap sample. Thus, the
bootstrap sample will usually not look exactly like the original sample (e.g., the number of
censored observations in the bootstrap sample will often differ from the number of censored
observations in the original sample).
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2. Estimate λ based on the bootstrap sample created in Step 1, using the same method that was
used to estimate λ using the original observations in x. Because the bootstrap sample usually
does not match the original sample, the estimate of λ based on the bootstrap sample will
usually differ from the original estimate based on x.

3. Repeat Steps 1 and 2B times, whereB is some large number. For the function epoisCensored,
the number of bootstraps B is determined by the argument n.bootstraps (see the section
ARGUMENTS above). The default value of n.bootstraps is 1000.

4. Use the B estimated values of λ to compute the empirical cumulative distribution function of
this estimator of λ (see ecdfPlot), and then create a confidence interval for λ based on this
estimated cdf.

The percentile interval (Efron and Tibshirani, 1993, p.170) is computed as:

[Ĝ−1(
α

2
), Ĝ−1(

1− α
2

)] (15)

where Ĝ(t) denotes the empirical cdf evaluated at t and thus Ĝ−1(p) denotes the p’th empirical
quantile, that is, the p’th quantile associated with the empirical cdf. The function epoisCensored
calls the R function quantile to compute the empirical quantiles used in Equation (15).

The percentile method bootstrap confidence interval is only first-order accurate (Efron and Tibshi-
rani, 1993, pp.187-188), meaning that the probability that the confidence interval will contain the
true value of λ can be off by k/

√
N , where kis some constant. Efron and Tibshirani (1993, pp.184-

188) proposed a bias-corrected and accelerated interval that is second-order accurate, meaning that
the probability that the confidence interval will contain the true value of λ may be off by k/N
instead of k/

√
N . The bias-corrected and accelerated confidence interval is computed as:

[Ĝ−1(α1), Ĝ−1(α2)] (16)

where

α1 = Φ[ẑ0 +
ẑ0 + zα/2

1− â(z0 + zα/2)
] (17)

α2 = Φ[ẑ0 +
ẑ0 + z1−α/2

1− â(z0 + z1−α/2)
] (18)

ẑ0 = Φ−1[Ĝ(λ̂)] (19)

â =

∑N
i=1(λ̂(·) − λ̂(i))

3

6[
∑N
i=1(λ̂(·) − λ̂(i))2]3/2

(20)

where the quantity λ̂(i) denotes the estimate of λ using all the values in x except the i’th one, and

λ̂(·) =
1

N

N∑
i=1

ˆλ(i) (21)

The constant ẑ0 incorporates the bias correction, and the constant â is the acceleration constant. The
term “acceleration” refers to the rate of change of the standard error of the estimate of λwith respect
to the true value of λ (Efron and Tibshirani, 1993, p.186). For a normal (Gaussian) distribution, the
standard error of the estimate of λ does not depend on the value of λ, hence the acceleration constant
is not really necessary. The argument use.acc.con (see the section ARGUMENTS above) deter-
mines whether the acceleration constant â is computed as in equation (20) (use.acc.con=TRUE) or
is set to 0 (use.acc.con=FALSE). The default value is use.acc.con=FALSE.

When ci.method="bootstrap", the function epoisCensored computes both the percentile method
and bias-corrected bootstrap confidence intervals.
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Value

a list of class "estimateCensored" containing the estimated parameters and other information.
See estimateCensored.object for details.

Note

A sample of data contains censored observations if some of the observations are reported only as
being below or above some censoring level. In environmental data analysis, Type I left-censored
data sets are common, with values being reported as “less than the detection limit” (e.g., Helsel,
2012). Data sets with only one censoring level are called singly censored; data sets with multiple
censoring levels are called multiply or progressively censored.

Statistical methods for dealing with censored data sets have a long history in the field of survival
analysis and life testing. More recently, researchers in the environmental field have proposed al-
ternative methods of computing estimates and confidence intervals in addition to the classical ones
such as maximum likelihood estimation. Helsel (2012, Chapter 6) gives an excellent review of past
studies of the properties of various estimators for parameters of a normal or lognormal distribution
based on censored environmental data.

In practice, it is better to use a confidence interval for the mean or a joint confidence region for the
mean and standard deviation (or coefficient of variation), rather than rely on a single point-estimate
of the mean. Few studies have been done to evaluate the performance of methods for construct-
ing confidence intervals for the mean or joint confidence regions for the mean and coefficient of
variation of a Poisson distribution when data are subjected to single or multiple censoring.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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Stryhn, H., and J. Christensen. (2003). Confidence Intervals by the Profile Likelihood Method, with
Applications in Veterinary Epidemiology. Contributed paper at ISVEE X (November 2003, Chile).
http://people.upei.ca/hstryhn/stryhn208.pdf.
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Confidence Intervals. Journal of the Royal Statistical Society, Series C (Applied Statistics) 37(1),
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See Also

Poisson, epois, estimateCensored.object.

Examples

# Generate 20 observations from a Poisson distribution with
# parameter lambda=10, and censor the values less than 10.
# Then generate 20 more observations from the same distribution
# and censor the values less than 20. Then estimate the mean
# using the maximum likelihood method.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(300)
dat.1 <- rpois(20, lambda=10)
censored.1 <- dat.1 < 10
dat.1[censored.1] <- 10

dat.2 <- rpois(20, lambda=10)
censored.2 <- dat.2 < 20
dat.2[censored.2] <- 20

dat <- c(dat.1, dat.2)
censored <- c(censored.1, censored.2)

epoisCensored(dat, censored, ci = TRUE)

#Results of Distribution Parameter Estimation
#Based on Type I Censored Data
#--------------------------------------------
#
#Assumed Distribution: Poisson
#
#Censoring Side: left
#
#Censoring Level(s): 10 20
#
#Estimated Parameter(s): lambda = 11.05402
#
#Estimation Method: MLE
#
#Data: dat
#
#Censoring Variable: censored
#
#Sample Size: 40
#
#Percent Censored: 65%
#

http://people.upei.ca/hstryhn/stryhn208.pdf
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#Confidence Interval for: lambda
#
#Confidence Interval Method: Profile Likelihood
#
#Confidence Interval Type: two-sided
#
#Confidence Level: 95%
#
#Confidence Interval: LCL = 9.842894
# UCL = 12.846484

#----------

# Clean up
#---------
rm(dat.1, censored.1, dat.2, censored.2, dat, censored)

eqbeta Estimate Quantiles of a Beta Distribution

Description

Estimate quantiles of a beta distribution.

Usage

eqbeta(x, p = 0.5, method = "mle", digits = 0)

Arguments

x a numeric vector of observations, or an object resulting from a call to an esti-
mating function that assumes a beta distribution (e.g., ebeta). If x is a numeric
vector, missing (NA), undefined (NaN), and infinite (Inf, -Inf) values are allowed
but will be removed.

p numeric vector of probabilities for which quantiles will be estimated. All values
of p must be between 0 and 1. The default value is p=0.5.

method character string specifying the method to use to estimate the shape and scale
parameters of the distribution. The possible values are "mle" (maximum like-
lihood; the default), "mme" (method of moments), and "mmue" (method of mo-
ments based on the unbiased estimator of variance). See the DETAILS section
of the help file for ebeta for more information.

digits an integer indicating the number of decimal places to round to when printing out
the value of 100*p. The default value is digits=0.

Details

The function eqbeta returns estimated quantiles as well as estimates of the shape1 and shape2
parameters.

Quantiles are estimated by 1) estimating the shape1 and shape2 parameters by calling ebeta, and
then 2) calling the function qbeta and using the estimated values for shape1 and shape2.



350 eqbeta

Value

If x is a numeric vector, eqbeta returns a list of class "estimate" containing the estimated quan-
tile(s) and other information. See estimate.object for details.

If x is the result of calling an estimation function, eqbeta returns a list whose class is the same
as x. The list contains the same components as x, as well as components called quantiles and
quantile.method.

Note

The beta distribution takes real values between 0 and 1. Special cases of the beta are the Uni-
form[0,1] when shape1=1 and shape2=1, and the arcsin distribution when shape1=0.5 and shape2=0.5.
The arcsin distribution appears in the theory of random walks. The beta distribution is used in
Bayesian analyses as a conjugate to the binomial distribution.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Forbes, C., M. Evans, N. Hastings, and B. Peacock. (2011). Statistical Distributions. Fourth
Edition. John Wiley and Sons, Hoboken, NJ.

Johnson, N. L., S. Kotz, and N. Balakrishnan. (1995). Continuous Univariate Distributions, Volume
2. Second Edition. John Wiley and Sons, New York.

See Also

ebeta, Beta, estimate.object.

Examples

# Generate 20 observations from a beta distribution with parameters
# shape1=2 and shape2=4, then estimate the parameters via
# maximum likelihood and estimate the 90th percentile.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(250)
dat <- rbeta(20, shape1 = 2, shape2 = 4)
eqbeta(dat, p = 0.9)

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Beta
#
#Estimated Parameter(s): shape1 = 5.392221
# shape2 = 11.823233
#
#Estimation Method: mle
#
#Estimated Quantile(s): 90th %ile = 0.4592796
#
#Quantile Estimation Method: Quantile(s) Based on
# mle Estimators
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#
#Data: dat
#
#Sample Size: 20

#----------
# Clean up

rm(dat)

eqbinom Estimate Quantiles of a Binomial Distribution

Description

Estimate quantiles of a binomial distribution.

Usage

eqbinom(x, size = NULL, p = 0.5, method = "mle/mme/mvue", digits = 0)

Arguments

x numeric or logical vector of observations, or an object resulting from a call to
an estimating function that assumes a binomial distribution (e.g., ebinom). If x
is a vector of observations, then when size is not supplied, x must be a numeric
vector of 0s (“failures”) and 1s (“successes”), or else a logical vector of FALSE
values (“failures”) and TRUE values (“successes”). When size is supplied, x
must be a non-negative integer containing the number of “successes” out of the
number of trials indicated by size. Missing (NA), undefined (NaN), and infinite
(Inf, -Inf) values are allowed but will be removed.

size positive integer indicating the of number of trials; size must be at least as large
as the value of x.

p numeric vector of probabilities for which quantiles will be estimated. All values
of p must be between 0 and 1. The default value is p=0.5.

method character string specifying the method of estimation. The only possible value
is "mle/mme/mvue" (maximum likelihood, method of moments, and minimum
variance unbiased). See the DETAILS section of the help file for ebinom for
more information.

digits an integer indicating the number of decimal places to round to when printing out
the value of 100*p. The default value is digits=0.

Details

The function eqbinom returns estimated quantiles as well as estimates of the prob parameter.

Quantiles are estimated by 1) estimating the prob parameter by calling ebinom, and then 2) calling
the function qbinom and using the estimated value for prob.
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Value

If x is a numeric vector, eqbinom returns a list of class "estimate" containing the estimated quan-
tile(s) and other information. See estimate.object for details.

If x is the result of calling an estimation function, eqbinom returns a list whose class is the same
as x. The list contains the same components as x, as well as components called quantiles and
quantile.method.

Note

The binomial distribution is used to model processes with binary (Yes-No, Success-Failure, Heads-
Tails, etc.) outcomes. It is assumed that the outcome of any one trial is independent of any other
trial, and that the probability of “success”, p, is the same on each trial. A binomial discrete random
variable X is the number of “successes” in n independent trials. A special case of the binomial
distribution occurs when n = 1, in which case X is also called a Bernoulli random variable.

In the context of environmental statistics, the binomial distribution is sometimes used to model the
proportion of times a chemical concentration exceeds a set standard in a given period of time (e.g.,
Gilbert, 1987, p.143). The binomial distribution is also used to compute an upper bound on the
overall Type I error rate for deciding whether a facility or location is in compliance with some set
standard. Assume the null hypothesis is that the facility is in compliance. If a test of hypothesis is
conducted periodically over time to test compliance and/or several tests are performed during each
time period, and the facility or location is always in compliance, and each single test has a Type I
error rate of α, and the result of each test is independent of the result of any other test (usually not
a reasonable assumption), then the number of times the facility is declared out of compliance when
in fact it is in compliance is a binomial random variable with probability of “success” p = α being
the probability of being declared out of compliance (see USEPA, 2009).
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See Also

ebinom, Binomial, estimate.object.

Examples

# Generate 20 observations from a binomial distribution with
# parameters size=1 and prob=0.2, then estimate the prob
# parameter and the 90th percentile.
# (Note: the call to set.seed simply allows you to reproduce this example.

set.seed(251)
dat <- rbinom(20, size = 1, prob = 0.2)
eqbinom(dat, p = 0.9)

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Binomial
#
#Estimated Parameter(s): size = 20.0
# prob = 0.1
#
#Estimation Method: mle/mme/mvue for prob
#
#Estimated Quantile(s): 90th %ile = 4
#
#Quantile Estimation Method: Quantile(s) Based on
# mle/mme/mvue for prob Estimators
#
#Data: dat
#
#Sample Size: 20
#
#
#

#----------
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# Clean up

rm(dat)

eqevd Estimate Quantiles of an Extreme Value (Gumbel) Distribution

Description

Estimate quantiles of an extreme value distribution.

Usage

eqevd(x, p = 0.5, method = "mle", pwme.method = "unbiased",
plot.pos.cons = c(a = 0.35, b = 0), digits = 0)

Arguments

x a numeric vector of observations, or an object resulting from a call to an esti-
mating function that assumes an extreme value distribution (e.g., eevd). If x is
a numeric vector, missing (NA), undefined (NaN), and infinite (Inf, -Inf) values
are allowed but will be removed.

p numeric vector of probabilities for which quantiles will be estimated. All values
of p must be between 0 and 1. The default value is p=0.5.

method character string specifying the method to use to estimate the location and scale
parameters. Possible values are "mle" (maximum likelihood; the default), "mme"
(methods of moments), "mmue" (method of moments based on the unbiased es-
timator of variance), and "pwme" (probability-weighted moments). See the DE-
TAILS section of the help file for eevd for more information on these estimation
methods.

pwme.method character string specifying what method to use to compute the probability-weighted
moments when method="pwme". The possible values are "ubiased" (method
based on the U-statistic; the default), or "plotting.position" (method based
on the plotting position formula). See the DETAILS section of the help file for
eevd for more information. This argument is ignored if method is not equal to
"pwme".

plot.pos.cons numeric vector of length 2 specifying the constants used in the formula for the
plotting positions when method="pwme" and pwme.method="plotting.position".
The default value is plot.pos.cons=c(a=0.35, b=0). If this vector has a
names attribute with the value c("a","b") or c("b","a"), then the elements
will be matched by name in the formula for computing the plotting positions.
Otherwise, the first element is mapped to the name "a" and the second element
to the name "b". See the DETAILS section of the help file for eevd for more
information. This argument is ignored if method is not equal to "pwme" or if
pwme.method="ubiased".

digits an integer indicating the number of decimal places to round to when printing out
the value of 100*p. The default value is digits=0.
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Details

The function eqevd returns estimated quantiles as well as estimates of the location and scale pa-
rameters.

Quantiles are estimated by 1) estimating the location and scale parameters by calling eevd, and then
2) calling the function qevd and using the estimated values for location and scale.

Value

If x is a numeric vector, eqevd returns a list of class "estimate" containing the estimated quan-
tile(s) and other information. See estimate.object for details.

If x is the result of calling an estimation function, eqevd returns a list whose class is the same
as x. The list contains the same components as x, as well as components called quantiles and
quantile.method.

Note

There are three families of extreme value distributions. The one described here is the Type I, also
called the Gumbel extreme value distribution or simply Gumbel distribution. The name “extreme
value” comes from the fact that this distribution is the limiting distribution (as n approaches infinity)
of the greatest value among n independent random variables each having the same continuous
distribution.

The Gumbel extreme value distribution is related to the exponential distribution as follows. Let Y
be an exponential random variable with parameter rate=λ. Then X = η − log(Y ) has an extreme
value distribution with parameters location=η and scale=1/λ.

The distribution described above and assumed by eevd is the largest extreme value distribution.
The smallest extreme value distribution is the limiting distribution (as n approaches infinity) of the
smallest value among n independent random variables each having the same continuous distribu-
tion. If X has a largest extreme value distribution with parameters location=η and scale=θ, then
Y = −X has a smallest extreme value distribution with parameters location=−η and scale=θ.
The smallest extreme value distribution is related to the Weibull distribution as follows. Let Y be a
Weibull random variable with parameters shape=β and scale=α. ThenX = log(Y ) has a smallest
extreme value distribution with parameters location=log(α) and scale=1/β.

The extreme value distribution has been used extensively to model the distribution of streamflow,
flooding, rainfall, temperature, wind speed, and other meteorological variables, as well as material
strength and life data.

Author(s)
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See Also

eevd, Extreme Value Distribution, estimate.object.

Examples

# Generate 20 observations from an extreme value distribution with
# parameters location=2 and scale=1, then estimate the parameters
# and estimate the 90th percentile.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(250)
dat <- revd(20, location = 2)
eqevd(dat, p = 0.9)

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Extreme Value
#
#Estimated Parameter(s): location = 1.9684093
# scale = 0.7481955
#
#Estimation Method: mle
#
#Estimated Quantile(s): 90th %ile = 3.652124
#
#Quantile Estimation Method: Quantile(s) Based on
# mle Estimators
#
#Data: dat
#
#Sample Size: 20

#----------

# Clean up
#---------
rm(dat)
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eqexp Estimate Quantiles of an Exponential Distribution

Description

Estimate quantiles of an exponential distribution.

Usage

eqexp(x, p = 0.5, method = "mle/mme", digits = 0)

Arguments

x a numeric vector of observations, or an object resulting from a call to an esti-
mating function that assumes an exponential distribution (e.g., eexp). If x is a
numeric vector, missing (NA), undefined (NaN), and infinite (Inf, -Inf) values
are allowed but will be removed.

p numeric vector of probabilities for which quantiles will be estimated. All values
of p must be between 0 and 1. The default value is p=0.5.

method character string specifying the method to use to estimate the rate parameter.
Currently the only possible value is "mle/mme" (maximum likelihood/method
of moments; the default). See the DETAILS section of the help file for eexp for
more information.

digits an integer indicating the number of decimal places to round to when printing out
the value of 100*p. The default value is digits=0.

Details

The function eqexp returns estimated quantiles as well as the estimate of the rate parameter.

Quantiles are estimated by 1) estimating the rate parameter by calling eexp, and then 2) calling the
function qexp and using the estimated value for rate.

Value

If x is a numeric vector, eqexp returns a list of class "estimate" containing the estimated quan-
tile(s) and other information. See estimate.object for details.

If x is the result of calling an estimation function, eqexp returns a list whose class is the same
as x. The list contains the same components as x, as well as components called quantiles and
quantile.method.

Note

The exponential distribution is a special case of the gamma distribution, and takes on positive real
values. A major use of the exponential distribution is in life testing where it is used to model the
lifetime of a product, part, person, etc.

The exponential distribution is the only continuous distribution with a “lack of memory” property.
That is, if the lifetime of a part follows the exponential distribution, then the distribution of the time
until failure is the same as the distribution of the time until failure given that the part has survived
to time t.

The exponential distribution is related to the double exponential (also called Laplace) distribution,
and to the extreme value distribution.
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See Also

eexp, Exponential, estimate.object.

Examples

# Generate 20 observations from an exponential distribution with parameter
# rate=2, then estimate the parameter and estimate the 90th percentile.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(250)
dat <- rexp(20, rate = 2)
eqexp(dat, p = 0.9)

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Exponential
#
#Estimated Parameter(s): rate = 2.260587
#
#Estimation Method: mle/mme
#
#Estimated Quantile(s): 90th %ile = 1.018578
#
#Quantile Estimation Method: Quantile(s) Based on
# mle/mme Estimators
#
#Data: dat
#
#Sample Size: 20
#

#----------

# Clean up
#---------
rm(dat)
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eqgamma Estimate Quantiles of a Gamma Distribution

Description

Estimate quantiles of a gamma distribution, and optionally construct a confidence interval for a
quantile.

Usage

eqgamma(x, p = 0.5, method = "mle", ci = FALSE,
ci.type = "two-sided", conf.level = 0.95,
normal.approx.transform = "kulkarni.powar", digits = 0)

eqgammaAlt(x, p = 0.5, method = "mle", ci = FALSE,
ci.type = "two-sided", conf.level = 0.95,
normal.approx.transform = "kulkarni.powar", digits = 0)

Arguments

x a numeric vector of observations, or an object resulting from a call to an estimat-
ing function that assumes a gamma distribution (e.g., egamma or egammaAlt). If
ci=TRUE then x must be a numeric vector of observations. If x is a numeric vec-
tor, missing (NA), undefined (NaN), and infinite (Inf, -Inf) values are allowed
but will be removed.

p numeric vector of probabilities for which quantiles will be estimated. All values
of p must be between 0 and 1. When ci=TRUE, p must be a scalar. The default
value is p=0.5.

method character string specifying the method to use to estimate the shape and scale
parameters of the distribution. The possible values are "mle" (maximum likeli-
hood; the default), "bcmle" (bias-corrected mle), "mme" (method of moments),
and "mmue" (method of moments based on the unbiased estimator of variance).
See the DETAILS section of the help file for egamma for more information.

ci logical scalar indicating whether to compute a confidence interval for the quan-
tile. The default value is ci=FALSE.

ci.type character string indicating what kind of confidence interval for the quantile to
compute. The possible values are "two-sided" (the default), "lower", and
"upper". This argument is ignored if ci=FALSE.

conf.level a scalar between 0 and 1 indicating the confidence level of the confidence in-
terval. The default value is conf.level=0.95. This argument is ignored if
ci=FALSE.

normal.approx.transform

character string indicating which power transformation to use. Possible values
are "kulkarni.powar" (the default), "cube.root", and
"fourth.root". See the DETAILS section for more informaiton. This argu-
ment is ignored if ci=FALSE.

digits an integer indicating the number of decimal places to round to when printing out
the value of 100*p. The default value is digits=0.
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Details

The function eqgamma returns estimated quantiles as well as estimates of the shape and scale pa-
rameters. The function eqgammaAlt returns estimated quantiles as well as estimates of the mean
and coefficient of variation.

Quantiles are estimated by 1) estimating the shape and scale parameters by calling egamma, and
then 2) calling the function qgamma and using the estimated values for shape and scale.

The confidence interval for a quantile is computed by:

1. using a power transformation on the original data to induce approximate normality,

2. using eqnorm to compute the confidence interval, and then

3. back-transforming the interval to create a confidence interval on the original scale.

This is similar to what is done to create tolerance intervals for a gamma distribuiton (Krishnamoor-
thy et al., 2008), and there is a one-to-one relationship between confidence intervals for a quan-
tile and tolerance intervals (see the DETAILS section of the help file for eqnorm). The value
normal.approx.transform="cube.root" uses the cube root transformation suggested by Wil-
son and Hilferty (1931) and used by Krishnamoorthy et al. (2008) and Singh et al. (2010b),
and the value normal.approx.transform="fourth.root" uses the fourth root transformation
suggested by Hawkins and Wixley (1986) and used by Singh et al. (2010b). The default value
normal.approx.transform="kulkarni.powar" uses the “Optimum Power Normal Approxima-
tion Method” of Kulkarni and Powar (2010). The “optimum” power r is determined by:

r = −0.0705− 0.178 shape+ 0.475
√
shape if shape ≤ 1.5

r = 0.246 if shape > 1.5

where shape denotes the estimate of the shape parameter. Although Kulkarni and Powar (2010)
use the maximum likelihood estimate of shape to determine the power r, for the functions eqgamma
and eqgammaAlt the power r is based on whatever estimate of shape is used
(e.g., method="mle", method="bcmle", etc.).

Value

If x is a numeric vector, eqgamma and eqgammaAlt return a list of class "estimate" containing the
estimated quantile(s) and other information. See estimate.object for details.

If x is the result of calling an estimation function, eqgamma and eqgammaAlt return a list whose
class is the same as x. The list contains the same components as x, as well as components called
quantiles and quantile.method. In addition, if ci=TRUE, the returned list contains a component
called interval containing the confidence interval information. If x already has a component called
interval, this component is replaced with the confidence interval information.

Note

The gamma distribution takes values on the positive real line. Special cases of the gamma are the
exponential distribution and the chi-square distributions. Applications of the gamma include life
testing, statistical ecology, queuing theory, inventory control, and precipitation processes. A gamma
distribution starts to resemble a normal distribution as the shape parameter a tends to infinity.

Some EPA guidance documents (e.g., Singh et al., 2002; Singh et al., 2010a,b) strongly recom-
mend against using a lognormal model for environmental data and recommend trying a gamma
distribuiton instead.
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Percentiles are sometimes used in environmental standards and regulations. For example, Berthouex
and Brown (2002, p.71) note that England has water quality limits based on the 90th and 95th
percentiles of monitoring data not exceeding specified levels. They also note that the U.S. EPA
has specifications for air quality monitoring, aquatic standards on toxic chemicals, and maximum
daily limits for industrial effluents that are all based on percentiles. Given the importance of these
quantities, it is essential to characterize the amount of uncertainty associated with the estimates of
these quantities. This is done with confidence intervals.
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See Also

egamma, GammaDist, estimate.object, eqnorm, tolIntGamma.

Examples

# Generate 20 observations from a gamma distribution with parameters
# shape=3 and scale=2, then estimate the 90th percentile and create
# a one-sided upper 95% confidence interval for that percentile.
# (Note: the call to set.seed simply allows you to reproduce this
# example.)

set.seed(250)
dat <- rgamma(20, shape = 3, scale = 2)
eqgamma(dat, p = 0.9, ci = TRUE, ci.type = "upper")

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Gamma
#
#Estimated Parameter(s): shape = 2.203862
# scale = 2.174928
#
#Estimation Method: mle
#
#Estimated Quantile(s): 90th %ile = 9.113446
#
#Quantile Estimation Method: Quantile(s) Based on
# mle Estimators
#
#Data: dat
#
#Sample Size: 20
#
#Confidence Interval for: 90th %ile
#
#Confidence Interval Method: Exact using
# Kulkarni & Powar (2010)
# transformation to Normality
# based on mle of shape
#
#Confidence Interval Type: upper
#
#Confidence Level: 95%
#
#Confidence Interval: LCL = 0.00000
# UCL = 13.79733

#----------
# Compare these results with the true 90th percentile:

qgamma(p = 0.9, shape = 3, scale = 2)
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#[1] 10.64464

#----------

# Using the same data as in the previous example, use egammaAlt
# to estimate the mean and cv based on the bias-corrected
# estimate of shape, and use the cube-root transformation to
# normality.

eqgammaAlt(dat, p = 0.9, method = "bcmle", ci = TRUE,
ci.type = "upper", normal.approx.transform = "cube.root")

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Gamma
#
#Estimated Parameter(s): mean = 4.7932408
# cv = 0.7242165
#
#Estimation Method: bcmle of shape
#
#Estimated Quantile(s): 90th %ile = 9.428
#
#Quantile Estimation Method: Quantile(s) Based on
# bcmle of shape
#
#Data: dat
#
#Sample Size: 20
#
#Confidence Interval for: 90th %ile
#
#Confidence Interval Method: Exact using
# Wilson & Hilferty (1931) cube-root
# transformation to Normality
#
#Confidence Interval Type: upper
#
#Confidence Level: 95%
#
#Confidence Interval: LCL = 0.00000
# UCL = 12.89643

#----------

# Clean up
rm(dat)

#--------------------------------------------------------------------

# Example 17-3 of USEPA (2009, p. 17-17) shows how to construct a
# beta-content upper tolerance limit with 95% coverage and
# 95% confidence using chrysene data and assuming a lognormal
# distribution. Here we will use the same chrysene data but assume a
# gamma distribution.
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# A beta-content upper tolerance limit with 95% coverage and
# 95% confidence is equivalent to the 95% upper confidence limit for
# the 95th percentile.

attach(EPA.09.Ex.17.3.chrysene.df)
Chrysene <- Chrysene.ppb[Well.type == "Background"]
eqgamma(Chrysene, p = 0.95, ci = TRUE, ci.type = "upper")

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Gamma
#
#Estimated Parameter(s): shape = 2.806929
# scale = 5.286026
#
#Estimation Method: mle
#
#Estimated Quantile(s): 95th %ile = 31.74348
#
#Quantile Estimation Method: Quantile(s) Based on
# mle Estimators
#
#Data: Chrysene
#
#Sample Size: 8
#
#Confidence Interval for: 95th %ile
#
#Confidence Interval Method: Exact using
# Kulkarni & Powar (2010)
# transformation to Normality
# based on mle of shape
#
#Confidence Interval Type: upper
#
#Confidence Level: 95%
#
#Confidence Interval: LCL = 0.00000
# UCL = 69.32425

#----------
# Clean up

rm(Chrysene)
detach("EPA.09.Ex.17.3.chrysene.df")

eqgeom Estimate Quantiles of a Geometric Distribution

Description

Estimate quantiles of a geometric distribution.
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Usage

eqgeom(x, p = 0.5, method = "mle/mme", digits = 0)

Arguments

x a numeric vector of observations, or an object resulting from a call to an esti-
mating function that assumes a geometric distribution (e.g., egeom). If x is a
numeric vector, missing (NA), undefined (NaN), and infinite (Inf, -Inf) values
are allowed but will be removed.

p numeric vector of probabilities for which quantiles will be estimated. All values
of p must be between 0 and 1. The default value is p=0.5.

method character string specifying the method to use to estimate the probability pa-
rameter. Possible values are "mle/mme" (maximum likelihood and method of
moments; the default) and "mvue" (minimum variance unbiased). You cannot
use method="mvue" if length(x)=1. See the DETAILS section of the help file
for egeom for more information on these estimation methods.

digits an integer indicating the number of decimal places to round to when printing out
the value of 100*p. The default value is digits=0.

Details

The function eqgeom returns estimated quantiles as well as the estimate of the rate parameter.

Quantiles are estimated by 1) estimating the probability parameter by calling egeom, and then 2)
calling the function qgeom and using the estimated value for the probability parameter.

Value

If x is a numeric vector, eqgeom returns a list of class "estimate" containing the estimated quan-
tile(s) and other information. See estimate.object for details.

If x is the result of calling an estimation function, eqgeom returns a list whose class is the same
as x. The list contains the same components as x, as well as components called quantiles and
quantile.method.

Note

The geometric distribution with parameter prob=p is a special case of the negative binomial distri-
bution with parameters size=1 and prob=p.

The negative binomial distribution has its roots in a gambling game where participants would bet on
the number of tosses of a coin necessary to achieve a fixed number of heads. The negative binomial
distribution has been applied in a wide variety of fields, including accident statistics, birth-and-death
processes, and modeling spatial distributions of biological organisms.

Author(s)
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See Also

egeom, Geometric, enbinom, NegBinomial, estimate.object.

Examples

# Generate an observation from a geometric distribution with parameter
# prob=0.2, then estimate the parameter prob and the 90th percentile.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(250)
dat <- rgeom(1, prob = 0.2)
dat
#[1] 4

eqgeom(dat, p = 0.9)

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Geometric
#
#Estimated Parameter(s): prob = 0.2
#
#Estimation Method: mle/mme
#
#Estimated Quantile(s): 90th %ile = 10
#
#Quantile Estimation Method: Quantile(s) Based on
# mle/mme Estimators
#
#Data: dat
#
#Sample Size: 1

#----------

# Clean up
#---------
rm(dat)

eqgevd Estimate Quantiles of a Generalized Extreme Value Distribution

Description

Estimate quantiles of a generalized extreme value distribution.

Usage

eqgevd(x, p = 0.5, method = "mle", pwme.method = "unbiased",
tsoe.method = "med", plot.pos.cons = c(a = 0.35, b = 0), digits = 0)
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Arguments

x a numeric vector of observations, or an object resulting from a call to an estimat-
ing function that assumes a generalized extreme value distribution (e.g., egevd).
If x is a numeric vector, missing (NA), undefined (NaN), and infinite (Inf, -Inf)
values are allowed but will be removed.

p numeric vector of probabilities for which quantiles will be estimated. All values
of p must be between 0 and 1. The default value is p=0.5.

method character string specifying the method to use to estimate the location, scale,
and threshold parameters. Possible values are "mle" (maximum likelihood; the
default), "pwme" (probability-weighted moments), and "tsoe" (two-stage order-
statistics estimator of Castillo and Hadi (1994)). See the DETAILS section of
the help file for egevd for more information on these estimation methods.

pwme.method character string specifying what method to use to compute the probability-weighted
moments when method="pwme". The possible values are "ubiased" (method
based on the U-statistic; the default), or "plotting.position" (method based
on the plotting position formula). See the DETAILS section of the help file for
egevd for more information. This argument is ignored if method is not equal to
"pwme".

tsoe.method character string specifying the robust function to apply in the second stage of
the two-stage order-statistics estimator when method="tsoe". Possible values
are "med" (median; the default), and "lms" (least median of squares). See the
DETAILS section of the help file for egevd for more information on these esti-
mation methods. This argument is ignored if method is not equal to "tsoe".

plot.pos.cons numeric vector of length 2 specifying the constants used in the formula for the
plotting positions when method="pwme" and pwme.method="plotting.position".
The default value is plot.pos.cons=c(a=0.35, b=0). If this vector has a
names attribute with the value c("a","b") or c("b","a"), then the elements
will be matched by name in the formula for computing the plotting positions.
Otherwise, the first element is mapped to the name "a" and the second ele-
ment to the name "b". See the DETAILS section of the help file for egevd for
more information. This argument is used only if method="tsoe", or if both
method="pwme" and pwme.method="plotting.position".

digits an integer indicating the number of decimal places to round to when printing out
the value of 100*p. The default value is digits=0.

Details

The function eqgevd returns estimated quantiles as well as estimates of the location, scale and
threshold parameters.

Quantiles are estimated by 1) estimating the location, scale, and threshold parameters by calling
egevd, and then 2) calling the function qgevd and using the estimated values for location, scale,
and threshold.

Value

If x is a numeric vector, eqevd returns a list of class "estimate" containing the estimated quan-
tile(s) and other information. See estimate.object for details.

If x is the result of calling an estimation function, eqevd returns a list whose class is the same
as x. The list contains the same components as x, as well as components called quantiles and
quantile.method.
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Note

Two-parameter extreme value distributions (EVD) have been applied extensively since the 1930’s
to several fields of study, including the distributions of hydrological and meteorological variables,
human lifetimes, and strength of materials. The three-parameter generalized extreme value dis-
tribution (GEVD) was introduced by Jenkinson (1955) to model annual maximum and minimum
values of meteorological events. Since then, it has been used extensively in the hydological and
meteorological fields.

The three families of EVDs are all special kinds of GEVDs. When the shape parameter κ = 0, the
GEVD reduces to the Type I extreme value (Gumbel) distribution. (The function zTestGevdShape
allows you to test the null hypothesis H0 : κ = 0.) When κ > 0, the GEVD is the same as the
Type II extreme value distribution, and when κ < 0 it is the same as the Type III extreme value
distribution.

Hosking et al. (1985) compare the asymptotic and small-sample statistical properties of the PWME
with the MLE and Jenkinson’s (1969) method of sextiles. Castillo and Hadi (1994) compare the
small-sample statistical properties of the MLE, PWME, and TSOE. Hosking and Wallis (1995)
compare the small-sample properties of unbaised L-moment estimators vs. plotting-position L-
moment estimators. (PWMEs can be written as linear combinations of L-moments and thus have
equivalent statistical properties.) Hosking and Wallis (1995) conclude that unbiased estimators
should be used for almost all applications.

Author(s)
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See Also

egevd, Generalized Extreme Value Distribution, Extreme Value Distribution, eevd, estimate.object.

Examples

# Generate 20 observations from a generalized extreme value distribution
# with parameters location=2, scale=1, and shape=0.2, then compute the
# MLEs of location, shape,and threshold, and estimate the 90th percentile.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(498)
dat <- rgevd(20, location = 2, scale = 1, shape = 0.2)
eqgevd(dat, p = 0.9)

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Generalized Extreme Value
#
#Estimated Parameter(s): location = 1.6144631
# scale = 0.9867007
# shape = 0.2632493
#
#Estimation Method: mle
#
#Estimated Quantile(s): 90th %ile = 3.289912
#
#Quantile Estimation Method: Quantile(s) Based on
# mle Estimators
#
#Data: dat
#
#Sample Size: 20

#----------

# Clean up
#---------
rm(dat)

eqhyper Estimate Quantiles of a Hypergeometric Distribution

Description

Estimate quantiles of a hypergeometric distribution.
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Usage

eqhyper(x, m = NULL, total = NULL, k = NULL, p = 0.5, method = "mle", digits = 0)

Arguments

x non-negative integer indicating the number of white balls out of a sample of
size k drawn without replacement from the urn, or an object resulting from a
call to an estimating function that assumes a hypergeometric distribution (e.g.,
ehyper). Missing (NA), undefined (NaN), and infinite (Inf, -Inf) values are not
allowed.

m non-negative integer indicating the number of white balls in the urn. You must
supply m or total, but not both. Missing values (NAs) are not allowed.

total positive integer indicating the total number of balls in the urn (i.e., m+n). You
must supply m or total, but not both. Missing values (NAs) are not allowed.

k positive integer indicating the number of balls drawn without replacement from
the urn. Missing values (NAs) are not allowed.

p numeric vector of probabilities for which quantiles will be estimated. All values
of p must be between 0 and 1. The default value is p=0.5.

method character string specifying the method of estimating the parameters of the hy-
pergeometric distribution. Possible values are "mle" (maximum likelihood;
the default) and "mvue" (minimum variance unbiased). The mvue method is
only available when you are estimating m (i.e., when you supply the argument
total). See the DETAILS section of the help file for ehyper for more informa-
tion on these estimation methods.

digits an integer indicating the number of decimal places to round to when printing out
the value of 100*p. The default value is digits=0.

Details

The function eqhyper returns estimated quantiles as well as estimates of the hypergeometric distri-
bution parameters.

Quantiles are estimated by 1) estimating the distribution parameters by calling ehyper, and then 2)
calling the function qhyper and using the estimated values for the distribution parameters.

Value

If x is a numeric vector, eqhyper returns a list of class "estimate" containing the estimated quan-
tile(s) and other information. See estimate.object for details.

If x is the result of calling an estimation function, eqhyper returns a list whose class is the same
as x. The list contains the same components as x, as well as components called quantiles and
quantile.method.

Note

The hypergeometric distribution can be described by an urn model with M white balls and N black
balls. If K balls are drawn with replacement, then the number of white balls in the sample of size
K follows a binomial distribution with parameters size=K and prob=M/(M + N). If K balls
are drawn without replacement, then the number of white balls in the sample of size K follows a
hypergeometric distribution with parameters m=M , n=N , and k=K.
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The name “hypergeometric” comes from the fact that the probabilities associated with this distribu-
tion can be written as successive terms in the expansion of a function of a Gaussian hypergeometric
series.

The hypergeometric distribution is applied in a variety of fields, including quality control and es-
timation of animal population size. It is also the distribution used to compute probabilities for
Fishers’s exact test for a 2x2 contingency table.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References
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See Also

ehyper, Hypergeometric, estimate.object.

Examples

# Generate an observation from a hypergeometric distribution with
# parameters m=10, n=30, and k=5, then estimate the parameter m, and
# the 80th percentile.
# Note: the call to set.seed simply allows you to reproduce this example.
# Also, the only parameter actually estimated is m; once m is estimated,
# n is computed by subtracting the estimated value of m (8 in this example)
# from the given of value of m+n (40 in this example). The parameters
# n and k are shown in the output in order to provide information on
# all of the parameters associated with the hypergeometric distribution.

set.seed(250)
dat <- rhyper(nn = 1, m = 10, n = 30, k = 5)
dat
#[1] 1

eqhyper(dat, total = 40, k = 5, p = 0.8)

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Hypergeometric
#
#Estimated Parameter(s): m = 8
# n = 32
# k = 5
#
#Estimation Method: mle for m
#
#Estimated Quantile(s): 80th %ile = 2
#
#Quantile Estimation Method: Quantile(s) Based on
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# mle for m Estimators
#
#Data: dat
#
#Sample Size: 1

#----------

# Clean up
#---------
rm(dat)

eqlnorm Estimate Quantiles of a Lognormal Distribution

Description

Estimate quantiles of a lognormal distribution, and optionally construct a confidence interval for a
quantile.

Usage

eqlnorm(x, p = 0.5, method = "qmle", ci = FALSE,
ci.method = "exact", ci.type = "two-sided", conf.level = 0.95,
digits = 0)

Arguments

x a numeric vector of positive observations, or an object resulting from a call
to an estimating function that assumes a lognormal distribution (i.e., elnorm,
elnormCensored). You cannot use objects resulting from a call to estimating
functions that use the alternative parameterization such as elnormAlt. If x is a
numeric vector, missing (NA), undefined (NaN), and infinite (Inf, -Inf) values
are allowed but will be removed.

p numeric vector of probabilities for which quantiles will be estimated. All values
of p must be between 0 and 1. When ci=TRUE, p must be a scalar. The default
value is p=0.5.

method character string indicating what method to use to estimate the quantile(s). The
possible values are "qmle" (quasi maximum likelihood; the default) and
"mvue" (minimum variance unbiased). The method "mvue" is available only
when p=0.5 (i.e., when you are estimating the median). See the DETAILS
section for more information.

ci logical scalar indicating whether to compute a confidence interval for the quan-
tile. The default value is ci=FALSE.

ci.method character string indicating what method to use to construct the confidence inter-
val for the quantile. The possible values are "exact" (exact method; the default)
and "normal.approx" (normal approximation). See the DETAILS section for
more information.

ci.type character string indicating what kind of confidence interval for the quantile to
compute. The possible values are "two-sided" (the default), "lower", and
"upper". This argument is ignored if ci=FALSE.
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conf.level a scalar between 0 and 1 indicating the confidence level of the confidence in-
terval. The default value is conf.level=0.95. This argument is ignored if
ci=FALSE.

digits an integer indicating the number of decimal places to round to when printing out
the value of 100*p. The default value is digits=0.

Details

If x contains any missing (NA), undefined (NaN) or infinite (Inf, -Inf) values, they will be removed
prior to performing the estimation.

Quantiles and their associated confidence intervals are constructed by calling the function eqnorm
using the log-transformed data and then exponentiating the quantiles and confidence limits.

In the special case when p=0.5 and method="mvue", the estimated median is computed using the
method given in Gilbert (1987, p.172) and Bradu and Mundlak (1970).

Value

If x is a numeric vector, eqlnorm returns a list of class "estimate" containing the estimated quan-
tile(s) and other information. See estimate.object for details.

If x is the result of calling an estimation function, eqlnorm returns a list whose class is the same
as x. The list contains the same components as x, as well as components called quantiles and
quantile.method. In addition, if ci=TRUE, the returned list contains a component called interval
containing the confidence interval information. If x already has a component called interval, this
component is replaced with the confidence interval information.

Note

Percentiles are sometimes used in environmental standards and regulations. For example, Berthouex
and Brown (2002, p.71) note that England has water quality limits based on the 90th and 95th
percentiles of monitoring data not exceeding specified levels. They also note that the U.S. EPA
has specifications for air quality monitoring, aquatic standards on toxic chemicals, and maximum
daily limits for industrial effluents that are all based on percentiles. Given the importance of these
quantities, it is essential to characterize the amount of uncertainty associated with the estimates of
these quantities. This is done with confidence intervals.
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See Also

eqnorm, Lognormal, elnorm, estimate.object.

Examples

# Generate 20 observations from a lognormal distribution with
# parameters meanlog=3 and sdlog=0.5, then estimate the 90th
# percentile and create a one-sided upper 95% confidence interval
# for that percentile.
# (Note: the call to set.seed simply allows you to reproduce this
# example.)

set.seed(47)
dat <- rlnorm(20, meanlog = 3, sdlog = 0.5)
eqlnorm(dat, p = 0.9, ci = TRUE, ci.type = "upper")

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Lognormal
#
#Estimated Parameter(s): meanlog = 2.9482139
# sdlog = 0.4553215
#
#Estimation Method: mvue
#
#Estimated Quantile(s): 90th %ile = 34.18312
#
#Quantile Estimation Method: qmle
#
#Data: dat
#
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#Sample Size: 20
#
#Confidence Interval for: 90th %ile
#
#Confidence Interval Method: Exact
#
#Confidence Interval Type: upper
#
#Confidence Level: 95%
#
#Confidence Interval: LCL = 0.00000
# UCL = 45.84008

#----------
# Compare these results with the true 90th percentile:

qlnorm(p = 0.9, meanlog = 3, sdlog = 0.5)
#[1] 38.1214

#----------

# Clean up
rm(dat)

#--------------------------------------------------------------------

# Example 17-3 of USEPA (2009, p. 17-17) shows how to construct a
# beta-content upper tolerance limit with 95% coverage and 95%
# confidence using chrysene data and assuming a lognormal
# distribution.

# A beta-content upper tolerance limit with 95% coverage and 95%
# confidence is equivalent to the 95% upper confidence limit for the
# 95th percentile.

attach(EPA.09.Ex.17.3.chrysene.df)
Chrysene <- Chrysene.ppb[Well.type == "Background"]
eqlnorm(Chrysene, p = 0.95, ci = TRUE, ci.type = "upper")

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Lognormal
#
#Estimated Parameter(s): meanlog = 2.5085773
# sdlog = 0.6279479
#
#Estimation Method: mvue
#
#Estimated Quantile(s): 95th %ile = 34.51727
#
#Quantile Estimation Method: qmle
#
#Data: Chrysene
#
#Sample Size: 8
#
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#Confidence Interval for: 95th %ile
#
#Confidence Interval Method: Exact
#
#Confidence Interval Type: upper
#
#Confidence Level: 95%
#
#Confidence Interval: LCL = 0.0000
# UCL = 90.9247

#----------
# Clean up

rm(Chrysene)
detach("EPA.09.Ex.17.3.chrysene.df")

eqlnorm3 Estimate Quantiles of a Three-Parameter Lognormal Distribution

Description

Estimate quantiles of a three-parameter lognormal distribution.

Usage

eqlnorm3(x, p = 0.5, method = "lmle", digits = 0)

Arguments

x a numeric vector of observations, or an object resulting from a call to an es-
timating function that assumes a three-parameter lognormal distribution (e.g.,
elnorm3). If x is a numeric vector, missing (NA), undefined (NaN), and infinite
(Inf, -Inf) values are allowed but will be removed.

p numeric vector of probabilities for which quantiles will be estimated. All values
of p must be between 0 and 1. When ci=TRUE, p must be a scalar. The default
value is p=0.5.

method character string specifying the method of estimating the distribution parame-
ters. Possible values are "lmle" (local maximum likelihood; the default), "mme"
(method of moments), "mmue" (method of moments using an unbaised estimate
of variance), "mmme" (modified method of moments due to Cohen and Whitten
(1980)), "zero.skew" (zero-skewness estimator due to Griffiths (1980)), and
"royston.skew" (estimator based on Royston’s (1992b) index of skewness).
See the DETAILS section of the help file for elnorm3 for more information on
these estimation methods.

digits an integer indicating the number of decimal places to round to when printing out
the value of 100*p. The default value is digits=0.
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Details

If x contains any missing (NA), undefined (NaN) or infinite (Inf, -Inf) values, they will be removed
prior to performing the estimation.

Quantiles are estimated by 1) estimating the distribution parameters by calling elnorm3, and then
2) calling the function qlnorm3 and using the estimated distribution parameters.

Value

If x is a numeric vector, eqlnorm3 returns a list of class "estimate" containing the estimated
quantile(s) and other information. See estimate.object for details.

If x is the result of calling an estimation function, eqlnorm3 returns a list whose class is the same
as x. The list contains the same components as x, as well as components called quantiles and
quantile.method.

Note

The problem of estimating the parameters of a three-parameter lognormal distribution has been
extensively discussed by Aitchison and Brown (1957, Chapter 6), Calitz (1973), Cohen (1951),
Cohen (1988), Cohen and Whitten (1980), Cohen et al. (1985), Griffiths (1980), Harter and Moore
(1966), Hill (1963), and Royston (1992b). Stedinger (1980) and Hoshi et al. (1984) discuss fitting
the three-parameter lognormal distribution to hydrologic data.

The global maximum likelihood estimates are inadmissible. In the past, several researchers have
found that the local maximum likelihood estimates (lmle’s) occasionally fail because of convergence
problems, but they were not using the likelihood profile and reparameterization of Griffiths (1980).
Cohen (1988) recommends the modified methods of moments estimators over lmle’s because they
are easy to compute, they are unbiased with respect to µ and σ2 (the mean and standard deviation on
the log-scale), their variances are minimal or near minimal, and they do not suffer from regularity
problems.

Because the distribution of the lmle of the threshold parameter γ is far from normal for mod-
erate sample sizes (Griffiths, 1980), it is questionable whether confidence intervals for γ or the
median based on asymptotic variances and covariances will perform well. Cohen and Whitten
(1980) and Cohen et al. (1985), however, found that the asymptotic variances and covariances are
reasonably close to corresponding simulated variances and covariances for the modified method
of moments estimators (method="mmme"). In a simulation study (5000 monte carlo trials), Roys-
ton (1992b) found that the coverage of confidence intervals for γ based on the likelihood profile
(ci.method="likelihood.profile") was very close the nominal level (94.1% for a nominal level
of 95%), although not symmetric. Royston (1992b) also found that the coverage of confidence in-
tervals for γ based on the skewness method (ci.method="skewness") was also very close (95.4%)
and symmetric.
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See Also

elnorm3, Lognormal3, Lognormal, LognormalAlt, Normal.

Examples

# Generate 20 observations from a 3-parameter lognormal distribution
# with parameters meanlog=1.5, sdlog=1, and threshold=10, then use
# Cohen and Whittens (1980) modified moments estimators to estimate
# the parameters, and estimate the 90th percentile.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(250)
dat <- rlnorm3(20, meanlog = 1.5, sdlog = 1, threshold = 10)
eqlnorm3(dat, method = "mmme", p = 0.9)

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: 3-Parameter Lognormal
#
#Estimated Parameter(s): meanlog = 1.5206664
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# sdlog = 0.5330974
# threshold = 9.6620403
#
#Estimation Method: mmme
#
#Estimated Quantile(s): 90th %ile = 18.72194
#
#Quantile Estimation Method: Quantile(s) Based on
# mmme Estimators
#
#Data: dat
#
#Sample Size: 20

# Clean up
#---------
rm(dat)

eqlnormCensored Estimate Quantiles of a Lognormal Distribution Based on Type I Cen-
sored Data

Description

Estimate quantiles of a lognormal distribution given a sample of data that has been subjected to
Type I censoring, and optionally construct a confidence interval for a quantile.

Usage

eqlnormCensored(x, censored, censoring.side = "left", p = 0.5, method = "mle",
ci = FALSE, ci.method = "exact.for.complete", ci.type = "two-sided",
conf.level = 0.95, digits = 0, nmc = 1000, seed = NULL)

Arguments

x a numeric vector of positive observations. Missing (NA), undefined (NaN), and
infinite (Inf, -Inf) values are allowed but will be removed.

censored numeric or logical vector indicating which values of x are censored. This must
be the same length as x. If the mode of censored is "logical", TRUE values
correspond to elements of x that are censored, and FALSE values correspond to
elements of x that are not censored. If the mode of censored is "numeric",
it must contain only 1’s and 0’s; 1 corresponds to TRUE and 0 corresponds to
FALSE. Missing (NA) values are allowed but will be removed.

censoring.side character string indicating on which side the censoring occurs. The possible
values are "left" (the default) and "right".

p numeric vector of probabilities for which quantiles will be estimated. All values
of p must be between 0 and 1. When ci=TRUE, p must be a scalar. The default
value is p=0.5.

method character string specifying the method of estimating the mean and standard de-
viation on the log-scale.
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For singly censored data, the possible values are: "mle" (maximum likelihood;
the default), "bcmle" (bias-corrected maximum likelihood), "qq.reg" (quantile-
quantile regression), "qq.reg.w.cen.level" (quantile-quantile regression in-
cluding the censoring level), "impute.w.qq.reg" (moment estimation based
on imputation using the qq.reg method), "impute.w.qq.reg.w.cen.level"
(moment estimation based on imputation using the qq.reg.w.cen.level method),
"impute.w.mle" (moment estimation based on imputation using the mle), "iterative.impute.w.qq.reg"
(moment estimation based on iterative imputation using the qq.reg method),
"m.est" (robust M-estimation), and "half.cen.level" (moment estimation
based on setting the censored observations to half the censoring level).

For multiply censored data, the possible values are: "mle" (maximum likeli-
hood; the default), "qq.reg" (quantile-quantile regression), "impute.w.qq.reg"
(moment estimation based on imputation using the qq.reg method), and "half.cen.level"
(moment estimation based on setting the censored observations to half the cen-
soring level).

See the DETAILS section for more information.

ci logical scalar indicating whether to compute a confidence interval for the quan-
tile. The default value is ci=FALSE.

ci.method character string indicating what method to use to construct the confidence in-
terval for the quantile. The possible values are "exact.for.complete" (exact
method for complete (uncensored) data; the default), "gpq" (method based on
generalized pivotal quantities), and "normal.approx" (normal approximation).
See the DETAILS section for more information. This argument is ignored if
ci=FALSE.

ci.type character string indicating what kind of confidence interval for the quantile to
compute. The possible values are "two-sided" (the default), "lower", and
"upper". This argument is ignored if ci=FALSE.

conf.level a scalar between 0 and 1 indicating the confidence level of the confidence in-
terval. The default value is conf.level=0.95. This argument is ignored if
ci=FALSE.

digits an integer indicating the number of decimal places to round to when printing out
the value of 100*p. The default value is digits=0.

nmc numeric scalar indicating the number of Monte Carlo simulations to run when
ci.method="gpq". The default is nmc=1000. This argument is ignored if ci=FALSE.

seed integer supplied to the function set.seed and used when ci.method="gpq".
The default value is seed=NULL, in which case the current value of .Random.seed
is used. This argument is ignored when ci=FALSE.

Details

Quantiles and their associated confidence intervals are constructed by calling the function eqnormCensored
using the log-transformed data and then exponentiating the quantiles and confidence limits.

Value

eqlnormCensored returns a list of class "estimateCensored" containing the estimated quantile(s)
and other information. See estimateCensored.object for details.
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Note

Percentiles are sometimes used in environmental standards and regulations. For example, Berthouex
and Brown (2002, p.71) note that England has water quality limits based on the 90th and 95th
percentiles of monitoring data not exceeding specified levels. They also note that the U.S. EPA
has specifications for air quality monitoring, aquatic standards on toxic chemicals, and maximum
daily limits for industrial effluents that are all based on percentiles. Given the importance of these
quantities, it is essential to characterize the amount of uncertainty associated with the estimates of
these quantities. This is done with confidence intervals.

A sample of data contains censored observations if some of the observations are reported only as
being below or above some censoring level. In environmental data analysis, Type I left-censored
data sets are common, with values being reported as “less than the detection limit” (e.g., Helsel,
2012). Data sets with only one censoring level are called singly censored; data sets with multiple
censoring levels are called multiply or progressively censored.

Statistical methods for dealing with censored data sets have a long history in the field of survival
analysis and life testing. More recently, researchers in the environmental field have proposed al-
ternative methods of computing estimates and confidence intervals in addition to the classical ones
such as maximum likelihood estimation.

Helsel (2012, Chapter 6) gives an excellent review of past studies of the properties of various esti-
mators based on censored environmental data.

In practice, it is better to use a confidence interval for a percentile, rather than rely on a single point-
estimate of percentile. Confidence intervals for percentiles of a normal distribution depend on the
properties of the estimators for both the mean and standard deviation.

Few studies have been done to evaluate the performance of methods for constructing confidence
intervals for the mean or joint confidence regions for the mean and standard deviation when data
are subjected to single or multiple censoring (see, for example, Singh et al., 2006). Studies to
evaluate the performance of a confidence interval for a percentile include: Caudill et al. (2007),
Hewett and Ganner (2007), Kroll and Stedinger (1996), and Serasinghe (2010).

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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See Also

eqnormCensored, enormCensored, tolIntNormCensored, elnormCensored, Lognormal, estimateCensored.object.

Examples

# Generate 15 observations from a lognormal distribution with
# parameters meanlog=3 and sdlog=0.5, and censor observations less than 10.
# Then generate 15 more observations from this distribution and censor
# observations less than 9.
# Then estimate the 90th percentile and create a one-sided upper 95%
# confidence interval for that percentile.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(47)

x.1 <- rlnorm(15, meanlog = 3, sdlog = 0.5)
sort(x.1)
# [1] 8.051717 9.651611 11.671282 12.271247 12.664108 17.446124
# [7] 17.707301 20.238069 20.487219 21.025510 21.208197 22.036554
#[13] 25.710773 28.661973 54.453557

censored.1 <- x.1 < 10
x.1[censored.1] <- 10

x.2 <- rlnorm(15, meanlog = 3, sdlog = 0.5)
sort(x.2)
# [1] 6.289074 7.511164 8.988267 9.179006 12.869408 14.130081
# [7] 16.941937 17.060513 19.287572 19.682126 20.363893 22.750203
#[13] 24.744306 28.089325 37.792873

censored.2 <- x.2 < 9
x.2[censored.2] <- 9

x <- c(x.1, x.2)
censored <- c(censored.1, censored.2)

eqlnormCensored(x, censored, p = 0.9, ci = TRUE, ci.type = "upper")

#Results of Distribution Parameter Estimation
#Based on Type I Censored Data
#--------------------------------------------
#
#Assumed Distribution: Lognormal
#
#Censoring Side: left
#
#Censoring Level(s): 9 10
#
#Estimated Parameter(s): meanlog = 2.8099300
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# sdlog = 0.5137151
#
#Estimation Method: MLE
#
#Estimated Quantile(s): 90th %ile = 32.08159
#
#Quantile Estimation Method: Quantile(s) Based on
# MLE Estimators
#
#Data: x
#
#Censoring Variable: censored
#
#Sample Size: 30
#
#Percent Censored: 16.66667%
#
#Confidence Interval for: 90th %ile
#
#Assumed Sample Size: 30
#
#Confidence Interval Method: Exact for
# Complete Data
#
#Confidence Interval Type: upper
#
#Confidence Level: 95%
#
#Confidence Interval: LCL = 0.00000
# UCL = 41.38716

#----------

# Compare these results with the true 90th percentile:

qlnorm(p = 0.9, meanlog = 3, sd = 0.5)
#[1] 38.1214

#----------

# Clean up
rm(x.1, censored.1, x.2, censored.2, x, censored)

#--------------------------------------------------------------------

# Chapter 15 of USEPA (2009) gives several examples of estimating the mean
# and standard deviation of a lognormal distribution on the log-scale using
# manganese concentrations (ppb) in groundwater at five background wells.
# In EnvStats these data are stored in the data frame
# EPA.09.Ex.15.1.manganese.df.

# Here we will estimate the mean and standard deviation using the MLE,
# and then construct an upper 95% confidence limit for the 90th percentile.

# First look at the data:
#-----------------------
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EPA.09.Ex.15.1.manganese.df

# Sample Well Manganese.Orig.ppb Manganese.ppb Censored
#1 1 Well.1 <5 5.0 TRUE
#2 2 Well.1 12.1 12.1 FALSE
#3 3 Well.1 16.9 16.9 FALSE
#...
#23 3 Well.5 3.3 3.3 FALSE
#24 4 Well.5 8.4 8.4 FALSE
#25 5 Well.5 <2 2.0 TRUE

longToWide(EPA.09.Ex.15.1.manganese.df,
"Manganese.Orig.ppb", "Sample", "Well",
paste.row.name = TRUE)

# Well.1 Well.2 Well.3 Well.4 Well.5
#Sample.1 <5 <5 <5 6.3 17.9
#Sample.2 12.1 7.7 5.3 11.9 22.7
#Sample.3 16.9 53.6 12.6 10 3.3
#Sample.4 21.6 9.5 106.3 <2 8.4
#Sample.5 <2 45.9 34.5 77.2 <2

# Now estimate the mean, standard deviation, and 90th percentile
# on the log-scale using the MLE, and construct an upper 95%
# confidence limit for the 90th percentile:
#---------------------------------------------------------------

with(EPA.09.Ex.15.1.manganese.df,
eqlnormCensored(Manganese.ppb, Censored,

p = 0.9, ci = TRUE, ci.type = "upper"))

#Results of Distribution Parameter Estimation
#Based on Type I Censored Data
#--------------------------------------------
#
#Assumed Distribution: Lognormal
#
#Censoring Side: left
#
#Censoring Level(s): 2 5
#
#Estimated Parameter(s): meanlog = 2.215905
# sdlog = 1.356291
#
#Estimation Method: MLE
#
#Estimated Quantile(s): 90th %ile = 52.14674
#
#Quantile Estimation Method: Quantile(s) Based on
# MLE Estimators
#
#Data: Manganese.ppb
#
#Censoring Variable: censored
#
#Sample Size: 25
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#
#Percent Censored: 24%
#
#Confidence Interval for: 90th %ile
#
#Assumed Sample Size: 25
#
#Confidence Interval Method: Exact for
# Complete Data
#
#Confidence Interval Type: upper
#
#Confidence Level: 95%
#
#Confidence Interval: LCL = 0.0000
# UCL = 110.9305

eqlogis Estimate Quantiles of a Logistic Distribution

Description

Estimate quantiles of a logistic distribution.

Usage

eqlogis(x, p = 0.5, method = "mle", digits = 0)

Arguments

x a numeric vector of observations, or an object resulting from a call to an es-
timating function that assumes a logistic distribution (e.g., elogis). If x is a
numeric vector, missing (NA), undefined (NaN), and infinite (Inf, -Inf) values
are allowed but will be removed.

p numeric vector of probabilities for which quantiles will be estimated. All values
of p must be between 0 and 1. The default value is p=0.5.

method character string specifying the method to use to estimate the distribution pa-
rameters. Possible values are "mle" (maximum likelihood; the default), "mme"
(methods of moments), and "mmue" (method of moments based on the unbiased
estimator of variance). See the DETAILS section of the help file for elogis for
more information.

digits an integer indicating the number of decimal places to round to when printing out
the value of 100*p. The default value is digits=0.

Details

The function eqlogis returns estimated quantiles as well as estimates of the location and scale
parameters.

Quantiles are estimated by 1) estimating the location and scale parameters by calling elogis, and
then 2) calling the function qlogis and using the estimated values for location and scale.
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Value

If x is a numeric vector, eqlogis returns a list of class "estimate" containing the estimated quan-
tile(s) and other information. See estimate.object for details.

If x is the result of calling an estimation function, eqlogis returns a list whose class is the same
as x. The list contains the same components as x, as well as components called quantiles and
quantile.method.

Note

The logistic distribution is defined on the real line and is unimodal and symmetric about its location
parameter (the mean). It has longer tails than a normal (Gaussian) distribution. It is used to model
growth curves and bioassay data.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References
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Edition. John Wiley and Sons, Hoboken, NJ.

Johnson, N. L., S. Kotz, and N. Balakrishnan. (1995). Continuous Univariate Distributions, Volume
2. Second Edition. John Wiley and Sons, New York.

See Also

elogis, Logistic, estimate.object.

Examples

# Generate 20 observations from a logistic distribution with
# parameters location=0 and scale=1, then estimate the parameters
# and estimate the 90th percentile.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(250)
dat <- rlogis(20)
eqlogis(dat, p = 0.9)

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Logistic
#
#Estimated Parameter(s): location = -0.2181845
# scale = 0.8152793
#
#Estimation Method: mle
#
#Estimated Quantile(s): 90th %ile = 1.573167
#
#Quantile Estimation Method: Quantile(s) Based on
# mle Estimators
#
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#Data: dat
#
#Sample Size: 20

#----------
# Clean up

rm(dat)

eqnbinom Estimate Quantiles of a Negative Binomial Distribution

Description

Estimate quantiles of a negative binomial distribution.

Usage

eqnbinom(x, size = NULL, p = 0.5, method = "mle/mme", digits = 0)

Arguments

x vector of non-negative integers indicating the number of trials that took place
before size “successes” occurred (the total number of trials that took place is
x+1), or an object resulting from a call to an estimating function that assumes a
negative binomial distribution (e.g., enbinom). If x is a vector of non-negative
integers, then missing (NA), undefined (NaN), and infinite (Inf, -Inf) values
are allowed but will be removed. If length(x)=n and n is greater than 1, it
is assumed that x represents observations from n separate negative binomial
experiments that all had the same probability of success (prob), but possibly
different values of size.

size vector of positive integers indicating the number of “successes” that must be ob-
served before the trials are stopped. Missing (NA), undefined (NaN), and infinite
(Inf, -Inf) values are allowed but will be removed. The length of size must
be 1 or else the same length as x.

p numeric vector of probabilities for which quantiles will be estimated. All values
of p must be between 0 and 1. The default value is p=0.5.

method character string specifying the method of estimating the probability parame-
ter. Possible values are "mle/mme" (maximum likelihood and method of mo-
ments; the default) and "mvue" (minimum variance unbiased). You cannot use
method="mvue" if the sum of the elements in size is 1. See the DETAILS
section of the help file for enbinom for more information on these estimation
methods.

digits an integer indicating the number of decimal places to round to when printing out
the value of 100*p. The default value is digits=0.

Details

The function eqnbinom returns estimated quantiles as well as estimates of the prob parameter.

Quantiles are estimated by 1) estimating the prob parameter by calling enbinom, and then 2) calling
the function qnbinom and using the estimated value for prob.
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Value

If x is a numeric vector, eqnbinom returns a list of class "estimate" containing the estimated
quantile(s) and other information. See estimate.object for details.

If x is the result of calling an estimation function, eqnbinom returns a list whose class is the same
as x. The list contains the same components as x, as well as components called quantiles and
quantile.method.

Note

The negative binomial distribution has its roots in a gambling game where participants would bet on
the number of tosses of a coin necessary to achieve a fixed number of heads. The negative binomial
distribution has been applied in a wide variety of fields, including accident statistics, birth-and-death
processes, and modeling spatial distributions of biological organisms.

The geometric distribution with parameter prob=p is a special case of the negative binomial distri-
bution with parameters size=1 and prob=p.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Forbes, C., M. Evans, N. Hastings, and B. Peacock. (2011). Statistical Distributions. Fourth
Edition. John Wiley and Sons, Hoboken, NJ.

Johnson, N. L., S. Kotz, and A. Kemp. (1992). Univariate Discrete Distributions. Second Edition.
John Wiley and Sons, New York, Chapter 5.

See Also

enbinom, NegBinomial, egeom, Geometric, estimate.object.

Examples

# Generate an observation from a negative binomial distribution with
# parameters size=2 and prob=0.2, then estimate the parameter prob
# and the 90th percentile.
# Note: the call to set.seed simply allows you to reproduce this example.
# Also, the only parameter that is estimated is prob; the parameter
# size is supplied in the call to enbinom. The parameter size is printed in
# order to show all of the parameters associated with the distribution.

set.seed(250)
dat <- rnbinom(1, size = 2, prob = 0.2)
dat
#[1] 5

eqnbinom(dat, size = 2, p = 0.9)

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Negative Binomial
#
#Estimated Parameter(s): size = 2.0000000
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# prob = 0.2857143
#
#Estimation Method: mle/mme for prob
#
#Estimated Quantile(s): 90th %ile = 11
#
#Quantile Estimation Method: Quantile(s) Based on
# mle/mme for prob Estimators
#
#Data: dat, 2
#
#Sample Size: 1

#----------
# Clean up

rm(dat)

eqnorm Estimate Quantiles of a Normal Distribution

Description

Estimate quantiles of a normal distribution, and optionally construct a confidence interval for a
quantile.

Usage

eqnorm(x, p = 0.5, method = "qmle", ci = FALSE,
ci.method = "exact", ci.type = "two-sided", conf.level = 0.95,
digits = 0, warn = TRUE)

Arguments

x a numeric vector of observations, or an object resulting from a call to an es-
timating function that assumes a normal (Gaussian) distribution (i.e., enorm,
enormCensored). If x is a numeric vector, missing (NA), undefined (NaN), and
infinite (Inf, -Inf) values are allowed but will be removed.

p numeric vector of probabilities for which quantiles will be estimated. All values
of p must be between 0 and 1. When ci=TRUE, p must be a scalar. The default
value is p=0.5.

method character string indicating what method to use to estimate the quantile(s). Cur-
rently the only possible value is method="qmle" (quasi maximum likelihood).
See the DETAILS section for more information.

ci logical scalar indicating whether to compute a confidence interval for the quan-
tile. The default value is ci=FALSE.

ci.method character string indicating what method to use to construct the confidence inter-
val for the quantile. The possible values are "exact" (exact method; the default)
and "normal.approx" (normal approximation). See the DETAILS section for
more information.
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ci.type character string indicating what kind of confidence interval for the quantile to
compute. The possible values are "two-sided" (the default), "lower", and
"upper". This argument is ignored if ci=FALSE.

conf.level a scalar between 0 and 1 indicating the confidence level of the confidence in-
terval. The default value is conf.level=0.95. This argument is ignored if
ci=FALSE.

digits an integer indicating the number of decimal places to round to when printing out
the value of 100*p. The default value is digits=0.

warn logical scalar indicating whether to warn in the case when ci=TRUE,
ci.method="exact", and the supplied object x is of class "estimate" but did
not use method="mvue" for estimation.

Details

If x contains any missing (NA), undefined (NaN) or infinite (Inf, -Inf) values, they will be removed
prior to performing the estimation.

Quantiles are estimated by 1) estimating the mean and standard deviation parameters by calling
enorm with method="mvue", and then 2) calling the function qnorm and using the estimated val-
ues for mean and standard deviation. This estimator of the p’th quantile is sometimes called the
quasi-maximum likelihood estimator (qmle; Cohn et al., 1989) because if the maximum likelihood
estimator of standard deviation were used in place of the minimum variaince unbiased one, then
this estimator of the quantile would be the mle of the p’th quantile.

When ci=TRUE and ci.method="exact", the confidence interval for a quantile is computed by
using the relationship between a confidence interval for a quantile and a tolerance interval. Specif-
ically, it can be shown (e.g., Conover, 1980, pp.119-121) that an upper confidence interval for the
p’th quantile with confidence level 100(1 − α)% is equivalent to an upper β-content tolerance in-
terval with coverage 100p% and confidence level 100(1 − α)%. Also, a lower confidence interval
for the p’th quantile with confidence level 100(1 − α)% is equivalent to a lower β-content toler-
ance interval with coverage 100(1 − p)% and confidence level 100(1 − α)%. See the help file for
tolIntNorm for information on tolerance intervals for a normal distribution.

When ci=TRUE and ci.method="normal.approx", the confidence interval for a quantile is com-
puted by assuming the estimated quantile has an approximately normal distribution and using the
asymptotic variance to construct the confidence interval (see Stedinger, 1983; Stedinger et al.,
1993).

Value

If x is a numeric vector, eqnorm returns a list of class "estimate" containing the estimated quan-
tile(s) and other information. See estimate.object for details.

If x is the result of calling an estimation function, eqnorm returns a list whose class is the same
as x. The list contains the same components as x, as well as components called quantiles and
quantile.method. In addition, if ci=TRUE, the returned list contains a component called interval
containing the confidence interval information. If x already has a component called interval, this
component is replaced with the confidence interval information.

Note

Percentiles are sometimes used in environmental standards and regulations. For example, Berthouex
and Brown (2002, p.71) note that England has water quality limits based on the 90th and 95th
percentiles of monitoring data not exceeding specified levels. They also note that the U.S. EPA
has specifications for air quality monitoring, aquatic standards on toxic chemicals, and maximum
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daily limits for industrial effluents that are all based on percentiles. Given the importance of these
quantities, it is essential to characterize the amount of uncertainty associated with the estimates of
these quantities. This is done with confidence intervals.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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See Also

enorm, tolIntNorm, Normal, estimate.object.

Examples

# Generate 20 observations from a normal distribution with
# parameters mean=10 and sd=2, then estimate the 90th
# percentile and create a one-sided upper 95% confidence interval
# for that percentile.
# (Note: the call to set.seed simply allows you to reproduce this
# example.)
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set.seed(47)
dat <- rnorm(20, mean = 10, sd = 2)
eqnorm(dat, p = 0.9, ci = TRUE, ci.type = "upper")

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Normal
#
#Estimated Parameter(s): mean = 9.792856
# sd = 1.821286
#
#Estimation Method: mvue
#
#Estimated Quantile(s): 90th %ile = 12.12693
#
#Quantile Estimation Method: qmle
#
#Data: dat
#
#Sample Size: 20
#
#Confidence Interval for: 90th %ile
#
#Confidence Interval Method: Exact
#
#Confidence Interval Type: upper
#
#Confidence Level: 95%
#
#Confidence Interval: LCL = -Inf
# UCL = 13.30064

#----------
# Compare these results with the true 90th percentile:

qnorm(p = 0.9, mean = 10, sd = 2)
#[1] 12.56310

#----------

# Clean up
rm(dat)

#==========

# Example 21-4 of USEPA (2009, p. 21-13) shows how to construct a
# 99% lower confidence limit for the 95th percentile using chrysene
# data and assuming a lognormal distribution. The data for this
# example are stored in EPA.09.Ex.21.1.aldicarb.df.

# The facility permit has established an ACL of 30 ppb that should not
# be exceeded more than 5% of the time. Thus, if the lower confidence limit
# for the 95th percentile is greater than 30 ppb, the well is deemed to be
# out of compliance.
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# Look at the data
#-----------------

head(EPA.09.Ex.21.1.aldicarb.df)
# Month Well Aldicarb.ppb
#1 1 Well.1 19.9
#2 2 Well.1 29.6
#3 3 Well.1 18.7
#4 4 Well.1 24.2
#5 1 Well.2 23.7
#6 2 Well.2 21.9

longToWide(EPA.09.Ex.21.1.aldicarb.df,
"Aldicarb.ppb", "Month", "Well", paste.row.name = TRUE)

# Well.1 Well.2 Well.3
#Month.1 19.9 23.7 5.6
#Month.2 29.6 21.9 3.3
#Month.3 18.7 26.9 2.3
#Month.4 24.2 26.1 6.9

# Estimate the 95th percentile and compute the lower
# 99% confidence limit for Well 1.
#---------------------------------------------------

with(EPA.09.Ex.21.1.aldicarb.df,
eqnorm(Aldicarb.ppb[Well == "Well.1"], p = 0.95, ci = TRUE,

ci.type = "lower", conf.level = 0.99))

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Normal
#
#Estimated Parameter(s): mean = 23.10000
# sd = 4.93491
#
#Estimation Method: mvue
#
#Estimated Quantile(s): 95th %ile = 31.2172
#
#Quantile Estimation Method: qmle
#
#Data: Aldicarb.ppb[Well == "Well.1"]
#
#Sample Size: 4
#
#Confidence Interval for: 95th %ile
#
#Confidence Interval Method: Exact
#
#Confidence Interval Type: lower
#
#Confidence Level: 99%
#
#Confidence Interval: LCL = 25.2855
# UCL = Inf
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# Now compute the 99% lower confidence limit for each of the three
# wells all at once.
#------------------------------------------------------------------

LCLs <- with(EPA.09.Ex.21.1.aldicarb.df,
sapply(split(Aldicarb.ppb, Well),

function(x) eqnorm(x, p = 0.95, method = "qmle", ci = TRUE,
ci.type = "lower", conf.level = 0.99)$interval$limits["LCL"]))

round(LCLs, 2)
#Well.1.LCL Well.2.LCL Well.3.LCL
# 25.29 25.66 5.46

LCLs > 30
#Well.1.LCL Well.2.LCL Well.3.LCL
# FALSE FALSE FALSE

# Clean up
#---------

rm(LCLs)

#==========

# Example 17-3 of USEPA (2009, p. 17-17) shows how to construct a
# beta-content upper tolerance limit with 95% coverage and 95%
# confidence using chrysene data and assuming a lognormal
# distribution.

# A beta-content upper tolerance limit with 95% coverage and 95%
# confidence is equivalent to the 95% upper confidence limit for the
# 95th percentile.

# Here we will construct a 95% upper confidence limit for the 95th
# percentile based on the log-transformed data, then exponentiate the
# result to get the confidence limit on the original scale. Note that
# it is easier to just use the function eqlnorm with the original data
# to achieve the same result.

attach(EPA.09.Ex.17.3.chrysene.df)
log.Chrysene <- log(Chrysene.ppb[Well.type == "Background"])
eqnorm(log.Chrysene, p = 0.95, ci = TRUE, ci.type = "upper")

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Normal
#
#Estimated Parameter(s): mean = 2.5085773
# sd = 0.6279479
#
#Estimation Method: mvue
#
#Estimated Quantile(s): 95th %ile = 3.54146
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#
#Quantile Estimation Method: qmle
#
#Data: log.Chrysene
#
#Sample Size: 8
#
#Confidence Interval for: 95th %ile
#
#Confidence Interval Method: Exact
#
#Confidence Interval Type: upper
#
#Confidence Level: 95%
#
#Confidence Interval: LCL = -Inf
# UCL = 4.510032

exp(4.510032)
#[1] 90.92473

#----------
# Clean up

rm(log.Chrysene)
detach("EPA.09.Ex.17.3.chrysene.df")

eqnormCensored Estimate Quantiles of a Normal Distribution Based on Type I Cen-
sored Data

Description

Estimate quantiles of a normal distribution given a sample of data that has been subjected to Type I
censoring, and optionally construct a confidence interval for a quantile.

Usage

eqnormCensored(x, censored, censoring.side = "left", p = 0.5, method = "mle",
ci = FALSE, ci.method = "exact.for.complete", ci.type = "two-sided",
conf.level = 0.95, digits = 0, nmc = 1000, seed = NULL)

Arguments

x a numeric vector of observations. Missing (NA), undefined (NaN), and infinite
(Inf, -Inf) values are allowed but will be removed.

censored numeric or logical vector indicating which values of x are censored. This must
be the same length as x. If the mode of censored is "logical", TRUE values
correspond to elements of x that are censored, and FALSE values correspond to
elements of x that are not censored. If the mode of censored is "numeric",
it must contain only 1’s and 0’s; 1 corresponds to TRUE and 0 corresponds to
FALSE. Missing (NA) values are allowed but will be removed.
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censoring.side character string indicating on which side the censoring occurs. The possible
values are "left" (the default) and "right".

p numeric vector of probabilities for which quantiles will be estimated. All values
of p must be between 0 and 1. When ci=TRUE, p must be a scalar. The default
value is p=0.5.

method character string specifying the method of estimating the mean and standard de-
viation.
For singly censored data, the possible values are: "mle" (maximum likelihood;
the default), "bcmle" (bias-corrected maximum likelihood), "qq.reg" (quantile-
quantile regression), "qq.reg.w.cen.level" (quantile-quantile regression in-
cluding the censoring level), "impute.w.qq.reg" (moment estimation based
on imputation using the qq.reg method), "impute.w.qq.reg.w.cen.level"
(moment estimation based on imputation using the qq.reg.w.cen.level method),
"impute.w.mle" (moment estimation based on imputation using the mle), "iterative.impute.w.qq.reg"
(moment estimation based on iterative imputation using the qq.reg method),
"m.est" (robust M-estimation), and "half.cen.level" (moment estimation
based on setting the censored observations to half the censoring level).
For multiply censored data, the possible values are: "mle" (maximum likeli-
hood; the default), "qq.reg" (quantile-quantile regression), "impute.w.qq.reg"
(moment estimation based on imputation using the qq.reg method), and "half.cen.level"
(moment estimation based on setting the censored observations to half the cen-
soring level).
See the DETAILS section for more information.

ci logical scalar indicating whether to compute a confidence interval for the quan-
tile. The default value is ci=FALSE.

ci.method character string indicating what method to use to construct the confidence in-
terval for the quantile. The possible values are "exact.for.complete" (exact
method for complete (uncensored) data; the default), "gpq" (method based on
generalized pivotal quantities), and "normal.approx" (normal approximation).
See the DETAILS section for more information. This argument is ignored if
ci=FALSE.

ci.type character string indicating what kind of confidence interval for the quantile to
compute. The possible values are "two-sided" (the default), "lower", and
"upper". This argument is ignored if ci=FALSE.

conf.level a scalar between 0 and 1 indicating the confidence level of the confidence in-
terval. The default value is conf.level=0.95. This argument is ignored if
ci=FALSE.

digits an integer indicating the number of decimal places to round to when printing out
the value of 100*p. The default value is digits=0.

nmc numeric scalar indicating the number of Monte Carlo simulations to run when
ci.method="gpq". The default is nmc=1000. This argument is ignored if ci=FALSE.

seed integer supplied to the function set.seed and used when ci.method="gpq".
The default value is seed=NULL, in which case the current value of .Random.seed
is used. This argument is ignored when ci=FALSE.

Details

Estimating Quantiles
Quantiles are estimated by:
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1. estimating the mean and standard deviation parameters by calling enormCensored, and then

2. calling the function qnorm and using the estimated values for the mean and standard deviation.

The estimated quantile thus depends on the method of estimating the mean and standard deviation.

Confidence Intervals for Quantiles

Exact Method When Data are Complete (ci.method="exact.for.complete")
When ci.method="exact.for.complete", the function eqnormCensored calls the function eqnorm,
supplying it with the estimated mean and standard deviation, and setting the argument ci.method="exact".
Thus, this is the exact method for computing a confidence interval for a quantile had the data been
complete. Because the data have been subjected to Type I censoring, this method of constructing a
confidence interval for the quantile is an approximation.

Normal Approximation (ci.method="normal.approx")
When ci.method="normal.approx", the function eqnormCensored calls the function eqnorm,
supplying it with the estimated mean and standard deviation, and setting the argument ci.method="normal.approx".
Thus, this is the normal approximation method for computing a confidence interval for a quantile
had the data been complete. Because the data have been subjected to Type I censoring, this method
of constructing a confidence interval for the quantile is an approximation both because of the normal
approximation and because the estimates of the mean and standard devation are based on censored,
instead of complete, data.

Generalized Pivotal Quantity (ci.method="gpq")
When ci.method="gpq", the function eqnormCensored uses the relationship between confidence
intervals for quantiles and tolerance intervals and calls the function tolIntNormCensored with the
argument ti.method="gpq" to construct the confidence interval. Specifically, it can be shown (e.g.,
Conover, 1980, pp.119-121) that an upper confidence interval for the p’th quantile with confidence
level 100(1 − α)% is equivalent to an upper β-content tolerance interval with coverage 100p%
and confidence level 100(1 − α)%. Also, a lower confidence interval for the p’th quantile with
confidence level 100(1 − α)% is equivalent to a lower β-content tolerance interval with coverage
100(1− p)% and confidence level 100(1− α)%.

Value

eqnormCensored returns a list of class "estimateCensored" containing the estimated quantile(s)
and other information. See estimateCensored.object for details.

Note

Percentiles are sometimes used in environmental standards and regulations. For example, Berthouex
and Brown (2002, p.71) note that England has water quality limits based on the 90th and 95th
percentiles of monitoring data not exceeding specified levels. They also note that the U.S. EPA
has specifications for air quality monitoring, aquatic standards on toxic chemicals, and maximum
daily limits for industrial effluents that are all based on percentiles. Given the importance of these
quantities, it is essential to characterize the amount of uncertainty associated with the estimates of
these quantities. This is done with confidence intervals.

A sample of data contains censored observations if some of the observations are reported only as
being below or above some censoring level. In environmental data analysis, Type I left-censored
data sets are common, with values being reported as “less than the detection limit” (e.g., Helsel,
2012). Data sets with only one censoring level are called singly censored; data sets with multiple
censoring levels are called multiply or progressively censored.
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Statistical methods for dealing with censored data sets have a long history in the field of survival
analysis and life testing. More recently, researchers in the environmental field have proposed al-
ternative methods of computing estimates and confidence intervals in addition to the classical ones
such as maximum likelihood estimation.

Helsel (2012, Chapter 6) gives an excellent review of past studies of the properties of various esti-
mators based on censored environmental data.

In practice, it is better to use a confidence interval for a percentile, rather than rely on a single point-
estimate of percentile. Confidence intervals for percentiles of a normal distribution depend on the
properties of the estimators for both the mean and standard deviation.

Few studies have been done to evaluate the performance of methods for constructing confidence
intervals for the mean or joint confidence regions for the mean and standard deviation when data
are subjected to single or multiple censoring (see, for example, Singh et al., 2006). Studies to
evaluate the performance of a confidence interval for a percentile include: Caudill et al. (2007),
Hewett and Ganner (2007), Kroll and Stedinger (1996), and Serasinghe (2010).

Author(s)
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See Also

enormCensored, tolIntNormCensored, Normal, estimateCensored.object.

Examples

# Generate 15 observations from a normal distribution with
# parameters mean=10 and sd=2, and censor observations less than 8.
# Then generate 15 more observations from this distribution and censor
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# observations less than 7.
# Then estimate the 90th percentile and create a one-sided upper 95%
# confidence interval for that percentile.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(47)

x.1 <- rnorm(15, mean = 10, sd = 2)
sort(x.1)
# [1] 6.343542 7.068499 7.828525 8.029036 8.155088 9.436470
# [7] 9.495908 10.030262 10.079205 10.182946 10.217551 10.370811
#[13] 10.987640 11.422285 13.989393
censored.1 <- x.1 < 8
x.1[censored.1] <- 8

x.2 <- rnorm(15, mean = 10, sd = 2)
sort(x.2)
# [1] 5.355255 6.065562 6.783680 6.867676 8.219412 8.593224
# [7] 9.319168 9.347066 9.837844 9.918844 10.055054 10.498296
#[13] 10.834382 11.341558 12.528482
censored.2 <- x.2 < 7
x.2[censored.2] <- 7

x <- c(x.1, x.2)
censored <- c(censored.1, censored.2)

eqnormCensored(x, censored, p = 0.9, ci = TRUE, ci.type = "upper")

#Results of Distribution Parameter Estimation
#Based on Type I Censored Data
#--------------------------------------------
#
#Assumed Distribution: Normal
#
#Censoring Side: left
#
#Censoring Level(s): 7 8
#
#Estimated Parameter(s): mean = 9.390624
# sd = 1.827156
#
#Estimation Method: MLE
#
#Estimated Quantile(s): 90th %ile = 11.73222
#
#Quantile Estimation Method: Quantile(s) Based on
# MLE Estimators
#
#Data: x
#
#Censoring Variable: censored
#
#Sample Size: 30
#
#Percent Censored: 16.66667%
#
#Confidence Interval for: 90th %ile
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#
#Assumed Sample Size: 30
#
#Confidence Interval Method: Exact for
# Complete Data
#
#Confidence Interval Type: upper
#
#Confidence Level: 95%
#
#Confidence Interval: LCL = -Inf
# UCL = 12.63808

#----------

# Compare these results with the true 90th percentile:

qnorm(p = 0.9, mean = 10, sd = 2)
#[1] 12.56310

#----------

# Clean up
rm(x.1, censored.1, x.2, censored.2, x, censored)

#==========

# Chapter 15 of USEPA (2009) gives several examples of estimating the mean
# and standard deviation of a lognormal distribution on the log-scale using
# manganese concentrations (ppb) in groundwater at five background wells.
# In EnvStats these data are stored in the data frame
# EPA.09.Ex.15.1.manganese.df.

# Here we will estimate the mean and standard deviation using the MLE,
# and then construct an upper 95% confidence limit for the 90th percentile.

# We will log-transform the original observations and then call
# eqnormCensored. Alternatively, we could have more simply called
# eqlnormCensored.

# First look at the data:
#-----------------------

EPA.09.Ex.15.1.manganese.df

# Sample Well Manganese.Orig.ppb Manganese.ppb Censored
#1 1 Well.1 <5 5.0 TRUE
#2 2 Well.1 12.1 12.1 FALSE
#3 3 Well.1 16.9 16.9 FALSE
#...
#23 3 Well.5 3.3 3.3 FALSE
#24 4 Well.5 8.4 8.4 FALSE
#25 5 Well.5 <2 2.0 TRUE

longToWide(EPA.09.Ex.15.1.manganese.df,
"Manganese.Orig.ppb", "Sample", "Well",
paste.row.name = TRUE)
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# Well.1 Well.2 Well.3 Well.4 Well.5
#Sample.1 <5 <5 <5 6.3 17.9
#Sample.2 12.1 7.7 5.3 11.9 22.7
#Sample.3 16.9 53.6 12.6 10 3.3
#Sample.4 21.6 9.5 106.3 <2 8.4
#Sample.5 <2 45.9 34.5 77.2 <2

# Now estimate the mean, standard deviation, and 90th percentile
# on the log-scale using the MLE, and construct an upper 95%
# confidence limit for the 90th percentile on the log-scale:
#---------------------------------------------------------------

est.list <- with(EPA.09.Ex.15.1.manganese.df,
eqnormCensored(log(Manganese.ppb), Censored,

p = 0.9, ci = TRUE, ci.type = "upper"))

est.list

#Results of Distribution Parameter Estimation
#Based on Type I Censored Data
#--------------------------------------------
#
#Assumed Distribution: Normal
#
#Censoring Side: left
#
#Censoring Level(s): 0.6931472 1.6094379
#
#Estimated Parameter(s): mean = 2.215905
# sd = 1.356291
#
#Estimation Method: MLE
#
#Estimated Quantile(s): 90th %ile = 3.954062
#
#Quantile Estimation Method: Quantile(s) Based on
# MLE Estimators
#
#Data: log(Manganese.ppb)
#
#Censoring Variable: censored
#
#Sample Size: 25
#
#Percent Censored: 24%
#
#Confidence Interval for: 90th %ile
#
#Assumed Sample Size: 25
#
#Confidence Interval Method: Exact for
# Complete Data
#
#Confidence Interval Type: upper
#
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#Confidence Level: 95%
#
#Confidence Interval: LCL = -Inf
# UCL = 4.708904

# To estimate the 90th percentile on the original scale,
# we need to exponentiate the results
#-------------------------------------------------------
exp(est.list$quantiles)
#90th %ile
# 52.14674

exp(est.list$interval$limits)
# LCL UCL
# 0.0000 110.9305

#----------

# Clean up
#---------
rm(est.list)

eqnpar Estimate Quantiles of a Distribution Nonparametrically

Description

Estimate quantiles of a distribution, and optionally create confidence intervals for them, without
making any assumptions about the form of the distribution.

Usage

eqnpar(x, p = 0.5, ci = FALSE, lcl.rank = NULL, ucl.rank = NULL,
lb = -Inf, ub = Inf, ci.type = "two-sided",
ci.method = "exact", approx.conf.level = 0.95, digits = 0)

Arguments

x a numeric vector of observations. Missing (NA), undefined (NaN), and infinite
(Inf, -Inf) values are allowed but will be removed.

p numeric vector of probabilities for which quantiles will be estimated. All values
of p must be between 0 and 1. When ci=TRUE, p must be a scalar. The default
value is p=0.5.

ci logical scalar indicating whether to compute a confidence interval for the quan-
tile. The default value is ci=FALSE.

lcl.rank, ucl.rank

positive integers indicating the ranks of the order statistics that are used for the
lower and upper bounds of the confidence interval for the specified quantile.
Both arguments must be integers between 1 and the number of non-missing val-
ues in x, and lcl.rank must be strictly less than ucl.rank. Setting values for
lcl.rank and/or ucl.rank allows the user to bypass the automatic selection
of order statistics. By default the value of these arguments is NULL, in which
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case order statistics are chosen based on the value of ci.type and ci.method.
If only lcl.rank is supplied, a lower confidence interval is constructed. If
only ucl.rank is supplied, an upper confidence interval is constructed. If both
lcl.rank and ucl.rank are supplied, a two-sided confidence interval is con-
structed. These arguments are ignored if ci=FALSE.

lb, ub scalars indicating lower and upper bounds on the distribution. By default, lb=-Inf
and ub=Inf. If you are constructing a confidence interval for a quantile from a
distribution that you know has a lower bound other than -Inf (e.g., 0), set lb to
this value. Similarly, if you know the distribution has an upper bound other than
Inf, set ub to this value. These arguments are ignored if ci=FALSE.

ci.type character string indicating what kind of confidence interval to compute. The
possible values are "two-sided" (the default), "lower", and "upper". This
argument is ignored if ci=FALSE, or lcl.rank and/or ucl.rank are supplied.

ci.method character string indicating the method to use to construct the confidence interval.
The possible values are "exact" (the default) and "normal.approx". See the
DETAILS section for more information on these methods. This argument is
ignored if ci=FALSE, or lcl.rank and/or ucl.rank are supplied.

approx.conf.level

a scalar between 0 and 1 indicating the desired confidence level of the confidence
interval. The default value is 0.95. The true confidence level usually will not be
exactly equal to approx.conf.level (see DETAILS). This argument is ignored
if ci=FALSE, or lcl.rank and/or ucl.rank are supplied.

digits an integer indicating the number of decimal places to round to when printing out
the value of 100*p. The default value is digits=0.

Details

If x contains any missing (NA), undefined (NaN) or infinite (Inf, -Inf) values, they will be removed
prior to performing the estimation.

Estimation
The function eqnpar calls the R function quantile to estimate quantiles.

Confidence Intervals
Let x1, x2, . . . , xn denote a sample of n independent and identically distributed random variables
from some arbitrary distribution. Furthermore, let x(i) denote the i’th order statistic for these n
random variables. That is,

x(1) ≤ x(2) ≤ . . . ≤ x(n) (1)

Finally, let xp denote the p’th quantile of the distribution, that is:

Pr(X < xp) ≤ p (2)

Pr(X ≤ xp) ≥ p (3)

It can be shown (e.g., Conover, 1980, pp. 114-116) that for the i’th order statistic:

Pr[xp < x(i)] = FB(n,p)[i− 1]; i = 1, 2, . . . , n (4)

where FB(n,p)[y] denotes the cumulative distribution function of a binomial random variable with
parameters size=n and prob=p evaluated at y. This fact is used to construct exact confidence in-
tervals for quantiles (see below).
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Two-Sided Confidence Interval (ci.type="two-sided")
A two-sided nonparametric confidence interval for the p’th quantile is constructed as:

[x(r), x(s)] (5)

where
1 ≤ r ≤ (n− 1) (6)

2 ≤ s ≤ n (7)

r < s (8)

Note that the argument lcl.rank corresponds to r, and the argument ucl.rank corresponds to s.

This confidence interval has an associated confidence level that is at least as large as:

FB(n,p)[s− 1]− FB(n,p)[r − 1] (9)

for a discrete distribution and exactly equal to this value for a continuous distribution. This is
because:

Pr[x(r) ≤ xp ≤ x(s)]

= Pr[xp ≤ x(s)]− Pr[xp < x(r)]

= Pr[xp < x(s)] + Pr[xp = x(s)]− Pr[xp < x(r)]

≥ Pr[xp < x(s)]− Pr[xp < x(r)]

= FB(n,p)[s− 1]− FB(n,p)[r − 1] (10)

Exact Method (ci.method="exact")
When lcl.rank (r) and ucl.rank (s) are not supplied by the user, and ci.method="exact", r and
s are chosen such that r is the smallest integer satisfying equation (11) below, and s is initially set
to the largest integer satisfying equation (12) below:

FB(n,p)[r − 1] ≥ α

2
(11)

FB(n,p)[s− 1] ≤ 1− α
2

(12)

where α = 1−approx.conf.level. Let r∗ and s∗ denote the values of r and s chosen in this
manner. If

FB(n,p)[s
∗]− FB(n,p)[r

∗ − 1] ≤ 1− α (13)

then s is set to s∗ + 1.

Approximate Method (ci.method="approx")
When lcl.rank (r) and ucl.rank (s) are not supplied by the user and ci.method="normal.approx",
r and s are chosen such that

r = np− h (14)

s = np+ h (15)

h = tn−1,1−α/2
√
np(1− p) (16)

where tν,q denotes the q’th quantile of Student’s t-distribution with ν degrees of freedom, and then
r and s are rounded to the nearest integer.
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One-Sided Lower Confidence Interval (ci.type="lower")
A one-sided lower nonparametric confidence interval for the p’th quantile is constructed as:

[x(r), ub] (17)

where ub denotes the value of the ub argument (the user-supplied upper bound).

Exact Method (ci.method="exact")
When lcl.rank (r) is not supplied by the user, and ci.method="exact", r is chosen such that it
is the smallest integer satisfying the following equation:

FB(n,p)[r − 1] ≥ α (18)

where α = 1−approx.conf.level.

Approximate Method (ci.method="approx")
When lcl.rank (r) is not supplied by the user and ci.method="normal.approx", r is chosen
such that

r = np− tn−1,1−α
√
np(1− p) (19)

and then r is rounded to the nearest integer.

One-Sided Upper Confidence Interval (ci.type="upper")
A one-sided upper nonparametric confidence interval for the p’th quantile is constructed as:

[lb, x(s)] (20)

where lb denotes the value of the lb argument (the user-supplied lower bound).

Exact Method (ci.method="exact")
When ucl.rank (s) is not supplied by the user, and ci.method="exact", s is chosen such that it
is the largest integer satisfying the following equation:

FB(n,p)[s− 1] ≤ 1− α (21)

where α = 1−approx.conf.level.

Approximate Method (ci.method="approx")
When ucl.rank (s) is not supplied by the user and ci.method="normal.approx", s is chosen
such that

s = np+ tn−1,1−α
√
np(1− p) (22)

and then s is rounded to the nearest integer.

Note on Value of Confidence Level
Because of the discrete nature of order statistics, no matter what the underlying distribution, the
value of the confidence level associated with the nonparametric confidence interval for the p’th
quantile will usually not be precisely equal to approx.conf.level.

Value

a list of class "estimate" containing the estimated quantile(s) and other information. See estimate.object
for details.
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Note

Percentiles are sometimes used in environmental standards and regulations. For example, Berthouex
and Brown (2002, p.71) note that England has water quality limits based on the 90th and 95th
percentiles of monitoring data not exceeding specified levels. They also note that the U.S. EPA
has specifications for air quality monitoring, aquatic standards on toxic chemicals, and maximum
daily limits for industrial effluents that are all based on percentiles. Given the importance of these
quantities, it is essential to characterize the amount of uncertainty associated with the estimates of
these quantities. This is done with confidence intervals.

It can be shown (e.g., Conover, 1980, pp.119-121) that an upper confidence interval for the p’th
quantile with confidence level 100(1 − α)% is equivalent to an upper β-content tolerance interval
with coverage 100p% and confidence level 100(1− α)%. Also, a lower confidence interval for the
p’th quantile with confidence level 100(1−α)% is equivalent to a lower β-content tolerance interval
with coverage 100(1 − p)% and confidence level 100(1 − α)%. See the help file for tolIntNpar
for more information on nonparametric tolerance intervals.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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See Also

quantile, tolIntNpar, Estimating Distribution Quantiles, Tolerance Intervals, estimate.object.

Examples

# Generate 20 observations from a cauchy distribution with parameters
# location=0, scale=1. The true 75th percentile of this distribution is 1.
# Use eqnpar to estimate the 75th percentile and construct a 90% confidence interval.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(250)
dat <- rcauchy(20, location = 0, scale = 1)
eqnpar(dat, p = 0.75, ci = TRUE, approx.conf.level = 0.9)

#Results of Distribution Parameter Estimation
#--------------------------------------------
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#
#Assumed Distribution: None
#
#Estimated Quantile(s): 75th %ile = 1.524903
#
#Quantile Estimation Method: Nonparametric
#
#Data: dat
#
#Sample Size: 20
#
#Confidence Interval for: 75th %ile
#
#Confidence Interval Method: exact
#
#Confidence Interval Type: two-sided
#
#Confidence Level: 87.38755%
#
#Confidence Limit Rank(s): 13 19
#
#Confidence Interval: LCL = 1.018038
# UCL = 2.215660

#----------

# In the above example, the true confidence level is 87% instead of 90%.
# Lets try to construct a confidence interval with a confidence level that is
# at least 90% by supplying our own indices for the order statistics to use for
# the confidence limits. In the above example, the 13th and 19th order statistics
# are used to construct the confidence interval. Lets try the 12th and 19th:

eqnpar(dat, p = 0.75, ci = TRUE, lcl.rank = 12, ucl.rank = 19)

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: None
#
#Estimated Quantile(s): 75th %ile = 1.524903
#
#Quantile Estimation Method: Nonparametric
#
#Data: dat
#
#Sample Size: 20
#
#Confidence Interval for: 75th %ile
#
#Confidence Interval Method: exact
#
#Confidence Interval Type: two-sided
#
#Confidence Level: 93.47622%
#
#Confidence Limit Rank(s): 12 19
#
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#Confidence Interval: LCL = 0.7494692
# UCL = 2.215660

#----------
# Clean up
rm(dat)

#==========

# Modify Example 17-4 on page 17-21 of USEPA (2009). This example uses
# copper concentrations (ppb) from 3 background wells to set an upper
# limit for 2 compliance wells. Here we will compute an upper 95% confidence interval for
# the 95th percentile of the distribution of copper concentrations in the background wells.
# The data are stored in EPA.92c.copper2.df. Note that even though these data are
# Type I left singly censored, it is still possible to compute an estimate of the
# 95th percentile.

EPA.92c.copper2.df
# Copper.orig Copper Censored Month Well Well.type
#1 <5 5.0 TRUE 1 1 Background
#2 <5 5.0 TRUE 2 1 Background
#3 7.5 7.5 FALSE 3 1 Background
#...
#9 9.2 9.2 FALSE 1 2 Background
#10 <5 5.0 TRUE 2 2 Background
#11 <5 5.0 TRUE 3 2 Background
#...
#17 <5 5.0 TRUE 1 3 Background
#18 5.4 5.4 FALSE 2 3 Background
#19 6.7 6.7 FALSE 3 3 Background
#...
#29 6.2 6.2 FALSE 5 4 Compliance
#30 <5 5.0 TRUE 6 4 Compliance
#31 7.8 7.8 FALSE 7 4 Compliance
#...
#38 <5 5.0 TRUE 6 5 Compliance
#39 5.6 5.6 FALSE 7 5 Compliance
#40 <5 5.0 TRUE 8 5 Compliance

with(EPA.92c.copper2.df,
eqnpar(Copper[Well.type=="Background"], p = 0.95, ci = TRUE, lb = 0,

ci.type = "upper", approx.conf.level = 0.95))

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: None
#
#Estimated Quantile(s): 95th %ile = 7.925
#
#Quantile Estimation Method: Nonparametric
#
#Data: Copper[Well.type == "Background"]
#
#Sample Size: 24
#
#Confidence Interval for: 95th %ile
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#
#Confidence Interval Method: exact
#
#Confidence Interval Type: upper
#
#Confidence Level: 70.8011%
#
#Confidence Limit Rank(s): 24
#
#Confidence Interval: LCL = 0.0
# UCL = 9.2

#----------

# For the above example, the true confidence level is 71% instead of 95%.
# This is a function of the small sample size. In fact, as Example 17-4 shows, the
# largest quantile for which you can construct a nonparametric confidence interval that
# will have associated confidence level of 95% is the 88th percentile:

with(EPA.92c.copper2.df,
eqnpar(Copper[Well.type=="Background"], p = 0.88, ci = TRUE,

ucl.rank = 24, lb = 0, ci.type = "upper", approx.conf.level = 0.95))

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: None
#
#Estimated Quantile(s): 88th %ile = 6.892
#
#Quantile Estimation Method: Nonparametric
#
#Data: Copper[Well.type == "Background"]
#
#Sample Size: 24
#
#Confidence Interval for: 88th %ile
#
#Confidence Interval Method: exact
#
#Confidence Interval Type: upper
#
#Confidence Level: 95.3486%
#
#Confidence Limit Rank(s): 24
#
#Confidence Interval: LCL = 0.0
# UCL = 9.2

#==========

# Reproduce Example 21-6 on pages 21-21 to 21-22 of USEPA (2009).
# Use 12 measurements of nitrate (mg/L) at a well used for drinking water
# to determine with 95% confidence whether or not the infant-based, acute
# risk standard of 10 mg/L has been violated. Assume that the risk
# standard represents an upper 95th percentile limit on nitrate
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# concentrations. So what we need to do is construct a one-sided
# lower nonparametric confidence interval for the 95th percentile
# that has associated confidence level of no more than 95%, and we will
# compare the lower confidence limit with the MCL of 10 mg/L.
#
# The data for this example are stored in EPA.09.Ex.21.6.nitrate.df.

# Look at the data:
#------------------

EPA.09.Ex.21.6.nitrate.df
# Sampling.Date Date Nitrate.mg.per.l.orig Nitrate.mg.per.l Censored
#1 7/28/1999 1999-07-28 <5.0 5.0 TRUE
#2 9/3/1999 1999-09-03 12.3 12.3 FALSE
#3 11/24/1999 1999-11-24 <5.0 5.0 TRUE
#4 5/3/2000 2000-05-03 <5.0 5.0 TRUE
#5 7/14/2000 2000-07-14 8.1 8.1 FALSE
#6 10/31/2000 2000-10-31 <5.0 5.0 TRUE
#7 12/14/2000 2000-12-14 11 11.0 FALSE
#8 3/27/2001 2001-03-27 35.1 35.1 FALSE
#9 6/13/2001 2001-06-13 <5.0 5.0 TRUE
#10 9/16/2001 2001-09-16 <5.0 5.0 TRUE
#11 11/26/2001 2001-11-26 9.3 9.3 FALSE
#12 3/2/2002 2002-03-02 10.3 10.3 FALSE

# Determine what order statistic to use for the lower confidence limit
# in order to achieve no more than 95% confidence.
#---------------------------------------------------------------------

conf.levels <- ciNparConfLevel(n = 12, p = 0.95, lcl.rank = 1:12,
ci.type = "lower")

names(conf.levels) <- 1:12

round(conf.levels, 2)
# 1 2 3 4 5 6 7 8 9 10 11 12
#1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.88 0.54

# Using the 11th largest observation for the lower confidence limit
# yields a confidence level of 88%. Using the 10th largest
# observation yields a confidence level of 98%. The example in
# USEPA (2009) uses the 10th largest observation.
#
# The 10th largest observation is 11 mg/L which exceeds the
# MCL of 10 mg/L, so there is evidence of contamination.
#--------------------------------------------------------------------

with(EPA.09.Ex.21.6.nitrate.df,
eqnpar(Nitrate.mg.per.l, p = 0.95, ci = TRUE,

ci.type = "lower", lcl.rank = 10))

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: None
#
#Estimated Quantile(s): 95th %ile = 22.56
#
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#Quantile Estimation Method: Nonparametric
#
#Data: Nitrate.mg.per.l
#
#Sample Size: 12
#
#Confidence Interval for: 95th %ile
#
#Confidence Interval Method: exact
#
#Confidence Interval Type: lower
#
#Confidence Level: 98.04317%
#
#Confidence Limit Rank(s): 10
#
#Confidence Interval: LCL = 11
# UCL = Inf

#==========

# Clean up
#---------
rm(conf.levels)

eqpareto Estimate Quantiles of a Pareto Distribution

Description

Estimate quantiles of a Pareto distribution.

Usage

eqpareto(x, p = 0.5, method = "mle", plot.pos.con = 0.375, digits = 0)

Arguments

x a numeric vector of observations, or an object resulting from a call to an es-
timating function that assumes a Pareto distribution (e.g., epareto). If x is a
numeric vector, missing (NA), undefined (NaN), and infinite (Inf, -Inf) values
are allowed but will be removed.

p numeric vector of probabilities for which quantiles will be estimated. All values
of p must be between 0 and 1. The default value is p=0.5.

method character string specifying the method of estimating the distribution parame-
ters. Possible values are "mle" (maximum likelihood; the default), and "lse"
(least-squares). See the DETAILS section of the help file for epareto for more
information on these estimation methods.

plot.pos.con numeric scalar between 0 and 1 containing the value of the plotting position
constant used to construct the values of the empirical cdf. The default value is
plot.pos.con=0.375. This argument is used only when method="lse".

digits an integer indicating the number of decimal places to round to when printing out
the value of 100*p. The default value is digits=0.
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Details

The function eqpareto returns estimated quantiles as well as estimates of the location and scale
parameters.

Quantiles are estimated by 1) estimating the location and scale parameters by calling epareto, and
then 2) calling the function qpareto and using the estimated values for location and scale.

Value

If x is a numeric vector, eqpareto returns a list of class "estimate" containing the estimated
quantile(s) and other information. See estimate.object for details.

If x is the result of calling an estimation function, eqpareto returns a list whose class is the same
as x. The list contains the same components as x, as well as components called quantiles and
quantile.method.

Note

The Pareto distribution is named after Vilfredo Pareto (1848-1923), a professor of economics. It is
derived from Pareto’s law, which states that the number of persons N having income ≥ x is given
by:

N = Ax−θ

where θ denotes Pareto’s constant and is the shape parameter for the probability distribution.

The Pareto distribution takes values on the positive real line. All values must be larger than the
“location” parameter η, which is really a threshold parameter. There are three kinds of Pareto
distributions. The one described here is the Pareto distribution of the first kind. Stable Pareto
distributions have 0 < θ < 2. Note that the r’th moment only exists if r < θ.

The Pareto distribution is related to the exponential distribution and logistic distribution as follows.
Let X denote a Pareto random variable with location=η and shape=θ. Then log(X/η) has an
exponential distribution with parameter rate=θ, and−log{[(X/η)θ]−1} has a logistic distribution
with parameters location=0 and scale=1.

The Pareto distribution has a very long right-hand tail. It is often applied in the study of socioeco-
nomic data, including the distribution of income, firm size, population, and stock price fluctuations.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References
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See Also

epareto, Pareto, estimate.object.
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Examples

# Generate 30 observations from a Pareto distribution with
# parameters location=1 and shape=1 then estimate the parameters
# and the 90th percentile.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(250)
dat <- rpareto(30, location = 1, shape = 1)
eqpareto(dat, p = 0.9)

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Pareto
#
#Estimated Parameter(s): location = 1.009046
# shape = 1.079850
#
#Estimation Method: mle
#
#Estimated Quantile(s): 90th %ile = 8.510708
#
#Quantile Estimation Method: Quantile(s) Based on
# mle Estimators
#
#Data: dat
#
#Sample Size: 30

#----------

# Clean up
#---------
rm(dat)

eqpois Estimate Quantiles of a Poisson Distribution

Description

Estimate quantiles of an Poisson distribution, and optionally contruct a confidence interval for a
quantile.

Usage

eqpois(x, p = 0.5, method = "mle/mme/mvue", ci = FALSE, ci.method = "exact",
ci.type = "two-sided", conf.level = 0.95, digits = 0)

Arguments

x a numeric vector of observations, or an object resulting from a call to an estimat-
ing function that assumes an Poisson distribution (e.g., epois). If ci=TRUE then
x must be a numeric vector of observations. If x is a numeric vector, missing
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(NA), undefined (NaN), and infinite (Inf, -Inf) values are allowed but will be
removed.

p numeric vector of probabilities for which quantiles will be estimated. All values
of p must be between 0 and 1. When ci=TRUE, p must be a scalar. The default
value is p=0.5.

method character string specifying the method to use to estimate the mean. Currently
the only possible value is "mle/mme/mvue" (maximum likelihood/method of
moments/minimum variance unbiased; the default). See the DETAILS section
of the help file for epois for more information.

ci logical scalar indicating whether to compute a confidence interval for the speci-
fied quantile. The default value is ci=FALSE.

ci.method character string indicating what method to use to construct the confidence in-
terval for the quantile. The only possible value is "exact" (exact method; the
default). See the DETAILS section for more information.

ci.type character string indicating what kind of confidence interval to compute. The
possible values are "two-sided" (the default), "lower", and "upper". This
argument is ignored if ci=FALSE.

conf.level a scalar between 0 and 1 indicating the confidence level of the confidence in-
terval. The default value is conf.level=0.95. This argument is ignored if
ci=FALSE.

digits an integer indicating the number of decimal places to round to when printing out
the value of 100*p. The default value is digits=0.

Details

The function eqpois returns estimated quantiles as well as the estimate of the mean parameter.

Estimation
Let X denote a Poisson random variable with parameter lambda=λ. Let xp|λ denote the p’th quan-
tile of the distribution. That is,

Pr(X < xp|λ) ≤ p ≤ Pr(X ≤ xp|λ) (1)

Note that due to the discrete nature of the Poisson distribution, there will be several values of p
associated with one value of X . For example, for λ = 2, the value 1 is the p’th quantile for any
value of p between 0.14 and 0.406.

Let x denote a vector of n observations from a Poisson distribution with parameter lambda=λ. The
p’th quantile is estimated as the p’th quantile from a Poisson distribution assuming the true value of
λ is equal to the estimated value of λ. That is:

x̂p|λ = xp|λ=λ̂ (2)

where

λ̂ = x̄ =
1

n

n∑
i=1

xi (3)

Because the estimator in equation (3) is the maximum likelihood estimator of λ (see the help file
for epois), the estimated quantile is the maximum likelihood estimator.

Quantiles are estimated by 1) estimating the mean parameter by calling epois, and then 2) calling
the function qpois and using the estimated value for the mean parameter.
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Confidence Intervals
It can be shown (e.g., Conover, 1980, pp.119-121) that an upper confidence interval for the p’th
quantile with confidence level 100(1 − α)% is equivalent to an upper β-content tolerance interval
with coverage 100p% and confidence level 100(1 − α)%. Also, a lower confidence interval for
the p’th quantile with confidence level 100(1 − α)% is equivalent to a lower β-content tolerance
interval with coverage 100(1− p)% and confidence level 100(1− α)%.

Thus, based on the theory of tolerance intervals for a Poisson distribution (see tolIntPois), if
ci.type="upper", a one-sided upper 100(1 − α)% confidence interval for the p’th quantile is
constructed as:

[0, xp|λ=UCL] (4)

where UCL denotes the upper 100(1− α)% confidence limit for λ (see the help file for epois for
information on how UCL is computed).

Similarly, if ci.type="lower", a one-sided lower 100(1 − α)% confidence interval for the p’th
quantile is constructed as:

[xp|λ=LCL,∞] (5)

where LCL denotes the lower 100(1 − α)% confidence limit for λ (see the help file for epois for
information on how LCL is computed).

Finally, if ci.type="two-sided", a two-sided 100(1−α)% confidence interval for the p’th quantile
is constructed as:

[xp|λ=LCL, xp|λ=UCL] (6)

where LCL and UCL denote the two-sided lower and upper 100(1− α)% confidence limits for λ
(see the help file for epois for information on how LCL and UCL are computed).

Value

If x is a numeric vector, eqpois returns a list of class "estimate" containing the estimated quan-
tile(s) and other information. See estimate.object for details.

If x is the result of calling an estimation function, eqpois returns a list whose class is the same
as x. The list contains the same components as x, as well as components called quantiles and
quantile.method.

Note

Percentiles are sometimes used in environmental standards and regulations. For example, Berthouex
and Brown (2002, p.71) state:

The U.S. EPA has specifications for air quality monitoring that are, in effect, percentile limitations.
... The U.S. EPA has provided guidance for setting aquatic standards on toxic chemicals that require
estimating 99th percentiles and using this statistic to make important decisions about monitoring
and compliance. They have also used the 99th percentile to establish maximum daily limits for
industrial effluents (e.g., pulp and paper).

Given the importance of these quantities, it is essential to characterize the amount of uncertainty
associated with the estimates of these quantities. This is done with confidence intervals.

The Poisson distribution is named after Poisson, who derived this distribution as the limiting distri-
bution of the binomial distribution with parameters size=N and prob=p, where N tends to infinity,
p tends to 0, and Np stays constant.

In this context, the Poisson distribution was used by Bortkiewicz (1898) to model the number of
deaths (per annum) from kicks by horses in Prussian Army Corps. In this case, p, the probability of
death from this cause, was small, but the number of soldiers exposed to this risk, N , was large.
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The Poisson distribution has been applied in a variety of fields, including quality control (model-
ing number of defects produced in a process), ecology (number of organisms per unit area), and
queueing theory. Gibbons (1987b) used the Poisson distribution to model the number of detected
compounds per scan of the 32 volatile organic priority pollutants (VOC), and also to model the
distribution of chemical concentration (in ppb).

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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See Also

epois, Poisson, codeestimate.object.

Examples

# Generate 20 observations from a Poisson distribution with parameter
# lambda=2. The true 90th percentile of this distribution is 4 (actually,
# 4 is the pth quantile for any value of p between 0.86 and 0.947).
# Here we will use eqpois to estimate the 90th percentile and construct a
# two-sided 95% confidence interval for this percentile.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(250)
dat <- rpois(20, lambda = 2)
eqpois(dat, p = 0.9, ci = TRUE)

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Poisson
#
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#Estimated Parameter(s): lambda = 1.8
#
#Estimation Method: mle/mme/mvue
#
#Estimated Quantile(s): 90th %ile = 4
#
#Quantile Estimation Method: mle
#
#Data: dat
#
#Sample Size: 20
#
#Confidence Interval for: 90th %ile
#
#Confidence Interval Method: Exact
#
#Confidence Interval Type: two-sided
#
#Confidence Level: 95%
#
#Confidence Interval: LCL = 3
# UCL = 5

# Clean up
#---------
rm(dat)

equnif Estimate Quantiles of a Uniform Distribution

Description

Estimate quantiles of a uniform distribution.

Usage

equnif(x, p = 0.5, method = "mle", digits = 0)

Arguments

x a numeric vector of observations, or an object resulting from a call to an es-
timating function that assumes a uniform distribution (e.g., eunif). If x is a
numeric vector, missing (NA), undefined (NaN), and infinite (Inf, -Inf) values
are allowed but will be removed.

p numeric vector of probabilities for which quantiles will be estimated. All values
of p must be between 0 and 1. The default value is p=0.5.

method character string specifying the method of estimating the distribution parame-
ters. The possible values are "mle" (maximum likelihood; the default), "mme"
(method of moments), and "mmue" (method of moments based on the unbiased
estimator of variance). See the DETAILS section of the help file for eunif for
more information on these estimation methods.

digits an integer indicating the number of decimal places to round to when printing out
the value of 100*p. The default value is digits=0.
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Details

The function equnif returns estimated quantiles as well as estimates of the location and scale
parameters.

Quantiles are estimated by 1) estimating the location and scale parameters by calling eunif, and
then 2) calling the function qunif and using the estimated values for location and scale.

Value

If x is a numeric vector, equnif returns a list of class "estimate" containing the estimated quan-
tile(s) and other information. See estimate.object for details.

If x is the result of calling an estimation function, equnif returns a list whose class is the same
as x. The list contains the same components as x, as well as components called quantiles and
quantile.method.

Note

The uniform distribution (also called the rectangular distribution) with parameters min and max
takes on values on the real line between min and max with equal probability. It has been used to
represent the distribution of round-off errors in tabulated values. Another important application is
that the distribution of the cumulative distribution function (cdf) of any kind of continuous random
variable follows a uniform distribution with parameters min=0 and max=1.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Forbes, C., M. Evans, N. Hastings, and B. Peacock. (2011). Statistical Distributions. Fourth
Edition. John Wiley and Sons, Hoboken, NJ.
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See Also

eunif, Uniform, estimate.object.

Examples

# Generate 20 observations from a uniform distribution with parameters
# min=-2 and max=3, then estimate the parameters via maximum likelihood
# and estimate the 90th percentile.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(250)
dat <- runif(20, min = -2, max = 3)
equnif(dat, p = 0.9)

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Uniform
#
#Estimated Parameter(s): min = -1.574529
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# max = 2.837006
#
#Estimation Method: mle
#
#Estimated Quantile(s): 90th %ile = 2.395852
#
#Quantile Estimation Method: Quantile(s) Based on
# mle Estimators
#
#Data: dat
#
#Sample Size: 20

#----------
# Clean up

rm(dat)

eqweibull Estimate Quantiles of a Weibull Distribution

Description

Estimate quantiles of a Weibull distribution.

Usage

eqweibull(x, p = 0.5, method = "mle", digits = 0)

Arguments

x a numeric vector of observations, or an object resulting from a call to an esti-
mating function that assumes a Weibull distribution (e.g., eweibull). If x is a
numeric vector, missing (NA), undefined (NaN), and infinite (Inf, -Inf) values
are allowed but will be removed.

p numeric vector of probabilities for which quantiles will be estimated. All values
of p must be between 0 and 1. The default value is p=0.5.

method character string specifying the method of estimating the distribution parameters.
Possible values are "mle" (maximum likelihood; the default), "mme" (methods
of moments), and "mmue" (method of moments based on the unbiased estimator
of variance). See the DETAILS section of the help file for eweibull for more
information.

digits an integer indicating the number of decimal places to round to when printing out
the value of 100*p. The default value is digits=0.

Details

The function eqweibull returns estimated quantiles as well as estimates of the shape and scale
parameters.

Quantiles are estimated by 1) estimating the shape and scale parameters by calling eweibull, and
then 2) calling the function qweibull and using the estimated values for shape and scale.
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Value

If x is a numeric vector, eqweibull returns a list of class "estimate" containing the estimated
quantile(s) and other information. See estimate.object for details.

If x is the result of calling an estimation function, eqweibull returns a list whose class is the same
as x. The list contains the same components as x, as well as components called quantiles and
quantile.method.

Note

The Weibull distribution is named after the Swedish physicist Waloddi Weibull, who used this
distribution to model breaking strengths of materials. The Weibull distribution has been extensively
applied in the fields of reliability and quality control.

The exponential distribution is a special case of the Weibull distribution: a Weibull random vari-
able with parameters shape=1 and scale=β is equivalent to an exponential random variable with
parameter rate=1/β.

The Weibull distribution is related to the Type I extreme value (Gumbel) distribution as follows: if
X is a random variable from a Weibull distribution with parameters shape=α and scale=β, then

Y = −log(X) (10)

is a random variable from an extreme value distribution with parameters location=−log(β) and
scale=1/α.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Forbes, C., M. Evans, N. Hastings, and B. Peacock. (2011). Statistical Distributions. Fourth
Edition. John Wiley and Sons, Hoboken, NJ.

Johnson, N. L., S. Kotz, and N. Balakrishnan. (1994). Continuous Univariate Distributions, Volume
1. Second Edition. John Wiley and Sons, New York.

See Also

eweibull, Weibull, Exponential, EVD, estimate.object.

Examples

# Generate 20 observations from a Weibull distribution with parameters
# shape=2 and scale=3, then estimate the parameters via maximum likelihood,
# and estimate the 90th percentile.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(250)
dat <- rweibull(20, shape = 2, scale = 3)
eqweibull(dat, p = 0.9)

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Weibull
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#
#Estimated Parameter(s): shape = 2.673098
# scale = 3.047762
#
#Estimation Method: mle
#
#Estimated Quantile(s): 90th %ile = 4.163755
#
#Quantile Estimation Method: Quantile(s) Based on
# mle Estimators
#
#Data: dat
#
#Sample Size: 20

#----------

# Clean up
#---------
rm(dat)

eqzmlnorm Estimate Quantiles of a Zero-Modified Lognormal (Delta) Distribu-
tion

Description

Estimate quantiles of a zero-modified lognormal distribution or a zero-modified lognormal distri-
bution (alternative parameterization).

Usage

eqzmlnorm(x, p = 0.5, method = "mvue", digits = 0)

eqzmlnormAlt(x, p = 0.5, method = "mvue", digits = 0)

Arguments

x a numeric vector of positive observations, or an object resulting from a call to
an estimating function that assumes a zero-modified lognormal distribution.
For eqzmlnorm, if x is an object, it must be the result of calling ezmlnorm, not
ezmlnormAlt.
For eqzmlnormAlt, if x is an object, it must be the result of calling ezmlnormAlt,
not ezmlnorm.
If x is a numeric vector, missing (NA), undefined (NaN), and infinite (Inf, -Inf)
values are allowed but will be removed.

p numeric vector of probabilities for which quantiles will be estimated. All values
of p must be between 0 and 1. When ci=TRUE, p must be a scalar. The default
value is p=0.5.

method character string specifying the method of estimation. The only possible value is
"mvue" (minimum variance unbiased; the default). See the DETAILS section of
the help file for ezmlnorm for more information.



424 eqzmlnorm

digits an integer indicating the number of decimal places to round to when printing out
the value of 100*p. The default value is digits=0.

Details

The functions eqzmlnorm and eqzmlnormAlt return estimated quantiles as well as estimates of the
distribution parameters.

Quantiles are estimated by 1) estimating the distribution parameters by calling ezmlnorm or ezmlnormAlt,
and then 2) calling the function qzmlnorm or qzmlnormAlt and using the estimated distribution pa-
rameters.

Value

If x is a numeric vector, eqzmlnorm and eqzmlnormAlt return a list of class "estimate" containing
the estimated quantile(s) and other information. See estimate.object for details.

If x is the result of calling an estimation function, eqzmlnorm and eqzmlnormAlt return a list whose
class is the same as x. The list contains the same components as x, as well as components called
quantiles and quantile.method.

Note

The zero-modified lognormal (delta) distribution is sometimes used to model chemical concentra-
tions for which some observations are reported as “Below Detection Limit” (the nondetects are
assumed equal to 0). See, for example, Gilliom and Helsel (1986), Owen and DeRouen (1980), and
Gibbons et al. (2009, Chapter 12). USEPA (2009, Chapter 15) recommends this strategy only in
specific situations, and Helsel (2012, Chapter 1) strongly discourages this approach to dealing with
non-detects.

A variation of the zero-modified lognormal (delta) distribution is the zero-modified normal distri-
bution, in which a normal distribution is mixed with a positive probability mass at 0.

One way to try to assess whether a zero-modified lognormal (delta), zero-modified normal, censored
normal, or censored lognormal is the best model for the data is to construct both censored and
detects-only probability plots (see qqPlotCensored).

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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Aitchison, J. (1955). On the Distribution of a Positive Random Variable Having a Discrete Proba-
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Johnson, N. L., S. Kotz, and A.W. Kemp. (1992). Univariate Discrete Distributions. Second
Edition. John Wiley and Sons, New York, p.312.

Owen, W., and T. DeRouen. (1980). Estimation of the Mean for Lognormal Data Containing
Zeros and Left-Censored Values, with Applications to the Measurement of Worker Exposure to Air
Contaminants. Biometrics 36, 707–719.
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dendum to Interim Final Guidance. Office of Solid Waste, Permits and State Programs Division,
US Environmental Protection Agency, Washington, D.C.
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See Also

ezmlnorm, Zero-Modified Lognormal, ezmlnormAlt, Zero-Modified Lognormal (Alternative Pa-
rameterization), Zero-Modified Normal, Lognormal.

Examples

# Generate 100 observations from a zero-modified lognormal (delta)
# distribution with mean=2, cv=1, and p.zero=0.5, then estimate the
# parameters and also the 80th and 90th percentiles.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(250)
dat <- rzmlnormAlt(100, mean = 2, cv = 1, p.zero = 0.5)
eqzmlnormAlt(dat, p = c(0.8, 0.9))

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Zero-Modified Lognormal (Delta)
#
#Estimated Parameter(s): mean = 1.9604561
# cv = 0.9169411
# p.zero = 0.4500000
# mean.zmlnorm = 1.0782508
# cv.zmlnorm = 1.5307175
#
#Estimation Method: mvue
#
#Estimated Quantile(s): 80th %ile = 1.897451
# 90th %ile = 2.937976
#
#Quantile Estimation Method: Quantile(s) Based on
# mvue Estimators
#
#Data: dat
#
#Sample Size: 100

#----------

# Compare the estimated quatiles with the true quantiles
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qzmlnormAlt(mean = 2, cv = 1, p.zero = 0.5, p = c(0.8, 0.9))
#[1] 1.746299 2.849858

#----------

# Clean up
rm(dat)

eqzmnorm Estimate Quantiles of a Zero-Modified Normal Distribution

Description

Estimate quantiles of a zero-modified normal distribution.

Usage

eqzmnorm(x, p = 0.5, method = "mvue", digits = 0)

Arguments

x a numeric vector of observations, or an object resulting from a call to an estimat-
ing function that assumes a zero-modified normal distribution (e.g., ezmnorm).
If x is a numeric vector, missing (NA), undefined (NaN), and infinite (Inf, -Inf)
values are allowed but will be removed.

p numeric vector of probabilities for which quantiles will be estimated. All values
of p must be between 0 and 1. The default value is p=0.5.

method character string specifying the method of estimating the disribution parameters.
Currently, the only possible value is "mvue" (minimum variance unbiased; the
default). See the DETAILS section of the help file for ezmnorm for more infor-
mation.

digits an integer indicating the number of decimal places to round to when printing out
the value of 100*p. The default value is digits=0.

Details

The function eqzmnorm returns estimated quantiles as well as estimates of the distribution parame-
ters.

Quantiles are estimated by 1) estimating the distribution parameters by calling ezmnorm, and then
2) calling the function qzmnorm and using the estimated values for the distribution parameters.

Value

If x is a numeric vector, eqzmnorm returns a list of class "estimate" containing the estimated
quantile(s) and other information. See estimate.object for details.

If x is the result of calling an estimation function, eqzmnorm returns a list whose class is the same
as x. The list contains the same components as x, as well as components called quantiles and
quantile.method.
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Note

The zero-modified normal distribution is sometimes used to model chemical concentrations for
which some observations are reported as “Below Detection Limit”. See, for example USEPA
(1992c, pp.27-34). In most cases, however, the zero-modified lognormal (delta) distribution will be
more appropriate, since chemical concentrations are bounded below at 0 (e.g., Gilliom and Helsel,
1986; Owen and DeRouen, 1980).

Once you estimate the parameters of the zero-modified normal distribution, it is often useful to
characterize the uncertainty in the estimate of the mean. This is done with a confidence interval.

One way to try to assess whether a zero-modified lognormal (delta), zero-modified normal, censored
normal, or censored lognormal is the best model for the data is to construct both censored and
detects-only probability plots (see qqPlotCensored).

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Aitchison, J. (1955). On the Distribution of a Positive Random Variable Having a Discrete Proba-
bility Mass at the Origin. Journal of the American Statistical Association 50, 901–908.
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Level Water Quality Data: 1. Estimation Techniques. Water Resources Research 22, 135–146.

Owen, W., and T. DeRouen. (1980). Estimation of the Mean for Lognormal Data Containing
Zeros and Left-Censored Values, with Applications to the Measurement of Worker Exposure to Air
Contaminants. Biometrics 36, 707–719.
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dendum to Interim Final Guidance. Office of Solid Waste, Permits and State Programs Division,
US Environmental Protection Agency, Washington, D.C.

See Also

ZeroModifiedNormal, Normal, ezmlnorm, ZeroModifiedLognormal, estimate.object.

Examples

# Generate 100 observations from a zero-modified normal distribution
# with mean=4, sd=2, and p.zero=0.5, then estimate the parameters and
# the 80th and 90th percentiles.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(250)
dat <- rzmnorm(100, mean = 4, sd = 2, p.zero = 0.5)
eqzmnorm(dat, p = c(0.8, 0.9))

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Zero-Modified Normal
#
#Estimated Parameter(s): mean = 4.037732
# sd = 1.917004
# p.zero = 0.450000
# mean.zmnorm = 2.220753
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# sd.zmnorm = 2.465829
#
#Estimation Method: mvue
#
#Estimated Quantile(s): 80th %ile = 4.706298
# 90th %ile = 5.779250
#
#Quantile Estimation Method: Quantile(s) Based on
# mvue Estimators
#
#Data: dat
#
#Sample Size: 100

#----------

# Compare the estimated quantiles with the true quantiles

qzmnorm(mean = 4, sd = 2, p.zero = 0.5, p = c(0.8, 0.9))
#[1] 4.506694 5.683242

#----------

# Clean up
rm(dat)

estimate.object S3 Class "estimate"

Description

Objects of S3 class "estimate" are returned by any of the EnvStats functions that estimate the
parameters or quantiles of a probability distribution and optionally construct confidence, prediction,
or tolerance intervals based on a sample of data assumed to come from that distribution.

Details

Objects of S3 class "estimate" are lists that contain information about the estimated distribution
parameters, quantiles, and intervals. The names of the EnvStats functions that produce objects of
class "estimate" have the following forms:

Form of Function Name Result
eabb Parameter Estimation
eqabb Quantile Estimation
predIntAbb Prediction Interval
tolIntAbb Tolerance Interval

where abb denotes the abbreviation of the name of a probability distribution (see the help file for
Distribution.df for a list of available probability distributions and their abbreviations), and Abb
denotes the same thing as abb except the first letter of the abbreviation for the probability distribu-
tion is capitalized.
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See the help files Estimating Distribution Parameters and Estimating Distribution Quantiles for
lists of functions that estimate distribution parameters and quantiles. See the help files Prediction
Intervals and Tolerance Intervals for lists of functions that create prediction and tolerance intervals.

For example:

• The function enorm returns an object of class "estimate" (a list) with information about the
estimated mean and standard deviation of the assumed normal (Gaussian) distribution, as well
as an optional confidence interval for the mean.

• The function eqnorm returns a list of class "estimate" with information about the estimated
mean and standard deviation of the assumed normal distribution, the estimated user-specified
quantile(s), and an optional confidence interval for a single quantile.

• The function predIntNorm returns a list of class "estimate" with information about the esti-
mated mean and standard deviation of the assumed normal distribution, along with a prediction
interval for a user-specified number of future observations (or means, medians, or sums).

• The function tolIntNorm returns a list of class "estimate" with information about the esti-
mated mean and standard deviation of the assumed normal distribution, along with a tolerance
interval.

Value

Required Components
The following components must be included in a legitimate list of class "estimate".

distribution character string indicating the name of the assumed distribution (this equals
"Nonparametric") for nonparametric procedures).

sample.size numeric scalar indicating the sample size used to estimate the parameters or
quantiles.

data.name character string indicating the name of the data object used to compute the esti-
mated parameters or quantiles.

bad.obs numeric scalar indicating the number of missing (NA), undefined (NaN) and/or
infinite (Inf, -Inf) values that were removed from the data object prior to per-
forming the estimation.

Optional Components
The following components may optionally be included in a legitimate list of class "estimate".

parameters (parametric estimation only) a numeric vector with a names attribute containing
the names and values of the estimated distribution parameters.

n.param.est (parametric estimation only) a scalar indicating the number of distribution pa-
rameters estimated.

method (parametric estimation only) a character string indicating the method used to
compute the estimated parameters.

quantiles a numeric vector of estimated quantiles.
quantile.method

a character string indicating the method of quantile estimation.

interval a list of class "intervalEstimate" containing information on a confidence,
tolerance, or prediction interval.
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All lists of class "intervalEstimate" contain the following component:

name a character string inidicating the kind of interval. Possible values are:
"Confidence", "Tolerance", or "Prediction".

The number and names of the other components in a list of class "intervalEstimate" depends on
the kind of interval it is. These components may include:

parameter a character string indicating the parameter for which the interval is constructed
(e.g., "mean", "95th %ile", etc.).

limits a numeric vector containing the lower and upper bounds of the interval.

type the type of interval (i.e., "two-sided", "lower", or "upper").

method the method used to construct the interval (e.g., "normal.approx").

conf.level the confidence level associated with the interval.

sample.size the sample size associated with the interval.

dof (parametric intervals only) the degrees of freedom associated with the interval.

limit.ranks (nonparametric intervals only) the rank(s) of the order statistic(s) used to con-
struct the interval.

m (prediction intervals only) the total number of future observations (n.mean=1,
n.median=1, or n.sum=1) or averages (n.mean>1), medians
(n.median>1), or sums (n.sum>1).

k (prediction intervals only) the minimum number of future observations
(n.mean=1, n.median=1, or n.sum=1), or averages (n.mean>1), medians
(n.median>1) or sums (n.sum>1) out of the total m that the interval should con-
tain.

n.mean (prediction intervals only) the sample size associated with the future averages
that should be contained in the interval.

n.median (prediction intervals only) the sample size associated with the future medians
that should be contained in the interval.

n.sum (Poisson prediction intervals only) the sample size associated with the future
sums that should be contained in the interval.

rule (simultaneous prediction intervals only) the rule used to construct the simulta-
neous prediction interval.

delta.over.sigma

(simultaneous prediction intervals only) numeric scalar indicating the ratio ∆/σ.
The quantity ∆ (delta) denotes the difference between the mean of the popula-
tion that was sampled to construct the prediction interval, and the mean of the
population that will be sampled to produce the future observations. The quantity
σ (sigma) denotes the population standard deviation for both populations.

Methods

Generic functions that have methods for objects of class "estimate" include:
print.

Note

Since objects of class "estimate" are lists, you may extract their components with the $ and [[
operators.
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Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

See Also

Estimating Distribution Parameters, Estimating Distribution Quantiles, Distribution.df, Predic-
tion Intervals, Tolerance Intervals, estimateCensored.object.

Examples

# Create an object of class "estimate", then print it out.
# (Note: the call to set.seed simply allows you to reproduce
# this example.)

set.seed(250)

dat <- rnorm(20, mean = 3, sd = 2)

estimate.obj <- enorm(dat, ci = TRUE)

mode(estimate.obj)
#[1] "list"

class(estimate.obj)
#[1] "estimate"

names(estimate.obj)
#[1] "distribution" "sample.size" "parameters"
#[4] "n.param.est" "method" "data.name"
#[7] "bad.obs" "interval"

names(estimate.obj$interval)
#[1] "name" "parameter" "limits"
#[4] "type" "method" "conf.level"
#[7] "sample.size" "dof"

estimate.obj

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Normal
#
#Estimated Parameter(s): mean = 2.861160
# sd = 1.180226
#
#Estimation Method: mvue
#
#Data: dat
#
#Sample Size: 20
#
#Confidence Interval for: mean
#
#Confidence Interval Method: Exact
#
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#Confidence Interval Type: two-sided
#
#Confidence Level: 95%
#
#Confidence Interval: LCL = 2.308798
# UCL = 3.413523

#----------

# Extract the confidence limits for the mean

estimate.obj$interval$limits
# LCL UCL
#2.308798 3.413523

#----------

# Clean up

rm(dat, estimate.obj)

estimateCensored.object

S3 Class "estimateCensored"

Description

Objects of S3 class "estimateCensored" are returned by any of the EnvStats functions that esti-
mate the parameters or quantiles of a probability distribution and optionally construct confidence,
prediction, or tolerance intervals based on a sample of censored data assumed to come from that
distribution.

Details

Objects of S3 class "estimateCensored" are lists that contain information about the estimated
distribution parameters, quantiles, and (if present) intervals, as well as the censoring side, censoring
levels and percentage of censored observations. The names of the EnvStats functions that produce
objects of class "estimateCensored" have the following forms:

Form of Function Name Result
eabbCensored Parameter Estimation
eqabbCensored Quantile Estimation
predIntAbbCensored Prediction Interval
tolIntAbbCensored Tolerance Interval

where abb denotes the abbreviation of the name of a probability distribution (see the help file for
Distribution.df for a list of available probability distributions and their abbreviations), and Abb
denotes the same thing as abb except the first letter of the abbreviation for the probability distribu-
tion is capitalized.

See the sections Estimating Distribution Parameters, Estimating Distribution Quantiles, and
Prediction and Tolerance Intervals in the help file EnvStats Functions for Censored Data for a list
of functions that estimate distribution parameters, estimate distribution quantiles, create prediction
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intervals, or create tolerance intervals using censored data.

For example:

• The function enormCensored returns an object of class "estimateCensored" (a list) with
information about the estimated mean and standard deviation of the assumed normal (Gaus-
sian) distribution, information about the amount and side of censoring, and also an optional
confidence interval for the mean.

• The function eqnormCensored returns a list of class "estimateCensored" with information
about the estimated mean and standard deviation of the assumed normal distribution, informa-
tion about the amount and side of censoring, the estimated user-specified quantile(s), and an
optional confidence interval for a single quantile.

• The function tolIntNormCensored returns a list of class "estimateCensored" with infor-
mation about the estimated mean and standard deviation of the assumed normal distribution,
information about the amount and side of censoring, and the computed tolerance interval.

Value

Required Components
The following components must be included in a legitimate list of class "estimateCensored".

distribution character string indicating the name of the assumed distribution (this equals
"Nonparametric") for nonparametric procedures).

sample.size numeric scalar indicating the sample size used to estimate the parameters or
quantiles.

censoring.side character string indicating whether the data are left- or right-censored.
censoring.levels

numeric scalar or vector indicating the censoring level(s).
percent.censored

numeric scalar indicating the percent of non-missing observations that are cen-
sored.

data.name character string indicating the name of the data object used to compute the esti-
mateCensoredd parameters or quantiles.

censoring.name character string indicating the name of the data object used to identify which
values are censored.

bad.obs numeric scalar indicating the number of missing (NA), undefined (NaN) and/or
infinite (Inf, -Inf) values that were removed from the data object prior to per-
forming the estimation.

Optional Components
The following components may optionally be included in a legitimate list of class "estimateCensored".

parameters (parametric estimation only) a numeric vector with a names attribute containing
the names and values of the estimateCensoredd distribution parameters.

n.param.est (parametric estimation only) a scalar indicating the number of distribution pa-
rameters estimateCensoredd.

method (parametric estimation only) a character string indicating the method used to
compute the estimateCensoredd parameters.

quantiles a numeric vector of estimateCensoredd quantiles.
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quantile.method

a character string indicating the method of quantile estimation.
interval a list of class "intervalEstimate" containing information on a confidence,

tolerance, or prediction interval.

All lists of class "intervalEstimateCensored" contain the following component:

name a character string inidicating the kind of interval. Possible values are:
"Confidence", "Tolerance", or "Prediction".

The number and names of the other components in a list of class "intervalEstimate" depends on
the kind of interval it is. These components may include:

parameter a character string indicating the parameter for which the interval is constructed
(e.g., "mean", "95th %ile", etc.).

limits a numeric vector containing the lower and upper bounds of the interval.
type the type of interval (i.e., "two-sided", "lower", or "upper").
method the method used to construct the interval (e.g., "normal.approx").
conf.level the confidence level associated with the interval.
sample.size the sample size associated with the interval.
dof (parametric intervals only) the degrees of freedom associated with the interval.
limit.ranks (nonparametric intervals only) the rank(s) of the order statistic(s) used to con-

struct the interval.
m (prediction intervals only) the total number of future observations (n.mean=1,

n.median=1, or n.sum=1) or averages (n.mean>1), medians
(n.median>1), or sums (n.sum>1).

k (prediction intervals only) the minimum number of future observations
(n.mean=1, n.median=1, or n.sum=1), or averages (n.mean>1), medians
(n.median>1) or sums (n.sum>1) out of the total m that the interval should con-
tain.

n.mean (prediction intervals only) the sample size associated with the future averages
that should be contained in the interval.

n.median (prediction intervals only) the sample size associated with the future medians
that should be contained in the interval.

n.sum (Poisson prediction intervals only) the sample size associated with the future
sums that should be contained in the interval.

rule (simultaneous prediction intervals only) the rule used to construct the simulta-
neous prediction interval.

delta.over.sigma

(simultaneous prediction intervals only) numeric scalar indicating the ratio ∆/σ.
The quantity ∆ (delta) denotes the difference between the mean of the popula-
tion that was sampled to construct the prediction interval, and the mean of the
population that will be sampled to produce the future observations. The quantity
σ (sigma) denotes the population standard deviation for both populations.

Methods

Generic functions that have methods for objects of class "estimateCensored" include:
print.
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Note

Since objects of class "estimateCensored" are lists, you may extract their components with the $
and [[ operators.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

See Also

EnvStats Functions for Censored Data, Distribution.df, estimate.object.

Examples

# Create an object of class "estimateCensored", then print it out.
# (Note: the call to set.seed simply allows you to reproduce
# this example.)

set.seed(250)

dat <- rnorm(20, mean = 100, sd = 20)
censored <- dat < 90
dat[censored] <- 90

estimateCensored.obj <- enormCensored(dat, censored, ci = TRUE)

mode(estimateCensored.obj)
#[1] "list"

class(estimateCensored.obj)
#[1] "estimateCensored"

names(estimateCensored.obj)
# [1] "distribution" "sample.size" "censoring.side" "censoring.levels"
# [5] "percent.censored" "parameters" "n.param.est" "method"
# [9] "data.name" "censoring.name" "bad.obs" "interval"
#[13] "var.cov.params"

names(estimateCensored.obj$interval)
#[1] "name" "parameter" "limits" "type" "method" "conf.level"

estimateCensored.obj

#Results of Distribution Parameter Estimation
#Based on Type I Censored Data
#--------------------------------------------
#
#Assumed Distribution: Normal
#
#Censoring Side: left
#
#Censoring Level(s): 90
#
#Estimated Parameter(s): mean = 96.52796
# sd = 14.62275
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#
#Estimation Method: MLE
#
#Data: dat
#
#Censoring Variable: censored
#
#Sample Size: 20
#
#Percent Censored: 25%
#
#Confidence Interval for: mean
#
#Confidence Interval Method: Profile Likelihood
#
#Confidence Interval Type: two-sided
#
#Confidence Level: 95%
#
#Confidence Interval: LCL = 88.82415
# UCL = 103.27604

#----------

# Extract the confidence limits for the mean

estimateCensored.obj$interval$limits
# LCL UCL
# 91.7801 103.7839

#----------

# Clean up

rm(dat, censored, estimateCensored.obj)

EulersConstant Euler’s Constant

Description

Explanation of Euler’s Constant.

Details

Euler’s Constant, here denoted ε, is a real-valued number that can be defined in several ways.
Johnson et al. (1992, p. 5) use the definition:

ε = lim
n→∞

[1 +
1

2
+

1

3
+ . . .+

1

n
− log(n)]

and note that it can also be expressed as

ε = −Ψ(1)
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where Ψ() is the digamma function (Johnson et al., 1992, p.8).

The value of Euler’s Constant, to 10 decimal places, is 0.5772156649.

The expression for the mean of a Type I extreme value (Gumbel) distribution involves Euler’s
constant; hence Euler’s constant is used to compute the method of moments estimators for this
distribution (see eevd).

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Johnson, N. L., S. Kotz, and A.W. Kemp. (1992). Univariate Discrete Distributions. Second
Edition. John Wiley and Sons, New York, pp.4-8.

Johnson, N. L., S. Kotz, and N. Balakrishnan. (1995). Continuous Univariate Distributions, Volume
2. Second Edition. John Wiley and Sons, New York.

See Also

Extreme Value Distribution, eevd.

eunif Estimate Parameters of a Uniform Distribution

Description

Estimate the minimum and maximum parameters of a uniform distribution.

Usage

eunif(x, method = "mle")

Arguments

x numeric vector of observations. Missing (NA), undefined (NaN), and infinite (Inf,
-Inf) values are allowed but will be removed.

method character string specifying the method of estimation. The possible values are
"mle" (maximum likelihood; the default), "mme" (method of moments), and
"mmue" (method of moments based on the unbiased estimator of variance). See
the DETAILS section for more information on these estimation methods.

Details

If x contains any missing (NA), undefined (NaN) or infinite (Inf, -Inf) values, they will be removed
prior to performing the estimation.

Let x = (x1, x2, . . . , xn) be a vector of n observations from an uniform distribution with parameters
min=a and max=b. Also, let x(i) denote the i’th order statistic.

Estimation
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Maximum Likelihood Estimation (method="mle")
The maximum likelihood estimators (mle’s) of a and b are given by (Johnson et al, 1995, p.286):

âmle = x(1) (1)

b̂mle = x(n) (2)

Method of Moments Estimation (method="mme")
The method of moments estimators (mme’s) of a and b are given by (Forbes et al., 2011):

âmme = x̄−
√

3sm (3)

b̂mme = x̄+
√

3sm (4)

where

x̄ =
1

n

n∑
i=1

xi (5)

s2
m =

1

n

n∑
i=1

(xi − x̄)2 (6)

Method of Moments Estimation Based on the Unbiased Estimator of Variance (method="mmue")
The method of moments estimators based on the unbiased estimator of variance are exactly the
same as the method of moments estimators given in equations (3-6) above, except that the method
of moments estimator of variance in equation (6) is replaced with the unbiased estimator of variance:

âmmue = x̄−
√

3s (7)

b̂mmue = x̄+
√

3s (8)

where

s2 =
1

n− 1

n∑
i=1

(xi − x̄)2 (9)

Value

a list of class "estimate" containing the estimated parameters and other information. See estimate.object
for details.

Note

The uniform distribution (also called the rectangular distribution) with parameters min and max
takes on values on the real line between min and max with equal probability. It has been used to
represent the distribution of round-off errors in tabulated values. Another important application is
that the distribution of the cumulative distribution function (cdf) of any kind of continuous random
variable follows a uniform distribution with parameters min=0 and max=1.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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References

Forbes, C., M. Evans, N. Hastings, and B. Peacock. (2011). Statistical Distributions. Fourth
Edition. John Wiley and Sons, Hoboken, NJ.

Johnson, N. L., S. Kotz, and N. Balakrishnan. (1995). Continuous Univariate Distributions, Volume
2. Second Edition. John Wiley and Sons, New York.

See Also

Uniform, estimate.object.

Examples

# Generate 20 observations from a uniform distribution with parameters
# min=-2 and max=3, then estimate the parameters via maximum likelihood.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(250)
dat <- runif(20, min = -2, max = 3)
eunif(dat)

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Uniform
#
#Estimated Parameter(s): min = -1.574529
# max = 2.837006
#
#Estimation Method: mle
#
#Data: dat
#
#Sample Size: 20

#----------

# Compare the three methods of estimation:

eunif(dat, method = "mle")$parameters
# min max
#-1.574529 2.837006

eunif(dat, method = "mme")$parameters
# min max
#-1.988462 2.650737

eunif(dat, method = "mmue")$parameters
# min max
#-2.048721 2.710996

#----------

# Clean up
#---------
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rm(dat)

EVD The Extreme Value (Gumbel) Distribution

Description

Density, distribution function, quantile function, and random generation for the (largest) extreme
value distribution.

Usage

devd(x, location = 0, scale = 1)
pevd(q, location = 0, scale = 1)
qevd(p, location = 0, scale = 1)
revd(n, location = 0, scale = 1)

Arguments

x vector of quantiles.
q vector of quantiles.
p vector of probabilities between 0 and 1.
n sample size. If length(n) is larger than 1, then length(n) random values are

returned.
location vector of location parameters.
scale vector of positive scale parameters.

Details

LetX be an extreme value random variable with parameters location=η and scale=θ. The density
function of X is given by:

f(x; η, θ) =
1

θ
e−(x−η)/θexp[−e−(x−η)/θ]

where −∞ < x, η <∞ and θ > 0.

The cumulative distribution function of X is given by:

F (x; η, θ) = exp[−e−(x−η)/θ]

The pth quantile of X is given by:

xp = η − θlog[−log(p)]

The mode, mean, variance, skew, and kurtosis of X are given by:

Mode(X) = η

E(X) = η + εθ

V ar(X) = θ2π2/6

Skew(X) =
√
β1 = 1.139547

Kurtosis(X) = β2 = 5.4

where ε denotes Euler’s constant, which is equivalent to -digamma(1).
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Value

density (devd), probability (pevd), quantile (qevd), or random sample (revd) for the extreme value
distribution with location parameter(s) determined by location and scale parameter(s) determined
by scale.

Note

There are three families of extreme value distributions. The one described here is the Type I, also
called the Gumbel extreme value distribution or simply Gumbel distribution. The name “extreme
value” comes from the fact that this distribution is the limiting distribution (as n approaches infinity)
of the greatest value among n independent random variables each having the same continuous
distribution.

The Gumbel extreme value distribution is related to the exponential distribution as follows. Let Y
be an exponential random variable with parameter rate=λ. Then X = η − log(Y ) has an extreme
value distribution with parameters location=η and scale=1/λ.

The distribution described above and used by devd, pevd, qevd, and revd is the largest extreme
value distribution. The smallest extreme value distribution is the limiting distribution (as n ap-
proaches infinity) of the smallest value among n independent random variables each having the
same continuous distribution. IfX has a largest extreme value distribution with parameters location=η
and scale=θ, then Y = −X has a smallest extreme value distribution with parameters location=−η
and scale=θ. The smallest extreme value distribution is related to the Weibull distribution as
follows. Let Y be a Weibull random variable with parameters shape=β and scale=α. Then
X = log(Y ) has a smallest extreme value distribution with parameters location=log(α) and
scale=1/β.

The extreme value distribution has been used extensively to model the distribution of streamflow,
flooding, rainfall, temperature, wind speed, and other meteorological variables, as well as material
strength and life data.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Forbes, C., M. Evans, N. Hastings, and B. Peacock. (2011). Statistical Distributions. Fourth
Edition. John Wiley and Sons, Hoboken, NJ.

Johnson, N. L., S. Kotz, and N. Balakrishnan. (1995). Continuous Univariate Distributions, Volume
2. Second Edition. John Wiley and Sons, New York.

See Also

eevd, GEVD, Probability Distributions and Random Numbers.

Examples

# Density of an extreme value distribution with location=0, scale=1,
# evaluated at 0.5:

devd(.5)
#[1] 0.3307043

#----------
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# The cdf of an extreme value distribution with location=1, scale=2,
# evaluated at 0.5:

pevd(.5, 1, 2)
#[1] 0.2769203

#----------

# The 25th percentile of an extreme value distribution with
# location=-2, scale=0.5:

qevd(.25, -2, 0.5)
#[1] -2.163317

#----------

# Random sample of 4 observations from an extreme value distribution with
# location=5, scale=2.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(20)
revd(4, 5, 2)
#[1] 9.070406 7.669139 4.511481 5.903675

evNormOrdStats Expected Value of Order Statistics from Random Sample from Stan-
dard Normal Distribution

Description

Compute the expected value of order statistics from a random sample from a standard normal dis-
tribution.

Usage

evNormOrdStats(n = 1, approximate = FALSE)

evNormOrdStatsScalar(r = 1, n = 1, approximate = FALSE)

Arguments

n positive integer indicating the sample size.

r positive integer between 1 and n specifying the order statistic for which to com-
pute the expected value.

approximate logical scalar indicating whether to use the Blom score approximation (Blom,
1958). The default value is FALSE.
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Details

Let z = z1, z2, . . . , zn denote a vector of n observations from a normal distribution with parameters
mean=0 and sd=1. That is, z denotes a vector of n observations from a standard normal distribution.
Let z(r) denote the r’th order statistic of z, for r = 1, 2, . . . , n. The probability density function of
z(r) is given by:

fr,n(t) =
n!

(r − 1)!(n− r)!
[Φ(t)]r−1[1− Φ(t)]n−rφ(t) (1)

where Φ and φ denote the cumulative distribution function and probability density function of the
standard normal distribution, respectively (Johnson et al., 1994, p.93). Thus, the expected value of
z(r) is given by:

E(r, n) = E[z(r)] =

∫ ∞
−∞

tfr,n(t)dt (2)

It can be shown that if n is odd, then

E[(n+ 1)/2, n] = 0 (3)

Also, for all values of n,
E(r, n) = −E(n− r, n) (4)

The function evNormOrdStatsScalar computes the value of E(r, n) for user-specified values of r
and n.

The function evNormOrdStats computes the values ofE(r, n) for all values of r for a user-specified
value of n.

For large values of n, the function evNormOrdStats with approximate=FALSE may take a long
time to execute. When approximate=TRUE, evNormOrdStats and evNormOrdStatsScalar use
the following approximation to E(r, n), which was proposed by Blom (1958, pp. 68-75):

E(r, n) ≈ Φ−1(
r − 3/8

n+ 1/4
) (5)

This approximation is quite accurate. For example, for n ≥ 2, the approximation is accurate to the
first decimal place, and for n ≥ 9 it is accurate to the second decimal place.

Value

For evNormOrdStats: a numeric vector of length n containing the expected values of all the order
statistics for a random sample of n standard normal deviates.

For evNormOrdStatsScalar: a numeric scalar containing the expected value of the r’th order
statistic from a random sample of n standard normal deviates.

Note

The expected values of normal order statistics are used to construct normal quantile-quantile (Q-Q)
plots (see qqPlot) and to compute goodness-of-fit statistics (see gofTest). Usually, however, ap-
proximations are used instead of exact values. The functions evNormOrdStats and evNormOrdStatsScalar
have been included mainly because evNormOrdStatsScalar is called by elnorm3 and predIntNparSimultaneousTestPower.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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References

Johnson, N. L., S. Kotz, and N. Balakrishnan. (1994). Continuous Univariate Distributions, Volume
1. Second Edition. John Wiley and Sons, New York, pp. 93–99.

Royston, J.P. (1982). Algorithm AS 177. Expected Normal Order Statistics (Exact and Approxi-
mate). Applied Statistics 31, 161–165.

See Also

Normal, elnorm3, predIntNparSimultaneousTestPower, gofTest, qqPlot.

Examples

# Compute the expected value of the minimum for a random sample of size 10
# from a standard normal distribution:

evNormOrdStatsScalar(r = 1, n = 10)
#[1] -1.538753

#----------

# Compute the expected values of all of the order statistics for a random sample
# of size 10 from a standard normal distribution:

evNormOrdStats(10)
#[1] -1.5387527 -1.0013570 -0.6560591 -0.3757647 -0.1226888
#[6] 0.1226888 0.3757647 0.6560591 1.0013570 1.5387527

# Compare the above with Blom (1958) scores:

evNormOrdStats(10, approx = TRUE)
#[1] -1.5466353 -1.0004905 -0.6554235 -0.3754618 -0.1225808
#[6] 0.1225808 0.3754618 0.6554235 1.0004905 1.5466353

eweibull Estimate Parameters of a Weibull Distribution

Description

Estimate the shape and scale parameters of a Weibull distribution.

Usage

eweibull(x, method = "mle")

Arguments

x numeric vector of observations. Missing (NA), undefined (NaN), and infinite (Inf,
-Inf) values are allowed but will be removed.

method character string specifying the method of estimation. Possible values are "mle"
(maximum likelihood; the default), "mme" (methods of moments), and "mmue"
(method of moments based on the unbiased estimator of variance). See the
DETAILS section for more information on these estimation methods.
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Details

If x contains any missing (NA), undefined (NaN) or infinite (Inf, -Inf) values, they will be removed
prior to performing the estimation.

Let x = (x1, x2, . . . , xn) be a vector of n observations from an Weibull distribution with parameters
shape=α and scale=β.

Estimation

Maximum Likelihood Estimation (method="mle")
The maximum likelihood estimators (mle’s) of α and β are the solutions of the simultaneous equa-
tions (Forbes et al., 2011):

α̂mle =
n

{(1/β̂mle)α̂mle
∑n
i=1[xα̂mlei log(xi)]} −

∑n
i=1 log(xi)

(1)

β̂mle = [
1

n

n∑
i=1

xα̂mlei ]1/α̂mle (2)

Method of Moments Estimation (method="mme")
The method of moments estimator (mme) of α is computed by solving the equation:

s

x̄
= { Γ[(α̂mme + 2)/α̂mme]

{Γ[(α̂mme + 1)/α̂mme]}2
− 1}1/2 (3)

and the method of moments estimator (mme) of β is then computed as:

β̂mme =
x̄

Γ[(α̂mme + 1)/α̂mme]
(4)

where

x̄ =
1

n

n∑
i=1

xi (5)

s2
m =

1

n

n∑
i=1

(xi − x̄)2 (6)

and Γ() denotes the gamma function.

Method of Moments Estimation Based on the Unbiased Estimator of Variance (method="mmue")
The method of moments estimators based on the unbiased estimator of variance are exactly the
same as the method of moments estimators given in equations (3-6) above, except that the method
of moments estimator of variance in equation (6) is replaced with the unbiased estimator of variance:

s2 =
1

n− 1

n∑
i=1

(xi − x̄)2 (7)

Value

a list of class "estimate" containing the estimated parameters and other information. See estimate.object
for details.
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Note

The Weibull distribution is named after the Swedish physicist Waloddi Weibull, who used this
distribution to model breaking strengths of materials. The Weibull distribution has been extensively
applied in the fields of reliability and quality control.

The exponential distribution is a special case of the Weibull distribution: a Weibull random vari-
able with parameters shape=1 and scale=β is equivalent to an exponential random variable with
parameter rate=1/β.

The Weibull distribution is related to the Type I extreme value (Gumbel) distribution as follows: if
X is a random variable from a Weibull distribution with parameters shape=α and scale=β, then

Y = −log(X) (10)

is a random variable from an extreme value distribution with parameters location=−log(β) and
scale=1/α.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Forbes, C., M. Evans, N. Hastings, and B. Peacock. (2011). Statistical Distributions. Fourth
Edition. John Wiley and Sons, Hoboken, NJ.

Johnson, N. L., S. Kotz, and N. Balakrishnan. (1994). Continuous Univariate Distributions, Volume
1. Second Edition. John Wiley and Sons, New York.

See Also

Weibull, Exponential, EVD, estimate.object.

Examples

# Generate 20 observations from a Weibull distribution with parameters
# shape=2 and scale=3, then estimate the parameters via maximum likelihood.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(250)
dat <- rweibull(20, shape = 2, scale = 3)
eweibull(dat)

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Weibull
#
#Estimated Parameter(s): shape = 2.673098
# scale = 3.047762
#
#Estimation Method: mle
#
#Data: dat
#
#Sample Size: 20
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#----------

# Use the same data as in previous example, and compute the method of
# moments estimators based on the unbiased estimator of variance:

eweibull(dat, method = "mmue")

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Weibull
#
#Estimated Parameter(s): shape = 2.528377
# scale = 3.052507
#
#Estimation Method: mmue
#
#Data: dat
#
#Sample Size: 20

#----------

# Clean up
#---------
rm(dat)

ezmlnorm Estimate Parameters of a Zero-Modified Lognormal (Delta) Distribu-
tion

Description

Estimate the parameters of a zero-modified lognormal distribution or a zero-modified lognormal
distribution (alternative parameterization), and optionally construct a confidence interval for the
mean.

Usage

ezmlnorm(x, method = "mvue", ci = FALSE, ci.type = "two-sided",
ci.method = "normal.approx", conf.level = 0.95)

ezmlnormAlt(x, method = "mvue", ci = FALSE, ci.type = "two-sided",
ci.method = "normal.approx", conf.level = 0.95)

Arguments

x numeric vector of observations. Missing (NA), undefined (NaN), and infinite (Inf,
-Inf) values are allowed but will be removed.

method character string specifying the method of estimation. The only possible value
is "mvue" (minimum variance unbiased; the default). See the DETAILS section
for more information on this estimation method.
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ci logical scalar indicating whether to compute a confidence interval for the mean.
The default value is FALSE. If ci=TRUE and there are less than three non-missing
observations in x, or if all observations are zeros, a warning will be issued and
no confidence interval will be computed.

ci.type character string indicating what kind of confidence interval to compute. The
possible values are "two-sided" (the default), "lower", and "upper". This
argument is ignored if ci=FALSE.

ci.method character string indicating what method to use to construct the confidence in-
terval for the mean. The only possible value is "normal.approx" (the default).
See the DETAILS section for more information. This argument is ignored if
ci=FALSE.

conf.level a scalar between 0 and 1 indicating the confidence level of the confidence in-
terval. The default value is conf.level=0.95. This argument is ignored if
ci=FALSE.

Details

If x contains any missing (NA), undefined (NaN) or infinite (Inf, -Inf) values, they will be removed
prior to performing the estimation.

Let x = (x1, x2, . . . , xn) be a vector of n observations from a zero-modified lognormal distribution
with parameters meanlog=µ, sdlog=σ, and p.zero=p. Alternatively, let x = (x1, x2, . . . , xn) be a
vector of n observations from a zero-modified lognormal distribution (alternative parameterization)
with parameters mean=θ, cv=τ , and p.zero=p.

Let r denote the number of observations in x that are equal to 0, and order the observations so that
x1, x2, . . . , xr denote the r zero observations and xr+1, xr+2, . . . , xn denote the n − r non-zero
observations.

Note that θ is not the mean of the zero-modified lognormal distribution; it is the mean of the log-
normal part of the distribution. Similarly, τ is not the coefficient of variation of the zero-modified
lognormal distribution; it is the coefficient of variation of the lognormal part of the distribution.

Let γ, δ, and φ denote the mean, standard deviation, and coefficient of variation of the overall zero-
modified lognormal (delta) distribution. Let η denote the standard deviation of the lognormal part
of the distribution, so that η = θτ . Aitchison (1955) shows that:

γ = (1− p)θ (1)

δ2 = (1− p)η2 + p(1− p)θ2 (2)

so that

φ =
δ

γ
=

√
τ2 + p√
1− p

(3)

Estimation

Minimum Variance Unbiased Estimation (method="mvue")
Aitchison (1955) shows that the minimum variance unbiased estimators (mvue’s) of γ and δ are:

γ̂mvue = (1− r
n )eȳgn−r−1( s

2

2 ) if r < n− 1,
xn/n if r = n− 1,
0 if r = n (4)
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δ̂2
mvue = (1− r

n )e2ȳ{gn−r−1(2s2)− n−r−1
n−1 gn−r−1[ (n−r−2)s2

n−r−1 ]} if r < n− 1,
x2
n/n if r = n− 1,

0 if r = n (5)

where
yi = log(xi), r = r + 1, r + 2, . . . , n (6)

ȳ =
1

n− r

n∑
i=r+1

yi (7)

s2 =
1

n− r − 1

n∑
i=r+1

(yi − ȳ)2 (8)

gm(z) =

∞∑
i=0

mi(m+ 2i)

m(m+ 2) · · · (m+ 2i)
(

m

m+ 1
)i(
zi

i!
) (9)

Note that when r = n−1 or r = n, the estimator of γ is simply the sample mean for all observations
(including zero values), and the estimator for δ2 is simply the sample variance for all observations.

The expected value and asymptotic variance of the mvue of γ are (Aitchison and Brown, 1957,
p.99; Owen and DeRouen, 1980):

E(γ̂mvue) = γ (10)

AV ar(γ̂mvue) =
1

n
exp(2µ+ σ2)(1− p)(p+

2σ2 + σ4

2
) (11)

Confidence Intervals

Based on Normal Approximation (ci.method="normal.approx")
An approximate (1 − α)100% confidence interval for γ is constructed based on the assumption
that the estimator of γ is approximately normally distributed. Thus, an approximate two-sided
(1− α)100% confidence interval for γ is constructed as:

[γ̂mvue − tn−2,1−α/2σ̂γ̂ , γ̂mvue + tn−2,1−α/2σ̂γ̂ ] (12)

where tν,p is the p’th quantile of Student’s t-distribution with ν degrees of freedom, and the quantity
σ̂γ̂ is the estimated standard deviation of the mvue of γ, and is computed by replacing the values of
µ, σ, and p in equation (11) above with their estimated values and taking the square root.

Note that there must be at least 3 non-missing observations (n ≥ 3) and at least one observation
must be non-zero (r ≤ n− 1) in order to construct a confidence interval.

One-sided confidence intervals are computed in a similar fashion.

Value

a list of class "estimate" containing the estimated parameters and other information. See estimate.object
for details.

For the function ezmlnorm, the component called parameters is a numeric vector with the follow-
ing estimated parameters:

Parameter Name Explanation
meanlog mean of the log of the lognormal part of the distribution.
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sdlog standard deviation of the log of the lognormal part of the distribution.
p.zero probability that an observation will be 0.
mean.zmlnorm mean of the overall zero-modified lognormal (delta) distribution.
sd.zmlnorm standard deviation of the overall zero-modified lognormal (delta) distribution.

For the function ezmlnormAlt, the component called parameters is a numeric vector with the
following estimated parameters:

Parameter Name Explanation
mean mean of the lognormal part of the distribution.
cv coefficient of variation of the lognormal part of the distribution.
p.zero probability that an observation will be 0.
mean.zmlnorm mean of the overall zero-modified lognormal (delta) distribution.
sd.zmlnorm standard deviation of the overall zero-modified lognormal (delta) distribution.

Note

The zero-modified lognormal (delta) distribution is sometimes used to model chemical concentra-
tions for which some observations are reported as “Below Detection Limit” (the nondetects are
assumed equal to 0). See, for example, Gilliom and Helsel (1986), Owen and DeRouen (1980), and
Gibbons et al. (2009, Chapter 12). USEPA (2009, Chapter 15) recommends this strategy only in
specific situations, and Helsel (2012, Chapter 1) strongly discourages this approach to dealing with
non-detects.

A variation of the zero-modified lognormal (delta) distribution is the zero-modified normal distri-
bution, in which a normal distribution is mixed with a positive probability mass at 0.

One way to try to assess whether a zero-modified lognormal (delta), zero-modified normal, censored
normal, or censored lognormal is the best model for the data is to construct both censored and
detects-only probability plots (see qqPlotCensored).

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Aitchison, J. (1955). On the Distribution of a Positive Random Variable Having a Discrete Proba-
bility Mass at the Origin. Journal of the American Statistical Association 50, 901–908.

Aitchison, J., and J.A.C. Brown (1957). The Lognormal Distribution (with special reference to its
uses in economics). Cambridge University Press, London. pp.94-99.

Crow, E.L., and K. Shimizu. (1988). Lognormal Distributions: Theory and Applications. Marcel
Dekker, New York, pp.47–51.

Gibbons, RD., D.K. Bhaumik, and S. Aryal. (2009). Statistical Methods for Groundwater Monitor-
ing. Second Edition. John Wiley and Sons, Hoboken, NJ.

Gilliom, R.J., and D.R. Helsel. (1986). Estimation of Distributional Parameters for Censored Trace
Level Water Quality Data: 1. Estimation Techniques. Water Resources Research 22, 135–146.

Helsel, D.R. (2012). Statistics for Censored Environmental Data Using Minitab and R. Second
Edition. John Wiley and Sons, Hoboken, NJ, Chapter 1.
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Johnson, N. L., S. Kotz, and A.W. Kemp. (1992). Univariate Discrete Distributions. Second
Edition. John Wiley and Sons, New York, p.312.

Owen, W., and T. DeRouen. (1980). Estimation of the Mean for Lognormal Data Containing
Zeros and Left-Censored Values, with Applications to the Measurement of Worker Exposure to Air
Contaminants. Biometrics 36, 707–719.

USEPA (1992c). Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities: Ad-
dendum to Interim Final Guidance. Office of Solid Waste, Permits and State Programs Division,
US Environmental Protection Agency, Washington, D.C.

USEPA. (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Uni-
fied Guidance. EPA 530/R-09-007, March 2009. Office of Resource Conservation and Recovery
Program Implementation and Information Division. U.S. Environmental Protection Agency, Wash-
ington, D.C.

See Also

Zero-Modified Lognormal, Zero-Modified Normal, Lognormal.

Examples

# Generate 100 observations from a zero-modified lognormal (delta)
# distribution with mean=2, cv=1, and p.zero=0.5, then estimate the
# parameters. According to equations (1) and (3) above, the overall mean
# is mean.zmlnorm=1 and the overall cv is cv.zmlnorm=sqrt(3).
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(250)
dat <- rzmlnormAlt(100, mean = 2, cv = 1, p.zero = 0.5)
ezmlnormAlt(dat, ci = TRUE)

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Zero-Modified Lognormal (Delta)
#
#Estimated Parameter(s): mean = 1.9604561
# cv = 0.9169411
# p.zero = 0.4500000
# mean.zmlnorm = 1.0782508
# cv.zmlnorm = 1.5307175
#
#Estimation Method: mvue
#
#Data: dat
#
#Sample Size: 100
#
#Confidence Interval for: mean.zmlnorm
#
#Confidence Interval Method: Normal Approximation
# (t Distribution)
#
#Confidence Interval Type: two-sided
#
#Confidence Level: 95%
#
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#Confidence Interval: LCL = 0.748134
# UCL = 1.408368

#----------

# Clean up
rm(dat)

ezmnorm Estimate Parameters of a Zero-Modified Normal Distribution

Description

Estimate the mean and standard deviation of a zero-modified normal distribution, and optionally
construct a confidence interval for the mean.

Usage

ezmnorm(x, method = "mvue", ci = FALSE, ci.type = "two-sided",
ci.method = "normal.approx", conf.level = 0.95)

Arguments

x numeric vector of observations.

method character string specifying the method of estimation. Currently, the only pos-
sible value is "mvue" (minimum variance unbiased; the default). See the DE-
TAILS section for more information.

ci logical scalar indicating whether to compute a confidence interval for the mean.
The default value is FALSE.

ci.type character string indicating what kind of confidence interval to compute. The
possible values are "two-sided" (the default), "lower", and "upper". This
argument is ignored if ci=FALSE.

ci.method character string indicating what method to use to construct the confidence inter-
val for the mean. Currently the only possible value is "normal.approx" (the
default). See the DETAILS section for more information.

conf.level a scalar between 0 and 1 indicating the confidence level of the confidence in-
terval. The default value is conf.level=0.95. This argument is ignored if
ci=FALSE.

Details

If x contains any missing (NA), undefined (NaN) or infinite (Inf, -Inf) values, they will be removed
prior to performing the estimation.

Let x = (x1, x2, . . . , xn) be a vector of n observations from a zero-modified normal distribution
with parameters mean=µ, sd=σ, and p.zero=p. Let r denote the number of observations in x that
are equal to 0, and order the observations so that x1, x2, . . . , xr denote the r zero observations, and
xr+1, xr+2, . . . , xn denote the n− r non-zero observations.

Note that µ is not the mean of the zero-modified normal distribution; it is the mean of the normal
part of the distribution. Similarly, σ is not the standard deviation of the zero-modified normal
distribution; it is the standard deviation of the normal part of the distribution.
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Let γ and δ denote the mean and standard deviation of the overall zero-modified normal distribution.
Aitchison (1955) shows that:

γ = (1− p)µ (1)

δ2 = (1− p)σ2 + p(1− p)µ2 (2)

Estimation

Minimum Variance Unbiased Estimation (method="mvue")
Aitchison (1955) shows that the minimum variance unbiased estimators (mvue’s) of γ and δ are:

γ̂mvue = x̄ (3)

δ̂2
mvue = n−r−1

n−1 (s∗)2 + r
n (n−rn−1 )(x̄∗)2 if r < n− 1,

x2
n/n if r = n− 1,

0 if r = n (4)

where

x̄ =
1

n

n∑
i=1

xi (5)

x̄∗ =
1

n− r

n∑
i=r+1

xi (6)

(s∗)2 =
1

n− r − 1

n∑
i=r+1

(xi − x̄∗)2 (7)

Note that the quantity in equation (5) is the sample mean of all observations (including 0 values),
the quantity in equation (6) is the sample mean of all non-zero observations, and the quantity in
equation (7) is the sample variance of all non-zero observations. Also note that for r = n − 1 or
r = n, the estimator of δ2 is the sample variance for all observations (including 0 values).

Confidence Intervals

Based on Normal Approximation (ci.method="normal.approx")
An approximate (1−α)100% confidence interval for γ is constructed based on the assumption that
the estimator of γ is approximately normally distributed. Aitchison (1955) shows that

V ar(γ̂mvue) = V ar(x̄) =
δ2

n
(8)

Thus, an approximate two-sided (1− α)100% confidence interval for γ is constructed as:

[γ̂mvue − tn−2,1−α/2
δ̂mvue√

n
, γ̂mvue + tn−2,1−α/2

δ̂mvue√
n

] (9)

where tν,p is the p’th quantile of Student’s t-distribution with ν degrees of freedom.

One-sided confidence intervals are computed in a similar fashion.
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Value

a list of class "estimate" containing the estimated parameters and other information. See estimate.object
for details.

The component called parameters is a numeric vector with the following estimated parameters:

Parameter Name Explanation
mean mean of the normal (Gaussian) part of the distribution.
sd standard deviation of the normal (Gaussian) part of the distribution.
p.zero probability that an observation will be 0.
mean.zmnorm mean of the overall zero-modified normal distribution.
sd.zmnorm standard deviation of the overall normal distribution.

Note

The zero-modified normal distribution is sometimes used to model chemical concentrations for
which some observations are reported as “Below Detection Limit”. See, for example USEPA
(1992c, pp.27-34). In most cases, however, the zero-modified lognormal (delta) distribution will be
more appropriate, since chemical concentrations are bounded below at 0 (e.g., Gilliom and Helsel,
1986; Owen and DeRouen, 1980).

Once you estimate the parameters of the zero-modified normal distribution, it is often useful to
characterize the uncertainty in the estimate of the mean. This is done with a confidence interval.

One way to try to assess whether a zero-modified lognormal (delta), zero-modified normal, censored
normal, or censored lognormal is the best model for the data is to construct both censored and
detects-only probability plots (see qqPlotCensored).

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Aitchison, J. (1955). On the Distribution of a Positive Random Variable Having a Discrete Proba-
bility Mass at the Origin. Journal of the American Statistical Association 50, 901–908.

Gilliom, R.J., and D.R. Helsel. (1986). Estimation of Distributional Parameters for Censored Trace
Level Water Quality Data: 1. Estimation Techniques. Water Resources Research 22, 135–146.

Owen, W., and T. DeRouen. (1980). Estimation of the Mean for Lognormal Data Containing
Zeros and Left-Censored Values, with Applications to the Measurement of Worker Exposure to Air
Contaminants. Biometrics 36, 707–719.

USEPA (1992c). Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities: Ad-
dendum to Interim Final Guidance. Office of Solid Waste, Permits and State Programs Division,
US Environmental Protection Agency, Washington, D.C.

See Also

ZeroModifiedNormal, Normal, ezmlnorm, ZeroModifiedLognormal, estimate.object.

Examples

# Generate 100 observations from a zero-modified normal distribution
# with mean=4, sd=2, and p.zero=0.5, then estimate the parameters.
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# According to equations (1) and (2) above, the overall mean is
# mean.zmnorm=2 and the overall standard deviation is sd.zmnorm=sqrt(6).
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(250)
dat <- rzmnorm(100, mean = 4, sd = 2, p.zero = 0.5)
ezmnorm(dat, ci = TRUE)

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Zero-Modified Normal
#
#Estimated Parameter(s): mean = 4.037732
# sd = 1.917004
# p.zero = 0.450000
# mean.zmnorm = 2.220753
# sd.zmnorm = 2.465829
#
#Estimation Method: mvue
#
#Data: dat
#
#Sample Size: 100
#
#Confidence Interval for: mean.zmnorm
#
#Confidence Interval Method: Normal Approximation
# (t Distribution)
#
#Confidence Interval Type: two-sided
#
#Confidence Level: 95%
#
#Confidence Interval: LCL = 1.731417
# UCL = 2.710088

#----------

# Following Example 9 on page 34 of USEPA (1992c), compute an
# estimate of the mean of the zinc data, assuming a
# zero-modified normal distribution. The data are stored in
# EPA.92c.zinc.df.

head(EPA.92c.zinc.df)
# Zinc.orig Zinc Censored Sample Well
#1 <7 7.00 TRUE 1 1
#2 11.41 11.41 FALSE 2 1
#3 <7 7.00 TRUE 3 1
#4 <7 7.00 TRUE 4 1
#5 <7 7.00 TRUE 5 1
#6 10.00 10.00 FALSE 6 1

New.Zinc <- EPA.92c.zinc.df$Zinc
New.Zinc[EPA.92c.zinc.df$Censored] <- 0
ezmnorm(New.Zinc, ci = TRUE)



456 FcnsByCat

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Zero-Modified Normal
#
#Estimated Parameter(s): mean = 11.891000
# sd = 1.594523
# p.zero = 0.500000
# mean.zmnorm = 5.945500
# sd.zmnorm = 6.123235
#
#Estimation Method: mvue
#
#Data: New.Zinc
#
#Sample Size: 40
#
#Confidence Interval for: mean.zmnorm
#
#Confidence Interval Method: Normal Approximation
# (t Distribution)
#
#Confidence Interval Type: two-sided
#
#Confidence Level: 95%
#
#Confidence Interval: LCL = 3.985545
# UCL = 7.905455

#----------

# Clean up
rm(dat, New.Zinc)

FcnsByCat EnvStats Functions Listed by Category

Description

Hyperlink list of EnvStats functions by category.

Details

• Calibration

• Censored Data

• Data Transformations

• Estimating Distribution Parameters

• Estimating Distribution Quantiles

• Goodness-of-Fit Tests

• Hypothesis Tests

• Monte Carlo Simulation and Risk Assessment
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• Plotting Probability Distributions

• Power and Sample Size Calculations

• Prediction Intervals

• Printing and Plotting Methods

• Probability Distributions and Random Numbers

• Summary Statistics

• Tolerance Intervals

• Trend Analysis

FcnsByCatCalibration EnvStats Functions for Calibration

Description

The EnvStats functions listed below are useful for performing calibration and inverse prediction to
determine the concentration of a chemical based on a machine signal.

Details

Function Name Description
anovaPE Compute lack-of-fit and pure error ANOVA table for a

linear model.
calibrate Fit a calibration line or curve.
detectionLimitCalibrate Determine detection limit based on using a calibration

line (or curve) and inverse regression.
inversePredictCalibrate Predict concentration using a calibration line (or curve)

and inverse regression.
pointwise Pointwise confidence limits for predictions.
predict.lm Predict method for linear model fits.

FcnsByCatCensoredData EnvStats Functions for Censored Data

Description

The EnvStats functions listed below are useful for dealing with Type I censored data.

Details

Data Transformations

Function Name Description
boxcoxCensored Compute values of an objective for Box-Cox Power
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transformations, or compute optimal transformation,
for Type I censored data.

print.boxcoxCensored Print an object of class "boxcoxCensored".

plot.boxcoxCensored Plot an object of class "boxcoxCensored".

Estimating Distribution Parameters

Function Name Description
egammaCensored Estimate shape and scale parameters for a gamma distribution

based on Type I censored data.

egammaAltCensored Estimate mean and CV for a gamma distribution
based on Type I censored data.

elnormCensored Estimate parameters for a lognormal distribution (log-scale)
based on Type I censored data.

elnormAltCensored Estimate parameters for a lognormal distribution (original scale)
based on Type I censored data.

enormCensored Estimate parameters for a Normal distribution based on Type I
censored data.

epoisCensored Estimate parameter for a Poisson distribution based on Type I
censored data.

enparCensored Estimate the mean and standard deviation nonparametrically.

gpqCiNormSinglyCensored Generate the generalized pivotal quantity used to construct a
confidence interval for the mean of a Normal distribution based
on Type I singly censored data.

gpqCiNormMultiplyCensored Generate the generalized pivotal quantity used to construct a
confidence interval for the mean of a Normal distribution based
on Type I multiply censored data.

print.estimateCensored Print an object of class "estimateCensored".

Estimating Distribution Quantiles

Function Name Description
eqlnormCensored Estimate quantiles of a Lognormal distribution (log-scale)

based on Type I censored data, and optionally construct
a confidence interval for a quantile.

eqnormCensored Estimate quantiles of a Normal distribution
based on Type I censored data, and optionally construct
a confidence interval for a quantile.
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All of the functions for computing quantiles (and associated confidence intervals) for complete
(uncensored) data are listed in the help file Estimating Distribution Quantiles. All of these functions,
with the exception of eqnpar, will accept an object of class "estimateCensored". Thus, you may
estimate quantiles (and construct approximate confidence intervals) for any distribution for which:

1. There exists a function to estimate distribution parameters using censored data (see the section
Estimating Distribution Parameters above).

2. There exists a function to estimate quantiles for that distribution based on complete data (see
the help file Estimating Distribution Quantiles).

Nonparametric estimates of quantiles (and associated confidence intervals) can be constructed from
censored data as long as the order statistics used in the results are above all left-censored observa-
tions or below all right-censored observations. See the help file for eqnpar for more information
and examples.

Goodness-of-Fit Tests

Function Name Description
gofTestCensored Perform a goodness-of-fit test based on Type I left- or

right-censored data.

print.gofCensored Print an object of class "gofCensored".

plot.gofCensored Plot an object of class "gofCensored".

Hypothesis Tests

Function Name Description
twoSampleLinearRankTestCensored Perform two-sample linear rank tests based on

censored data.

print.htestCensored Printing method for object of class
"htestCensored".

Plotting Probability Distributions

Function Name Description
cdfCompareCensored Plot two cumulative distribution functions based on Type I

censored data.

ecdfPlotCensored Plot an empirical cumulative distribution function based on
Type I censored data.

ppointsCensored Compute plotting positions for Type I censored data.

qqPlotCensored Produce quantile-quantile (Q-Q) plots, also called probability
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plots, based on Type I censored data.

Prediction and Tolerance Intervals

Function Name Description
gpqTolIntNormSinglyCensored Generate the generalized pivotal quantity used to construct a

tolerance interval for a Normal distribution based
on Type I singly censored data.

gpqTolIntNormMultiplyCensored Generate the generalized pivotal quantity used to construct a
tolerance interval for a Normal distribution based
on Type I multiply censored data.

tolIntLnormCensored Tolerance interval for a lognormal distribution (log-scale)
based on Type I censored data.

tolIntNormCensored Tolerance interval for a Normal distribution based on Type I
censored data.

All of the functions for computing prediction and tolerance intervals for complete (uncensored) data
are listed in the help files Prediction Intervals and Tolerance Intervals. All of these functions, with
the exceptions of predIntNpar and tolIntNpar, will accept an object of class "estimateCensored".
Thus, you may construct approximate prediction or tolerance intervals for any distribution for
which:

1. There exists a function to estimate distribution parameters using censored data (see the section
Estimating Distribution Parameters above).

2. There exists a function to create a prediction or tolerance interval for that distribution based
on complete data (see the help files Prediction Intervals and Tolerance Intervals).

Nonparametric prediction and tolerance intervals can be constructed from censored data as long
as the order statistics used in the results are above all left-censored observations or below all
right-censored observations. See the help files for predIntNpar, predIntNparSimultaneous, and
tolIntNpar for more information and examples.

FcnsByCatDataTrans EnvStats Functions for Data Transformations

Description

The EnvStats functions listed below are useful for deciding on data transformations.

Details

Function Name Description
boxcox Compute values of an objective for Box-Cox transformations, or

compute optimal transformation based on raw observations
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or residuals from a linear model.
boxcoxTransform Apply a Box-Cox Power transformation to a set of data.
plot.boxcox Plotting method for an object of class "boxcox".
plot.boxcoxLm Plotting method for an object of class "boxcoxLm".
print.boxcox Printing method for an object of class "boxcox".
print.boxcoxLm Printing method for an object of class "boxcoxLm".

FcnsByCatEstDistParams

EnvStats Functions for Estimating Distribution Parameters

Description

The EnvStats functions listed below are useful for estimating distribution parameters and optionally
constructing confidence intervals.

Details

Function Name Description
ebeta Estimate parameters of a Beta distribution
ebinom Estimate parameter of a Binomial distribution
eexp Estimate parameter of an Exponential distribution
eevd Estimate parameters of an Extreme Value distribution
egamma Estimate shape and scale parameters of a Gamma distribution
egammaAlt Estimate mean and CV parameters of a Gamma distribution
egevd Estimate parameters of a Generalized Extreme Value distribution
egeom Estimate parameter of a Geometric distribution
ehyper Estimate parameter of a Hypergeometric distribution
elogis Estimate parameters of a Logistic distribution
elnorm Estimate parameters of a Lognormal distribution (log-scale)
elnormAlt Estimate parameters of a Lognormal distribution (original scale)
elnorm3 Estimate parameters of a Three-Parameter Lognormal distribution
enbinom Estimate parameter of a Negative Binomial distribution
enorm Estimate parameters of a Normal distribution
epareto Estimate parameters of a Pareto distribution
epois Estimate parameter of a Poisson distribution
eunif Estimate parameters of a Uniform distribution
eweibull Estimate parameters of a Weibull distribution
ezmlnorm Estimate parameters of a Zero-Modified Lognormal (Delta)

distribution (log-Scale)
ezmlnormAlt Estimate parameters of a Zero-Modified Lognormal (Delta)

distribution (original Scale)
ezmnorm Estimate parameters of a Zero-Modified Normal distribution
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FcnsByCatEstDistQuants

EnvStats Functions for Estimating Distribution Quantiles

Description

The EnvStats functions listed below are useful for estimating distribution quantiles and, for some
functions, optionally constructing confidence intervals for a quantile.

Details

Function Name Description
eqbeta Estimate quantiles of a Beta distribution.
eqbinom Estimate quantiles of a Binomial distribution.
eqexp Estimate quantiles of an Exponential distribution.
eqevd Estimate quantiles of an Extreme Value distribution.
eqgamma Estimate quantiles of a Gamma distribution

using the Shape and Scale Parameterization, and optionally
construct a confidence interval for a quantile.

eqgammaAlt Estimate quantiles of a Gamma distribution
using the mean and CV Parameterization, and optionally
construct a confidence interval for a quantile.

eqgevd Estimate quantiles of a Generalized Extreme Value distribution.
eqgeom Estimate quantiles of a Geometric distribution.
eqhyper Estimate quantiles of a Hypergeometric distribution.
eqlogis Estimate quantiles of a Logistic distribution.
eqlnorm Estimate quantiles of a Lognormal distribution (log-scale),

and optionally construct a confidence interval for a quantile.
eqlnorm3 Estimate quantiles of a Three-Parameter Lognormal distribution.
eqnbinom Estimate quantiles of a Negative Binomial distribution.
eqnorm Estimate quantiles of a Normal distribution,

and optionally construct a confidence interval for a quantile.
eqpareto Estimate quantiles of a Pareto distribution.
eqpois Estimate quantiles of a Poisson distribution,

and optionally construct a confidence interval for a quantile.
equnif Estimate quantiles of a Uniform distribution.
eqweibull Estimate quantiles of a Weibull distribution.
eqzmlnorm Estimate quantiles of a Zero-Modified Lognormal (Delta)

distribution (log-scale).
eqzmlnormAlt Estimate quantiles of a Zero-Modified Lognormal (Delta)

distribution (original scale).
eqzmnorm Estimate quantiles of a Zero-Modified Normal distribution.

FcnsByCatGOFTests EnvStats Functions for Goodness-of-Fit Tests
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Description

The EnvStats functions listed below are useful for performing goodness-of-fit tests for user-specified
probability distributions.

Details

Function Name Description
gofTest Perform a goodness-of-fit test for a specified probability distribution.

The resulting object is of class "gof" unless the test is the
two-sample Kolmogorov-Smirnov test, in which case the resulting
object is of class "gofTwoSample".

plot.gof S3 class method for plotting an object of class "gof".
print.gof S3 class method for printing an object of class "gof".
plot.gofTwoSample S3 class method for plotting an object of class "gofTwoSample".
print.gofTwoSample S3 class method for printing an object of class "gofTwoSample".
gofGroupTest Perform a goodness-of-fit test to determine whether data in a set of groups

appear to all come from the same probability distribution
(with possibly different parameters for each group).
The resulting object is of class "gofGroup".

plot.gofGroup S3 class method for plotting an object of class "gofGroup".
print.gofGroup S3 class method for printing an object of class "gofGroup".

FcnsByCatHypothTests EnvStats Functions for Hypothesis Tests

Description

The EnvStats functions listed below are useful for performing hypothesis tests not already built into
R. See Power and Sample Size Calculations for a list of functions you can use to perform power
and sample size calculations based on various hypothesis tests.

Details

For goodness-of-fit tests, see Goodness-of-Fit Tests.

Function Name Description
chenTTest Chen’s modified one-sided t-test for skewed

distributions.
kendallTrendTest Nonparametric test for monotonic trend

based on Kendall’s tau statistic (and
optional confidence interval for slope).

kendallSeasonalTrendTest Nonparametric test for monotonic trend
within each season based on Kendall’s tau
statistic (and optional confidence interval
for slope).

oneSamplePermutationTest Fisher’s one-sample randomization
(permutation) test for location.
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quantileTest Two-sample rank test to detect a shift in
a proportion of the “treated” population.

quantileTestPValue Compute p-value associated with a specified
combination of m, n, r and k
for the quantile test.
Useful for determining r and k for a
given significance level α.

serialCorrelationTest Test for the presence of serial correlation.
signTest One- or paired-sample sign test on the

median.
twoSampleLinearRankTest Two-sample linear rank test to detect a

shift in the “treated” population.
twoSamplePermutationTestLocation Two-sample or paired-sample randomization

(permutation) test for location.
twoSamplePermutationTestProportion Randomization (permutation) test to compare

two proportions (Fisher’s exact test).
varTest One-sample test on variance or two-sample

test to compare variances.
varGroupTest Test for homogeneity of variance among two

or more groups.
zTestGevdShape Estimate the shape parameter of a

Generalized Extreme Value distribution and
test the null hypothesis that the true
value is equal to 0.

FcnsByCatMCandRisk EnvStats Functions for Monte Carlo Simulation and Risk Assessment

Description

The EnvStats functions listed below are useful for performing Monte Carlo simulations and risk
assessment.

Details

Function Name Description
Empirical Empirical distribution based on a set of observations.
simulateVector Simulate a vector of random numbers from a specified theoretical

probability distribution or empirical probability distribution
using either Latin hypercube sampling or simple random sampling.

simulateMvMatrix Simulate a multivariate matrix of random numbers from specified
theoretical probability distributions and/or empirical probability
distributions based on a specified rank correlation matrix, using
either Latin hypercube sampling or simple random sampling.
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FcnsByCatPlotProbDists

EnvStats Functions for Plotting Probability Distributions

Description

The EnvStats functions listed below are useful for plotting probability distributions.

Details

Function Name Description
cdfCompare Plot two cumulative distribution functions with the same x-axis

in order to compare them.
cdfPlot Plot a cumulative distribution function.
ecdfPlot Plot empirical cumulative distribution function.
epdfPlot Plot empirical probability density function.
pdfPlot Plot probability density function.
qqPlot Produce a quantile-quantile (Q-Q) plot, also called a probability plot.
qqPlotGestalt Plot several Q-Q plots from the same distribution in order to

develop a Gestalt of Q-Q plots for that distribution.

FcnsByCatPower EnvStats Functions for Power and Sample Size Calculations

Description

The EnvStats functions listed below are useful for power and sample size calculations.

Details

Confidence Intervals

Function Name Description
link{ciTableProp} Confidence intervals for binomial proportion, or

difference between two proportions, following Bacchetti (2010)
ciBinomHalfWidth Compute the half-width of a confidence interval for a

Binomial proportion or the difference between two proportions.
ciBinomN Compute the sample size necessary to achieve a specified

half-width of a confidence interval for a Binomial proportion or
the difference between two proportions.

plotCiBinomDesign Create plots for a sampling design based on a confidence interval
for a Binomial proportion or the difference between two proportions.

ciTableMean Confidence intervals for mean of normal distribution, or
difference between two means, following Bacchetti (2010)

ciNormHalfWidth Compute the half-width of a confidence interval for the mean of a
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Normal distribution or the difference between two means.
ciNormN Compute the sample size necessary to achieve a specified half-width

of a confidence interval for the mean of a Normal distribution or
the difference between two means.

plotCiNormDesign Create plots for a sampling design based on a confidence interval
for the mean of a Normal distribution or the difference between
two means.

ciNparConfLevel Compute the confidence level associated with a nonparametric
confidence interval for a percentile.

ciNparN Compute the sample size necessary to achieve a specified
confidence level for a nonparametric confidence interval for
a percentile.

plotCiNparDesign Create plots for a sampling design based on a nonparametric
confidence interval for a percentile.

Hypothesis Tests

Function Name Description
aovN Compute the sample sizes necessary to achieve a

specified power for a one-way fixed-effects analysis
of variance test.

aovPower Compute the power of a one-way fixed-effects analysis of
variance test.

plotAovDesign Create plots for a sampling design based on a one-way
analysis of variance.

propTestN Compute the sample size necessary to achieve a specified
power for a one- or two-sample proportion test.

propTestPower Compute the power of a one- or two-sample proportion test.
propTestMdd Compute the minimal detectable difference associated with

a one- or two-sample proportion test.
plotPropTestDesign Create plots involving sample size, power, difference, and

significance level for a one- or two-sample proportion test.
tTestAlpha Compute the Type I Error associated with specified values for

for power, sample size(s), and scaled MDD for a one- or
two-sample t-test.

tTestN Compute the sample size necessary to achieve a specified
power for a one- or two-sample t-test.

tTestPower Compute the power of a one- or two-sample t-test.
tTestScaledMdd Compute the scaled minimal detectable difference

associated with a one- or two-sample t-test.
plotTTestDesign Create plots for a sampling design based on a one- or

two-sample t-test.
tTestLnormAltN Compute the sample size necessary to achieve a specified

power for a one- or two-sample t-test, assuming lognormal
data.

tTestLnormAltPower Compute the power of a one- or two-sample t-test, assuming
lognormal data.

tTestLnormAltRatioOfMeans Compute the minimal or maximal detectable ratio of means
associated with a one- or two-sample t-test, assuming
lognormal data.

plotTTestLnormAltDesign Create plots for a sampling design based on a one- or
two-sample t-test, assuming lognormal data.
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linearTrendTestN Compute the sample size necessary to achieve a specified
power for a t-test for linear trend.

linearTrendTestPower Compute the power of a t-test for linear trend.
linearTrendTestScaledMds Compute the scaled minimal detectable slope for a t-test

for linear trend.
plotLinearTrendTestDesign Create plots for a sampling design based on a t-test for

linear trend.

Prediction Intervals
Normal Distribution Prediction Intervals

Function Name Description
predIntNormHalfWidth Compute the half-width of a prediction

interval for a normal distribution.
predIntNormK Compute the required value of K for

a prediction interval for a Normal
distribution.

predIntNormN Compute the sample size necessary to
achieve a specified half-width for a
prediction interval for a Normal
distribution.

plotPredIntNormDesign Create plots for a sampling design
based on the width of a prediction
interval for a Normal distribution.

predIntNormTestPower Compute the probability that at least
one future observation (or mean)
falls outside a prediction interval
for a Normal distribution.

plotPredIntNormTestPowerCurve Create plots for a sampling
design based on a prediction interval
for a Normal distribution.

predIntNormSimultaneousTestPower Compute the probability that at
least one set of future observations
(or means) violates the given rule
based on a simultaneous prediction
interval for a Normal distribution.

plotPredIntNormSimultaneousTestPowerCurve Create plots for a sampling design
based on a simultaneous prediction
interval for a Normal distribution.

Lognormal Distribution Prediction Intervals

Function Name Description
predIntLnormAltTestPower Compute the probability that at least

one future observation (or geometric
mean) falls outside a prediction
interval for a lognormal distribution.

plotPredIntLnormAltTestPowerCurve Create plots for a sampling design
based on a prediction interval for a
lognormal distribution.
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predIntLnormAltSimultaneousTestPower Compute the probability that at least
one set of future observations (or
geometric means) violates the given
rule based on a simultaneous
prediction interval for a lognormal
distribution.

plotPredIntLnormAltSimultaneousTestPowerCurve Create plots for a sampling design
based on a simultaneous prediction
interval for a lognormal distribution.

Nonparametric Prediction Intervals

Function Name Description

predIntNparConfLevel Compute the confidence level associated with
a nonparametric prediction interval.

predIntNparN Compute the required sample size to achieve
a specified confidence level for a
nonparametric prediction interval.

plotPredIntNparDesign Create plots for a sampling design based on
the confidence level and sample size of a
nonparametric prediction interval.

predIntNparSimultaneousConfLevel Compute the confidence level associated with
a simultaneous nonparametric prediction
interval.

predIntNparSimultaneousN Compute the required sample size for a
simultaneous nonparametric prediction
interval.

plotPredIntNparSimultaneousDesign Create plots for a sampling design based on
a simultaneous nonparametric prediction
interval.

predIntNparSimultaneousTestPower Compute the probability that at least one
set of future observations violates the
given rule based on a nonparametric
simultaneous prediction interval.

plotPredIntNparSimultaneousTestPowerCurve Create plots for a sampling design based on
a simultaneous nonparametric prediction
interval.

Tolerance Intervals

Function Name Description
tolIntNormHalfWidth Compute the half-width of a tolerance

interval for a normal distribution.
tolIntNormK Compute the required value of K for a

tolerance interval for a Normal distribution.
tolIntNormN Compute the sample size necessary to achieve a

specified half-width for a tolerance interval
for a Normal distribution.

plotTolIntNormDesign Create plots for a sampling design based on a
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tolerance interval for a Normal distribution.

tolIntNparConfLevel Compute the confidence level associated with a
nonparametric tolerance interval for a specified
sample size and coverage.

tolIntNparCoverage Compute the coverage associated with a
nonparametric tolerance interval for a specified
sample size and confidence level.

tolIntNparN Compute the sample size required for a nonparametric
tolerance interval with a specified coverage and
confidence level.

plotTolIntNparDesign Create plots for a sampling design based on a
nonparametric tolerance interval.

FcnsByCatPredInts EnvStats Functions for Prediction Intervals

Description

The EnvStats functions listed below are useful for computing prediction intervals and simultaneous
prediction intervals. See Power and Sample Size for a list of functions useful for computing power
and sample size for a design based on a prediction interval width, or a design based on a hypothesis
test for future observations falling outside of a prediciton interval.

Details

Function Name Description
predIntGamma, Prediction interval for the next k
predIntGammaAlt observations or next set of k means for a

Gamma distribution.
predIntGammaSimultaneous, Construct a simultaneous prediction interval for the
predIntGammaAltSimultaneous next r sampling occasions based on a

Gamma distribution.

predIntLnorm, Prediction interval for the next k
predIntLnormAlt observations or geometric means from a

Lognormal distribution.
predIntLnormSimultaneous, Construct a simultaneous prediction interval for the
predIntLnormAltSimultaneous next r sampling occasions based on a

Lognormal distribution.

predIntNorm Prediction interval for the next k observations
or means from a Normal (Gaussian) distribution.

predIntNormK Compute the value of K for a prediction interval
for a Normal distribution.

predIntNormSimultaneous Construct a simultaneous prediction interval for the
next r sampling occasions based on a
Normal distribution.

predIntNormSimultaneousK Compute the value of K for a simultaneous
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prediction interval for the next r sampling
occasions based on a Normal distribution.

predIntNpar Nonparametric prediction interval for the next k
of K observations.

predIntNparSimultaneous Construct a nonparametric simultaneous prediction
interval for the next r sampling occasions.

predIntPois Prediction interval for the next k observations
or sums from a Poisson distribution.

FcnsByCatPrintPlot EnvStats Functions for Printing and Plotting Objects of Various S3
Classes

Description

The EnvStats functions listed below are printing and plotting methods for various S3 classes.

Details

Printing Methods

Function Name Description
print.boxcox Print an object that inherits from class "boxcox".
print.boxcoxCensored Print an object that inherits from class

"boxcoxCensored".
print.boxcoxLm Print an object that inherits from class "boxcoxLm".

print.estimate Print an object that inherits from class "estimate".
print.estimateCensored Print an object that inherits from class

"estimateCensored".

print.gof Print an object that inherits from class "gof".
print.gofCensored Print an object that inherits from class "gofCensored".
print.gofGroup Print an object that inherits from class "gofGroup".
print.gofTwoSample Print an object that inherits from class

"gofTwoSample".

print.htest Print an object that inherits from class "htest".
print.htestCensored Print an object that inherits from class

"htestCensored".
print.permutationTest Print an object that inherits from class

"permutationTest".

print.summaryStats Print an object that inherits from class
"summaryStats".
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Plotting Methods

Function Name Description
plot.boxcox Plot an object that inherits from class "boxcox".
plot.boxcoxCensored Plot an object that inherits from class "boxcoxCensored".
plot.boxcoxLm Plot an object that inherits from class "boxcoxLm".

plot.gof Plot an object that inherits from class "gof".
plot.gofCensored Plot an object that inherits from class "gofCensored".
plot.gofGroup Plot an object that inherits from class "gofGroup".
plot.gofTwoSample Plot an object that inherits from class "gofTwoSample".

plot.permutationTest Plot an object that inherits from class "permutationTest".

FcnsByCatProbDists EnvStats Probability Distributions and Random Numbers

Description

Listed below are all of the probability distributions available in R and EnvStats. Distributions
with a description in bold are new ones that are part of EnvStats. For each distribution, there
are functions for generating: values for the probability density function, values for the cumulative
distribution function, quantiles, and random numbers.

The data frame Distribution.df contains information about all of these probability distributions.

Details

Distribution Abbreviation Description
beta Beta distribution.
binom Binomial distribution.
cauchy Cauchy distribution.
chi Chi distribution.
chisq Chi-squared distribution.
exp Exponential distribution.
evd Extreme value distribution.
f F-distribution.
gamma Gamma distribution.
gammAlt Gamma distribution parameterized with mean and CV.
gevd Generalized extreme value distribution.
geom Geometric distribution.
hyper Hypergeometric distribution.
logis Logistic distribution.
lnorm Lognormal distribution.
lnormAlt Lognormal distribution parameterized with mean and CV.
lnormMix Mixture of two lognormal distributions.
lnormMixAlt Mixture of two lognormal distributions

parameterized by their means and CVs.
lnorm3 Three-parameter lognormal distribution.
lnormTrunc Truncated lognormal distribution.
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lnormTruncAlt Truncated lognormal distribution
parameterized by mean and CV.

nbinom Negative binomial distribution.
norm Normal distribution.
normMix Mixture of two normal distributions.
normTrunc Truncated normal distribution.
pareto Pareto distribution.
pois Poisson distribution.
t Student’s t-distribution.
tri Triangular distribution.
unif Uniform distribution.
weibull Weibull distribution.
wilcox Wilcoxon rank sum distribution.
zmlnorm Zero-modified lognormal (delta) distribution.
zmlnormAlt Zero-modified lognormal (delta) distribution

parameterized with mean and CV.
zmnorm Zero-modified normal distribution.

In addition, the functions evNormOrdStats and evNormOrdStatsScalar compute expected values
of order statistics from a standard normal distribution.

FcnsByCatSumStats EnvStats Functions for Summary Statistics and Plots

Description

The EnvStats functions listed below create summary statistics and plots.

Details

Summary Statistics
R comes with several functions for computing summary statistics, including mean, var, median,
range, quantile, and summary. The following functions in EnvStats complement these R func-
tions.

Function Name Description
cv Coefficient of variation
geoMean Geometric mean
geoSD Geometric standard deviation
iqr Interquartile range
kurtosis Kurtosis
lMoment L-moments
pwMoment Probability-weighted moments
skewness Skew
summaryFull Extensive summary statistics
summaryStats Summary statistics

Summary Plots
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R comes with several functions for creating plots to summarize data, including hist, barplot,
boxplot, dotchart, stripchart, and numerous others.

The help file Plotting Probability Distributions lists several EnvStats functions useful for produc-
ing summary plots as well. In addition, the EnvStats function stripChart is a modification of
stripchart that allows you to include summary statistics on the plot itself.

FcnsByCatTolInts EnvStats Functions for Tolerance Intervals

Description

The EnvStats functions listed below are useful for computing tolerance intervals. See Power and
Sample Size for a list of functions useful for computing power and sample size for a design based
on a tolerance interval width.

Details

Function Name Description
tolIntGamma, Tolerance interval for a Gamma distribution.
tolIntGammaAlt

tolIntLnorm, Tolerance interval for a lognormal distribution.
tolIntLnormAlt

tolIntNorm Tolerance interval for a Normal (Gaussian) distribution.
tolIntNormK Compute the constant K for a Normal (Gaussian)

tolerance interval.

tolIntNpar Nonparametric tolerance interval.

tolIntPois Tolerance interval for a Poisson distribution.

FcnsByCatTrend EnvStats Functions for Trend Analysis

Description

See Hypothesis Tests.
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GammaAlt The Gamma Distribution (Alternative Parameterization)

Description

Density, distribution function, quantile function, and random generation for the gamma distribution
with parameters mean and cv.

Usage

dgammaAlt(x, mean, cv = 1, log = FALSE)
pgammaAlt(q, mean, cv = 1, lower.tail = TRUE, log.p = FALSE)
qgammaAlt(p, mean, cv = 1, lower.tail = TRUE, log.p = FALSE)
rgammaAlt(n, mean, cv = 1)

Arguments

x vector of quantiles.

q vector of quantiles.

p vector of probabilities between 0 and 1.

n sample size. If length(n) is larger than 1, then length(n) random values are
returned.

mean vector of (positive) means of the distribution of the random variable.

cv vector of (positive) coefficients of variation of the random variable.

log, log.p logical; if TRUE, probabilities/densities p are returned as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X > x].

Details

LetX be a random variable with a gamma distribution with parameters shape=α and scale=β. The
relationship between these parameters and the mean (mean=µ) and coefficient of variation (cv=τ )
of this distribution is given by:

α = τ−2 (1)

β = µ/α (2)

µ = αβ (3)

τ = α−1/2 (4)

Thus, the functions dgammaAlt, pgammaAlt, qgammaAlt, and rgammaAlt call the R functions dgamma,
pgamma, qgamma, and rgamma, respectively, using the values for the shape and scale parameters
given by: shape <- cv^-2, scale <- mean/shape.

Value

dgammaAlt gives the density, pgammaAlt gives the distribution function, qgammaAlt gives the quan-
tile function, and rgammaAlt generates random deviates.

Invalid arguments will result in return value NaN, with a warning.



GammaAlt 475

Note

The gamma distribution takes values on the positive real line. Special cases of the gamma are the
exponential distribution and the chi-square distribution. Applications of the gamma include life
testing, statistical ecology, queuing theory, inventory control and precipitation processes. A gamma
distribution starts to resemble a normal distribution as the shape parameter α tends to infinity or the
cv parameter τ tends to 0.

Some EPA guidance documents (e.g., Singh et al., 2002; Singh et al., 2010a,b) discourage using
the assumption of a lognormal distribution for some types of environmental data and recommend
instead assessing whether the data appear to fit a gamma distribution.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Forbes, C., M. Evans, N. Hastings, and B. Peacock. (2011). Statistical Distributions, Fourth Edi-
tion. John Wiley and Sons, Hoboken, NJ.

Johnson, N. L., S. Kotz, and N. Balakrishnan. (1994). Continuous Univariate Distributions, Volume
1. Second Edition. John Wiley and Sons, New York.

Singh, A., A.K. Singh, and R.J. Iaci. (2002). Estimation of the Exposure Point Concentration Term
Using a Gamma Distribution. EPA/600/R-02/084. October 2002. Technology Support Center for
Monitoring and Site Characterization, Office of Research and Development, Office of Solid Waste
and Emergency Response, U.S. Environmental Protection Agency, Washington, D.C.

Singh, A., R. Maichle, and N. Armbya. (2010a). ProUCL Version 4.1.00 User Guide (Draft).
EPA/600/R-07/041, May 2010. Office of Research and Development, U.S. Environmental Protec-
tion Agency, Washington, D.C.

Singh, A., N. Armbya, and A. Singh. (2010b). ProUCL Version 4.1.00 Technical Guide (Draft).
EPA/600/R-07/041, May 2010. Office of Research and Development, U.S. Environmental Protec-
tion Agency, Washington, D.C.

See Also

GammaDist, egammaAlt, Probability Distributions and Random Numbers.

Examples

# Density of a gamma distribution with parameters mean=10 and cv=2,
# evaluated at 7:

dgammaAlt(7, mean = 10, cv = 2)
#[1] 0.02139335

#----------

# The cdf of a gamma distribution with parameters mean=10 and cv=2,
# evaluated at 12:

pgammaAlt(12, mean = 10, cv = 2)
#[1] 0.7713307

#----------
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# The 25th percentile of a gamma distribution with parameters
# mean=10 and cv=2:

qgammaAlt(0.25, mean = 10, cv = 2)
#[1] 0.1056871

#----------

# A random sample of 4 numbers from a gamma distribution with
# parameters mean=10 and cv=2.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(10)
rgammaAlt(4, mean = 10, cv = 2)
#[1] 3.772004230 1.889028078 0.002987823 8.179824976

geoMean Geometric Mean

Description

Compute the sample geometric mean.

Usage

geoMean(x, na.rm = FALSE)

Arguments

x numeric vector of observations.

na.rm logical scalar indicating whether to remove missing values from x. If na.rm=FALSE
(the default) and x contains missing values, then a missing value (NA) is returned.
If na.rm=TRUE, missing values are removed from x prior to computing the coef-
ficient of variation.

Details

If x contains any non-positive values (values less than or equal to 0), geoMean returns NA and issues
a warning.

Let x denote a vector of n observations from some distribution. The sample geometric mean is a
measure of central tendency. It is defined as:

x̄G = n
√
x1x2 . . . xn = [

n∏
i=1

xi]
1/n (1)

that is, it is the n’th root of the product of all n observations.

An equivalent way to define the geometric mean is by:

x̄G = exp[
1

n

n∑
i=1

log(xi)] = eȳ (2)
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where

ȳ =
1

n

n∑
i=1

yi (3)

yi = log(xi), i = 1, 2, . . . , n (4)

That is, the sample geometric mean is antilog of the sample mean of the log-transformed observa-
tions.

The geometric mean is only defined for positive observations. It can be shown that the geomet-
ric mean is less than or equal to the sample arithmetic mean with equality only when all of the
observations are the same value.

Value

A numeric scalar – the sample geometric mean.

Note

The geometric mean is sometimes used to average ratios and percent changes (Zar, 2010). For the
lognormal distribution, the geometric mean is the maximum likelihood estimator of the median of
the distribution, although it is sometimes used incorrectly to estimate the mean of the distribution
(see the NOTE section in the help file for elnormAlt).

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Berthouex, P.M., and L.C. Brown. (2002). Statistics for Environmental Engineers, Second Edition.
Lewis Publishers, Boca Raton, FL.

Gilbert, R.O. (1987). Statistical Methods for Environmental Pollution Monitoring. Van Nostrand
Reinhold, NY.

Ott, W.R. (1995). Environmental Statistics and Data Analysis. Lewis Publishers, Boca Raton, FL.

Taylor, J.K. (1990). Statistical Techniques for Data Analysis. Lewis Publishers, Boca Raton, FL.

Zar, J.H. (2010). Biostatistical Analysis. Fifth Edition. Prentice-Hall, Upper Saddle River, NJ.

See Also

geoSD, summaryFull, Summary Statistics, mean, median.

Examples

# Generate 20 observations from a lognormal distribution with parameters
# mean=10 and cv=2, and compute the mean, median, and geometric mean.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(250)
dat <- rlnormAlt(20, mean = 10, cv = 2)

mean(dat)
#[1] 5.339273

median(dat)
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#[1] 3.692091

geoMean(dat)
#[1] 4.095127

#----------
# Clean up
rm(dat)

geoSD Geometric Standard Deviation.

Description

Compute the sample geometric standard deviation.

Usage

geoSD(x, na.rm = FALSE, sqrt.unbiased = TRUE)

Arguments

x numeric vector of observations.

na.rm logical scalar indicating whether to remove missing values from x. If na.rm=FALSE
(the default) and x contains missing values, then a missing value (NA) is returned.
If na.rm=TRUE, missing values are removed from x prior to computing the coef-
ficient of variation.

sqrt.unbiased logical scalar specifying what method to use to compute the sample standard
deviation of the log-transformed observations. If sqrt.unbiased=TRUE (the
default), the square root of the unbiased estimator of variance is used, other-
wise the method of moments estimator of standard deviation is used. See the
DETAILS section for more information.

Details

If x contains any non-positive values (values less than or equal to 0), geoMean returns NA and issues
a warning.

Let x denote a vector of n observations from some distribution. The sample geometric standard
deviation is a measure of variability. It is defined as:

sG = exp(sy) (1)

where

sy = [
1

n− 1

n∑
i=1

(yi − ȳ)2]1/2 (2)

yi = log(xi), i = 1, 2, . . . , n (3)

That is, the sample geometric standard deviation is the antilog of the sample standard deviation of
the log-transformed observations.

The sample standard deviation of the log-transformed observations shown in Equation (2) is the
square root of the unbiased estimator of variance. (Note that this estimator of standard deviation
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is not an unbiased estimator.) Sometimes, the square root of the method of moments estimator of
variance is used instead:

sy = [
1

n

n∑
i=1

(yi − ȳ)2]1/2 (4)

This is the estimator used in Equation (1) when sqrt.unbiased=FALSE.

Value

A numeric scalar – the sample geometric standard deviation.

Note

The geometric standard deviation is only defined for positive observations. It is usually computed
only for observations that are assumed to have come from a lognormal distribution.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Berthouex, P.M., and L.C. Brown. (2002). Statistics for Environmental Engineers, Second Edition.
Lewis Publishers, Boca Raton, FL.

Gilbert, R.O. (1987). Statistical Methods for Environmental Pollution Monitoring. Van Nostrand
Reinhold, NY.

Leidel, N.A., K.A. Busch, and J.R. Lynch. (1977). Occupational Exposure Sampling Strategy
Manual. U.S. Department of Health, Education, and Welfare, Public Health Service, Center for
Disease Control, National Institute for Occupational Safety and Health, Cincinnati, Ohio 45226,
January, 1977, pp.102–103.

Ott, W.R. (1995). Environmental Statistics and Data Analysis. Lewis Publishers, Boca Raton, FL.

Taylor, J.K. (1990). Statistical Techniques for Data Analysis. Lewis Publishers, Boca Raton, FL.

Zar, J.H. (2010). Biostatistical Analysis. Fifth Edition. Prentice-Hall, Upper Saddle River, NJ.

See Also

geoMean, linkLognormal, elnorm, summaryFull, Summary Statistics.

Examples

# Generate 2000 observations from a lognormal distribution with parameters
# mean=10 and cv=1, which implies the standard deviation (on the original
# scale) is 10. Compute the mean, geometric mean, standard deviation,
# and geometric standard deviation.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(250)
dat <- rlnormAlt(2000, mean = 10, cv = 1)

mean(dat)
#[1] 10.23417

geoMean(dat)
#[1] 7.160154
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sd(dat)
#[1] 9.786493

geoSD(dat)
#[1] 2.334358

#----------
# Clean up
rm(dat)

GEVD The Generalized Extreme Value Distribution

Description

Density, distribution function, quantile function, and random generation for the generalized extreme
value distribution.

Usage

dgevd(x, location = 0, scale = 1, shape = 0)
pgevd(q, location = 0, scale = 1, shape = 0)
qgevd(p, location = 0, scale = 1, shape = 0)
rgevd(n, location = 0, scale = 1, shape = 0)

Arguments

x vector of quantiles.

q vector of quantiles.

p vector of probabilities between 0 and 1.

n sample size. If length(n) is larger than 1, then length(n) random values are
returned.

location vector of location parameters.

scale vector of positive scale parameters.

shape vector of shape parameters.

Details

Let X be a generalized extreme value random variable with parameters location=η, scale=θ, and
shape=κ. When the shape parameter κ = 0, the generalized extreme value distribution reduces
to the extreme value distribution. When the shape parameter κ 6= 0, the cumulative distribution
function of X is given by:

F (x; η, θ, κ) = exp{−[1− κ(x− η)/θ]1/κ}

where −∞ < η, κ <∞ and θ > 0. When κ > 0, the range of x is:

−∞ < x ≤ η + θ/κ

and when κ < 0 the range of x is:
η + θ/κ ≤ x <∞
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The pth quantile of X is given by:

xp = η +
θ{1− [−log(p)]κ}

κ

Value

density (devd), probability (pevd), quantile (qevd), or random sample (revd) for the generalized
extreme value distribution with location parameter(s) determined by location, scale parameter(s)
determined by scale, and shape parameter(s) determined by shape.

Note

Two-parameter extreme value distributions (EVD) have been applied extensively since the 1930’s
to several fields of study, including the distributions of hydrological and meteorological variables,
human lifetimes, and strength of materials. The three-parameter generalized extreme value dis-
tribution (GEVD) was introduced by Jenkinson (1955) to model annual maximum and minimum
values of meteorological events. Since then, it has been used extensively in the hydological and
meteorological fields.

The three families of EVDs are all special kinds of GEVDs. When the shape parameter κ = 0, the
GEVD reduces to the Type I extreme value (Gumbel) distribution. (The function zTestGevdShape
allows you to test the null hypothesis that the shape parameter is equal to 0.) When κ > 0, the
GEVD is the same as the Type II extreme value distribution, and when κ < 0 it is the same as the
Type III extreme value distribution.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Forbes, C., M. Evans, N. Hastings, and B. Peacock. (2011). Statistical Distributions. Fourth
Edition. John Wiley and Sons, Hoboken, NJ.

Jenkinson, A.F. (1955). The Frequency Distribution of the Annual Maximum (or Minimum) of
Meteorological Events. Quarterly Journal of the Royal Meteorological Society, 81, 158–171.

Johnson, N. L., S. Kotz, and N. Balakrishnan. (1995). Continuous Univariate Distributions, Volume
2. Second Edition. John Wiley and Sons, New York.

See Also

egevd, zTestGevdShape, EVD, Probability Distributions and Random Numbers.

Examples

# Density of a generalized extreme value distribution with
# location=0, scale=1, and shape=0, evaluated at 0.5:

dgevd(.5)
#[1] 0.3307043

#----------

# The cdf of a generalized extreme value distribution with
# location=1, scale=2, and shape=0.25, evaluated at 0.5:
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pgevd(.5, 1, 2, 0.25)
#[1] 0.2795905

#----------

# The 90th percentile of a generalized extreme value distribution with
# location=-2, scale=0.5, and shape=-0.25:

qgevd(.9, -2, 0.5, -0.25)
#[1] -0.4895683

#----------

# Random sample of 4 observations from a generalized extreme value
# distribution with location=5, scale=2, and shape=1.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(20)
rgevd(4, 5, 2, 1)
#[1] 6.738692 6.473457 4.446649 5.727085

Gibbons.et.al.09.Alkilinity.vec

Alkilinity Data from Gibbons et al. (2009)

Description

Alkilinity concentrations (mg/L) in groundwater.

Usage

data(Gibbons.et.al.09.Alkilinity.vec)

Format

A numeric vector with 27 elements.

Source

Gibbons, R.D., D.K. Bhaumik, and S. Aryal. (2009). Statistical Methods for Groundwater Moni-
toring. Second Edition. John Wiley & Sons, Hoboken. Table 5.5, p. 107.
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Gibbons.et.al.09.Vinyl.Chloride.vec

Vinyl Chloride Data from Gibbons et al. (2009)

Description

Vinyl chloride concentrations (mug/L) in groundwater from upgradient background monitoring
wells.

Usage

data(Gibbons.et.al.09.Vinyl.Chloride.vec)

Format

A numeric vector with 34 elements.

Source

Gibbons, R.D., D.K. Bhaumik, and S. Aryal. (2009). Statistical Methods for Groundwater Moni-
toring. Second Edition. John Wiley & Sons, Hoboken. Table 4.3, p. 87.

gof.object S3 Class "gof"

Description

Objects of S3 class "gof" are returned by the EnvStats function gofTest when just the x argument
is supplied.

Details

Objects of S3 class "gof" are lists that contain information about the assumed distribution, the
estimated or user-supplied distribution parameters, and the test statistic and p-value.

Value

Required Components
The following components must be included in a legitimate list of class "gof".

distribution a character string indicating the name of the assumed distribution (see
Distribution.df).

dist.abb a character string containing the abbreviated name of the distribution (see
Distribution.df).

distribution.parameters

a numeric vector with a names attribute containing the names and values of the
estimated or user-supplied distribution parameters associated with the assumed
distribution.
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n.param.est a scalar indicating the number of distribution parameters estimated prior to per-
forming the goodness-of-fit test. The value of this component will be 0 if the
parameters were supplied by the user.

estimation.method

a character string indicating the method used to compute the estimated parame-
ters. The value of this component will depend on the available estimation meth-
ods (see Distribution.df). The value of this component will be NULL if the
parameters were supplied by the user.

statistic a numeric scalar with a names attribute containing the name and value of the
goodness-of-fit statistic.

sample.size a numeric scalar containing the number of non-missing observations in the sam-
ple used for the goodness-of-fit test.

parameters numeric vector with a names attribute containing the name(s) and value(s) of
the parameter(s) associated with the test statistic given in the statistic com-
ponent.

z.value (except when test="chisq" or test="ks") numeric scalar containing the z-
value associated with the goodness-of-fit statistic.

p.value numeric scalar containing the p-value associated with the goodness-of-fit statis-
tic.

alternative character string indicating the alternative hypothesis.

method character string indicating the name of the goodness-of-fit test (e.g.,
"Shapiro-Wilk GOF").

data numeric vector containing the data actually used for the goodness-of-fit test (i.e.,
the original data without any missing or infinite values).

data.name character string indicating the name of the data object used for the goodness-of-
fit test.

NOTE: when the function gofTest is called with both arguments x and y and test="ks", it returns
an object of class "gofTwoSample". No specific parametric distribution is assumed, so the value of
the component distribution is "Equal" and the following components are omitted: dist.abb,
distribution.parameters, n.param.est, estimation.method, and z.value.

Optional Components
The following component is included when the data object contains missing (NA), undefined (NaN)
and/or infinite (Inf, -Inf) values.

bad.obs numeric scalar indicating the number of missing (NA), undefined (NaN) and/or
infinite (Inf, -Inf) values that were removed from the data object prior to per-
forming the goodness-of-fit test.

The following components are included in the result of calling gofTest with the argument
test="chisq" and may be used by the function plot.gof:

cut.points numeric vector containing the cutpoints used to define the cells.

counts numeric vector containing the observed number of counts for each cell.

expected numeric vector containing the expected number of counts for each cell.

X2.components numeric vector containing the contribution of each cell to the chi-square statistic.
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Methods

Generic functions that have methods for objects of class "gof" include:
print, plot.

Note

Since objects of class "gof" are lists, you may extract their components with the $ and [[ operators.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

See Also

gofTest, print.gof, plot.gof, Goodness-of-Fit Tests, Distribution.df, gofCensored.object.

Examples

# Create an object of class "gof", then print it out.
# (Note: the call to set.seed simply allows you to reproduce
# this example.)

set.seed(250)

dat <- rnorm(20, mean = 3, sd = 2)

gof.obj <- gofTest(dat)

mode(gof.obj)
#[1] "list"

class(gof.obj)
#[1] "gof"

names(gof.obj)
# [1] "distribution" "dist.abb"
# [3] "distribution.parameters" "n.param.est"
# [5] "estimation.method" "statistic"
# [7] "sample.size" "parameters"
# [9] "z.value" "p.value"
#[11] "alternative" "method"
#[13] "data" "data.name"
#[15] "bad.obs"

gof.obj

#Results of Goodness-of-Fit Test
#-------------------------------
#
#Test Method: Shapiro-Wilk GOF
#
#Hypothesized Distribution: Normal
#
#Estimated Parameter(s): mean = 2.861160
# sd = 1.180226
#
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#Estimation Method: mvue
#
#Data: dat
#
#Sample Size: 20
#
#Test Statistic: W = 0.9640724
#
#Test Statistic Parameter: n = 20
#
#P-value: 0.6279872
#
#Alternative Hypothesis: True cdf does not equal the
# Normal Distribution.

#==========

# Extract the p-value
#--------------------

gof.obj$p.value
#[1] 0.6279872

#==========

# Plot the results of the test
#-----------------------------

dev.new()
plot(gof.obj)

#==========

# Clean up
#---------
rm(gof.obj)
graphics.off()

gofCensored.object S3 Class "gofCensored"

Description

Objects of S3 class "gofCensored" are returned by the EnvStats function gofTestCensored.

Details

Objects of S3 class "gofCensored" are lists that contain information about the assumed distribu-
tion, the amount of censoring, the estimated or user-supplied distribution parameters, and the test
statistic and p-value.
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Value

Required Components
The following components must be included in a legitimate list of class "gofCensored".

distribution a character string indicating the name of the assumed distribution (see
Distribution.df).

dist.abb a character string containing the abbreviated name of the distribution (see
Distribution.df).

distribution.parameters

a numeric vector with a names attribute containing the names and values of the
estimated or user-supplied distribution parameters associated with the assumed
distribution.

n.param.est a scalar indicating the number of distribution parameters estimated prior to per-
forming the goodness-of-fit test. The value of this component will be 0 if the
parameters were supplied by the user.

estimation.method

a character string indicating the method used to compute the estimated parame-
ters. The value of this component will depend on the available estimation meth-
ods (see Distribution.df). The value of this component will be NULL if the
parameters were supplied by the user.

statistic a numeric scalar with a names attribute containing the name and value of the
goodness-of-fit statistic.

sample.size a numeric scalar containing the number of non-missing observations in the sam-
ple used for the goodness-of-fit test.

censoring.side character string indicating whether the data are left- or right-censored.
censoring.levels

numeric scalar or vector indicating the censoring level(s).
percent.censored

numeric scalar indicating the percent of non-missing observations that are cen-
sored.

parameters numeric vector with a names attribute containing the name(s) and value(s) of
the parameter(s) associated with the test statistic given in the statistic com-
ponent.

z.value (except when test="chisq" or test="ks") numeric scalar containing the z-
value associated with the goodness-of-fit statistic.

p.value numeric scalar containing the p-value associated with the goodness-of-fit statis-
tic.

alternative character string indicating the alternative hypothesis.
method character string indicating the name of the goodness-of-fit test (e.g.,

"Shapiro-Wilk GOF").
data numeric vector containing the data actually used for the goodness-of-fit test (i.e.,

the original data without any missing or infinite values).
data.name character string indicating the name of the data object used for the goodness-of-

fit test.
censored logical vector indicating which observations are censored.
censoring.name character string indicating the name of the object used to indicate the censoring.
bad.obs numeric scalar indicating the number of missing (NA), undefined (NaN) and/or

infinite (Inf, -Inf) values that were removed from the data object prior to per-
forming the goodness-of-fit test.
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Methods

Generic functions that have methods for objects of class "gofCensored" include:
print, plot.

Note

Since objects of class "gofCensored" are lists, you may extract their components with the $ and
[[ operators.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

See Also

gofTestCensored, print.gofCensored, plot.gofCensored, Censored Data, Goodness-of-Fit
Tests, Distribution.df, gof.object.

Examples

# Create an object of class "gofCensored", then print it out.
#------------------------------------------------------------

gofCensored.obj <- with(EPA.09.Ex.15.1.manganese.df,
gofTestCensored(Manganese.ppb, Censored, test = "sf"))

mode(gofCensored.obj)
#[1] "list"

class(gofCensored.obj)
#[1] "gofCensored"

names(gofCensored.obj)
# [1] "distribution" "dist.abb"
# [3] "distribution.parameters" "n.param.est"
# [5] "estimation.method" "statistic"
# [7] "sample.size" "censoring.side"
# [9] "censoring.levels" "percent.censored"
#[11] "parameters" "z.value"
#[13] "p.value" "alternative"
#[15] "method" "data"
#[17] "data.name" "censored"
#[19] "censoring.name" "bad.obs"

gofCensored.obj

#Results of Goodness-of-Fit Test
#Based on Type I Censored Data
#-------------------------------
#
#Test Method: Shapiro-Francia GOF
# (Multiply Censored Data)
#
#Hypothesized Distribution: Normal
#
#Censoring Side: left
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#
#Censoring Level(s): 2 5
#
#Estimated Parameter(s): mean = 15.23508
# sd = 30.62812
#
#Estimation Method: MLE
#
#Data: Manganese.ppb
#
#Censoring Variable: Censored
#
#Sample Size: 25
#
#Percent Censored: 24%
#
#Test Statistic: W = 0.8368016
#
#Test Statistic Parameters: N = 25.00
# DELTA = 0.24
#
#P-value: 0.004662658
#
#Alternative Hypothesis: True cdf does not equal the
# Normal Distribution.

#==========

# Extract the p-value
#--------------------

gofCensored.obj$p.value
#[1] 0.004662658

#==========

# Plot the results of the test
#-----------------------------

dev.new()
plot(gofCensored.obj)

#==========

# Clean up
#---------
rm(gofCensored.obj)
graphics.off()

gofGroup.object S3 Class "gofGroup"

Description

Objects of S3 class "gofGroup" are returned by the EnvStats function gofGroupTest.
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Details

Objects of S3 class "gofGroup" are lists that contain information about the assumed distribution,
the estimated or user-supplied distribution parameters, and the test statistic and p-value.

Value

Required Components
The following components must be included in a legitimate list of class "gofGroup".

distribution a character string indicating the name of the assumed distribution (see
Distribution.df).

dist.abb a character string containing the abbreviated name of the distribution (see
Distribution.df).

statistic a numeric scalar with a names attribute containing the name and value of the
goodness-of-fit statistic.

sample.size a numeric scalar containing the number of non-missing observations in the sam-
ple used for the goodness-of-fit test.

parameters numeric vector with a names attribute containing the name(s) and value(s) of
the parameter(s) associated with the test statistic given in the statistic com-
ponent.

p.value numeric scalar containing the p-value associated with the goodness-of-fit statis-
tic.

alternative character string indicating the alternative hypothesis.

method character string indicating the name of the goodness-of-fit test (e.g.,
"Wilk-Shapiro GOF (Normal Scores)").

data.name character string indicating the name of the data object used for the goodness-of-
fit test.

grouping.variable

character string indicating the name of the variable defining the groups.

bad.obs numeric vector indicating the number of missing (NA), undefined (NaN) and/or
infinite (Inf, -Inf) values that were removed from each group and the grouping
variable prior to performing the goodness-of-fit test.

n.groups numeric scalar containing the number of groups.

group.names character vector containing the levels of the grouping variable, i.e., the names of
each of the groups.

group.scores numeric vector containing the individual statistics for each group.

Optional Component
The following component is included when gofGroupTest is called with a formula for the first
argument and a data argument.

parent.of.data character string indicating the name of the object supplied in the data argument.

Methods

Generic functions that have methods for objects of class "gofGroup" include:
print, plot.
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Note

Since objects of class "gofGroup" are lists, you may extract their components with the $ and [[
operators.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

See Also

gofGroupTest, print.gofGroup, plot.gofGroup, Goodness-of-Fit Tests, Distribution.df.

Examples

# Create an object of class "gofGroup", then print it out.

# Example 10-4 of USEPA (2009, page 10-20) gives an example of
# simultaneously testing the assumption of normality for nickel
# concentrations (ppb) in groundwater collected at 4 monitoring
# wells over 5 months. The data for this example are stored in
# EPA.09.Ex.10.1.nickel.df.

gofGroup.obj <- gofGroupTest(Nickel.ppb ~ Well,
data = EPA.09.Ex.10.1.nickel.df)

mode(gofGroup.obj)
#[1] "list"

class(gofGroup.obj)
#[1] "gofGroup"

names(gofGroup.obj)
# [1] "distribution" "dist.abb" "statistic"
# [4] "sample.size" "parameters" "p.value"
# [7] "alternative" "method" "data.name"
#[10] "grouping.variable" "parent.of.data" "bad.obs"
#[13] "n.groups" "group.names" "group.scores"

gofGroup.obj
#Results of Group Goodness-of-Fit Test
#-------------------------------------
#
#Test Method: Wilk-Shapiro GOF (Normal Scores)
#
#Hypothesized Distribution: Normal
#
#Data: Nickel.ppb
#
#Grouping Variable: Well
#
#Data Source: EPA.09.Ex.10.1.nickel.df
#
#Number of Groups: 4
#
#Sample Sizes: Well.1 = 5
# Well.2 = 5
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# Well.3 = 5
# Well.4 = 5
#
#Test Statistic: z (G) = -3.658696
#
#P-values for
#Individual Tests: Well.1 = 0.03510747
# Well.2 = 0.02385344
# Well.3 = 0.01120775
# Well.4 = 0.10681461
#
#P-value for
#Group Test: 0.0001267509
#
#Alternative Hypothesis: At least one group
# does not come from a
# Normal Distribution.

#==========

# Extract the p-values
#---------------------

gofGroup.obj$p.value
# Well.1 Well.2 Well.3 Well.4 z (G)
#0.0351074733 0.0238534406 0.0112077511 0.1068146088 0.0001267509

#==========

# Plot the results of the test
#-----------------------------

dev.new()
plot(gofGroup.obj)

#==========

# Clean up
#---------
rm(gofGroup.obj)
graphics.off()

gofGroupTest Goodness-of-Fit Test for a Specified Probability Distribution for
Groups

Description

Perform a goodness-of-fit test to determine whether data in a set of groups appear to all come from
the same probability distribution (with possibly different parameters for each group).

Usage

gofGroupTest(object, ...)
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## S3 method for class formula
gofGroupTest(object, data = NULL, subset,
na.action = na.pass, ...)

## Default S3 method:
gofGroupTest(object, group, test = "sw",
distribution = "norm", est.arg.list = NULL, n.classes = NULL,
cut.points = NULL, param.list = NULL,
estimate.params = ifelse(is.null(param.list), TRUE, FALSE),
n.param.est = NULL, correct = NULL, digits = .Options$digits,
exact = NULL, ws.method = "normal scores",
data.name = NULL, group.name = NULL, parent.of.data = NULL,
subset.expression = NULL, ...)

## S3 method for class data.frame
gofGroupTest(object, ...)

## S3 method for class matrix
gofGroupTest(object, ...)

## S3 method for class list
gofGroupTest(object, ...)

Arguments

object an object containing data for 2 or more groups to be compared to the hypoth-
esized distribution specified by distribution. In the default method, the ar-
gument object must be a numeric vector. When object is a data frame, all
columns must be numeric. When object is a matrix, it must be a numeric ma-
trix. When object is a list, all components must be numeric vectors. In the
formula method, a symbolic specification of the form y ~ g can be given, indi-
cating the observations in the vector y are to be grouped according to the levels
of the factor g. Missing (NA), undefined (NaN), and infinite (Inf, -Inf) values
are allowed but will be removed.

data when object is a formula, data specifies an optional data frame, list or en-
vironment (or object coercible by as.data.frame to a data frame) containing
the variables in the model. If not found in data, the variables are taken from
environment(formula), typically the environment from which
summaryStats is called.

subset when object is a formula, subset specifies an optional vector specifying a
subset of observations to be used.

na.action when object is a formula, na.action specifies a function which indicates what
should happen when the data contain NAs. The default is na.pass.

group when object is a numeric vector, group is a factor or character vector indicating
which group each observation belongs to. When object is a matrix or data
frame this argument is ignored and the columns define the groups. When object
is a list this argument is ignored and the components define the groups. When
object is a formula, this argument is ignored and the right-hand side of the
formula specifies the grouping variable.

test character string defining which goodness-of-fit test to perform on each group.
Possible values are: "sw" (Shapiro-Wilk; the default), "sf" (Shapiro-Francia),
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"ppcc" (Probability Plot Correlation Coefficient), "skew" (Zero-skew), "chisq"
(Chi-squared), "ks" (Kolmogorov-Smirnov), and "ws" (Wilk-Shapiro test for
Uniform [0, 1] distribution).

distribution a character string denoting the distribution abbreviation. See the help file for
Distribution.df for a list of distributions and their abbreviations. The default
value is distribution="norm" (Normal distribution).
When test="sw", test="sf", or test="ppcc", any continuous distribuiton is
allowed (e.g., "norm" (normal), "lnorm" (lognormal), "gamma" (gamma), etc.),
as well as mixed distributions involving the normal distribution (i.e., "zmnorm"
(zero-modified normal), "zmlnorm" (zero-modified lognormal (delta)), and
"zmlnorm.alt" (zero-modified lognormal with alternative parameterization)).
When test="skew", only the values "norm" (normal), "lnorm" (lognormal),
"lnorm.alt" (lognormal with alternative parameterization), "zmnorm" (zero-
modified normal), "zmlnorm" (zero-modified lognormal (delta)), and
"zmlnorm.alt" (zero-modified lognormal with alternative parameterization) are
allowed.
When test="ks", any continuous distribution is allowed.
When test="chisq", any distribuiton is allowed.
When test="ws", this argument is ignored.

est.arg.list a list of arguments to be passed to the function estimating the distribution pa-
rameters for each group of observations. For example, if test="sw" and
distribution="gamma", setting est.arg.list=list(method="bcmle") in-
dicates using the bias-corrected maximum-likelihood estimators of shape and
scale (see the help file for egamma. See the help file Estimating Distribution Pa-
rameters for a list of estimating functions. The default value is est.arg.list=NULL
so that all default values for the estimating function are used. This argument is
ignored if estimate.params=FALSE.
When test="sw", test="sf", test="ppcc", or test="skew", and you are
testing for some form of normality (i.e., Normal, Lognormal, Three-Parameter
Lognormal, Zero-Modified Normal, or Zero-Modified Lognormal (Delta)), the
estimated parameters are provided in the output merely for information, and
the choice of the method of estimation has no effect on the goodness-of-fit test
statistics or p-values.
When test="ks", and estimate.params=TRUE, the estimated parameters are
used to specify the null hypothesis of which distribution the data are assumed to
come from.
When test="chisq" and estimate.params=TRUE, the estimated parameters
are used to specify the null hypothesis of which distribution the data are assumed
to come from.
When test="ws", this argument is ignored.

n.classes for the case when test="chisq", the number of cells into which the obser-
vations within each group are to be allocated. If the argument cut.points is
supplied, then n.classes is set to length(cut.points)-1. The default value
is
ceiling(2* (length(x)^(2/5))) and is recommended by Moore (1986).

cut.points for the case when test="chisq", a vector of cutpoints that defines the cells for
each group of observations. The element x[i] is allocated to cell j if
cut.points[j] < x[i] ≤ cut.points[j+1]. If x[i] is less than or equal to
the first cutpoint or greater than the last cutpoint, then x[i] is treated as missing.
If the hypothesized distribution is discrete, cut.points must be supplied. The
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default value is cut.points=NULL, in which case the cutpoints are determined
by n.classes equi-probable intervals.

param.list for the case when test="ks" or test="chisq", a list with values for the pa-
rameters of the specified distribution. See the help file for Distribution.df
for the names and possible values of the parameters associated with each dis-
tribution. The default value is NULL, which forces estimation of the distribution
parameters. This argument is ignored if estimate.params=TRUE.

estimate.params

for the case when test="ks" or test="chisq", a logical scalar indicating
whether to perform the goodness-of-fit test based on estimating the distribu-
tion parameters (estimate.params=TRUE) or using the user-supplied distribu-
tion parameters specified by param.list
(estimate.params=FALSE). The default value of estimate.params is TRUE if
param.list=NULL, otherwise it is FALSE.

n.param.est for the case when test="ks" or test="chisq", an integer indicating the num-
ber of parameters estimated from the data.
If estimate.params=TRUE, the default value is the number of parameters as-
sociated with the distribution specified by distribution (e.g., 2 for a normal
distribution). If estimate.params=FALSE, the default value is n.param.est=0.

correct for the case when test="chisq", a logical scalar indicating whether to use the
continuity correction. The default value is correct=FALSE unless
n.classes=2.

digits a scalar indicating how many significant digits to print out for the parameters
associated with the hypothesized distribution. The default value is
.Options$digits.

exact for the case when test="ks", exact=NULL by default, but can be set to a logical
scalar indicating whether an exact p-value should be computed. See the help file
for ks.test for more information.

ws.method character string indicating which method to use when performing the Wilk-
Shapiro test for a Uniform [0,1] distribution on the p-values from the goodness-
of-fit tests on each group. Possible values are ws.method="normal scores"
(the default) or ws.method="chi-square scores". See the subsection Wilk-
Shapiro goodness-of-fit test for Uniform [0, 1] distribution under the DETAILS
section of the help file for gofTest for more information.
NOTE: In the case where you are testing whether each group comes from a Uni-
form [0,1] distribution (i.e., when you set test="ws"), the argument ws.method
determines which score types are used for each individual test of the groups as
well.

data.name character string indicating the name of the data used for the goodness-of-fit tests.
The default value is data.name=deparse(substitute(object)).

group.name character string indicating the name of the data used to create the groups. The
default value is group.name=deparse(substitute(group)).

parent.of.data character string indicating the source of the data used for the goodness-of-fit
tests.

subset.expression

character string indicating the expression used to subset the data.

... additional arguments affecting the goodness-of-fit test.
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Details

The function gofGroupTest performs a goodness-of-fit test for each group of data by calling the
function gofTest. Using the p-values from these goodness-of-fit tests, it then calls the function
gofTest with the argument test="ws" to test whether the p-values appear to come from a Uniform
[0,1] distribution.

Value

a list of class "gofGroup" containing the results of the group goodness-of-fit test. Objects of class
"gofGroup" have special printing and plotting methods. See the help file for gofGroup.object for
details.

Note

The Wilk-Shapiro (1968) tests for a Uniform [0, 1] distribution were introduced in the context
of testing whether several independent samples all come from normal distributions, with possibly
different means and variances. The function gofGroupTest extends this idea to allow you to test
whether several independent samples come from the same distribution (e.g., gamma, extreme value,
etc.), with possibly different parameters.

Examples of simultaneously assessing whether several groups come from the same distribution are
given in USEPA (2009) and Gibbons et al. (2009).

In practice, almost any goodness-of-fit test will not reject the null hypothesis if the number of obser-
vations is relatively small. Conversely, almost any goodness-of-fit test will reject the null hypothesis
if the number of observations is very large, since “real” data are never distributed according to any
theoretical distribution (Conover, 1980, p.367). For most cases, however, the distribution of “real”
data is close enough to some theoretical distribution that fairly accurate results may be provided by
assuming that particular theoretical distribution. One way to asses the goodness of the fit is to use
goodness-of-fit tests. Another way is to look at quantile-quantile (Q-Q) plots (see qqPlot).

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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See Also

gofTest, gofGroup.object, print.gofGroup, plot.gofGroup, qqPlot.
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Examples

# Example 10-4 of USEPA (2009, page 10-20) gives an example of
# simultaneously testing the assumption of normality for nickel
# concentrations (ppb) in groundwater collected at 4 monitoring
# wells over 5 months. The data for this example are stored in
# EPA.09.Ex.10.1.nickel.df.

EPA.09.Ex.10.1.nickel.df
# Month Well Nickel.ppb
#1 1 Well.1 58.8
#2 3 Well.1 1.0
#3 6 Well.1 262.0
#4 8 Well.1 56.0
#5 10 Well.1 8.7
#6 1 Well.2 19.0
#7 3 Well.2 81.5
#8 6 Well.2 331.0
#9 8 Well.2 14.0
#10 10 Well.2 64.4
#11 1 Well.3 39.0
#12 3 Well.3 151.0
#13 6 Well.3 27.0
#14 8 Well.3 21.4
#15 10 Well.3 578.0
#16 1 Well.4 3.1
#17 3 Well.4 942.0
#18 6 Well.4 85.6
#19 8 Well.4 10.0
#20 10 Well.4 637.0

# Test for a normal distribution at each well:
#--------------------------------------------

gofGroup.list <- gofGroupTest(Nickel.ppb ~ Well,
data = EPA.09.Ex.10.1.nickel.df)

gofGroup.list

#Results of Group Goodness-of-Fit Test
#-------------------------------------
#
#Test Method: Wilk-Shapiro GOF (Normal Scores)
#
#Hypothesized Distribution: Normal
#
#Data: Nickel.ppb
#
#Grouping Variable: Well
#
#Data Source: EPA.09.Ex.10.1.nickel.df
#
#Number of Groups: 4
#
#Sample Sizes: Well.1 = 5
# Well.2 = 5
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# Well.3 = 5
# Well.4 = 5
#
#Test Statistic: z (G) = -3.658696
#
#P-values for
#Individual Tests: Well.1 = 0.03510747
# Well.2 = 0.02385344
# Well.3 = 0.01120775
# Well.4 = 0.10681461
#
#P-value for
#Group Test: 0.0001267509
#
#Alternative Hypothesis: At least one group
# does not come from a
# Normal Distribution.

dev.new()
plot(gofGroup.list)

#----------

# Test for a lognormal distribution at each well:
#-----------------------------------------------

gofGroupTest(Nickel.ppb ~ Well, data = EPA.09.Ex.10.1.nickel.df,
dist = "lnorm")

#Results of Group Goodness-of-Fit Test
#-------------------------------------
#
#Test Method: Wilk-Shapiro GOF (Normal Scores)
#
#Hypothesized Distribution: Lognormal
#
#Data: Nickel.ppb
#
#Grouping Variable: Well
#
#Data Source: EPA.09.Ex.10.1.nickel.df
#
#Number of Groups: 4
#
#Sample Sizes: Well.1 = 5
# Well.2 = 5
# Well.3 = 5
# Well.4 = 5
#
#Test Statistic: z (G) = 0.2401720
#
#P-values for
#Individual Tests: Well.1 = 0.6898164
# Well.2 = 0.6700394
# Well.3 = 0.3208299
# Well.4 = 0.5041375
#
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#P-value for
#Group Test: 0.5949015
#
#Alternative Hypothesis: At least one group
# does not come from a
# Lognormal Distribution.

#----------
# Clean up
rm(gofGroup.list)
graphics.off()

gofTest Goodness-of-Fit Test

Description

Perform a goodness-of-fit test to determine whether a data set appears to come from a specified
probability distribution or if two data sets appear to come from the same distribution.

Usage

gofTest(y, ...)

## S3 method for class formula
gofTest(y, data = NULL, subset,

na.action = na.pass, ...)

## Default S3 method:
gofTest(y, x = NULL,
test = ifelse(is.null(x), "sw", "ks"),
distribution = "norm", est.arg.list = NULL,
alternative = "two.sided", n.classes = NULL,
cut.points = NULL, param.list = NULL,
estimate.params = ifelse(is.null(param.list), TRUE, FALSE),
n.param.est = NULL, correct = NULL, digits = .Options$digits,
exact = NULL, ws.method = "normal scores", warn = TRUE,
data.name = NULL, data.name.x = NULL, parent.of.data = NULL,
subset.expression = NULL, ...)

Arguments

y an object containing data for the goodness-of-fit test. In the default method, the
argument y must be numeric vector of observations. In the formula method, y
must be a formula of the form y ~ 1 or y ~ x. The form y ~ 1 indicates use
the observations in the vector y for a one-sample goodness-of-fit test. The form
y ~ x is only relevant to the case of the two-sample Kolmogorov-Smirnov test
(test="ks") and indicates use the observations in the vector y as the second
sample and use the observations in the vector x as the first sample. Note that for
the formula method, x and y must be the same length but this is not a requirement
of the test and you can use vectors of different lengths via the default method.
Missing (NA), undefined (NaN), and infinite (Inf, -Inf) values are allowed but
will be removed.
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data specifies an optional data frame, list or environment (or object coercible by
as.data.frame to a data frame) containing the variables in the model. If not
found in data, the variables are taken from environment(formula), typically
the environment from which gofTest is called.

subset specifies an optional vector specifying a subset of observations to be used.

na.action specifies a function which indicates what should happen when the data contain
NAs. The default is na.pass.

x numeric vector of values for the first sample in the case of a two-sample Kolmogorov-
Smirnov goodness-of-fit test (test="ks"). Missing (NA), undefined (NaN), and
infinite (Inf, -Inf) values are allowed but will be removed.

test character string defining which goodness-of-fit test to perform. Possible values
are: "sw" (Shapiro-Wilk; the default when x is NOT supplied), "sf" (Shapiro-
Francia), "ppcc" (Probability Plot Correlation Coefficient), "skew" (Zero-skew),
"chisq" (Chi-squared), "ks" (Kolmogorov-Smirnov; the default when x IS sup-
plied), and "ws" (Wilk-Shapiro test for Uniform [0, 1] distribution). When the
argument x is supplied, you must set test="ks", which is what gofTest does
by default.

distribution a character string denoting the distribution abbreviation. See the help file for
Distribution.df for a list of distributions and their abbreviations. The default
value is distribution="norm" (Normal distribution).
When test="sw", test="sf", or test="ppcc", any continuous distribuiton is
allowed (e.g., "norm" (normal), "lnorm" (lognormal), "gamma" (gamma), etc.),
as well as mixed distributions involving the normal distribution (i.e., "zmnorm"
(zero-modified normal), "zmlnorm" (zero-modified lognormal (delta)), and
"zmlnorm.alt" (zero-modified lognormal with alternative parameterization)).
When test="skew", only the values "norm" (normal), "lnorm" (lognormal),
"lnorm.alt" (lognormal with alternative parameterization), "zmnorm" (zero-
modified normal), "zmlnorm" (zero-modified lognormal (delta)), and
"zmlnorm.alt" (zero-modified lognormal with alternative parameterization) are
allowed.
When test="ks", any continuous distribution is allowed.
When test="chisq", any distribuiton is allowed.
When test="ws", this argument is ignored.

est.arg.list a list of arguments to be passed to the function estimating the distribution pa-
rameters. For example, if test="sw" and distribution="gamma", setting
est.arg.list=list(method="bcmle") indicates using the bias-corrected maximum-
likelihood estimators of shape and scale (see the help file for egamma). See the
help file Estimating Distribution Parameters for a list of estimating functions.
The default value is est.arg.list=NULL so that all default values for the esti-
mating function are used. This argument is ignored if estimate.params=FALSE.
When test="sw", test="sf", test="ppcc", or test="skew", and you are
testing for some form of normality (i.e., Normal, Lognormal, Three-Parameter
Lognormal, Zero-Modified Normal, or Zero-Modified Lognormal (Delta)), the
estimated parameters are provided in the output merely for information, and
the choice of the method of estimation has no effect on the goodness-of-fit test
statistic or p-value.
When test="ks", x is not supplied, and estimate.params=TRUE, the estimated
parameters are used to specify the null hypothesis of which distribution the data
are assumed to come from.
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When test="chisq" and estimate.params=TRUE, the estimated parameters
are used to specify the null hypothesis of which distribution the data are assumed
to come from.
When test="ws", this argument is ignored.

alternative for the case when test="ks", test="skew", or test="ws", character string
specifying the alternative hypothesis. When test="ks" or test="skew", the
possible values are "two-sided" (the default), "greater", or "less". When
test="ws", the possible values are "greater" (the default), or "less". See
the DETAILS section of the help file for ks.test for more explanation of the
meaning of this argument.

n.classes for the case when test="chisq", the number of cells into which the observa-
tions are to be allocated. If the argument cut.points is supplied, then n.classes
is set to length(cut.points)-1. The default value is
ceiling(2* (length(x)^(2/5))) and is recommended by Moore (1986).

cut.points for the case when test="chisq", a vector of cutpoints that defines the cells.
The element x[i] is allocated to cell j if
cut.points[j] < x[i] ≤ cut.points[j+1]. If x[i] is less than or equal to
the first cutpoint or greater than the last cutpoint, then x[i] is treated as missing.
If the hypothesized distribution is discrete, cut.points must be supplied. The
default value is cut.points=NULL, in which case the cutpoints are determined
by n.classes equi-probable intervals.

param.list for the case when test="ks" and x is not supplied, or when test="chisq",
a list with values for the parameters of the specified distribution. See the help
file for Distribution.df for the names and possible values of the parameters
associated with each distribution. The default value is param.list=NULL, which
forces estimation of the distribution parameters. This argument is ignored if
estimate.params=TRUE.

estimate.params

for the case when test="ks" and x is not supplied, or when test="chisq",
a logical scalar indicating whether to perform the goodness-of-fit test based on
estimating the distribution parameters (estimate.params=TRUE) or using the
user-supplied distribution parameters specified by param.list
(estimate.params=FALSE). The default value of estimate.params is TRUE if
param.list=NULL, otherwise it is FALSE.

n.param.est for the case when test="ks" and x is not supplied, or when test="chisq", an
integer indicating the number of parameters estimated from the data.
If estimate.params=TRUE, the default value is the number of parameters as-
sociated with the distribution specified by distribution (e.g., 2 for a normal
distribution). If estimate.params=FALSE, the default value is n.param.est=0.

correct for the case when test="chisq", a logical scalar indicating whether to use the
continuity correction. The default value is correct=FALSE unless
n.classes=2.

digits for the case when test="ks" and x is not supplied, or when test="chisq",
and param.list is supplied, a scalar indicating how many significant digits to
print out for the parameters associated with the hypothesized distribution. The
default value is .Options$digits.

exact for the case when test="ks", exact=NULL by default, but can be set to a logical
scalar indicating whether an exact p-value should be computed. See the help file
for ks.test for more information.
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ws.method for the case when test="ws", this argument specifies whether to perform the
test based on normal scores (ws.method="normal scores", the default) or chi-
square scores (ws.method="chi-square scores"). See the DETAILS section
for more information.

warn logical scalar indicating whether to print a warning message when observations
with NAs, NaNs, or Infs in y or x are removed. The default value is TRUE.

data.name character string indicating the name of the data used for argument y.

data.name.x character string indicating the name of the data used for argument x.

parent.of.data character string indicating the source of the data used for the goodness-of-fit
test.

subset.expression

character string indicating the expression used to subset the data.

... additional arguments affecting the goodness-of-fit test.

Details

• Shapiro-Wilk Goodness-of-Fit Test (test="sw").
The Shapiro-Wilk goodness-of-fit test (Shapiro and Wilk, 1965; Royston, 1992a) is one of
the most commonly used goodness-of-fit tests for normality. You can use it to test the fol-
lowing hypothesized distributions: Normal, Lognormal, Three-Parameter Lognormal, Zero-
Modified Normal, or Zero-Modified Lognormal (Delta). In addition, you can also use it to
test the null hypothesis of any continuous distribution that is available (see the help file
for Distribution.df, and see explanation below).

Shapiro-Wilk W-Statistic and P-Value for Testing Normality
Let X denote a random variable with cumulative distribution function (cdf) F . Suppose we
want to test the null hypothesis that F is the cdf of a normal (Gaussian) distribution with some
arbitrary mean µ and standard deviation σ against the alternative hypothesis that F is the cdf
of some other distribution. The table below shows the random variable for which F is the
assumed cdf, given the value of the argument distribution.

Value of Random Variable for
distribution Distribution Name which F is the cdf
"norm" Normal X
"lnorm" Lognormal (Log-space) log(X)
"lnormAlt" Lognormal (Untransformed) log(X)
"lnorm3" Three-Parameter Lognormal log(X − γ)
"zmnorm" Zero-Modified Normal X|X > 0
"zmlnorm" Zero-Modified Lognormal (Log-space) log(X)|X > 0
"zmlnormAlt" Zero-Modified Lognormal (Untransformed) log(X)|X > 0

Note that for the three-parameter lognormal distribution, the symbol γ denotes the threshold
parameter.

Let x = (x1, x2, . . . , xn) denote the vector of n ordered observations assumed to come from
a normal distribution.

The Shapiro-Wilk W-Statistic
Shapiro and Wilk (1965) introduced the following statistic to test the null hypothesis that F is
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the cdf of a normal distribution:

W =
(
∑n
i=1 aixi)

2∑n
i=1(xi − x̄)2

(1)

where the quantity ai is the i’th element of the vector a defined by:

a =
mTV −1

[mTV −1V −1m]1/2
(2)

where T denotes the transpose operator, and m is the vector of expected values and V is the
variance-covariance matrix of the order statistics of a random sample of size n from a standard
normal distribution. That is, the values of a are the expected values of the standard normal
order statistics weighted by their variance-covariance matrix, and normalized so that

aTa = 1 (3)

It can be shown that the coefficients a are antisymmetric, that is,

ai = −an−i+1 (4)

and for odd n,
a(n+1)/2 = 0 (5)

Now because

ā =
1

n

n∑
i=1

ai = 0 (6)

and
n∑
i=1

(ai − ā)2 =

n∑
i=1

a2
i = aTa = 1 (7)

the W -statistic in Equation (1) is the same as the square of the sample product-moment corre-
lation between the vectors a and x:

W = r(a, x)2 (8)

where

r(x, y) =

∑n
i=1(xi − x̄)(yi − ȳ)

[
∑n
i=1(xi − x̄)2

∑n
i=1(yi − ȳ)2]1/2

(9)

(see the R help file for cor).
The Shapiro-Wilk W -statistic is also simply the ratio of two estimators of variance, and can
be rewritten as

W =
σ̂2
BLUE

σ̂2
MVUE

(10)

where the numerator is the square of the best linear unbiased estimate (BLUE) of the standard
deviation, and the denominator is the minimum variance unbiased estimator (MVUE) of the
variance:

σ̂BLUE =

∑n
i=1 aixi√
n− 1

(11)

σ̂2
MVUE =

∑n
i=1(xi − x̄)2

n− 1
(12)

Small values of W indicate the null hypothesis is probably not true. Shapiro and Wilk (1965)
computed the values of the coefficients a and the percentage points forW (based on smoothing
the empirical null distribution ofW ) for sample sizes up to 50. Computation of theW -statistic
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for larger sample sizes can be cumbersome, since computation of the coefficients a requires
storage of at least n+[n(n+1)/2] reals followed by n×nmatrix inversion (Royston, 1992a).

The Shapiro-Francia W’-Statistic
Shapiro and Francia (1972) introduced a modification of the W -test that depends only on the
expected values of the order statistics (m) and not on the variance-covariance matrix (V ):

W ′ =
(
∑n
i=1 bixi)

2∑n
i=1(xi − x̄)2

(13)

where the quantity bi is the i’th element of the vector b defined by:

b =
m

[mTm]1/2
(14)

Several authors, including Ryan and Joiner (1973), Filliben (1975), and Weisberg and Bing-
ham (1975), note that theW ′-statistic is intuitively appealing because it is the squared Pearson
correlation coefficient associated with a normal probability plot. That is, it is the squared cor-
relation between the ordered sample values x and the expected normal order statistics m:

W ′ = r(b, x)2 = r(m,x)2 (15)

Shapiro and Francia (1972) present a table of empirical percentage points for W ′ based on a
Monte Carlo simulation. It can be shown that the asymptotic null distributions of W and W ′

are identical, but convergence is very slow (Verrill and Johnson, 1988).

The Weisberg-Bingham Approximation to the W’-Statistic
Weisberg and Bingham (1975) introduced an approximation of the Shapiro-FranciaW ′-statistic
that is easier to compute. They suggested using Blom scores (Blom, 1958, pp.68–75) to ap-
proximate the element of m:

W̃ ′ =
(
∑n
i=1 cixi)

2∑n
i=1(xi − x̄)2

(16)

where the quantity ci is the i’th element of the vector c defined by:

c =
m̃

[m̃T m̃]1/2
(17)

and

m̃i = Φ−1[
i− (3/8)

n+ (1/4)
] (18)

and Φ denotes the standard normal cdf. That is, the values of the elements of m in Equation
(14) are replaced with their estimates based on the usual plotting positions for a normal distri-
bution.

Royston’s Approximation to the Shapiro-Wilk W-Test
Royston (1992a) presents an approximation for the coefficients a necessary to compute the
Shapiro-Wilk W -statistic, and also a transformation of the W -statistic that has approximately
a standard normal distribution under the null hypothesis.
Noting that, up to a constant, the components of b in Equation (14) and c in Equation (17)
differ from those of a in Equation (2) mainly in the first and last two components, Royston
(1992a) used the approximation c as the basis for approximating a using polynomial (quintic)
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regression analysis. For 4 ≤ n ≤ 1000, the approximation gave the following equations for
the last two (and hence first two) components of a:

ãn = cn + 0.221157y − 0.147981y2 − 2.071190y3 + 4.434685y4 − 2.706056y5 (19)

ãn−1 = cn−1 +0.042981y−0.293762y2−1.752461y3 +5.682633y4−3.582633y5 (20)

where
y =
√
n (21)

The other components are computed as:

ãi =
m̃i√
η

(22)

for i = 2, . . . , n− 1 if n ≤ 5, or i = 3, . . . , n− 2 if n > 5, where

η =
m̃T m̃− 2m̃2

n

1− 2ã2
n

(23)

if n ≤ 5, and

η =
m̃T m̃− 2m̃2

n − 2m̃2
n−1

1− 2ã2
n − 2ã2

n−1

(24)

if n > 5.
Royston (1992a) found his approximation to a to be accurate to at least±1 in the third decimal
place over all values of i and selected values of n, and also found that critical percentage points
of W based on his approximation agreed closely with the exact critical percentage points cal-
culated by Verrill and Johnson (1988).

Transformation of the Null Distribution of W to Normality
In order to compute a p-value associated with a particular value of W , Royston (1992a)
approximated the distribution of (1 − W ) by a three-parameter lognormal distribution for
4 ≤ n ≤ 11, and the upper half of the distribution of (1−W ) by a two-parameter lognormal
distribution for 12 ≤ n ≤ 2000. Setting

z =
w − µ
σ

(25)

the p-value associated with W is given by:

p = 1− Φ(z) (26)

For 4 ≤ n ≤ 11, the quantities necessary to compute z are given by:

w = −log[γ − log(1−W )] (27)

γ = −2.273 + 0.459n (28)

µ = 0.5440− 0.39978n+ 0.025054n2 − 0.000671n3 (29)

σ = exp(1.3822− 0.77857n+ 0.062767n2 − 0.0020322n3) (30)

For 12 ≤ n ≤ 2000, the quantities necessary to compute z are given by:

w = log(1−W ) (31)

γ = log(n) (32)

µ = −1.5861− 0.31082y − 0.083751y2 + 0.00038915y3 (33)
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σ = exp(−0.4803− 0.082676y + 0.0030302y2) (34)

For the last approximation when 12 ≤ n ≤ 2000, Royston (1992a) claims this approximation
is actually valid for sample sizes up to n = 5000.

Modification for the Three-Parameter Lognormal Distribution
When distribution="lnorm3", the function gofTest assumes the vector x is a random
sample from a three-parameter lognormal distribution. It estimates the threshold parameter
via the zero-skewness method (see elnorm3), and then performs the Shapiro-Wilk goodness-
of-fit test for normality on log(x−γ̂) where γ̂ is the estimated threshold parmater. Because the
threshold parameter has to be estimated, however, the p-value associated with the computed
z-statistic will tend to be conservative (larger than it should be under the null hypothesis).
Royston (1992b) proposed the following transformation of the z-statistic:

z′ =
z − µz
σz

(35)

where for 5 ≤ n ≤ 11,

µz = −3.8267 + 2.8242u− 0.63673u2 − 0.020815v (36)

σz = −4.9914 + 8.6724u− 4.27905u2 + 0.70350u3 − 0.013431v (37)

and for 12 ≤ n ≤ 2000,

µz = −3.7796+2.4038u−0.6675u2−0.082863u3−0.0037935u4−0.027027v−0.0019887vu (38)

σz = 2.1924− 1.0957u+ 0.33737u2− 0.043201u3 + 0.0019974u4− 0.0053312vu (39)

where
u = log(n) (40)

v = u(σ̂ − σ̂2) (41)

σ̂2 =
1

n− 1

n∑
i=1

(yi − ȳ)2 (42)

yi = log(xi − γ̂) (43)

and γ denotes the threshold parameter. The p-value associated with this test is then given by:

p = 1− Φ(z′) (44)

Testing Goodness-of-Fit for Any Continuous Distribution
The function gofTest extends the Shapiro-Wilk test to test for goodness-of-fit for any contin-
uous distribution by using the idea of Chen and Balakrishnan (1995), who proposed a general
purpose approximate goodness-of-fit test based on the Cramer-von Mises or Anderson-Darling
goodness-of-fit tests for normality. The function gofTest modifies the approach of Chen and
Balakrishnan (1995) by using the same first 2 steps, and then applying the Shapiro-Wilk test:

1. Let x = x1, x2, . . . , xn denote the vector of n ordered observations. Compute cumulative
probabilities for each xi based on the cumulative distribution function for the hypothe-
sized distribution. That is, compute pi = F (xi, θ̂) where F (x, θ) denotes the hypothe-
sized cumulative distribution function with parameter(s) θ, and θ̂ denotes the estimated
parameter(s).

2. Compute standard normal deviates based on the computed cumulative probabilities:
yi = Φ−1(pi)

3. Perform the Shapiro-Wilk goodness-of-fit test on the yi’s.
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• Shapiro-Francia Goodness-of-Fit Test (test="sf").
The Shapiro-Francia goodness-of-fit test (Shapiro and Francia, 1972; Weisberg and Bingham,
1975; Royston, 1992c) is also one of the most commonly used goodness-of-fit tests for nor-
mality. You can use it to test the following hypothesized distributions: Normal, Lognormal,
Zero-Modified Normal, or Zero-Modified Lognormal (Delta). In addition, you can also use it
to test the null hypothesis of any continuous distribution that is available (see the help file for
Distribution.df). See the section Testing Goodness-of-Fit for Any Continuous Distribution
above for an explanation of how this is done.

Royston’s Transformation of the Shapiro-Francia W’-Statistic to Normality
Equation (13) above gives the formula for the Shapiro-Francia W’-statistic, and Equation (16)
above gives the formula for Weisberg-Bingham approximation to the W’-statistic (denoted
W̃ ′). Royston (1992c) presents an algorithm to transform the W̃ ′-statistic so that its null
distribution is approximately a standard normal. For 5 ≤ n ≤ 5000, Royston (1992c) approx-
imates the distribution of (1− W̃ ′) by a lognormal distribution. Setting

z =
w − µ
σ

(45)

the p-value associated with W̃ ′ is given by:

p = 1− Φ(z) (46)

The quantities necessary to compute z are given by:

w = log(1− W̃ ′) (47)

ν = log(n) (48)

u = log(ν)− ν (49)

µ = −1.2725 + 1.0521u (50)

v = log(ν) +
2

ν
(51)

σ = 1.0308− 0.26758v (52)

• Probability Plot Correlation Coefficient (PPCC) Goodness-of-Fit Test (test="ppcc").
The PPPCC goodness-of-fit test (Filliben, 1975; Looney and Gulledge, 1985) can be used to
test the following hypothesized distributions: Normal, Lognormal, Zero-Modified Normal, or
Zero-Modified Lognormal (Delta). In addition, you can also use it to test the null hypothesis
of any continuous distribution that is available (see the help file for Distribution.df). The
function gofTest computes the PPCC test statistic using Blom plotting positions.
Filliben (1975) proposed using the correlation coefficient r from a normal probability plot to
perform a goodness-of-fit test for normality, and he provided a table of critical values for r
under the for samples sizes between 3 and 100. Vogel (1986) provided an additional table for
sample sizes between 100 and 10,000.
Looney and Gulledge (1985) investigated the characteristics of Filliben’s probability plot cor-
relation coefficient (PPCC) test using the plotting position formulas given in Filliben (1975),
as well as three other plotting position formulas: Hazen plotting positions, Weibull plotting
positions, and Blom plotting positions (see the help file for qqPlot for an explanation of these
plotting positions). They concluded that the PPCC test based on Blom plotting positions per-
forms slightly better than tests based on other plotting positions, and they provide a table of
empirical percentage points for the distribution of r based on Blom plotting positions.
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The function gofTest computes the PPCC test statistic r using Blom plotting positions. It can
be shown that the square of this statistic is equivalent to the Weisberg-Bingham Approxima-
tion to the Shapiro-Francia W’-Test (Weisberg and Bingham, 1975; Royston, 1993). Thus the
PPCC goodness-of-fit test is equivalent to the Shapiro-Francia goodness-of-fit test.

• Zero-Skew Goodness-of-Fit Test (test="skew").
The Zero-skew goodness-of-fit test (D’Agostino, 1970) can be used to test the following hy-
pothesized distributions: Normal, Lognormal, Zero-Modified Normal, or Zero-Modified Log-
normal (Delta).
When test="skew", the function gofTest tests the null hypothesis that the skew of the dis-
tribution is 0:

H0 :
√
β1 = 0 (53)

where √
β1 =

µ3

µ
3/2
2

(54)

and the quantity µr denotes the r’th moment about the mean (also called the r’th central
moment). The quantity

√
β1 is called the coefficient of skewness, and is estimated by:

√
b1 =

m3

m
3/2
2

(55)

where

mr =
1

n

n∑
i=1

(xi − x̄)r (56)

denotes the r’th sample central moment.
The possible alternative hypotheses are:

Ha :
√
β1 6= 0 (57)

Ha :
√
β1 < 0 (58)

Ha :
√
β1 > 0 (59)

which correspond to alternative="two-sided", alternative="less", and alternative="greater",
respectively.
To test the null hypothesis of zero skew, D’Agostino (1970) derived an approximation to the
distribution of

√
b1 under the null hypothesis of zero-skew, assuming the observations com-

prise a random sample from a normal (Gaussian) distribution. Based on D’Agostino’s approx-
imation, the statistic Z shown below is assumed to follow a standard normal distribution and
is used to compute the p-value associated with the test of H0:

Z = δ log{Y
α

+ [(
Y

α
)2 + 1]1/2} (60)

where

Y =
√
b1[

(n+ 1)(n+ 3)

6(n− 2)
]1/2 (61)

β2 =
3(n2 + 27n− 70)(n+ 1)(n+ 3)

(n− 2)(n+ 5)(n+ 7)(n+ 9)
(62)

W 2 = −1 +
√

2β2 − 2 (63)

δ = 1/
√
log(W ) (64)
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α = [2/(W 2 − 1)]1/2 (65)

When the sample size n is at least 150, a simpler approximation may be used in which Y in
Equation (61) is assumed to follow a standard normal distribution and is used to compute the
p-value associated with the hypothesis test.

• Kolmogorov-Smirnov Goodness-of-Fit Test (test="ks").
When test="ks", the function gofTest calls the R function ks.test to compute the test
statistic and p-value. Note that for the one-sample case, the distribution parameters should be
pre-specified and not estimated from the data, and if the distribution parameters are estimated
from the data you will receive a warning that this test is very conservative (Type I error smaller
than assumed; high Type II error) in this case.

• Chi-Squared Goodness-of-Fit Test (test="chisq").
The method used by gofTest is a modification of what is used for chisq.test. If the hy-
pothesized distribution function is completely specified, the degrees of freedom are m − 1
where m denotes the number of classes. If any parameters are estimated, the degrees of free-
dom depend on the method of estimation. The function gofTest follows the convention of
computing degrees of freedom as m− 1− k, where k is the number of parameters estimated.
It can be shown that if the parameters are estimated by maximum likelihood, the degrees of
freedom are bounded between m− 1 and m− 1− k. Therefore, especially when the sample
size is small, it is important to compare the test statistic to the chi-squared distribution with
both m− 1 and m− 1− k degrees of freedom. See Kendall and Stuart (1991, Chapter 30) for
a more complete discussion.
The distribution theory of chi-square statistics is a large sample theory. The expected cell
counts are assumed to be at least moderately large. As a rule of thumb, each should be at least
5. Although authors have found this rule to be conservative (especially when the class prob-
abilities are not too different from each other), the user should regard p-values with caution
when expected cell counts are small.

• Wilk-Shapiro Goodness-of-Fit Test for Uniform [0, 1] Distribution (test="ws").
Wilk and Shapiro (1968) suggested this test in the context of jointly testing several indepen-
dent samples for normality simultaneously. If p1, p2, . . . , pn denote the p-values associated
with the test for normality of n independent samples, then under the null hypothesis that all
n samples come from a normal distribution, the p-values are a random sample of n observa-
tions from a Uniform [0,1] distribution, that is a Uniform distribution with minimum 0 and
maximum 1. Wilk and Shapiro (1968) suggested two different methods for testing whether
the p-values come from a Uniform [0, 1] distribution:

– Test Based on Normal Scores. Under the null hypothesis, the normal scores

Φ−1(p1),Φ−1(p2), . . . ,Φ−1(pn)

are a random sample of n observations from a standard normal distribution. Wilk and
Shapiro (1968) denote the i’th normal score by

Gi = Φ−1(pi) (66)

and note that under the null hypothesis, the quantity G defined as

G =
1√
n

n∑
1

Gi (67)
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has a standard normal distribution. Wilk and Shapiro (1968) were interested in the alter-
native hypothesis that some of the n independent samples did not come from a normal
distribution and hence would be associated with smaller p-values than expected under the
null hypothesis, which translates to the alternative that the cdf for the distribution of the p-
values is greater than the cdf of a Uniform [0, 1] distribution (alternative="greater").
In terms of the test statistic G, this alternative hypothesis would tend to make G smaller
than expected, so the p-value is given by Φ(G). For the one-sided lower alternative that
the cdf for the distribution of p-values is less than the cdf for a Uniform [0, 1] distribution,
the p-value is given by

p = 1− Φ(G) (68)

.
– Test Based on Chi-Square Scores. Under the null hypothesis, the chi-square scores

−2 log(p1),−2 log(p2), . . . ,−2 log(pn)

are a random sample of n observations from a chi-square distribution with 2 degrees of
freedom (Fisher, 1950). Wilk and Shapiro (1968) denote the i’th chi-square score by

Ci = −2 log(pi) (69)

and note that under the null hypothesis, the quantity C defined as

C =

n∑
1

Ci (70)

has a chi-square distribution with 2n degrees of freedom. Wilk and Shapiro (1968) were
interested in the alternative hypothesis that some of the n independent samples did not
come from a normal distribution and hence would be associated with smaller p-values
than expected under the null hypothesis, which translates to the alternative that the cdf
for the distribution of the p-values is greater than the cdf of a Uniform [0, 1] distribution
(alternative="greater"). In terms of the test statistic C, this alternative hypothesis
would tend to make C larger than expected, so the p-value is given by

p = 1− F2n(C) (71)

whereF2n denotes the cumulative distribution function of the chi-square distribution with
2n degrees of freedom. For the one-sided lower alternative that the cdf for the distribution
of p-values is less than the cdf for a Uniform [0, 1] distribution, the p-value is given by

p = F2n(C) (72)

Value

a list of class "gof" containing the results of the goodness-of-fit test, unless the two-sample Kolmogorov-
Smirnov test is used, in which case the value is a list of class "gofTwoSample". Objects of class
"gof" and "gofTwoSample" have special printing and plotting methods. See the help files for
gof.object and gofTwoSample.object for details.

Note

The Shapiro-Wilk test (Shapiro and Wilk, 1965) and the Shapiro-Francia test (Shapiro and Francia,
1972) are probably the two most commonly used hypothesis tests to test departures from normality.
The Shapiro-Wilk test is most powerful at detecting short-tailed (platykurtic) and skewed distri-
butions, and least powerful against symmetric, moderately long-tailed (leptokurtic) distributions.
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Conversely, the Shapiro-Francia test is more powerful against symmetric long-tailed distributions
and less powerful against short-tailed distributions (Royston, 1992b; 1993).

The zero-skew goodness-of-fit test for normality is one of several tests that have been proposed
to test the assumption of a normal distribution (D’Agostino, 1986b). This test has been included
mainly because it is called by elnorm3. Ususally, the Shapiro-Wilk or Shapiro-Francia test is
preferred to this test, unless the direction of the alternative to normality (e.g., positive skew) is
known (D’Agostino, 1986b, pp. 405–406).

Kolmogorov (1933) introduced a goodness-of-fit test to test the hypothesis that a random sample
of n observations x comes from a specific hypothesized distribution with cumulative distribution
function H . This test is now usually called the one-sample Kolmogorov-Smirnov goodness-of-fit
test. Smirnov (1939) introduced a goodness-of-fit test to test the hypothesis that a random sample
of n observations x comes from the same distribution as a random sample ofm observations y. This
test is now usually called the two-sample Kolmogorov-Smirnov goodness-of-fit test. Both tests are
based on the maximum vertical distance between two cumulative distribution functions. For the
one-sample problem with a small sample size, the Kolmogorov-Smirnov test may be preferred over
the chi-squared goodness-of-fit test since the KS-test is exact, while the chi-squared test is based on
an asymptotic approximation.

The chi-squared test, introduced by Pearson in 1900, is the oldest and best known goodness-of-
fit test. The idea is to reduce the goodness-of-fit problem to a multinomial setting by comparing
the observed cell counts with their expected values under the null hypothesis. Grouping the data
sacrifices information, especially if the hypothesized distribution is continuous. On the other hand,
chi-squared tests can be be applied to any type of variable: continuous, discrete, or a combination
of these.

The Wilk-Shapiro (1968) tests for a Uniform [0, 1] distribution were introduced in the context
of testing whether several independent samples all come from normal distributions, with possibly
different means and variances. The function gofGroupTest extends this idea to allow you to test
whether several independent samples come from the same distribution (e.g., gamma, extreme value,
etc.), with possibly different parameters.

In practice, almost any goodness-of-fit test will not reject the null hypothesis if the number of obser-
vations is relatively small. Conversely, almost any goodness-of-fit test will reject the null hypothesis
if the number of observations is very large, since “real” data are never distributed according to any
theoretical distribution (Conover, 1980, p.367). For most cases, however, the distribution of “real”
data is close enough to some theoretical distribution that fairly accurate results may be provided by
assuming that particular theoretical distribution. One way to asses the goodness of the fit is to use
goodness-of-fit tests. Another way is to look at quantile-quantile (Q-Q) plots (see qqPlot).

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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See Also

gof.object, print.gof, plot.gof, shapiro.test, ks.test, chisq.test, Normal, Lognormal,
Lognormal3, Zero-Modified Normal, Zero-Modified Lognormal (Delta), enorm, elnorm, elnormAlt,
elnorm3, ezmnorm, ezmlnorm, ezmlnormAlt, qqPlot.

Examples

# Generate 20 observations from a gamma distribution with
# parameters shape = 2 and scale = 3 then run various
# goodness-of-fit tests.
# (Note: the call to set.seed lets you reproduce this example.)

set.seed(47)
dat <- rgamma(20, shape = 2, scale = 3)

# Shapiro-Wilk generalized goodness-of-fit test
#----------------------------------------------
gof.list <- gofTest(dat, distribution = "gamma")
gof.list

#Results of Goodness-of-Fit Test
#-------------------------------
#
#Test Method: Shapiro-Wilk GOF Based on
# Chen & Balakrisnan (1995)
#
#Hypothesized Distribution: Gamma
#
#Estimated Parameter(s): shape = 1.909462
# scale = 4.056819
#
#Estimation Method: mle
#
#Data: dat
#
#Sample Size: 20
#
#Test Statistic: W = 0.9834958
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#
#Test Statistic Parameter: n = 20
#
#P-value: 0.970903
#
#Alternative Hypothesis: True cdf does not equal the
# Gamma Distribution.

dev.new()
plot(gof.list)

#----------

# Redo the example above, but use the bias-corrected mle

gofTest(dat, distribution = "gamma",
est.arg.list = list(method = "bcmle"))

#Results of Goodness-of-Fit Test
#-------------------------------
#
#Test Method: Shapiro-Wilk GOF Based on
# Chen & Balakrisnan (1995)
#
#Hypothesized Distribution: Gamma
#
#Estimated Parameter(s): shape = 1.656376
# scale = 4.676680
#
#Estimation Method: bcmle
#
#Data: dat
#
#Sample Size: 20
#
#Test Statistic: W = 0.9834346
#
#Test Statistic Parameter: n = 20
#
#P-value: 0.9704046
#
#Alternative Hypothesis: True cdf does not equal the
# Gamma Distribution.

#----------

# Komogorov-Smirnov goodness-of-fit test (pre-specified parameters)
#------------------------------------------------------------------

gofTest(dat, test = "ks", distribution = "gamma",
param.list = list(shape = 2, scale = 3))

#Results of Goodness-of-Fit Test
#-------------------------------
#
#Test Method: Kolmogorov-Smirnov GOF
#
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#Hypothesized Distribution: Gamma(shape = 2, scale = 3)
#
#Data: dat
#
#Sample Size: 20
#
#Test Statistic: ks = 0.2313878
#
#Test Statistic Parameter: n = 20
#
#P-value: 0.2005083
#
#Alternative Hypothesis: True cdf does not equal the
# Gamma(shape = 2, scale = 3)
# Distribution.

#----------

# Chi-squared goodness-of-fit test (estimated parameters)
#--------------------------------------------------------

gofTest(dat, test = "chisq", distribution = "gamma", n.classes = 4)

#Results of Goodness-of-Fit Test
#-------------------------------
#
#Test Method: Chi-square GOF
#
#Hypothesized Distribution: Gamma
#
#Estimated Parameter(s): shape = 1.909462
# scale = 4.056819
#
#Estimation Method: mle
#
#Data: dat
#
#Sample Size: 20
#
#Test Statistic: Chi-square = 1.2
#
#Test Statistic Parameter: df = 1
#
#P-value: 0.2733217
#
#Alternative Hypothesis: True cdf does not equal the
# Gamma Distribution.

#----------
# Clean up

rm(dat, gof.list)
graphics.off()

#--------------------------------------------------------------------

# Example 10-2 of USEPA (2009, page 10-14) gives an example of
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# using the Shapiro-Wilk test to test the assumption of normality
# for nickel concentrations (ppb) in groundwater collected over
# 4 years. The data for this example are stored in
# EPA.09.Ex.10.1.nickel.df.

EPA.09.Ex.10.1.nickel.df
# Month Well Nickel.ppb
#1 1 Well.1 58.8
#2 3 Well.1 1.0
#3 6 Well.1 262.0
#4 8 Well.1 56.0
#5 10 Well.1 8.7
#6 1 Well.2 19.0
#7 3 Well.2 81.5
#8 6 Well.2 331.0
#9 8 Well.2 14.0
#10 10 Well.2 64.4
#11 1 Well.3 39.0
#12 3 Well.3 151.0
#13 6 Well.3 27.0
#14 8 Well.3 21.4
#15 10 Well.3 578.0
#16 1 Well.4 3.1
#17 3 Well.4 942.0
#18 6 Well.4 85.6
#19 8 Well.4 10.0
#20 10 Well.4 637.0

# Test for a normal distribution:
#--------------------------------

gof.list <- gofTest(Nickel.ppb ~ 1,
data = EPA.09.Ex.10.1.nickel.df)

gof.list

#Results of Goodness-of-Fit Test
#-------------------------------
#
#Test Method: Shapiro-Wilk GOF
#
#Hypothesized Distribution: Normal
#
#Estimated Parameter(s): mean = 169.5250
# sd = 259.7175
#
#Estimation Method: mvue
#
#Data: Nickel.ppb
#
#Data Source: EPA.09.Ex.10.1.nickel.df
#
#Sample Size: 20
#
#Test Statistic: W = 0.6788888
#
#Test Statistic Parameter: n = 20
#
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#P-value: 2.17927e-05
#
#Alternative Hypothesis: True cdf does not equal the
# Normal Distribution.

dev.new()
plot(gof.list)

#----------

# Test for a lognormal distribution:
#-----------------------------------

gofTest(Nickel.ppb ~ 1,
data = EPA.09.Ex.10.1.nickel.df,
dist = "lnorm")

#Results of Goodness-of-Fit Test
#-------------------------------
#
#Test Method: Shapiro-Wilk GOF
#
#Hypothesized Distribution: Lognormal
#
#Estimated Parameter(s): meanlog = 3.918529
# sdlog = 1.801404
#
#Estimation Method: mvue
#
#Data: Nickel.ppb
#
#Data Source: EPA.09.Ex.10.1.nickel.df
#
#Sample Size: 20
#
#Test Statistic: W = 0.978946
#
#Test Statistic Parameter: n = 20
#
#P-value: 0.9197735
#
#Alternative Hypothesis: True cdf does not equal the
# Lognormal Distribution.

#----------

# Test for a lognormal distribution, but use the
# Mean and CV parameterization:
#-----------------------------------------------

gofTest(Nickel.ppb ~ 1,
data = EPA.09.Ex.10.1.nickel.df,
dist = "lnormAlt")

#Results of Goodness-of-Fit Test
#-------------------------------
#
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#Test Method: Shapiro-Wilk GOF
#
#Hypothesized Distribution: Lognormal
#
#Estimated Parameter(s): mean = 213.415628
# cv = 2.809377
#
#Estimation Method: mvue
#
#Data: Nickel.ppb
#
#Data Source: EPA.09.Ex.10.1.nickel.df
#
#Sample Size: 20
#
#Test Statistic: W = 0.978946
#
#Test Statistic Parameter: n = 20
#
#P-value: 0.9197735
#
#Alternative Hypothesis: True cdf does not equal the
# Lognormal Distribution.

#----------
# Clean up

rm(gof.list)
graphics.off()

#---------------------------------------------------------------------------

# Generate 20 observations from a normal distribution with mean=3 and sd=2, and
# generate 10 observaions from a normal distribution with mean=2 and sd=2 then
# test whether these sets of observations come from the same distribution.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(300)
dat1 <- rnorm(20, mean = 3, sd = 2)
dat2 <- rnorm(10, mean = 1, sd = 2)
gofTest(x = dat1, y = dat2, test = "ks")

#Results of Goodness-of-Fit Test
#-------------------------------
#
#Test Method: 2-Sample K-S GOF
#
#Hypothesized Distribution: Equal
#
#Data: x = dat1
# y = dat2
#
#Sample Sizes: n.x = 20
# n.y = 10
#
#Test Statistic: ks = 0.7
#
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#Test Statistic Parameters: n = 20
# m = 10
#
#P-value: 0.001669561
#
#Alternative Hypothesis: The cdf of dat1 does not equal
# the cdf of dat2.

#----------
# Clean up

rm(dat1, dat2)

gofTestCensored Goodness-of-Fit Test for Normal or Lognormal Distribution Based on
Censored Data

Description

Perform a goodness-of-fit test to determine whether a data set appears to come from a normal
distribution, lognormal distribution, or lognormal distribution (alternative parameterization) based
on a sample of data that has been subjected to Type I or Type II censoring.

Usage

gofTestCensored(x, censored, censoring.side = "left", test = "sf",
distribution = "norm", est.arg.list = NULL, prob.method = "hirsch-stedinger",
plot.pos.con = 0.375)

Arguments

x numeric vector of observations. Missing (NA), undefined (NaN), and infinite (Inf,
-Inf) values are allowed but will be removed.

censored numeric or logical vector indicating which values of x are censored. This must
be the same length as x. If the mode of censored is "logical", TRUE values
correspond to elements of x that are censored, and FALSE values correspond to
elements of x that are not censored. If the mode of censored is "numeric",
it must contain only 1’s and 0’s; 1 corresponds to TRUE and 0 corresponds to
FALSE. Missing (NA) values are allowed but will be removed.

censoring.side character string indicating on which side the censoring occurs. The possible
values are "left" (the default) and "right".

test character string defining which goodness-of-fit test to perform. Possible val-
ues are: "sw" (Shapiro-Wilk), "sf" (Shapiro-Francia; the default), and "ppcc"
(Probability Plot Correlation Coefficient). The Shapiro-Wilk test is only avail-
able for singly censored data. If you have multiply censored data set test="sf"
or test="ppcc". See the DETAILS section for more information.

distribution a character string denoting the abbreviation of the assumed distribution. Possible
values are: distribution="norm" (Normal distribution; the default), distribution="lnorm"
(Lognormal distribution), and distribution="lnormAlt" (Lognormal distri-
bution, alternative parameterization). The results for the goodness-of-fit test
are identical for distribution="lnorm" and distribution="lnormAlt", the
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only difference in ouput being whether the returned estimated parameters are
based on the log-scale or the original scale of the data.

est.arg.list a list of arguments to be passed to the function estimating the distribution param-
eters. For example, if distribution="lnormAlt" setting est.arg.list=list(method="bcmle")
indicates using the bias-corrected maximum-likelihood estimators (see the help
file for elnormAltCensored). The default value is est.arg.list=NULL so that
all default values for the estimating function are used. The estimated parameters
are provided in the output merely for information, and the choice of the method
of estimation has no effect on the goodness-of-fit test statistic or p-value.

prob.method character string indicating what method to use to compute the plotting positions
(empirical probabilities) when test="sf" or test="ppcc". Possible values
are: "modified kaplan-meier" (modification of product-limit method of Ka-
plan and Meier (1958)), "nelson" (hazard plotting method of Nelson (1972)),
"michael-schucany" (generalization of the product-limit method due to Michael
and Schucany (1986)), and "hirsch-stedinger" (generalization of the product-
limit method due to Hirsch and Stedinger (1987)). The default value is prob.method="michael-schucany".
The "nelson" method is only available for censoring.side="right", and the
"modified kaplan-meier" method is only available for censoring.side="left".
See the DETAILS section and the help file for ppointsCensored for more in-
formation.

plot.pos.con numeric scalar between 0 and 1 containing the value of the plotting position con-
stant to use when test="sf" or test="ppcc". The default value is plot.pos.con=0.375.
See the DETAILS section and the help file for ppointsCensored for more in-
formation.

Details

Let x = c(x1, x2, . . . , xN ) denote a vector of N observations from from some distribution with cdf
F . Suppose we want to test the null hypothesis that F is the cdf of a normal (Gaussian) distribution
with some arbitrary mean µ and standard deviation σ against the alternative hypothesis that F is
the cdf of some other distribution. The table below shows the random variable for which F is the
assumed cdf, given the value of the argument distribution.

Value of Random Variable for
distribution Distribution Name which F is the cdf
"norm" Normal X
"lnorm" Lognormal (Log-space) log(X)
"lnormAlt" Lognormal (Untransformed) log(X)

Assume n (0 < n < N ) of these observations are known and c (c = N − n) of these observations
are all censored below (left-censored) or all censored above (right-censored) at k fixed censoring
levels

T1, T2, . . . , Tk; k ≥ 1 (1)

For the case when k ≥ 2, the data are said to be Type I multiply censored. For the case when k = 1,
set T = T1. If the data are left-censored and all n known observations are greater than or equal to
T , or if the data are right-censored and all n known observations are less than or equal to T , then
the data are said to be Type I singly censored (Nelson, 1982, p.7), otherwise they are considered to
be Type I multiply censored.

Let cj denote the number of observations censored below or above censoring level Tj for j =
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1, 2, . . . , k, so that
k∑
i=1

cj = c (2)

Let x(1), x(2), . . . , x(N) denote the “ordered” observations, where now “observation” means either
the actual observation (for uncensored observations) or the censoring level (for censored observa-
tions). For right-censored data, if a censored observation has the same value as an uncensored one,
the uncensored observation should be placed first. For left-censored data, if a censored observation
has the same value as an uncensored one, the censored observation should be placed first.

Note that in this case the quantity x(i) does not necessarily represent the i’th “largest” observation
from the (unknown) complete sample.

Note that for singly left-censored data:

x(1) = x(2) = · · · = x(c) = T (3)

and for singly right-censored data:

x(n+1) = x(n+2) = · · · = x(N) = T (4)

Finally, let Ω (omega) denote the set of n subscripts in the “ordered” sample that correspond to
uncensored observations.

Shapiro-Wilk Goodness-of-Fit Test for Singly Censored Data (test="sw")
Equation (8) in the help file for gofTest shows that for the case of complete ordered data x,
the Shapiro-Wilk W -statistic is the same as the square of the sample product-moment correlation
between the vectors a and x:

W = r(a, x)2 (5)

where

r(x, y) =

∑N
i=1(xi − x̄)(yi − ȳ)

[
∑n
i=1(xi − x̄)2

∑n
i=1(yi − ȳ)2]1/2

(6)

and a is defined by:

a =
mTV −1

[mTV −1V −1m]1/2
(7)

where T denotes the transpose operator, and m is the vector of expected values and V is the
variance-covariance matrix of the order statistics of a random sample of size N from a standard
normal distribution. That is, the values of a are the expected values of the standard normal order
statistics weighted by their variance-covariance matrix, and normalized so that

aTa = 1 (8)

Computing Shapiro-Wilk W-Statistic for Singly Censored Data
For the case of singly censored data, following Smith and Bain (1976) and Verrill and Johnson
(1988), Royston (1993) generalizes the Shapiro-Wilk W -statistic to:

W = r(a∆, x∆)2 (9)

where for left singly-censored data:

a∆ = (ac+1, ac+2, . . . , aN ) (10)

x∆ = (x(c+1), x(c+2), . . . , x(N)) (11)
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and for right singly-censored data:

a∆ = (a1, a2, . . . , an) (12)

x∆ = (x(1), x(2), . . . , x(n)) (13)

Just like the function gofTest, when test="sw", the function gofTestCensored uses Royston’s
(1992a) approximation for the coefficients a (see the help file for gofTest).

Computing P-Values for the Shapiro-Wilk Test
Verrill and Johnson (1988) show that the asymptotic distribution of the statistic in Equation (9)
above is normal, but the rate of convergence is “surprisingly slow” even for complete samples. They
provide a table of empirical percentiles of the distribution for the W -statistic shown in Equation (9)
above for several sample sizes and percentages of censoring.

Based on the tables given in Verrill and Johnson (1988), Royston (1993) approximated the 90’th,
95’th, and 99’th percentiles of the distribution of the z-statistic computed from the W -statistic.
(The distribution of this z-statistic is assumed to be normal, but not necessarily a standard normal.)
Denote these percentiles by Z0.90, Z0.95, and Z0.99. The true mean and standard deviation of the
z-statistic are estimated by the intercept and slope, respectively, from the linear regression of Zα
on Φ−1(α) for α = 0.9, 0.95, and 0.99, where Φ denotes the cumulative distribution function of the
standard normal distribution. The p-value associated with this test is then computed as:

p = 1− Φ(
z − µz
σz

) (14)

Note: Verrill and Johnson (1988) produced their tables based on Type II censoring. Royston’s
(1993) approximation to the p-value of these tests, however, should be fairly accurate for Type I
censored data as well.

Shapiro-Francia Goodness-of-Fit Test (test="sf")
Equation (15) in the help file for gofTest shows that for the complete ordered data x, the Shapiro-
Francia W ′-statistic is the same as the squared Pearson correlation coefficient associated with a
normal probability plot.

Computing Shapiro-Francia W’-Statistic for Censored Data
For the case of singly censored data, following Smith and Bain (1976) and Verrill and Johnson
(1988), Royston (1993) extends the computation of the Weisberg-Bingham Approximation to the
W ′-statistic to the case of singly censored data:

W̃ ′ = r(c∆, x∆)2 (14)

where for left singly-censored data:

c∆ = (cc+1, cc+2, . . . , cN ) (15)

x∆ = (x(c+1), x(c+2), . . . , x(N)) (16)

and for right singly-censored data:

a∆ = (a1, a2, . . . , an) (17)

x∆ = (x(1), x(2), . . . , x(n)) (18)

and c is defined as:

c =
m̃

[m̃′m̃]1/2
(19)



gofTestCensored 523

where

m̃i = Φ−1(
i− (3/8)

n+ (1/4)
) (20)

and Φ denotes the standard normal cdf. Note: Do not confuse the elements of the vector c with the
scalar c which denotes the number of censored observations. We use c here to be consistent with
the notation in the help file for gofTest.

Just like the function gofTest, when test="sf", the function gofTestCensored uses Royston’s
(1992a) approximation for the coefficients c (see the help file for gofTest).

In general, the Shapiro-Francia test statistic can be extended to multiply censored data using Equa-
tion (14) with c∆ defined as the orderd values of ci associated with uncensored observations, and
x∆ defined as the ordered values of xi associated with uncensored observations:

c∆ = ∪i∈Ω c(i) (21)

x∆ = ∪i∈Ω x(i) (22)

and where the plotting positions in Equation (20) are replaced with any of the plotting positions
available in ppointsCensored (see the description for the argument prob.method).

Computing P-Values for the Shapiro-Francia Test
Verrill and Johnson (1988) show that the asymptotic distribution of the statistic in Equation (14)
above is normal, but the rate of convergence is “surprisingly slow” even for complete samples. They
provide a table of empirical percentiles of the distribution for the W̃ ′-statistic shown in Equation
(14) above for several sample sizes and percentages of censoring.

As for the Shapiro-Wilk test, based on the tables given in Verrill and Johnson (1988), Royston
(1993) approximated the 90’th, 95’th, and 99’th percentiles of the distribution of the z-statistic
computed from the W̃ ′-statistic. (The distribution of this z-statistic is assumed to be normal, but
not necessarily a standard normal.) Denote these percentiles by Z0.90, Z0.95, and Z0.99. The true
mean and standard deviation of the z-statistic are estimated by the intercept and slope, respectively,
from the linear regression of Zα on Φ−1(α) for α = 0.9, 0.95, and 0.99, where Φ denotes the
cumulative distribution function of the standard normal distribution. The p-value associated with
this test is then computed as:

p = 1− Φ(
z − µz
σz

) (23)

Note: Verrill and Johnson (1988) produced their tables based on Type II censoring. Royston’s
(1993) approximation to the p-value of these tests, however, should be fairly accurate for Type I
censored data as well, although this is an area that requires further investigation.

Probability Plot Correlation Coefficient (PPCC) Goodness-of-Fit Test (test="ppcc")
The function gofTestCensored computes the PPCC test statistic using Blom plotting positions. It
can be shown that the square of this statistic is equivalent to the Weisberg-Bingham Approximation
to the Shapiro-Francia W ′-test (Weisberg and Bingham, 1975; Royston, 1993). Thus the PPCC
goodness-of-fit test is equivalent to the Shapiro-Francia goodness-of-fit test.

Value

a list of class "gofCensored" containing the results of the goodness-of-fit test. See the help files
for gofCensored.object for details.



524 gofTestCensored

Note

The Shapiro-Wilk test (Shapiro and Wilk, 1965) and the Shapiro-Francia test (Shapiro and Francia,
1972) are probably the two most commonly used hypothesis tests to test departures from normality.
The Shapiro-Wilk test is most powerful at detecting short-tailed (platykurtic) and skewed distri-
butions, and least powerful against symmetric, moderately long-tailed (leptokurtic) distributions.
Conversely, the Shapiro-Francia test is more powerful against symmetric long-tailed distributions
and less powerful against short-tailed distributions (Royston, 1992b; 1993).

In practice, almost any goodness-of-fit test will not reject the null hypothesis if the number of obser-
vations is relatively small. Conversely, almost any goodness-of-fit test will reject the null hypoth-
esis if the number of observations is very large, since “real” data are never distributed according
to any theoretical distribution (Conover, 1980, p.367). For most cases, however, the distribution
of “real” data is close enough to some theoretical distribution that fairly accurate results may be
provided by assuming that particular theoretical distribution. One way to asses the goodness of
the fit is to use goodness-of-fit tests. Another way is to look at quantile-quantile (Q-Q) plots (see
qqPlotCensored).

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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See Also

gofTest, gofCensored.object, print.gofCensored, plot.gofCensored, shapiro.test, Nor-
mal, Lognormal, enormCensored, elnormCensored, elnormAltCensored, qqPlotCensored.

Examples

# Generate 30 observations from a gamma distribution with
# parameters mean=10 and cv=1 and censor observations less than 5.
# Then test the hypothesis that these data came from a lognormal
# distribution (alternative parameterization) using the Shapiro-Wilk test.
#
# The p-value for the complete data is p = 0.056, while
# the p-value for the censored data is p = 0.11.
# (Note: the call to set.seed lets you reproduce this example.)

set.seed(598)

dat <- sort(rgammaAlt(30, mean = 10, cv = 1))
dat
# [1] 0.5313509 1.4741833 1.9936208 2.7980636 3.4509840
# [6] 3.7987348 4.5542952 5.5207531 5.5253596 5.7177872
#[11] 5.7513827 9.1086375 9.8444090 10.6247123 10.9304922
#[16] 11.7925398 13.3432689 13.9562777 14.6029065 15.0563342
#[21] 15.8730642 16.0039936 16.6910715 17.0288922 17.8507891
#[26] 19.1105522 20.2657141 26.3815970 30.2912797 42.8726101

dat.censored <- dat
censored <- dat.censored < 5
dat.censored[censored] <- 5

# Results for complete data:
#---------------------------
gofTest(dat, test = "sw", dist = "lnormAlt")

#Results of Goodness-of-Fit Test
#-------------------------------
#
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#Test Method: Shapiro-Wilk GOF
#
#Hypothesized Distribution: Lognormal
#
#Estimated Parameter(s): mean = 13.757239
# cv = 1.148872
#
#Estimation Method: mvue
#
#Data: dat
#
#Sample Size: 30
#
#Test Statistic: W = 0.9322226
#
#Test Statistic Parameter: n = 30
#
#P-value: 0.05626823
#
#Alternative Hypothesis: True cdf does not equal the
# Lognormal Distribution.

# Results for censored data:
#---------------------------
gof.list <- gofTestCensored(dat.censored, censored, test = "sw",

distribution = "lnormAlt")
gof.list

#Results of Goodness-of-Fit Test
#Based on Type I Censored Data
#-------------------------------
#
#Test Method: Shapiro-Wilk GOF
# (Singly Censored Data)
#
#Hypothesized Distribution: Lognormal
#
#Censoring Side: left
#
#Censoring Level(s): 5
#
#Estimated Parameter(s): mean = 13.0382221
# cv = 0.9129512
#
#Estimation Method: MLE
#
#Data: dat.censored
#
#Censoring Variable: censored
#
#Sample Size: 30
#
#Percent Censored: 23.3%
#
#Test Statistic: W = 0.9292406
#
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#Test Statistic Parameters: N = 30.0000000
# DELTA = 0.2333333
#
#P-value: 0.114511
#
#Alternative Hypothesis: True cdf does not equal the
# Lognormal Distribution.

# Plot the results for the censored data
#---------------------------------------
dev.new()
plot(gof.list)

#----------

# Redo the above example, but specify the quasi-minimum variance
# unbiased estimator of the mean. Note that the method of
# estimating the parameters has no effect on the goodness-of-fit
# test (see the DETAILS section above).

gofTestCensored(dat.censored, censored, test = "sw",
distribution = "lnormAlt", est.arg.list = list(method = "qmvue"))

#Results of Goodness-of-Fit Test
#Based on Type I Censored Data
#-------------------------------
#
#Test Method: Shapiro-Wilk GOF
# (Singly Censored Data)
#
#Hypothesized Distribution: Lognormal
#
#Censoring Side: left
#
#Censoring Level(s): 5
#
#Estimated Parameter(s): mean = 12.8722749
# cv = 0.8712549
#
#Estimation Method: Quasi-MVUE
#
#Data: dat.censored
#
#Censoring Variable: censored
#
#Sample Size: 30
#
#Percent Censored: 23.3%
#
#Test Statistic: W = 0.9292406
#
#Test Statistic Parameters: N = 30.0000000
# DELTA = 0.2333333
#
#P-value: 0.114511
#
#Alternative Hypothesis: True cdf does not equal the
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# Lognormal Distribution.

#----------
# Clean up

rm(dat, dat.censored, censored, gof.list)
graphics.off()

#==========

# Check the assumption that the silver data stored in Helsel.Cohn.88.silver.df
# follows a lognormal distribution and plot the goodness-of-fit test results.
# Note that the the small p-value and the shape of the Q-Q plot
# (an inverted S-shape) suggests that the log transformation is not quite strong
# enough to "bring in" the tails (i.e., the log-transformed silver data has tails
# that are slightly too long relative to a normal distribution).
# Helsel and Cohn (1988, p.2002) note that the gross outlier of 560 mg/L tends to
# make the shape of the data resemble a gamma distribution.

dum.list <- with(Helsel.Cohn.88.silver.df,
gofTestCensored(Ag, Censored, test = "sf", dist = "lnorm"))

dum.list
#Results of Goodness-of-Fit Test
#Based on Type I Censored Data
#-------------------------------
#
#Test Method: Shapiro-Francia GOF
# (Multiply Censored Data)
#
#Hypothesized Distribution: Lognormal
#
#Censoring Side: left
#
#Censoring Level(s): 0.1 0.2 0.3 0.5 1.0 2.0 2.5 5.0
# 6.0 10.0 20.0 25.0
#
#Estimated Parameter(s): meanlog = -1.040572
# sdlog = 2.354847
#
#Estimation Method: MLE
#
#Data: Ag
#
#Censoring Variable: Censored
#
#Sample Size: 56
#
#Percent Censored: 60.7%
#
#Test Statistic: W = 0.8957198
#
#Test Statistic Parameters: N = 56.0000000
# DELTA = 0.6071429
#
#P-value: 0.03490314
#
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#Alternative Hypothesis: True cdf does not equal the
# Lognormal Distribution.

dev.new()
plot(dum.list)

#----------

# Clean up
#---------

rm(dum.list)
graphics.off()

#==========

# Chapter 15 of USEPA (2009) gives several examples of looking
# at normal Q-Q plots and estimating the mean and standard deviation
# for manganese concentrations (ppb) in groundwater at five background wells.
# In EnvStats these data are stored in the data frame
# EPA.09.Ex.15.1.manganese.df.

# Here we will test whether the data appear to come from a normal
# distribution, then we will test to see whether they appear to come
# from a lognormal distribution.
#--------------------------------------------------------------------

# First look at the data:
#-----------------------

EPA.09.Ex.15.1.manganese.df

# Sample Well Manganese.Orig.ppb Manganese.ppb Censored
#1 1 Well.1 <5 5.0 TRUE
#2 2 Well.1 12.1 12.1 FALSE
#3 3 Well.1 16.9 16.9 FALSE
#...
#23 3 Well.5 3.3 3.3 FALSE
#24 4 Well.5 8.4 8.4 FALSE
#25 5 Well.5 <2 2.0 TRUE

longToWide(EPA.09.Ex.15.1.manganese.df,
"Manganese.Orig.ppb", "Sample", "Well",
paste.row.name = TRUE)

# Well.1 Well.2 Well.3 Well.4 Well.5
#Sample.1 <5 <5 <5 6.3 17.9
#Sample.2 12.1 7.7 5.3 11.9 22.7
#Sample.3 16.9 53.6 12.6 10 3.3
#Sample.4 21.6 9.5 106.3 <2 8.4
#Sample.5 <2 45.9 34.5 77.2 <2

# Now test whether the data appear to come from
# a normal distribution. Note that these data
# are multiply censored, so well use the
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# Shapiro-Francia test.
#----------------------------------------------

gof.normal <- with(EPA.09.Ex.15.1.manganese.df,
gofTestCensored(Manganese.ppb, Censored, test = "sf"))

gof.normal

#Results of Goodness-of-Fit Test
#Based on Type I Censored Data
#-------------------------------
#
#Test Method: Shapiro-Francia GOF
# (Multiply Censored Data)
#
#Hypothesized Distribution: Normal
#
#Censoring Side: left
#
#Censoring Level(s): 2 5
#
#Estimated Parameter(s): mean = 15.23508
# sd = 30.62812
#
#Estimation Method: MLE
#
#Data: Manganese.ppb
#
#Censoring Variable: Censored
#
#Sample Size: 25
#
#Percent Censored: 24%
#
#Test Statistic: W = 0.8368016
#
#Test Statistic Parameters: N = 25.00
# DELTA = 0.24
#
#P-value: 0.004662658
#
#Alternative Hypothesis: True cdf does not equal the
# Normal Distribution.

# Plot the results:
#------------------

dev.new()
plot(gof.normal)

#----------

# Now test to see whether the data appear to come from
# a lognormal distribuiton.
#-----------------------------------------------------

gof.lognormal <- with(EPA.09.Ex.15.1.manganese.df,
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gofTestCensored(Manganese.ppb, Censored, test = "sf",
distribution = "lnorm"))

gof.lognormal

#Results of Goodness-of-Fit Test
#Based on Type I Censored Data
#-------------------------------
#
#Test Method: Shapiro-Francia GOF
# (Multiply Censored Data)
#
#Hypothesized Distribution: Lognormal
#
#Censoring Side: left
#
#Censoring Level(s): 2 5
#
#Estimated Parameter(s): meanlog = 2.215905
# sdlog = 1.356291
#
#Estimation Method: MLE
#
#Data: Manganese.ppb
#
#Censoring Variable: Censored
#
#Sample Size: 25
#
#Percent Censored: 24%
#
#Test Statistic: W = 0.9864426
#
#Test Statistic Parameters: N = 25.00
# DELTA = 0.24
#
#P-value: 0.9767731
#
#Alternative Hypothesis: True cdf does not equal the
# Lognormal Distribution.

# Plot the results:
#------------------

dev.new()
plot(gof.lognormal)

#----------

# Clean up
#---------

rm(gof.normal, gof.lognormal)
graphics.off()
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gofTwoSample.object S3 Class "gofTwoSample"

Description

Objects of S3 class "gofTwoSample" are returned by the EnvStats function gofTest when both the
x and y arguments are supplied.

Details

Objects of S3 class "gofTwoSample" are lists that contain information about the assumed distribu-
tion, the estimated or user-supplied distribution parameters, and the test statistic and p-value.

Value

Required Components
The following components must be included in a legitimate list of class "gofTwoSample".

distribution a character string with the value "Equal".

statistic a numeric scalar with a names attribute containing the name and value of the
goodness-of-fit statistic.

sample.size a numeric scalar containing the number of non-missing observations in the sam-
ple used for the goodness-of-fit test.

parameters numeric vector with a names attribute containing the name(s) and value(s) of
the parameter(s) associated with the test statistic given in the statistic com-
ponent.

p.value numeric scalar containing the p-value associated with the goodness-of-fit statis-
tic.

alternative character string indicating the alternative hypothesis.

method character string indicating the name of the goodness-of-fit test.

data a list of length 2 containing the numeric vectors actually used for the goodness-
of-fit test (i.e., the original data but with any missing or infinite values removed).

data.name a character vector of length 2 indicating the name of the data object used for
the x argument and the name of the data object used for the y argument in the
goodness-of-fit test.

Optional Component
The following component is included when the arguments x and/or y contain missing (NA), unde-
fined (NaN) and/or infinite (Inf, -Inf) values.

bad.obs numeric vector of length 2 indicating the number of missing (NA), undefined
(NaN) and/or infinite (Inf, -Inf) values that were removed from the data in the
x and y arguments prior to performing the goodness-of-fit test.

Methods

Generic functions that have methods for objects of class "gofTwoSample" include:
print, plot.
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Note

Since objects of class "gofTwoSample" are lists, you may extract their components with the $ and
[[ operators.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

See Also

print.gofTwoSample, plot.gofTwoSample, Goodness-of-Fit Tests.

Examples

# Create an object of class "gofTwoSample", then print it out.

# Generate 20 observations from a normal distribution with mean=3 and sd=2, and
# generate 10 observaions from a normal distribution with mean=2 and sd=2 then
# test whether these sets of observations come from the same distribution.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(300)
dat1 <- rnorm(20, mean = 3, sd = 2)
dat2 <- rnorm(10, mean = 1, sd = 2)
gofTest(x = dat1, y = dat2, test = "ks")

#Results of Goodness-of-Fit Test
#-------------------------------
#
#Test Method: 2-Sample K-S GOF
#
#Hypothesized Distribution: Equal
#
#Data: x = dat1
# y = dat2
#
#Sample Sizes: n.x = 20
# n.y = 10
#
#Test Statistic: ks = 0.7
#
#Test Statistic Parameters: n = 20
# m = 10
#
#P-value: 0.001669561
#
#Alternative Hypothesis: The cdf of dat1 does not equal
# the cdf of dat2.

#----------
# Clean up

rm(dat1, dat2)
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gpqCiNormCensored Generalized Pivotal Quantity for Confidence Interval for the Mean of
a Normal Distribution Based on Censored Data

Description

Generate a generalized pivotal quantity (GPQ) for a confidence interval for the mean of a Normal
distribution based on singly or multiply censored data.

Usage

gpqCiNormSinglyCensored(n, n.cen, probs, nmc, method = "mle",
censoring.side = "left", seed = NULL, names = TRUE)

gpqCiNormMultiplyCensored(n, cen.index, probs, nmc, method = "mle",
censoring.side = "left", seed = NULL, names = TRUE)

Arguments

n positive integer ≥ 3 indicating the sample size.

n.cen for the case of singly censored data, a positive integer indicating the number of
censored observations. The value of n.cen must be between 1 and n-2, inclu-
sive.

cen.index for the case of multiply censored data, a sorted vector of unique integers indi-
cating the indices of the censored observations when the observations are “or-
dered”. The length of cen.index must be between 1 and n-2, inclusive, and the
values of cen.index must be between 1 and n.

probs numeric vector of values between 0 and 1 indicating the confidence level(s)
associated with the GPQ(s).

nmc positive integer≥ 10 indicating the number of Monte Carlo trials to run in order
to compute the GPQ(s).

method character string indicating the method to use for parameter estimation.

For singly censored data, possible values are "mle" (the default), "bcmle",
"qq.reg", "qq.reg.w.cen.level", "impute.w.qq.reg", "impute.w.qq.reg.w.cen.level",
"impute.w.mle", "iterative.impute.w.qq.reg", "m.est", and "half.cen.level".
See the help file for enormCensored for details.

For multiply censored data, possible values are "mle" (the default), "qq.reg",
"impute.w.qq.reg", and "half.cen.level". See the help file for enormCensored
for details.

censoring.side character string indicating on which side the censoring occurs. The possible
values are "left" (the default) and "right".

seed positive integer to pass to the function set.seed. This argument is ignored if
seed=NULL (the default). Using the seed argument lets you reproduce the exact
same result if all other arguments stay the same.

names a logical scalar passed to quantile indicating whether to add a names attribute
to the resulting GPQ(s). The default value is names=TRUE.
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Details

The functions gpqCiNormSinglyCensored and gpqCiNormMultiplyCensored are called by enormCensored
when ci.method="gpq". They are used to construct generalized pivotal quantities to create confi-
dence intervals for the mean µ of an assumed normal distribution.

This idea was introduced by Schmee et al. (1985) in the context of Type II singly censored data.
The function gpqCiNormSinglyCensored generates GPQs using a modification of Algorithm 12.1
of Krishnamoorthy and Mathew (2009, p. 329). Algorithm 12.1 is used to generate GPQs for a
tolerance interval. The modified algorithm for generating GPQs for confidence intervals for the
mean µ is as follows:

1. Generate a random sample of n observations from a standard normal (i.e., N(0,1)) distribution
and let z(1), z(2), . . . , z(n) denote the ordered (sorted) observations.

2. Set the smallest n.cen observations as censored.
3. Compute the estimates of µ and σ by calling enormCensored using the method specified by

the method argument, and denote these estimates as µ̂∗, σ̂∗.
4. Compute the t-like pivotal quantity t̂ = µ̂∗/σ̂∗.
5. Repeat steps 1-4 nmc times to produce an empirical distribution of the t-like pivotal quantity.

A two-sided (1− α)100% confidence interval for µ is then computed as:

[µ̂− t̂1−(α/2)σ̂, µ̂− t̂α/2σ̂]

where t̂p denotes the p’th empirical quantile of the nmc generated t̂ values.

Schmee at al. (1985) derived this method in the context of Type II singly censored data (for which
these limits are exact within Monte Carlo error), but state that according to Regal (1982) this method
produces confidence intervals that are close apporximations to the correct limits for Type I censored
data.

The function gpqCiNormMultiplyCensored is an extension of this idea to multiply censored data.
The algorithm is the same as for singly censored data, except Step 2 changes to:

2. Set observations as censored for elements of the argument cen.index that have the value TRUE.

The functions gpqCiNormSinglyCensored and gpqCiNormMultiplyCensored are computation-
ally intensive and provided to the user to allow you to create your own tables.

Value

a numeric vector containing the GPQ(s).

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Krishnamoorthy K., and T. Mathew. (2009). Statistical Tolerance Regions: Theory, Applications,
and Computation. John Wiley and Sons, Hoboken.

Regal, R. (1982). Applying Order Statistic Censored Normal Confidence Intervals to Time Cen-
sored Data. Unpublished manuscript, University of Minnesota, Duluth, Department of Mathemati-
cal Sciences.

Schmee, J., D.Gladstein, and W. Nelson. (1985). Confidence Limits for Parameters of a Normal
Distribution from Singly Censored Samples, Using Maximum Likelihood. Technometrics 27(2)
119–128.
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See Also

enormCensored, estimateCensored.object.

Examples

# Reproduce the entries for n=10 observations with n.cen=6 in Table 4
# of Schmee et al. (1985, p.122).
#
# Notes:
# 1. This table applies to right-censored data, and the
# quantity "r" in this table refers to the number of
# uncensored observations.
#
# 2. Passing a value for the argument "seed" simply allows
# you to reproduce this example.

# NOTE: Here to save computing time for the sake of example, we will specify
# just 100 Monte Carlos, whereas Krishnamoorthy and Mathew (2009)
# suggest *10,000* Monte Carlos.

# Here are the values given in Schmee et al. (1985):
Schmee.values <- c(-3.59, -2.60, -1.73, -0.24, 0.43, 0.58, 0.73)
probs <- c(0.025, 0.05, 0.1, 0.5, 0.9, 0.95, 0.975)
names(Schmee.values) <- paste(probs * 100, "%", sep = "")

Schmee.values
# 2.5% 5% 10% 50% 90% 95% 97.5%
#-3.59 -2.60 -1.73 -0.24 0.43 0.58 0.73

gpqs <- gpqCiNormSinglyCensored(n = 10, n.cen = 6, probs = probs,
nmc = 100, censoring.side = "right", seed = 529)

round(gpqs, 2)
# 2.5% 5% 10% 50% 90% 95% 97.5%
#-2.46 -2.03 -1.38 -0.14 0.54 0.65 0.84

# This is what you get if you specify nmc = 1000 with the
# same value for seed:
#-----------------------------------------------
# 2.5% 5% 10% 50% 90% 95% 97.5%
#-3.50 -2.49 -1.67 -0.25 0.41 0.57 0.71

# Clean up
#---------
rm(Schmee.values, probs, gpqs)

#==========

# Example of using gpqCiNormMultiplyCensored
#-------------------------------------------

# Consider the following set of multiply left-censored data:
dat <- 12:16
censored <- c(TRUE, FALSE, TRUE, FALSE, FALSE)
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# Since the data are "ordered" we can identify the indices of the
# censored observations in the ordered data as follow:

cen.index <- (1:length(dat))[censored]
cen.index
#[1] 1 3

# Now we can generate a GPQ using gpqCiNormMultiplyCensored.
# Here well generate a GPQs to use to create a
# 95% confidence interval for left-censored data.

# NOTE: Here to save computing time for the sake of example, we will specify
# just 100 Monte Carlos, whereas Krishnamoorthy and Mathew (2009)
# suggest *10,000* Monte Carlos.

gpqCiNormMultiplyCensored(n = 5, cen.index = cen.index,
probs = c(0.025, 0.975), nmc = 100, seed = 237)

# 2.5% 97.5%
#-1.315592 1.848513

#----------

# Clean up
#---------
rm(dat, censored, cen.index)

gpqTolIntNormCensored Generalized Pivotal Quantity for Tolerance Interval for a Normal Dis-
tribution Based on Censored Data

Description

Generate a generalized pivotal quantity (GPQ) for a tolerance interval for a Normal distribution
based on singly or multiply censored data.

Usage

gpqTolIntNormSinglyCensored(n, n.cen, p, probs, nmc, method = "mle",
censoring.side = "left", seed = NULL, names = TRUE)

gpqTolIntNormMultiplyCensored(n, cen.index, p, probs, nmc, method = "mle",
censoring.side = "left", seed = NULL, names = TRUE)

Arguments

n positive integer ≥ 3 indicating the sample size.

n.cen for the case of singly censored data, a positive integer indicating the number of
censored observations. The value of n.cen must be between 1 and n-2, inclu-
sive.

cen.index for the case of multiply censored data, a sorted vector of unique integers indi-
cating the indices of the censored observations when the observations are “or-
dered”. The length of cen.index must be between 1 and n-2, inclusive, and the
values of cen.index must be between 1 and n.
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p numeric scalar strictly greater than 0 and strictly less than 1 indicating the quan-
tile for which to generate the GPQ(s) (i.e., the coverage associated with a one-
sided tolerance interval).

probs numeric vector of values between 0 and 1 indicating the confidence level(s)
associated with the GPQ(s).

nmc positive integer≥ 10 indicating the number of Monte Carlo trials to run in order
to compute the GPQ(s).

method character string indicating the method to use for parameter estimation.

For singly censored data, possible values are "mle" (the default), "bcmle",
"qq.reg", "qq.reg.w.cen.level", "impute.w.qq.reg", "impute.w.qq.reg.w.cen.level",
"impute.w.mle", "iterative.impute.w.qq.reg", "m.est", and "half.cen.level".
See the help file for enormCensored for details.

For multiply censored data, possible values are "mle" (the default), "qq.reg",
"impute.w.qq.reg", and "half.cen.level". See the help file for enormCensored
for details.

censoring.side character string indicating on which side the censoring occurs. The possible
values are "left" (the default) and "right".

seed positive integer to pass to the function set.seed. This argument is ignored if
seed=NULL (the default). Using the seed argument lets you reproduce the exact
same result if all other arguments stay the same.

names a logical scalar passed to quantile indicating whether to add a names attribute
to the resulting GPQ(s). The default value is names=TRUE.

Details

The function gpqTolIntNormSinglyCensored generates GPQs as described in Algorithm 12.1 of
Krishnamoorthy and Mathew (2009, p. 329). The function gpqTolIntNormMultiplyCensored is
an extension of this idea to multiply censored data. These functions are called by tolIntNormCensored
when ti.method="gpq", and also by eqnormCensored when ci=TRUE and ci.method="gpq". See
the help files for these functions for an explanation of GPQs.

Note that technically these are only GPQs if the data are Type II censored. However, Krishnamoor-
thy and Mathew (2009, p. 328) state that in the case of Type I censored data these quantities should
approximate the true GPQs and the results appear to be satisfactory, even for small sample sizes.

The functions gpqTolIntNormSinglyCensored and gpqTolIntNormMultiplyCensored are com-
putationally intensive and provided to the user to allow you to create your own tables.

Value

a numeric vector containing the GPQ(s).

Note

Tolerance intervals have long been applied to quality control and life testing problems (Hahn,
1970b,c; Hahn and Meeker, 1991; Krishnamoorthy and Mathew, 2009). References that discuss tol-
erance intervals in the context of environmental monitoring include: Berthouex and Brown (2002,
Chapter 21), Gibbons et al. (2009), Millard and Neerchal (2001, Chapter 6), Singh et al. (2010b),
and USEPA (2009).
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Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Krishnamoorthy K., and T. Mathew. (2009). Statistical Tolerance Regions: Theory, Applications,
and Computation. John Wiley and Sons, Hoboken.

See Also

tolIntNormCensored, eqnormCensored, enormCensored, estimateCensored.object.

Examples

# Reproduce the entries for n=10 observations with n.cen=1 in Table 12.2
# of Krishnamoorthy and Mathew (2009, p.331).
#
# (Note: passing a value for the argument "seed" simply allows you to
# reproduce this example.)
#
# NOTE: Here to save computing time for the sake of example, we will specify
# just 100 Monte Carlos, whereas Krishnamoorthy and Mathew (2009)
# suggest *10,000* Monte Carlos.

gpqTolIntNormSinglyCensored(n = 10, n.cen = 1, p = 0.05, probs = 0.05,
nmc = 100, seed = 529)

# 5%
#-3.483403

gpqTolIntNormSinglyCensored(n = 10, n.cen = 1, p = 0.1, probs = 0.05,
nmc = 100, seed = 497)

# 5%
#-2.66705

gpqTolIntNormSinglyCensored(n = 10, n.cen = 1, p = 0.9, probs = 0.95,
nmc = 100, seed = 623)

# 95%
#2.478654

gpqTolIntNormSinglyCensored(n = 10, n.cen = 1, p = 0.95, probs = 0.95,
nmc = 100, seed = 623)

# 95%
#3.108452

#==========

# Example of using gpqTolIntNormMultiplyCensored
#-----------------------------------------------

# Consider the following set of multiply left-censored data:
dat <- 12:16
censored <- c(TRUE, FALSE, TRUE, FALSE, FALSE)

# Since the data are "ordered" we can identify the indices of the
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# censored observations in the ordered data as follow:

cen.index <- (1:length(dat))[censored]
cen.index
#[1] 1 3

# Now we can generate a GPQ using gpqTolIntNormMultiplyCensored.
# Here well generate a GPQ corresponding to an upper tolerance
# interval with coverage 90% with 95% confidence for
# left-censored data.
# NOTE: Here to save computing time for the sake of example, we will specify
# just 100 Monte Carlos, whereas Krishnamoorthy and Mathew (2009)
# suggest *10,000* Monte Carlos.

gpqTolIntNormMultiplyCensored(n = 5, cen.index = cen.index, p = 0.9,
probs = 0.95, nmc = 100, seed = 237)

# 95%
#3.952052

#==========

# Clean up
#---------
rm(dat, censored, cen.index)

Graham.et.al.75.etu.df

Ethylene Thiourea Dose-Response Data

Description

These data are the results of an experiment in which different groups of rats were exposed to differ-
ent concentration levels of ethylene thiourea (ETU), which is a decomposition product of a certain
class of fungicides that can be found in treated foods (Graham et al., 1975; Rodricks, 1992, p.133).
In this experiment, the outcome of concern was the number of rats that developed thyroid tumors.

Usage

Graham.et.al.75.etu.df

Format

A data frame with 6 observations on the following 4 variables.

dose a numeric vector of dose (ppm/day) of ETU.

tumors a numeric vector indicating number of rats that developed thyroid tumors.

n a numeric vector indicating the number of rats in the dose group.

proportion a numeric vector indicating proportion of rats that developed thyroid tumors.

Source

Graham, S.L., K.J. Davis, W.H. Hansen, and C.H. Graham. (1975). Effects of Prolonged Ethylene
Thiourea Ingestion on the Thyroid of the Rat. Food and Cosmetics Toxicology, 13(5), 493–499.
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References

Rodricks, J.V. (1992). Calculated Risks: The Toxicity and Human Health Risks of Chemicals in
Our Environment. Cambridge University Press, New York, p.133.

Helsel.Cohn.88.app.b.df

Example of Multiply Left-censored Data from Literature

Description

Made up multiply left-censored data. There are 9 observations out of a total of 18 that are reported
as <DL, where DL denotes a detection limit. There are 2 distinct detection limits.

Usage

Helsel.Cohn.88.app.b.df

Format

A data frame with 18 observations on the following 3 variables.

Conc.orig a character vector of original observations

Conc a numeric vector of observations with censored values coded to censoring levels

Censored a logical vector indicating which values are censored

Source

Helsel, D.R., and T.A. Cohn. (1988). Estimation of Descriptive Statistics for Multiply Censored
Water Quality Data. Water Resources Research 24(12), 1997–2004, Appendix B.

Helsel.Cohn.88.silver.df

Silver Concentrations From An Interlab Comparison

Description

Silver concentrations (mg/L) from an interlab comparison. There are 34 observations out of a total
of 56 that are reported as <DL, where DL denotes a detection limit. There are 12 distinct detection
limits.

Usage

Helsel.Cohn.88.silver.df
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Format

A data frame with 56 observations on the following 4 variables.

Ag.orig a character vector of original silver concentrations (mg/L)

Ag a numeric vector with nondetects coded to the detection limit

Censored a logical vector indicating which observations are censored

log.Ag the natural logarithm of Ag

Source

Helsel, D.R., and T.A. Cohn. (1988). Estimation of Descriptive Statistics for Multiply Censored
Water Quality Data. Water Resources Research 24(12), 1997–2004.

References

Janzer, V.J. (1986). Report of the U.S. Geological Survey’s Analytical Evaluation Program–Standard
Reference Water Samples M6, M94, T95, N16, P8, and SED3. Technical Report, Branch of Quality
Assurance, U.S. Geological Survey, Arvada, CO.

HoskingEtAl1985 Abstract: Hosking et al. (1985)

Description

Detailed abstract of the manuscript:

Hosking, J.R.M., J.R. Wallis, and E.F. Wood. (1985). Estimation of the Generalized Extreme-Value
Distribution by the Method of Probability-Weighted Moments. Technometrics 27(3), 251–261.

Details

Abstract
Hosking et al. (1985) use the method of probability-weighted moments, introduced by Greenwood
et al. (1979), to estimate the parameters of the generalized extreme value distribution (GEVD)
with parameters location=η, scale=θ, and shape=κ. Hosking et al. (1985) derive the asymptotic
distributions of the probability-weighted moment estimators (PWME), and compare the asymptotic
and small-sample statistical properties (via computer simulation) of the PWME with maximum
likelihood estimators (MLE) and Jenkinson’s (1969) method of sextiles estimators (JSE). They
also compare the statistical properties of quantile estimators (which are based on the distribution
parameter estimators). Finally, they derive a test of the null hypothesis that the shape parameter is
zero, and assess its performance via computer simulation.

Hosking et al. (1985) note that when κ ≤ −1, the moments and probability-weighted moments of
the GEVD do not exist. They also note that in practice the shape parameter usually lies between
-1/2 and 1/2.

Hosking et al. (1985) found that the asymptotic efficiency of the PWME (the limit as the sample
size approaches infinity of the ratio of the variance of the MLE divided by the variance of the
PWME) tends to 0 as the shape parameter approaches 1/2 or -1/2. For values of κ within the range
[−0.2, 0.2], however, the efficiency of the estimator of location is close to 100 are greater than 70
Hosking et al. (1985) found that the asymptotic efficiency of the PWME is poor for κ outside the
range [−0.2, 0.2].
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For the small sample results, Hosking et al. (1985) considered several possible forms of the PWME
(see equations (8)-(10) below). The best overall results were given by the plotting-position PWME
defined by equations (9) and (10) with a = 0.35 and b = 0.

Small sample results for estimating the parameters show that for n ≥ 50 all three methods give
almost identical results. For n < 50 the results for the different estimators are a bit different, but
not dramatically so. The MLE tends to be slightly less biased than the other two methods. For
estimating the shape parameter, the MLE has a slightly larger standard deviation, and the PWME
has consistently the smallest standard deviation.

Small sample results for estimating large quantiles show that for n ≥ 100 all three methods are
comparable. For n < 100 the PWME and JSE are comparable and in general have much smaller
standard deviations than the MLE. All three methods are very inaccurate for estimating large quan-
tiles in small samples, especially when κ < 0.

Hosking et al. (1985) derive a test of the null hypothesis H0 : κ = 0 based on the PWME of κ. The
test is performed by computing the statistic:

z =
ˆκpwme√

0.5663/n
(1)

and comparing z to a standard normal distribution (see zTestGevdShape). Based on computer sim-
ulations using the plotting-position PWME, they found that a sample size of n ≥ 25 ensures an
adequate normal approximation. They also found this test has power comparable to the modified
likelihood-ratio test, which was found by Hosking (1984) to be the best overall test of H0 : κ = 0
of the thirteen tests he considered.

More Details
Probability-Weighted Moments and Parameters of the GEVD
The definition of a probability-weighted moment, introduced by Greenwood et al. (1979), is as
follows. Let X denote a random variable with cdf F , and let x(p) denote the p’th quantile of the
distribution. Then the ijk’th probability-weighted moment is given by:

M(i, j, k) = E[XiF j(1− F )k] =

∫ 1

0

[x(F )]iF j(1− F )k dF (2)

where i, j, and k are real numbers.

Hosking et al. (1985) set
βj = M(i, j, 0) (3)

and Greenwood et al. (1979) show that

βj =
1

j + 1
E[Xj+1:j+1] (4)

where
E[Xj+1:j+1]

denotes the expected value of the j + 1’th order statistic (i.e., the maximum) in a sample of size
j + 1. Hosking et al. (1985) show that if X has a GEVD with parameters location=η, scale=θ,
and shape=κ, where κ 6= 0, then

βj =
1

j + 1
{η +

θ[1− (j + 1)−κΓ(1 + κ)]

κ
} (5)

for κ > −1, where Γ() denotes the gamma function. Thus,

β0 = η +
θ[1− Γ(1 + κ)]

κ
(6)
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2β1 − β0 =
θ[Γ(1 + κ)](1− 2−κ)

κ
(7)

3β2 − β0

2β1 − β0
=

1− 3−κ

1− 2−kappa
(8)

Estimating Distribution Parameters
Using the results of Landwehr et al. (1979), Hosking et al. (1985) show that given a random sample
of n values from some arbitrary distribution, an unbiased, distribution-free, and parameter-free
estimator of the probability-weighted moment βj = M(i, j, 0) defined above is given by:

bj =
1

n

n∑
i=j+1

xi,n

(
i−1
j

)(
n−1
j

) (9)

where the quantity xi,n denotes the i’th order statistic in the random sample of size n. Hosking
et al. (1985) note that this estimator is closely related to U-statistics (Hoeffding, 1948; Lehmann,
1975, pp. 362-371).

An alternative “plotting position” estimator is given by:

β̂j [pi,n] =
1

n

n∑
i=1

pji,nxi,n (10)

where
pi,n = F̂ (xi,n) (11)

denotes the plotting position of the i’th order statistic in the random sample of size n, that is, a
distribution-free estimate of the cdf of X evaluated at the i’th order statistic. Typically, plotting
positions have the form:

pi,n =
i− a
n+ b

(12)

where b > −a > −1. For this form of plotting position, the plotting-position estimators in (10) are
asymptotically equivalent to the U-statistic estimators in (9).

Although the unbiased and plotting position estimators are asymptotically equivalent (Hosking,
1990), Hosking and Wallis (1995) recommend using the unbiased estimator for almost all applica-
tions because of its superior performance in small and moderate samples.

Using equations (6)-(8) above, i.e., the three equations involving β0, β1, and β2, Hosking et al.
(1985) define the probability-weighted moment estimators of η, θ, and κ as the solutions to these
three simultaneous equations, with the values of the probability-weighted moments replaced by
their estimated values (using either the unbiased or plotting posistion estiamtors in (9) and (10)
above). Hosking et al. (1985) note that the third equation (equation (8)) must be solved iteratively
for the PWME of κ. Using the unbiased estimators of the PWMEs to solve for κ, the PWMEs of η
and θ are given by:

η̂pwme = b0 +
θ̂pwme[Γ(1 + κ̂pwme)− 1]

κ̂pwme
(13)

θ̂pwme =
(2b1 − b0)κ̂pwme

Γ(1 + κ̂pwme)(1− 2−κ̂pwme)
(14)

Hosking et al. (1985) show that when the unbiased estimates of the PWMEs are used to estimate
the probability-weighted moments, the estimates of θ and κ satisfy the feasibility criteria

θ̂pwme > 0; κ̂pwme > −1

almost surely.
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Hosking et al. (1985) show that the asymptotic distribution of the PWME is multivariate normal
with mean equal to (η, θ, κ), and they derive the formula for the asymptotic variance-covariance
matrix as:

Vη̂,θ̂,κ̂ =
1

n
GVβ̂0,β̂1,β̂2

GT (15)

where
Vβ̂0,β̂1,β̂2

denotes the variance-covariance matrix of the estimators of the probability-weighted moments de-
fined in either equation (9) or (10) above (recall that these two estimators are asymptotically equiv-
alent), and the matrix G is defined by:

Gi1 =
∂η

∂βi−1
, Gi2 =

∂θ

∂βi−1
, Gi3 =

∂κ

∂βi−1
(16)

for i = 1, 2, 3. Hosking et al. (1985) provide formulas for the matrix

Vβ̂0,β̂1,β̂2

in Appendix C of their manuscript. Note that there is a typographical error in equation (C.11)
(Jon Hosking, personal communication, 1996). In the second line of this equation, the quantity
−(r + s)−k should be replaced with −(r + s)−2k.

The matrix G in equation (16) is not easily computed. Its inverse, however, is easy to compute and
then can be inverted numerically (Jon Hosking, 1996, personal communication). The inverse of G
is given by:

G−1
i1 =

∂βi−1∂η

,
G−1
i2 =

∂βi−1∂θ

,
G−1
i3 =

∂βi−1∂κ
(17)

and by equation (5) above it can be shown that:

∂βj
∂η

=
1

j + 1
(18)

∂βj
∂θ

=
1− (j + 1)−κΓ(1 + κ)

(j + 1)κ
(19)

∂βj
∂κ

=
θ

j + 1
{ (j + 1)−κ[log(j + 1)Γ(1 + κ)− Γ

′
(1 + κ)]

κ
− 1− (j + 1)−κΓ(1 + κ)

κ2
} (20)

for i = 1, 2, 3.

Estimating Distribution Quantiles
If X has a GEVD with parameters location=η, scale=θ, and shape=κ, where κ 6= 0, then the
p’th quantile of the distribution is given by:

x(p) = η +
θ{1− [−log(p)]κ}

κ
(21)

(0 ≤ p ≤ 1). Given estimated values of the location, scale, and shape parameters, the p’th quantile
of the distribution is estimated as:

x̂(p) = η̂ +
θ̂{1− [−log(p)]κ̂}

κ̂
(22)

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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See Also

Generalized Extreme Value Distribution, egevd.

htest.object S3 Class "htest"

Description

This class of objects is returned by functions that perform hypothesis tests (e.g., the R function
t.test, the EnvStats function kendallSeasonalTrendTest, etc.). Objects of class "htest" are
lists that contain information about the null and alternative hypotheses, the estimated distribution
parameters, the test statistic, the p-value, and (optionally) confidence intervals for distribution pa-
rameters.

Details

Objects of S3 class "htest" are returned by any of the EnvStats functions that perform hypothesis
tests as listed here: Hypothesis Tests.

(Note that functions that perform goodness-of-fit tests return objects of class "gof" or "gofTwoSample".)

Objects of class "htest" generated by EnvStats functions may contain additional components
called estimation.method (method used to estimate the population parameter(s)), sample.size,
and bad.obs (number of missing (NA), undefined (NaN), or infinite (Inf, -Inf) values removed
prior to performing the hypothesis test), and interval (a list with information about a confidence,
prediction, or tolerance interval).
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Value

Required Components
The following components must be included in a legitimate list of class "htest".

null.value numeric vector containing the value(s) of the population parameter(s) specified
by the null hypothesis. This vector has a names attribute describing its elements.

alternative character string indicating the alternative hypothesis (the value of the input argu-
ment alternative). Possible values are "greater", "less", or "two-sided".

method character string giving the name of the test used.

estimate numeric vector containing the value(s) of the estimated population parameter(s)
involved in the null hypothesis. This vector has a names attribute describing its
element(s).

data.name character string containing the actual name(s) of the input data.

statistic numeric scalar containing the value of the test statistic, with a names attribute
indicating the null distribution.

parameters numeric vector containing the parameter(s) associated with the null distribution
of the test statistic. This vector has a names attribute describing its element(s).

p.value numeric scalar containing the p-value for the test under the null hypothesis.

Optional Components
The following component may optionally be included in an object of of class "htest" generated
by R functions that test hypotheses:

conf.int numeric vector of length 2 containing lower and upper confidence limits for the
estimated population parameter. This vector has an attribute called "conf.level"
that is a numeric scalar indicating the confidence level associated with the con-
fidence interval.

The following components may be included in objects of class "htest" generated by EnvStats
functions:

sample.size numeric scalar containing the number of non-missing observations in the sample
used for the hypothesis test.

estimation.method

character string containing the method used to compute the estimated distribu-
tion parameter(s). The value of this component will depend on the available
estimation methods (see Distribution.df).

bad.obs the number of missing (NA), undefined (NaN) and/or infinite (Inf, -Inf) values
that were removed from the data object prior to performing the hypothesis test.

interval a list containing information about a confidence, prediction, or tolerance inter-
val.

Methods

Generic functions that have methods for objects of class "htest" include:
print.

Note

Since objects of class "htest" are lists, you may extract their components with the $ and [[ oper-
ators.
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Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

See Also

print.htest, Hypothesis Tests.

Examples

# Create an object of class "htest", then print it out.
#------------------------------------------------------

htest.obj <- chenTTest(EPA.02d.Ex.9.mg.per.L.vec, mu = 30)

mode(htest.obj)
#[1] "list"

class(htest.obj)
#[1] "htest"

names(htest.obj)
# [1] "statistic" "parameters" "p.value" "estimate"
# [5] "null.value" "alternative" "method" "sample.size"
# [9] "data.name" "bad.obs" "interval"

htest.obj

#Results of Hypothesis Test
#--------------------------
#
#Null Hypothesis: mean = 30
#
#Alternative Hypothesis: True mean is greater than 30
#
#Test Name: One-sample t-Test
# Modified for
# Positively-Skewed Distributions
# (Chen, 1995)
#
#Estimated Parameter(s): mean = 34.566667
# sd = 27.330598
# skew = 2.365778
#
#Data: EPA.02d.Ex.9.mg.per.L.vec
#
#Sample Size: 60
#
#Test Statistic: t = 1.574075
#
#Test Statistic Parameter: df = 59
#
#P-values: z = 0.05773508
# t = 0.06040889
# Avg. of z and t = 0.05907199
#
#Confidence Interval for: mean
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#
#Confidence Interval Method: Based on z
#
#Confidence Interval Type: Lower
#
#Confidence Level: 95%
#
#Confidence Interval: LCL = 29.82
# UCL = Inf

#==========

# Extract the test statistic
#---------------------------

htest.obj$statistic
# t
#1.574075

#==========

# Clean up
#---------
rm(htest.obj)

htestCensored.object S3 Class "htestCensored"

Description

This class of objects is returned by EnvStats functions that perform hypothesis tests based on
censored data. Objects of class "htestCensored" are lists that contain information about the null
and alternative hypotheses, the censoring side, the censoring levels, the percentage of observations
that are censored, the estimated distribution parameters (if applicable), the test statistic, the p-value,
and (optionally, if applicable) confidence intervals for distribution parameters.

Details

Objects of S3 class "htestCensored" are returned by the functions listed in the section Hypothesis
Tests in the help file EnvStats Functions for Censored Data. Currently, the only function listed is
twoSampleLinearRankTestCensored.

Value

Required Components
The following components must be included in a legitimate list of class "htestCensored".

statistic numeric scalar containing the value of the test statistic, with a names attribute
indicating the null distribution.

parameters numeric vector containing the parameter(s) associated with the null distribution
of the test statistic. This vector has a names attribute describing its element(s).

p.value numeric scalar containing the p-value for the test under the null hypothesis.
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null.value numeric vector containing the value(s) of the population parameter(s) specified
by the null hypothesis. This vector has a names attribute describing its elements.

alternative character string indicating the alternative hypothesis (the value of the input argu-
ment alternative). Possible values are "greater", "less", or "two-sided".

method character string giving the name of the test used.

sample.size numeric scalar containing the number of non-missing observations in the sample
used for the hypothesis test.

data.name character string containing the actual name(s) of the input data.

bad.obs the number of missing (NA), undefined (NaN) and/or infinite (Inf, -Inf) values
that were removed from the data object prior to performing the hypothesis test.

censoring.side character string indicating whether the data are left- or right-censored.

censoring.name character string indicating the name of the data object used to identify which
values are censored.

censoring.levels

numeric scalar or vector indicating the censoring level(s).
percent.censored

numeric scalar indicating the percent of non-missing observations that are cen-
sored.

Optional Components
The following component may optionally be included in an object of of class "htestCensored":

estimate numeric vector containing the value(s) of the estimated population parameter(s)
involved in the null hypothesis. This vector has a names attribute describing its
element(s).

estimation.method

character string containing the method used to compute the estimated distribu-
tion parameter(s). The value of this component will depend on the available
estimation methods (see Distribution.df).

interval a list containing information about a confidence, prediction, or tolerance inter-
val.

Methods

Generic functions that have methods for objects of class "htestCensored" include:
print.

Note

Since objects of class "htestCensored" are lists, you may extract their components with the $ and
[[ operators.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

See Also

print.htestCensored, Censored Data.
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Examples

# Create an object of class "htestCensored", then print it out.
#--------------------------------------------------------------

htestCensored.obj <- with(EPA.09.Ex.16.5.PCE.df,
twoSampleLinearRankTestCensored(

x = PCE.ppb[Well.type == "Compliance"],
x.censored = Censored[Well.type == "Compliance"],
y = PCE.ppb[Well.type == "Background"],
y.censored = Censored[Well.type == "Background"],
test = "tarone-ware", alternative = "greater"))

mode(htestCensored.obj)
#[1] "list"

class(htestCensored.obj)
#[1] "htest"

names(htestCensored.obj)
# [1] "statistic" "parameters" "p.value"
# [4] "estimate" "null.value" "alternative"
# [7] "method" "estimation.method" "sample.size"
#[10] "data.name" "bad.obs" "censoring.side"
#[13] "censoring.name" "censoring.levels" "percent.censored"

htestCensored.obj

#Results of Hypothesis Test
#Based on Censored Data
#--------------------------
#
#Null Hypothesis: Fy(t) = Fx(t)
#
#Alternative Hypothesis: Fy(t) > Fx(t) for at least one t
#
#Test Name: Two-Sample Linear Rank Test:
# Tarone-Ware Test
# with Hypergeometric Variance
#
#Censoring Side: left
#
#Data: x = PCE.ppb[Well.type == "Compliance"]
# y = PCE.ppb[Well.type == "Background"]
#
#Censoring Variable: x = Censored[Well.type == "Compliance"]
# y = Censored[Well.type == "Background"]
#
#Sample Sizes: nx = 8
# ny = 6
#
#Percent Censored: x = 12.5%
# y = 50.0%
#
#Test Statistics: nu = 8.458912
# var.nu = 20.912407
# z = 1.849748
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#
#P-value: 0.03217495

#==========

# Extract the test statistics
#----------------------------

htestCensored.obj$statistic
# nu var.nu z
# 8.458912 20.912407 1.849748

#==========

# Clean up
#---------
rm(htestCensored.obj)

inversePredictCalibrate

Predict Concentration Using Calibration

Description

Predict concentration using a calibration line (or curve) and inverse regression.

Usage

inversePredictCalibrate(object, obs.y = NULL,
n.points = ifelse(is.null(obs.y), 100, length(obs.y)),
intervals = FALSE, coverage = 0.99, simultaneous = FALSE,
individual = FALSE, trace = FALSE)

Arguments

object an object that is the result of calling the function calibrate.

obs.y optional numeric vector of observed values for the machine signal. The default
value is obs.y=NULL, in which case obs.y is set equal to a vector of values
(of length n.points) ranging from the minimum to the maximum of the fitted
values from the calibrate object.

n.points optional integer indicating the number of points at which to predict concentra-
tions (i.e., perform inverse regression). The default value is n.points=100. This
argument is ignored when obs.y is supplied.

intervals optional logical scalar indicating whether to compute confidence intervals for
the predicted concentrations. The default value is intervals=FALSE.

coverage optional numeric scalar between 0 and 1 indicating the confidence level associ-
ated with the confidence intervals for the predicted concentrations. The default
value is coverage=0.99.

simultaneous optional logical scalar indicating whether to base the confidence intervals for
the predicted values on simultaneous or non-simultaneous prediction limits. The
default value is simultaneous=FALSE.
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individual optional logical scalar indicating whether to base the confidence intervals for
the predicted values on prediction limits for the mean (individual=FALSE) or
prediction limits for an individual observation (individual=TRUE). The default
value is individual=FALSE.

trace optional logical scalar indicating whether to print out (trace) the progress of the
inverse prediction for each of the specified values of obs.y. The default value
is trace=FALSE.

Details

A simple and frequently used calibration model is a straight line where the response variable S
denotes the signal of the machine and the predictor variable C denotes the true concentration in
the physical sample. The error term is assumed to follow a normal distribution with mean 0. Note
that the average value of the signal for a blank (C = 0) is the intercept. Other possible calibration
models include higher order polynomial models such as a quadratic or cubic model.

In a typical setup, a small number of samples (e.g., n = 6) with known concentrations are measured
and the signal is recorded. A sample with no chemical in it, called a blank, is also measured. (You
have to be careful to define exactly what you mean by a “blank.” A blank could mean a container
from the lab that has nothing in it but is prepared in a similar fashion to containers with actual
samples in them. Or it could mean a field blank: the container was taken out to the field and
subjected to the same process that all other containers were subjected to, except a physical sample
of soil or water was not placed in the container.) Usually, replicate measures at the same known
concentrations are taken. (The term “replicate” must be well defined to distinguish between for
example the same physical samples that are measured more than once vs. two different physical
samples of the same known concentration.)

The function calibrate initially fits a linear calibration line or curve. Once the calibration line is
fit, samples with unknown concentrations are measured and their signals are recorded. In order to
produce estimated concentrations, you have to use inverse regression to map the signals to the esti-
mated concentrations. We can quantify the uncertainty in the estimated concentration by combining
inverse regression with prediction limits for the signal S.

Value

A numeric matrix containing the results of the inverse calibration. The first two columns are
labeled obs.y and pred.x containing the values of the argument obs.y and the predicted val-
ues of x (the concentration), respectively. If intervals=TRUE, then the matrix also contains the
columns lpl.x and upl.x corresponding to the lower and upper prediction limits for x. Also, if
intervals=TRUE, then the matrix has the attributes coverage (the value of the argument coverage)
and simultaneous (the value of the argument simultaneous).

Note

Almost always the process of determining the concentration of a chemical in a soil, water, or air
sample involves using some kind of machine that produces a signal, and this signal is related to
the concentration of the chemical in the physical sample. The process of relating the machine
signal to the concentration of the chemical is called calibration (see calibrate). Once calibration
has been performed, estimated concentrations in physical samples with unknown concentrations are
computed using inverse regression. The uncertainty in the process used to estimate the concentration
may be quantified with decision, detection, and quantitation limits.

In practice, only the point estimate of concentration is reported (along with a possible qualifier),
without confidence bounds for the true concentration C. This is most unfortunate because it gives
the impression that there is no error associated with the reported concentration. Indeed, both the
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International Organization for Standardization (ISO) and the International Union of Pure and Ap-
plied Chemistry (IUPAC) recommend always reporting both the estimated concentration and the
uncertainty associated with this estimate (Currie, 1997).

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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See Also

pointwise, calibrate, detectionLimitCalibrate, lm

Examples

# The data frame EPA.97.cadmium.111.df contains calibration data
# for cadmium at mass 111 (ng/L) that appeared in
# Gibbons et al. (1997b) and were provided to them by the U.S. EPA.
# Here we
# 1. Display a plot of these data along with the fitted calibration
# line and 99% non-simultaneous prediction limits.
# 2. Then based on an observed signal of 60 from a sample with
# unknown concentration, we use the calibration line to estimate
# the true concentration and use the prediction limits to compute
# confidence bounds for the true concentration.
# An observed signal of 60 results in an estimated value of cadmium
# of 59.97 ng/L and a confidence interval of [53.83, 66.15].
# See Millard and Neerchal (2001, pp.566-569) for more details on
# this example.

Cadmium <- EPA.97.cadmium.111.df$Cadmium

Spike <- EPA.97.cadmium.111.df$Spike

calibrate.list <- calibrate(Cadmium ~ Spike,
data=EPA.97.cadmium.111.df)

newdata <- data.frame(Spike = seq(min(Spike), max(Spike), len=100))

pred.list <- predict(calibrate.list, newdata=newdata, se.fit=TRUE)

pointwise.list <- pointwise(pred.list, coverage=0.99,
individual=TRUE)
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plot(Spike, Cadmium, ylim=c(min(pointwise.list$lower),
max(pointwise.list$upper)), xlab="True Concentration (ng/L)",
ylab="Observed Concentration (ng/L)")

abline(calibrate.list, lwd=2)

lines(newdata$Spike, pointwise.list$lower, lty=8, lwd=2)

lines(newdata$Spike, pointwise.list$upper, lty=8, lwd=2)

title(paste("Calibration Line and 99% Prediction Limits",
"for US EPA Cadmium 111 Data", sep="\n"))

# Now estimate the true concentration based on
# an observed signal of 60 ng/L.

inversePredictCalibrate(calibrate.list, obs.y=60,
intervals=TRUE, coverage=0.99, individual=TRUE)

# obs.y pred.x lpl.x upl.x
#[1,] 60 59.97301 53.8301 66.15422
#attr(, "coverage"):
#[1] 0.99
#attr(, "simultaneous"):
#[1] FALSE

rm(Cadmium, Spike, calibrate.list, newdata, pred.list, pointwise.list)

iqr Interquartile Range

Description

Compute the interquartile range for a set of data.

Usage

iqr(x, na.rm = FALSE)

Arguments

x numeric vector of observations.

na.rm logical scalar indicating whether to remove missing values from x. If na.rm=FALSE
(the default) and x contains missing values, then a missing value (NA) is returned.
If na.rm=TRUE, missing values are removed from x prior to computing the coef-
ficient of variation.

Details

Let x denote a random sample of n observations from some distribution associated with a random
variable X . The sample interquartile range is defined as:

IQR = X̂0.75 − X̂0.25 (1)
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where Xp denotes the p’th quantile of the distribution and X̂p denotes the estimate of this quantile
(i.e., the sample p’th quantile).

See the R help file for quantile for information on how sample quantiles are computed.

Value

A numeric scalar – the interquartile range.

Note

The interquartile range is a robust estimate of the spread of the distribution. It is the distance
between the two ends of a boxplot (see the R help file for boxplot). For a normal distribution with
standard deviation σ it can be shown that:

IQR = 1.34898σ (2)

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Chambers, J.M., W.S. Cleveland, B. Kleiner, and P.A. Tukey. (1983). Graphical Methods for Data
Analysis. Duxbury Press, Boston, MA.

Cleveland, W.S. (1993). Visualizing Data. Hobart Press, Summit, New Jersey.

Helsel, D.R., and R.M. Hirsch. (1992). Statistical Methods in Water Resources Research. Elsevier,
New York, NY.

Hirsch, R.M., D.R. Helsel, T.A. Cohn, and E.J. Gilroy. (1993). Statistical Analysis of Hydrologic
Data. In: Maidment, D.R., ed. Handbook of Hydrology. McGraw-Hill, New York, Chapter 17,
pp.5–7.

Zar, J.H. (2010). Biostatistical Analysis. Fifth Edition. Prentice-Hall, Upper Saddle River, NJ.

See Also

Summary Statistics, summaryFull, var, sd.

Examples

# Generate 20 observations from a normal distribution with parameters
# mean=10 and sd=2, and compute the standard deviation and
# interquartile range.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(250)
dat <- rnorm(20, mean=10, sd=2)

sd(dat)
#[1] 1.180226

iqr(dat)
#[1] 1.489932

#----------
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# Repeat the last example, but add a couple of large "outliers" to the
# data. Note that the estimated standard deviation is greatly affected
# by the outliers, while the interquartile range is not.

summaryStats(dat, quartiles = TRUE)
# N Mean SD Median Min Max 1st Qu. 3rd Qu.
#dat 20 9.8612 1.1802 9.6978 7.6042 11.8756 9.1618 10.6517

new.dat <- c(dat, 20, 50)

sd(dat)
#[1] 1.180226

sd(new.dat)
#[1] 8.79796

iqr(dat)
#[1] 1.489932

iqr(new.dat)
#[1] 1.851472

#----------
# Clean up
rm(dat, new.dat)

kendallSeasonalTrendTest

Nonparametric Test for Monotonic Trend Within Each Season Based
on Kendall’s Tau Statistic

Description

Perform a nonparametric test for a monotonic trend within each season based on Kendall’s tau
statistic, and optionally compute a confidence interval for the slope across all seasons.

Usage

kendallSeasonalTrendTest(y, ...)

## S3 method for class formula
kendallSeasonalTrendTest(y, data = NULL, subset,

na.action = na.pass, ...)

## Default S3 method:
kendallSeasonalTrendTest(y, season, year,
alternative = "two.sided", correct = TRUE, ci.slope = TRUE, conf.level = 0.95,
independent.obs = TRUE, data.name = NULL, season.name = NULL, year.name = NULL,
parent.of.data = NULL, subset.expression = NULL, ...)

## S3 method for class data.frame
kendallSeasonalTrendTest(y, ...)
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## S3 method for class matrix
kendallSeasonalTrendTest(y, ...)

Arguments

y an object containing data for the trend test. In the default method, the argument
y must be numeric vector of observations. When y is a data frame, all columns
must be numeric. When y is a matrix, it must be a numeric matrix. In the
formula method, y must be a formula of the form y ~ season + year, where
y, season, and year specify what variables to use for the these arguments in the
call to kendallSeasonalTrendTest.default. Missing (NA), undefined (NaN),
and infinite (Inf, -Inf) values are allowed but will be removed.

data specifies an optional data frame, list or environment (or object coercible by
as.data.frame to a data frame) containing the variables in the model. If not
found in data, the variables are taken from environment(formula), typically
the environment from which kendallTrendTest is called.

subset specifies an optional vector specifying a subset of observations to be used.

na.action specifies a function which indicates what should happen when the data contain
NAs. The default is na.pass.

season numeric or character vector or a factor indicating the seasons in which the ob-
servations in y were taken. The length of season must equal the length of y.

year numeric vector indicating the years in which the observations in y were taken.
The length of year must equal the length of y.

alternative character string indicating the kind of alternative hypothesis. The possible val-
ues are "two.sided" (tau not equal to 0; the default), "less" (tau less than 0),
and "greater" (tau greater than 0).

correct logical scalar indicating whether to use the correction for continuity in com-
puting the z-statistic that is based on the test statistic S′. The default value is
TRUE.

ci.slope logical scalar indicating whether to compute a confidence interval for the slope.
The default value is TRUE.

conf.level numeric scalar between 0 and 1 indicating the confidence level associated with
the confidence interval for the slope. The default value is 0.95.

independent.obs

logical scalar indicating whether to assume the observations in y are seially in-
dependent. The default value is TRUE.

data.name character string indicating the name of the data used for the trend test. The
default value is deparse(substitute(y)).

season.name character string indicating the name of the data used for the season. The default
value is deparse(substitute(season)).

year.name character string indicating the name of the data used for the year. The default
value is deparse(substitute(year)).

parent.of.data character string indicating the source of the data used for the trend test.
subset.expression

character string indicating the expression used to subset the data.

... additional arguments affecting the test for trend.
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Details

Hirsch et al. (1982) introduced a modification of Kendall’s test for trend (see kendallTrendTest)
that allows for seasonality in observations collected over time. They call this test the seasonal
Kendall test. Their test is appropriate for testing for trend in each season when the trend is always
in the same direction across all seasons. van Belle and Hughes (1984) introduced a heterogeneity
test for trend which is appropriate for testing for trend in any direction in any season. Hirsch and
Slack (1984) proposed an extension to the seasonal Kendall test that allows for serial dependence
in the observations. The function kendallSeasonalTrendTest includes all of these tests, as well
as an extension of the van Belle-Hughes heterogeneity test to the case of serial dependence.

Testing for Trend Assuming Serial Independence

The Model
Assume observations are taken over two or more years, and assume a single year can be divided
into two or more seasons. Let p denote the number of seasons. Let X and Y denote two continuous
random variables with some joint (bivariate) distribution (which may differ from season to season).
Let Nj denote the number of bivariate observations taken in the j’th season (over two or more
years) (j = 1, 2, . . . , p), so that

(X1j , Y1j), (X2j , Y2j), . . . , (XNjj , YNjj)

denote the Nj bivariate observations from this distribution for season j, assume these bivariate
observations are mutually independent, and let

τj = {2Pr[(X2j −X1j)(Y2j − Y1j) > 0]} − 1 (1)

denote the value of Kendall’s tau for that season (see kendallTrendTest). Also, assume all of the
Y observations are independent.

The function kendallSeasonalTrendTest assumes that the X values always denote the year in
which the observation was taken. Note that within any season, the X values need not be unique.
That is, there may be more than one observation within the same year within the same season. In
this case, the argument y must be a numeric vector, and you must supply the additional arguments
season and year.

If there is only one observation per season per year (missing values allowed), it is usually easiest to
supply the argument y as an n × p matrix or data frame, where n denotes the number of years. In
this case

N1 = N2 = · · · = Np = n (2)

and
Xij = i (3)

for i = 1, 2, . . . , n and j = 1, 2, . . . , p, so if Y denotes the n × p matrix of observed Y ’s and X
denotes the n× p matrix of the X’s, then

Y11 Y12 · · · Y1p

Y21 Y22 · · · Y2p

Y = . (4)
.
.
Yn1 Yn2 · · · Ynp

1 1 · · · 1
2 2 · · · 2
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X = . (5)
.
.
n n · · · n

The null hypothesis is that within each season the X and Y random variables are independent; that
is, within each season there is no trend in the Y observations over time. This null hypothesis can be
expressed as:

H0 : τ1 = τ2 = · · · = τp = 0 (6)

The Seasonal Kendall Test for Trend
Hirsch et al.’s (1982) extension of Kendall’s tau statistic to test the null hypothesis (6) is based
on simply summing together the Kendall S-statistics for each season and computing the following
statistic:

z =
S′√

V ar(S′)
(7)

or, using the correction for continuity,

z =
S′ − sign(S′)√

V ar(S′)
(8)

where

S′ =

p∑
j=1

Sj (9)

Sj =

Nj−1∑
i=1

Nj∑
k=i+1

sign[(Xkj −Xij)(Ykj − Yij)] (10)

and sign() denotes the sign function:

−1 x < 0
sign(x) = 0 x = 0 (11)

1 x > 0

Note that the quantity in Equation (10) is simply the Kendall S-statistic for season j (j = 1, 2, . . . , p)
(see Equation (3) in the help file for kendallTrendTest).

For each season, if the predictor variables (theX’s) are strictly increasing (e.g., Equation (3) above),
then Equation (10) simplifies to

Sj =

Nj−1∑
i=1

Nj∑
k=i+1

sign[(Ykj − Yij)] (12)

Under the null hypothesis (6), the quantity z defined in Equation (7) or (8) is approximately dis-
tributed as a standard normal random variable.

Note that there may be missing values in the observations, so let nj denote the number of (X,Y )
pairs without missing values for season j.

The statistic S′ in Equation (9) has mean and variance given by:

E(S′) =

p∑
j=1

E(Sj) (13)
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V ar(S′) =

p∑
j=1

V ar(Sj) +

p−1∑
g=1

p∑
h=g+1

2Cov(Sg, Sh) (14)

Since all the observations are assumed to be mutually independent,

σgh = Cov(Sg, Sh) = 0, g 6= h, g, h = 1, 2, . . . , p (15)

Furthermore, under the null hypothesis (6),

E(Sj) = 0, j = 1, 2, . . . , p (16)

and, in the case of no tied observations,

V ar(Sj) =
nj(nj − 1)(2nj + 5)

18
(17)

for j = 1, 2, . . . , p (see equation (7) in the help file for kendallTrendTest).

In the case of tied observations,

V ar(Sj) =
nj(nj−1)(2nj+5)

18 −∑g

i=1
ti(ti−1)(2ti+5)

18 −∑h

k=1
uk(uk−1)(2uk+5)

18 +

[
∑g

i=1
ti(ti−1)(ti−2)][

∑h

k=1
uk(uk−1)(uk−2)]

9nk(nk−1)(nk−2) +

[
∑g

i=1
ti(ti−1)][

∑h

k=1
uk(uk−1)]

2nk(nk−1) (18)

where g is the number of tied groups in theX observations for season j, ti is the size of the i’th tied
group in the X observations for season j, h is the number of tied groups in the Y observations for
season j, and uk is the size of the k’th tied group in the Y observations for season j (see Equation
(9) in the help file for kendallTrendTest).

Estimating τ , Slope, and Intercept
The function kendall.SeasonalTrendTest returns estimated values of Kendall’s τ , the slope, and
the intercept for each season, as well as a single estimate for each of these three quantities combined
over all seasons. The overall estimate of τ is the weighted average of the p seasonal τ ’s:

τ̂ =

∑p
j=1 nj τ̂j∑p
j=1 nj

(19)

where

τ̂j =
2Sj

nj(nj − 1)
(20)

(see Equation (2) in the help file for kendallTrendTest).

We can compute the estimated slope for season j as:

β̂1j = Median(
Ykj − Yij
Xkj −Xij

); i < k; Xkj 6= Xik (21)
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for j = 1, 2, . . . , p. The overall estimate of slope, however, is not the median of these p estimates
of slope; instead, following Hirsch et al. (1982, p.117), the overall estimate of slope is the median
of all two-point slopes computed within each season:

β̂1 = Median(
Ykj − Yij
Xkj −Xij

); i < k; Xkj 6= Xik; j = 1, 2, . . . , p (22)

(see Equation (15) in the help file for kendallTrendTest).

The overall estimate of intercept is the median of the p seasonal estimates of intercept:

β̂0 = Median(β̂01 , β̂02 , . . . , β̂0p) (23)

where
β̂0j = Y0.5j − β̂1jX0.5j (24)

and X0.5j and Y0.5j denote the sample medians of the X’s and Y ’s, respectively, for season j (see
Equation (16) in the help file for kendallTrendTest).

Confidence Interval for the Slope
Gilbert (1987, p.227-228) extends his method of computing a confidence interval for the slope to
the case of seasonal observations. Let N ′ denote the number of defined two-point estimated slopes
that are used in Equation (22) above and let

β̂1(1)
, β̂1(2)

, . . . , β̂1(N′)

denote the N ′ ordered slopes. For Gilbert’s (1987) method, a 100(1 − α)% two-sided confidence
interval for the true over-all slope across all seasons is given by:

[β̂1(M1)
, β̂1(M2+1)

] (25)

where

M1 =
N ′ − Cα

2
(26)

M2 =
N ′ + Cα

2
(27)

Cα = z1−α/2
√
V ar(S′) (28)

V ar(S′) is defined in Equation (14), and zp denotes the p’th quantile of the standard normal distri-
bution. One-sided confidence intervals may computed in a similar fashion.

Usually the quantitiesM1 andM2 will not be integers. Gilbert (1987, p.219) suggests interpolating
between adjacent values in this case, which is what the function kendallSeasonalTrendTest does.

The Van Belle-Hughes Heterogeneity Test for Trend
The seasonal Kendall test described above is appropriate for testing the null hypothesis (6) against
the alternative hypothesis of a trend in at least one season. All of the trends in each season should
be in the same direction.

The seasonal Kendall test is not appropriate for testing for trend when there are trends in a positive
direction in one or more seasons and also negative trends in one or more seasons. For example, for
the following set of observations, the seasonal Kendall statistic S′ is 0 with an associated two-sided
p-value of 1, even though there is clearly a positive trend in season 1 and a negative trend in season
2.

Year Season 1 Season 2
1 5 8
2 6 7
3 7 6
4 8 5
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Van Belle and Hughes (1984) suggest using the following statistic to test for heterogeneity in trend
prior to applying the seasonal Kendall test:

χ2
het =

p∑
j=1

Z2
j − pZ̄2 (29)

where
Zj =

Sj
V ar(Sj)

(30)

Z̄ =
1

p

p∑
j=1

Zj (31)

Under the null hypothesis (6), the statistic defined in Equation (29) is approximately distributed as
a chi-square random variable with p − 1 degrees of freedom. Note that the continuity correction
is not used to compute the Zj’s defined in Equation (30) since using it results in an unacceptably
conservative test (van Belle and Hughes, 1984, p.132). Van Belle and Hughes (1984) actually call
the statistic in (29) a homogeneous chi-square statistic. Here it is called a heterogeneous chi-square
statistic after the alternative hypothesis it is meant to test.

Van Belle and Hughes (1984) imply that the heterogeneity statistic defined in Equation (29) may be
used to test the null hypothesis:

H0 : τ1 = τ2 = · · · = τp = τ (32)

where τ is some arbitrary number between -1 and 1. For this case, however, the distribution of the
test statistic in Equation (29) is unknown since it depends on the unknown value of τ (Equations
(16)-(18) above assume τ = 0 and are not correct if τ 6= 0). The heterogeneity chi-square statistic
of Equation (29) may be assumed to be approximately distributed as chi-square with p− 1 degrees
of freedom under the null hypothesis (32), but further study is needed to determine how well this
approximation works.

Testing for Trend Assuming Serial Dependence

The Model
Assume the same model as for the case of serial independence, except now the observed Y ’s are
not assumed to be independent of one another, but are allowed to be serially correlated over time.
Furthermore, assume one observation per season per year (Equations (2)-(5) above).

The Seasonal Kendall Test for Trend Modified for Serial Dependence
Hirsch and Slack (1984) introduced a modification of the seasonal Kendall test that is robust against
serial dependence (in terms of Type I error) except when the observations have a very strong long-
term persistence (very large autocorrelation) or when the sample sizes are small (e.g., 5 years of
monthly data). This modification is based on a multivariate test introduced by Dietz and Killeen
(1981).

In the case of serial dependence, Equation (15) is no longer true, so an estimate of the correct value
of σgh must be used to compute Var(S’) in Equation (14). Let R denote the n × p matrix of ranks
for the Y observations (Equation (4) above), where the Y ’s are ranked within season:

R11 R12 · · · R1p

R21 R22 · · · R2p

R = . (33)
.
.
Rn1 Rn2 · · · Rnp
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where

Rij =
1

2
[nj + 1

nj∑
k=1

sign(Yij − Ykj)] (34)

the sign function is defined in Equation (11) above, and as before nj denotes the number of (X,Y )
pairs without missing values for season j. Note that by this definition, missing values are assigned
the mid-rank of the non-missing values.

Hirsch and Slack (1984) suggest using the following formula, given by Dietz and Killeen (1981),
in the case where there are no missing values:

σ̂gh =
1

3
[Kgh + 4

n∑
i=1

RigRih − n(n+ 1)2] (35)

where

Kgh =

n−1∑
i=1

n∑
j=i+1

sign[(Yjg − Yig)(Yjh − Yih)] (36)

Note that the quantity defined in Equation (36) is Kendall’s tau for season g vs. season h.

For the case of missing values, Hirsch and Slack (1984) derive the following modification of Equa-
tion (35):

σ̂gh =
1

3
[Kgh + 4

n∑
i=1

RigRih − n(ng + 1)(nh + 1)] (37)

Technically, the estimates in Equations (35) and (37) are not correct estimators of covariance, and
Equations (17) and (18) are not correct estimators of variance, because the model Dietz and Killeen
(1981) use assumes that observations within the rows of Y (Equation (4) above) may be correlated,
but observations between rows are independent. Serial dependence induces correlation between all
of the Y ’s. In most cases, however, the serial dependence shows an exponential decay in correlation
across time and so these estimates work fairly well (see more discussion in the BACKGROUND
section below).

Estimates and Confidence Intervals
The seasonal and over-all estimates of τ , slope, and intercept are computed using the same methods
as in the case of serial independence. Also, the method for computing the confidence interval for the
slope is the same as in the case of serial independence. Note that the serial dependence is accounted
for in the term V ar(S′) in Equation (28).

The Van Belle-Hughes Heterogeneity Test for Trend Modified for Serial Dependence
Like its counterpart in the case of serial independence, the seasonal Kendall test modified for serial
dependence described above is appropriate for testing the null hypothesis (6) against the alternative
hypothesis of a trend in at least one season. All of the trends in each season should be in the same
direction.

The modified seasonal Kendall test is not appropriate for testing for trend when there are trends in
a positive direction in one or more seasons and also negative trends in one or more seasons. This
section describes a modification of the van Belle-Hughes heterogeneity test for trend in the presence
of serial dependence.

Let S denote the p× 1 vector of Kendall S-statistics for each season:

S1

S2

S = . (38)
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.

.
Sp

The distribution of S is approximately multivariate normal with

µ1

µ2

E(S) = µ = . (39)
.
.
µp

σ2
1 σ12 · · · σ1p

σ21 σ2
2 · · · σ2p

V ar(S) = Σ = . (40)
.
.
σn1 σn2 · · · σ2

n

where

µj =
nj(nj − 1)

2
τj , j = 1, 2, . . . , p (41)

Define the p× p matrix m as

2
n1(n1−1) 0 · · · 0

0 2
n2(n2−1) · · · 0

m = . (42)
.
.
0 0 · · · 2

np(np−1)

Then the vector of the seasonal estimates of τ can be written as:

τ̂1 2S1/[n1(n1 − 1)]
τ̂2 2S2/[n2(n2 − 1)]

τ̂ = . = . = m S (43)
. .
. .
τ̂p 2Sp/[np(np − 1)]

so the distribution of the vector in Equation (43) is approximately multivariate normal with

τ1
τ2

E(τ̂) = E(mS) = mµ = τ = . (44)
.
.
τp
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V ar(τ̂) = V ar(m S) = mΣmT = Στ̂ (45)

where T denotes the transpose operator. Let C denote the (p− 1)× p contrast matrix

C = [ 1 | − Ip] (46)

where Ip denotes the p× p identity matrix. That is,

1 −1 0 · · · 0
1 0 −1 · · · 0

C = . .
. .
. .
1 0 0 · · · −1

Then the null hypothesis (32) is equivalent to the null hypothesis:

H0 : Cτ = 0 (47)

Based on theory for samples from a multivariate normal distribution (Johnson and Wichern, 2007),
under the null hypothesis (47) the quantity

χ2
het = (C τ̂)T (CΣ̂τ̂C

T )−1(C τ̂) (48)

has approximately a chi-square distribution with p − 1 degrees of freedom for “large” values of
seasonal sample sizes, where

Σ̂τ̂ = mΣ̂mT (49)

The estimate of Σ in Equation (49) can be computed using the same formulas that are used for
the modified seasonal Kendall test (i.e., Equation (35) or (37) for the off-diagonal elements and
Equation (17) or (18) for the diagonal elements). As previously noted, the formulas for the variances
are actually only valid if t = 0 and there is no correlation between the rows of Y . The same is true of
the formulas for the covariances. More work is needed to determine the goodness of the chi-square
approximation for the test statistic in (48). The pseudo-heterogeneity test statistic of Equation (48),
however, should provide some guidance as to whether the null hypothesis (32) (or equivalently (47))
appears to be true.

Value

A list of class "htest" containing the results of the hypothesis test. See the help file for htest.object
for details. In addition, the following components are part of the list returned by
kendallSeasonalTrendTest:

seasonal.S numeric vector. The value of the Kendall S-statistic for each season.

var.seasonal.S numeric vector. The variance of the Kendall S-statistic for each season. This
component only appears when independent.obs=TRUE.

var.cov.seasonal.S

numeric matrix. The estimated variance-covariance matrix of the Kendall S-
statistics for each season. This component only appears when
independent.obs=FALSE.

seasonal.estimates

numeric matrix. The estimated Kendall’s tau, slope, and intercept for each sea-
son.
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Note

Kendall’s test for independence or trend is a nonparametric test. No assumptions are made about
the distribution of the X and Y variables. Hirsch et al. (1982) introduced the seasonal Kendall test
to test for trend within each season. They note that Kendall’s test for trend is easy to compute, even
in the presence of missing values, and can also be used with censored values.

van Belle and Hughes (1984) note that the seasonal Kendall test introduced by Hirsch et al. (1982)
is similar to a multivariate extension of the sign test proposed by Jonckheere (1954). Jonckheeere’s
test statistic is based on the unweighted sum of the seasonal tau statistics, while Hirsch et al.’s test
is based on the weighted sum (weighted by number of observations within a season) of the seasonal
tau statistics.

van Belle and Hughes (1984) also note that Kendall’s test for trend is slightly less powerful than
the test based on Spearman’s rho, but it converges to normality faster. Also, Bradley (1968, p.288)
shows that for the case of a linear model with normal (Gaussian) errors, the asymptotic relative
efficiency of Kendall’s test for trend versus the parametric test for a zero slope is 0.98.

Based on the work of Dietz and Killeen (1981), Hirsch and Slack (1984) describe a modified version
of the seasonal Kendall test that allows for serial dependence in the observations. They performed a
Monte Carlo study to determine the empirical significance level and power of this modified test vs.
the test that assumes independent observations and found a trade-off between power and the correct
significance level. For p = 12 seasons, they found the modified test gave correct significance levels
for n ≥ 10 as long as the lag-one autocorrelation was 0.6 or less, while the original test that assumes
independent observations yielded highly inflated significance levels. On the other hand, if in fact
the observations are serially independent, the original test is more powerful than the modified test.

Hirsch and Slack (1984) also looked at the performance of the test for trend introduced by Dietz
and Killeen (1981), which is a weighted sums of squares of the seasonal Kendall S-statistics, where
the matrix of weights is the inverse of the covariance matrix. The Dietz-Killeen test statistic, unlike
the one proposed by Hirsh and Slack (1984), tests for trend in either direction in any season, and
is asymptotically distributed as a chi-square random variable with p (number of seasons) degrees
of freedom. Hirsch and Slack (1984), however, found that the test based on this statistic is quite
conservative (i.e., the significance level is much smaller than the assumed significance level) and
has poor power even for moderate sample sizes. The chi-square approximation becomes reasonably
close only when n > 40 if p = 12, n > 30 if p = 4, and n > 20 if p = 2.

Lettenmaier (1988) notes the poor power of the test proposed by Dietz and Killeen (1981) and states
the poor power apparently results from an upward bias in the estimated variance of the statistic,
which can be traced to the inversion of the estimated covariance matrix. He suggests an alternative
test statistic (to test trend in either direction in any season) that is the sum of the squares of the
scaled seasonal Kendall S-statistics (scaled by their standard deviations). Note that this test statis-
tic ignores information about the covariance between the seasonal Kendall S-statistics, although its
distribution depends on these covariances. In the case of no serial dependence, Lettenmaier’s test
statistic is exactly the same as the Dietz-Killeen test statistic. In the case of serial dependence, Let-
tenmaier (1988) notes his test statistic is a quadratic form of a multivariate normal random variable
and therefore all the moments of this random variable are easily computed. Lettenmaier (1988) ap-
proximates the distribution of his test statistic as a scaled non-central chi-square distribution (with
fractional degrees of freedom). Based on extensive Monte Carlo studies, Lettenmaier (1988) shows
that for the case when the trend is the same in all seasons, the seasonal Kendall’s test of Hirsch
and Slack (1984) is superior to his test and far superior to the Dietz-Killeen test. The power of
Lettenmaier’s test approached that of the seasonal Kendall test for large trend magnitudes.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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See Also

kendallTrendTest, htest.object, cor.test.

Examples

# Reproduce Example 14-10 on page 14-38 of USEPA (2009). This example
# tests for trend in analyte concentrations (ppm) collected monthly
# between 1983 and 1985.

head(EPA.09.Ex.14.8.df)
# Month Year Unadj.Conc Adj.Conc
#1 January 1983 1.99 2.11
#2 February 1983 2.10 2.14
#3 March 1983 2.12 2.10
#4 April 1983 2.12 2.13
#5 May 1983 2.11 2.12
#6 June 1983 2.15 2.12

tail(EPA.09.Ex.14.8.df)
# Month Year Unadj.Conc Adj.Conc
#31 July 1985 2.31 2.23
#32 August 1985 2.32 2.24
#33 September 1985 2.28 2.23
#34 October 1985 2.22 2.24
#35 November 1985 2.19 2.25
#36 December 1985 2.22 2.23

# Plot the data
#--------------
Unadj.Conc <- EPA.09.Ex.14.8.df$Unadj.Conc
Adj.Conc <- EPA.09.Ex.14.8.df$Adj.Conc
Month <- EPA.09.Ex.14.8.df$Month
Year <- EPA.09.Ex.14.8.df$Year
Time <- paste(substring(Month, 1, 3), Year - 1900, sep = "-")
n <- length(Unadj.Conc)
Three.Yr.Mean <- mean(Unadj.Conc)

dev.new()
par(mar = c(7, 4, 3, 1) + 0.1, cex.lab = 1.25)
plot(1:n, Unadj.Conc, type = "n", xaxt = "n",

xlab = "Time (Month)",
ylab = "ANALYTE CONCENTRATION (mg/L)",
main = "Figure 14-15. Seasonal Time Series Over a Three Year Period",
cex.main = 1.1)

axis(1, at = 1:n, labels = rep("", n))
at <- rep(c(1, 5, 9), 3) + rep(c(0, 12, 24), each = 3)
axis(1, at = at, labels = Time[at])
points(1:n, Unadj.Conc, pch = 0, type = "o", lwd = 2)
points(1:n, Adj.Conc, pch = 3, type = "o", col = 8, lwd = 2)
abline(h = Three.Yr.Mean, lwd = 2)
legend("topleft", c("Unadjusted", "Adjusted", "3-Year Mean"), bty = "n",

pch = c(0, 3, -1), lty = c(1, 1, 1), lwd = 2, col = c(1, 8, 1),
inset = c(0.05, 0.01))



570 kendallSeasonalTrendTest

# Perform the seasonal Kendall trend test
#----------------------------------------

kendallSeasonalTrendTest(Unadj.Conc ~ Month + Year,
data = EPA.09.Ex.14.8.df)

#Results of Hypothesis Test
#--------------------------
#
#Null Hypothesis: All 12 values of tau = 0
#
#Alternative Hypothesis: The seasonal taus are not all equal
# (Chi-Square Heterogeneity Test)
# At least one seasonal tau != 0
# and all non-zero taus have the
# same sign (z Trend Test)
#
#Test Name: Seasonal Kendall Test for Trend
# (with continuity correction)
#
#Estimated Parameter(s): tau = 0.9722222
# slope = 0.0600000
# intercept = -131.7350000
#
#Estimation Method: tau: Weighted Average of
# Seasonal Estimates
# slope: Hirsch et al.s
# Modification of
# Thiel/Sen Estimator
# intercept: Median of
# Seasonal Estimates
#
#Data: y = Unadj.Conc
# season = Month
# year = Year
#
#Data Source: EPA.09.Ex.14.8.df
#
#Sample Sizes: January = 3
# February = 3
# March = 3
# April = 3
# May = 3
# June = 3
# July = 3
# August = 3
# September = 3
# October = 3
# November = 3
# December = 3
# Total = 36
#
#Test Statistics: Chi-Square (Het) = 0.1071882
# z (Trend) = 5.1849514
#
#Test Statistic Parameter: df = 11
#
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#P-values: Chi-Square (Het) = 1.000000e+00
# z (Trend) = 2.160712e-07
#
#Confidence Interval for: slope
#
#Confidence Interval Method: Gilberts Modification of
# Theil/Sen Method
#
#Confidence Interval Type: two-sided
#
#Confidence Level: 95%
#
#Confidence Interval: LCL = 0.05786914
# UCL = 0.07213086

#==========

# Clean up
#---------

rm(Unadj.Conc, Adj.Conc, Month, Year, Time, n, Three.Yr.Mean, at)
graphics.off()

kendallTrendTest Kendall’s Nonparametric Test for Montonic Trend

Description

Perform a nonparametric test for a monotonic trend based on Kendall’s tau statistic, and optionally
compute a confidence interval for the slope.

Usage

kendallTrendTest(y, ...)

## S3 method for class formula
kendallTrendTest(y, data = NULL, subset,

na.action = na.pass, ...)

## Default S3 method:
kendallTrendTest(y, x = seq(along = y),
alternative = "two.sided", correct = TRUE, ci.slope = TRUE,
conf.level = 0.95, warn = TRUE, data.name = NULL, data.name.x = NULL,
parent.of.data = NULL, subset.expression = NULL, ...)

Arguments

y an object containing data for the trend test. In the default method, the argu-
ment y must be numeric vector of observations. In the formula method, y must
be a formula of the form y ~ 1 or y ~ x. The form y ~ 1 indicates use the
observations in the vector y for the test for trend and use the default value of
the argument x in the call to kendallTrendTest.default. The form y ~ x
indicates use the observations in the vector y for the test for trend and use the
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specified value of the argument x in the call to kendallTrendTest.default.
Missing (NA), undefined (NaN), and infinite (Inf, -Inf) values are allowed but
will be removed.

data specifies an optional data frame, list or environment (or object coercible by
as.data.frame to a data frame) containing the variables in the model. If not
found in data, the variables are taken from environment(formula), typically
the environment from which kendallTrendTest is called.

subset specifies an optional vector specifying a subset of observations to be used.

na.action specifies a function which indicates what should happen when the data contain
NAs. The default is na.pass.

x numeric vector of "predictor" values. The length of x must equal the length of
y. Missing (NA), undefined (NaN), and infinite (Inf, -Inf) values are allowed
but will be removed. The default value of x is the vector of numbers 1, 2, . . . , n
where n is the number of elements in y.

alternative character string indicating the kind of alternative hypothesis. The possible val-
ues are "two.sided" (tau not equal to 0; the default), "less" (tau less than 0),
and "greater" (tau greater than 0).

correct logical scalar indicating whether to use the correction for continuity in com-
puting the z-statistic that is based on the test statistic S. The default value is
TRUE.

ci.slope logical scalar indicating whether to compute a confidence interval for the slope.
The default value is TRUE.

conf.level numeric scalar between 0 and 1 indicating the confidence level associated with
the confidence interval for the slope. The default value is 0.95.

warn logical scalar indicating whether to print a warning message when y does not
contain at least two non-missing values, or when x does not contain at least two
unique non-missing values. The default value is TRUE.

data.name character string indicating the name of the data used for the trend test. The
default value is deparse(substitute(y)).

data.name.x character string indicating the name of the data used for the predictor variable
x. If x is not supplied this argument is ignored. When x is supplied, the default
value is deparse(substitute(x)).

parent.of.data character string indicating the source of the data used for the trend test.
subset.expression

character string indicating the expression used to subset the data.

... additional arguments affecting the test for trend.

Details

kendallTrendTest performs Kendall’s nonparametric test for a monotonic trend, which is a special
case of the test for independence based on Kendall’s tau statistic (see cor.test). The slope is
estimated using the method of Theil (1950) and Sen (1968). When ci.slope=TRUE, the confidence
interval for the slope is computed using Gilbert’s (1987) Modification of the Theil/Sen Method.

Kendall’s test for a monotonic trend is a special case of the test for independence based on Kendall’s
tau statistic. The first section below explains the general case of testing for independence. The sec-
ond section explains the special case of testing for monotonic trend. The last section explains how
a simple linear regression model is a special case of a monotonic trend and how the slope may be
estimated.
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The General Case of Testing for Independence

Definition of Kendall’s Tau
Let X and Y denote two continuous random variables with some joint (bivariate) distribution. Let
(X1, Y1), (X2, Y2), . . . , (Xn, Yn) denote a set of n bivariate observations from this distribution,
and assume these bivariate observations are mutually independent. Kendall (1938, 1975) proposed
a test for the hypothesis that the X and Y random variables are independent based on estimating
the following quantity:

τ = {2Pr[(X2 −X1)(Y2 − Y1) > 0]} − 1 (1)

The quantity in Equation (1) is called Kendall’s tau, although this term is more often applied to the
estimate of τ (see Equation (2) below). If X and Y are independent, then τ = 0. Furthermore, for
most distributions of interest, if τ = 0 then the random variables X and Y are independent. (It can
be shown that there exist some distributions for which τ = 0 and the random variables X and Y
are not independent; see Hollander and Wolfe (1999, p.364)).

Note that Kendall’s tau is similar to a correlation coefficient in that−1 ≤ τ ≤ 1. IfX and Y always
vary in the same direction, that is if X1 < X2 always implies Y1 < Y2, then τ = 1. If X and Y
always vary in the opposite direction, that is if X1 < X2 always implies Y1 > Y2, then τ = −1.
If τ > 0, this indicates X and Y are positively associated. If τ < 0, this indicates X and Y are
negatively associated.

Estimating Kendall’s Tau
The quantity in Equation (1) can be estimated by:

τ̂ =
2S

n(n− 1)
(2)

where

S =

n−1∑
i=1

n∑
j=i+1

sign[(Xj −Xi)(Yj − Yi)] (3)

and sign() denotes the sign function:

−1 x < 0
sign(x) = 0 x = 0 (4)

1 x > 0

(Hollander and Wolfe, 1999, Chapter 8; Conover, 1980, pp.256–260; Gilbert, 1987, Chapter 16;
Helsel and Hirsch, 1992, pp.212–216; Gibbons et al., 2009, Chapter 11). The quantity defined in
Equation (2) is called Kendall’s rank correlation coefficient or more often Kendall’s tau.

Note that the quantity S defined in Equation (3) is equal to the number of concordant pairs minus
the number of discordant pairs. Hollander and Wolfe (1999, p.364) use the notation K instead of
S, and Conover (1980, p.257) uses the notation T .

Testing the Null Hypothesis of Independence
The null hypothesis H0 : τ = 0, can be tested using the statistic S defined in Equation (3) above.
Tables of the distribution of S for small samples are given in Hollander and Wolfe (1999), Conover
(1980, pp.458–459), Gilbert (1987, p.272), Helsel and Hirsch (1992, p.469), and Gibbons (2009,
p.210). The function kendallTrendTest uses the large sample approximation to the distribution of
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S under the null hypothesis, which is given by:

z =
S − E(S)√
V ar(S)

(5)

where
E(S) = 0 (6)

V ar(S) =
n(n− 1)(2n+ 5)

18
(7)

Under the null hypothesis, the quantity z defined in Equation (5) is approximately distributed as a
standard normal random variable.

Both Kendall (1975) and Mann (1945) show that the normal approximation is excellent even for
samples as small as n = 10, provided that the following continuity correction is used:

z =
S − sign(S)√

V ar(S)
(8)

The function kendallTrendTest performs the usual one-sample z-test using the statistic computed
in Equation (8) or Equation (5). The argument correct determines which equation is used to
compute the z-statistic. By default, correct=TRUE so Equation (8) is used.

In the case of tied observations in either the observed X’s and/or observed Y ’s, the formula for the
variance of S given in Equation (7) must be modified as follows:

V ar(S) = n(n−1)(2n+5)
18 −∑g

i=1
ti(ti−1)(2ti+5)

18 −∑h

j=1
uj(uj−1)(2uj+5)

18 +

[
∑g

i=1
ti(ti−1)(ti−2)][

∑h

j=1
uj(uj−1)(uj−2)]

9n(n−1)(n−2) +

[
∑g

i=1
ti(ti−1)][

∑h

j=1
uj(uj−1)]

2n(n−1) (9)

where g is the number of tied groups in theX observations, ti is the size of the i’th tied group in the
X observations, h is the number of tied groups in the Y observations, and uj is the size of the j’th
tied group in the Y observations. In the case of no ties in either the X or Y observations, Equation
(9) reduces to Equation (7).

The Special Case of Testing for Monotonic Trend
Often in environmental sampling, observations are taken periodically over time (Hirsch et al.,
1982; van Belle and Hughes, 1984; Hirsch and Slack, 1984). In this case, the random variables
Y1, Y2, . . . , Yn can be thought of as representing the observations, and the variablesX1, X2, . . . , Xn

are no longer random but represent the time at which the i’th observation was taken. If the obser-
vations are equally spaced over time, then it is useful to make the simplification Xi = i for i =
1, 2, . . . , n. This is in fact the default value of the argument x for the function kendallTrendTest.

In the case where the X’s represent time and are all distinct, the test for independence between X
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and Y is equivalent to testing for a monotonic trend in Y , and the test statistic S simplifies to:

S =

n−1∑
i=1

n∑
j=i+1

sign(Yj − Yi) (10)

Also, the formula for the variance of S in the presence of ties (under the null hypothesisH0 : τ = 0)
simplifies to:

V ar(S) =
n(n− 1)(2n+ 5)

18
−
∑h
j=1 uj(uj − 1)(2uj + 5)

18
(11)

A form of the test statistic S in Equation (10) was introduced by Mann (1945).

The Special Case of a Simple Linear Model: Estimating the Slope
Consider the simple linear regression model

Yi = β0 + β1Xi + εi (12)

where β0 denotes the intercept, β1 denotes the slope, i = 1, 2, . . . , n, and the ε’s are assumed to
be independent and identically distributed random variables from the same distribution. This is a
special case of dependence between theX’s and the Y ’s, and the null hypothesis of a zero slope can
be tested using Kendall’s test statistic S (Equation (3) or (10) above) and the associated z-statistic
(Equation (5) or (8) above) (Hollander and Wolfe, 1999, pp.415–420).

Theil (1950) proposed the following nonparametric estimator of the slope:

β̂1 = Median(
Yj − Yi
Xj −Xi

); i < j (13)

Note that the computation of the estimated slope involves computing

N =

(
n

2

)
=
n(n− 1)

2
(14)

“two-point” estimated slopes (assuming no tiedX values), and taking the median of these N values.

Sen (1968) generalized this estimator to the case where there are possibly tied observations in
the X’s. In this case, Sen simply ignores the two-point estimated slopes where the X’s are tied
and computes the median based on the remaining N ′ two-point estimated slopes. That is, Sen’s
estimator is given by:

β̂1 = Median(
Yj − Yi
Xj −Xi

); i < j,Xi 6= Xj (15)

(Hollander and Wolfe, 1999, pp.421–422).

Conover (1980, p. 267) suggests the following estimator for the intercept:

β̂0 = Y0.5 − β̂1X0.5 (16)

where X0.5 and Y0.5 denote the sample medians of the X’s and Y ’s, respectively. With these
estimators of slope and intercept, the estimated regression line passes through the point (X0.5, Y0.5).

NOTE: The function kendallTrendTest always returns estimates of slope and intercept assuming
a linear model (Equation (12)), while the p-value is based on Kendall’s tau, which is testing for the
broader alternative of any kind of dependence between the X’s and Y ’s.
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Confidence Interval for the Slope
Theil (1950) and Sen (1968) proposed methods to compute a confidence interval for the true slope,
assuming the linear model of Equation (12) (see Hollander and Wolfe, 1999, pp.421-422). Gilbert
(1987, p.218) illustrates a simpler method than the one given by Sen (1968) that is based on a
normal approximation. Gilbert’s (1987) method is an extension of the one given in Hollander and
Wolfe (1999, p.424) that allows for ties and/or multiple observations per time period. This method
is valid for a sample size as small as n = 10 unless there are several tied observations.

Let N ′ denote the number of defined two-point estimated slopes that are used in Equation (15)
above (if there are no tied X values then N ′ = N ), and let β̂1(1)

, β̂1(2)
, . . . , β̂1(N′) denote the N ′

ordered slopes. For Gilbert’s (1987) method, a 100(1 − α)% two-sided confidence interval for the
true slope is given by:

[β̂1(M1)
, β̂1(M2+1)

] (17)

where

M1 =
N ′ − Cα

2
(18)

M2 =
N ′ + Cα

2
(19)

Cα = z1−α/2
√
V ar(S) (20)

V ar(S) is defined in Equations (7), (9), or (11), and zp denotes the p’th quantile of the standard
normal distribution. One-sided confidence intervals may computed in a similar fashion.

Usually the quantitiesM1 andM2 will not be integers. Gilbert (1987, p.219) suggests interpolating
between adjacent values in this case, which is what the function kendallTrendTest does.

Value

A list of class "htest" containing the results of the hypothesis test. See the help file for htest.object
for details. In addition, the following components are part of the list returned by kendallTrendTest:

S The value of the Kendall S-statistic.
var.S The variance of the Kendall S-statistic.
slopes A numeric vector of all possible two-point slope estimates. This component is

used by the function kendallSeasonalTrendTest.

Note

Kendall’s test for independence or trend is a nonparametric test. No assumptions are made about
the distribution of the X and Y variables. Hirsch et al. (1982) introduced the "seasonal Kendall
test" to test for trend within each season. They note that Kendall’s test for trend is easy to compute,
even in the presence of missing values, and can also be used with censored values.

van Belle and Hughes (1984) note that Kendall’s test for trend is slightly less powerful than the test
based on Spearman’s rho, but it converges to normality faster. Also, Bradley (1968, p.288) shows
that for the case of a linear model with normal (Gaussian) errors, the asymptotic relative efficiency
of Kendall’s test for trend versus the parametric test for a zero slope is 0.98.

The results of the function kendallTrendTest are similar to the results of the built-in R function
cor.test with the argument method="kendall" except that cor.test 1) computes exact p-values
when the number of pairs is less than 50 and there are no ties, and 2) does not return a confidence
interval for the slope.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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Examples

# Reproduce Example 17-6 on page 17-33 of USEPA (2009). This example
# tests for trend in sulfate concentrations (ppm) collected at various
# months between 1989 and 1996.

head(EPA.09.Ex.17.6.sulfate.df)
# Sample.No Year Month Sampling.Date Date Sulfate.ppm
#1 1 89 6 89.6 1989-06-01 480
#2 2 89 8 89.8 1989-08-01 450
#3 3 90 1 90.1 1990-01-01 490
#4 4 90 3 90.3 1990-03-01 520
#5 5 90 6 90.6 1990-06-01 485
#6 6 90 8 90.8 1990-08-01 510

# Plot the data
#--------------
dev.new()
with(EPA.09.Ex.17.6.sulfate.df,

plot(Sampling.Date, Sulfate.ppm, pch = 15, ylim = c(400, 900),
xlab = "Sampling Date", ylab = "Sulfate Conc (ppm)",
main = "Figure 17-6. Time Series Plot of \nSulfate Concentrations (ppm)")

)
Sulfate.fit <- lm(Sulfate.ppm ~ Sampling.Date,

data = EPA.09.Ex.17.6.sulfate.df)
abline(Sulfate.fit, lty = 2)

# Perform the Kendall test for trend
#-----------------------------------
kendallTrendTest(Sulfate.ppm ~ Sampling.Date,

data = EPA.09.Ex.17.6.sulfate.df)

#Results of Hypothesis Test
#--------------------------
#
#Null Hypothesis: tau = 0
#
#Alternative Hypothesis: True tau is not equal to 0
#
#Test Name: Kendalls Test for Trend
# (with continuity correction)
#
#Estimated Parameter(s): tau = 0.7667984
# slope = 26.6666667
# intercept = -1909.3333333
#
#Estimation Method: slope: Theil/Sen Estimator
# intercept: Conovers Estimator
#
#Data: y = Sulfate.ppm
# x = Sampling.Date
#
#Data Source: EPA.09.Ex.17.6.sulfate.df
#
#Sample Size: 23
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#
#Test Statistic: z = 5.107322
#
#P-value: 3.267574e-07
#
#Confidence Interval for: slope
#
#Confidence Interval Method: Gilberts Modification
# of Theil/Sen Method
#
#Confidence Interval Type: two-sided
#
#Confidence Level: 95%
#
#Confidence Interval: LCL = 20.00000
# UCL = 35.71182

# Clean up
#---------
rm(Sulfate.fit)
graphics.off()

kurtosis Coefficient of (Excess) Kurtosis

Description

Compute the sample coefficient of kurtosis or excess kurtosis.

Usage

kurtosis(x, na.rm = FALSE, method = "fisher", l.moment.method = "unbiased",
plot.pos.cons = c(a = 0.35, b = 0), excess = TRUE)

Arguments

x numeric vector of observations.

na.rm logical scalar indicating whether to remove missing values from x. If na.rm=FALSE
(the default) and x contains missing values, then a missing value (NA) is returned.
If na.rm=TRUE, missing values are removed from x prior to computing the coef-
ficient of variation.

method character string specifying what method to use to compute the sample coeffi-
cient of kurtosis. The possible values are "fisher" (ratio of unbiased moment
estimators; the default), "moments" (ratio of product moment estimators), or
"l.moments" (ratio of L-moment estimators).

l.moment.method

character string specifying what method to use to compute the L-moments when
method="l.moments". The possible values are "ubiased" (method based on
the U -statistic; the default), or "plotting.position" (method based on the
plotting position formula).
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plot.pos.cons numeric vector of length 2 specifying the constants used in the formula for the
plotting positions when method="l.moments" and l.moment.method="plotting.position".
The default value is plot.pos.cons=c(a=0.35, b=0). If this vector has a
names attribute with the value c("a","b") or c("b","a"), then the elements
will be matched by name in the formula for computing the plotting positions.
Otherwise, the first element is mapped to the name "a" and the second element
to the name "b".

excess logical scalar indicating whether to compute the kurtosis (excess=FALSE) or
excess kurtosis (excess=TRUE; the default).

Details

Let x denote a random sample of n observations from some distribution with mean µ and standard
deviation σ.

Product Moment Coefficient of Kurtosis
(method="moment" or method="fisher")
The coefficient of kurtosis of a distribution is the fourth standardized moment about the mean:

η4 = β2 =
µ4

σ4
(1)

where
ηr = E[(

X − µ
σ

)r] =
1

σr
E[(X − µ)r] =

µr
σr

(2)

and
µr = E[(X − µ)r] (3)

denotes the r’th moment about the mean (central moment).

The coefficient of excess kurtosis is defined as:

β2 − 3 (4)

For a normal distribution, the coefficient of kurtosis is 3 and the coefficient of excess kurtosis is 0.
Distributions with kurtosis less than 3 (excess kurtosis less than 0) are called platykurtic: they have
shorter tails than a normal distribution. Distributions with kurtosis greater than 3 (excess kurtosis
greater than 0) are called leptokurtic: they have heavier tails than a normal distribution.

When method="moment", the coefficient of kurtosis is estimated using the method of moments
estimator for the fourth central moment and and the method of moments estimator for the variance:

η̂4 =
µ̂4

σ4
=

1
n

∑n
i=1(xi − x̄)4

[ 1
n

∑n
i=1(xi − x̄)2]2

(5)

where

σ̂2
m = s2

m =
1

n

n∑
i=1

(xi − x̄)2 (6)

This form of estimation should be used when resampling (bootstrap or jackknife).

When method="fisher", the coefficient of kurtosis is estimated using the unbiased estimator for
the fourth central moment (Serfling, 1980, p.73) and the unbiased estimator for the variance.

σ̂2 = s2 =
1

n− 1

n∑
i=1

(xi − x̄)2 (7)
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L-Moment Coefficient of Kurtosis (method="l.moments")
Hosking (1990) defines the L-moment analog of the coefficient of kurtosis as:

τ4 =
λ4

λ2
(8)

that is, the fourth L-moment divided by the second L-moment. He shows that this quantity lies in
the interval (-1, 1).

When l.moment.method="unbiased", the L-kurtosis is estimated by:

t4 =
l4
l2

(9)

that is, the unbiased estimator of the fourth L-moment divided by the unbiased estimator of the
second L-moment.

When l.moment.method="plotting.position", the L-kurtosis is estimated by:

τ̃4 =
λ̃4

λ̃2

(10)

that is, the plotting-position estimator of the fourth L-moment divided by the plotting-position
estimator of the second L-moment.

See the help file for lMoment for more information on estimating L-moments.

Value

A numeric scalar – the sample coefficient of kurtosis or excess kurtosis.

Note

Traditionally, the coefficient of kurtosis has been estimated using product moment estimators.
Sometimes an estimate of kurtosis is used in a goodness-of-fit test for normality (D’Agostino and
Stephens, 1986). Hosking (1990) introduced the idea of L-moments and L-kurtosis.

Vogel and Fennessey (1993) argue that L-moment ratios should replace product moment ratios be-
cause of their superior performance (they are nearly unbiased and better for discriminating between
distributions). They compare product moment diagrams with L-moment diagrams.

Hosking and Wallis (1995) recommend using unbiased estimators of L-moments (vs. plotting-
position estimators) for almost all applications.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Berthouex, P.M., and L.C. Brown. (2002). Statistics for Environmental Engineers, Second Edition.
Lewis Publishers, Boca Raton, FL.

Ott, W.R. (1995). Environmental Statistics and Data Analysis. Lewis Publishers, Boca Raton, FL.

Taylor, J.K. (1990). Statistical Techniques for Data Analysis. Lewis Publishers, Boca Raton, FL.

Vogel, R.M., and N.M. Fennessey. (1993). L Moment Diagrams Should Replace Product Moment
Diagrams. Water Resources Research 29(6), 1745–1752.

Zar, J.H. (2010). Biostatistical Analysis. Fifth Edition. Prentice-Hall, Upper Saddle River, NJ.
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See Also

var, sd, cv, skewness, summaryFull, Summary Statistics.

Examples

# Generate 20 observations from a lognormal distribution with parameters
# mean=10 and cv=1, and estimate the coefficient of kurtosis and
# coefficient of excess kurtosis.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(250)

dat <- rlnormAlt(20, mean = 10, cv = 1)

# Compute standard kurtosis first
#--------------------------------
kurtosis(dat, excess = FALSE)
#[1] 2.964612

kurtosis(dat, method = "moment", excess = FALSE)
#[1] 2.687146

kurtosis(dat, method = "l.moment", excess = FALSE)
#[1] 0.1444779

# Now compute excess kurtosis
#----------------------------
kurtosis(dat)
#[1] -0.0353876

kurtosis(dat, method = "moment")
#[1] -0.3128536

kurtosis(dat, method = "l.moment")
#[1] -2.855522

#----------
# Clean up
rm(dat)

Lin.Evans.80.df Fecal Coliform Data from the Illinois River

Description

Lin and Evans (1980) reported fecal coliform measures (organisms per 100 ml) from the Illinois
River taken between 1971 and 1976. The object Lin.Evans.80.df is a small subset of these data
that were reported by Helsel and Hirsch (1992, p.162).

Usage

Lin.Evans.80.df
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Format

A data frame with 24 observations on the following 2 variables.

Fecal.Coliform a numeric vector of fecal coliform measure (organisms per 100 ml).
Season an ordered factor indicating the season of collection

Source

Helsel, D.R., and R.M. Hirsch. (1992). Statistical Methods in Water Resources Research. Elsevier,
New York, NY, p.162.

References

Lin, S.D., and R.L. Evans. (1980). Coliforms and fecal streptococcus in the Illinois River at Peoria,
1971-1976. Illinois State Water Survey Report of Investigations No. 93. Urbana, IL, 28pp.

linearTrendTestN Sample Size for a t-Test for Linear Trend

Description

Compute the sample size necessary to achieve a specified power for a t-test for linear trend, given
the scaled slope and significance level.

Usage

linearTrendTestN(slope.over.sigma, alpha = 0.05, power = 0.95,
alternative = "two.sided", approx = FALSE, round.up = TRUE,
n.max = 5000, tol = 1e-07, maxiter = 1000)

Arguments

slope.over.sigma

numeric vector specifying the ratio of the true slope to the standard deviation of
the error terms (σ). This is also called the "scaled slope". The default value is
slope.over.sigma=0.

alpha numeric vector of numbers between 0 and 1 indicating the Type I error level
associated with the hypothesis test. The default value is alpha=0.05.

power numeric vector of numbers between 0 and 1 indicating the power associated with
the hypothesis test. The default value is power=0.95.

alternative character string indicating the kind of alternative hypothesis. The possible val-
ues are "two.sided" (the default), "greater", and "less".

approx logical scalar indicating whether to compute the power based on an approxima-
tion to the non-central t-distribution. The default value is approx=FALSE.

round.up logical scalar indicating whether to round up the values of the computed sample
size(s) to the next smallest integer. The default value is TRUE.

n.max positive integer greater than 2 indicating the maximum sample size. The default
value is n.max=5000.

tol numeric scalar indicating the toloerance to use in the uniroot search algorithm.
The default value is tol=1e-7.

maxiter positive integer indicating the maximum number of iterations argument to pass
to the uniroot function. The default value is maxiter=1000.
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Details

If the arguments slope.over.sigma, alpha, and power are not all the same length, they are repli-
cated to be the same length as the length of the longest argument.

Formulas for the power of the t-test of linear trend for specified values of the sample size, scaled
slope, and Type I error level are given in the help file for linearTrendTestPower. The function
linearTrendTestN uses the uniroot search algorithm to determine the required sample size(s) for
specified values of the power, scaled slope, and Type I error level.

Value

a numeric vector of sample sizes.

Note

See the help file for linearTrendTestPower.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

See the help file for linearTrendTestPower.

See Also

linearTrendTestPower, linearTrendTestScaledMds, plotLinearTrendTestDesign, lm, summary.lm,
kendallTrendTest, Power and Sample Size, Normal, t.test.

Examples

# Look at how the required sample size for the t-test for zero slope
# increases with increasing required power:

seq(0.5, 0.9, by = 0.1)
#[1] 0.5 0.6 0.7 0.8 0.9

linearTrendTestN(slope.over.sigma = 0.1, power = seq(0.5, 0.9, by = 0.1))
#[1] 18 19 21 22 25

#----------

# Repeat the last example, but compute the sample size based on the approximate
# power instead of the exact:

linearTrendTestN(slope.over.sigma = 0.1, power = seq(0.5, 0.9, by = 0.1),
approx = TRUE)

#[1] 18 19 21 22 25

#==========

# Look at how the required sample size for the t-test for zero slope decreases
# with increasing scaled slope:

seq(0.05, 0.2, by = 0.05)
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#[1] 0.05 0.10 0.15 0.20

linearTrendTestN(slope.over.sigma = seq(0.05, 0.2, by = 0.05))
#[1] 41 26 20 17

#==========

# Look at how the required sample size for the t-test for zero slope decreases
# with increasing values of Type I error:

linearTrendTestN(slope.over.sigma = 0.1, alpha = c(0.001, 0.01, 0.05, 0.1))
#[1] 33 29 26 25

linearTrendTestPower Power of a t-Test for Linear Trend

Description

Compute the power of a parametric test for linear trend, given the sample size or predictor variable
values, scaled slope, and significance level.

Usage

linearTrendTestPower(n, x = lapply(n, seq), slope.over.sigma = 0, alpha = 0.05,
alternative = "two.sided", approx = FALSE)

Arguments

n numeric vector of sample sizes. All values of n must be positive integers larger
than 2. This argument is ignored when x is supplied. Missing (NA), undefined
(NaN), and infinite (Inf, -Inf) values are not allowed.

x numeric vector of predictor variable values, or a list in which each component is
a numeric vector of predictor variable values. Usually, the predictor variable is
time (e.g., days, months, quarters, etc.). The default value is x=lapply(n,seq),
which yields a list in which the i’th component is the seqence of integers from 1
to the i’th value of the vector n. If x is a numeric vector, it must contain at least
three elements, two of which must be unique. If x is a list of numeric vectors,
each component of x must contain at least three elements, two of which must be
unique. Missing (NA), undefined (NaN), and infinite (Inf, -Inf) values are not
allowed.

slope.over.sigma

numeric vector specifying the ratio of the true slope to the standard deviation of
the error terms (σ). This is also called the "scaled slope". The default value is
slope.over.sigma=0.

alpha numeric vector of numbers between 0 and 1 indicating the Type I error level
associated with the hypothesis test. The default value is alpha=0.05.

alternative character string indicating the kind of alternative hypothesis. The possible val-
ues are "two.sided" (the default), "greater", and "less".

approx logical scalar indicating whether to compute the power based on an approxima-
tion to the non-central t-distribution. The default value is FALSE.
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Details

If the argument x is a vector, it is converted into a list with one component. If the arguments n,
x, slope.over.sigma, and alpha are not all the same length, they are replicated to be the same
length as the length of the longest argument.

Basic Model
Consider the simple linear regression model

Y = β0 + β1X + ε (1)

where X denotes the predictor variable (observed without error), β0 denotes the intercept, β1 de-
notes the slope, and the error term ε is assumed to be a random variable from a normal distribution
with mean 0 and standard deviation σ. Let

(x, y) = (x1, y1), (x2, y2), . . . , (xn, yn) (2)

denote n independent observed (X,Y ) pairs from the model (1).

Often in environmental data analysis, we are interested in determining whether there is a trend in
some indicator variable over time. In this case, the predictor variable X is time (e.g., day, month,
quarter, year, etc.), and the n values of the response variable Y represent measurements taken over
time. The slope then represents the change in the average of the response variable per one unit of
time.

When the argument x is a numeric vector, it represents the n values of the predictor variable. When
the argument x is a list, each component of x is a numeric vector that represents a set values of the
predictor variable (and the number of elements may vary by component). By default, the argument
x is a list for which the i’th component is simply the integers from 1 to the value of the i’th element
of the argument n, representing, for example, Day 1, Day2, ..., Day n[i].

In the discussion that follows, be sure not to confuse the intercept and slope coefficients β0 and β1

with the Type II error of the hypothesis test, which is denoted by β.

Estimation of Coefficients and Confidence Interval for Slope
The standard least-squares estimators of the slope and intercept are given by:

β̂1 =
Sxy
Sxx

(3)

β̂0 = ȳ − β̂1x̄ (4)

where

Sxy =

n∑
i=1

(xi − x̄)(yi − ȳ) (5)

Sxx =

n∑
i=1

(xi − x̄)2 (6)

x̄ =
1

n

n∑
i=1

xi (7)

ȳ =
1

n

n∑
i=1

yi (8)
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(Draper and Smith, 1998, p.25; Zar, 2010, p.332-334; Berthoux and Brown, 2002, p.297; Helsel
and Hirsch, p.226). The estimator of slope in Equation (3) has a normal distribution with mean
equal to the true slope, and variance given by:

V ar(β̂1) = σ2
β̂1

=
σ2

Sxx
(9)

(Draper and Smith, 1998, p.35; Zar, 2010, p.341; Berthoux and Brown, 2002, p.299; Helsel and
Hirsch, 1992, p.227). Thus, a (1− α)100% two-sided confidence interval for the slope is given by:

[β̂1 − tn−2(1− α/2)σ̂β̂1
, β̂1 + tn−2(1− α/2)σ̂β̂1

] (10)

where
σ̂β̂1

=
σ̂√
Sxx

(11)

σ̂2 = s2 =
1

n− 2

n∑
i=1

(yi − ŷi)2 (12)

ŷi = β̂0 + β̂1xi (13)

and tν(p) denotes the p’th quantile of Student’s t-distribution with ν degrees of freedom (Draper
and Smith, 1998, p.36; Zar, 2010, p.343; Berthoux and Brown, 2002, p.300; Helsel and Hirsch,
1992, p.240).

Testing for a Non-Zero Slope
Consider the null hypothesis of a zero slope coefficient:

H0 : β1 = 0 (14)

The three possible alternative hypotheses are the upper one-sided alternative (alternative="greater"):

Ha : β1 > 0 (15)

the lower one-sided alternative (alternative="less")

Ha : β1 < 0 (16)

and the two-sided alternative (alternative="two.sided")

Ha : β1 6= 0 (17)

The test of the null hypothesis (14) versus any of the three alternatives (15)-(17) is based on the
Student t-statistic:

t =
β̂1

σ̂β̂1

=
β̂1

s/
√
Sxx

(18)

Under the null hypothesis (14), the t-statistic in (18) follows a Student’s t-distribution with n − 2
degrees of freedom (Draper and Smith, 1998, p.36; Zar, 2010, p.341; Helsel and Hirsch, 1992,
pp.238-239).

The formula for the power of the test of a zero slope depends on which alternative is being tested.
The two subsections below describe exact and approximate formulas for the power of the test.
Note that none of the equations for the power of the t-test requires knowledge of the values β1

or σ (the population standard deviation of the error terms), only the ratio β1/σ. The argument
slope.over.sigma is this ratio, and it is referred to as the “scaled slope”.
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Exact Power Calculations (approx=FALSE)
This subsection describes the exact formulas for the power of the t-test for a zero slope.

Upper one-sided alternative (alternative="greater")
The standard Student’s t-test rejects the null hypothesis (1) in favor of the upper alternative hypoth-
esis (2) at level-α if

t ≥ tν(1− α) (19)

where
ν = n− 2 (20)

and, as noted previously, tν(p) denotes the p’th quantile of Student’s t-distribution with ν degrees
of freedom. The power of this test, denoted by 1− β, where β denotes the probability of a Type II
error, is given by:

1− β = Pr[tν,∆ ≥ tν(1− α)] = 1−G[tν(1− α), ν,∆] (21)

where

∆ =
√
Sxx

β1

σ
(22)

and tν,∆ denotes a non-central Student’s t-random variable with ν degrees of freedom and non-
centrality parameter ∆, and G(x, ν,∆) denotes the cumulative distribution function of this random
variable evaluated at x (Johnson et al., 1995, pp.508-510). Note that when the predictor variable X
represents equally-spaced measures of time (e.g., days, months, quarters, etc.) and

xi = i, i = 1, 2, . . . , n (23)

then the non-centrality parameter in Equation (22) becomes:

∆ =

√
(n− 1)n(n+ 1)

12

β1

σ
(24)

Lower one-sided alternative (alternative="less")
The standard Student’s t-test rejects the null hypothesis (1) in favor of the lower alternative hypoth-
esis (3) at level-α if

t ≤ tν(α) (25)

and the power of this test is given by:

1− β = Pr[tν,∆ ≤ tν(α)] = G[tν(α), ν,∆] (26)

Two-sided alternative (alternative="two.sided")
The standard Student’s t-test rejects the null hypothesis (14) in favor of the two-sided alternative
hypothesis (17) at level-α if

|t| ≥ tν(1− α/2) (27)

and the power of this test is given by:

1− β = Pr[tν,∆ ≤ tν(α/2)] + Pr[tν,∆ ≥ tν(1− α/2)]

= G[tν(α/2), ν,∆] + 1−G[tν(1− α/2), ν,∆] (28)
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The power of the t-test given in Equation (28) can also be expressed in terms of the cumulative
distribution function of the non-central F-distribution as follows. Let Fν1,ν2,∆ denote a non-central
F random variable with ν1 and ν2 degrees of freedom and non-centrality parameter ∆, and let
H(x, ν1, ν2,∆) denote the cumulative distribution function of this random variable evaluated at x.
Also, let Fν1,ν2(p) denote the p’th quantile of the central F-distribution with ν1 and ν2 degrees of
freedom. It can be shown that

(tν,∆)2 ∼= F1,ν,∆2 (29)

where ∼= denotes “equal in distribution”. Thus, it follows that

[tν(1− α/2)]2 = F1,ν(1− α) (30)

so the formula for the power of the t-test given in Equation (28) can also be written as:

1− β = Pr{(tν,∆)2 ≥ [tν(1− α/2)]2}

= Pr[F1,ν,∆2 ≥ F1,ν(1− α)] = 1−H[F1,ν(1− α), 1, ν,∆2] (31)

Approximate Power Calculations (approx=TRUE)
Zar (2010, pp.115–118) presents an approximation to the power for the t-test given in Equations
(21), (26), and (28) above. His approximation to the power can be derived by using the approxima-
tion √

Sxx
β1

s
≈
√
SSxx

β1

σ
= ∆ (32)

where≈ denotes “approximately equal to”. Zar’s approximation can be summarized in terms of the
cumulative distribution function of the non-central t-distribution as follows:

G(x, ν,∆) ≈ G(x−∆, ν, 0) = G(x−∆, ν) (33)

where G(x, ν) denotes the cumulative distribution function of the central Student’s t-distribution
with ν degrees of freedom evaluated at x.

The following three subsections explicitly derive the approximation to the power of the t-test for
each of the three alternative hypotheses.

Upper one-sided alternative (alternative="greater")
The power for the upper one-sided alternative (15) given in Equation (21) can be approximated as:

1− β = Pr[t ≥ tν(1− α)]

= Pr[
β̂1

s/
√
Sxx
≥ tν(1− α)−

√
Sxx

β1

s
]

≈ Pr[tν ≥ tν(1− α)−∆]

= 1− Pr[tν ≤ tν(1− α)−∆]

= 1−G[tν(1− α)−∆, ν] (34)

where tν denotes a central Student’s t-random variable with ν degrees of freedom.

Lower one-sided alternative (alternative="less")
The power for the lower one-sided alternative (16) given in Equation (26) can be approximated as:

1− β = Pr[t ≤ tν(α)]
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= Pr[
β̂1

s/
√
Sxx
≤ tν(α)−

√
Sxx

β1

s
]

≈ Pr[tν ≤ tν(α)−∆]

= G[tν(α)−∆, ν] (35)

Two-sided alternative (alternative="two.sided")
The power for the two-sided alternative (17) given in Equation (28) can be approximated as:

1− β = Pr[t ≤ tν(α/2)] + Pr[t ≥ tν(1− α/2)]

= Pr[
β̂1

s/
√
Sxx
≤ tν(α/2)−

√
SSxx

β1

s
] + Pr[

β̂1

s/
√
Sxx
≥ tν(1− α)−

√
SSxx

β1

s
]

≈ Pr[tν ≤ tν(α/2)−∆] + Pr[tν ≥ tν(1− α/2)−∆]

= G[tν(α/2)−∆, ν] + 1−G[tν(1− α/2)−∆, ν] (36)

Value

a numeric vector powers.

Note

Often in environmental data analysis, we are interested in determining whether there is a trend in
some indicator variable over time. In this case, the predictor variable X is time (e.g., day, month,
quarter, year, etc.), and the n values of the response variable represent measurements taken over
time. The slope then represents the change in the average of the response variable per one unit of
time.

You can use the parametric model (1) to model your data, then use the R function lm to fit the
regression coefficients and the summary.lm function to perform a test for the significance of the
slope coefficient. The function linearTrendTestPower computes the power of this t-test, given a
fixed value of the sample size, scaled slope, and significance level.

You can also use Kendall’s nonparametric test for trend if you don’t want to assume the error
terms are normally distributed. When the errors are truly normally distributed, the asymptotic
relative efficiency of Kendall’s test for trend versus the parametric t-test for a zero slope is 0.98,
and Kendall’s test can be more powerful than the parametric t-test when the errors are not normally
distributed. Thus the function linearTrendTestPower can also be used to estimate the power of
Kendall’s test for trend.

In the course of designing a sampling program, an environmental scientist may wish to deter-
mine the relationship between sample size, significance level, power, and scaled slope if one of
the objectives of the sampling program is to determine whether a trend is occurring. The functions
linearTrendTestPower, linearTrendTestN, linearTrendTestScaledMds, and plotLinearTrendTestDesign
can be used to investigate these relationships.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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See Also

linearTrendTestN, linearTrendTestScaledMds, plotLinearTrendTestDesign, lm, summary.lm,
kendallTrendTest, Power and Sample Size, Normal, t.test.

Examples

# Look at how the power of the t-test for zero slope increases with increasing
# sample size:

seq(5, 30, by = 5)
#[1] 5 10 15 20 25 30

power <- linearTrendTestPower(n = seq(5, 30, by = 5), slope.over.sigma = 0.1)

round(power, 2)
#[1] 0.06 0.13 0.34 0.68 0.93 1.00

#----------

# Repeat the last example, but compute the approximate power instead of the
# exact:

power <- linearTrendTestPower(n = seq(5, 30, by = 5), slope.over.sigma = 0.1,
approx = TRUE)

round(power, 2)
#[1] 0.05 0.11 0.32 0.68 0.93 0.99

#----------

# Look at how the power of the t-test for zero slope increases with increasing
# scaled slope:

seq(0.05, 0.2, by = 0.05)
#[1] 0.05 0.10 0.15 0.20

power <- linearTrendTestPower(15, slope.over.sigma = seq(0.05, 0.2, by = 0.05))

round(power, 2)
#[1] 0.12 0.34 0.64 0.87
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#----------

# Look at how the power of the t-test for zero slope increases with increasing
# values of Type I error:

power <- linearTrendTestPower(20, slope.over.sigma = 0.1,
alpha = c(0.001, 0.01, 0.05, 0.1))

round(power, 2)
#[1] 0.14 0.41 0.68 0.80

#----------

# Show that for a simple regression model, you get a greater power of detecting
# a non-zero slope if you take all the observations at two endpoints, rather than
# spreading the observations evenly between two endpoints.
# (Note: This design usually cannot work with environmental monitoring data taken
# over time since usually observations taken close together in time are not
# independent.)

linearTrendTestPower(x = 1:10, slope.over.sigma = 0.1)
#[1] 0.1265976

linearTrendTestPower(x = c(rep(1, 5), rep(10, 5)), slope.over.sigma = 0.1)
#[1] 0.2413823

#==========

# Clean up
#---------
rm(power)

linearTrendTestScaledMds

Scaled Minimal Detectable Slope for a t-Test for Linear Trend

Description

Compute the scaled minimal detectable slope associated with a t-test for liner trend, given the
sample size or predictor variable values, power, and significance level.

Usage

linearTrendTestScaledMds(n, x = lapply(n, seq), alpha = 0.05, power = 0.95,
alternative = "two.sided", two.sided.direction = "greater", approx = FALSE,
tol = 1e-07, maxiter = 1000)

Arguments

n numeric vector of sample sizes. All values of n must be positive integers larger
than 2. This argument is ignored when x is supplied. Missing (NA), undefined
(NaN), and infinite (Inf, -Inf) values are not allowed.
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x numeric vector of predictor variable values, or a list in which each component is
a numeric vector of predictor variable values. Usually, the predictor variable is
time (e.g., days, months, quarters, etc.). The default value is x=lapply(n,seq),
which yields a list in which the i’th component is the seqence of integers from 1
to the i’th value of the vector n. If x is a numeric vector, it must contain at least
three elements, two of which must be unique. If x is a list of numeric vectors,
each component of x must contain at least three elements, two of which must be
unique. Missing (NA), undefined (NaN), and infinite (Inf, -Inf) values are not
allowed.

alpha numeric vector of numbers between 0 and 1 indicating the Type I error level
associated with the hypothesis test. The default value is alpha=0.05.

power numeric vector of numbers between 0 and 1 indicating the power associated with
the hypothesis test. The default value is power=0.95.

alternative character string indicating the kind of alternative hypothesis. The possible val-
ues are "two.sided" (the default), "greater", and "less".

two.sided.direction

character string indicating the direction (positive or negative) for the scaled min-
imal detectable slope when alternative="two.sided". When two.sided.direction="greater"
(the default), the scaled minimal detectable slope is positive. When two.sided.direction="less",
the scaled minimal detectable slope is negative. This argument is ignored if
alternative="less" or alternative="greater".

approx logical scalar indicating whether to compute the power based on an approxima-
tion to the non-central t-distribution. The default value is approx=FALSE.

tol numeric scalar indicating the toloerance to use in the uniroot search algorithm.
The default value is tol=1e-7.

maxiter positive integer indicating the maximum number of iterations argument to pass
to the uniroot function. The default value is maxiter=1000.

Details

If the argument x is a vector, it is converted into a list with one component. If the arguments n, x,
alpha, and power are not all the same length, they are replicated to be the same length as the length
of the longest argument.

Formulas for the power of the t-test of linear trend for specified values of the sample size, scaled
slope, and Type I error level are given in the help file for linearTrendTestPower. The func-
tion linearTrendTestScaledMds uses the uniroot search algorithm to determine the minimal
detectable scaled slope for specified values of the power, sample size, and Type I error level.

Value

numeric vector of computed scaled minimal detectable slopes. When alternative="less", or
alternative="two.sided" and two.sided.direction="less", the computed slopes are nega-
tive. Otherwise, the slopes are positive.

Note

See the help file for linearTrendTestPower.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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References

See the help file for linearTrendTestPower.

See Also

linearTrendTestPower, linearTrendTestN, plotLinearTrendTestDesign, lm, summary.lm,
kendallTrendTest, Power and Sample Size, Normal, t.test.

Examples

# Look at how the scaled minimal detectable slope for the t-test for linear
# trend increases with increasing required power:

seq(0.5, 0.9, by = 0.1)
#[1] 0.5 0.6 0.7 0.8 0.9

scaled.mds <- linearTrendTestScaledMds(n = 10, power = seq(0.5, 0.9, by = 0.1))

round(scaled.mds, 2)
#[1] 0.25 0.28 0.31 0.35 0.41

#----------

# Repeat the last example, but compute the scaled minimal detectable slopes
# based on the approximate power instead of the exact:

scaled.mds <- linearTrendTestScaledMds(n = 10, power = seq(0.5, 0.9, by = 0.1),
approx = TRUE)

round(scaled.mds, 2)
#[1] 0.25 0.28 0.31 0.35 0.41

#==========

# Look at how the scaled minimal detectable slope for the t-test for linear trend
# decreases with increasing sample size:

seq(10, 50, by = 10)
#[1] 10 20 30 40 50

scaled.mds <- linearTrendTestScaledMds(seq(10, 50, by = 10), alternative = "greater")

round(scaled.mds, 2)
#[1] 0.40 0.13 0.07 0.05 0.03

#==========

# Look at how the scaled minimal detectable slope for the t-test for linear trend
# decreases with increasing values of Type I error:

scaled.mds <- linearTrendTestScaledMds(10, alpha = c(0.001, 0.01, 0.05, 0.1),
alternative="greater")

round(scaled.mds, 2)
#[1] 0.76 0.53 0.40 0.34
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#----------

# Repeat the last example, but compute the scaled minimal detectable slopes
# based on the approximate power instead of the exact:

scaled.mds <- linearTrendTestScaledMds(10, alpha = c(0.001, 0.01, 0.05, 0.1),
alternative="greater", approx = TRUE)

round(scaled.mds, 2)
#[1] 0.70 0.52 0.41 0.36

#==========

# Clean up
#---------
rm(scaled.mds)

lMoment Estimate L-Moments

Description

Estimate the r’th L-moment from a random sample.

Usage

lMoment(x, r = 1, method = "unbiased",
plot.pos.cons = c(a = 0.35, b = 0), na.rm = FALSE)

Arguments

x numeric vector of observations.

r positive integer specifying the order of the moment.

method character string specifying what method to use to compute the L-moment. The
possible values are "unbiased" (method based on the U-statistic; the default),
or "plotting.position" (method based on the plotting position formula). See
the DETAILS section for more information.

plot.pos.cons numeric vector of length 2 specifying the constants used in the formula for the
plotting positions when method="plotting.position". The default value is
plot.pos.cons=c(a=0.35, b=0). If this vector has a names attribute with
the value c("a","b") or c("b","a"), then the elements will be matched by
name in the formula for computing the plotting positions. Otherwise, the first
element is mapped to the name "a" and the second element to the name "b".
See the DETAILS section for more information. This argument is ignored if
method="ubiased".

na.rm logical scalar indicating whether to remove missing values from x. If na.rm=FALSE
(the default) and x contains missing values, then a missing value (NA) is returned.
If na.rm=TRUE, missing values are removed from x prior to computing the L-
moment.
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Details

Definitions: L-Moments and L-Moment Ratios
The definition of an L-moment given by Hosking (1990) is as follows. Let X denote a random
variable with cdf F , and let x(p) denote the p’th quantile of the distribution. Furthermore, let

x1:n ≤ x2:n ≤ . . . ≤ xn:n

denote the order statistics of a random sample of size n drawn from the distribution of X . Then the
r’th L-moment is given by:

λr =
1

r

r−1∑
k=0

(−1)k
(
r − 1

k

)
E[Xr−k:r]

for r = 1, 2, . . ..

Hosking (1990) shows that the above equation can be rewritten as:

λr =

∫ 1

0

x(u)P ∗r−1(u)du

where

P ∗r (u) =

r∑
k=0

p∗r,ku
k

p∗r,k = (−1)r−k
(
r

k

)(
r + k

k

)
=

(−1)r−k(r + k)!

(k!)2(r − k)!

The first four L-moments are given by:

λ1 = E[X]

λ2 =
1

2
E[X2:2 −X1:2]

λ3 =
1

3
E[X3:3 − 2X2:3 +X1:3]

λ4 =
1

4
E[X4:4 − 3X3:4 + 3X2:4 −X1:4]

Thus, the first L-moment is a measure of location, and the second L-moment is a measure of scale.

Hosking (1990) defines the L-moment ratios of X to be:

τr =
λr
λ2

for r = 2, 3, . . .. He shows that for a non-degenerate random variable with a finite mean, these
quantities lie in the interval (−1, 1). The quantity

τ3 =
λ3

λ2

is the L-moment analog of the coefficient of skewness, and the quantity

τ4 =
λ4

λ2
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is the L-moment analog of the coefficient of kurtosis. Hosking (1990) also defines an L-moment
analog of the coefficient of variation (denoted the L-CV) as:

λ =
λ2

λ1

He shows that for a positive-valued random variable, the L-CV lies in the interval (0, 1).

Relationship Between L-Moments and Probability-Weighted Moments
Hosking (1990) and Hosking and Wallis (1995) show that L-moments can be written as linear
combinations of probability-weighted moments:

λr = (−1)r−1
r−1∑
k=0

p∗r−1,kαk =

r−1∑
j=0

p∗r−1,jβj

where
αk = M(1, 0, k) =

1

k + 1
E[X1:k+1]

βj = M(1, j, 0) =
1

j + 1
E[Xj+1:j+1]

See the help file for pwMoment for more information on probability-weighted moments.

Estimating L-Moments
The two commonly used methods for estimating L-moments are the “unbiased” method based on
U-statistics (Hoeffding, 1948; Lehmann, 1975, pp. 362-371), and the “plotting-position” method.
Hosking and Wallis (1995) recommend using the unbiased method for almost all applications.

Unbiased Estimators (method="unbiased")
Using the relationship betweenL-moments and probability-weighted moments explained above, the
unbiased estimator of the r’th L-moment is based on unbiased estimators of probability-weighted
moments and is given by:

lr = (−1)r−1
r−1∑
k=0

p∗r−1,kak =

r−1∑
j=0

p∗r−1,jbj

where

ak =
1

n

n−k∑
i=1

xi:n

(
n−i
k

)(
n−1
k

)
bj =

1

n

n∑
i=j+1

xi:n

(
i−1
j

)(
n−1
j

)
Plotting-Position Estimators (method="plotting.position")
Using the relationship between L-moments and probability-weighted moments explained above,
the plotting-position estimator of the r’th L-moment is based on the plotting-position estimators of
probability-weighted moments and is given by:

λ̃r = (−1)r−1
r−1∑
k=0

p∗r−1,kα̃k =

r−1∑
j=0

p∗r−1,j β̃j

where

α̃k =
1

n

n∑
i=1

(1− pi:n)kxi:n
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β̃j =
1

n

n∑
i=1

pji:nxi:n

and
pi:n = F̂ (xi:n)

denotes the plotting position of the i’th order statistic in the random sample of size n, that is, a
distribution-free estimate of the cdf of X evaluated at the i’th order statistic. Typically, plotting
positions have the form:

pi:n =
i− a
n+ b

where b > −a > −1. For this form of plotting position, the plotting-position estimators are
asymptotically equivalent to their unbiased estimator counterparts.

Estimating L-Moment Ratios
L-moment ratios are estimated by simply replacing the population L-moments with the estimated
L-moments. The estimated ratios based on the unbiased estimators are given by:

tr =
lr
l2

and the estimated ratios based on the plotting-position estimators are given by:

τ̃r =
λ̃r

λ̃2

In particular, the L-moment skew is estimated by:

t3 =
l3
l2

or

τ̃3 =
λ̃3

λ̃2

and the L-moment kurtosis is estimated by:

t4 =
l4
l2

or

τ̃4 =
λ̃4

λ̃2

Similarly, the L-moment coefficient of variation can be estimated using the unbiased L-moment
estimators:

l =
l2
l1

or using the plotting-position L-moment estimators:

λ̃ =
λ̃2

λ̃1

Value

A numeric scalar–the value of the r’th L-moment as defined by Hosking (1990).



lMoment 599

Note

Hosking (1990) introduced the idea of L-moments, which are expectations of certain linear com-
binations of order statistics, as the basis of a general theory of describing theoretical probability
distributions, computing summary statistics from observed data, estimating distribution parameters
and quantiles, and performing hypothesis tests. The theory of L-moments parallels the theory of
conventional moments. L-moments have several advantages over conventional moments, including:

• L-moments can characterize a wider range of distributions because they always exist as long
as the distribution has a finite mean.

• L-moments are estimated by linear combinations of order statistics, so estimators based on
L-moments are more robust to the presence of outliers than estimators based on conventional
moments.

• Based on the author’s and others’ experience, L-moment estimators are less biased and ap-
proximate their asymptotic distribution more closely in finite samples than estimators based
on conventional moments.

• L-moment estimators are sometimes more efficient (smaller RMSE) than even maximum like-
lihood estimators for small samples.

Hosking (1990) presents a table with formulas for the L-moments of common probability distribu-
tions. Articles that illustrate the use of L-moments include Fill and Stedinger (1995), Hosking and
Wallis (1995), and Vogel and Fennessey (1993).

Hosking (1990) and Hosking and Wallis (1995) show the relationship between probabiity-weighted
moments and L-moments.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References
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See Also

cv, skewness, kurtosis, pwMoment.

Examples

# Generate 20 observations from a generalized extreme value distribution
# with parameters location=10, scale=2, and shape=.25, then compute the
# first four L-moments.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(250)
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dat <- rgevd(20, location = 10, scale = 2, shape = 0.25)

lMoment(dat)
#[1] 10.59556

lMoment(dat, 2)
#[1] 1.0014

lMoment(dat, 3)
#[1] 0.1681165

lMoment(dat, 4)
#[1] 0.08732692

#----------

# Now compute some L-moments based on the plotting-position estimators:

lMoment(dat, method = "plotting.position")
#[1] 10.59556

lMoment(dat, 2, method = "plotting.position")
#[1] 1.110264

lMoment(dat, 3, method="plotting.position", plot.pos.cons = c(.325,1))
#[1] -0.4430792

#----------

# Clean up
#---------
rm(dat)

Lognormal3 The Three-Parameter Lognormal Distribution

Description

Density, distribution function, quantile function, and random generation for the three-parameter
lognormal distribution with parameters meanlog, sdlog, and threshold.

Usage

dlnorm3(x, meanlog = 0, sdlog = 1, threshold = 0)
plnorm3(q, meanlog = 0, sdlog = 1, threshold = 0)
qlnorm3(p, meanlog = 0, sdlog = 1, threshold = 0)
rlnorm3(n, meanlog = 0, sdlog = 1, threshold = 0)

Arguments

x vector of quantiles.

q vector of quantiles.

p vector of probabilities between 0 and 1.
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n sample size. If length(n) is larger than 1, then length(n) random values are
returned.

meanlog vector of means of the distribution of the random variable on the log scale. The
default is meanlog=0.

sdlog vector of (positive) standard deviations of the random variable on the log scale.
The default is sdlog=1.

threshold vector of thresholds of the random variable on the log scale. The default is
threshold=0.

Details

The three-parameter lognormal distribution is simply the usual two-parameter lognormal distribu-
tion with a location shift.

LetX be a random variable with a three-parameter lognormal distribution with parameters meanlog=µ,
sdlog=σ, and threshold=γ. Then the random variable Y = X − γ has a lognormal distribution
with parameters meanlog=µ and sdlog=σ. Thus,

• dlnorm3 calls dlnorm using the arguments x = x - threshold, meanlog = meanlog, sdlog = sdlog

• plnorm3 calls plnorm using the arguments q = q - threshold, meanlog = meanlog, sdlog = sdlog

• qlnorm3 calls qlnorm using the arguments q = q, meanlog = meanlog, sdlog = sdlog and
then adds the argument threshold to the result.

• rlnorm3 calls rlnorm using the arguments n = n, meanlog = meanlog, sdlog = sdlog and
then adds the argument threshold to the result.

The threshold parameter γ affects only the location of the three-parameter lognormal distribution;
it has no effect on the variance or the shape of the distribution.

Denote the mean, variance, and coefficient of variation of Y = X − γ by:

E(Y ) = θ

V ar(Y ) = η2

CV (Y ) = τ = η/θ

Then the mean, variance, and coefficient of variation of X are given by:

E(X) = θ + η

V ar(X) = η2

CV (X) =
η

θ + γ
=

τθ

θ + γ

The relationships between the parameters µ, σ, θ, η, and τ are as follows:

θ = β
√
ω

η = β
√
ω(ω − 1)

τ =
√
ω − 1

µ = log(
θ√

τ2 + 1
)

σ =
√
log(τ2 + 1)

where
β = eµ, ω = exp(σ2)

Since quantiles of a distribution are preserved under monotonic transformations, the median of X
is:

Median(X) = γ + β
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Value

dlnorm3 gives the density, plnorm3 gives the distribution function, qlnorm3 gives the quantile
function, and rlnorm3 generates random deviates.

Note

The two-parameter lognormal distribution is the distribution of a random variable whose logarithm
is normally distributed. The two major characteristics of the two-parameter lognormal distribution
are that it is bounded below at 0, and it is skewed to the right. The three-parameter lognormal
distribution is a generalization of the two-parameter lognormal distribution in which the distribution
is shifted so that the threshold parameter is some arbitrary number, not necessarily 0.

The three-parameter lognormal distribution was introduced by Wicksell (1917) in a study of the
distribution of ages at first marriage. Both the two- and three-parameter lognormal distributions
have been used in a variety of fields, including economics and business, industry, biology, ecology,
atmospheric science, and geology (Crow and Shimizu, 1988). Royston (1992) has discussed the
application of the three-parameter lognormal distribution in the field of medicine.

The two-parameter lognormal distribution is often used to characterize chemical concentrations in
the environment. Ott (1990) has shown mathematically how a series of successive random dilutions
gives rise to a distribution that can be approximated by a two-parameter lognormal distribution.

The three-pararameter lognormal distribution starts to resemble a normal distribution as the param-
eter σ (the standard deviation of log(X − γ) tends to 0.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References
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See Also

Lognormal, elnorm3, Probability Distributions and Random Numbers.
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Examples

# Density of the three-parameter lognormal distribution with
# parameters meanlog=1, sdlog=2, and threshold=10, evaluated at 10.5:

dlnorm3(10.5, 1, 2, 10)
#[1] 0.278794

#----------

# The cdf of the three-parameter lognormal distribution with
# parameters meanlog=2, sdlog=3, and threshold=5, evaluated at 9:

plnorm3(9, 2, 3, 5)
#[1] 0.4189546

#----------

# The median of the three-parameter lognormal distribution with
# parameters meanlog=2, sdlog=3, and threshold=20:

qlnorm3(0.5, 2, 3, 20)
#[1] 27.38906

#----------

# Random sample of 3 observations from the three-parameter lognormal
# distribution with parameters meanlog=2, sdlog=1, and threshold=-5.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(20)
rlnorm3(3, 2, 1, -5)
#[1] 18.6339749 -0.8873173 39.0561521

LognormalAlt The Lognormal Distribution (Alternative Parameterization)

Description

Density, distribution function, quantile function, and random generation for the lognormal distribu-
tion with parameters mean and cv.

Usage

dlnormAlt(x, mean = exp(1/2), cv = sqrt(exp(1) - 1), log = FALSE)
plnormAlt(q, mean = exp(1/2), cv = sqrt(exp(1) - 1),

lower.tail = TRUE, log.p = FALSE)
qlnormAlt(p, mean = exp(1/2), cv = sqrt(exp(1) - 1),

lower.tail = TRUE, log.p = FALSE)
rlnormAlt(n, mean = exp(1/2), cv = sqrt(exp(1) - 1))
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Arguments

x vector of quantiles.

q vector of quantiles.

p vector of probabilities between 0 and 1.

n sample size. If length(n) is larger than 1, then length(n) random values are
returned.

mean vector of (positive) means of the distribution of the random variable.

cv vector of (positive) coefficients of variation of the random variable.

log, log.p logical; if TRUE, probabilities/densities p are returned as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X > x].

Details

LetX be a random variable with a lognormal distribution with parameters meanlog=µ and sdlog=σ.
That is, µ and σ denote the mean and standard deviation of the random variable on the log scale. The
relationship between these parameters and the mean (mean=θ) and coefficient of variation (cv=τ ) of
the distribution on the original scale is given by:

µ = log(
θ√

τ2 + 1
) (1)

σ = [log(τ2 + 1)]1/2 (2)

θ = exp[µ+ (σ2/2)] (3)

τ = [exp(σ2)− 1]1/2 (4)

Thus, the functions dlnormAlt, plnormAlt, qlnormAlt, and rlnormAlt call the R functions dlnorm,
plnorm, qlnorm, and rlnorm, respectively using the following values for the meanlog and sdlog
parameters:
sdlog <- sqrt(log(1 + cv^2)),
meanlog <- log(mean) - (sdlog^2)/2

Value

dlnormAlt gives the density, plnormAlt gives the distribution function, qlnormAlt gives the quan-
tile function, and rlnormAlt generates random deviates.

Note

The two-parameter lognormal distribution is the distribution of a random variable whose logarithm
is normally distributed. The two major characteristics of the lognormal distribution are that it is
bounded below at 0, and it is skewed to the right.

Because the empirical distribution of many variables is inherently positive and skewed to the right
(e.g., size of organisms, amount of rainfall, size of income, etc.), the lognormal distribution has
been widely applied in several fields, including economics, business, industry, biology, ecology,
atmospheric science, and geology (Aitchison and Brown, 1957; Crow and Shimizu, 1988).

Gibrat (1930) derived the lognormal distribution from theoretical assumptions, calling it the "law
of proportionate effect", but Kapteyn (1903) had described a machine that was the mechanical
equivalent. The basic idea is that the Central Limit Theorem states that the distribution of the sum
of several independent random variables tends to look like a normal distribution, no matter what the
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underlying distribution(s) of the original random variables, hence the product of several independent
random variables tends to look like a lognormal distribution.

The lognormal distribution is often used to characterize chemical concentrations in the environment.
Ott (1990) has shown mathematically how a series of successive random dilutions gives rise to a
distribution that can be approximated by a lognormal distribution.

A lognormal distribution starts to resemble a normal distribution as the parameter σ (the standard
deviation of the log of the distribution) tends to 0.

Some EPA guidance documents (e.g., Singh et al., 2002; Singh et al., 2010a,b) discourage using
the assumption of a lognormal distribution for some types of environmental data and recommend
instead assessing whether the data appear to fit a gamma distribution.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Forbes, C., M. Evans, N. Hastings, and B. Peacock. (2011). Statistical Distributions. Fourth
Edition. John Wiley and Sons, Hoboken, NJ.

Johnson, N. L., S. Kotz, and N. Balakrishnan. (1994). Continuous Univariate Distributions, Volume
1. Second Edition. John Wiley and Sons, New York.

Limpert, E., W.A. Stahel, and M. Abbt. (2001). Log-Normal Distributions Across the Sciences:
Keys and Clues. BioScience 51, 341–352.

Ott, W.R. (1995). Environmental Statistics and Data Analysis. Lewis Publishers, Boca Raton, FL.

Singh, A., R. Maichle, and N. Armbya. (2010a). ProUCL Version 4.1.00 User Guide (Draft).
EPA/600/R-07/041, May 2010. Office of Research and Development, U.S. Environmental Protec-
tion Agency, Washington, D.C.

Singh, A., N. Armbya, and A. Singh. (2010b). ProUCL Version 4.1.00 Technical Guide (Draft).
EPA/600/R-07/041, May 2010. Office of Research and Development, U.S. Environmental Protec-
tion Agency, Washington, D.C.

See Also

Lognormal, elnormAlt, Probability Distributions and Random Numbers.

Examples

# Density of the lognormal distribution with parameters
# mean=10 and cv=1, evaluated at 5:

dlnormAlt(5, mean = 10, cv = 1)
#[1] 0.08788173

#----------

# The cdf of the lognormal distribution with parameters mean=2 and cv=3,
# evaluated at 4:

plnormAlt(4, 2, 3)
#[1] 0.8879132

#----------
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# The median of the lognormal distribution with parameters
# mean=10 and cv=1:

qlnormAlt(0.5, mean = 10, cv = 1)
#[1] 7.071068

#----------

# Random sample of 3 observations from a lognormal distribution with
# parameters mean=10 and cv=1.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(20)
rlnormAlt(3, mean = 10, cv = 1)
#[1] 18.615797 4.341402 31.265293

LognormalMix Mixture of Two Lognormal Distributions

Description

Density, distribution function, quantile function, and random generation for a mixture of two log-
normal distribution with parameters meanlog1, sdlog1, meanlog2, sdlog2, and p.mix.

Usage

dlnormMix(x, meanlog1 = 0, sdlog1 = 1, meanlog2 = 0, sdlog2 = 1, p.mix = 0.5)
plnormMix(q, meanlog1 = 0, sdlog1 = 1, meanlog2 = 0, sdlog2 = 1, p.mix = 0.5)
qlnormMix(p, meanlog1 = 0, sdlog1 = 1, meanlog2 = 0, sdlog2 = 1, p.mix = 0.5)
rlnormMix(n, meanlog1 = 0, sdlog1 = 1, meanlog2 = 0, sdlog2 = 1, p.mix = 0.5)

Arguments

x vector of quantiles.

q vector of quantiles.

p vector of probabilities between 0 and 1.

n sample size. If length(n) is larger than 1, then length(n) random values are
returned.

meanlog1 vector of means of the first lognormal random variable on the log scale. The
default is meanlog1=0.

sdlog1 vector of standard deviations of the first lognormal random variable on the log
scale. The default is sdlog1=1.

meanlog2 vector of means of the second lognormal random variable on the log scale. The
default is meanlog2=0.

sdlog2 vector of standard deviations of the second lognormal random variable on the
log scale. The default is sdlog2=1.

p.mix vector of probabilities between 0 and 1 indicating the mixing proportion. For
rlnormMix this must be a single, non-missing number.
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Details

Let f(x;µ, σ) denote the density of a lognormal random variable with parameters meanlog=µ and
sdlog=σ. The density, g, of a lognormal mixture random variable with parameters meanlog1=µ1,
sdlog1=σ1, meanlog2=µ2, sdlog2=σ2, and p.mix=p is given by:

g(x;µ1, σ1, µ2, σ2, p) = (1− p)f(x;µ1, σ1) + pf(x;µ2, σ2)

Value

dlnormMix gives the density, plnormMix gives the distribution function, qlnormMix gives the quan-
tile function, and rlnormMix generates random deviates.

Note

A lognormal mixture distribution is often used to model positive-valued data that appear to be
“contaminated”; that is, most of the values appear to come from a single lognormal distribution, but
a few “outliers” are apparent. In this case, the value of meanlog2 would be larger than the value
of meanlog1, and the mixing proportion p.mix would be fairly close to 0 (e.g., p.mix=0.1). The
value of the second standard deviation (sdlog2) may or may not be the same as the value for the
first (sdlog1).

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Gilliom, R.J., and D.R. Helsel. (1986). Estimation of Distributional Parameters for Censored Trace
Level Water Quality Data: 1. Estimation Techniques. Water Resources Research 22, 135-146.

Johnson, N. L., S. Kotz, and A.W. Kemp. (1992). Univariate Discrete Distributions. Second
Edition. John Wiley and Sons, New York, pp.53-54, and Chapter 8.

Johnson, N. L., S. Kotz, and N. Balakrishnan. (1994). Continuous Univariate Distributions, Volume
1. Second Edition. John Wiley and Sons, New York.

See Also

Lognormal, NormalMix, Probability Distributions and Random Numbers.

Examples

# Density of a lognormal mixture with parameters meanlog1=0, sdlog1=1,
# meanlog2=2, sdlog2=3, p.mix=0.5, evaluated at 1.5:

dlnormMix(1.5, meanlog1 = 0, sdlog1 = 1, meanlog2 = 2, sdlog2 = 3, p.mix = 0.5)
#[1] 0.1609746

#----------

# The cdf of a lognormal mixture with parameters meanlog1=0, sdlog1=1,
# meanlog2=2, sdlog2=3, p.mix=0.2, evaluated at 4:

plnormMix(4, 0, 1, 2, 3, 0.2)
#[1] 0.8175281
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#----------

# The median of a lognormal mixture with parameters meanlog1=0, sdlog1=1,
# meanlog2=2, sdlog2=3, p.mix=0.2:

qlnormMix(0.5, 0, 1, 2, 3, 0.2)
#[1] 1.156891

#----------

# Random sample of 3 observations from a lognormal mixture with
# parameters meanlog1=0, sdlog1=1, meanlog2=3, sdlog2=4, p.mix=0.2.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(20)
rlnormMix(3, 0, 1, 2, 3, 0.2)
#[1] 0.08975283 1.07591103 7.85482514

LognormalMixAlt Mixture of Two Lognormal Distributions (Alternative Parameteriza-
tion)

Description

Density, distribution function, quantile function, and random generation for a mixture of two log-
normal distribution with parameters mean1, cv1, mean2, cv2, and p.mix.

Usage

dlnormMixAlt(x, mean1 = exp(1/2), cv1 = sqrt(exp(1) - 1),
mean2 = exp(1/2), cv2 = sqrt(exp(1) - 1), p.mix = 0.5)

plnormMixAlt(q, mean1 = exp(1/2), cv1 = sqrt(exp(1) - 1),
mean2 = exp(1/2), cv2 = sqrt(exp(1) - 1), p.mix = 0.5)

qlnormMixAlt(p, mean1 = exp(1/2), cv1 = sqrt(exp(1) - 1),
mean2 = exp(1/2), cv2 = sqrt(exp(1) - 1), p.mix = 0.5)

rlnormMixAlt(n, mean1 = exp(1/2), cv1 = sqrt(exp(1) - 1),
mean2 = exp(1/2), cv2 = sqrt(exp(1) - 1), p.mix = 0.5)

Arguments

x vector of quantiles.

q vector of quantiles.

p vector of probabilities between 0 and 1.

n sample size. If length(n) is larger than 1, then length(n) random values are
returned.

mean1 vector of means of the first lognormal random variable. The default is meanlog1=sqrt(exp(1) - 1).

cv1 vector of coefficient of variations of the first lognormal random variable. The
default is sdlog1=sqrt(exp(1) - 1).

mean2 vector of means of the second lognormal random variable. The default is mean2=sqrt(exp(1) - 1).

cv2 vector of coefficient of variations of the second lognormal random variable. The
default is sdlog2=sqrt(exp(1) - 1).
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p.mix vector of probabilities between 0 and 1 indicating the mixing proportion. For
rlnormMixAlt this must be a single, non-missing number.

Details

Let f(x; η, θ) denote the density of a lognormal random variable with parameters mean=η and
cv=θ. The density, g, of a lognormal mixture random variable with parameters mean1=η1, cv1=θ1,
mean2=η2, cv2=θ2, and p.mix=p is given by:

g(x; η1, θ1, η2, θ2, p) = (1− p)f(x; η1, θ1) + pf(x; η2, θ2)

The default values for mean1 and cv1 correspond to a lognormal distribution with parameters
meanlog=0 and sdlog=1. Similarly for the default values of mean2 and cv2.

Value

dlnormMixAlt gives the density, plnormMixAlt gives the distribution function, qlnormMixAlt
gives the quantile function, and rlnormMixAlt generates random deviates.

Note

A lognormal mixture distribution is often used to model positive-valued data that appear to be
“contaminated”; that is, most of the values appear to come from a single lognormal distribution,
but a few “outliers” are apparent. In this case, the value of mean2 would be larger than the value of
mean1, and the mixing proportion p.mix would be fairly close to 0 (e.g., p.mix=0.1).

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Gilliom, R.J., and D.R. Helsel. (1986). Estimation of Distributional Parameters for Censored Trace
Level Water Quality Data: 1. Estimation Techniques. Water Resources Research 22, 135-146.

Johnson, N. L., S. Kotz, and A.W. Kemp. (1992). Univariate Discrete Distributions. Second
Edition. John Wiley and Sons, New York, pp.53-54, and Chapter 8.

Johnson, N. L., S. Kotz, and N. Balakrishnan. (1994). Continuous Univariate Distributions, Volume
1. Second Edition. John Wiley and Sons, New York.

See Also

LognormalAlt, LognormalMix, Lognormal, NormalMix, Probability Distributions and Random
Numbers.

Examples

# Density of a lognormal mixture with parameters mean=2, cv1=3,
# mean2=4, cv2=5, p.mix=0.5, evaluated at 1.5:

dlnormMixAlt(1.5, mean1 = 2, cv1 = 3, mean2 = 4, cv2 = 5, p.mix = 0.5)
#[1] 0.1436045

#----------
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# The cdf of a lognormal mixture with parameters mean=2, cv1=3,
# mean2=4, cv2=5, p.mix=0.5, evaluated at 1.5:

plnormMixAlt(1.5, mean1 = 2, cv1 = 3, mean2 = 4, cv2 = 5, p.mix = 0.5)
#[1] 0.6778064

#----------

# The median of a lognormal mixture with parameters mean=2, cv1=3,
# mean2=4, cv2=5, p.mix=0.5:

qlnormMixAlt(0.5, 2, 3, 4, 5, 0.5)
#[1] 0.6978355

#----------

# Random sample of 3 observations from a lognormal mixture with
# parameters mean1=2, cv1=3, mean2=4, cv2=5, p.mix=0.5.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(20)
rlnormMixAlt(3, 2, 3, 4, 5, 0.5)
#[1] 0.70672151 14.43226313 0.05521329

LognormalTrunc The Truncated Lognormal Distribution

Description

Density, distribution function, quantile function, and random generation for the truncated lognormal
distribution with parameters meanlog, sdlog, min, and max.

Usage

dlnormTrunc(x, meanlog = 0, sdlog = 1, min = 0, max = Inf)
plnormTrunc(q, meanlog = 0, sdlog = 1, min = 0, max = Inf)
qlnormTrunc(p, meanlog = 0, sdlog = 1, min = 0, max = Inf)
rlnormTrunc(n, meanlog = 0, sdlog = 1, min = 0, max = Inf)

Arguments

x vector of quantiles.
q vector of quantiles.
p vector of probabilities between 0 and 1.
n sample size. If length(n) is larger than 1, then length(n) random values are

returned.
meanlog vector of means of the distribution of the non-truncated random variable on the

log scale. The default is meanlog=0.
sdlog vector of (positive) standard deviations of the non-truncated random variable on

the log scale. The default is sdlog=1.
min vector of minimum values for truncation on the left. The default value is min=0.
max vector of maximum values for truncation on the right. The default value is

max=Inf.
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Details

See the help file for the lognormal distribution for information about the density and cdf of a log-
normal distribution.

Probability Density and Cumulative Distribution Function
Let X denote a random variable with density function f(x) and cumulative distribution function
F (x), and let Y denote the truncated version of X where Y is truncated below at min=A and above
atmax=B. Then the density function of Y , denoted g(y), is given by:

g(y) = fracf(y)F (B)− F (A), A ≤ y ≤ B

and the cdf of Y, denoted G(y), is given by:

G(y) = 0 for y < A
F (y)−F (A)
F (B)−F (A) for A ≤ y ≤ B
1 for y > B

Quantiles
The pth quantile yp of Y is given by:

yp = A for p = 0
F−1{p[F (B)− F (A)] + F (A)} for 0 < p < 1
B for p = 1

Random Numbers
Random numbers are generated using the inverse transformation method:

y = G−1(u)

where u is a random deviate from a uniform [0, 1] distribution.

Value

dlnormTrunc gives the density, plnormTrunc gives the distribution function, qlnormTrunc gives
the quantile function, and rlnormTrunc generates random deviates.

Note

A truncated lognormal distribution is sometimes used as an input distribution for probabilistic risk
assessment.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Forbes, C., M. Evans, N. Hastings, and B. Peacock. (2011). Statistical Distributions. Fourth
Edition. John Wiley and Sons, Hoboken, NJ.

Johnson, N. L., S. Kotz, and N. Balakrishnan. (1994). Continuous Univariate Distributions, Volume
1. Second Edition. John Wiley and Sons, New York.
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Schneider, H. (1986). Truncated and Censored Samples from Normal Populations. Marcel Dekker,
New York, Chapter 2.

See Also

Lognormal, Probability Distributions and Random Numbers.

Examples

# Density of a truncated lognormal distribution with parameters
# meanlog=1, sdlog=0.75, min=0, max=10, evaluated at 2 and 4:

dlnormTrunc(c(2, 4), 1, 0.75, 0, 10)
#[1] 0.2551219 0.1214676

#----------

# The cdf of a truncated lognormal distribution with parameters
# meanlog=1, sdlog=0.75, min=0, max=10, evaluated at 2 and 4:

plnormTrunc(c(2, 4), 1, 0.75, 0, 10)
#[1] 0.3558867 0.7266934

#----------

# The median of a truncated lognormal distribution with parameters
# meanlog=1, sdlog=0.75, min=0, max=10:

qlnormTrunc(.5, 1, 0.75, 0, 10)
#[1] 2.614945

#----------

# A random sample of 3 observations from a truncated lognormal distribution
# with parameters meanlog=1, sdlog=0.75, min=0, max=10.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(20)
rlnormTrunc(3, 1, 0.75, 0, 10)
#[1] 5.754805 4.372218 1.706815

LognormalTruncAlt The Truncated Lognormal Distribution (Alternative Parameterization)

Description

Density, distribution function, quantile function, and random generation for the truncated lognormal
distribution with parameters mean, cv, min, and max.

Usage

dlnormTruncAlt(x, mean = exp(1/2), cv = sqrt(exp(1) - 1), min = 0, max = Inf)
plnormTruncAlt(q, mean = exp(1/2), cv = sqrt(exp(1) - 1), min = 0, max = Inf)
qlnormTruncAlt(p, mean = exp(1/2), cv = sqrt(exp(1) - 1), min = 0, max = Inf)
rlnormTruncAlt(n, mean = exp(1/2), cv = sqrt(exp(1) - 1), min = 0, max = Inf)



LognormalTruncAlt 613

Arguments

x vector of quantiles.

q vector of quantiles.

p vector of probabilities between 0 and 1.

n sample size. If length(n) is larger than 1, then length(n) random values are
returned.

mean vector of means of the distribution of the non-truncated random variable. The
default is mean=exp(1/2).

cv vector of (positive) coefficient of variations of the non-truncated random vari-
able. The default is cv=sqrt(exp(1)-1).

min vector of minimum values for truncation on the left. The default value is min=0.

max vector of maximum values for truncation on the right. The default value is
max=Inf.

Details

See the help file for LognormalAlt for information about the density and cdf of a lognormal distri-
bution with this alternative parameterization.

Let X denote a random variable with density function f(x) and cumulative distribution function
F (x), and let Y denote the truncated version of X where Y is truncated below at min=A and above
atmax=B. Then the density function of Y , denoted g(y), is given by:

g(y) = fracf(y)F (B)− F (A), A ≤ y ≤ B

and the cdf of Y, denoted G(y), is given by:

G(y) = 0 for y < A
F (y)−F (A)
F (B)−F (A) for A ≤ y ≤ B
1 for y > B

The pth quantile yp of Y is given by:

yp = A for p = 0
F−1{p[F (B)− F (A)] + F (A)} for 0 < p < 1
B for p = 1

Random numbers are generated using the inverse transformation method:

y = G−1(u)

where u is a random deviate from a uniform [0, 1] distribution.

Value

dlnormTruncAlt gives the density, plnormTruncAlt gives the distribution function, qlnormTruncAlt
gives the quantile function, and rlnormTruncAlt generates random deviates.
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Note

A truncated lognormal distribution is sometimes used as an input distribution for probabilistic risk
assessment.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Forbes, C., M. Evans, N. Hastings, and B. Peacock. (2011). Statistical Distributions. Fourth
Edition. John Wiley and Sons, Hoboken, NJ.

Johnson, N. L., S. Kotz, and N. Balakrishnan. (1994). Continuous Univariate Distributions, Volume
1. Second Edition. John Wiley and Sons, New York.

Schneider, H. (1986). Truncated and Censored Samples from Normal Populations. Marcel Dekker,
New York, Chapter 2.

See Also

LognormalAlt, Probability Distributions and Random Numbers.

Examples

# Density of a truncated lognormal distribution with parameters
# mean=10, cv=1, min=0, max=20, evaluated at 2 and 12:

dlnormTruncAlt(c(2, 12), 10, 1, 0, 20)
#[1] 0.08480874 0.03649884

#----------

# The cdf of a truncated lognormal distribution with parameters
# mean=10, cv=1, min=0, max=20, evaluated at 2 and 12:

plnormTruncAlt(c(2, 4), 10, 1, 0, 20)
#[1] 0.07230627 0.82467603

#----------

# The median of a truncated lognormal distribution with parameters
# mean=10, cv=1, min=0, max=20:

qlnormTruncAlt(.5, 10, 1, 0, 20)
#[1] 6.329505

#----------

# A random sample of 3 observations from a truncated lognormal distribution
# with parameters mean=10, cv=1, min=0, max=20.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(20)
rlnormTruncAlt(3, 10, 1, 0, 20)
#[1] 6.685391 17.445387 18.543553



longToWide 615

longToWide Convert a Long Format Data Set into a Wide Format

Description

Given a data frame or matrix in long format, convert it to wide format based on the levels of two
variables in the data frame. This is a simplified version of the R function reshape with the argument
direction="wide".

Usage

longToWide(x, data.var, row.var, col.var,
row.labels = levels(factor(x[, row.var])),
col.labels = levels(factor(x[, col.var])),
paste.row.name = FALSE, paste.col.name = FALSE, sep = ".",
check.names = FALSE, ...)

Arguments

x data frame or matrix to convert to wide format. Must have at least 3 columns
corresponding to the data variable, row variable, and column variable, respec-
tively.

data.var character string or numeric scalar indicating column variable name in x for data
values.

row.var character string or numeric scalar indicating column variable name in x for
defining rows of output. The indicated column in x cannot have missing val-
ues.

col.var character string or numeric scalar indicating column variable name in x for
defining columns of output. The indicated column in x cannot have missing
values.

row.labels optional character vector indicating labels to use for rows. The default value is
the levels of the variable indicated by row.var when coerced to a factor.

col.labels optional character vector indicating labels to use for columns. The default value
is the levels of the variable indicated by col.var when coerced to a factor.

paste.row.name logical scalar indicating whether to paste the name of the variable used to define
the row names (i.e., the value of row.var) in front of the values defining the row
names. The default value is paste.row.name=FALSE.

paste.col.name logical scalar indicating whether to paste the name of the variable used to define
the column names (i.e., the value of col.var) in front of the values defining the
column names. The default value is paste.col.name=FALSE.

sep character string separator used when paste.row.name=TRUE and/or
paste.col.name=TRUE. The default value is sep=".".

check.names argument to data.frame. Used to convert the return value to a data frame when
the argument x is a data frame. This argument is ignored if x is a matrix.

... other arguments to data.frame. This argument is ignored if x is a matrix.
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Details

The combination of values in x[, row.var] and x[, col.var] must yield n unique values, where
n is the number of rows in x.

Value

longToWide returns a matrix when x is a matrix and a data frame when x is a data frame. The num-
ber of rows is equal to the number of unique values in x[, row.var] and the number of columns
is equal to the number of unique values in x[, col.var].

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>), based on a template from Phil Dixon.

See Also

reshape, data.frame, matrix.

Examples

EPA.09.Ex.10.1.nickel.df
# Month Well Nickel.ppb
#1 1 Well.1 58.8
#2 3 Well.1 1.0
#3 6 Well.1 262.0
#4 8 Well.1 56.0
#5 10 Well.1 8.7
#6 1 Well.2 19.0
#7 3 Well.2 81.5
#8 6 Well.2 331.0
#9 8 Well.2 14.0
#10 10 Well.2 64.4
#11 1 Well.3 39.0
#12 3 Well.3 151.0
#13 6 Well.3 27.0
#14 8 Well.3 21.4
#15 10 Well.3 578.0
#16 1 Well.4 3.1
#17 3 Well.4 942.0
#18 6 Well.4 85.6
#19 8 Well.4 10.0
#20 10 Well.4 637.0

longToWide(EPA.09.Ex.10.1.nickel.df,
"Nickel.ppb", "Month", "Well", paste.row.name = TRUE)

# Well.1 Well.2 Well.3 Well.4
#Month.1 58.8 19.0 39.0 3.1
#Month.3 1.0 81.5 151.0 942.0
#Month.6 262.0 331.0 27.0 85.6
#Month.8 56.0 14.0 21.4 10.0
#Month.10 8.7 64.4 578.0 637.0
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Millard.Deverel.88.df Copper and Zinc Concentrations in Shallow Ground Water

Description

Copper and zinc concentrations (mg/L) in shallow ground water from two geological zones (Allu-
vial Fan and Basin-Trough) in the San Joaquin Valley, CA. There are 68 samples from the Alluvial
Fan zone and 50 from the Basin-Trough zone. Some observations are reported as <DL, where DL
denotes a detection limit. There are multiple detection limits for both the copper and zinc data in
each of the geological zones.

Usage

Millard.Deverel.88.df

Format

A data frame with 118 observations on the following 8 variables.

Cu.orig a character vector of original copper concentrations (mg/L)

Cu a numeric vector of copper concentrations with nondetects coded to their detection limit

Cu.censored a logical vector indicating which copper concentrations are censored

Zn.orig a character vector of original zinc concentrations (mg/L)

Zn a numeric vector of zinc concentrations with nondetects coded to their detection limit

Zn.censored a logical vector indicating which zinc concentrations are censored

Zone a factor indicating the zone (alluvial fan vs. basin trough)

Location a numeric vector indicating the sampling location

Source

Millard, S.P., and S.J. Deverel. (1988). Nonparametric Statistical Methods for Comparing Two Sites
Based on Data With Multiple Nondetect Limits. Water Resources Research, 24(12), 2087-2098.

References

Deverel, S.J., R.J. Gilliom, R. Fujii, J.A. Izbicki, and J.C. Fields. (1984). Areal Distribution of
Selenium and Other Inorganic Constituents in Shallow Ground Water of the San Luis Drain Service
Area, San Joaquin, California: A Preliminary Study. U.S. Geological Survey Water Resources
Investigative Report 84-4319.
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Modified.TcCB.df Modified 1,2,3,4-Tetrachlorobenzene Data with Censored Values

Description

Artificial 1,2,3,4-Tetrachlorobenzene (TcCB) concentrations with censored values; based on the
reference area data stored in EPA.94b.tccb.df. The data frame EPA.94b.tccb.df contains TcCB
concentrations (ppb) in soil samples at a reference area and a cleanup area. The data frame
Modified.TcCB.df contains a modified version of the data from the reference area. For this data
set, the concentrations of TcCB less than 0.5 ppb have been recoded as <0.5.

Usage

Modified.TcCB.df

Format

A data frame with 47 observations on the following 3 variables.

TcCB.orig a character vector of original TcCB concentrations (ppb)

TcCB a numeric vector with censored observations set to their detection level

Censored a logical vector indicating which observations are censored

Source

Millard, S.P., and N.K. Neerchal. (2001). Environmental Statistics with S-PLUS. CRC Press, Boca
Raton, FL, p.595.

References

USEPA. (1994b). Statistical Methods for Evaluating the Attainment of Cleanup Standards, Volume
3: Reference-Based Standards for Soils and Solid Media. EPA/230-R-94-004. Office of Policy,
Planning, and Evaluation, U.S. Environmental Protection Agency, Washington, D.C.

See Also

EPA.94b.tccb.df.

newsEnvStats Show the EnvStats NEWS File

Description

Show the NEWS file of the EnvStats package.

Usage

newsEnvStats()
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Details

The function newsEnvStats displays the contents of the EnvStats NEWS file in a separate text
window. You can also access the NEWS file with the command news(package="EnvStats"),
which returns the contents of the file to the R command window.

Value

None.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

See Also

news.

NIOSH.89.air.lead.vec NIOSH Air Lead Levels Data

Description

Air lead levels collected by the National Institute for Occupational Safety and Health (NIOSH) at
15 different areas within the Alma American Labs, Fairply, CO, for health hazard evaluation (HETA
89-052) on Februay 23, 1989.

Usage

NIOSH.89.air.lead.vec

Format

A numeric vector with 15 elements containing air lead concentrations (µg/m3).

Source

Krishnamoorthy, K., T. Matthew, and G. Ramachandran. (2006). Generalized P-Values and Confi-
dence Intervals: A Novel Approach for Analyzing Lognormally Distributed Exposure Data. Journal
of Occupational and Environmental Hygiene, 3, 642–650.

References

Zou, G.Y., C.Y. Huo, and J. Taleban. (2009). Simple Confidence Intervals for Lognormal Means
and their Differences with Environmental Applications. Environmetrics, 20, 172–180.
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NormalMix Mixture of Two Normal Distributions

Description

Density, distribution function, quantile function, and random generation for a mixture of two normal
distribution with parameters mean1, sd1, mean2, sd2, and p.mix.

Usage

dnormMix(x, mean1 = 0, sd1 = 1, mean2 = 0, sd2 = 1, p.mix = 0.5)
pnormMix(q, mean1 = 0, sd1 = 1, mean2 = 0, sd2 = 1, p.mix = 0.5)
qnormMix(p, mean1 = 0, sd1 = 1, mean2 = 0, sd2 = 1, p.mix = 0.5)
rnormMix(n, mean1 = 0, sd1 = 1, mean2 = 0, sd2 = 1, p.mix = 0.5)

Arguments

x vector of quantiles.

q vector of quantiles.

p vector of probabilities between 0 and 1.

n sample size. If length(n) is larger than 1, then length(n) random values are
returned.

mean1 vector of means of the first normal random variable. The default is mean1=0.

sd1 vector of standard deviations of the first normal random variable. The default is
sd1=1.

mean2 vector of means of the second normal random variable. The default is mean2=0.

sd2 vector of standard deviations of the second normal random variable. The default
is sd2=1.

p.mix vector of probabilities between 0 and 1 indicating the mixing proportion. For
rnormMix this must be a single, non-missing number.

Details

Let f(x;µ, σ) denote the density of a normal random variable with parameters mean=µ and sd=σ.
The density, g, of a normal mixture random variable with parameters mean1=µ1, sd1=σ1, mean2=µ2,
sd2=σ2, and p.mix=p is given by:

g(x;µ1, σ1, µ2, σ2, p) = (1− p)f(x;µ1, σ1) + pf(x;µ2, σ2)

Value

dnormMix gives the density, pnormMix gives the distribution function, qnormMix gives the quantile
function, and rnormMix generates random deviates.
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Note

A normal mixture distribution is sometimes used to model data that appear to be “contaminated”;
that is, most of the values appear to come from a single normal distribution, but a few “outliers” are
apparent. In this case, the value of mean2 would be larger than the value of mean1, and the mixing
proportion p.mix would be fairly close to 0 (e.g., p.mix=0.1). The value of the second standard
deviation (sd2) may or may not be the same as the value for the first (sd1).

Another application of the normal mixture distribution is to bi-modal data; that is, data exhibiting
two modes.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Johnson, N. L., S. Kotz, and A.W. Kemp. (1992). Univariate Discrete Distributions. Second
Edition. John Wiley and Sons, New York, pp.53-54, and Chapter 8.

Johnson, N. L., S. Kotz, and N. Balakrishnan. (1994). Continuous Univariate Distributions, Volume
1. Second Edition. John Wiley and Sons, New York.

See Also

Normal, LognormalMix, Probability Distributions and Random Numbers.

Examples

# Density of a normal mixture with parameters mean1=0, sd1=1,
# mean2=4, sd2=2, p.mix=0.5, evaluated at 1.5:

dnormMix(1.5, mean2=4, sd2=2)
#[1] 0.1104211

#----------

# The cdf of a normal mixture with parameters mean1=10, sd1=2,
# mean2=20, sd2=2, p.mix=0.1, evaluated at 15:

pnormMix(15, 10, 2, 20, 2, 0.1)
#[1] 0.8950323

#----------

# The median of a normal mixture with parameters mean1=10, sd1=2,
# mean2=20, sd2=2, p.mix=0.1:

qnormMix(0.5, 10, 2, 20, 2, 0.1)
#[1] 10.27942

#----------

# Random sample of 3 observations from a normal mixture with
# parameters mean1=0, sd1=1, mean2=4, sd2=2, p.mix=0.5.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(20)
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rnormMix(3, mean2=4, sd2=2)
#[1] 0.07316778 2.06112801 1.05953620

NormalTrunc The Truncated Normal Distribution

Description

Density, distribution function, quantile function, and random generation for the truncated normal
distribution with parameters mean, sd, min, and max.

Usage

dnormTrunc(x, mean = 0, sd = 1, min = -Inf, max = Inf)
pnormTrunc(q, mean = 0, sd = 1, min = -Inf, max = Inf)
qnormTrunc(p, mean = 0, sd = 1, min = -Inf, max = Inf)
rnormTrunc(n, mean = 0, sd = 1, min = -Inf, max = Inf)

Arguments

x vector of quantiles.

q vector of quantiles.

p vector of probabilities between 0 and 1.

n sample size. If length(n) is larger than 1, then length(n) random values are
returned.

mean vector of means of the distribution of the non-truncated random variable. The
default is mean=0.

sd vector of (positive) standard deviations of the non-truncated random variable.
The default is sd=1.

min vector of minimum values for truncation on the left. The default value is min=-Inf.

max vector of maximum values for truncation on the right. The default value is
max=Inf.

Details

See the help file for the normal distribution for information about the density and cdf of a normal
distribution.

Probability Density and Cumulative Distribution Function
Let X denote a random variable with density function f(x) and cumulative distribution function
F (x), and let Y denote the truncated version of X where Y is truncated below at min=A and above
atmax=B. Then the density function of Y , denoted g(y), is given by:

g(y) = fracf(y)F (B)− F (A), A ≤ y ≤ B

and the cdf of Y, denoted G(y), is given by:

G(y) = 0 for y < A
F (y)−F (A)
F (B)−F (A) for A ≤ y ≤ B
1 for y > B
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Quantiles
The pth quantile yp of Y is given by:

yp = A for p = 0
F−1{p[F (B)− F (A)] + F (A)} for 0 < p < 1
B for p = 1

Random Numbers
Random numbers are generated using the inverse transformation method:

y = G−1(u)

where u is a random deviate from a uniform [0, 1] distribution.

Mean and Variance
The expected value of a truncated normal random variable with parameters mean=µ, sd=σ, min=A,
and max=B is given by:

E(Y ) = µ+ σ2 f(A)− f(B)

F (B)− F (A)

(Johnson et al., 1994, p.156; Schneider, 1986, p.17).

The variance of this random variable is given by:

σ2 + σ3{zAf(A)− zBf(B)− σ[f(A)− f(B)]2}

where

zA =
A− µ
σ

; zB =
B − µ
σ

(Johnson et al., 1994, p.158; Schneider, 1986, p.17).

Value

dnormTrunc gives the density, pnormTrunc gives the distribution function, qnormTrunc gives the
quantile function, and rnormTrunc generates random deviates.

Note

A truncated normal distribution is sometimes used as an input distribution for probabilistic risk
assessment.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Forbes, C., M. Evans, N. Hastings, and B. Peacock. (2011). Statistical Distributions. Fourth
Edition. John Wiley and Sons, Hoboken, NJ.

Johnson, N. L., S. Kotz, and N. Balakrishnan. (1994). Continuous Univariate Distributions, Volume
1. Second Edition. John Wiley and Sons, New York.

Schneider, H. (1986). Truncated and Censored Samples from Normal Populations. Marcel Dekker,
New York, Chapter 2.
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See Also

Normal, Probability Distributions and Random Numbers.

Examples

# Density of a truncated normal distribution with parameters
# mean=10, sd=2, min=8, max=13, evaluated at 10 and 11.5:

dnormTrunc(c(10, 11.5), 10, 2, 8, 13)
#[1] 0.2575358 0.1943982

#----------

# The cdf of a truncated normal distribution with parameters
# mean=10, sd=2, min=8, max=13, evaluated at 10 and 11.5:

pnormTrunc(c(10, 11.5), 10, 2, 8, 13)
#[1] 0.4407078 0.7936573

#----------

# The median of a truncated normal distribution with parameters
# mean=10, sd=2, min=8, max=13:

qnormTrunc(.5, 10, 2, 8, 13)
#[1] 10.23074

#----------

# A random sample of 3 observations from a truncated normal distribution
# with parameters mean=10, sd=2, min=8, max=13.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(20)
rnormTrunc(3, 10, 2, 8, 13)
#[1] 11.975223 11.373711 9.361258

Olympic.NH4.df Ammonium Concentration in Precipitation Measured at Olympic Na-
tional Park Hoh Ranger Station

Description

Ammonium (NH4) concentration (mg/L) in precipitation measured at Olympic National Park, Hoh
Ranger Station (WA14), weekly or every other week from January 6, 2009 through December 20,
2011.

Usage

Olympic.NH4.df
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Format

A data frame with 102 observations on the following 6 variables.

Date.On Start of collection period. Date on which the sample bucket was installed on the collector.

Date.Off End of collection period. Date on which the sample bucket was removed from the col-
lector.

Week a numeric vector indicating the cumulative week number starting from January 1, 2009.

NH4.Orig.mg.per.L a character vector of the original NH4 concentrations reported either as the
observed value or less than some detection limit. For values reported as less than a detection
limit, the value reported is the actual limit of detection or, in the case of a diluted sample, the
product of the detection limit value and the dilution factor.

NH4.mg.per.L a numeric vector of NH4 concentrations with non-detects coded to their detection
limit.

Censored a logical vector indicating which observations are censored.

Details

• StationOlympic National Park-Hoh Ranger Station (WA14)

• LocationJefferson County, Washington

• Latitude47.8597

• Longitude-123.9325

• Elevation182 meters

• USGS 1:24000 Map NameOwl Mountain

• Operating AgencyOlympic National Park

• Sponsoring AgencyNPS-Air Resources Division

Source

National Atmospheric Deposition Program, National Trends Network (NADP/NTN).
http://nadp.isws.illinois.edu/sites/siteinfo.asp?id=WA14&net=NTN
http://nadp.isws.illinois.edu/NTN/

oneSamplePermutationTest

Fisher’s One-Sample Randomization (Permutation) Test for Location

Description

Perform Fisher’s one-sample randomization (permutation) test for location.

Usage

oneSamplePermutationTest(x, alternative = "two.sided", mu = 0, exact = FALSE,
n.permutations = 5000, seed = sample(.Random.seed, size = 1), ...)

http://nadp.isws.illinois.edu/sites/siteinfo.asp?id=WA14&net=NTN
http://nadp.isws.illinois.edu/NTN/
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Arguments

x numeric vector of observations. Missing (NA), undefined (NaN), and infinite (Inf,
-Inf) values are allowed but will be removed.

alternative character string indicating the kind of alternative hypothesis. The possible val-
ues are "two.sided" (the default), "less", and "greater".

mu numeric scalar indicating the hypothesized value of the mean. The default value
is mu=0.

exact logical scalar indicating whether to perform the exact permutation test (i.e., enu-
merate all possible permutations) or simply sample from the permutation distri-
bution. The default value is exact=FALSE.

n.permutations integer indicating how many times to sample from the permutation distribution
when exact=FALSE. The default value is n.permutations=5000. This argu-
ment is ignored when exact=TRUE.

seed positive integer to pass to the R function set.seed. The default is seed=sample(.Random.seed, size=1),
meaning that a randomly sampled single element of the current value of .Random.seed
is used. Using the seed argument lets you reproduce the exact same result if all
other arguments stay the same.

... arguments that can be supplied to the format function. This argument is used
when creating the names attribute for the statistic component of the returned
list (see permutationTest.object).

Details

Randomization Tests
In 1935, R.A. Fisher introduced the idea of a randomization test (Manly, 2007, p. 107; Efron
and Tibshirani, 1993, Chapter 15), which is based on trying to answer the question: “Did the
observed pattern happen by chance, or does the pattern indicate the null hypothesis is not true?”
A randomization test works by simply enumerating all of the possible outcomes under the null
hypothesis, then seeing where the observed outcome fits in. A randomization test is also called a
permutation test, because it involves permuting the observations during the enumeration procedure
(Manly, 2007, p. 3).

In the past, randomization tests have not been used as extensively as they are now because of the
“large” computing resources needed to enumerate all of the possible outcomes, especially for large
sample sizes. The advent of more powerful personal computers and software has allowed random-
ization tests to become much easier to perform. Depending on the sample size, however, it may still
be too time consuming to enumerate all possible outcomes. In this case, the randomization test can
still be performed by sampling from the randomization distribution, and comparing the observed
outcome to this sampled permutation distribution.

Fisher’s One-Sample Randomization Test for Location
Let x = x1, x2, . . . , xn be a vector of n independent and identically distributed (i.i.d.) observations
from some symmetric distribution with mean µ. Consider the test of the null hypothesis that the
mean µ is equal to some specified value µ0:

H0 : µ = µ0 (1)

The three possible alternative hypotheses are the upper one-sided alternative (alternative="greater")

Ha : µ > µ0 (2)
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the lower one-sided alternative (alternative="less")

Ha : µ < µ0 (3)

and the two-sided alternative
Ha : µ 6= µ0 (4)

To perform the test of the null hypothesis (1) versus any of the three alternatives (2)-(4), Fisher
proposed using the test statistic

T =

n∑
i=1

yi (5)

where
yi = xi − µ0 (6)

(Manly, 2007, p. 112). The test assumes all of the observations come from the same distribution
that is symmetric about the true population mean (hence the mean is the same as the median for
this distribution). Under the null hypothesis, the yi’s are equally likely to be positive or negative.
Therefore, the permutation distribution of the test statistic T consists of enumerating all possible
ways of permuting the signs of the yi’s and computing the resulting sums. For n observations,
there are 2n possible permutations of the signs, because each observation can either be positive or
negative.

For a one-sided upper alternative hypothesis (Equation (2)), the p-value is computed as the propor-
tion of sums in the permutation distribution that are greater than or equal to the observed sum T . For
a one-sided lower alternative hypothesis (Equation (3)), the p-value is computed as the proportion
of sums in the permutation distribution that are less than or equal to the observed sum T . For a
two-sided alternative hypothesis (Equation (4)), the p-value is computed by using the permutation
distribution of the absolute value of T (i.e., |T |) and computing the proportion of values in this
permutation distribution that are greater than or equal to the observed value of |T |.

Confidence Intervals Based on Permutation Tests
Based on the relationship between hypothesis tests and confidence intervals, it is possible to con-
struct a two-sided or one-sided (1 − α)100% confidence interval for the mean µ based on the
one-sample permutation test by finding the values of µ0 that correspond to obtaining a p-value of α
(Manly, 2007, pp. 18–20, 113). A confidence interval based on the bootstrap however, will yield a
similar type of confidence interval (Efron and Tibshirani, 1993, p. 214); see the help file for boot
in the R package boot.

Value

A list of class "permutationTest" containing the results of the hypothesis test. See the help file
for permutationTest.object for details.

Note

A frequent question in environmental statistics is “Is the concentration of chemical X greater than
Y units?”. For example, in groundwater assessment (compliance) monitoring at hazardous and
solid waste sites, the concentration of a chemical in the groundwater at a downgradient well must
be compared to a groundwater protection standard (GWPS). If the concentration is “above” the
GWPS, then the site enters corrective action monitoring. As another example, soil screening at a
Superfund site involves comparing the concentration of a chemical in the soil with a pre-determined
soil screening level (SSL). If the concentration is “above” the SSL, then further investigation and
possible remedial action is required. Determining what it means for the chemical concentration to
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be “above” a GWPS or an SSL is a policy decision: the average of the distribution of the chem-
ical concentration must be above the GWPS or SSL, or the median must be above the GWPS or
SSL, or the 95’th percentile must be above the GWPS or SSL, or something else. Often, the first
interpretation is used.

Hypothesis tests you can use to perform tests of location include: Student’s t-test, Fisher’s random-
ization test, the Wilcoxon signed rank test, Chen’s modified t-test, the sign test, and a test based
on a bootstrap confidence interval. For a discussion comparing the performance of these tests, see
Millard and Neerchal (2001, pp.408-409).

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Efron, B., and R.J. Tibshirani. (1993). An Introduction to the Bootstrap. Chapman and Hall, New
York, pp.224–227.

Manly, B.F.J. (2007). Randomization, Bootstrap and Monte Carlo Methods in Biology. Third
Edition. Chapman & Hall, New York, pp.112-113.

Millard, S.P., and N.K. Neerchal. (2001). Environmental Statistics with S-PLUS. CRC Press, Boca
Raton, FL, pp.404–406.

See Also

permutationTest.object, Hypothesis Tests, boot.

Examples

# Generate 10 observations from a logistic distribution with parameters
# location=7 and scale=2, and test the null hypothesis that the true mean
# is equal to 5 against the alternative that the true mean is greater than 5.
# Use the exact permutation distribution.
# (Note: the call to set.seed() allows you to reproduce this example).

set.seed(23)

dat <- rlogis(10, location = 7, scale = 2)

test.list <- oneSamplePermutationTest(dat, mu = 5,
alternative = "greater", exact = TRUE)

# Print the results of the test
#------------------------------
test.list

#Results of Hypothesis Test
#--------------------------
#
#Null Hypothesis: Mean (Median) = 5
#
#Alternative Hypothesis: True Mean (Median) is greater than 5
#
#Test Name: One-Sample Permutation Test
# (Exact)
#
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#Estimated Parameter(s): Mean = 9.977294
#
#Data: dat
#
#Sample Size: 10
#
#Test Statistic: Sum(x - 5) = 49.77294
#
#P-value: 0.001953125

# Plot the results of the test
#-----------------------------
dev.new()
plot(test.list)

#==========

# The guidance document "Supplemental Guidance to RAGS: Calculating the
# Concentration Term" (USEPA, 1992d) contains an example of 15 observations
# of chromium concentrations (mg/kg) which are assumed to come from a
# lognormal distribution. These data are stored in the vector
# EPA.92d.chromium.vec. Here, we will use the permutation test to test
# the null hypothesis that the mean (median) of the log-transformed chromium
# concentrations is less than or equal to log(100 mg/kg) vs. the alternative
# that it is greater than log(100 mg/kg). Note that we *cannot* use the
# permutation test to test a hypothesis about the mean on the original scale
# because the data are not assumed to be symmetric about some mean, they are
# assumed to come from a lognormal distribution.
#
# We will sample from the permutation distribution.
# (Note: setting the argument seed=542 allows you to reproduce this example).

test.list <- oneSamplePermutationTest(log(EPA.92d.chromium.vec),
mu = log(100), alternative = "greater", seed = 542)

test.list

#Results of Hypothesis Test
#--------------------------
#
#Null Hypothesis: Mean (Median) = 4.60517
#
#Alternative Hypothesis: True Mean (Median) is greater than 4.60517
#
#Test Name: One-Sample Permutation Test
# (Based on Sampling
# Permutation Distribution
# 5000 Times)
#
#Estimated Parameter(s): Mean = 4.378636
#
#Data: log(EPA.92d.chromium.vec)
#
#Sample Size: 15
#
#Test Statistic: Sum(x - 4.60517) = -3.398017
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#
#P-value: 0.7598

# Plot the results of the test
#-----------------------------
dev.new()
plot(test.list)

#----------

# Clean up
#---------
rm(test.list)
graphics.off()

Ozone.NE.df Ozone Concentrations in the Northeast U.S.

Description

Ozone concentrations in 41 U.S. cities based on daily maxima collected between June and August
1974.

Usage

Ozone.NE.df

Format

A data frame with 41 observations on the following 5 variables.

Median median of daily maxima ozone concentration (ppb).

Quartile Upper quartile (i.e., 75th percentile) of daily maxima ozone concentration (ppb).

City a factor indicating the city

Longitude negative longitude of the city

Latitude latitude of the city

Source

Cleveland, W.S., Kleiner, B., McRae, J.E., Warner, J.L., and Pasceri, P.E. (1975). The Analysis
of Ground-Level Ozone Data from New Jersey, New York, Connecticut, and Massachusetts: Data
Quality Assessment and Temporal and Geographical Properties. Bell Laboratories Memorandum.

The original data were collected by the New Jersey Department of Environmental Protection, the
New York State Department of Environmental Protection, the Boyce Thompson Institute (Yonkers,
for New York data), the Connecticut Department of Environmental Protection, and the Massachusetts
Department of Public Health.
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Examples

summary(Ozone.NE.df)
# Median Quartile City Longitude
# Min. : 34.00 Min. : 48.00 Asbury Park: 1 Min. :-74.71
# 1st Qu.: 58.00 1st Qu.: 79.75 Babylon : 1 1st Qu.:-73.74
# Median : 65.00 Median : 90.00 Bayonne : 1 Median :-73.17
# Mean : 68.15 Mean : 95.10 Boston : 1 Mean :-72.94
# 3rd Qu.: 80.00 3rd Qu.:112.25 Bridgeport : 1 3rd Qu.:-72.08
# Max. :100.00 Max. :145.00 Cambridge : 1 Max. :-71.05
# NAs : 1.00 (Other) :35
# Latitude
# Min. :40.22
# 1st Qu.:40.97
# Median :41.56
# Mean :41.60
# 3rd Qu.:42.25
# Max. :43.32

Pareto The Pareto Distribution

Description

Density, distribution function, quantile function, and random generation for the Pareto distribution
with parameters location and shape.

Usage

dpareto(x, location, shape = 1)
ppareto(q, location, shape = 1)
qpareto(p, location, shape = 1)
rpareto(n, location, shape = 1)

Arguments

x vector of quantiles.

q vector of quantiles.

p vector of probabilities between 0 and 1.

n sample size. If length(n) is larger than 1, then length(n) random values are
returned.

location vector of (positive) location parameters.

shape vector of (positive) shape parameters. The default is shape=1.

Details

LetX be a Pareto random variable with parameters location=η and shape=θ. The density function
of X is given by:

f(x; η, θ) =
θηθ

xθ+1
, η > 0, θ > 0, x ≥ η
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The cumulative distribution function of X is given by:

F (x; η, θ) = 1− (
η

x
)θ

and the p’th quantile of X is given by:

xp = η(1− p)−1/θ, 0 ≤ p ≤ 1

The mode, mean, median, variance, and coefficient of variation of X are given by:

Mode(X) = η

E(X) =
θη

θ − 1
, θ > 1

Median(X) = x0.5 = 21/θη

V ar(X) =
θη2

(θ − 1)2(θ − 1)
, θ > 2

CV (X) = [θ(θ − 2)]−1/2, θ > 2

Value

dpareto gives the density, ppareto gives the distribution function, qpareto gives the quantile
function, and rpareto generates random deviates.

Note

The Pareto distribution is named after Vilfredo Pareto (1848-1923), a professor of economics. It is
derived from Pareto’s law, which states that the number of persons N having income ≥ x is given
by:

N = Ax−θ

where θ denotes Pareto’s constant and is the shape parameter for the probability distribution.

The Pareto distribution takes values on the positive real line. All values must be larger than the
“location” parameter η, which is really a threshold parameter. There are three kinds of Pareto
distributions. The one described here is the Pareto distribution of the first kind. Stable Pareto
distributions have 0 < θ < 2. Note that the r’th moment only exists if r < θ.

The Pareto distribution is related to the exponential distribution and logistic distribution as follows.
Let X denote a Pareto random variable with location=η and shape=θ. Then log(X/η) has an
exponential distribution with parameter rate=θ, and−log{[(X/η)θ]−1} has a logistic distribution
with parameters location=0 and scale=1.

The Pareto distribution has a very long right-hand tail. It is often applied in the study of socioeco-
nomic data, including the distribution of income, firm size, population, and stock price fluctuations.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Forbes, C., M. Evans, N. Hastings, and B. Peacock. (2011). Statistical Distributions. Fourth
Edition. John Wiley and Sons, Hoboken, NJ.

Johnson, N. L., S. Kotz, and N. Balakrishnan. (1994). Continuous Univariate Distributions, Volume
1. Second Edition. John Wiley and Sons, New York.
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See Also

epareto, eqpareto, Exponential, Probability Distributions and Random Numbers.

Examples

# Density of a Pareto distribution with parameters location=1 and shape=1,
# evaluated at 2, 3 and 4:

dpareto(2:4, 1, 1)
#[1] 0.2500000 0.1111111 0.0625000

#----------

# The cdf of a Pareto distribution with parameters location=2 and shape=1,
# evaluated at 3, 4, and 5:

ppareto(3:5, 2, 1)
#[1] 0.3333333 0.5000000 0.6000000

#----------

# The 25th percentile of a Pareto distribution with parameters
# location=1 and shape=1:

qpareto(0.25, 1, 1)
#[1] 1.333333

#----------

# A random sample of 4 numbers from a Pareto distribution with parameters
# location=3 and shape=2.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(10)
rpareto(4, 3, 2)
#[1] 4.274728 3.603148 3.962862 5.415322

pdfPlot Plot Probability Density Function

Description

Produce a probability density function (pdf) plot for a user-specified distribution.

Usage

pdfPlot(distribution = "norm", param.list = list(mean = 0, sd = 1),
left.tail.cutoff = ifelse(is.finite(supp.min), 0, 0.001),
right.tail.cutoff = ifelse(is.finite(supp.max), 0, 0.001),
plot.it = TRUE, add = FALSE, n.points = 1000, pdf.col = "black",
pdf.lwd = 3 * par("cex"), pdf.lty = 1, curve.fill = !add,
curve.fill.col = "cyan", x.ticks.at.all.x.max = 15,
hist.col = ifelse(add, "black", "cyan"), density = 5,
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digits = .Options$digits, ..., type = "l", main = NULL, xlab = NULL,
ylab = NULL, xlim = NULL, ylim = NULL)

Arguments

distribution a character string denoting the distribution abbreviation. The default value is
distribution="norm". See the help file for Distribution.df for a list of
possible distribution abbreviations.

param.list a list with values for the parameters of the distribution. The default value is
param.list=list(mean=0, sd=1). See the help file for Distribution.df
for the names and possible values of the parameters associated with each distri-
bution.

left.tail.cutoff

a numeric scalar indicating what proportion of the left-tail of the probability
distribution to omit from the plot. For densities with a finite support minimum
(e.g., Lognormal) the default value is 0; for all other densities the default value
is 0.001.

right.tail.cutoff

a scalar indicating what proportion of the right-tail of the probability distribu-
tion to omit from the plot. For densities with a finite support maximum (e.g.,
Binomial) the default value is 0; for all other densities the default value is 0.001.

plot.it a logical scalar indicating whether to create a plot or add to the existing plot (see
add) on the current graphics device. If plot.it=FALSE, no plot is produced, but
a list of (x, y) values is returned (see the section VALUE below). The default
value is plot.it=TRUE.

add a logical scalar indicating whether to add the probability density curve to the
existing plot (add=TRUE), or to create a new plot (add=FALSE; the default). This
argument is ignored if plot.it=FALSE.

n.points a numeric scalar specifying at how many evenly-spaced points the probability
density function will be evaluated. The default value is n.points=1000.

pdf.col for continuous distributions, a numeric scalar or character string determining the
color of the pdf line in the plot. The default value is pdf.col="black". See the
entry for col in the help file for par for more information.

pdf.lwd for continuous distributions, a numeric scalar determining the width of the pdf
line in the plot. The default value is pdf.lwd=3*par("cex"). See the entry for
lwd in the help file for par for more information.

pdf.lty for continuous distributions, a numeric scalar determining the line type of the
pdf line in the plot. The default value is pdf.lty=1. See the entry for lty in the
help file for par for more information.

curve.fill for continuous distributions, a logical value indicating whether to fill in the area
below the probability density curve with the color specified by curve.fill.col.
The default value is TRUE unless add=TRUE.

curve.fill.col for continuous distributions, when curve.fill=TRUE, a numeric scalar or char-
acter string indicating what color to use to fill in the area below the probability
density curve. The default value is curve.fill.col="cyan". See the entry for
col in the help file for par for more information.

x.ticks.at.all.x.max

a numeric scalar indicating the maximum number of ticks marks on the x-axis.
The default value is x.ticks.at.all.x.max=15.
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hist.col for discrete distributions, a numeric scalar or character string indicating what
color to use to fill in the histogram if add=FALSE, or the color of the shading lines
if add=TRUE. The default is "cyan" if add=FALSE and "black" if add=TRUE. See
the entry for col in the help file for par for more information.

density for discrete distributions, a scalar indicting the density of line shading for the
histogram when add=TRUE. This argument is ignored if add=FALSE.

digits a scalar indicating how many significant digits to print for the distribution pa-
rameters. The default value is digits=.Options$digits.

type, main, xlab, ylab, xlim, ylim, ...

additional graphical parameters. See plot.default and par).

Details

The probability density function (pdf) of a random variable X , usually denoted f , is defined as:

f(x) =
dF (x)

dx
(1)

where F is the cumulative distribution function (cdf) of X . That is, f(x) is the derivative of the cdf
F with respect to x (where this derivative exists).

For discrete distributions, the probability density function is simply:

f(x) = Pr(X = x) (2)

In this case, f is sometimes called the probability function or probability mass function.

The probability that the random variable X takes on a value in the interval [a, b] is simply the
(Lebesgue) integral of the pdf evaluated between a and b. That is,

Pr(a ≤ X ≤ b) =

∫ b

a

f(x)dx (3)

For discrete distributions, Equation (3) translates to summing up the probabilities of all values in
this interval:

Pr(a ≤ X ≤ b) =
∑
x∈[a,b]

f(x) =
∑
x∈[a,b]

Pr(X = x) (4)

A probability density function (pdf) plot plots the values of the pdf against quantiles of the specified
distribution. Theoretical pdf plots are sometimes plotted along with empirical pdf plots (density
plots), histograms or bar graphs to visually assess whether data have a particular distribution.

Value

pdfPlot invisibly returns a list giving coordinates of the points that have been or would have been
plotted:

Quantiles The quantiles used for the plot.
Probability.Densities

The values of the pdf associated with the quantiles.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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References

Forbes, C., M. Evans, N. Hastings, and B. Peacock. (2011). Statistical Distributions. Fourth
Edition. John Wiley and Sons, Hoboken, NJ.

Johnson, N. L., S. Kotz, and A.W. Kemp. (1992). Univariate Discrete Distributions, Second Edi-
tion. John Wiley and Sons, New York.

Johnson, N. L., S. Kotz, and N. Balakrishnan. (1994). Continuous Univariate Distributions, Volume
1. Second Edition. John Wiley and Sons, New York.

Johnson, N. L., S. Kotz, and N. Balakrishnan. (1995). Continuous Univariate Distributions, Volume
2. Second Edition. John Wiley and Sons, New York.

See Also

Distribution.df, epdfPlot, cdfPlot.

Examples

# Plot the pdf of the standard normal distribution
#-------------------------------------------------
dev.new()
pdfPlot()

#==========

# Plot the pdf of the standard normal distribution
# and a N(2, 2) distribution on the sample plot.
#-------------------------------------------------
dev.new()
pdfPlot(param.list = list(mean=2, sd=2),

curve.fill = FALSE, ylim = c(0, dnorm(0)), main = "")

pdfPlot(add = TRUE, pdf.col = "red")

legend("topright", legend = c("N(2,2)", "N(0,1)"),
col = c("black", "red"), lwd = 3 * par("cex"))

title("PDF Plots for Two Normal Distributions")

#==========

# Clean up
#---------
graphics.off()

permutationTest.object

S3 Class "permutationTest"

Description

This class of objects is returned by functions that perform permutation tests. Objects of class
"permutationTest" are lists that contain information about the null and alternative hypotheses,
the estimated distribution parameters, the test statistic and the p-value. They also contain the per-
mutation distribution of the statistic (or a sample of the permutation distribution).
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Details

Objects of S3 class "permutationTest" are returned by any of the EnvStats functions that perform
permutation tests. Currently, these are: oneSamplePermutationTest, twoSamplePermutationTestLocation,
and twoSamplePermutationTestProportion.

Value

A legitimate list of class "permutationTest" includes the components listed in the help file for
htest.object. In addition, the following components must be included in a legitimate list of class
"permutationTest":

Required Components
The following components must be included in a legitimate list of class "permutationTest".

stat.dist numeric vector containing values of the statistic for the permutation distribution.
When exact=FALSE, the vector is comprised of values sampled from the full
permutation distribution.

exact logical scalar indicating whether the exact permutation distribution was used for
the test (exact=TRUE), or if instead the permutation distribution was sampled
(exact=FALSE).

Optional Components
The following component may optionally be included in an object of of class "permutationTest":

seed integer or vector of integers indicating the seed that was used for sampling the
permutation distribution. This component is present only if exact=FALSE.

prob.stat.dist numeric vector containing the probabilities associated with each element of
the component stat.dist. This component is only returned by the function
twoSamplePermutationTestProportion.

Methods

Generic functions that have methods for objects of class "permutationTest" include:
print, plot.

Note

Since objects of class "permutationTest" are lists, you may extract their components with the $
and [[ operators.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

See Also

print.permutationTest, plot.permutationTest, oneSamplePermutationTest, twoSamplePermutationTestLocation,
twoSamplePermutationTestProportion, Hypothesis Tests.
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Examples

# Create an object of class "permutationTest", then print it and plot it.
#------------------------------------------------------------------------

set.seed(23)

dat <- rlogis(10, location = 7, scale = 2)

permutationTest.obj <- oneSamplePermutationTest(dat, mu = 5,
alternative = "greater", exact = TRUE)

mode(permutationTest.obj)
#[1] "list"

class(permutationTest.obj)
#[1] "permutationTest"

names(permutationTest.obj)
# [1] "statistic" "parameters" "p.value"
# [4] "estimate" "null.value" "alternative"
# [7] "method" "estimation.method" "sample.size"
#[10] "data.name" "bad.obs" "stat.dist"
#[13] "exact"

#==========

# Print the results of the test
#------------------------------
permutationTest.obj

#Results of Hypothesis Test
#--------------------------
#
#Null Hypothesis: Mean (Median) = 5
#
#Alternative Hypothesis: True Mean (Median) is greater than 5
#
#Test Name: One-Sample Permutation Test
# (Exact)
#
#Estimated Parameter(s): Mean = 9.977294
#
#Data: dat
#
#Sample Size: 10
#
#Test Statistic: Sum(x - 5) = 49.77294
#
#P-value: 0.001953125

#==========

# Plot the results of the test
#-----------------------------
dev.new()
plot(permutationTest.obj)
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#==========

# Extract the test statistic
#---------------------------

permutationTest.obj$statistic
#Sum(x - 5)
# 49.77294

#==========

# Clean up
#---------
rm(permutationTest.obj)
graphics.off()

plot.boxcox Plot Results of Box-Cox Transformations

Description

Plot the results of calling the function boxcox, which returns an object of class "boxcox". Three
different kinds of plots are available.

The function plot.boxcox is automatically called by plot when given an object of class "boxcox".
The names of other functions associated with Box-Cox transformations are listed under Data Trans-
formations.

Usage

## S3 method for class boxcox
plot(x, plot.type = "Objective vs. lambda", same.window = TRUE,

ask = same.window & plot.type != "Ojective vs. lambda",
plot.pos.con = 0.375, estimate.params = FALSE,
equal.axes = qq.line.type == "0-1" || estimate.params, add.line = TRUE,
qq.line.type = "least squares", duplicate.points.method = "standard",
points.col = 1, line.col = 1, line.lwd = par("cex"), line.lty = 1,
digits = .Options$digits, cex.main = 1.4 * par("cex"), cex.sub = par("cex"),
main = NULL, sub = NULL, xlab = NULL, ylab = NULL, xlim = NULL,
ylim = NULL, ...)

Arguments

x an object of class "boxcox". See boxcox.object for details.
plot.type character string indicating what kind of plot to create. Only one particular plot

type will be created, unless plot.type="All", in which case all plots will be
created sequentially. The possible values of plot.type are: "Objective vs. lambda"
(the default), "Q-Q Plots", "Tukey M-D Q-Q Plots", and "All".

same.window logical scalar indicating whether to produce all plots in the same graphics win-
dow (same.window=TRUE; the default), or to create a new graphics window for
each separate plot (same.window=FALSE). The argument is relevant only when
plot.type produces more than one plot (i.e., when plot.type is not equal to
"Objective vs. lambda").
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ask logical scalar supplied to the function devAskNewPage, indicating whether to
prompt the user before creating a new plot within a single graphics window.
This argument is ignored when plot.type="Objective vs. lambda" (since
only one plot is produced) or when same.window=FALSE, otherwise the default
value is ask=TRUE.

points.col numeric scalar determining the color of the points in the plot. The default value
is points.col=1. See the entry for col in the R help file for par for more
information.
Arguments associated with plot.type="Q-Q Plots", plot.type="Tukey M-D Q-Q Plots",
or plot.type="All" (supplied to qqPlot):

plot.pos.con numeric scalar between 0 and 1 containing the value of the plotting position
constant used to construct the Q-Q plots and/or Tukey Mean-Difference Q-Q
plots. The default value is plot.pos.con=0.375. See the help files for qqPlot
for more information and the motivation for this choice.

estimate.params

logical scalar indicating whether to compute quantiles based on estimating the
distribution parameters (estimate.params=TRUE) or using the distribution pa-
rameters for a standard normal distribution (i.e, mean=0, sd=1). The default
value is estimate.params=FALSE because a standard normal Q-Q plot will
yield roughly a straight line if the observations are from any normal distribu-
tion. If you specify plot.type="Tukey M-D Q-Q Plots", then you need to set
estiamte.params=TRUE unless you want to assume the transformed data come
from a standard normal distribution.

equal.axes logical scalar indicating whether to use the same range on the x- and y-axes
when plot.type="Q-Q Plots". The default value is TRUE if qq.line.type="0-1"
or estimate.params=TRUE, otherwise it is FALSE.

add.line logical scalar indicating whether to add a line to the plot. If add.line=TRUE and
plot.type="Q-Q Plots", a line determined by the value of qq.line.type is
added to the plot. If add.line=TRUE and plot.type="Tukey M-D Q-Q Plots",
a horizontal line at y = 0 is added to the plot. The default value is add.line=TRUE.

qq.line.type character string determining what kind of line to add to the plot when plot.type="Q-Q Plots".
Possible values are "least squares" (a least squares line; the default), "0-1"
(a line with intercept 0 and slope 1), and "robust" (a line is fit through the first
and third quartiles of the x and y data). This argument is ignored if add.line=FALSE.

duplicate.points.method

a character string denoting how to plot points with duplicate (x, y) values. Pos-
sible values are "standard" (a single plotting symbol is plotted; the default),
"jitter" (a separate plotting symbol is plotted for each duplicate point, where
the plotting symbols cluster around the true value of x and y), and "number" (a
single number is plotted at (x, y) that represents how many duplicate points are
at that (x, y) coordinate).

line.col numeric scalar determining the color of the line in the plot. The default value is
line.col=1. See the entry for col in the R help file for par for more informa-
tion. This argument is ignored if add.line=FALSE.

line.lwd numeric scalar determining the width of the line in the plot. The default value
is line.lwd=par("cex"). See the entry for lwd in the R help file for par for
more information. This argument is ignored if add.line=FALSE.

line.lty numeric scalar determining the line type (style) of the line in the plot. The
default value is line.lty=1. See the entry for lty in the R help file for par for
more information. This argument is ignored if add.line=FALSE.
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digits scalar indicating how many significant digits to print for the distribution param-
eters and the value of the objective in the sub-title. The default value is the
current setting of options("digits").
Graphics parameters:

cex.main, cex.sub, main, sub, xlab, ylab, xlim, ylim, ...

graphics parameters; see par for more information. The default value of cex.main
is cex.main=1.4 * par("cex"). The default value of cex.sub is cex.sub=par("cex").

Details

The function plot.boxcox is a method for the generic function plot for the class "boxcox" (see
boxcox.object). It can be invoked by calling plot and giving it an object of class "boxcox" as
the first argument, or by calling plot.boxcox directly, regardless of the class of the object given as
the first argument to plot.boxcox.

Plots associated with Box-Cox transformations are produced on the current graphics device. These
can be one or all of the following:

• Objective vs. λ.

• Observed Quantiles vs. Normal Quantiles (Q-Q Plot) for the transformed observations for
each of the values of λ.

• Tukey Mean-Difference Q-Q Plots for the transformed observations for each of the values of
λ.

See the help files for boxcox and qqPlot for more information.

Value

plot.boxcox invisibly returns the first argument, x.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Chambers, J. M. and Hastie, T. J. (1992). Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

qqPlot, boxcox, boxcox.object, print.boxcox, Data Transformations, plot.

Examples

# Generate 30 observations from a lognormal distribution with
# mean=10 and cv=2, call the function boxcox, and then plot
# the results.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(250)
x <- rlnormAlt(30, mean = 10, cv = 2)

# Plot the results based on the PPCC objective
#---------------------------------------------
boxcox.list <- boxcox(x)
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dev.new()
plot(boxcox.list)

# Look at Q-Q Plots for the candidate values of lambda
#-----------------------------------------------------
plot(boxcox.list, plot.type = "Q-Q Plots", same.window = FALSE)

# Look at Tukey Mean-Difference Q-Q Plots
# for the candidate values of lambda
#----------------------------------------
plot(boxcox.list, plot.type = "Tukey M-D Q-Q Plots", same.window = FALSE)

#==========

# Clean up
#---------
rm(x, boxcox.list)
graphics.off()

plot.boxcoxCensored Plot Results of Box-Cox Transformations Based on Type I Censored
Data

Description

Plot the results of calling the function boxcoxCensored, which returns an object of class "boxcoxCensored".
Three different kinds of plots are available.

The function plot.boxcoxCensored is automatically called by plot when given an object of class
"boxcoxCensored".

Usage

## S3 method for class boxcoxCensored
plot(x, plot.type = "Objective vs. lambda", same.window = TRUE,

ask = same.window & plot.type != "Ojective vs. lambda",
prob.method = "michael-schucany", plot.pos.con = 0.375, estimate.params = FALSE,
equal.axes = qq.line.type == "0-1" || estimate.params, add.line = TRUE,
qq.line.type = "least squares", duplicate.points.method = "standard",
points.col = 1, line.col = 1, line.lwd = par("cex"), line.lty = 1,
digits = .Options$digits, cex.main = 1.4 * par("cex"), cex.sub = par("cex"),
main = NULL, sub = NULL, xlab = NULL, ylab = NULL, xlim = NULL,
ylim = NULL, ...)

Arguments

x an object of class "boxcoxCensored". See boxcoxCensored.object for de-
tails.

plot.type character string indicating what kind of plot to create. Only one particular plot
type will be created, unless plot.type="All", in which case all plots will be
created sequentially. The possible values of plot.type are: "Objective vs. lambda"
(the default), "Q-Q Plots", "Tukey M-D Q-Q Plots", and "All".
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same.window logical scalar indicating whether to produce all plots in the same graphics win-
dow (same.window=TRUE; the default), or to create a new graphics window for
each separate plot (same.window=FALSE). The argument is relevant only when
plot.type produces more than one plot (i.e., when plot.type is not equal to
"Objective vs. lambda").

ask logical scalar supplied to the function devAskNewPage, indicating whether to
prompt the user before creating a new plot within a single graphics window.
This argument is ignored when plot.type="Objective vs. lambda" (since
only one plot is produced) or when same.window=FALSE, otherwise the default
value is ask=TRUE.

points.col numeric scalar determining the color of the points in the plot. The default value
is points.col=1. See the entry for col in the R help file for par for more
information.
Arguments associated with plot.type="Q-Q Plots", plot.type="Tukey M-D Q-Q Plots",
or plot.type="All" (supplied to qqPlot):

prob.method character string indicating what method to use to compute the plotting posi-
tions for Q-Q plots or Tukey Mean-Difference Q-Q plots. Possible values are
"kaplan-meier" (product-limit method of Kaplan and Meier (1958)), "nelson"
(hazard plotting method of Nelson (1972)), "michael-schucany" (generaliza-
tion of the product-limit method due to Michael and Schucany (1986)), and
"hirsch-stedinger" (generalization of the product-limit method due to Hirsch
and Stedinger (1987)). The default value is prob.method="michael-schucany".
The "nelson" method is only available for objects that are the result of calling
boxcoxCensored with the argument censoring.side="right". See the help
file for qqPlotCensored for more information.
This argument is ignored if plot.type="Objective vs. lambda".

plot.pos.con numeric scalar between 0 and 1 containing the value of the plotting position
constant used to construct the Q-Q plots and/or Tukey Mean-Difference Q-
Q plots. The default value is plot.pos.con=0.375. See the help file for
qqPlotCensored for more information.

estimate.params

logical scalar indicating whether to compute quantiles based on estimating the
distribution parameters (estimate.params=TRUE) or using the distribution pa-
rameters for a standard normal distribution (i.e, mean=0, sd=1). The default
value is estimate.params=FALSE because a standard normal Q-Q plot will
yield roughly a straight line if the observations are from any normal distribu-
tion. If you specify plot.type="Tukey M-D Q-Q Plots", then you need to set
estiamte.params=TRUE unless you want to assume the transformed data come
from a standard normal distribution.

equal.axes logical scalar indicating whether to use the same range on the x- and y-axes
when plot.type="Q-Q Plots". The default value is TRUE if qq.line.type="0-1"
or estimate.params=TRUE, otherwise it is FALSE.

add.line logical scalar indicating whether to add a line to the plot. If add.line=TRUE and
plot.type="Q-Q Plots", a line determined by the value of qq.line.type is
added to the plot. If add.line=TRUE and plot.type="Tukey M-D Q-Q Plots",
a horizontal line at y = 0 is added to the plot. The default value is add.line=TRUE.

qq.line.type character string determining what kind of line to add to the plot when plot.type="Q-Q Plots".
Possible values are "least squares" (a least squares line; the default), "0-1"
(a line with intercept 0 and slope 1), and "robust" (a line is fit through the first
and third quartiles of the x and y data). This argument is ignored if add.line=FALSE.
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duplicate.points.method

a character string denoting how to plot points with duplicate (x, y) values. Pos-
sible values are "standard" (a single plotting symbol is plotted; the default),
"jitter" (a separate plotting symbol is plotted for each duplicate point, where
the plotting symbols cluster around the true value of x and y), and "number" (a
single number is plotted at (x, y) that represents how many duplicate points are
at that (x, y) coordinate).

line.col numeric scalar determining the color of the line in the plot. The default value is
line.col=1. See the entry for col in the R help file for par for more informa-
tion. This argument is ignored if add.line=FALSE.

line.lwd numeric scalar determining the width of the line in the plot. The default value
is line.lwd=par("cex"). See the entry for lwd in the R help file for par for
more information. This argument is ignored if add.line=FALSE.

line.lty numeric scalar determining the line type (style) of the line in the plot. The
default value is line.lty=1. See the entry for lty in the R help file for par for
more information. This argument is ignored if add.line=FALSE.

digits scalar indicating how many significant digits to print for the distribution param-
eters and the value of the objective in the sub-title. The default value is the
current setting of options("digits").
Graphics parameters:

cex.main, cex.sub, main, sub, xlab, ylab, xlim, ylim, ...

graphics parameters; see par for more information. The default value of cex.main
is cex.main=1.4 * par("cex"). The default value of cex.sub is cex.sub=par("cex").

Details

The function plot.boxcoxCensored is a method for the generic function plot for the class "boxcoxCensored"
(see boxcoxCensored.object). It can be invoked by calling plot and giving it an object of class
"boxcoxCensored" as the first argument, or by calling plot.boxcoxCensored directly, regardless
of the class of the object given as the first argument to plot.boxcoxCensored.

Plots associated with Box-Cox transformations are produced on the current graphics device. These
can be one or all of the following:

• Objective vs. λ.

• Observed Quantiles vs. Normal Quantiles (Q-Q Plot) for the transformed observations for
each of the values of λ.

• Tukey Mean-Difference Q-Q Plots for the transformed observations for each of the values of
λ.

See the help files for boxcoxCensored and qqPlotCensored for more information.

Value

plot.boxcoxCensored invisibly returns the first argument, x.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Chambers, J. M. and Hastie, T. J. (1992). Statistical Models in S. Wadsworth & Brooks/Cole.
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See Also

qqPlotCensored, boxcoxCensored, boxcoxCensored.object, print.boxcoxCensored, Data Trans-
formations, plot.

Examples

# Generate 15 observations from a lognormal distribution with
# mean=10 and cv=2 and censor the observations less than 2.
# Then generate 15 more observations from this distribution and
# censor the observations less than 4.
# Then call the function boxcoxCensored, and then plot the results.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(250)

x.1 <- rlnormAlt(15, mean = 10, cv = 2)
censored.1 <- x.1 < 2
x.1[censored.1] <- 2

x.2 <- rlnormAlt(15, mean = 10, cv = 2)
censored.2 <- x.2 < 4
x.2[censored.2] <- 4

x <- c(x.1, x.2)
censored <- c(censored.1, censored.2)

# Plot the results based on the PPCC objective
#---------------------------------------------
boxcox.list <- boxcoxCensored(x, censored)
dev.new()
plot(boxcox.list)

# Look at Q-Q Plots for the candidate values of lambda
#-----------------------------------------------------
plot(boxcox.list, plot.type = "Q-Q Plots", same.window = FALSE)

# Look at Tukey Mean-Difference Q-Q Plots
# for the candidate values of lambda
#----------------------------------------
plot(boxcox.list, plot.type = "Tukey M-D Q-Q Plots", same.window = FALSE)

#==========

# Clean up
#---------
rm(x.1, censored.1, x.2, censored.2, x, censored, boxcox.list)
graphics.off()

plot.boxcoxLm Plot Results of Box-Cox Transformations for a Linear Model
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Description

Plot the results of calling the function boxcox when the argument x supplied to boxcox is an object
of class "lm". Three different kinds of plots are available.

The function plot.boxcoxLm is automatically called by plot when given an object of class "boxcoxLm".
The names of other functions associated with Box-Cox transformations are listed under Data Trans-
formations.

Usage

## S3 method for class boxcoxLm
plot(x, plot.type = "Objective vs. lambda", same.window = TRUE,

ask = same.window & plot.type != "Ojective vs. lambda",
plot.pos.con = 0.375, estimate.params = FALSE,
equal.axes = qq.line.type == "0-1" || estimate.params, add.line = TRUE,
qq.line.type = "least squares", duplicate.points.method = "standard",
points.col = 1, line.col = 1, line.lwd = par("cex"), line.lty = 1,
digits = .Options$digits, cex.main = 1.4 * par("cex"), cex.sub = par("cex"),
main = NULL, sub = NULL, xlab = NULL, ylab = NULL, xlim = NULL,
ylim = NULL, ...)

Arguments

x an object of class "boxcoxLm". See boxcoxLm.object for details.

plot.type character string indicating what kind of plot to create. Only one particular plot
type will be created, unless plot.type="All", in which case all plots will be
created sequentially. The possible values of plot.type are: "Objective vs. lambda"
(the default), "Q-Q Plots", "Tukey M-D Q-Q Plots", and "All".

same.window logical scalar indicating whether to produce all plots in the same graphics win-
dow (same.window=TRUE; the default), or to create a new graphics window for
each separate plot (same.window=FALSE). The argument is relevant only when
plot.type produces more than one plot (i.e., when plot.type is not equal to
"Objective vs. lambda").

ask logical scalar supplied to the function devAskNewPage, indicating whether to
prompt the user before creating a new plot within a single graphics window.
This argument is ignored when plot.type="Objective vs. lambda" (since
only one plot is produced) or when same.window=FALSE, otherwise the default
value is ask=TRUE.

points.col numeric scalar determining the color of the points in the plot. The default value
is points.col=1. See the entry for col in the R help file for par for more
information.
Arguments associated with plot.type="Q-Q Plots", plot.type="Tukey M-D Q-Q Plots",
or plot.type="All" (supplied to qqPlot):

plot.pos.con numeric scalar between 0 and 1 containing the value of the plotting position
constant used to construct the Q-Q plots and/or Tukey Mean-Difference Q-Q
plots. The default value is plot.pos.con=0.375. See the help files for qqPlot
for more information and the motivation for this choice.

estimate.params

logical scalar indicating whether to compute quantiles based on estimating the
distribution parameters (estimate.params=TRUE) or using the distribution pa-
rameters for a standard normal distribution (i.e, mean=0, sd=1). The default



plot.boxcoxLm 647

value is estimate.params=FALSE because a standard normal Q-Q plot will
yield roughly a straight line if the observations are from any normal distribu-
tion. If you specify plot.type="Tukey M-D Q-Q Plots", then you need to set
estiamte.params=TRUE unless you want to assume the transformed data come
from a standard normal distribution.

equal.axes logical scalar indicating whether to use the same range on the x- and y-axes
when plot.type="Q-Q Plots". The default value is TRUE if qq.line.type="0-1"
or estimate.params=TRUE, otherwise it is FALSE.

add.line logical scalar indicating whether to add a line to the plot. If add.line=TRUE and
plot.type="Q-Q Plots", a line determined by the value of qq.line.type is
added to the plot. If add.line=TRUE and plot.type="Tukey M-D Q-Q Plots",
a horizontal line at y = 0 is added to the plot. The default value is add.line=TRUE.

qq.line.type character string determining what kind of line to add to the plot when plot.type="Q-Q Plots".
Possible values are "least squares" (a least squares line; the default), "0-1"
(a line with intercept 0 and slope 1), and "robust" (a line is fit through the first
and third quartiles of the x and y data). This argument is ignored if add.line=FALSE.

duplicate.points.method

a character string denoting how to plot points with duplicate (x, y) values. Pos-
sible values are "standard" (a single plotting symbol is plotted; the default),
"jitter" (a separate plotting symbol is plotted for each duplicate point, where
the plotting symbols cluster around the true value of x and y), and "number" (a
single number is plotted at (x, y) that represents how many duplicate points are
at that (x, y) coordinate).

line.col numeric scalar determining the color of the line in the plot. The default value is
line.col=1. See the entry for col in the R help file for par for more informa-
tion. This argument is ignored if add.line=FALSE.

line.lwd numeric scalar determining the width of the line in the plot. The default value
is line.lwd=par("cex"). See the entry for lwd in the R help file for par for
more information. This argument is ignored if add.line=FALSE.

line.lty numeric scalar determining the line type (style) of the line in the plot. The
default value is line.lty=1. See the entry for lty in the R help file for par for
more information. This argument is ignored if add.line=FALSE.

digits scalar indicating how many significant digits to print for the distribution param-
eters and the value of the objective in the sub-title. The default value is the
current setting of options("digits").
Graphics parameters:

cex.main, cex.sub, main, sub, xlab, ylab, xlim, ylim, ...

graphics parameters; see par for more information. The default value of cex.main
is cex.main=1.4 * par("cex"). The default value of cex.sub is cex.sub=par("cex").

Details

The function plot.boxcoxLm is a method for the generic function plot for the class "boxcoxLm"
(see boxcoxLm.object). It can be invoked by calling plot and giving it an object of class "boxcoxLm"
as the first argument, or by calling plot.boxcoxLm directly, regardless of the class of the object
given as the first argument to plot.boxcoxLm.

Plots associated with Box-Cox transformations are produced on the current graphics device. These
can be one or all of the following:

• Objective vs. λ.
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• Observed Quantiles vs. Normal Quantiles (Q-Q Plot) for the residuals of the linear model
based on transformed values of the response variable for each of the values of λ.

• Tukey Mean-Difference Q-Q Plots for the residuals of the linear model based on transformed
values of the response variable for each of the values of λ.

See the help files for boxcox and qqPlot for more information.

Value

plot.boxcoxLm invisibly returns the first argument, x.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Chambers, J. M. and Hastie, T. J. (1992). Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

qqPlot, boxcox, boxcoxLm.object, print.boxcoxLm, Data Transformations, plot.

Examples

# Create an object of class "boxcoxLm", then plot the results.

# The data frame Environmental.df contains daily measurements of
# ozone concentration, wind speed, temperature, and solar radiation
# in New York City for 153 consecutive days between May 1 and
# September 30, 1973. In this example, well model ozone as a
# function of temperature.

# Fit the model with the raw Ozone data
#--------------------------------------
ozone.fit <- lm(ozone ~ temperature, data = Environmental.df)

boxcox.list <- boxcox(ozone.fit)

# Plot PPCC vs. lambda based on Q-Q plots of residuals
#-----------------------------------------------------
dev.new()
plot(boxcox.list)

# Look at Q-Q plots of residuals for the various transformation
#--------------------------------------------------------------
plot(boxcox.list, plot.type = "Q-Q Plots", same.window = FALSE)

# Look at Tukey Mean-Difference Q-Q plots of residuals
# for the various transformation
#-----------------------------------------------------
plot(boxcox.list, plot.type = "Tukey M-D Q-Q Plots", same.window = FALSE)

#==========
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# Clean up
#---------
rm(ozone.fit, boxcox.list)
graphics.off()

plot.gof Plot Results of Goodness-of-Fit Test

Description

Plot the results of calling the function gofTest, which returns an object of class "gof" when testing
the goodness-of-fit of a set of data to a distribution (i.e., when supplied with the y argument but not
the x argument). Five different kinds of plots are available.

The function plot.gof is automatically called by plot when given an object of class "gof". The
names of other functions associated with goodness-of-fit test are listed under Goodness-of-Fit Tests.

Usage

## S3 method for class gof
plot(x, plot.type = "Summary",
captions = list(PDFs = NULL, CDFs = NULL, QQ = NULL, MDQQ = NULL, Results = NULL),
x.labels = list(PDFs = NULL, CDFs = NULL, QQ = NULL, MDQQ = NULL),
y.labels = list(PDFs = NULL, CDFs = NULL, QQ = NULL, MDQQ = NULL),
same.window = FALSE, ask = same.window & plot.type == "All", hist.col = "cyan",
fitted.pdf.col = "black", fitted.pdf.lwd = 3 * par("cex"), fitted.pdf.lty = 1,
plot.pos.con = switch(dist.abb, norm = , lnorm = , lnormAlt = , lnorm3 = 0.375,
evd = 0.44, 0.4), ecdf.col = "cyan", fitted.cdf.col = "black",

ecdf.lwd = 3 * par("cex"), fitted.cdf.lwd = 3 * par("cex"), ecdf.lty = 1,
fitted.cdf.lty = 2, add.line = TRUE,
digits = ifelse(plot.type == "Summary", 2, .Options$digits), test.result.font = 1,
test.result.cex = ifelse(plot.type == "Summary", 0.9, 1) * par("cex"),
test.result.mar = c(0, 0, 3, 0) + 0.1,
cex.main = ifelse(plot.type == "Summary", 1.2, 1.5) * par("cex"),
cex.axis = ifelse(plot.type == "Summary", 0.9, 1) * par("cex"),
cex.lab = ifelse(plot.type == "Summary", 0.9, 1) * par("cex"),
main = NULL, xlab = NULL, ylab = NULL, xlim = NULL, ylim = NULL,
add.om.title = TRUE,
oma = if (plot.type == "Summary" & add.om.title) c(0, 0, 2.5, 0) else c(0, 0, 0, 0),
om.title = NULL, om.font = 2, om.cex.main = 1.75 * par("cex"), om.line = 0.5, ...)

Arguments

x an object of class "gof". See gof.object for details.

plot.type character string indicating what kind of plot to create. Only one particular plot
type will be created, unless plot.type="All", in which case all plots will be
created sequentially. The possible values of plot.type are: "Summary" (the
default), "PDFs: Observed and Fitted", "CDFs: Observed and Fitted",
"Q-Q Plot", "Tukey M-D Q-Q Plot", "Test Results", and "All". See the
DETAILS section for more information.
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captions a list with 1 to 5 components with the names "PDFs", "CDFs", "QQ", "MDQQ",
and/or "Results". Each component either has the value NULL or else it is a
character string containing the title for that particular kind of plot. When the
component has the value NULL (the default), a default title is used. This argument
is useful when you are creating more than one kind of plot with a single call
to plot.gof (i.e., when plot.type="Summary" or plot.type="All") and you
want to specify titles different from the default ones. If you are creating only one
kind of plot, then you can just use the main argument to specify a title different
from the default one.

x.labels a list of 1 to 4 components with the names "PDFs", "CDFs", "QQ", and/or
"MDQQ". Each component either has the value NULL or else it is a character string
containing the label for the x-axis for that particular kind of plot. When the
component has the value NULL (the default), a default x-axis label is used. This
argument is useful when you are creating more than one kind of plot with a sin-
gle call to plot.gof (i.e., when plot.type="Summary" or plot.type="All")
and you want to specify x-axis labels different from the default ones. If you are
creating only one plot, then you can just use the xlab argument to specify an
x-axis label different from the default one.

y.labels a list of 1 to 4 components with the names "PDFs", "CDFs", "QQ", and/or
"MDQQ". Each component either has the value NULL or else it is a character string
containing the label for the y-axis for that particular kind of plot. When the
component has the value NULL (the default), a default y-axis label is used. This
argument is useful when you are creating more than one kind of plot with a sin-
gle call to plot.gof (i.e., when plot.type="Summary" or plot.type="All")
and you want to specify y-axis labels different from the default ones. If you
are creating only one plot, then you can just use the ylab argument to specify a
y-axis label different from the default one.

same.window logical scalar indicating whether to produce all plots in the same graphics win-
dow (same.window=TRUE), or to create a new graphics window for each separate
plot (same.window=FALSE; the default). The argument is relevant only when
plot.type="All".

ask logical scalar supplied to the function devAskNewPage, indicating whether to
prompt the user before creating a new plot within a single graphics window. The
default value is FALSE unless same.window=TRUE and plot.type == "All".

digits scalar indicating how many significant digits to print for the distribution param-
eters. If plot.type == "Summary", the default value is digits=2, otherwise
it is .Options$digits (i.e., the current setting of options("digits")). This
argument is ignored when plot.type="PDFs: Observed and Fitted".
Arguments associated with plot.type="PDFs: Observed and Fitted":

hist.col a character string or numeric scalar determining the color of the histogram
used to display the distribution of the observed values. The default value is
hist.col="cyan". See the entry for col in the R help file for par for more
information.

fitted.pdf.col a character string or numeric scalar determining the color of the fitted PDF
(which is displayed as a line for continuous distributions and a histogram for
discrete distributions). The default value is fitted.pdf.col="black". See the
entry for col in the R help file for par for more information.

fitted.pdf.lwd numeric scalar determining the width of the line used to display the fitted PDF.
The default value is fitted.pdf.lwd=3*par("cex"). See the entry for lwd in
the R help file for par for more information.
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fitted.pdf.lty numeric scalar determining the line type used to display the fitted PDF. The
default value is fitted.pdf.lty=1. See the entry for lty in the R help file for
par for more information.
Arguments associated with plot.type="CDFs: Observed and Fitted":

plot.pos.con numeric scalar between 0 and 1 containing the value of the plotting position
constant used to construct the observed (empirical) CDF. The default value of
plot.pos.con depends on the value of gof.obj$distribution (i.e., the dis-
tribution assumed for the goodness-of-fit test). For the normal, lognormal, and
three-parameter lognormal distributions, the default value is plot.pos.con=0.375.
For the Type I extreme value (Gumbel) distribution, the default value is plot.pos.con=0.44.
For all other distributions, the default value is plot.pos.con=0.4. See the help
files for ecdfPlot and qqPlot for more information and the motivation for these
choices of values.
NOTE: This argument is also used to determine the value of the plotting posi-
tion constant for the Q-Q plot (plot.type="Q-Q Plot"), or the Tukey Mean-
Difference Q-Q plot (plot.type="Tukey M-D Q-Q Plot").

ecdf.col a character string or numeric scalar determining the color of the line used to
display the empirical CDF. The default value is ecdf.col="cyan". See the
entry for col in the R help file for par for more information.

fitted.cdf.col a character string or numeric scalar determining the color of the line used to
display the fitted CDF. The default value is fitted.cdf.col="black". See the
entry for col in the R help file for par for more information.

ecdf.lwd numeric scalar determining the width of the line used to display the empirical
CDF. The default value is ecdf.lwd=3*par("cex"). See the entry for lwd in
the R help file for par for more information.

fitted.cdf.lwd numeric scalar determining the width of the line used to display the fitted CDF.
The default value is fitted.cdf.lwd=3*par("cex"). See the entry for lwd in
the R help file for par for more information.

ecdf.lty numeric scalar determining the line type used to display the empirical CDF. The
default value is ecdf.lty=1. See the entry for lty in the R help file for par for
more information.

fitted.cdf.lty numeric scalar determining the line type used to display the fitted CDF. The
default value is fitted.cdf.lty=2. See the entry for lty in the R help file for
par for more information.
Arguments associated with plot.type="Q-Q Plot" or plot.type="Tukey M-D Q-Q Plot":
As explained above, plot.pos.con is used for these plot types. Also:

add.line logical scalar indicating whether to add a line to the plot. If add.line=TRUE and
plot.type="Q-Q Plot", a 0-1 line is added to the plot. If add.line=TRUE and
plot.type="Tukey M-D Q-Q Plot", a horizontal line at y = 0 is added to the
plot. The default value is add.line=TRUE.
Arguments associated with plot.type="Test Results"

test.result.font

numeric scalar indicating which font to use to print out the test results. The
default value is test.result.font=1. See the description of the font argument
in the help file for par for more information. You may get better results if you
use a font number that corresponds to a fixed font (e.g., courier).
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test.result.cex

numeric scalar indicating the value of cex to use to print out the test results. The
default value is 0.9*par("cex") when plot.type="Summary", otherwise it is
par("cex"). See the description of the cex argument in the help file for par for
more information.

test.result.mar

numeric vector indicating the value of mar to use to print out the test results. The
default value is test.result.mar=c(0, 0, 3, 0)+0.1. See the description of
the mar argument in the help file for par for more information.
Arguments associated with plot.type="Summary"

add.om.title logical scalar indicating whether to add a title in the outer margin when plot.type="Summary".
The default value is add.om.title=TRUE.

om.title character string containing the outer margin title. The default value is om.title=NULL,
which will result in a default title.

om.font numeric scalar indicating the font to use for the outer margin. The default value
is om.font=2.

om.cex.main numeric scalar indicating the value of cex for the outer margin title. The default
value is 1.75 * par("cex").

om.line numeric scalar indicating the line to place the outer margin title on. The default
value is om.line=0.5.
Graphics parameters:

cex.main, cex.axis, cex.lab, main, xlab, ylab, xlim, ylim, oma, ...

additional graphics parameters. See the help file for par.

Details

The function plot.gof is a method for the generic function plot for the class "gof" (see gof.object).
It can be invoked by calling plot and giving it an object of class "gof" as the first argument, or
by calling plot.gof directly, regardless of the class of the object given as the first argument to
plot.gof.

Plots associated with the goodness-of-fit test are produced on the current graphics device. These
can be one or all of the following:

• Observed distribution overlaid with fitted distribution (plot.type="PDFs: Observed and Fitted").
See the help files for hist and pdfPlot.

• Observed empirical distribution overlaid with fitted cumulative distribution (plot.type="CDFs: Observed and Fitted").
See the help file for cdfCompare.

• Observed quantiles vs. fitted quantiles (Q-Q Plot) (plot.type="Q-Q Plot"). See the help
file for qqPlot.

• Tukey mean-difference Q-Q plot (plot.type="Tukey M-D Q-Q Plot"). See the help file for
qqPlot.

• Results of the goodness-of-fit test (plot.type="Test Results"). See the help file for print.gof.

See the help file for gofTest for more information.

Value

plot.gof invisibly returns the first argument, x.
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Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Chambers, J. M. and Hastie, T. J. (1992). Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

gofTest, gof.object, print.gof, Goodness-of-Fit Tests, plot.

Examples

# Create an object of class "gof" then plot the results.
# (Note: the call to set.seed simply allows you to reproduce
# this example.)

set.seed(250)
dat <- rnorm(20, mean = 3, sd = 2)
gof.obj <- gofTest(dat)

# Summary plot (the default)
#---------------------------
dev.new()
plot(gof.obj)

# Make your own titles for the summary plot
#------------------------------------------
dev.new()
plot(gof.obj, captions = list(PDFs = "Compare PDFs",

CDFs = "Compare CDFs", QQ = "Q-Q Plot", Results = "Results"),
om.title = "Summary")

# Just the Q-Q Plot
#------------------
dev.new()
plot(gof.obj, plot.type="Q-Q")

# Make your own title for the Q-Q Plot
#-------------------------------------
dev.new()
plot(gof.obj, plot.type="Q-Q", main = "Q-Q Plot")

#==========

# Clean up
#---------
rm(dat, gof.obj)
graphics.off()
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plot.gofCensored Plot Results of Goodness-of-Fit Test Based on Censored Data

Description

Plot the results of calling the function gofTestCensored, which returns an object of class "gofCensored"
when testing the goodness-of-fit of a set of data to a distribution. Five different kinds of plots are
available.

The function plot.gofCensored is automatically called by plot when given an object of class
"gofCensored".

Usage

## S3 method for class gofCensored
plot(x, plot.type = "Summary",

captions = list(PDFs = NULL, CDFs = NULL, QQ = NULL, MDQQ = NULL, Results = NULL),
x.labels = list(PDFs = NULL, CDFs = NULL, QQ = NULL, MDQQ = NULL),
y.labels = list(PDFs = NULL, CDFs = NULL, QQ = NULL, MDQQ = NULL),
same.window = FALSE, ask = same.window & plot.type == "All", hist.col = "cyan",
fitted.pdf.col = "black", fitted.pdf.lwd = 3 * par("cex"), fitted.pdf.lty = 1,
prob.method = "michael-schucany", plot.pos.con = 0.375, ecdf.col = "cyan",
fitted.cdf.col = "black", ecdf.lwd = 3 * par("cex"), fitted.cdf.lwd = 3 * par("cex"),
ecdf.lty = 1, fitted.cdf.lty = 2, add.line = TRUE,
digits = ifelse(plot.type == "Summary", 2, .Options$digits), test.result.font = 1,
test.result.cex = ifelse(plot.type == "Summary", 0.9, 1) * par("cex"),
test.result.mar = c(0, 0, 3, 0) + 0.1,
cex.main = ifelse(plot.type == "Summary", 1.2, 1.5) * par("cex"),
cex.axis = ifelse(plot.type == "Summary", 0.9, 1) * par("cex"),
cex.lab = ifelse(plot.type == "Summary", 0.9, 1) * par("cex"),
main = NULL, xlab = NULL, ylab = NULL, xlim = NULL, ylim = NULL, add.om.title = TRUE,
oma = if (plot.type == "Summary" & add.om.title) c(0, 0, 4, 0) else c(0, 0, 0, 0),
om.title = NULL, om.font = 2, om.cex.main = 1.5 * par("cex"), om.line = 0, ...)

Arguments

x an object of class "gofCensored". See gofCensored.object for details.
plot.type character string indicating what kind of plot to create. Only one particular plot

type will be created, unless plot.type="All", in which case all plots will be
created sequentially. The possible values of plot.type are: "Summary" (the
default), "PDFs: Observed and Fitted", "CDFs: Observed and Fitted",
"Q-Q Plot", "Tukey M-D Q-Q Plot", "Test Results", and "All". See the
DETAILS section for more information.

captions a list with 1 to 5 components with the names "PDFs", "CDFs", "QQ", "MDQQ",
and/or "Results". Each component either has the value NULL or else it is a
character string containing the title for that particular kind of plot. When the
component has the value NULL (the default), a default title is used. This argument
is useful when you are creating more than one kind of plot with a single call to
plot.gofCensored (i.e., when plot.type="Summary" or plot.type="All")
and you want to specify titles different from the default ones. If you are creating
only one kind of plot, then you can just use the main argument to specify a title
different from the default one.
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x.labels a list of 1 to 4 components with the names "PDFs", "CDFs", "QQ", and/or
"MDQQ". Each component either has the value NULL or else it is a charac-
ter string containing the label for the x-axis for that particular kind of plot.
When the component has the value NULL (the default), a default x-axis label
is used. This argument is useful when you are creating more than one kind of
plot with a single call to plot.gofCensored (i.e., when plot.type="Summary"
or plot.type="All") and you want to specify x-axis labels different from the
default ones. If you are creating only one plot, then you can just use the xlab
argument to specify an x-axis label different from the default one.

y.labels a list of 1 to 4 components with the names "PDFs", "CDFs", "QQ", and/or
"MDQQ". Each component either has the value NULL or else it is a charac-
ter string containing the label for the y-axis for that particular kind of plot.
When the component has the value NULL (the default), a default y-axis label
is used. This argument is useful when you are creating more than one kind of
plot with a single call to plot.gofCensored (i.e., when plot.type="Summary"
or plot.type="All") and you want to specify y-axis labels different from the
default ones. If you are creating only one plot, then you can just use the ylab
argument to specify a y-axis label different from the default one.

same.window logical scalar indicating whether to produce all plots in the same graphics win-
dow (same.window=TRUE), or to create a new graphics window for each separate
plot (same.window=FALSE; the default). The argument is relevant only when
plot.type="All".

ask logical scalar supplied to the function devAskNewPage, indicating whether to
prompt the user before creating a new plot within a single graphics window. The
default value is FALSE unless same.window=TRUE and plot.type == "All".

digits scalar indicating how many significant digits to print for the distribution param-
eters. If plot.type == "Summary", the default value is digits=2, otherwise
it is .Options$digits (i.e., the current setting of options("digits")). This
argument is ignored when plot.type="PDFs: Observed and Fitted".
Arguments associated with plot.type="PDFs: Observed and Fitted":

hist.col a character string or numeric scalar determining the color of the histogram
used to display the distribution of the observed values. The default value is
hist.col="cyan". See the entry for col in the R help file for par for more
information.

fitted.pdf.col a character string or numeric scalar determining the color of the fitted PDF
(which is displayed as a line for continuous distributions and a histogram for
discrete distributions). The default value is fitted.pdf.col="black". See the
entry for col in the R help file for par for more information.

fitted.pdf.lwd numeric scalar determining the width of the line used to display the fitted PDF.
The default value is fitted.pdf.lwd=3*par("cex"). See the entry for lwd in
the R help file for par for more information.

fitted.pdf.lty numeric scalar determining the line type used to display the fitted PDF. The
default value is fitted.pdf.lty=1. See the entry for lty in the R help file for
par for more information.
Arguments associated with plot.type="CDFs: Observed and Fitted":

prob.method character string indicating what method to use to compute the plotting positions
(empirical probabilities). Possible values are "kaplan-meier" (product-limit
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method of Kaplan and Meier (1958)), "modified kaplan-meier" (modifica-
tion of Kaplan-Meier method), "nelson" (hazard plotting method of Nelson
(1972)), "michael-schucany" (generalization of the product-limit method due
to Michael and Schucany (1986)), and "hirsch-stedinger" (generalization of
the product-limit method due to Hirsch and Stedinger (1987)). The default value
is prob.method="michael-schucany".
The "nelson" method is only available for censoring.side="right", and the
"modified kaplan-meier" method is only available for censoring.side="left".
See the help file for ppointsCensored for more explanation.
NOTE: This argument is also used to determine the plotting position method
for the Q-Q plot (plot.type="Q-Q Plot"), or the Tukey Mean-Difference Q-
Q plot (plot.type="Tukey M-D Q-Q Plot").

plot.pos.con numeric scalar between 0 and 1 containing the value of the plotting position
constant used to construct the observed (empirical) CDF. The default value is
plot.pos.con=0.375. See the help files for ecdfPlot and qqPlot for more
information and the motivation for this choice of value.
This argument is used only if prob.method is equal to "michael-schucany" or
"hirsch-stedinger".
NOTE: This argument is also used to determine the value of the plotting posi-
tion constant for the Q-Q plot (plot.type="Q-Q Plot"), or the Tukey Mean-
Difference Q-Q plot (plot.type="Tukey M-D Q-Q Plot").

ecdf.col a character string or numeric scalar determining the color of the line used to
display the empirical CDF. The default value is ecdf.col="cyan". See the
entry for col in the R help file for par for more information.

fitted.cdf.col a character string or numeric scalar determining the color of the line used to
display the fitted CDF. The default value is fitted.cdf.col="black". See the
entry for col in the R help file for par for more information.

ecdf.lwd numeric scalar determining the width of the line used to display the empirical
CDF. The default value is ecdf.lwd=3*par("cex"). See the entry for lwd in
the R help file for par for more information.

fitted.cdf.lwd numeric scalar determining the width of the line used to display the fitted CDF.
The default value is fitted.cdf.lwd=3*par("cex"). See the entry for lwd in
the R help file for par for more information.

ecdf.lty numeric scalar determining the line type used to display the empirical CDF. The
default value is ecdf.lty=1. See the entry for lty in the R help file for par for
more information.

fitted.cdf.lty numeric scalar determining the line type used to display the fitted CDF. The
default value is fitted.cdf.lty=2. See the entry for lty in the R help file for
par for more information.
Arguments associated with plot.type="Q-Q Plot" or plot.type="Tukey M-D Q-Q Plot":
As explained above, prob.method and plot.pos.con are used for these plot
types. Also:

add.line logical scalar indicating whether to add a line to the plot. If add.line=TRUE and
plot.type="Q-Q Plot", a 0-1 line is added to the plot. If add.line=TRUE and
plot.type="Tukey M-D Q-Q Plot", a horizontal line at y = 0 is added to the
plot. The default value is add.line=TRUE.
Arguments associated with plot.type="Test Results"
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test.result.font

numeric scalar indicating which font to use to print out the test results. The
default value is test.result.font=1. See the description of the font argument
in the help file for par for more information. You may get better results if you
use a font number that corresponds to a fixed font (e.g., courier).

test.result.cex

numeric scalar indicating the value of cex to use to print out the test results. The
default value is 0.9*par("cex") when plot.type="Summary", otherwise it is
par("cex"). See the description of the cex argument in the help file for par for
more information.

test.result.mar

numeric vector indicating the value of mar to use to print out the test results. The
default value is test.result.mar=c(0, 0, 3, 0)+0.1. See the description of
the mar argument in the help file for par for more information.
Arguments associated with plot.type="Summary"

add.om.title logical scalar indicating whether to add a title in the outer margin when plot.type="Summary".
The default value is add.om.title=TRUE.

om.title character string containing the outer margin title. The default value is om.title=NULL,
which will result in a default title.

om.font numeric scalar indicating the font to use for the outer margin. The default value
is om.font=2.

om.cex.main numeric scalar indicating the value of cex for the outer margin title. The default
value is 1.75 * par("cex").

om.line numeric scalar indicating the line to place the outer margin title on. The default
value is om.line=0.5.
Graphics parameters:

cex.main, cex.axis, cex.lab, main, xlab, ylab, xlim, ylim, oma, ...

additional graphics parameters. See the help file for par.

Details

The function plot.gofCensored is a method for the generic function plot for the class "gofCensored"
(see gofCensored.object). It can be invoked by calling plot and giving it an object of class
"gofCensored" as the first argument, or by calling plot.gofCensored directly, regardless of the
class of the object given as the first argument to plot.gofCensored.

Plots associated with the goodness-of-fit test are produced on the current graphics device. These
can be one or all of the following:

• Observed distribution overlaid with fitted distribution (plot.type="PDFs: Observed and Fitted").
See the help files for hist and pdfPlot. Note: This kind of plot is only available for singly-
censored data.

• Observed empirical distribution overlaid with fitted cumulative distribution (plot.type="CDFs: Observed and Fitted").
See the help file for cdfCompareCensored.

• Observed quantiles vs. fitted quantiles (Q-Q Plot) (plot.type="Q-Q Plot"). See the help
file for qqPlotCensored.

• Tukey mean-difference Q-Q plot (plot.type="Tukey M-D Q-Q Plot"). See the help file for
qqPlotCensored.

• Results of the goodness-of-fit test (plot.type="Test Results"). See the help file for print.gofCensored.

See the help file for gofTestCensored for more information.
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Value

plot.gofCensored invisibly returns the first argument, x.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Chambers, J. M. and Hastie, T. J. (1992). Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

gofTestCensored, gofCensored.object, print.gofCensored, Censored Data, plot.

Examples

# Create an object of class "gofCensored", then plot the results.
#----------------------------------------------------------------

gofCensored.obj <- with(EPA.09.Ex.15.1.manganese.df,
gofTestCensored(Manganese.ppb, Censored, test = "sf"))

mode(gofCensored.obj)
#[1] "list"

class(gofCensored.obj)
#[1] "gofCensored"

# Summary plot (the default)
#---------------------------
dev.new()
plot(gofCensored.obj)

# Make your own titles for the summary plot
#------------------------------------------
dev.new()
plot(gofCensored.obj, captions = list(CDFs = "Compare CDFs",

QQ = "Q-Q Plot", Results = "Results"), om.title = "Summary")

# Just the Q-Q Plot
#------------------
dev.new()
plot(gofCensored.obj, plot.type="Q-Q")

# Make your own title for the Q-Q Plot
#-------------------------------------
dev.new()
plot(gofCensored.obj, plot.type="Q-Q", main = "Q-Q Plot")

#==========

# Clean up
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#---------
rm(gofCensored.obj)
graphics.off()

plot.gofGroup Plot Results of Group Goodness-of-Fit Test

Description

Plot the results of calling the function gofGroupTest, which returns an object of class "gofGroup"
when performing a goodness-of-fit test to determine whether data in a set of groups appear to all
come from the same probability distribution (with possibly different parameters for each group).
Five different kinds of plots are available.

The function plot.gofGroup is automatically called by plot when given an object of class "gofGroup".
The names of other functions associated with goodness-of-fit test are listed under Goodness-of-Fit
Tests.

Usage

## S3 method for class gofGroup
plot(x, plot.type = "Summary",

captions = list(QQ = NULL, MDQQ = NULL, ScoresQQ = NULL, ScoresMDQQ = NULL,
Results = NULL),

x.labels = list(QQ = NULL, MDQQ = NULL, ScoresQQ = NULL, ScoresMDQQ = NULL),
y.labels = list(QQ = NULL, MDQQ = NULL, ScoresQQ = NULL, ScoresMDQQ = NULL),
same.window = FALSE, ask = same.window & plot.type == "All", add.line = TRUE,
digits = ifelse(plot.type == "Summary", 2, .Options$digits), test.result.font = 1,
test.result.cex = ifelse(plot.type == "Summary", 0.9, 1) * par("cex"),
test.result.mar = c(0, 0, 3, 0) + 0.1, individual.p.values = FALSE,
cex.main = ifelse(plot.type == "Summary", 1.2, 1.5) * par("cex"),
cex.axis = ifelse(plot.type == "Summary", 0.9, 1) * par("cex"),
cex.lab = ifelse(plot.type == "Summary", 0.9, 1) * par("cex"),
main = NULL, xlab = NULL, ylab = NULL, xlim = NULL, ylim = NULL, add.om.title = TRUE,
oma = if (plot.type == "Summary" & add.om.title) c(0, 0, 5, 0) else c(0, 0, 0, 0),
om.title = NULL, om.font = 2, om.cex.main = 1.5 * par("cex"), om.line = 1, ...)

Arguments

x an object of class "gofGroup". See gofGroup.object for details.

plot.type character string indicating what kind of plot to create. Only one particular plot
type will be created, unless plot.type="All", in which case all plots will be
created sequentially. The possible values of plot.type are: "Summary" (the de-
fault), "Q-Q Plot" "Tukey M-D Q-Q Plot", "Scores Q-Q Plot", "Scores Tukey M-D Q-Q Plot",
"Test Results", and "All". See the DETAILS section for more information.

captions a list with 1 to 5 components with the names "QQ", "MDQQ", "ScoresQQ", "ScoresMDQQ",
and/or "Results". Each component either has the value NULL or else it is a char-
acter string containing the title for that particular kind of plot. When the com-
ponent has the value NULL (the default), a default title is used. This argument
is useful when you are creating more than one kind of plot with a single call to
plot.gofGroup (i.e., when plot.type="Summary" or plot.type="All") and
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you want to specify titles different from the default ones. If you are creating
only one kind of plot, then you can just use the main argument to specify a title
different from the default one.

x.labels a list of 1 to 4 components with the names "QQ", "MDQQ", "ScoresQQ", and/or
"ScoresMDQQ". Each component either has the value NULL or else it is a char-
acter string containing the label for the x-axis for that particular kind of plot.
When the component has the value NULL (the default), a default x-axis label
is used. This argument is useful when you are creating more than one kind of
plot with a single call to plot.gofGroup (i.e., when plot.type="Summary" or
plot.type="All") and you want to specify x-axis labels different from the de-
fault ones. If you are creating only one plot, then you can just use the xlab
argument to specify an x-axis label different from the default one.

y.labels a list of 1 to 4 components with the names "QQ", "MDQQ", "ScoresQQ", and/or
"ScoresMDQQ". Each component either has the value NULL or else it is a char-
acter string containing the label for the y-axis for that particular kind of plot.
When the component has the value NULL (the default), a default y-axis label is
used. This argument is useful when you are creating more than one kind of
plot with a single call to plot.gofGroup (i.e., when plot.type="Summary" or
plot.type="All") and you want to specify y-axis labels different from the de-
fault ones. If you are creating only one plot, then you can just use the ylab
argument to specify a y-axis label different from the default one.

same.window logical scalar indicating whether to produce all plots in the same graphics win-
dow (same.window=TRUE), or to create a new graphics window for each separate
plot (same.window=FALSE; the default). The argument is relevant only when
plot.type="All".

ask logical scalar supplied to the function devAskNewPage, indicating whether to
prompt the user before creating a new plot within a single graphics window. The
default value is FALSE unless same.window=TRUE and plot.type == "All".

add.line logical scalar indicating whether to add a line to the plot. If add.line=TRUE
and plot.type="Q-Q Plot" or plot.type="Scores Q-Q Plot", a 0-1 line is
added to the plot. If add.line=TRUE and plot.type="Tukey M-D Q-Q Plot"
or plot.type="Scores Tukey M-D Q-Q Plot", a horizontal line at y = 0 is
added to the plot. The default value is add.line=TRUE. This argument is ignored
if plot.type="Test Results".
Arguments associated with plot.type="Test Results"

digits scalar indicating how many significant digits to print for the test results when
plot.type="Summary" or plot.type="Test Results". If plot.type == "Summary",
the default value is digits=2, otherwise it is .Options$digits (i.e., the current
setting of options("digits")).

individual.p.values

logical scalar indicating whether to display the p-values associated with each
individual group. The default value is individual.p.values=FALSE.

test.result.font

numeric scalar indicating which font to use to print out the test results. The
default value is test.result.font=1. See the description of the font argument
in the help file for par for more information. You may get better results if you
use a font number that corresponds to a fixed font (e.g., courier).

test.result.cex

numeric scalar indicating the value of cex to use to print out the test results. The
default value is 0.9*par("cex") when plot.type="Summary", otherwise it is
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par("cex"). See the description of the cex argument in the help file for par for
more information.

test.result.mar

numeric vector indicating the value of mar to use to print out the test results. The
default value is test.result.mar=c(0, 0, 3, 0)+0.1. See the description of
the mar argument in the help file for par for more information.
Arguments associated with plot.type="Summary"

add.om.title logical scalar indicating whether to add a title in the outer margin when plot.type="Summary".
The default value is add.om.title=TRUE.

om.title character string containing the outer margin title. The default value is om.title=NULL,
which will result in a default title.

om.font numeric scalar indicating the font to use for the outer margin. The default value
is om.font=2.

om.cex.main numeric scalar indicating the value of cex for the outer margin title. The default
value is 1.5 * par("cex").

om.line numeric scalar indicating the line to place the outer margin title on. The default
value is om.line=1.
Graphics parameters:

cex.main, cex.axis, cex.lab, main, xlab, ylab, xlim, ylim, oma, ...

additional graphics parameters. See the help file for par.

Details

The function plot.gofGroup is a method for the generic function plot for the class "gofGroup"
(see gofGroup.object). It can be invoked by calling plot and giving it an object of class "gofGroup"
as the first argument, or by calling plot.gofGroup directly, regardless of the class of the object
given as the first argument to plot.gofGroup.

Plots associated with the goodness-of-fit test are produced on the current graphics device. These
can be one or all of the following:

• plot.type="Q-Q Plot". Q-Q Plot of observed p-values vs. quantiles from a Uniform [0,1]
distribution. See the help file for qqPlot.

• plot.type="Tukey M-D Q-Q Plot". Tukey mean-difference Q-Q plot for observed p-values
and quantiles from a Uniform [0,1] distribution. See the help file for qqPlot.

• plot.type="Scores Q-Q Plot". Q-Q Plot of Normal scores vs. quantiles from a Nor-
mal(0,1) distribution or Q-Q Plot of Chisquare scores vs. quantiles from a Chisquare dis-
tribution with 2 degrees of freedom. See the help file for qqPlot.

• plot.type="Scores Tukey M-D Q-Q Plot". Tukey mean-difference Q-Q plot based on
Normal scores or Chisquare scores. See the help file for qqPlot.

• Results of the goodness-of-fit test (plot.type="Test Results"). See the help file for print.gofGroup.

See the help file for gofGroupTest for more information.

Value

plot.gofGroup invisibly returns the first argument, x.
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Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Chambers, J. M. and Hastie, T. J. (1992). Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

gofGroupTest, gofGroup.object, print.gofGroup, Goodness-of-Fit Tests, plot.

Examples

# Create an object of class "gofGroup" then plot it.

# Example 10-4 of USEPA (2009, page 10-20) gives an example of
# simultaneously testing the assumption of normality for nickel
# concentrations (ppb) in groundwater collected at 4 monitoring
# wells over 5 months. The data for this example are stored in
# EPA.09.Ex.10.1.nickel.df.

EPA.09.Ex.10.1.nickel.df
# Month Well Nickel.ppb
#1 1 Well.1 58.8
#2 3 Well.1 1.0
#3 6 Well.1 262.0
#...
#18 6 Well.4 85.6
#19 8 Well.4 10.0
#20 10 Well.4 637.0

# Test for a normal distribution at each well:
#--------------------------------------------

gofGroup.obj <- gofGroupTest(Nickel.ppb ~ Well,
data = EPA.09.Ex.10.1.nickel.df)

dev.new()
plot(gofGroup.obj)

# Make your own titles for the summary plot
#------------------------------------------
dev.new()
plot(gofGroup.obj, captions = list(QQ = "Q-Q Plot",

ScoresQQ = "Scores Q-Q Plot", Results = "Results"),
om.title = "Summary Plot")

# Just the Q-Q Plot
#------------------
dev.new()
plot(gofGroup.obj, plot.type="Q-Q")

# Make your own title for the Q-Q Plot
#-------------------------------------
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dev.new()
plot(gofGroup.obj, plot.type="Q-Q", main = "Q-Q Plot")

#==========

# Clean up
#---------
rm(gofGroup.obj)
graphics.off()

plot.gofTwoSample Plot Results of Goodness-of-Fit Test to Compare Two Samples

Description

Plot the results of calling the function gofTest to compare two samples. gofTest returns an object
of class "gofTwoSample" when supplied with both the arguments y and x. plot.gofTwoSample
provides five different kinds of plots.

The function plot.gofTwoSample is automatically called by plot when given an object of class
"gofTwoSample". The names of other functions associated with goodness-of-fit test are listed under
Goodness-of-Fit Tests.

Usage

## S3 method for class gofTwoSample
plot(x, plot.type = "Summary",

captions = list(PDFs = NULL, CDFs = NULL, QQ = NULL, MDQQ = NULL, Results = NULL),
x.labels = list(PDFs = NULL, CDFs = NULL, QQ = NULL, MDQQ = NULL),
y.labels = list(PDFs = NULL, CDFs = NULL, QQ = NULL, MDQQ = NULL),
same.window = FALSE, ask = same.window & plot.type == "All", x.points.col = "blue",
y.points.col = "black", points.pch = 1, jitter.points = TRUE, discrete = FALSE,
plot.pos.con = 0.375, x.ecdf.col = "blue", y.ecdf.col = "black",
x.ecdf.lwd = 3 * par("cex"), y.ecdf.lwd = 3 * par("cex"), x.ecdf.lty = 1,
y.ecdf.lty = 4, add.line = TRUE,
digits = ifelse(plot.type == "Summary", 2, .Options$digits), test.result.font = 1,
test.result.cex = ifelse(plot.type == "Summary", 0.9, 1) * par("cex"),
test.result.mar = c(0, 0, 3, 0) + 0.1,
cex.main = ifelse(plot.type == "Summary", 1.2, 1.5) * par("cex"),
cex.axis = ifelse(plot.type == "Summary", 0.9, 1) * par("cex"),
cex.lab = ifelse(plot.type == "Summary", 0.9, 1) * par("cex"),
main = NULL, xlab = NULL, ylab = NULL, xlim = NULL, ylim = NULL,
add.om.title = TRUE,
oma = if (plot.type == "Summary" & add.om.title) c(0, 0, 4, 0) else c(0, 0, 0, 0),
om.title = NULL, om.font = 2, om.cex.main = 1.5 * par("cex"), om.line = 0, ...)

Arguments

x an object of class "gof". See gof.object for details.

plot.type character string indicating what kind of plot to create. Only one particular plot
type will be created, unless plot.type="All", in which case all plots will be
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created sequentially. The possible values of plot.type are: "Summary" (the de-
fault), "PDFs: Observed", "CDFs: Observed", "Q-Q Plot", "Tukey M-D Q-Q Plot",
"Test Results", and "All". See the DETAILS section for more information.

captions a list with 1 to 5 components with the names "PDFs", "CDFs", "QQ", "MDQQ",
and/or "Results". Each component either has the value NULL or else it is a
character string containing the title for that particular kind of plot. When the
component has the value NULL (the default), a default title is used. This argument
is useful when you are creating more than one kind of plot with a single call to
plot.gofTwoSample (i.e., when plot.type="Summary" or plot.type="All")
and you want to specify titles different from the default ones. If you are creating
only one kind of plot, then you can just use the main argument to specify a title
different from the default one.

x.labels a list of 1 to 4 components with the names "PDFs", "CDFs", "QQ", and/or
"MDQQ". Each component either has the value NULL or else it is a character
string containing the label for the x-axis for that particular kind of plot. When
the component has the value NULL (the default), a default x-axis label is used.
This argument is useful when you are creating more than one kind of plot
with a single call to plot.gofTwoSample (i.e., when plot.type="Summary"
or plot.type="All") and you want to specify x-axis labels different from the
default ones. If you are creating only one plot, then you can just use the xlab
argument to specify an x-axis label different from the default one.

y.labels a list of 1 to 4 components with the names "PDFs", "CDFs", "QQ", and/or
"MDQQ". Each component either has the value NULL or else it is a character
string containing the label for the y-axis for that particular kind of plot. When
the component has the value NULL (the default), a default y-axis label is used.
This argument is useful when you are creating more than one kind of plot
with a single call to plot.gofTwoSample (i.e., when plot.type="Summary"
or plot.type="All") and you want to specify y-axis labels different from the
default ones. If you are creating only one plot, then you can just use the ylab
argument to specify a y-axis label different from the default one.

same.window logical scalar indicating whether to produce all plots in the same graphics win-
dow (same.window=TRUE), or to create a new graphics window for each separate
plot (same.window=FALSE; the default). The argument is relevant only when
plot.type="All".

ask logical scalar supplied to the function devAskNewPage, indicating whether to
prompt the user before creating a new plot within a single graphics window. The
default value is FALSE unless same.window=TRUE and plot.type == "All".
Arguments associated with plot.type="PDFs: Observed":

x.points.col a character string or numeric scalar determining the color of the plotting symbol
used to display the distribution of the observed x values that were supplied to
gofTest. The default value is x.points.col="blue". See the entry for col in
the R help file for par for more information.

y.points.col a character string or numeric scalar determining the color of the plotting symbol
used to display the distribution of the observed y values that were supplied to
gofTest. The default value is y.points.col="black". See the entry for col
in the R help file for par for more information.

points.pch a character string or numeric scalar determining the plotting symbol used to
display the distribution of the observed x and y values that were supplied to
gofTest. The default value is points.pch=1. See the entry for pch in the R
help file for par for more information.
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jitter.points logical scalar indicating whether to jitter the points in the strip chart. The default
value is jitter.points=TRUE.
Arguments associated with plot.type="CDFs: Observed":

discrete logical scalar indicating whether the two distributions are considered to be dis-
crete (discrete=TRUE) or not(discrete=FALSE; the default). When discrete=TRUE,
the empirical CDFs are plotted as step functions.

plot.pos.con numeric scalar between 0 and 1 containing the value of the plotting position
constant used to construct the observed (empirical) CDFs. The default value is
plot.pos.con=0.375. See the help files for ecdfPlot and qqPlot for more
information and the motivation for this choice of values.
NOTE: This argument is also used to determine the value of the plotting posi-
tion constant for the Q-Q plot (plot.type="Q-Q Plot"), or the Tukey Mean-
Difference Q-Q plot (plot.type="Tukey M-D Q-Q Plot").

x.ecdf.col a character string or numeric scalar determining the color of the line used to
display the empirical CDF for the x values that were supplied to gofTest. The
default value is x.ecdf.col="blue". See the entry for col in the R help file for
par for more information.

y.ecdf.col a character string or numeric scalar determining the color of the line used to
display the empirical CDF for the y values that were supplied to gofTest. The
default value is y.ecdf.col="black". See the entry for col in the R help file
for par for more information.

x.ecdf.lwd numeric scalar determining the width of the line used to display the empiri-
cal CDF for the x values that were supplied to gofTest. The default value is
x.ecdf.lwd=3*par("cex"). See the entry for lwd in the R help file for par for
more information.

y.ecdf.lwd numeric scalar determining the width of the line used to display the empiri-
cal CDF for the y values that were supplied to gofTest. The default value is
y.ecdf.lwd=3*par("cex"). See the entry for lwd in the R help file for par for
more information.

x.ecdf.lty numeric scalar determining the line type used to display the empirical CDF for
the x values that were supplied to gofTest. The default value is x.ecdf.lty=1.
See the entry for lty in the R help file for par for more information.

y.ecdf.lty numeric scalar determining the line type used to display the empirical CDF for
the y values that were supplied to gofTest. The default value is y.ecdf.lty=4.
See the entry for lty in the R help file for par for more information.
Arguments associated with plot.type="Q-Q Plot" or plot.type="Tukey M-D Q-Q Plot":
As explained above, plot.pos.con is used for these plot types. Also:

add.line logical scalar indicating whether to add a line to the plot. If add.line=TRUE and
plot.type="Q-Q Plot", a 0-1 line is added to the plot. If add.line=TRUE and
plot.type="Tukey M-D Q-Q Plot", a horizontal line at y = 0 is added to the
plot. The default value is add.line=TRUE.
Arguments associated with plot.type="Test Results"

digits scalar indicating how many significant digits to print for the test results when
plot.type="Summary" or plot.type="Test Results". If plot.type == "Summary",
the default value is digits=2, otherwise it is .Options$digits (i.e., the current
setting of options("digits")).
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test.result.font

numeric scalar indicating which font to use to print out the test results. The
default value is test.result.font=1. See the description of the font argument
in the help file for par for more information. You may get better results if you
use a font number that corresponds to a fixed font (e.g., courier).

test.result.cex

numeric scalar indicating the value of cex to use to print out the test results. The
default value is 0.9*par("cex") when plot.type="Summary", otherwise it is
par("cex"). See the description of the cex argument in the help file for par for
more information.

test.result.mar

numeric vector indicating the value of mar to use to print out the test results. The
default value is test.result.mar=c(0, 0, 3, 0)+0.1. See the description of
the mar argument in the help file for par for more information.
Arguments associated with plot.type="Summary"

add.om.title logical scalar indicating whether to add a title in the outer margin when plot.type="Summary".
The default value is add.om.title=TRUE.

om.title character string containing the outer margin title. The default value is om.title=NULL,
which will result in a default title.

om.font numeric scalar indicating the font to use for the outer margin. The default value
is om.font=2.

om.cex.main numeric scalar indicating the value of cex for the outer margin title. The default
value is 1.75 * par("cex").

om.line numeric scalar indicating the line to place the outer margin title on. The default
value is om.line=0.5.
Graphics parameters:

cex.main, cex.axis, cex.lab, main, xlab, ylab, xlim, ylim, oma, ...

additional graphics parameters. See the help file for par.

Details

The function plot.gofTwoSample is a method for the generic function plot for the class "gofTwoSample"
(see gofTwoSample.object). It can be invoked by calling plot and giving it an object of class
"gofTwoSample" as the first argument, or by calling plot.gofTwoSample directly, regardless of
the class of the object given as the first argument to plot.gofTwoSample.

Plots associated with the goodness-of-fit test are produced on the current graphics device. These
can be one or all of the following:

• Observed distributions (plot.type="PDFs: Observed").

• Observed CDFs (plot.type="CDFs: Observed"). See the help file for cdfCompare.

• Q-Q Plot (plot.type="Q-Q Plot"). See the help file for qqPlot.

• Tukey mean-difference Q-Q plot (plot.type="Tukey M-D Q-Q Plot"). See the help file for
qqPlot.

• Results of the goodness-of-fit test (plot.type="Test Results"). See the help file for print.gofTwoSample.

See the help file for gofTest for more information.
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Value

plot.gofTwoSample invisibly returns the first argument, x.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Chambers, J. M. and Hastie, T. J. (1992). Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

gofTest, gofTwoSample.object, print.gofTwoSample, Goodness-of-Fit Tests, plot.

Examples

# Create an object of class "gofTwoSample" then plot the results.
# (Note: the call to set.seed simply allows you to reproduce
# this example.)

set.seed(300)
dat1 <- rnorm(20, mean = 3, sd = 2)
dat2 <- rnorm(10, mean = 1, sd = 2)
gof.obj <- gofTest(x = dat1, y = dat2)

# Summary plot (the default)
#---------------------------
dev.new()
plot(gof.obj)

# Make your own titles for the summary plot
#------------------------------------------
dev.new()
plot(gof.obj, captions = list(PDFs = "Compare PDFs",

CDFs = "Compare CDFs", QQ = "Q-Q Plot", Results = "Results"),
om.title = "Summary Plot")

# Just the Q-Q Plot
#------------------
dev.new()
plot(gof.obj, plot.type="Q-Q")

# Make your own title for the Q-Q Plot
#-------------------------------------
dev.new()
plot(gof.obj, plot.type="Q-Q", main = "Q-Q Plot")

#==========

# Clean up
#---------
rm(dat1, dat2, gof.obj)
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graphics.off()

plot.permutationTest Plot Results of Permutation Test

Description

Plot the results of calling functions that return an object of class "permutationTest". Currently,
the EnvStats functions that perform permutation tests and produce objects of class "permutationTest"
are: oneSamplePermutationTest, twoSamplePermutationTestLocation, and twoSamplePermutationTestProportion.

The function plot.permutationTest is automatically called by plot when given an object of class
"permutationTest".

Usage

## S3 method for class permutationTest
plot(x, hist.col = "cyan", stat.col = "black",
stat.lwd = 3 * par("cex"), stat.lty = 1, cex.main = par("cex"),
digits = .Options$digits, main = NULL, xlab = NULL, ylab = NULL,
xlim = NULL, ylim = NULL, ...)

Arguments

x an object of class "permutationTest". See permutationTest.object for de-
tails.

hist.col a character string or numeric scalar determining the color of the histogram used
to display the permutation distribution. The default value is hist.col="cyan".
See the entry for col in the R help file for par for more information.

stat.col a character string or numeric scalar determining the color of the line indicating
the value of the observed test statistic. The default value is stat.col="black".
See the entry for col in the R help file for par for more information.

stat.lwd numeric scalar determining the width of the line indicating the value of the ob-
served test statistic. The default value is stat.lwd=3*par("cex"). See the
entry for lwd in the R help file for par for more information.

stat.lty numeric scalar determining the line type used to display the value of the ob-
served test statistic. The default value is stat.lty=1. See the entry for lty in
the R help file for par for more information.

digits scalar indicating how many significant digits to print for the distribution pa-
rameters. The default value is .Options$digits (i.e., the current setting of
options("digits")).

cex.main, main, xlab, ylab, xlim, ylim, ...

graphics parameters. See the help file for par.

Details

Produces a plot displaying the permutation distribution (exact=TRUE) or a sample of the permuta-
tion distribution (exact=FALSE), and a line indicating the observed value of the test statistic. The
title in the plot includes information on the data used, null hypothesis, and p-value.
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The function plot.permutationTest is a method for the generic function plot for the class
"permutationTest" (see permutationTest.object). It can be invoked by calling plot and giv-
ing it an object of class "permutationTest" as the first argument, or by calling plot.permutationTest
directly, regardless of the class of the object given as the first argument to plot.permutationTest.

Value

plot.permutationTest invisibly returns the first argument, x.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Chambers, J. M. and Hastie, T. J. (1992). Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

permutationTest.object, print.permutationTest, oneSamplePermutationTest, twoSamplePermutationTestLocation,
twoSamplePermutationTestProportion, Hypothesis Tests, plot.

Examples

# Create an object of class "permutationTest", then print it and plot it.
# (Note: the call to set.seed() allows you to reproduce this example.)
#------------------------------------------------------------------------

set.seed(23)

dat <- rlogis(10, location = 7, scale = 2)

permutationTest.obj <- oneSamplePermutationTest(dat, mu = 5,
alternative = "greater", exact = TRUE)

mode(permutationTest.obj)
#[1] "list"

class(permutationTest.obj)
#[1] "permutationTest"

names(permutationTest.obj)
# [1] "statistic" "parameters" "p.value"
# [4] "estimate" "null.value" "alternative"
# [7] "method" "estimation.method" "sample.size"
#[10] "data.name" "bad.obs" "stat.dist"
#[13] "exact"

#==========

# Print the results of the test
#------------------------------
permutationTest.obj

#Results of Hypothesis Test
#--------------------------
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#
#Null Hypothesis: Mean (Median) = 5
#
#Alternative Hypothesis: True Mean (Median) is greater than 5
#
#Test Name: One-Sample Permutation Test
# (Exact)
#
#Estimated Parameter(s): Mean = 9.977294
#
#Data: dat
#
#Sample Size: 10
#
#Test Statistic: Sum(x - 5) = 49.77294
#
#P-value: 0.001953125

#==========

# Plot the results of the test
#-----------------------------
dev.new()
plot(permutationTest.obj)

#==========

# Extract the test statistic
#---------------------------

permutationTest.obj$statistic
#Sum(x - 5)
# 49.77294

#==========

# Clean up
#---------
rm(permutationTest.obj)
graphics.off()

plotAovDesign Create Plots for a Sampling Design Based on a One-Way Fixed-Effects
Analysis of Variance

Description

Create plots involving sample size, power, scaled difference, and significance level for a one-way
fixed-effects analysis of variance.

Usage

plotAovDesign(x.var = "n", y.var = "power", range.x.var = NULL,
n.vec = c(25, 25), mu.vec = c(0, 1), sigma = 1, alpha = 0.05, power = 0.95,
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round.up = FALSE, n.max = 5000, tol = 1e-07, maxiter = 1000, plot.it = TRUE,
add = FALSE, n.points = 50, plot.col = 1, plot.lwd = 3 * par("cex"),
plot.lty = 1, digits = .Options$digits, main = NULL, xlab = NULL, ylab = NULL,
type = "l", ...)

Arguments

x.var character string indicating what variable to use for the x-axis. Possible values
are "n" (sample size; the default), "power" (power of the test), and "alpha"
(significance level of the test).

y.var character string indicating what variable to use for the y-axis. Possible values
are "power" (power of the test; the default) and "n" (sample size).

range.x.var numeric vector of length 2 indicating the range of the x-variable to use for the
plot. The default value depends on the value of x.var. When x.var="n" the
default value is c(2,50). When x.var="power" the default value is
c(alpha+.Machine$double.eps, 0.95). When x.var="alpha", the default
value is c(0.01, 0.2).

n.vec numeric vector indicating the sample size for each group. The default value
is n.vec=c(25, 25). Missing (NA), undefined (NaN), and infinite (Inf, -Inf)
values are not allowed. This argument must be the same length as mu.vec. This
argument is ignored if either x.var="n" or y.var="n".

mu.vec numeric vector indicating the population mean for each group. The default value
is mu.vec=c(0, 1). Missing (NA), undefined (NaN), and infinite (Inf, -Inf)
values are not allowed. This argument must be the same length as n.vec.

sigma numeric scalar indicating the population standard deviation for all groups. The
default value is sigma=1. Missing (NA), undefined (NaN), and infinite (Inf, -Inf)
values are not allowed.

alpha numeric scalar between 0 and 1 indicating the Type I error level associated with
the hypothesis test. The default value is alpha=0.05. This argument is ignored
when x.var="alpha".

power numeric scalar between 0 and 1 indicating the power associated with the hy-
pothesis test. The default value is power=0.95. This argument is ignored when
x.var="power" or y.var="power".

round.up logical scalar indicating whether to round up the values of the computed sample
size(s) to the next smallest integer. The default value is FALSE. This argument
is ignored unless y.var="n".

n.max for the case when y.var="n", a positive integer greater than 2 indicating the
maximum sample size per group. The default value is n.max=5000.

tol for the case when y.var="n", numeric scalar indicating the tolerance to use in
the uniroot search for the sample size. The default value is tol=1e-7.

maxiter for the case when y.var="n", positive integer greater then 1 indicating the max-
imum number of iterations to use in the uniroot search for the sample size. The
default value is maxiter=1000.

plot.it a logical scalar indicating whether to create a plot or add to the existing plot
(see add) on the current graphics device. If plot.it=FALSE, no plot is pro-
duced, but a list of (x,y) values is returned (see VALUE). The default value is
plot.it=TRUE.

add a logical scalar indicating whether to add the design plot to the existing plot
(add=TRUE), or to create a new plot (add=FALSE). The default value is
add=FALSE. This argument is ignored if plot.it=FALSE.
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n.points a numeric scalar specifying how many (x,y) pairs to use to produce the plot.
There are n.points x-values evenly spaced between range.x.var[1] and
range.x.var[2]. The default value is n.points=50.

plot.col a numeric scalar or character string determining the color of the plotted line or
points. The default value is plot.col=1. See the entry for col in the help file
for par for more information.

plot.lwd a numeric scalar determining the width of the plotted line. The default value is
3*par("cex"). See the entry for lwd in the help file for par for more informa-
tion.

plot.lty a numeric scalar determining the line type of the plotted line. The default value
is plot.lty=1. See the entry for lty in the help file for par for more informa-
tion.

digits a scalar indicating how many significant digits to print out on the plot. The
default value is the current setting of options("digits").

main, xlab, ylab, type, ...

additional graphical parameters (see par).

Details

See the help files for aovPower and aovN for information on how to compute the power and sample
size for a one-way fixed-effects analysis of variance.

Value

plotAovDesign invisibly returns a list with components:

x.var x-coordinates of the points that have been or would have been plotted

y.var y-coordinates of the points that have been or would have been plotted

Note

The normal and lognormal distribution are probably the two most frequently used distributions
to model environmental data. Sometimes it is necessary to compare several means to determine
whether any are significantly different from each other (e.g., USEPA, 2009, p.6-38). In this case,
assuming normally distributed data, you perform a one-way parametric analysis of variance.

In the course of designing a sampling program, an environmental scientist may wish to determine
the relationship between sample size, Type I error level, power, and differences in means if one
of the objectives of the sampling program is to determine whether a particular mean differs from
a group of means. The functions aovPower, aovN, and plotAovDesign can be used to investigate
these relationships for the case of normally-distributed observations.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Berthouex, P.M., and L.C. Brown. (1994). Statistics for Environmental Engineers. Lewis Publish-
ers, Boca Raton, FL, Chapter 17.

Helsel, D.R., and R.M. Hirsch. (1992). Statistical Methods in Water Resources Research. Elsevier,
New York, NY, Chapter 7.
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Johnson, N. L., S. Kotz, and N. Balakrishnan. (1995). Continuous Univariate Distributions, Volume
2. Second Edition. John Wiley and Sons, New York, Chapters 27, 29, 30.

Scheffe, H. (1959). The Analysis of Variance. John Wiley and Sons, New York, 477pp.

USEPA. (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Uni-
fied Guidance. EPA 530/R-09-007, March 2009. Office of Resource Conservation and Recovery
Program Implementation and Information Division. U.S. Environmental Protection Agency, Wash-
ington, D.C.

Zar, J.H. (2010). Biostatistical Analysis. Fifth Edition. Prentice-Hall, Upper Saddle River, NJ,
Chapter 10.

See Also

aovPower, aovN, Normal, aov.

Examples

# Look at the relationship between power and sample size
# for a one-way ANOVA, assuming k=2 groups, group means of
# 0 and 1, a population standard deviation of 1, and a
# 5% significance level:

dev.new()
plotAovDesign()

#--------------------------------------------------------------------

# Plot power vs. sample size for various levels of significance:

dev.new()
plotAovDesign(mu.vec = c(0, 0.5, 1), ylim=c(0, 1), main="")

plotAovDesign(mu.vec = c(0, 0.5, 1), alpha=0.1, add=TRUE, plot.col=2)

plotAovDesign(mu.vec = c(0, 0.5, 1), alpha=0.2, add=TRUE, plot.col=3)

legend(35, 0.6, c("20%", "10%", " 5%"), lty=1, lwd = 3, col=3:1,
bty = "n")

mtext("Power vs. Sample Size for One-Way ANOVA", line = 3, cex = 1.25)
mtext(expression(paste("with ", mu, "=(0, 0.5, 1), ", sigma,

"=1, and Various Significance Levels", sep="")),
line = 1.5, cex = 1.25)

#--------------------------------------------------------------------

# The example on pages 5-11 to 5-14 of USEPA (1989b) shows
# log-transformed concentrations of lead (mg/L) at two
# background wells and four compliance wells, where
# observations were taken once per month over four months
# (the data are stored in EPA.89b.loglead.df).
# Assume the true mean levels at each well are
# 3.9, 3.9, 4.5, 4.5, 4.5, and 5, respectively. Plot the
# power vs. sample size of a one-way ANOVA to test for mean
# differences between wells. Use alpha=0.05, and assume the
# true standard deviation is equal to the one estimated
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# from the data in this example.

names(EPA.89b.loglead.df)
#[1] "LogLead" "Month" "Well" "Well.type"

# Perform the ANOVA and get the estimated sd
aov.list <- aov(LogLead ~ Well, data=EPA.89b.loglead.df)

summary(aov.list)
# Df Sum Sq Mean Sq F value Pr(>F)
#Well 5 5.7447 1.14895 3.3469 0.02599 *
#Residuals 18 6.1791 0.34328
#---
#Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

# Now create the plot
dev.new()
plotAovDesign(range.x.var = c(2, 20),

mu.vec = c(3.9,3.9,4.5,4.5,4.5,5),
sigma=sqrt(0.34),
ylim = c(0, 1), digits=2)

# Clean up
#---------
rm(aov.list)
graphics.off()

plotCiBinomDesign Plots for Sampling Design Based on Confidence Interval for Binomial
Proportion or Difference Between Two Proportions

Description

Create plots for a sampling design based on a confidence interval for a binomial proportion or the
difference between two proportions.

Usage

plotCiBinomDesign(x.var = "n", y.var = "half.width",
range.x.var = NULL, n.or.n1 = 25, p.hat.or.p1.hat = 0.5,
n2 = n.or.n1, p2.hat = 0.4, ratio = 1, half.width = 0.05,
conf.level = 0.95, sample.type = "one.sample", ci.method = "score",
correct = TRUE, warn = TRUE, n.or.n1.min = 2,
n.or.n1.max = 10000, tol.half.width = 0.005, tol.p.hat = 0.005,
maxiter = 10000, plot.it = TRUE, add = FALSE, n.points = 100,
plot.col = 1, plot.lwd = 3 * par("cex"), plot.lty = 1,
digits = .Options$digits,
main = NULL, xlab = NULL, ylab = NULL, type = "l", ...)

Arguments

x.var character string indicating what variable to use for the x-axis. Possible values
are "n" (sample size; the default), "half.width" (the half-width of the con-
fidence interval), "p.hat" (the estimated probability of dQuotesuccess), and
"conf.level" (the confidence level).
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y.var character string indicating what variable to use for the y-axis. Possible values
are "half.width" (the half-width of the confidence interval; the default), and
"n" (sample size).

range.x.var numeric vector of length 2 indicating the range of the x-variable to use for the
plot. The default value depends on the value of x.var.
When x.var="n" the default value is c(10,50).
When x.var="half.width", the default value is c(0.03, 0.1).
When x.var="p.hat", the default value is c(0.5, 0.9).
When x.var="conf.level", the default value is c(0.8, 0.99).

n.or.n1 numeric scalar indicating the sample size. The default value is n.or.n1=25.
When sample.type="one.sample", n.or.n1 denotes the number of observa-
tions in the single sample. When sample.type="two.sample", n.or.n1 de-
notes the number of observations from group 1. Missing (NA), undefined (NaN),
and infinite (Inf, -Inf) values are not allowed. This argument is ignored if
either x.var="n" or y.var="n".

p.hat.or.p1.hat

numeric scalar indicating an estimated proportion.
When sample.type="one.sample", p.hat.or.p1.hat denotes the estimated
value of p, the probability of dQuotesuccess.
When sample.type="two.sample", p.hat.or.p1.hat denotes the estimated
value of p1, the probability of dQuotesuccess in group 1.
Missing (NA), undefined (NaN), and infinite (Inf, -Inf) values are not allowed.
This argument is ignored if x.var="p.hat".

n2 numeric scalar indicating the sample size for group 2. The default value is the
value of n.or.n1. Missing (NA), undefined (NaN), and infinite (Inf, -Inf) values
are not allowed. This argument is ignored when
sample.type="one.sample".

p2.hat numeric scalar indicating the estimated proportion for group 2. Missing (NA),
undefined (NaN), and infinite (Inf, -Inf) values are not allowed. This argument
is ignored if sample.type="one.sample".

ratio numeric vector indicating the ratio of sample size in group 2 to sample size in
group 1 (n2/n1). The default value is ratio=1. All values of ratio must be
greater than or equal to 1. This argument is only used when
sample.type="two.sample" and either x.var="n" or y.var="n".

half.width positive numeric scalar indicating the half-width of the confidence interval. The
default value is half.width=0.05. Missing (NA), undefined (NaN), and infi-
nite (Inf, -Inf) values are not allowed. This argument is ignored if either
x.var="half.width" or y.var="half.width".

conf.level a numeric scalar between 0 and 1 indicating the confidence level associated with
the confidence intervals. The default value is conf.level=0.95. This argument
is ignored when x.var="conf.level".

sample.type character string indicating whether this is a one-sample or two-sample confi-
dence interval. When sample.type="one.sample", the computations for the
plot are based on a confidence interval for a single proportion. When
sample.type="two.sample", the computations for the plot are based on a con-
fidence interval for the difference between two proportions. The default value is
sample.type="one.sample" unless the arguments n2, p2.hat, and/or ratio
are supplied.

ci.method character string indicating which method to use to construct the confidence in-
terval. Possible values are "score" (the default), "exact", "adjusted Wald",
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and "Wald" (the "Wald" method is never recommended but is included for his-
torical purposes). The exact method is only available for the one-sample case,
i.e., when sample.type="one.sample".

correct logical scalar indicating whether to use the continuity correction when
ci.method="score" or ci.method="Wald". The default value is
correct=TRUE. This argument is ignored if ci.method="exact" or
ci.method="adjusted Wald".

warn logical scalar indicating whether to issue a warning when ci.method="Wald"
for cases when the normal approximation to the binomial distribution probably
is not accurate. The default value is warn=TRUE.

n.or.n1.min for the case when y.var="n", integer indicating the minimum allowed value for
n (sample.type="one.sample") or
n1 (sample.type="two.sample").
The default value is n.or.n1.min=2.

n.or.n1.max for the case when y.var="n", integer indicating the maximum allowed value
for n (sample.type="one.sample") or
n1 (sample.type="two.sample").
The default value is n.or.n1.max=10000.

tol.half.width for the case when y.var="n", numeric scalar indicating the tolerance to use for
the half width for the search algorithm. The sample sizes are computed so that
the actual half width is less than or equal to
half.width + tol.half.width. The default value is
tol.half.width=0.005.

tol.p.hat for the case when y.var="n", numeric scalar indicating the tolerance to use
for the estimated proportion(s) for the search algorithm. For the one-sample
case, the sample sizes are computed so that the absolute value of the difference
between the user supplied value of p.hat.or.p1.hat and the actual estimated
proportion is less than or equal to tol.p.hat. For the two-sample case, the
sample sizes are computed so that the absolute value of the difference between
the user supplied value of p.hat.or.p1.hat and the actual estimated proportion
for group 1 is less than or equal to tol.p.hat, and the absolute value of the
difference between the user supplied value of p2.hat and the actual estimated
proportion for group 2 is less than or equal to tol.p.hat. The default value is
tol.p.hat=0.005.

maxiter for the case when y.var="n", integer indicating the maximum number of itera-
tions to use for the search algorithm. The default value is maxiter=1000.

plot.it a logical scalar indicating whether to create a plot or add to the existing plot
(see description of the argument add below) on the current graphics device. If
plot.it=FALSE, no plot is produced, but a list of (x,y) values is returned (see
the VALUE section below). The default value is plot.it=TRUE.

add a logical scalar indicating whether to add the design plot to the existing plot
(add=TRUE), or to create a plot from scratch (add=FALSE). The default value is
add=FALSE. This argument is ignored if plot.it=FALSE.

n.points a numeric scalar specifying how many (x,y) pairs to use to produce the plot.
There are n.points x-values evenly spaced between range.x.var[1] and
range.x.var[2]. The default value is n.points=100. This argument is ig-
nored when x.var="n", in which case the x-values are all the integers between
range.x.var[1] and range.x.var[2].
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plot.col a numeric scalar or character string determining the color of the plotted line or
points. The default value is plot.col=1. See the entry for col in the help file
for par for more information.

plot.lwd a numeric scalar determining the width of the plotted line. The default value is
3*par("cex"). See the entry for lwd in the help file for par for more informa-
tion.

plot.lty a numeric scalar determining the line type of the plotted line. The default value
is plot.lty=1. See the entry for lty in the help file for par for more informa-
tion.

digits a scalar indicating how many significant digits to print out on the plot. The
default value is the current setting of options("digits").

main, xlab, ylab, type,...

additional graphical parameters (see par).

Details

See the help files for ciBinomHalfWidth and ciBinomN for information on how to compute a one-
sample confidence interval for a single binomial proportion or a two-sample confidence interval for
the difference between two proportions, how the half-width is computed when other quantities are
fixed, and how the sample size is computed when other quantities are fixed.

Value

plotCiBinomDesign invisibly returns a list with components:

x.var x-coordinates of the points that have been or would have been plotted

y.var y-coordinates of the points that have been or would have been plotted

Note

The binomial distribution is used to model processes with binary (Yes-No, Success-Failure, Heads-
Tails, etc.) outcomes. It is assumed that the outcome of any one trial is independent of any other
trial, and that the probability of “success”, p, is the same on each trial. A binomial discrete random
variable X is the number of “successes” in n independent trials. A special case of the binomial
distribution occurs when n = 1, in which case X is also called a Bernoulli random variable.

In the context of environmental statistics, the binomial distribution is sometimes used to model the
proportion of times a chemical concentration exceeds a set standard in a given period of time (e.g.,
Gilbert, 1987, p.143), or to compare the proportion of detects in a compliance well vs. a background
well (e.g., USEPA, 1989b, Chapter 8, p.3-7). (However, USEPA 2009, p.8-27 recommends using
the Wilcoxon rank sum test (wilcox.test) instead of comparing proportions.)

In the course of designing a sampling program, an environmental scientist may wish to determine
the relationship between sample size, confidence level, and half-width if one of the objectives of the
sampling program is to produce confidence intervals. The functions ciBinomHalfWidth, ciBinomN,
and plotCiBinomDesign can be used to investigate these relationships for the case of binomial
proportions.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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See Also

ciBinomHalfWidth, ciBinomN, ebinom, binom.test, prop.test, par.

Examples

# Look at the relationship between half-width and sample size
# for a one-sample confidence interval for a binomial proportion,
# assuming an estimated proportion of 0.5 and a confidence level of
# 95%. The jigsaw appearance of the plot is the result of using the
# score method:

dev.new()
plotCiBinomDesign()

#----------

# Redo the example above, but use the traditional (and inaccurate)
# Wald method.
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dev.new()
plotCiBinomDesign(ci.method = "Wald")

#--------------------------------------------------------------------

# Plot sample size vs. the estimated proportion for various half-widths,
# using a 95% confidence level and the adjusted Wald method:

# NOTE: This example takes several seconds to run so it has been
# commented out. Simply remove the pound signs (#) from in front
# of the R commands to run it.

#dev.new()
#plotCiBinomDesign(x.var = "p.hat", y.var = "n",
# half.width = 0.04, ylim = c(0, 600), main = "",
# xlab = expression(hat(p)))
#
#plotCiBinomDesign(x.var = "p.hat", y.var = "n",
# half.width = 0.05, add = TRUE, plot.col = 2)
#
#plotCiBinomDesign(x.var = "p.hat", y.var = "n",
# half.width = 0.06, add = TRUE, plot.col = 3)
#
#legend(0.5, 150, paste("Half-Width =", c(0.04, 0.05, 0.06)),
# lty = rep(1, 3), lwd = rep(2, 3), col=1:3, bty = "n")
#
#mtext(expression(paste("Sample Size vs. ", hat(p),
# " for Confidence Interval for p")), line = 2.5, cex = 1.25)
#mtext("with Confidence=95% and Various Values of Half-Width",
# line = 1.5, cex = 1.25)
#mtext(paste("CI Method = Score Normal Approximation",
# "with Continuity Correction"), line = 0.5)

#--------------------------------------------------------------------

# Modifying the example on pages 8-5 to 8-7 of USEPA (1989b),
# look at the relationship between half-width and sample size
# for a 95% confidence interval for the difference between the
# proportion of detects at the background and compliance wells.
# Use the estimated proportion of detects from the original data.
# (The data are stored in EPA.89b.cadmium.df.)
# Assume equal sample sizes at each well.

EPA.89b.cadmium.df
# Cadmium.orig Cadmium Censored Well.type
#1 0.1 0.100 FALSE Background
#2 0.12 0.120 FALSE Background
#3 BDL 0.000 TRUE Background
# ..........................................
#86 BDL 0.000 TRUE Compliance
#87 BDL 0.000 TRUE Compliance
#88 BDL 0.000 TRUE Compliance

p.hat.back <- with(EPA.89b.cadmium.df,
mean(!Censored[Well.type=="Background"]))
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p.hat.back
#[1] 0.3333333

p.hat.comp <- with(EPA.89b.cadmium.df,
mean(!Censored[Well.type=="Compliance"]))

p.hat.comp
#[1] 0.375

dev.new()
plotCiBinomDesign(p.hat.or.p1.hat = p.hat.back,

p2.hat = p.hat.comp, digits=3)

#==========

# Clean up
#---------
rm(p.hat.back, p.hat.comp)
graphics.off()

plotCiNormDesign Plots for Sampling Design Based on Confidence Interval for Mean of
a Normal Distribution or Difference Between Two Means

Description

Create plots involving sample size, half-width, estimated standard deviation, and confidence level
for a confidence interval for the mean of a normal distribution or the difference between two means.

Usage

plotCiNormDesign(x.var = "n", y.var = "half.width",
range.x.var = NULL, n.or.n1 = 25, n2 = n.or.n1,
half.width = sigma.hat/2, sigma.hat = 1, conf.level = 0.95,
sample.type = ifelse(missing(n2), "one.sample", "two.sample"),
round.up = FALSE, n.max = 5000, tol = 1e-07, maxiter = 1000,
plot.it = TRUE, add = FALSE, n.points = 100,
plot.col = "black", plot.lwd = 3 * par("cex"), plot.lty = 1,
digits = .Options$digits,
main = NULL, xlab = NULL, ylab = NULL, type = "l", ...)

Arguments

x.var character string indicating what variable to use for the x-axis. Possible values are
"n" (sample size; the default), "half.width" (the half-width of the confidence
interval), "sigma.hat" (the estimated standard deviation), and "conf.level"
(the confidence level).

y.var character string indicating what variable to use for the y-axis. Possible values
are "half.width" (the half-width of the confidence interval; the default), and
"n" (sample size).
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range.x.var numeric vector of length 2 indicating the range of the x-variable to use for the
plot. The default value depends on the value of x.var. When x.var="n"
the default value is c(2,50). When x.var="half.width" the default value
is c(0.1/sigma.hat, 2/sigma.hat). When x.var="sigma.hat", the default
value is c(0.1, 2). When x.var="conf.level", the default value is c(0.5, 0.99).

n.or.n1 numeric scalar indicating the sample size. The default value is n.or.n1=25.
When sample.type="one.sample", this argument denotes the number of ob-
servations in the single sample. When sample.type="two.sample", this argu-
ment denotes the number of observations from group 1. Missing (NA), undefined
(NaN), and infinite (Inf, -Inf) values are not allowed. This argument is ignored
if either x.var="n" or y.var="n".

n2 numeric scalar indicating the sample size for group 2. The default value is the
value of n.or.n1. Missing (NA), undefined (NaN), and infinite (Inf, -Inf) values
are not allowed. This argument is ignored when
sample.type="one.sample".

half.width positive numeric scalar indicating the half-width of the confidence interval. The
default value is sigma.hat/2. Missing (NA), undefined (NaN), and infinite (Inf,
-Inf) values are not allowed. This argument is ignored if either
x.var="half.width" or y.var="half.width".

sigma.hat positive numeric scalar specifying the estimated standard deviation. The default
value is sigma.hat=1. This argument is ignored if x.var="sigma.hat".

conf.level a scalar between 0 and 1 indicating the confidence level associated with the
confidence interval. The default value is conf.level=0.95. This argument is
ignored if x.var="conf.level".

sample.type character string indicating whether this is a one-sample or two-sample confi-
dence interval.
When sample.type="one.sample", the computations for the plot are based on
a confidence interval for a single mean.
When sample.type="two.sample", the computations for the plot are based on
a confidence interval for the difference between two means.
The default value is sample.type="one.sample" unless the argument n2 is
supplied.

round.up logical scalar indicating whether to round up the computed sample sizes to the
next smallest integer. The default value is round.up=FALSE. This argument is
ignored unless y.var="n".

n.max for the case when y.var="n", positive integer greater than 1 specifying the max-
imum sample size for the single group when sample.type="one.sample" or
for group 1 when sample.type="two.sample". The default value is n.max=5000.

tol for the case when y.var="n", numeric scalar indicating the tolerance to use in
the uniroot search algorithm. The default value is tol=1e-7.

maxiter for the case when y.var="n", positive integer indicating the maximum num-
ber of iterations to use in the uniroot search algorithm. The default value is
maxiter=1000.

plot.it a logical scalar indicating whether to create a plot or add to the existing plot
(see explanation of the argument add below) on the current graphics device. If
plot.it=FALSE, no plot is produced, but a list of (x,y) values is returned (see
the section VALUE). The default value is plot.it=TRUE.

add a logical scalar indicating whether to add the design plot to the existing plot
(add=TRUE), or to create a plot from scratch (add=FALSE). The default value is
add=FALSE. This argument is ignored if plot.it=FALSE.
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n.points a numeric scalar specifying how many (x,y) pairs to use to produce the plot.
There are n.points x-values evenly spaced between range.x.var[1] and
range.x.var[2]. The default value is n.points=100.

plot.col a numeric scalar or character string determining the color of the plotted line or
points. The default value is plot.col=1. See the entry for col in the help file
for par for more information.

plot.lwd a numeric scalar determining the width of the plotted line. The default value is
3*par("cex"). See the entry for lwd in the help file for par for more informa-
tion.

plot.lty a numeric scalar determining the line type of the plotted line. The default value
is plot.lty=1. See the entry for lty in the help file for par for more informa-
tion.

digits a scalar indicating how many significant digits to print out on the plot. The
default value is the current setting of options("digits").

main, xlab, ylab, type, ...

additional graphical parameters (see par).

Details

See the help files for ciNormHalfWidth and ciNormN for information on how to compute a one-
sample confidence interval for the mean of a normal distribution or a two-sample confidence interval
for the difference between two means, how the half-width is computed when other quantities are
fixed, and how the sample size is computed when other quantities are fixed.

Value

plotCiNormDesign invisibly returns a list with components:

x.var x-coordinates of points that have been or would have been plotted.

y.var y-coordinates of points that have been or would have been plotted.

Note

The normal distribution and lognormal distribution are probably the two most frequently used dis-
tributions to model environmental data. In order to make any kind of probability statement about a
normally-distributed population (of chemical concentrations for example), you have to first estimate
the mean and standard deviation (the population parameters) of the distribution. Once you estimate
these parameters, it is often useful to characterize the uncertainty in the estimate of the mean. This
is done with confidence intervals.

In the course of designing a sampling program, an environmental scientist may wish to determine
the relationship between sample size, confidence level, and half-width if one of the objectives of the
sampling program is to produce confidence intervals. The functions ciNormHalfWidth, ciNormN,
and plotCiNormDesign can be used to investigate these relationships for the case of normally-
distributed observations.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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See Also

ciNormHalfWidth, ciNormN, Normal, enorm, t.test,
Estimating Distribution Parameters.

Examples

# Look at the relationship between half-width and sample size
# for a one-sample confidence interval for the mean, assuming
# an estimated standard deviation of 1 and a confidence level of 95%.

dev.new()
plotCiNormDesign()

#--------------------------------------------------------------------

# Plot sample size vs. the estimated standard deviation for
# various levels of confidence, using a half-width of 0.5.

dev.new()
plotCiNormDesign(x.var = "sigma.hat", y.var = "n", main = "")

plotCiNormDesign(x.var = "sigma.hat", y.var = "n", conf.level = 0.9,
add = TRUE, plot.col = 2)

plotCiNormDesign(x.var = "sigma.hat", y.var = "n", conf.level = 0.8,
add = TRUE, plot.col = 3)

legend(0.25, 60, c("95%", "90%", "80%"), lty = 1, lwd = 3, col = 1:3)

mtext("Sample Size vs. Estimated SD for Confidence Interval for Mean",
font = 2, cex = 1.25, line = 2.75)

mtext("with Half-Width=0.5 and Various Confidence Levels", font = 2,
cex = 1.25, line = 1.25)

#--------------------------------------------------------------------
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# Modifying the example on pages 21-4 to 21-5 of USEPA (2009),
# look at the relationship between half-width and sample size for a
# 95% confidence interval for the mean level of Aldicarb at the
# first compliance well. Use the estimated standard deviation from
# the first four months of data.
# (The data are stored in EPA.09.Ex.21.1.aldicarb.df.)

EPA.09.Ex.21.1.aldicarb.df
# Month Well Aldicarb.ppb
#1 1 Well.1 19.9
#2 2 Well.1 29.6
#3 3 Well.1 18.7
#4 4 Well.1 24.2
#...

mu.hat <- with(EPA.09.Ex.21.1.aldicarb.df,
mean(Aldicarb.ppb[Well=="Well.1"]))

mu.hat
#[1] 23.1

sigma.hat <- with(EPA.09.Ex.21.1.aldicarb.df,
sd(Aldicarb.ppb[Well=="Well.1"]))

sigma.hat
#[1] 4.93491

dev.new()
plotCiNormDesign(sigma.hat = sigma.hat, digits = 2,

range.x.var = c(2, 25))

#==========

# Clean up
#---------
rm(mu.hat, sigma.hat)
graphics.off()

plotCiNparDesign Plots for Sampling Design Based on Nonparametric Confidence Inter-
val for a Quantile

Description

Create plots involving sample size, quantile, and confidence level for a nonparametric confidence
interval for a quantile.

Usage

plotCiNparDesign(x.var = "n", y.var = "conf.level", range.x.var = NULL,
n = 25, p = 0.5, conf.level = 0.95, ci.type = "two.sided",
lcl.rank = ifelse(ci.type == "upper", 0, 1),
n.plus.one.minus.ucl.rank = ifelse(ci.type == "lower", 0, 1),
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plot.it = TRUE, add = FALSE, n.points = 100, plot.col = "black",
plot.lwd = 3 * par("cex"), plot.lty = 1, digits = .Options$digits,
cex.main = par("cex"), ..., main = NULL, xlab = NULL, ylab = NULL,
type = "l")

Arguments

x.var character string indicating what variable to use for the x-axis. Possible values
are "n" (sample size; the default), "p" (quantile), and "conf.level" (the con-
fidence level).

y.var character string indicating what variable to use for the y-axis. Possible values
are conf.level (confidence level; the default), and "n" (sample size).

range.x.var numeric vector of length 2 indicating the range of the x-variable to use for the
plot. The default value depends on the value of x.var. When x.var="n" the
default value is c(2,50). When x.var="p" the default value is c(0.5, 0.99).
When x.var="conf.level", the default value is c(0.5, 0.99).

n numeric scalar indicating the sample size. The default value is n=25. Missing
(NA), undefined (NaN), and infinite (Inf, -Inf) values are not allowed. This
argument is ignored if either x.var="n" or y.var="n".

p numeric scalar specifying the quantile. The value of this argument must be
between 0 and 1. The default value is p=0.5. The argument is ignored if
x.var="p".

conf.level a scalar between 0 and 1 indicating the confidence level associated with the
confidence interval. The default value is conf.level=0.95. This argument is
ignored if x.var="conf.level" or y.var="conf.level".

ci.type character string indicating what kind of confidence interval to compute. The
possible values are "two-sided" (the default), "lower", and "upper".

lcl.rank, n.plus.one.minus.ucl.rank

numeric vectors of non-negative integers indicating the ranks of the order statis-
tics that are used for the lower and upper bounds of the confidence interval for
the specified quantile(s). When lcl.rank=1 that means use the smallest value as
the lower bound, when lcl.rank=2 that means use the second to smallest value
as the lower bound, etc. When n.plus.one.minus.ucl.rank=1 that means use
the largest value as the upper bound, when n.plus.one.minus.ucl.rank=2
that means use the second to largest value as the upper bound, etc. A value
of 0 for lcl.rank indicates no lower bound (i.e., -Inf) and a value of 0 for
n.plus.one.minus.ucl.rank indicates no upper bound (i.e., Inf). When ci.type="upper"
then lcl.rank is set to 0 by default, otherwise it is set to 1 by default. When
ci.type="lower" then n.plus.one.minus.ucl.rank is set to 0 by default,
otherwise it is set to 1 by default.

plot.it a logical scalar indicating whether to create a plot or add to the existing plot
(see add) on the current graphics device. If plot.it=FALSE, no plot is pro-
duced, but a list of (x,y) values is returned (see VALUE). The default value is
plot.it=TRUE.

add a logical scalar indicating whether to add the design plot to the existing plot
(add=TRUE), or to create a plot from scratch (add=FALSE). The default value is
add=FALSE. This argument is ignored if plot.it=FALSE.

n.points a numeric scalar specifying how many (x,y) pairs to use to produce the plot.
There are n.points x-values evenly spaced between range.x.var[1] and range.x.var[2].
The default value is n.points=100.
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plot.col a numeric scalar or character string determining the color of the plotted line or
points. The default value is plot.col="black". See the entry for col in the
help file for par for more information.

plot.lwd a numeric scalar determining the width of the plotted line. The default value is
3*par("cex"). See the entry for lwd in the help file for par for more informa-
tion.

plot.lty a numeric scalar determining the line type of the plotted line. The default value
is plot.lty=1. See the entry for lty in the help file for par for more informa-
tion.

digits a scalar indicating how many significant digits to print out on the plot. The
default value is the current setting of options("digits").

cex.main, main, xlab, ylab, type, ...

additional graphical parameters (see par).

Details

See the help files for eqnpar, ciNparConfLevel, and ciNparN for information on how to compute a
nonparametric confidence interval for a quantile, how the confidence level is computed when other
quantities are fixed, and how the sample size is computed when other quantities are fixed.

Value

plotCiNparDesign invisibly returns a list with components x.var and y.var, giving coordinates
of the points that have been or would have been plotted.

Note

See the help file for eqnpar.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

See the help file for eqnpar.

See Also

eqnpar, ciNparConfLevel, ciNparN.

Examples

# Look at the relationship between confidence level and sample size for
# a two-sided nonparametric confidence interval for the 90th percentile.

dev.new()
plotCiNparDesign(p = 0.9)

#----------

# Plot sample size vs. quantile for various levels of confidence:

dev.new()
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plotCiNparDesign(x.var = "p", y.var = "n", range.x.var = c(0.8, 0.95),
ylim = c(0, 60), main = "")

plotCiNparDesign(x.var = "p", y.var = "n", conf.level = 0.9, add = TRUE,
plot.col = 2, plot.lty = 2)

plotCiNparDesign(x.var = "p", y.var = "n", conf.level = 0.8, add = TRUE,
plot.col = 3, plot.lty = 3)

legend("topleft", c("95%", "90%", "80%"), lty = 1:3, col = 1:3,
lwd = 3 * par(cex), bty = n)

title(main = paste("Sample Size vs. Quantile for ",
"Nonparametric CI for \nQuantile, with ",
"Various Confidence Levels", sep=""))

#==========

# Clean up
#---------
graphics.off()

plotLinearTrendTestDesign

Plots for a Sampling Design Based on a t-Test for Linear Trend

Description

Create plots involving sample size, power, scaled difference, and significance level for a t-test for
linear trend.

Usage

plotLinearTrendTestDesign(x.var = "n", y.var = "power",
range.x.var = NULL, n = 12,
slope.over.sigma = switch(alternative, greater = 0.1, less = -0.1,
two.sided = ifelse(two.sided.direction == "greater", 0.1, -0.1)),

alpha = 0.05, power = 0.95, alternative = "two.sided",
two.sided.direction = "greater", approx = FALSE, round.up = FALSE,
n.max = 5000, tol = 1e-07, maxiter = 1000, plot.it = TRUE, add = FALSE,
n.points = ifelse(x.var == "n", diff(range.x.var) + 1, 50),
plot.col = "black", plot.lwd = 3 * par("cex"), plot.lty = 1,
digits = .Options$digits, ..., main = NULL, xlab = NULL, ylab = NULL,
type = "l")

Arguments

x.var character string indicating what variable to use for the x-axis. Possible values
are "n" (sample size; the default), "slope.over.sigma" (scaled minimal de-
tectable slope), "power" (power of the test), and "alpha" (significance level of
the test).
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y.var character string indicating what variable to use for the y-axis. Possible values are
"power" (power of the test; the default), "slope.over.sigma" (scaled minimal
detectable slope), and "n" (sample size).

range.x.var numeric vector of length 2 indicating the range of the x-variable to use for the
plot. The default value depends on the value of x.var. When x.var="n" the de-
fault value is c(3,25). When x.var="slope.over.sigma" and alternative="greater"
or alternative="two.sided" and two.sided.direction="greater", the de-
fault value is c(0.1, 1). When x.var="slope.over.sigma" and alternative="less"
or alternative="two.sided" and two.sided.direction="less", the default
value is -c(1, 0.1). When x.var="power" the default value is c(alpha + .Machine$double.eps, 0.95).
When x.var="alpha", the default value is c(0.01, 0.2).

n numeric scalar indicating the sample size. The default value is n=12. Missing
(NA), undefined (NaN), and infinite (Inf, -Inf) values are not allowed. This
argument is ignored if either x.var="n" or y.var="n".

slope.over.sigma

numeric scalar specifying the ratio of the true slope (β1) to the population stan-
dard deviation of the error terms (σ). This is also called the "scaled slope".
When alternative="greater" or alternative="two.sided" and two.sided.direction="greater",
the default value is slope.over.sigma=0.1. When alternative="less" or
alternative="two.sided" and two.sided.direction="less", the default
value is delta.over.sigma=-0.1. This argument is ignored when x.var="slope.over.sigma"
or y.var="slope.over.sigma".

alpha numeric scalar between 0 and 1 indicating the Type I error level associated with
the hypothesis test. The default value is alpha=0.05. This argument is ignored
when x.var="alpha".

power numeric scalar between 0 and 1 indicating the power associated with the hy-
pothesis test. The default value is power=0.95. This argument is ignored when
x.var="power" or y.var="power".

alternative character string indicating the kind of alternative hypothesis. The possible val-
ues are "two.sided" (the default), "greater", and "less".

two.sided.direction

character string indicating the direction (positive or negative) for the scaled min-
imal detectable slope when alternative="two.sided". When two.sided.direction="greater"
(the default), the scaled minimal detectable slope is positive. When two.sided.direction="less",
the scaled minimal detectable slope is negative. This argument is ignored if
alternative="less" or alternative="greater".

approx logical scalar indicating whether to compute the power based on an approxima-
tion to the non-central t-distribution. The default value is approx=FALSE.

round.up logical scalar indicating whether to round up the values of the computed sample
size(s) to the next smallest integer. The default value is FALSE.

n.max for the case when y.var="n", a positive integer greater than 2 indicating the
maximum sample size. The default value is n.max=5000.

tol numeric scalar indicating the toloerance to use in the uniroot search algorithm.
The default value is tol=1e-7.

maxiter positive integer indicating the maximum number of iterations argument to pass
to the uniroot function. The default value is maxiter=1000.

plot.it a logical scalar indicating whether to create a new plot or add to the existing
plot (see add) on the current graphics device. If plot.it=FALSE, no plot is
produced, but a list of (x,y) values is returned (see VALUE). The default value
is plot.it=TRUE.
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add a logical scalar indicating whether to add the design plot to the existing plot
(add=TRUE), or to create a plot from scratch (add=FALSE). The default value is
add=FALSE. This argument is ignored if plot.it=FALSE.

n.points a numeric scalar specifying how many (x,y) pairs to use to produce the plot.
There are n.points x-values evenly spaced between range.x.var[1] and range.x.var[2].
The default value is n.points=50 unless x.var="n", in which case n.points=diff(range.x.var)+1.

plot.col a numeric scalar or character string determining the color of the plotted line or
points. The default value is plot.col="black". See the entry for col in the
help file for par for more information.

plot.lwd a numeric scalar determining the width of the plotted line. The default value is
3*par("cex"). See the entry for lwd in the help file for par for more informa-
tion.

plot.lty a numeric scalar determining the line type of the plotted line. The default value
is plot.lty=1. See the entry for lty in the help file for par for more informa-
tion.

digits a scalar indicating how many significant digits to print out on the plot. The
default value is the current setting of options("digits").

main, xlab, ylab, type, ...

additional graphical parameters (see par).

Details

See the help files for linearTrendTestPower, linearTrendTestN, and linearTrendTestScaledMds
for information on how to compute the power, sample size, or scaled minimal detectable slope for
a t-test for linear trend.

Value

plotlinearTrendTestDesign invisibly returns a list with components x.var and y.var, giving
coordinates of the points that have been or would have been plotted.

Note

See the help files for linearTrendTestPower.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

See the help file for linearTrendTestPower.

See Also

linearTrendTestPower, linearTrendTestN, linearTrendTestScaledMds.
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Examples

# Look at the relationship between power and sample size for the t-test for
# liner trend, assuming a scaled slope of 0.1 and a 5% significance level:

dev.new()
plotLinearTrendTestDesign()

#==========

# Plot sample size vs. the scaled minimal detectable slope for various
# levels of power, using a 5% significance level:

dev.new()
plotLinearTrendTestDesign(x.var = "slope.over.sigma", y.var = "n",

ylim = c(0, 30), main = "")

plotLinearTrendTestDesign(x.var = "slope.over.sigma", y.var = "n",
power = 0.9, add = TRUE, plot.col = "red")

plotLinearTrendTestDesign(x.var = "slope.over.sigma", y.var = "n",
power = 0.8, add = TRUE, plot.col = "blue")

legend("topright", c("95%", "90%", "80%"), lty = 1, bty = "n",
lwd = 3 * par("cex"), col = c("black", "red", "blue"))

title(main = paste("Sample Size vs. Scaled Slope for t-Test for Linear Trend",
"with Alpha=0.05 and Various Powers", sep="\n"))

#==========

# Clean up
#---------
graphics.off()

plotPredIntLnormAltSimultaneousTestPowerCurve

Power Curves for Sampling Design for Test Based on Simultaneous
Prediction Interval for Lognormal Distribution

Description

Plot power vs. θ1/θ2 (ratio of means) for a sampling design for a test based on a simultaneous
prediction interval for a lognormal distribution.

Usage

plotPredIntLnormAltSimultaneousTestPowerCurve(n = 8, df = n - 1, n.geomean = 1,
k = 1, m = 2, r = 1, rule = "k.of.m", cv = 1, range.ratio.of.means = c(1, 5),
pi.type = "upper", conf.level = 0.95, r.shifted = r,
K.tol = .Machine$double.eps^(1/2), integrate.args.list = NULL, plot.it = TRUE,
add = FALSE, n.points = 20, plot.col = "black", plot.lwd = 3 * par("cex"),
plot.lty = 1, digits = .Options$digits, cex.main = par("cex"), ...,
main = NULL, xlab = NULL, ylab = NULL, type = "l")
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Arguments

n positive integer greater than 2 indicating the sample size upon which the predic-
tion interval is based. The default is value is n=8.

df positive integer indicating the degrees of freedom associated with the sample
size. The default value is df=n-1.

n.geomean positive integer specifying the sample size associated with the future geometric
mean(s). The default value is n.geomean=1 (i.e., individual observations). Note
that all future geometric means must be based on the same sample size.

k for the k-of-m rule (rule="k.of.m"), positive integer specifying the minimum
number of observations (or averages) out of m observations (or averages) (all
obtained on one future sampling “occassion”) the prediction interval should con-
tain with confidence level conf.level. The default value is k=1. This argument
is ignored when the argument rule is not equal to "k.of.m".

m positive integer specifying the maximum number of future observations (or av-
erages) on one future sampling “occasion”. The default value is m=2, except
when rule="Modified.CA", in which case this argument is ignored and m is
automatically set equal to 4.

r positive integer specifying the number of future sampling “occasions”. The de-
fault value is r=1.

rule character string specifying which rule to use. The possible values are "k.of.m"
(k-of-m rule; the default), "CA" (California rule), and "Modified.CA" (modified
California rule).

cv positive value specifying the coefficient of variation for both the population that
was sampled to construct the prediction interval and the population that will be
sampled to produce the future observations. The default value is cv=1.

range.ratio.of.means

numeric vector of length 2 indicating the range of the x-variable to use for the
plot. The default value is range.ratio.of.means=c(1,5).

pi.type character string indicating what kind of prediction interval to compute. The
possible values are pi.type="upper" (the default), and pi.type="lower".

conf.level numeric scalar between 0 and 1 indicating the confidence level of the prediction
interval. The default value is conf.level=0.95.

r.shifted positive integer between 1 and coder specifying the number of future sampling
occasions for which the mean is shifted. The default value is r.shifted=r.

K.tol numeric scalar indicating the tolerance to use in the nonlinear search algorithm
to compute K. The default value is K.tol=.Machine$double.eps^(1/2). For
many applications, the value ofK needs to be known only to the second decimal
place, in which case setting K.tol=1e-4 will speed up computation a bit.

integrate.args.list

a list of arguments to supply to the integrate function. The default value is
integrate.args.list=NULL which means that the default values of integrate
are used.

plot.it a logical scalar indicating whether to create a plot or add to the existing plot
(see explanation of the argument add below) on the current graphics device. If
plot.it=FALSE, no plot is produced, but a list of (x,y) values is returned (see
the section VALUE). The default value is plot.it=TRUE.

add a logical scalar indicating whether to add the design plot to the existing plot
(add=TRUE), or to create a plot from scratch (add=FALSE). The default value is
add=FALSE. This argument is ignored if plot.it=FALSE.
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n.points a numeric scalar specifying how many (x,y) pairs to use to produce the plot.
There are n.points x-values evenly spaced between range.x.var[1] and
range.x.var[2]. The default value is n.points=100.

plot.col a numeric scalar or character string determining the color of the plotted line or
points. The default value is plot.col="black". See the entry for col in the
help file for par for more information.

plot.lwd a numeric scalar determining the width of the plotted line. The default value is
3*par("cex"). See the entry for lwd in the help file for par for more informa-
tion.

plot.lty a numeric scalar determining the line type of the plotted line. The default value
is plot.lty=1. See the entry for lty in the help file for par for more informa-
tion.

digits a scalar indicating how many significant digits to print out on the plot. The
default value is the current setting of options("digits").

cex.main, main, xlab, ylab, type, ...

additional graphical parameters (see par).

Details

See the help file for predIntLnormAltSimultaneousTestPower for information on how to com-
pute the power of a hypothesis test for the difference between two means of lognormal distributions
based on a simultaneous prediction interval for a lognormal distribution.

Value

plotPredIntLnormAltSimultaneousTestPowerCurve invisibly returns a list with components:

x.var x-coordinates of points that have been or would have been plotted.

y.var y-coordinates of points that have been or would have been plotted.

Note

See the help file for predIntNormSimultaneous.

In the course of designing a sampling program, an environmental scientist may wish to determine
the relationship between sample size, significance level, power, and scaled difference if one of the
objectives of the sampling program is to determine whether two distributions differ from each other.
The functions predIntLnormAltSimultaneousTestPower and plotPredIntLnormAltSimultaneousTestPowerCurve
can be used to investigate these relationships for the case of normally-distributed observations.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

See the help file for predIntNormSimultaneous.

See Also

predIntLnormAltSimultaneousTestPower, predIntLnormAltSimultaneous, predIntLnormAlt,
predIntLnormAltTestPower, Prediction Intervals, LognormalAlt.
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Examples

# USEPA (2009) contains an example on page 19-23 that involves monitoring
# nw=100 compliance wells at a large facility with minimal natural spatial
# variation every 6 months for nc=20 separate chemicals.
# There are n=25 background measurements for each chemical to use to create
# simultaneous prediction intervals. We would like to determine which kind of
# resampling plan based on normal distribution simultaneous prediction intervals to
# use (1-of-m, 1-of-m based on means, or Modified California) in order to have
# adequate power of detecting an increase in chemical concentration at any of the
# 100 wells while at the same time maintaining a site-wide false positive rate
# (SWFPR) of 10% per year over all 4,000 comparisons
# (100 wells x 20 chemicals x semi-annual sampling).

# The function predIntNormSimultaneousTestPower includes the argument "r"
# that is the number of future sampling occasions (r=2 in this case because
# we are performing semi-annual sampling), so to compute the individual test
# Type I error level alpha.test (and thus the individual test confidence level),
# we only need to worry about the number of wells (100) and the number of
# constituents (20): alpha.test = 1-(1-alpha)^(1/(nw x nc)). The individual
# confidence level is simply 1-alpha.test. Plugging in 0.1 for alpha,
# 100 for nw, and 20 for nc yields an individual test confidence level of
# 1-alpha.test = 0.9999473.

nc <- 20
nw <- 100
conf.level <- (1 - 0.1)^(1 / (nc * nw))
conf.level
#[1] 0.9999473

# The help file for predIntNormSimultaneousTestPower shows how to
# create the results below for various sampling plans:

# Rule k m N.Mean K Power Total.Samples
#1 k.of.m 1 2 1 3.16 0.39 2
#2 k.of.m 1 3 1 2.33 0.65 3
#3 k.of.m 1 4 1 1.83 0.81 4
#4 Modified.CA 1 4 1 2.57 0.71 4
#5 k.of.m 1 1 2 3.62 0.41 2
#6 k.of.m 1 2 2 2.33 0.85 4
#7 k.of.m 1 1 3 2.99 0.71 3

# The above table shows the K-multipliers for each prediction interval, along with
# the power of detecting a change in concentration of three standard deviations at
# any of the 100 wells during the course of a year, for each of the sampling
# strategies considered. The last three rows of the table correspond to sampling
# strategies that involve using the mean of two or three observations.

# Here we will create a variation of this example based on
# using a lognormal distribution and plotting power versus ratio of the
# means assuming cv=1.

# Here is the power curve for the 1-of-4 sampling strategy:

dev.new()
plotPredIntLnormAltSimultaneousTestPowerCurve(n = 25, k = 1, m = 4, r = 2,

rule="k.of.m", range.ratio.of.means = c(1, 10), pi.type = "upper",
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conf.level = conf.level, ylim = c(0, 1), main = "")

title(main = paste("Power Curves for 1-of-4 Sampling Strategy Based on 25 Background",
"Samples, SWFPR=10%, and 2 Future Sampling Periods", sep = "\n"))

mtext("Assuming Lognormal Data with CV=1", line = 0)

#----------

# Here are the power curves for the first four sampling strategies.
# Because this takes several seconds to run, here we have commented out
# the R commands. To run this example, just remove the pound signs (#)
# from in front of the R commands.

#dev.new()
#plotPredIntLnormAltSimultaneousTestPowerCurve(n = 25, k = 1, m = 4, r = 2,
# rule="k.of.m", range.ratio.of.means = c(1, 10), pi.type = "upper",
# conf.level = conf.level, ylim = c(0, 1), main = "")

#plotPredIntLnormAltSimultaneousTestPowerCurve(n = 25, k = 1, m = 3, r = 2,
# rule="k.of.m", range.ratio.of.means = c(1, 10), pi.type = "upper",
# conf.level = conf.level, add = TRUE, plot.col = "red", plot.lty = 2)

#plotPredIntLnormAltSimultaneousTestPowerCurve(n = 25, k = 1, m = 2, r = 2,
# rule="k.of.m", range.ratio.of.means = c(1, 10), pi.type = "upper",
# conf.level = conf.level, add = TRUE, plot.col = "blue", plot.lty = 3)

#plotPredIntLnormAltSimultaneousTestPowerCurve(n = 25, r = 2, rule="Modified.CA",
# range.ratio.of.means = c(1, 10), pi.type = "upper", conf.level = conf.level,
# add = TRUE, plot.col = "green3", plot.lty = 4)

#legend("topleft", c("1-of-4", "Modified CA", "1-of-3", "1-of-2"),
# col = c("black", "green3", "red", "blue"), lty = c(1, 4, 2, 3),
# lwd = 3 * par("cex"), bty = "n")

#title(main = paste("Power Curves for 4 Sampling Strategies Based on 25 Background",
# "Samples, SWFPR=10%, and 2 Future Sampling Periods", sep = "\n"))
#mtext("Assuming Lognormal Data with CV=1", line = 0)

#----------

# Here are the power curves for the last 3 sampling strategies:
# Because this takes several seconds to run, here we have commented out
# the R commands. To run this example, just remove the pound signs (#)
# from in front of the R commands.

#dev.new()
#plotPredIntLnormAltSimultaneousTestPowerCurve(n = 25, k = 1, m = 2, n.geomean = 2,
# r = 2, rule="k.of.m", range.ratio.of.means = c(1, 10), pi.type = "upper",
# conf.level = conf.level, ylim = c(0, 1), main = "")

#plotPredIntLnormAltSimultaneousTestPowerCurve(n = 25, k = 1, m = 1, n.geomean = 2,
# r = 2, rule="k.of.m", range.ratio.of.means = c(1, 10), pi.type = "upper",
# conf.level = conf.level, add = TRUE, plot.col = "red", plot.lty = 2)

#plotPredIntLnormAltSimultaneousTestPowerCurve(n = 25, k = 1, m = 1, n.geomean = 3,
# r = 2, rule="k.of.m", range.ratio.of.means = c(1, 10), pi.type = "upper",
# conf.level = conf.level, add = TRUE, plot.col = "blue", plot.lty = 3)
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#legend("topleft", c("1-of-2, Order 2", "1-of-1, Order 3", "1-of-1, Order 2"),
# col = c("black", "blue", "red"), lty = c(1, 3, 2), lwd = 3 * par("cex"),
# bty="n")

#title(main = paste("Power Curves for 3 Sampling Strategies Based on 25 Background",
# "Samples, SWFPR=10%, and 2 Future Sampling Periods", sep = "\n"))
#mtext("Assuming Lognormal Data with CV=1", line = 0)

#==========

# Clean up
#---------
rm(nc, nw, conf.level)
graphics.off()

plotPredIntLnormAltTestPowerCurve

Power Curves for Sampling Design for Test Based on Prediction In-
terval for Lognormal Distribution

Description

Plot power vs. θ1/θ2 (ratio of means) for a sampling design for a test based on a prediction interval
for a lognormal distribution.

Usage

plotPredIntLnormAltTestPowerCurve(n = 8, df = n - 1, n.geomean = 1, k = 1,
cv = 1, range.ratio.of.means = c(1, 5), pi.type = "upper", conf.level = 0.95,
plot.it = TRUE, add = FALSE, n.points = 20, plot.col = "black",
plot.lwd = 3 * par("cex"), plot.lty = 1, digits = .Options$digits, ...,
main = NULL, xlab = NULL, ylab = NULL, type = "l")

Arguments

n positive integer greater than 2 indicating the sample size upon which the predic-
tion interval is based. The default is value is n=8.

df positive integer indicating the degrees of freedom associated with the sample
size. The default value is df=n-1.

n.geomean positive integer specifying the sample size associated with the future geometric
mean(s). The default value is n.geomean=1 (i.e., individual observations). Note
that all future geometric means must be based on the same sample size.

k positive integer specifying the number of future observations that the prediction
interval should contain with confidence level conf.level. The default value is
k=1.

cv positive value specifying the coefficient of variation for both the population that
was sampled to construct the prediction interval and the population that will be
sampled to produce the future observations. The default value is cv=1.

range.ratio.of.means

numeric vector of length 2 indicating the range of the x-variable to use for the
plot. The default value is range.ratio.of.means=c(1,5).
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pi.type character string indicating what kind of prediction interval to compute. The
possible values are pi.type="upper" (the default), and pi.type="lower".

conf.level numeric scalar between 0 and 1 indicating the confidence level of the prediction
interval. The default value is conf.level=0.95.

plot.it a logical scalar indicating whether to create a plot or add to the existing plot
(see explanation of the argument add below) on the current graphics device. If
plot.it=FALSE, no plot is produced, but a list of (x,y) values is returned (see
the section VALUE). The default value is plot.it=TRUE.

add a logical scalar indicating whether to add the design plot to the existing plot
(add=TRUE), or to create a plot from scratch (add=FALSE). The default value is
add=FALSE. This argument is ignored if plot.it=FALSE.

n.points a numeric scalar specifying how many (x,y) pairs to use to produce the plot.
There are n.points x-values evenly spaced between range.x.var[1] and
range.x.var[2]. The default value is n.points=100.

plot.col a numeric scalar or character string determining the color of the plotted line or
points. The default value is plot.col="black". See the entry for col in the
help file for par for more information.

plot.lwd a numeric scalar determining the width of the plotted line. The default value is
3*par("cex"). See the entry for lwd in the help file for par for more informa-
tion.

plot.lty a numeric scalar determining the line type of the plotted line. The default value
is plot.lty=1. See the entry for lty in the help file for par for more informa-
tion.

digits a scalar indicating how many significant digits to print out on the plot. The
default value is the current setting of options("digits").

main, xlab, ylab, type, ...

additional graphical parameters (see par).

Details

See the help file for predIntLnormAltTestPower for information on how to compute the power of
a hypothesis test for the ratio of two means of lognormal distributions based on a prediction interval
for a lognormal distribution.

Value

plotPredIntLnormAltTestPowerCurve invisibly returns a list with components:

x.var x-coordinates of points that have been or would have been plotted.

y.var y-coordinates of points that have been or would have been plotted.

Note

See the help files for predIntNormTestPower.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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References

See the help files for predIntNormTestPower and tTestLnormAltPower.

See Also

predIntLnormAltTestPower, predIntLnormAlt, predIntNorm, predIntNormK, plotPredIntNormTestPowerCurve,
predIntLnormAltSimultaneous, predIntLnormAltSimultaneousTestPower, Prediction Inter-
vals, LognormalAlt.

Examples

# Pages 6-16 to 6-17 of USEPA (2009) present EPA Reference Power Curves (ERPC)
# for groundwater monitoring:
#
# "Since effect sizes discussed in the next section often cannot or have not been
# quantified, the Unified Guidance recommends using the ERPC as a suitable basis
# of comparison for proposed testing procedures. Each reference power curve
# corresponds to one of three typical yearly statistical evaluation schedules -
# quarterly, semi-annual, or annual - and represents the cumulative power
# achievable during a single year at one well-constituent pair by a 99% upper
# (normal) prediction limit based on n = 10 background measurements and one new
# measurement from the compliance well.
#
# Here we will create a variation of Figure 6-3 on page 6-17 based on
# using a lognormal distribution and plotting power versus ratio of the
# means assuming cv=1.

dev.new()
plotPredIntLnormAltTestPowerCurve(n = 10, k = 1, cv = 1, conf.level = 0.99,

range.ratio.of.means = c(1, 10), ylim = c(0, 1), main="")

plotPredIntLnormAltTestPowerCurve(n = 10, k = 2, cv = 1, conf.level = 0.99,
range.ratio.of.means = c(1, 10), add = TRUE, plot.col = "red", plot.lty = 2)

plotPredIntLnormAltTestPowerCurve(n = 10, k = 4, cv = 1, conf.level = 0.99,
range.ratio.of.means = c(1, 10), add = TRUE, plot.col = "blue", plot.lty = 3)

legend("topleft", c("Quarterly", "Semi-Annual", "Annual"), lty = 3:1,
lwd = 3 * par("cex"), col = c("blue", "red", "black"), bty = "n")

title(main = paste("Power vs. Ratio of Means for Upper Prediction Interval with",
"n=10, Confidence=99%, and Various Sampling Frequencies", sep="\n"))

mtext("Assuming a Lognormal Distribution with CV = 1", line = 0)

#==========

# Plot power vs. ratio of means for various sample sizes using a
# 5% significance level and assuming cv=1.

dev.new()
plotPredIntLnormAltTestPowerCurve(n = 8, k = 1,

range.ratio.of.means=c(1, 10), ylim = c(0, 1), main = "")

plotPredIntLnormAltTestPowerCurve(n = 16, k = 1,
range.ratio.of.means = c(1, 10), add = TRUE, plot.col = "red")
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plotPredIntLnormAltTestPowerCurve(n = 32, k = 1,
range.ratio.of.means=c(1, 10), add = TRUE, plot.col = "blue")

legend("topleft", c("n=32", "n=16", "n=8"), lty = 1, lwd = 3 * par("cex"),
col = c("blue", "red", "black"), bty = "n")

title(main = paste("Power vs. Ratio of Means for Upper Prediction Interval",
"with k=1, Confidence=95%, and Various Sample Sizes", sep="\n"))

mtext("Assuming a Lognormal Distribution with CV = 1", line = 0)

#==========

# Clean up
#---------
graphics.off()

plotPredIntNormDesign Plots for a Sampling Design Based on a Prediction Interval for the
Next k Observations from a Normal Distribution

Description

Create plots involving sample size, number of future observations, half-width, estimated standard
deviation, and confidence level for a prediction interval for the next k observations from a normal
distribution.

Usage

plotPredIntNormDesign(x.var = "n", y.var = "half.width", range.x.var = NULL,
n = 25, k = 1, n.mean = 1, half.width = 4 * sigma.hat, sigma.hat = 1,
method = "Bonferroni", conf.level = 0.95, round.up = FALSE, n.max = 5000,
tol = 1e-07, maxiter = 1000, plot.it = TRUE, add = FALSE, n.points = 100,
plot.col = "black", plot.lwd = 3 * par("cex"), plot.lty = 1,
digits = .Options$digits, cex.main = par("cex"), ..., main = NULL,
xlab = NULL, ylab = NULL, type = "l")

Arguments

x.var character string indicating what variable to use for the x-axis. Possible values are
"n" (sample size; the default), "half.width" (the half-width of the confidence
interval), "k" (number of future observations or averages), "sigma.hat" (the
estimated standard deviation), and "conf.level" (the confidence level).

y.var character string indicating what variable to use for the y-axis. Possible values
are "half.width" (the half-width of the confidence interval; the default), and
"n" (sample size).

range.x.var numeric vector of length 2 indicating the range of the x-variable to use for
the plot. The default value depends on the value of x.var. When x.var="n"
the default value is c(2,50). When x.var="half.width" the default value is
c(2.5 * sigma.hat, 4 * sigma.hat). When x.var="k" the default value is
c(1, 20). When x.var="sigma.hat", the default value is c(0.1, 2). When
x.var="conf.level", the default value is c(0.5, 0.99).
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n positive integer greater than 1 indicating the sample size upon which the predic-
tion interval is based. The default value is n=25. Missing (NA), undefined (NaN),
and infinite (Inf, -Inf) values are not allowed.

k positive integer specifying the number of future observations or averages the
prediction interval should contain with confidence level conf.level. The de-
fault value is k=1. This argument is ignored if x.var="k".

n.mean positive integer specifying the sample size associated with the k future averages.
The default value is n.mean=1 (i.e., individual observations). Note that all future
averages must be based on the same sample size.

half.width positive scalar indicating the half-widths of the prediction interval. The de-
fault value is half.width=4*sigma.hat. This argument is ignored if either
x.var="half.width" or y.var="half.width".

sigma.hat numeric scalar specifying the value of the estimated standard deviation. The
default value is sigma.hat=1. This argument is ignored if x.var="sigma.hat".

method character string specifying the method to use if the number of future obser-
vations (k) is greater than 1. The possible values are method="Bonferroni"
(approximate method based on Bonferonni inequality; the default), and
method="exact" (exact method due to Dunnett, 1955). This argument is ig-
nored if k=1.

conf.level numeric scalar between 0 and 1 indicating the confidence level of the prediction
interval. The default value is conf.level=0.95.

round.up for the case when y.var="n", logical scalar indicating whether to round up the
values of the computed sample sizes to the next smallest integer. The default
value is round.up=TRUE.

n.max for the case when y.var="n", the maximum possible sample size. The default
value is n.max=5000.

tol numeric scalar indicating the tolerance to use in the uniroot search algorithm.
The default value is tol=1e-7.

maxiter positive integer indicating the maximum number of iterations to use in the uniroot
search algorithm. The default value is maxiter=1000.

plot.it a logical scalar indicating whether to create a plot or add to the existing plot
(see explanation of the argument add below) on the current graphics device. If
plot.it=FALSE, no plot is produced, but a list of (x,y) values is returned (see
the section VALUE). The default value is plot.it=TRUE.

add a logical scalar indicating whether to add the design plot to the existing plot
(add=TRUE), or to create a plot from scratch (add=FALSE). The default value is
add=FALSE. This argument is ignored if plot.it=FALSE.

n.points a numeric scalar specifying how many (x,y) pairs to use to produce the plot.
There are n.points x-values evenly spaced between range.x.var[1] and
range.x.var[2]. The default value is n.points=100.

plot.col a numeric scalar or character string determining the color of the plotted line or
points. The default value is plot.col="black". See the entry for col in the
help file for par for more information.

plot.lwd a numeric scalar determining the width of the plotted line. The default value is
3*par("cex"). See the entry for lwd in the help file for par for more informa-
tion.

plot.lty a numeric scalar determining the line type of the plotted line. The default value
is plot.lty=1. See the entry for lty in the help file for par for more informa-
tion.
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digits a scalar indicating how many significant digits to print out on the plot. The
default value is the current setting of options("digits").

cex.main, main, xlab, ylab, type, ...

additional graphical parameters (see par).

Details

See the help files for predIntNorm, predIntNormK, predIntNormHalfWidth, and predIntNormN
for information on how to compute a prediction interval for the next k observations or averages
from a normal distribution, how the half-width is computed when other quantities are fixed, and
how the sample size is computed when other quantities are fixed.

Value

plotPredIntNormDesign invisibly returns a list with components:

x.var x-coordinates of points that have been or would have been plotted.

y.var y-coordinates of points that have been or would have been plotted.

Note

See the help file for predIntNorm.

In the course of designing a sampling program, an environmental scientist may wish to determine
the relationship between sample size, confidence level, and half-width if one of the objectives of
the sampling program is to produce prediction intervals. The functions predIntNormHalfWidth,
predIntNormN, and plotPredIntNormDesign can be used to investigate these relationships for the
case of normally-distributed observations.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

See the help file for predIntNorm.

See Also

predIntNorm, predIntNormK, predIntNormHalfWidth, predIntNormN, Normal.

Examples

# Look at the relationship between half-width and sample size for a
# prediction interval for k=1 future observation, assuming an estimated
# standard deviation of 1 and a confidence level of 95%:

dev.new()
plotPredIntNormDesign()

#==========

# Plot sample size vs. the estimated standard deviation for various levels
# of confidence, using a half-width of 4:
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dev.new()
plotPredIntNormDesign(x.var = "sigma.hat", y.var = "n", range.x.var = c(1, 2),

ylim = c(0, 90), main = "")

plotPredIntNormDesign(x.var = "sigma.hat", y.var = "n", range.x.var = c(1, 2),
conf.level = 0.9, add = TRUE, plot.col = "red")

plotPredIntNormDesign(x.var = "sigma.hat", y.var = "n", range.x.var = c(1, 2),
conf.level = 0.8, add = TRUE, plot.col = "blue")

legend("topleft", c("95%", "90%", "80%"), lty = 1, lwd = 3 * par("cex"),
col = c("black", "red", "blue"), bty = "n")

title(main = paste("Sample Size vs. Sigma Hat for Prediction Interval for",
"k=1 Future Obs, Half-Width=4, and Various Confidence Levels",
sep = "\n"))

#==========

# The data frame EPA.92c.arsenic3.df contains arsenic concentrations (ppb)
# collected quarterly for 3 years at a background well and quarterly for
# 2 years at a compliance well. Using the data from the background well,
# plot the relationship between half-width and sample size for a two-sided
# 90% prediction interval for k=4 future observations.

EPA.92c.arsenic3.df
# Arsenic Year Well.type
#1 12.6 1 Background
#2 30.8 1 Background
#3 52.0 1 Background
#...
#18 3.8 5 Compliance
#19 2.6 5 Compliance
#20 51.9 5 Compliance

mu.hat <- with(EPA.92c.arsenic3.df,
mean(Arsenic[Well.type=="Background"]))

mu.hat
#[1] 27.51667

sigma.hat <- with(EPA.92c.arsenic3.df,
sd(Arsenic[Well.type=="Background"]))

sigma.hat
#[1] 17.10119

dev.new()
plotPredIntNormDesign(x.var = "n", y.var = "half.width", range.x.var = c(4, 50),

k = 4, sigma.hat = sigma.hat, conf.level = 0.9)

#==========

# Clean up
#---------
rm(mu.hat, sigma.hat)
graphics.off()
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plotPredIntNormSimultaneousTestPowerCurve

Power Curves for Sampling Design for Test Based on Simultaneous
Prediction Interval for Normal Distribution

Description

Plot power vs. ∆/σ (scaled minimal detectable difference) for a sampling design for a test based
on a simultaneous prediction interval for a normal distribution.

Usage

plotPredIntNormSimultaneousTestPowerCurve(n = 8, df = n - 1, n.mean = 1,
k = 1, m = 2, r = 1, rule = "k.of.m", range.delta.over.sigma = c(0, 5),
pi.type = "upper", conf.level = 0.95, r.shifted = r,
K.tol = .Machine$double.eps^(1/2), integrate.args.list = NULL,
plot.it = TRUE, add = FALSE, n.points = 20, plot.col = "black",
plot.lwd = 3 * par("cex"), plot.lty = 1, digits = .Options$digits,
cex.main = par("cex"), ..., main = NULL, xlab = NULL, ylab = NULL, type = "l")

Arguments

n positive integer greater than 2 indicating the sample size upon which the predic-
tion interval is based. The default is value is n=8.

df positive integer indicating the degrees of freedom associated with the sample
size. The default value is df=n-1.

n.mean positive integer specifying the sample size associated with the future average(s).
The default value is n.mean=1 (i.e., individual observations). Note that all future
averages must be based on the same sample size.

k for the k-of-m rule (rule="k.of.m"), positive integer specifying the minimum
number of observations (or averages) out of m observations (or averages) (all
obtained on one future sampling “occassion”) the prediction interval should con-
tain with confidence level conf.level. The default value is k=1. This argument
is ignored when the argument rule is not equal to "k.of.m".

m positive integer specifying the maximum number of future observations (or av-
erages) on one future sampling “occasion”. The default value is m=2, except
when rule="Modified.CA", in which case this argument is ignored and m is
automatically set equal to 4.

r positive integer specifying the number of future sampling “occasions”. The de-
fault value is r=1.

rule character string specifying which rule to use. The possible values are "k.of.m"
(k-of-m rule; the default), "CA" (California rule), and "Modified.CA" (modified
California rule). See the DETAILS section below for more information.

range.delta.over.sigma

numeric vector of length 2 indicating the range of the x-variable to use for the
plot. The default value is range.delta.over.sigma=c(0,5).

pi.type character string indicating what kind of prediction interval to compute. The
possible values are pi.type="upper" (the default), and pi.type="lower".
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conf.level numeric scalar between 0 and 1 indicating the confidence level of the prediction
interval. The default value is conf.level=0.95.

r.shifted positive integer between 1 and r specifying the number of future sampling occa-
sions for which the mean is shifted by ∆/σ. The default value is r.shifted=r.

K.tol numeric scalar indicating the tolerance to use in the nonlinear search algorithm
to compute K. The default value is K.tol=.Machine$double.eps^(1/2). For
many applications, the value ofK needs to be known only to the second decimal
place, in which case setting K.tol=1e-4 will speed up computation a bit.

integrate.args.list

a list of arguments to supply to the integrate function. The default value is
integrate.args.list=NULL which means that the default values of integrate
are used.

plot.it a logical scalar indicating whether to create a plot or add to the existing plot
(see explanation of the argument add below) on the current graphics device. If
plot.it=FALSE, no plot is produced, but a list of (x,y) values is returned (see
the section VALUE). The default value is plot.it=TRUE.

add a logical scalar indicating whether to add the design plot to the existing plot
(add=TRUE), or to create a plot from scratch (add=FALSE). The default value is
add=FALSE. This argument is ignored if plot.it=FALSE.

n.points a numeric scalar specifying how many (x,y) pairs to use to produce the plot.
There are n.points x-values evenly spaced between range.x.var[1] and
range.x.var[2]. The default value is n.points=100.

plot.col a numeric scalar or character string determining the color of the plotted line or
points. The default value is plot.col="black". See the entry for col in the
help file for par for more information.

plot.lwd a numeric scalar determining the width of the plotted line. The default value is
3*par("cex"). See the entry for lwd in the help file for par for more informa-
tion.

plot.lty a numeric scalar determining the line type of the plotted line. The default value
is plot.lty=1. See the entry for lty in the help file for par for more informa-
tion.

digits a scalar indicating how many significant digits to print out on the plot. The
default value is the current setting of options("digits").

cex.main, main, xlab, ylab, type, ...

additional graphical parameters (see par).

Details

See the help file for predIntNormSimultaneousTestPower for information on how to compute the
power of a hypothesis test for the difference between two means of normal distributions based on a
simultaneous prediction interval for a normal distribution.

Value

plotPredIntNormSimultaneousTestPowerCurve invisibly returns a list with components:

x.var x-coordinates of points that have been or would have been plotted.

y.var y-coordinates of points that have been or would have been plotted.
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Note

See the help file for predIntNormSimultaneous.

In the course of designing a sampling program, an environmental scientist may wish to determine
the relationship between sample size, significance level, power, and scaled difference if one of the
objectives of the sampling program is to determine whether two distributions differ from each other.
The functions predIntNormSimultaneousTestPower and plotPredIntNormSimultaneousTestPowerCurve
can be used to investigate these relationships for the case of normally-distributed observations.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

See the help file for predIntNormSimultaneous.

See Also

predIntNormSimultaneous, predIntNormSimultaneousK, predIntNormSimultaneousTestPower,
predIntNorm, predIntNormK, predIntNormTestPower, Prediction Intervals, Normal.

Examples

# USEPA (2009) contains an example on page 19-23 that involves monitoring
# nw=100 compliance wells at a large facility with minimal natural spatial
# variation every 6 months for nc=20 separate chemicals.
# There are n=25 background measurements for each chemical to use to create
# simultaneous prediction intervals. We would like to determine which kind of
# resampling plan based on normal distribution simultaneous prediction intervals to
# use (1-of-m, 1-of-m based on means, or Modified California) in order to have
# adequate power of detecting an increase in chemical concentration at any of the
# 100 wells while at the same time maintaining a site-wide false positive rate
# (SWFPR) of 10% per year over all 4,000 comparisons
# (100 wells x 20 chemicals x semi-annual sampling).

# The function predIntNormSimultaneousTestPower includes the argument "r"
# that is the number of future sampling occasions (r=2 in this case because
# we are performing semi-annual sampling), so to compute the individual test
# Type I error level alpha.test (and thus the individual test confidence level),
# we only need to worry about the number of wells (100) and the number of
# constituents (20): alpha.test = 1-(1-alpha)^(1/(nw x nc)). The individual
# confidence level is simply 1-alpha.test. Plugging in 0.1 for alpha,
# 100 for nw, and 20 for nc yields an individual test confidence level of
# 1-alpha.test = 0.9999473.

nc <- 20
nw <- 100
conf.level <- (1 - 0.1)^(1 / (nc * nw))
conf.level
#[1] 0.9999473

# The help file for predIntNormSimultaneousTestPower shows how to
# create the results below for various sampling plans:

# Rule k m N.Mean K Power Total.Samples
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#1 k.of.m 1 2 1 3.16 0.39 2
#2 k.of.m 1 3 1 2.33 0.65 3
#3 k.of.m 1 4 1 1.83 0.81 4
#4 Modified.CA 1 4 1 2.57 0.71 4
#5 k.of.m 1 1 2 3.62 0.41 2
#6 k.of.m 1 2 2 2.33 0.85 4
#7 k.of.m 1 1 3 2.99 0.71 3

# The above table shows the K-multipliers for each prediction interval, along with
# the power of detecting a change in concentration of three standard deviations at
# any of the 100 wells during the course of a year, for each of the sampling
# strategies considered. The last three rows of the table correspond to sampling
# strategies that involve using the mean of two or three observations.

# Here is the power curve for the 1-of-4 sampling strategy:

dev.new()
plotPredIntNormSimultaneousTestPowerCurve(n = 25, k = 1, m = 4, r = 2,

rule="k.of.m", pi.type = "upper", conf.level = conf.level,
xlab = "SD Units Above Background", main = "")

title(main = paste(
"Power Curve for 1-of-4 Sampling Strategy Based on 25 Background",
"Samples, SWFPR=10%, and 2 Future Sampling Periods", sep = "\n"))

#----------

# Here are the power curves for the first four sampling strategies.
# Because this takes several seconds to run, here we have commented out
# the R commands. To run this example, just remove the pound signs (#)
# from in front of the R commands.

#dev.new()
#plotPredIntNormSimultaneousTestPowerCurve(n = 25, k = 1, m = 4, r = 2,
# rule="k.of.m", pi.type = "upper", conf.level = conf.level,
# xlab = "SD Units Above Background", main = "")

#plotPredIntNormSimultaneousTestPowerCurve(n = 25, k = 1, m = 3, r = 2,
# rule="k.of.m", pi.type = "upper", conf.level = conf.level, add = TRUE,
# plot.col = "red", plot.lty = 2)

#plotPredIntNormSimultaneousTestPowerCurve(n = 25, k = 1, m = 2, r = 2,
# rule="k.of.m", pi.type = "upper", conf.level = conf.level, add = TRUE,
# plot.col = "blue", plot.lty = 3)

#plotPredIntNormSimultaneousTestPowerCurve(n = 25, r = 2, rule="Modified.CA",
# pi.type = "upper", conf.level = conf.level, add = TRUE, plot.col = "green3",
# plot.lty = 4)

#legend(0, 1, c("1-of-4", "Modified CA", "1-of-3", "1-of-2"),
# col = c("black", "green3", "red", "blue"), lty = c(1, 4, 2, 3),
# lwd = 3 * par("cex"), bty = "n")

#title(main = paste("Power Curves for 4 Sampling Strategies Based on 25 Background",
# "Samples, SWFPR=10%, and 2 Future Sampling Periods", sep = "\n"))

#----------
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# Here are the power curves for the last 3 sampling strategies.
# Because this takes several seconds to run, here we have commented out
# the R commands. To run this example, just remove the pound signs (#)
# from in front of the R commands.

#dev.new()
#plotPredIntNormSimultaneousTestPowerCurve(n = 25, k = 1, m = 2, n.mean = 2,
# r = 2, rule="k.of.m", pi.type = "upper", conf.level = conf.level,
# xlab = "SD Units Above Background", main = "")

#plotPredIntNormSimultaneousTestPowerCurve(n = 25, k = 1, m = 1, n.mean = 2,
# r = 2, rule="k.of.m", pi.type = "upper", conf.level = conf.level, add = TRUE,
# plot.col = "red", plot.lty = 2)

#plotPredIntNormSimultaneousTestPowerCurve(n = 25, k = 1, m = 1, n.mean = 3,
# r = 2, rule="k.of.m", pi.type = "upper", conf.level = conf.level, add = TRUE,
# plot.col = "blue", plot.lty = 3)

#legend(0, 1, c("1-of-2, Order 2", "1-of-1, Order 3", "1-of-1, Order 2"),
# col = c("black", "blue", "red"), lty = c(1, 3, 2), lwd = 3 * par("cex"),
# bty="n")

#title(main = paste("Power Curves for 3 Sampling Strategies Based on 25 Background",
# "Samples, SWFPR=10%, and 2 Future Sampling Periods", sep = "\n"))

#==========

# Clean up
#---------
rm(nc, nw, conf.level)
graphics.off()

plotPredIntNormTestPowerCurve

Power Curves for Sampling Design for Test Based on Prediction In-
terval for Normal Distribution

Description

Plot power vs. ∆/σ (scaled minimal detectable difference) for a sampling design for a test based
on a prediction interval for a normal distribution.

Usage

plotPredIntNormTestPowerCurve(n = 8, df = n - 1, n.mean = 1, k = 1,
range.delta.over.sigma = c(0, 5), pi.type = "upper", conf.level = 0.95,
plot.it = TRUE, add = FALSE, n.points = 20, plot.col = "black",
plot.lwd = 3 * par("cex"), plot.lty = 1, digits = .Options$digits, ...,
main = NULL, xlab = NULL, ylab = NULL, type = "l")
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Arguments

n positive integer greater than 2 indicating the sample size upon which the predic-
tion interval is based. The default is value is n=8.

df positive integer indicating the degrees of freedom associated with the sample
size. The default value is df=n-1.

n.mean positive integer specifying the sample size associated with the future average(s).
The default value is n.mean=1 (i.e., individual observations). Note that all future
averages must be based on the same sample size.

k positive integer specifying the number of future observations that the prediction
interval should contain with confidence level conf.level. The default value is
k=1.

range.delta.over.sigma

numeric vector of length 2 indicating the range of the x-variable to use for the
plot. The default value is range.delta.over.sigma=c(0,5).

pi.type character string indicating what kind of prediction interval to compute. The
possible values are pi.type="upper" (the default), and pi.type="lower".

conf.level numeric scalar between 0 and 1 indicating the confidence level of the prediction
interval. The default value is conf.level=0.95.

plot.it a logical scalar indicating whether to create a plot or add to the existing plot
(see explanation of the argument add below) on the current graphics device. If
plot.it=FALSE, no plot is produced, but a list of (x,y) values is returned (see
the section VALUE). The default value is plot.it=TRUE.

add a logical scalar indicating whether to add the design plot to the existing plot
(add=TRUE), or to create a plot from scratch (add=FALSE). The default value is
add=FALSE. This argument is ignored if plot.it=FALSE.

n.points a numeric scalar specifying how many (x,y) pairs to use to produce the plot.
There are n.points x-values evenly spaced between range.x.var[1] and
range.x.var[2]. The default value is n.points=100.

plot.col a numeric scalar or character string determining the color of the plotted line or
points. The default value is plot.col="black". See the entry for col in the
help file for par for more information.

plot.lwd a numeric scalar determining the width of the plotted line. The default value is
3*par("cex"). See the entry for lwd in the help file for par for more informa-
tion.

plot.lty a numeric scalar determining the line type of the plotted line. The default value
is plot.lty=1. See the entry for lty in the help file for par for more informa-
tion.

digits a scalar indicating how many significant digits to print out on the plot. The
default value is the current setting of options("digits").

main, xlab, ylab, type, ...

additional graphical parameters (see par).

Details

See the help file for predIntNormTestPower for information on how to compute the power of a
hypothesis test for the difference between two means of normal distributions based on a prediction
interval for a normal distribution.
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Value

plotPredIntNormTestPowerCurve invisibly returns a list with components:

x.var x-coordinates of points that have been or would have been plotted.

y.var y-coordinates of points that have been or would have been plotted.

Note

See the help files for predIntNorm and predIntNormSimultaneous.

In the course of designing a sampling program, an environmental scientist may wish to determine
the relationship between sample size, significance level, power, and scaled difference if one of
the objectives of the sampling program is to determine whether two distributions differ from each
other. The functions predIntNormTestPower and plotPredIntNormTestPowerCurve can be used
to investigate these relationships for the case of normally-distributed observations. In the case of a
simple shift between the two means, the test based on a prediction interval is not as powerful as the
two-sample t-test. However, the test based on a prediction interval is more efficient at detecting a
shift in the tail.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

See the help files for predIntNorm and predIntNormSimultaneous.

See Also

predIntNorm, predIntNormK, predIntNormTestPower, predIntNormSimultaneous, predIntNormSimultaneousK,
predIntNormSimultaneousTestPower, Prediction Intervals, Normal.

Examples

# Pages 6-16 to 6-17 of USEPA (2009) present EPA Reference Power Curves (ERPC)
# for groundwater monitoring:
#
# "Since effect sizes discussed in the next section often cannot or have not been
# quantified, the Unified Guidance recommends using the ERPC as a suitable basis
# of comparison for proposed testing procedures. Each reference power curve
# corresponds to one of three typical yearly statistical evaluation schedules -
# quarterly, semi-annual, or annual - and represents the cumulative power
# achievable during a single year at one well-constituent pair by a 99% upper
# (normal) prediction limit based on n = 10 background measurements and one new
# measurement from the compliance well.
#
# Here we will reproduce Figure 6-3 on page 6-17.

dev.new()
plotPredIntNormTestPowerCurve(n = 10, k = 1, conf.level = 0.99,

ylim = c(0, 1), main="")

plotPredIntNormTestPowerCurve(n = 10, k = 2, conf.level = 0.99,
add = TRUE, plot.col = "red", plot.lty = 2)
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plotPredIntNormTestPowerCurve(n = 10, k = 4, conf.level = 0.99,
add = TRUE, plot.col = "blue", plot.lty = 3)

legend("topleft", c("Quarterly", "Semi-Annual", "Annual"), lty = 3:1,
lwd = 3 * par("cex"), col = c("blue", "red", "black"), bty = "n")

title(main = paste("Power vs. Delta/Sigma for Upper Prediction Interval with",
"n=10, Confidence=99%, and Various Sampling Frequencies", sep="\n"))

#==========

# Plot power vs. scaled minimal detectable difference for various sample sizes
# using a 5% significance level.

dev.new()
plotPredIntNormTestPowerCurve(n = 8, k = 1, ylim = c(0, 1), main="")

plotPredIntNormTestPowerCurve(n = 16, k = 1, add = TRUE, plot.col = "red")

plotPredIntNormTestPowerCurve(n = 32, k = 1, add = TRUE, plot.col = "blue")

legend("bottomright", c("n=32", "n=16", "n=8"), lty = 1, lwd = 3 * par("cex"),
col = c("blue", "red", "black"), bty = "n")

title(main = paste("Power vs. Delta/Sigma for Upper Prediction Interval with",
"k=1, Confidence=95%, and Various Sample Sizes", sep="\n"))

#==========

# Clean up
#---------
graphics.off()

plotPredIntNparDesign Plots for a Sampling Design Based on a Nonparametric Prediction
Interval

Description

Create plots involving sample size (n), number of future observations (m), minimum number of
future observations the interval should contain (k), and confidence level (1−α) for a nonparametric
prediction interval.

Usage

plotPredIntNparDesign(x.var = "n", y.var = "conf.level", range.x.var = NULL,
n = max(25, lpl.rank + n.plus.one.minus.upl.rank + 1),
k = 1, m = ifelse(x.var == "k", ceiling(max.x), 1), conf.level = 0.95,
pi.type = "two.sided", lpl.rank = ifelse(pi.type == "upper", 0, 1),
n.plus.one.minus.upl.rank = ifelse(pi.type == "lower", 0, 1), n.max = 5000,
maxiter = 1000, plot.it = TRUE, add = FALSE, n.points = 100,
plot.col = "black", plot.lwd = 3 * par("cex"), plot.lty = 1,
digits = .Options$digits, cex.main = par("cex"), ..., main = NULL,
xlab = NULL, ylab = NULL, type = "l")
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Arguments

x.var character string indicating what variable to use for the x-axis. Possible values
are "n" (sample size; the default), "conf.level" (the confidence level), "k"
(minimum number of future observations the interval should contain), and "m"
(number of future observations).

y.var character string indicating what variable to use for the y-axis. Possible values
are "conf.level" (confidence level; the default), and "n" (sample size).

range.x.var numeric vector of length 2 indicating the range of the x-variable to use for the
plot. The default value depends on the value of x.var. When x.var="n" the
default value is c(2,50). When x.var="conf.level", the default value is
c(0.5, 0.99). When x.var="k" or x.var="m", the default value is c(1, 20).

n numeric scalar indicating the sample size. The default value is max(25, lpl.rank + n.plus.one.minus.upl.rank + 1).
Missing (NA), undefined (NaN), and infinite (Inf, -Inf) values are not allowed.
This argument is ignored if either x.var="n" or y.var="n".

k positive integer specifying the minimum number of future observations out of m
that should be contained in the prediction interval. The default value is k=1.

m positive integer specifying the number of future observations. The default value
is ifelse(x.var == "k", ceiling(max.x), 1). That is, if x.var="k" then
the default value is the smallest integer greater than or equal to the maximum
value that k will take on in the plot; otherwise the default value is m=1.

conf.level numeric scalar between 0 and 1 indicating the confidence level associated with
the prediction interval. The default value is conf.level=0.95.

pi.type character string indicating what kind of prediction interval to compute. The
possible values are "two-sided" (the default), "lower", and "upper".

lpl.rank non-negative integer indicating the rank of the order statistic to use for the lower
bound of the prediction interval. If pi.type="two-sided" or pi.type="lower",
the default value is lpl.rank=1 (implying the minimum value is used as the
lower bound of the prediction interval). If pi.type="upper", this argument is
set equal to 0.

n.plus.one.minus.upl.rank

non-negative integer related to the rank of the order statistic to use for the upper
bound of the prediction interval. A value of n.plus.one.minus.upl.rank=1
(the default) means use the first largest value, and in general a value of n.plus.one.minus.upl.rank=i
means use the i’th largest value. If pi.type="lower", this argument is set equal
to 0.

n.max for the case when y.var="n", a positive integer greater than 2 indicating the
maximum possible sample size. The default value is n.max=5000.

maxiter positive integer indicating the maximum number of iterations to use in the uniroot
search algorithm for sample size when y.var="n". The default value is maxiter=1000.

plot.it a logical scalar indicating whether to create a plot or add to the existing plot
(see add) on the current graphics device. If plot.it=FALSE, no plot is pro-
duced, but a list of (x,y) values is returned (see VALUE). The default value is
plot.it=TRUE.

add a logical scalar indicating whether to add the design plot to the existing plot
(add=TRUE), or to create a plot from scratch (add=FALSE). The default value is
add=FALSE. This argument is ignored if plot.it=FALSE.

n.points a numeric scalar specifying how many (x,y) pairs to use to produce the plot.
There are n.points x-values evenly spaced between range.x.var[1] and range.x.var[2].
The default value is n.points=100.
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plot.col a numeric scalar or character string determining the color of the plotted line or
points. The default value is plot.col="black". See the entry for col in the
help file for par for more information.

plot.lwd a numeric scalar determining the width of the plotted line. The default value is
3*par("cex"). See the entry for lwd in the help file for par for more informa-
tion.

plot.lty a numeric scalar determining the line type of the plotted line. The default value
is plot.lty=1. See the entry for lty in the help file for par for more informa-
tion.

digits a scalar indicating how many significant digits to print out on the plot. The
default value is the current setting of options("digits").

cex.main, main, xlab, ylab, type, ...

additional graphical parameters (see par).

Details

See the help file for predIntNpar, predIntNparConfLevel, and predIntNparN for information
on how to compute a nonparametric prediction interval, how the confidence level is computed when
other quantities are fixed, and how the sample size is computed when other quantities are fixed.

Value

plotPredIntNparDesign invisibly returns a list with components x.var and y.var, giving coor-
dinates of the points that have been or would have been plotted.

Note

See the help file for predIntNpar.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

See the help file for predIntNpar.

See Also

predIntNpar, predIntNparConfLevel, predIntNparN.

Examples

# Look at the relationship between confidence level and sample size for a
# two-sided nonparametric prediction interval for the next m=1 future observation.

dev.new()
plotPredIntNparDesign()

#==========

# Plot confidence level vs. sample size for various values of number of
# future observations (m):
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dev.new()
plotPredIntNparDesign(k = 1, m = 1, ylim = c(0, 1), main = "")

plotPredIntNparDesign(k = 2, m = 2, add = TRUE, plot.col = "red")

plotPredIntNparDesign(k = 3, m = 3, add = TRUE, plot.col = "blue")

legend("bottomright", c("m=1", "m=2", "m=3"), lty = 1, lwd = 3 * par("cex"),
col = c("black", "red", "blue"), bty = "n")

title(main = paste("Confidence Level vs. Sample Size for Nonparametric PI",
"with Various Values of m", sep="\n"))

#==========

# Example 18-3 of USEPA (2009, p.18-19) shows how to construct
# a one-sided upper nonparametric prediction interval for the next
# 4 future observations of trichloroethylene (TCE) at a downgradient well.
# The data for this example are stored in EPA.09.Ex.18.3.TCE.df.
# There are 6 monthly observations of TCE (ppb) at 3 background wells,
# and 4 monthly observations of TCE at a compliance well.
#
# Modify this example by creating a plot to look at confidence level versus
# sample size (i.e., number of observations at the background wells) for
# predicting the next m = 4 future observations when constructing a one-sided
# upper prediction interval based on the maximum value.

dev.new()
plotPredIntNparDesign(k = 4, m = 4, pi.type = "upper")

#==========

# Clean up
#---------
graphics.off()

plotPredIntNparSimultaneousDesign

Plots for a Sampling Design Based on a Simultaneous Nonparametric
Prediction Interval

Description

Create plots involving sample size (n), number of future observations (m), minimum number of
future observations the interval should contain (k), number of future sampling occasions (r), and
confidence level (1− α) for a simultaneous nonparametric prediction interval.

Usage

plotPredIntNparSimultaneousDesign(x.var = "n", y.var = "conf.level",
range.x.var = NULL, n = max(25, lpl.rank + n.plus.one.minus.upl.rank + 1),
n.median = 1, k = 1, m = ifelse(x.var == "k", ceiling(max.x), 1), r = 2,
rule = "k.of.m", conf.level = 0.95, pi.type = "upper",
lpl.rank = ifelse(pi.type == "upper", 0, 1),
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n.plus.one.minus.upl.rank = ifelse(pi.type == "lower", 0, 1), n.max = 5000,
maxiter = 1000, integrate.args.list = NULL, plot.it = TRUE, add = FALSE,
n.points = 100, plot.col = "black", plot.lwd = 3 * par("cex"), plot.lty = 1,
digits = .Options$digits, cex.main = par("cex"), ..., main = NULL,
xlab = NULL, ylab = NULL, type = "l")

Arguments

x.var character string indicating what variable to use for the x-axis. Possible values are
"n" (sample size; the default), "conf.level" (the confidence level), "k" (min-
imum number of future observations the interval should contain), "m" (number
of future observations), and "r" (number of future sampling occasions).

y.var character string indicating what variable to use for the y-axis. Possible values
are "conf.level" (confidence level; the default), and "n" (sample size).

range.x.var numeric vector of length 2 indicating the range of the x-variable to use for the
plot. The default value depends on the value of x.var. When x.var="n" the
default value is c(2,50). When x.var="conf.level", the default value is
c(0.5, 0.99). When x.var="k", x.var="m", or x.var="r", the default value
is c(1, 20).

n numeric scalar indicating the sample size. The default value is max(25, lpl.rank + n.plus.one.minus.upl.rank + 1).
Missing (NA), undefined (NaN), and infinite (Inf, -Inf) values are not allowed.
This argument is ignored if either x.var="n" or y.var="n".

n.median positive odd integer specifying the sample size associated with the future medi-
ans. The default value is n.median=1 (i.e., individual observations). Note that
all future medians must be based on the same sample size.

k for the k-of-m rule (rule="k.of.m"), a positive integer specifying the mini-
mum number of observations (or medians) out of m observations (or medians)
(all obtained on one future sampling “occassion”) the prediction interval should
contain. The default value is k=1. This argument is ignored when the argument
rule is not equal to "k.of.m".

m positive integer specifying the maximum number of future observations (or me-
dians) on one future sampling “occasion”. The default value is m=2, except when
rule="Modified.CA", in which case this argument is ignored and m is automat-
ically set equal to 4.

r positive integer specifying the number of future sampling “occasions”. The de-
fault value is r=1.

rule character string specifying which rule to use. The possible values are "k.of.m"
(k-of-m rule; the default), "CA" (California rule), and "Modified.CA" (modified
California rule). See the DETAILS section below for more information.

conf.level numeric scalar between 0 and 1 indicating the confidence level associated with
the prediction interval. The default value is conf.level=0.95.

pi.type character string indicating what kind of prediction interval to compute. The
possible values are "upper" (the default) and "lower".

lpl.rank non-negative integer indicating the rank of the order statistic to use for the lower
bound of the prediction interval. If pi.type="lower", the default value is
lpl.rank=1 (implying the minimum value is used as the lower bound of the
prediction interval). If pi.type="upper", this argument is set equal to 0.

n.plus.one.minus.upl.rank

non-negative integer related to the rank of the order statistic to use for the upper
bound of the prediction interval. A value of n.plus.one.minus.upl.rank=1
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(the default) means use the first largest value, and in general a value of n.plus.one.minus.upl.rank=i
means use the i’th largest value. If pi.type="lower", this argument is set equal
to 0.

n.max numeric scalar indicating the maximum sample size to consider when y.var="n".
This argument is used in the search algorithm to determine the required sample
size. The default value is n.max=5000.

maxiter positive integer indicating the maximum number of iterations to use in the uniroot
search algorithm when y.var="n". The default value is maxiter=1000.

integrate.args.list

list of arguments to supply to the integrate function. The default value is NULL.

plot.it a logical scalar indicating whether to create a plot or add to the existing plot
(see add) on the current graphics device. If plot.it=FALSE, no plot is pro-
duced, but a list of (x,y) values is returned (see VALUE). The default value is
plot.it=TRUE.

add a logical scalar indicating whether to add the design plot to the existing plot
(add=TRUE), or to create a plot from scratch (add=FALSE). The default value is
add=FALSE. This argument is ignored if plot.it=FALSE.

n.points a numeric scalar specifying how many (x,y) pairs to use to produce the plot.
There are n.points x-values evenly spaced between range.x.var[1] and range.x.var[2].
The default value is n.points=100.

plot.col a numeric scalar or character string determining the color of the plotted line or
points. The default value is plot.col="black". See the entry for col in the
help file for par for more information.

plot.lwd a numeric scalar determining the width of the plotted line. The default value is
3*par("cex"). See the entry for lwd in the help file for par for more informa-
tion.

plot.lty a numeric scalar determining the line type of the plotted line. The default value
is plot.lty=1. See the entry for lty in the help file for par for more informa-
tion.

digits a scalar indicating how many significant digits to print out on the plot. The
default value is the current setting of options("digits").

cex.main, main, xlab, ylab, type, ...

additional graphical parameters (see par).

Details

See the help file for predIntNparSimultaneous, predIntNparSimultaneousConfLevel, and predIntNparSimultaneousN
for information on how to compute a simultaneous nonparametric prediction interval, how the con-
fidence level is computed when other quantities are fixed, and how the sample size is computed
when other quantities are fixed.

Value

plotPredIntNparSimultaneousDesign invisibly returns a list with components x.var and y.var,
giving coordinates of the points that have been or would have been plotted.

Note

See the help file for predIntNparSimultaneous.
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Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

See the help file for predIntNparSimultaneous.

See Also

predIntNparSimultaneous, predIntNparSimultaneousConfLevel, predIntNparSimultaneousN,
predIntNparSimultaneousTestPower, predIntNpar, tolIntNpar.

Examples

# For the 1-of-3 rule with r=20 future sampling occasions, look at the
# relationship between confidence level and sample size for a one-sided
# upper simultaneous nonparametric prediction interval.

dev.new()
plotPredIntNparSimultaneousDesign(k = 1, m = 3, r = 20, range.x.var = c(2, 20))

#==========

# Plot confidence level vs. sample size for various values of number of
# future sampling occasions (r):

dev.new()
plotPredIntNparSimultaneousDesign(m = 3, r = 10, rule = "CA",

ylim = c(0, 1), main = "")

plotPredIntNparSimultaneousDesign(m = 3, r = 20, rule = "CA", add = TRUE,
plot.col = "red")

plotPredIntNparSimultaneousDesign(m = 3, r = 30, rule = "CA", add = TRUE,
plot.col = "blue")

legend("bottomright", c("r=10", "r=20", "r=30"), lty = 1, lwd = 3 * par("cex"),
col = c("black", "red", "blue"), bty = "n")

title(main = paste("Confidence Level vs. Sample Size for Simultaneous",
"Nonparametric PI with Various Values of r", sep="\n"))

#==========

# Modifying Example 19-5 of USEPA (2009, p. 19-33), plot confidence level
# versus sample size (number of background observations requried) for
# a 1-of-3 plan assuming r = 10 compliance wells (future sampling occasions).

dev.new()
plotPredIntNparSimultaneousDesign(k = 1, m = 3, r = 10, rule = "k.of.m")

#==========

# Clean up
#---------
graphics.off()
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plotPredIntNparSimultaneousTestPowerCurve

Power Curves for Sampling Design for Test Based on Nonparametric
Simultaneous Prediction Interval

Description

Plot power vs. ∆/σ (scaled minimal detectable difference) for a sampling design for a test based
on a nonparametric simultaneous prediction interval. The power is based on assuming the true
distribution of the observations is normal.

Usage

plotPredIntNparSimultaneousTestPowerCurve(n = 8, n.median = 1, k = 1, m = 2,
r = 1, rule = "k.of.m", lpl.rank = ifelse(pi.type == "upper", 0, 1),
n.plus.one.minus.upl.rank = ifelse(pi.type == "lower", 0, 1), pi.type = "upper",
r.shifted = r, integrate.args.list = NULL, method = "approx", NMC = 100,
range.delta.over.sigma = c(0, 5), plot.it = TRUE, add = FALSE, n.points = 20,
plot.col = "black", plot.lwd = 3 * par("cex"), plot.lty = 1,
digits = .Options$digits, cex.main = par("cex"), ..., main = NULL,
xlab = NULL, ylab = NULL, type = "l")

Arguments

n positive integer specifying the sample sizes.

n.median positive odd integer specifying the sample size associated with the future medi-
ans. The default value is n.median=1 (i.e., individual observations). Note that
all future medians must be based on the same sample size.

k for the k-of-m rule (rule="k.of.m"), a positive integer specifying the mini-
mum number of observations (or medians) out of m observations (or medians)
(all obtained on one future sampling “occassion”) the prediction interval should
contain. The default value is k=1. This argument is ignored when the argument
rule is not equal to "k.of.m".

m positive integer specifying the maximum number of future observations (or me-
dians) on one future sampling “occasion”. The default value is m=2, except when
rule="Modified.CA", in which case this argument is ignored and m is automat-
ically set equal to 4.

r positive integer specifying the number of future sampling “occasions”. The de-
fault value is r=1.

rule character string specifying which rule to use. The possible values are "k.of.m"
(k-of-m rule; the default), "CA" (California rule), and "Modified.CA" (modified
California rule).

lpl.rank non-negative integer indicating the rank of the order statistic to use for the lower
bound of the prediction interval. When pi.type="lower", the default value is
lpl.rank=1 (implying the minimum value of x is used as the lower bound of
the prediction interval). When pi.type="upper", the argument lpl.rank is set
equal to 0.
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n.plus.one.minus.upl.rank

non-negative integer related to the rank of the order statistic to use for the upper
bound of the prediction interval. A value of n.plus.one.minus.upl.rank=1
means use the first largest value, and in general a value of n.plus.one.minus.upl.rank=i
means use the i’th largest value. When pi.type="upper", the default value
is n.plus.one.minus.upl.rank=1. When pi.type="lower", the argument
n.plus.one.minus.upl.rank is set equal to 0.

pi.type character string indicating what kind of prediction interval to compute. The
possible values are "two.sided" (the default), "lower", and "upper".

r.shifted integer between 1 and r specifying the number of future sampling occasions for
which the scaled mean is shifted by ∆/σ. The default value is r.shifted=r.

integrate.args.list

list of arguments to supply to the integrate function. The default value is NULL.
method character string indicating what method to use to compute the power. The pos-

sible values are "approx" (the default) and "simulate" (use Monte Carlo sim-
ulation).

NMC positive integer indicating the number of Monte Carlo trials to run when method="simulate".
The default value is NMC=100.

range.delta.over.sigma

numeric vector of length 2 indicating the range of the x-variable to use for the
plot. The default value is range.delta.over.sigma=c(0,5).

plot.it a logical scalar indicating whether to create a plot or add to the existing plot
(see explanation of the argument add below) on the current graphics device. If
plot.it=FALSE, no plot is produced, but a list of (x,y) values is returned (see
the section VALUE). The default value is plot.it=TRUE.

add a logical scalar indicating whether to add the design plot to the existing plot
(add=TRUE), or to create a plot from scratch (add=FALSE). The default value is
add=FALSE. This argument is ignored if plot.it=FALSE.

n.points a numeric scalar specifying how many (x,y) pairs to use to produce the plot.
There are n.points x-values evenly spaced between range.x.var[1] and
range.x.var[2]. The default value is n.points=100.

plot.col a numeric scalar or character string determining the color of the plotted line or
points. The default value is plot.col="black". See the entry for col in the
help file for par for more information.

plot.lwd a numeric scalar determining the width of the plotted line. The default value is
3*par("cex"). See the entry for lwd in the help file for par for more informa-
tion.

plot.lty a numeric scalar determining the line type of the plotted line. The default value
is plot.lty=1. See the entry for lty in the help file for par for more informa-
tion.

digits a scalar indicating how many significant digits to print out on the plot. The
default value is the current setting of options("digits").

cex.main, main, xlab, ylab, type, ...

additional graphical parameters (see par).

Details

See the help file for predIntNparSimultaneousTestPower for information on how to compute the
power of a hypothesis test for the difference between two means of normal distributions based on a
nonparametric simultaneous prediction interval.
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Value

plotPredIntNparSimultaneousTestPowerCurve invisibly returns a list with components:

x.var x-coordinates of points that have been or would have been plotted.

y.var y-coordinates of points that have been or would have been plotted.

Note

See the help file for predIntNparSimultaneous.

In the course of designing a sampling program, an environmental scientist may wish to determine
the relationship between sample size, significance level, power, and scaled difference if one of the
objectives of the sampling program is to determine whether two distributions differ from each other.
The functions predIntNparSimultaneousTestPower and plotPredIntNparSimultaneousTestPowerCurve
can be used to investigate these relationships for the case of normally-distributed observations.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

See the help file for predIntNparSimultaneous.

Gansecki, M. (2009). Using the Optimal Rank Values Calculator. US Environmental Protection
Agency, Region 8, March 10, 2009. http://www.epa.gov/osw/hazard/correctiveaction/
resources/guidance/sitechar/gwstats/calculator-use.pdf.

See Also

predIntNparSimultaneousTestPower, predIntNparSimultaneous, predIntNparSimultaneousN,
predIntNparSimultaneousConfLevel, plotPredIntNparSimultaneousDesign, predIntNpar,
tolIntNpar.

Examples

# Example 19-5 of USEPA (2009, p. 19-33) shows how to compute nonparametric upper
# simultaneous prediction limits for various rules based on trace mercury data (ppb)
# collected in the past year from a site with four background wells and 10 compliance
# wells (data for two of the compliance wells are shown in the guidance document).
# The facility must monitor the 10 compliance wells for five constituents
# (including mercury) annually.

# We will pool data from 4 background wells that were sampled on
# a number of different occasions, giving us a sample size of
# n = 20 to use to construct the prediction limit.

# There are 10 compliance wells and we will monitor 5 different
# constituents at each well annually. For this example, USEPA (2009)
# recommends setting r to the product of the number of compliance wells and
# the number of evaluations per year (i.e., r = 10 * 1 = 10).

# Here we will reproduce Figure 19-2 on page 19-35. This figure plots the
# power of the nonparametric simultaneous prediction interval for 6 different
# plans:
# Rule Median.n k m Order.Statistic Achieved.alpha BG.Limit

http://www.epa.gov/osw/hazard/correctiveaction/resources/guidance/sitechar/gwstats/calculator-use.pdf
http://www.epa.gov/osw/hazard/correctiveaction/resources/guidance/sitechar/gwstats/calculator-use.pdf
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#1) k.of.m 1 1 3 Max 0.0055 0.28
#2) k.of.m 1 1 4 Max 0.0009 0.28
#3) Modified.CA 1 1 4 Max 0.0140 0.28
#4) k.of.m 3 1 2 Max 0.0060 0.28
#5) k.of.m 1 1 4 2nd 0.0046 0.25
#6) k.of.m 1 1 4 3rd 0.0135 0.24

# Here is the power curve for the 1-of-4 sampling strategy.

dev.new()
plotPredIntNparSimultaneousTestPowerCurve(n = 20, k = 1, m = 4, r = 10,

rule = "k.of.m", n.plus.one.minus.upl.rank = 3, pi.type = "upper",
r.shifted = 1, method = "approx", range.delta.over.sigma = c(0, 5), main = "")

title(main = paste(
"Power Curve for Nonparametric 1-of-4 Sampling Strategy Based on",
"25 Background Samples, SWFPR=10%, and 2 Future Sampling Periods",
sep = "\n"), cex.main = 1.1)

#----------

# Here are the power curves for all 6 sampling strategies.
# Because these take several seconds to create, here we have commented out
# the R commands. To run this example, just remove the pound signs (#) from
# in front of the R commands.

#dev.new()
#plotPredIntNparSimultaneousTestPowerCurve(n = 20, k = 1, m = 4, r = 10,
# rule = "k.of.m", n.plus.one.minus.upl.rank = 3, pi.type = "upper",
# r.shifted = 1, method = "approx", range.delta.over.sigma = c(0, 5), main = "")

#plotPredIntNparSimultaneousTestPowerCurve(n = 20, n.median = 3, k = 1, m = 2,
# r = 10, rule = "k.of.m", n.plus.one.minus.upl.rank = 1, pi.type = "upper",
# r.shifted = 1, method = "approx", range.delta.over.sigma = c(0, 5),
# add = TRUE, plot.col = 2, plot.lty = 2)

#plotPredIntNparSimultaneousTestPowerCurve(n = 20, r = 10, rule = "Modified.CA",
# n.plus.one.minus.upl.rank = 1, pi.type = "upper", r.shifted = 1,
# method = "approx", range.delta.over.sigma = c(0, 5), add = TRUE,
# plot.col = 3, plot.lty = 3)

#plotPredIntNparSimultaneousTestPowerCurve(n = 20, k = 1, m = 4, r = 10,
# rule = "k.of.m", n.plus.one.minus.upl.rank = 2, pi.type = "upper",
# r.shifted = 1, method = "approx", range.delta.over.sigma = c(0, 5),
# add = TRUE, plot.col = 4, plot.lty = 4)

#plotPredIntNparSimultaneousTestPowerCurve(n = 20, k = 1, m = 3, r = 10,
# rule = "k.of.m", n.plus.one.minus.upl.rank = 1, pi.type = "upper",
# r.shifted = 1, method = "approx", range.delta.over.sigma = c(0, 5),
# add = TRUE, plot.col = 5, plot.lty = 5)

#plotPredIntNparSimultaneousTestPowerCurve(n = 20, k = 1, m = 4, r = 10,
# rule = "k.of.m", n.plus.one.minus.upl.rank = 1, pi.type = "upper",
# r.shifted = 1, method = "approx", range.delta.over.sigma = c(0, 5),
# add = TRUE, plot.col = 6, plot.lty = 6)

#legend("topleft", legend = c("1-of-4, 3rd", "1-of-2, Max, Median", "Mod CA",
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# "1-of-4, 2nd", "1-of-3, Max", "1-of-4, Max"), lwd = 3 * par("cex"),
# col = 1:6, lty = 1:6, bty = "n")

#title(main = "Figure 19-2. Comparison of Full Power Curves")

#==========

# Clean up
#---------
graphics.off()

plotPropTestDesign Plots for Sampling Design Based on One- or Two-Sample Proportion
Test

Description

Create plots involving sample size, power, difference, and significance level for a one- or two-
sample proportion test.

Usage

plotPropTestDesign(x.var = "n", y.var = "power",
range.x.var = NULL, n.or.n1 = 25, n2 = n.or.n1, ratio = 1,
p.or.p1 = switch(alternative, greater = 0.6, less = 0.4,
two.sided = ifelse(two.sided.direction == "greater", 0.6, 0.4)),

p0.or.p2 = 0.5, alpha = 0.05, power = 0.95,
sample.type = ifelse(!missing(n2) || !missing(ratio), "two.sample", "one.sample"),
alternative = "two.sided", two.sided.direction = "greater",
approx = TRUE, correct = sample.type == "two.sample", round.up = FALSE,
warn = TRUE, n.min = 2, n.max = 10000, tol.alpha = 0.1 * alpha,
tol = 1e-07, maxiter = 1000, plot.it = TRUE, add = FALSE, n.points = 50,
plot.col = "black", plot.lwd = 3 * par("cex"), plot.lty = 1,
digits = .Options$digits, cex.main = par("cex"), ..., main = NULL,
xlab = NULL, ylab = NULL, type = "l")

Arguments

x.var character string indicating what variable to use for the x-axis. Possible values
are "n" (sample size; the default), "delta" (minimal detectable difference),
"power" (power of the test), and "alpha" (significance level of the test).

y.var character string indicating what variable to use for the y-axis. Possible values
are "power" (power of the test; the default), "delta" (minimal detectable dif-
ference), and "n" (sample size).

range.x.var numeric vector of length 2 indicating the range of the x-variable to use for the
plot. The default value depends on the value of x.var. When x.var="n" the de-
fault value is c(20,400). When x.var="delta" and alternative="greater"
or alternative="two.sided" and two.sided.direction="greater", the de-
fault value is c(0.05, 0.2). When x.var="delta" and alternative="less"
or alternative="two.sided" and two.sided.direction="less", the default
value is -c(0.2, 0.05). When x.var="power" the default value is c(alpha + .Machine$double.eps, 0.95).
When x.var="alpha", the default value is c(0.01, 0.2).
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n.or.n1 numeric scalar indicating the sample size. The default value is n.or.n1=25.
When sample.type="one.sample", n.or.n1 denotes the number of observa-
tions in the single sample. When sample.type="two.sample", n.or.n1 de-
notes the number of observations from group 1. Missing (NA), undefined (NaN),
and infinite (Inf, -Inf) values are not allowed. This argument is ignored if
either x.var="n" or y.var="n".

n2 numeric scalar indicating the sample size for group 2. The default value is the
value of n.or.n1. Missing (NA), undefined (NaN), and infinite (Inf, -Inf) values
are not allowed. This argument is ignored when sample.type="one.sample".

ratio numeric vector indicating the ratio of sample size in group 2 to sample size
in group 1 n2/n1. The default value is ratio=1. All values of ratio must
be greater than or equal to 1. This argument is only used when x.var="n" or
y.var="n" and sample.type="two.sample".

p.or.p1 numeric vector of proportions. When sample.type="one.sample", p.or.p1
denotes the true value of p, the probability of “success”. When sample.type="two.sample",
p.or.p1 denotes the value of p1, the probability of “success” in group 1. When
alternative="greater" or alternative="two.sided" and two.sided.direction="greater",
the default value is p.or.p1=0.6. When alternative="less" or alternative="two.sided"
and two.sided.direction="less", the default value is p.or.p1=0.4. Miss-
ing (NA), undefined (NaN), and infinite (Inf, -Inf) values are not allowed. This
argument is ignored when x.var="delta" or y.var="delta".

p0.or.p2 numeric vector of proportions. When sample.type="one.sample", p0.or.p2
denotes the hypothesized value of p, the probability of “success”. When sample.type="two.sample",
p0.or.p2 denotes the value of p2, the probability of “success” in group 2. The
default value is p0.or.p2=0.5. Missing (NA), undefined (NaN), and infinite (Inf,
-Inf) values are not allowed.

alpha numeric scalar between 0 and 1 indicating the Type I error level associated with
the hypothesis test. The default value is alpha=0.05. This argument is ignored
when x.var="alpha".

power numeric scalar between 0 and 1 indicating the power associated with the hy-
pothesis test. The default value is power=0.95. This argument is ignored when
x.var="power" or y.var="power".

sample.type character string indicating whether the design is based on a one-sample or two-
sample proportion test. When sample.type="one.sample", the computations
for the plot are based on a one-sample proportion test. When sample.type="two.sample",
the computations for the plot are based on a two-sample proportion test. The de-
fault value is sample.type="one.sample".

alternative character string indicating the kind of alternative hypothesis. The possible val-
ues are "two.sided" (the default), "less", and "greater".

two.sided.direction

character string indicating the direction (positive or negative) for the minimal de-
tectable difference when alternative="two.sided". When two.sided.direction="greater"
(the default), the minimal detectable difference is positive. When two.sided.direction="less",
the minimal detectable difference is negative. This argument is ignored unless
alternative="two.sided" and either x.var="delta" or y.var="delta".

approx logical scalar indicating whether to compute the power, sample size, or mini-
mal detectable difference based on the normal approximation to the binomial
distribution. The default value is approx=TRUE. Currently, the exact method
(approx=FALSE) is only available for the one-sample case (i.e., sample.type="one.sample").
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correct logical scalar indicating whether to use the continuity correction when approx=TRUE.
The default value is correct=TRUE when sample.type="two.sample" and
correct=FALSE when sample.type="one.sample". This argument is ignored
when approx=FALSE.

round.up logical scalar indicating whether to round up the values of the computed sample
size(s) to the next smallest integer. The default value is round.up=FALSE. This
argument is ignored unless y.var="n".

warn logical scalar indicating whether to issue a warning. The default value is warn=TRUE.
When approx=TRUE (test based on the normal approximation) and warn=TRUE,
a warning is issued for cases when the normal approximation to the binomial
distribution probably is not accurate. When approx=FALSE (exact test) and
warn=TRUE, a warning is issued when the user-supplied sample size is too small
to yield a significance level less than or equal to the user-supplied value of
alpha.

n.min integer relevant to the case when y.var="n" and approx=FALSE (i.e., when the
power is based on the exact test). This argument indicates the minimum allowed
value for n to use in the search algorithm. The default value is n.min=2.

n.max integer relevant to the case when y.var="n" and approx=FALSE (i.e., when the
power is based on the exact test). This argument indicates the maximum allowed
value for n to use in the search algorithm. The default value is n.max=10000.

tol.alpha numeric vector relevant to the case when y.var="n" and approx=FALSE (i.e.,
when the power is based on the exact test). This argument indicates the tolerance
on alpha to use in the search algorithm (i.e., how close the actual Type I error
level is to the value prescribed by the argument alpha). The default value is
tol.alpha=0.1*alpha.

tol numeric scalar relevant to the case when y.var="n" and approx=FALSE (i.e.,
when the power is based on the exact test), or when y.var="delta". This
argument is passed to the uniroot function and indicates the tolerance to use in
the search algorithm. The default value is tol=1e-7.

maxiter integer relevant to the case when y.var="n" and approx=FALSE (i.e., when the
power is based on the exact test), or when y.var="delta". This argument is
passed to the uniroot function and indicates the maximum number of iterations
to use in the search algorithm. The default value is maxiter=1000.

plot.it a logical scalar indicating whether to create a new plot or add to the existing
plot (see add) on the current graphics device. If plot.it=FALSE, no plot is
produced, but a list of (x,y) values is returned (see VALUE). The default value
is plot.it=TRUE.

add a logical scalar indicating whether to add the design plot to the existing plot
(add=TRUE), or to create a plot from scratch (add=FALSE). The default value is
add=FALSE. This argument is ignored if plot.it=FALSE.

n.points a numeric scalar specifying how many (x,y) pairs to use to produce the plot.
There are n.points x-values evenly spaced between range.x.var[1] and range.x.var[2].
The default value is n.points=100.

plot.col a numeric scalar or character string determining the color of the plotted line or
points. The default value is plot.col="black". See the entry for col in the
help file for par for more information.

plot.lwd a numeric scalar determining the width of the plotted line. The default value is
3*par("cex"). See the entry for lwd in the help file for par for more informa-
tion.
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plot.lty a numeric scalar determining the line type of the plotted line. The default value
is plot.lty=1. See the entry for lty in the help file for par for more informa-
tion.

digits a scalar indicating how many significant digits to print out on the plot. The
default value is the current setting of options("digits").

cex.main, main, xlab, ylab, type, ...

additional graphical parameters (see par).

Details

See the help files for propTestPower, propTestN, and propTestMdd for information on how to
compute the power, sample size, or minimal detectable difference for a one- or two-sample propor-
tion test.

Value

plotPropTestDesign invisibly returns a list with components x.var and y.var, giving coordinates
of the points that have been or would have been plotted.

Note

See the help files for propTestPower, propTestN, and propTestMdd.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

See the help files for propTestPower, propTestN, and propTestMdd.

See Also

propTestPower, propTestN, propTestMdd, Binomial, binom.test, prop.test.

Examples

# Look at the relationship between power and sample size for a
# one-sample proportion test, assuming the true proportion is 0.6, the
# hypothesized proportion is 0.5, and a 5% significance level.
# Compute the power based on the normal approximation to the binomial
# distribution.

dev.new()
plotPropTestDesign()

#----------

# For a two-sample proportion test, plot sample size vs. the minimal detectable
# difference for various levels of power, using a 5% significance level and a
# two-sided alternative:

dev.new()
plotPropTestDesign(x.var = "delta", y.var = "n", sample.type = "two",

ylim = c(0, 2800), main="")
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plotPropTestDesign(x.var = "delta", y.var = "n", sample.type = "two",
power = 0.9, add = TRUE, plot.col = "red")

plotPropTestDesign(x.var = "delta", y.var = "n", sample.type = "two",
power = 0.8, add = TRUE, plot.col = "blue")

legend("topright", c("95%", "90%", "80%"), lty = 1,
lwd = 3 * par("cex"), col = c("black", "red", "blue"), bty = "n")

title(main = paste("Sample Size vs. Minimal Detectable Difference for Two-Sample",
"Proportion Test with p2=0.5, Alpha=0.05 and Various Powers", sep = "\n"))

#==========

# Example 22-3 on page 22-20 of USEPA (2009) involves determining whether more than
# 10% of chlorine gas containers are stored at pressures above a compliance limit.
# We want to test the one-sided null hypothesis that 10% or fewer of the containers
# are stored at pressures greater than the compliance limit versus the alternative
# that more than 10% are stored at pressures greater than the compliance limit.
# We want to have at least 90% power of detecting a true proportion of 30% or
# greater, using a 5% Type I error level.

# Here we will modify this example and create a plot of power versus
# sample size for various assumed minimal detactable differences,
# using a 5% Type I error level.

dev.new()
plotPropTestDesign(x.var = "n", y.var = "power",

sample.type = "one", alternative = "greater",
p0.or.p2 = 0.1, p.or.p1 = 0.25,
range.x.var = c(20, 50), ylim = c(0.6, 1), main = "")

plotPropTestDesign(x.var = "n", y.var = "power",
sample.type = "one", alternative = "greater",
p0.or.p2 = 0.1, p.or.p1 = 0.3,
range.x.var = c(20, 50), add = TRUE, plot.col = "red")

plotPropTestDesign(x.var = "n", y.var = "power",
sample.type = "one", alternative = "greater",
p0.or.p2 = 0.1, p.or.p1 = 0.35,
range.x.var = c(20, 50), add = TRUE, plot.col = "blue")

legend("bottomright", c("p=0.35", "p=0.3", "p=0.25"), lty = 1,
lwd = 3 * par("cex"), col = c("blue", "red", "black"), bty = "n")

title(main = paste("Power vs. Sample Size for One-Sided One-Sample Proportion",
"Test with p0=0.1, Alpha=0.05 and Various Detectable Differences",
sep = "\n"))

#==========

# Clean up
#---------
graphics.off()
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plotTolIntNormDesign Plots for a Sampling Design Based on a Tolerance Interval for a Nor-
mal Distribution

Description

Create plots involving sample size, half-width, estimated standard deviation, coverage, and confi-
dence level for a tolerance interval for a normal distribution.

Usage

plotTolIntNormDesign(x.var = "n", y.var = "half.width", range.x.var = NULL,
n = 25, half.width = ifelse(x.var == "sigma.hat", 3 * max.x, 3 * sigma.hat),
sigma.hat = 1, coverage = 0.95, conf.level = 0.95, cov.type = "content",
round.up = FALSE, n.max = 5000, tol = 1e-07, maxiter = 1000, plot.it = TRUE,
add = FALSE, n.points = 100, plot.col = 1, plot.lwd = 3 * par("cex"),
plot.lty = 1, digits = .Options$digits, ..., main = NULL, xlab = NULL,
ylab = NULL, type = "l")

Arguments

x.var character string indicating what variable to use for the x-axis. Possible values
are "n" (sample size; the default), "half.width" (half-width), "sigma.hat"
(estimated standard deviation), "coverage" (the coverage), and "conf.level"
(the confidence level).

y.var character string indicating what variable to use for the y-axis. Possible values
are "half.width" (the half-width; the default), and "n" (sample size).

range.x.var numeric vector of length 2 indicating the range of the x-variable to use for
the plot. The default value depends on the value of x.var. When x.var="n"
the default value is c(2,50). When x.var="half.width" the default value is
c(2.5 * sigma.hat, 4 * sigma.hat). When x.var="sigma.hat", the de-
fault value is c(0.1, 2). When x.var="coverage" or x.var="conf.level",
the default value is c(0.5, 0.99).

n positive integer greater than 1 indicating the sample size upon which the toler-
ance interval is based. The default value is n=25. Missing (NA), undefined (NaN),
and infinite (Inf, -Inf) values are not allowed.

half.width positive scalar indicating the half-width of the prediction interval. The default
value depends on the value of x.var. When x.var="sigma.hat" the default
value is 3 times the second value of range.x.var. When x.var is not equal to
"sigma.hat" the default value is half.width=4*sigma.hat. This argument is
ignored if either x.var="half.width" or y.var="half.width".

sigma.hat numeric scalar specifying the value of the estimated standard deviation. The
default value is sigma.hat=1. This argument is ignored if x.var="sigma.hat".

coverage numeric scalar between 0 and 1 indicating the desired coverage of the tolerance
interval. The default value is coverage=0.95.

conf.level numeric scalar between 0 and 1 indicating the confidence level of the tolerance
interval. The default value is conf.level=0.95.
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cov.type character string specifying the coverage type for the tolerance interval. The
possible values are "content" (β-content; the default), and "expectation"
(β-expectation).

round.up for the case when y.var="n", logical scalar indicating whether to round up the
values of the computed sample size(s) to the next smallest integer. The default
value is round.up=TRUE.

n.max for the case when y.var="n", positive integer greater than 1 specifying the max-
imum possible sample size. The default value is n.max=5000.

tol for the case when y.var="n", numeric scalar indicating the tolerance to use in
the uniroot search algorithm. The default value is tol=1e-7.

maxiter for the case when y.var="n", positive integer indicating the maximum num-
ber of iterations to use in the uniroot search algorithm. The default value is
maxiter=1000.

plot.it a logical scalar indicating whether to create a plot or add to the existing plot
(see explanation of the argument add below) on the current graphics device. If
plot.it=FALSE, no plot is produced, but a list of (x,y) values is returned (see
the section VALUE). The default value is plot.it=TRUE.

add a logical scalar indicating whether to add the design plot to the existing plot
(add=TRUE), or to create a plot from scratch (add=FALSE). The default value is
add=FALSE. This argument is ignored if plot.it=FALSE.

n.points a numeric scalar specifying how many (x,y) pairs to use to produce the plot.
There are n.points x-values evenly spaced between range.x.var[1] and
range.x.var[2]. The default value is n.points=100.

plot.col a numeric scalar or character string determining the color of the plotted line or
points. The default value is plot.col="black". See the entry for col in the
help file for par for more information.

plot.lwd a numeric scalar determining the width of the plotted line. The default value is
3*par("cex"). See the entry for lwd in the help file for par for more informa-
tion.

plot.lty a numeric scalar determining the line type of the plotted line. The default value
is plot.lty=1. See the entry for lty in the help file for par for more informa-
tion.

digits a scalar indicating how many significant digits to print out on the plot. The
default value is the current setting of options("digits").

main, xlab, ylab, type, ...

additional graphical parameters (see par).

Details

See the help files for tolIntNorm, tolIntNormK, tolIntNormHalfWidth, and tolIntNormN for
information on how to compute a tolerance interval for a normal distribution, how the half-width
is computed when other quantities are fixed, and how the sample size is computed when other
quantities are fixed.

Value

plotTolIntNormDesign invisibly returns a list with components:

x.var x-coordinates of points that have been or would have been plotted.

y.var y-coordinates of points that have been or would have been plotted.
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Note

See the help file for tolIntNorm.

In the course of designing a sampling program, an environmental scientist may wish to determine
the relationship between sample size, confidence level, and half-width if one of the objectives of
the sampling program is to produce tolerance intervals. The functions tolIntNormHalfWidth,
tolIntNormN, and plotTolIntNormDesign can be used to investigate these relationships for the
case of normally-distributed observations.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

See the help file for tolIntNorm.

See Also

tolIntNorm, tolIntNormK, tolIntNormN, plotTolIntNormDesign, Normal.

Examples

# Look at the relationship between half-width and sample size for a
# 95% beta-content tolerance interval, assuming an estimated standard
# deviation of 1 and a confidence level of 95%:

dev.new()
plotTolIntNormDesign()

#==========

# Plot half-width vs. coverage for various levels of confidence:

dev.new()
plotTolIntNormDesign(x.var = "coverage", y.var = "half.width",

ylim = c(0, 3.5), main="")

plotTolIntNormDesign(x.var = "coverage", y.var = "half.width",
conf.level = 0.9, add = TRUE, plot.col = "red")

plotTolIntNormDesign(x.var = "coverage", y.var = "half.width",
conf.level = 0.8, add = TRUE, plot.col = "blue")

legend("topleft", c("95%", "90%", "80%"), lty = 1, lwd = 3 * par("cex"),
col = c("black", "red", "blue"), bty = "n")

title(main = paste("Half-Width vs. Coverage for Tolerance Interval",
"with Sigma Hat=1 and Various Confidence Levels", sep = "\n"))

#==========

# Example 17-3 of USEPA (2009, p. 17-17) shows how to construct a
# beta-content upper tolerance limit with 95% coverage and 95%
# confidence using chrysene data and assuming a lognormal distribution.
# The data for this example are stored in EPA.09.Ex.17.3.chrysene.df,
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# which contains chrysene concentration data (ppb) found in water
# samples obtained from two background wells (Wells 1 and 2) and
# three compliance wells (Wells 3, 4, and 5). The tolerance limit
# is based on the data from the background wells.

# Here we will first take the log of the data and then estimate the
# standard deviation based on the two background wells. We will use this
# estimate of standard deviation to plot the half-widths of
# future tolerance intervals on the log-scale for various sample sizes.

head(EPA.09.Ex.17.3.chrysene.df)
# Month Well Well.type Chrysene.ppb
#1 1 Well.1 Background 19.7
#2 2 Well.1 Background 39.2
#3 3 Well.1 Background 7.8
#4 4 Well.1 Background 12.8
#5 1 Well.2 Background 10.2
#6 2 Well.2 Background 7.2

longToWide(EPA.09.Ex.17.3.chrysene.df, "Chrysene.ppb", "Month", "Well")
# Well.1 Well.2 Well.3 Well.4 Well.5
#1 19.7 10.2 68.0 26.8 47.0
#2 39.2 7.2 48.9 17.7 30.5
#3 7.8 16.1 30.1 31.9 15.0
#4 12.8 5.7 38.1 22.2 23.4

summary.stats <- summaryStats(log(Chrysene.ppb) ~ Well.type,
data = EPA.09.Ex.17.3.chrysene.df)

summary.stats
# N Mean SD Median Min Max
#Background 8 2.5086 0.6279 2.4359 1.7405 3.6687
#Compliance 12 3.4173 0.4361 3.4111 2.7081 4.2195

sigma.hat <- summary.stats["Background", "SD"]
sigma.hat
#[1] 0.6279

dev.new()
plotTolIntNormDesign(x.var = "n", y.var = "half.width",

range.x.var = c(5, 40), sigma.hat = sigma.hat, cex.main = 1)

#==========

# Clean up
#---------
rm(summary.stats, sigma.hat)
graphics.off()

plotTolIntNparDesign Plots for a Sampling Design Based on a Nonparametric Tolerance
Interval



plotTolIntNparDesign 729

Description

Create plots involving sample size (n), coverage (β), and confidence level (1 − α) for a nonpara-
metric tolerance interval.

Usage

plotTolIntNparDesign(x.var = "n", y.var = "conf.level", range.x.var = NULL, n = 25,
coverage = 0.95, conf.level = 0.95, ti.type = "two.sided", cov.type = "content",
ltl.rank = ifelse(ti.type == "upper", 0, 1),
n.plus.one.minus.utl.rank = ifelse(ti.type == "lower", 0, 1), plot.it = TRUE,
add = FALSE, n.points = 100, plot.col = "black", plot.lwd = 3 * par("cex"),
plot.lty = 1, digits = .Options$digits, cex.main = par("cex"), ..., main = NULL,
xlab = NULL, ylab = NULL, type = "l")

Arguments

x.var character string indicating what variable to use for the x-axis. Possible values are
"n" (sample size; the default), "coverage" (the coverage), and "conf.level"
(the confidence level).

y.var character string indicating what variable to use for the y-axis. Possible values
are "conf.level" (the confidence level; the default), "n" (sample size), and
"coverage" (the coverage).

range.x.var numeric vector of length 2 indicating the range of the x-variable to use for the
plot. The default value depends on the value of x.var. When x.var="n" the de-
fault value is c(2,50). When x.var="coverage" or x.var="conf", the default
value is c(0.5, 0.99).

n numeric scalar indicating the sample size. The default value is max(25, lpl.rank + n.plus.one.minus.upl.rank + 1).
Missing (NA), undefined (NaN), and infinite (Inf, -Inf) values are not allowed.
This argument is ignored if either x.var="n" or y.var="n".

coverage numeric scalar between 0 and 1 specifying the coverage of the tolerance interval.
The default value is coverage=0.95. This argument is ignored if x.var="coverage"
or y.var="coverage".

conf.level a scalar between 0 and 1 indicating the confidence level associated with the toler-
ance interval. The default value is conf.level=0.95. This argument is ignored
if x.var="conf.level" or y.var="conf.level", or if cov.type="expectation".

ti.type character string indicating what kind of tolerance interval to compute. The pos-
sible values are "two-sided" (the default), "lower", and "upper".

cov.type character string specifying the coverage type for the tolerance interval. The
possible values are "content" (β-content; the default), and "expectation"
(β-expectation).

ltl.rank vector of positive integers indicating the rank of the order statistic to use for the
lower bound of the tolerance interval. If ti.type="two-sided" or ti.type="lower",
the default value is ltl.rank=1 (implying the minimum value of x is used as
the lower bound of the tolerance interval). If ti.type="upper", this argument
is set equal to 0.

n.plus.one.minus.utl.rank

vector of positive integers related to the rank of the order statistic to use for the
upper bound of the tolerance interval. A value of n.plus.one.minus.utl.rank=1
(the default) means use the first largest value, and in general a value of n.plus.one.minus.utl.rank=i
means use the i’th largest value. If ti.type="lower", this argument is set equal
to 0.
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plot.it a logical scalar indicating whether to create a plot or add to the existing plot
(see add) on the current graphics device. If plot.it=FALSE, no plot is pro-
duced, but a list of (x,y) values is returned (see VALUE). The default value is
plot.it=TRUE.

add a logical scalar indicating whether to add the design plot to the existing plot
(add=TRUE), or to create a plot from scratch (add=FALSE). The default value is
add=FALSE. This argument is ignored if plot.it=FALSE.

n.points a numeric scalar specifying how many (x,y) pairs to use to produce the plot.
There are n.points x-values evenly spaced between range.x.var[1] and range.x.var[2].
The default value is n.points=100.

plot.col a numeric scalar or character string determining the color of the plotted line or
points. The default value is plot.col="black". See the entry for col in the
help file for par for more information.

plot.lwd a numeric scalar determining the width of the plotted line. The default value is
3*par("cex"). See the entry for lwd in the help file for par for more informa-
tion.

plot.lty a numeric scalar determining the line type of the plotted line. The default value
is plot.lty=1. See the entry for lty in the help file for par for more informa-
tion.

digits a scalar indicating how many significant digits to print out on the plot. The
default value is the current setting of options("digits").

cex.main, main, xlab, ylab, type, ...

additional graphical parameters (see par).

Details

See the help file for tolIntNpar, tolIntNparConfLevel, tolIntNparCoverage, and tolIntNparN
for information on how to compute a nonparametric tolerance interval, how the confidence level is
computed when other quantities are fixed, how the coverage is computed when other quantites are
fixed, and and how the sample size is computed when other quantities are fixed.

Value

plotTolIntNparDesign invisibly returns a list with components x.var and y.var, giving coordi-
nates of the points that have been or would have been plotted.

Note

See the help file for tolIntNpar.

In the course of designing a sampling program, an environmental scientist may wish to deter-
mine the relationship between sample size, coverage, and confidence level if one of the objec-
tives of the sampling program is to produce tolerance intervals. The functions tolIntNparN,
tolIntNparCoverage, tolIntNparConfLevel, and plotTolIntNparDesign can be used to in-
vestigate these relationships for constructing nonparametric tolerance intervals.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

See the help file for tolIntNpar.
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See Also

tolIntNpar, tolIntNparConfLevel, tolIntNparCoverage, tolIntNparN.

Examples

# Look at the relationship between confidence level and sample size for a two-sided
# nonparametric tolerance interval.

dev.new()
plotTolIntNparDesign()

#==========

# Plot confidence level vs. sample size for various values of coverage:

dev.new()
plotTolIntNparDesign(coverage = 0.7, ylim = c(0,1), main = "")

plotTolIntNparDesign(coverage = 0.8, add = TRUE, plot.col = "red")

plotTolIntNparDesign(coverage = 0.9, add = TRUE, plot.col = "blue")

legend("bottomright", c("coverage = 70%", "coverage = 80%", "coverage = 90%"), lty=1,
lwd = 3 * par("cex"), col = c("black", "red", "blue"), bty = "n")

title(main = paste("Confidence Level vs. Sample Size for Nonparametric TI",
"with Various Levels of Coverage", sep = "\n"))

#==========

# Example 17-4 on page 17-21 of USEPA (2009) uses copper concentrations (ppb) from 3
# background wells to set an upper limit for 2 compliance wells. There are 6 observations
# per well, and the maximum value from the 3 wells is set to the 95% confidence upper
# tolerance limit, and we need to determine the coverage of this tolerance interval.

tolIntNparCoverage(n = 24, conf.level = 0.95, ti.type = "upper")
#[1] 0.8826538

# Here we will modify the example and look at confidence level versus coverage for
# a set sample size of n = 24.

dev.new()
plotTolIntNparDesign(x.var = "coverage", y.var = "conf.level", n = 24, ti.type = "upper")

#==========

# Clean up
#---------
graphics.off()

plotTTestDesign Plots for a Sampling Design Based on a One- or Two-Sample t-Test
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Description

Create plots involving sample size, power, scaled difference, and significance level for a one- or
two-sample t-test.

Usage

plotTTestDesign(x.var = "n", y.var = "power", range.x.var = NULL,
n.or.n1 = 25, n2 = n.or.n1,
delta.over.sigma = switch(alternative, greater = 0.5, less = -0.5,
two.sided = ifelse(two.sided.direction == "greater", 0.5, -0.5)),

alpha = 0.05, power = 0.95,
sample.type = ifelse(!missing(n2), "two.sample", "one.sample"),
alternative = "two.sided", two.sided.direction = "greater", approx = FALSE,
round.up = FALSE, n.max = 5000, tol = 1e-07, maxiter = 1000, plot.it = TRUE,
add = FALSE, n.points = 50, plot.col = "black", plot.lwd = 3 * par("cex"),
plot.lty = 1, digits = .Options$digits, ..., main = NULL, xlab = NULL,
ylab = NULL, type = "l")

Arguments

x.var character string indicating what variable to use for the x-axis. Possible val-
ues are "n" (sample size; the default), "delta.over.sigma" (scaled minimal
detectable difference), "power" (power of the test), and "alpha" (significance
level of the test).

y.var character string indicating what variable to use for the y-axis. Possible values are
"power" (power of the test; the default), "delta.over.sigma" (scaled minimal
detectable difference), and "n" (sample size).

range.x.var numeric vector of length 2 indicating the range of the x-variable to use for the
plot. The default value depends on the value of x.var. When x.var="n" the de-
fault value is c(2,50). When x.var="delta.over.sigma" and alternative="greater"
or alternative="two.sided" and two.sided.direction="greater", the de-
fault value is c(0.5, 2). When x.var="delta.over.sigma" and alternative="less"
or alternative="two.sided" and two.sided.direction="less", the default
value is -c(2, 0.5). When x.var="power" the default value is c(alpha + .Machine$double.eps, 0.95).
When x.var="alpha", the default value is c(0.01, 0.2).

n.or.n1 numeric scalar indicating the sample size. The default value is n.or.n1=25.
When sample.type="one.sample", n.or.n1 denotes the number of observa-
tions in the single sample. When sample.type="two.sample", n.or.n1 de-
notes the number of observations from group 1. Missing (NA), undefined (NaN),
and infinite (Inf, -Inf) values are not allowed. This argument is ignored if
either x.var="n" or y.var="n".

n2 numeric scalar indicating the sample size for group 2. The default value is the
value of n.or.n1. Missing (NA), undefined (NaN), and infinite (Inf, -Inf) values
are not allowed. This argument is ignored when sample.type="one.sample".

delta.over.sigma

numeric scalar specifying the ratio of the true difference (δ) to the popula-
tion standard deviation (σ). This is also called the "scaled difference". When
alternative="greater" or alternative="two.sided" and two.sided.direction="greater",
the default value is delta.over.sigma=0.5. When alternative="less" or
alternative="two.sided" and two.sided.direction="less", the default
value is delta.over.sigma=-0.5. This argument is ignored when x.var="delta.over.sigma"
or y.var="delta.over.sigma".
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alpha numeric scalar between 0 and 1 indicating the Type I error level associated with
the hypothesis test. The default value is alpha=0.05. This argument is ignored
when x.var="alpha".

power numeric scalar between 0 and 1 indicating the power associated with the hy-
pothesis test. The default value is power=0.95. This argument is ignored when
x.var="power" or y.var="power".

sample.type character string indicating whether the design is based on a one-sample or two-
sample t-test. When sample.type="one.sample", the computations for the
plot are based on a one-sample t-test. When sample.type="two.sample", the
computations for the plot are based on a two-sample t-test. The default value is
sample.type="one.sample".

alternative character string indicating the kind of alternative hypothesis. The possible val-
ues are "two.sided" (the default), "less", and "greater".

two.sided.direction

character string indicating the direction (positive or negative) for the scaled min-
imal detectable difference when alternative="two.sided". When two.sided.direction="greater"
(the default), the scaled minimal detectable difference is positive. When two.sided.direction="less",
the scaled minimal detectable difference is negative. This argument is ignored
unless alternative="two.sided" and either x.var="delta" or y.var="delta".

approx logical scalar indicating whether to compute the power based on an approxima-
tion to the non-central t-distribution. The default value is approx=FALSE.

round.up logical scalar indicating whether to round up the values of the computed sample
size(s) to the next smallest integer. The default value is round.up=FALSE. This
argument is ignored unless y.var="n".

n.max for the case when y.var="n", a positive integer greater than 1 indicating the
maximum sample size when sample.type="one.sample" or the maximum
sample size for group 1 when sample.type="two.sample". The default value
is n.max=5000.

tol numeric scalar relevant to the case when y.var="n" or y.var="delta.over.sigma".
This argument is passed to the uniroot function and indicates the tolerance to
use in the search algorithm. The default value is tol=1e-7.

maxiter numeric scalar relevant to the case when y.var="n" and approx=FALSE (i.e.,
when the power is based on the exact test), or when y.var="delta.over.sigma".
This argument is passed to the uniroot function and is a positive integer indi-
cating the maximum number of iterations. The default value is maxiter=1000.

plot.it a logical scalar indicating whether to create a new plot or add to the existing
plot (see add) on the current graphics device. If plot.it=FALSE, no plot is
produced, but a list of (x,y) values is returned (see VALUE). The default value
is plot.it=TRUE.

add a logical scalar indicating whether to add the design plot to the existing plot
(add=TRUE), or to create a plot from scratch (add=FALSE). The default value is
add=FALSE. This argument is ignored if plot.it=FALSE.

n.points a numeric scalar specifying how many (x,y) pairs to use to produce the plot.
There are n.points x-values evenly spaced between range.x.var[1] and range.x.var[2].
The default value is n.points=50.

plot.col a numeric scalar or character string determining the color of the plotted line or
points. The default value is plot.col="black". See the entry for col in the
help file for par for more information.
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plot.lwd a numeric scalar determining the width of the plotted line. The default value is
3*par("cex"). See the entry for lwd in the help file for par for more informa-
tion.

plot.lty a numeric scalar determining the line type of the plotted line. The default value
is plot.lty=1. See the entry for lty in the help file for par for more informa-
tion.

digits a scalar indicating how many significant digits to print out on the plot. The
default value is the current setting of options("digits").

main, xlab, ylab, type, ...

additional graphical parameters (see par).

Details

See the help files for tTestPower, tTestN, and tTestScaledMdd for information on how to com-
pute the power, sample size, or scaled minimal detectable difference for a one- or two-sample t-test.

Value

plotTTestDesign invisibly returns a list with components x.var and y.var, giving coordinates of
the points that have been or would have been plotted.

Note

See the help files for tTestPower, tTestN, and tTestScaledMdd.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

See the help files for tTestPower, tTestN, and tTestScaledMdd.

See Also

tTestPower, tTestN, tTestScaledMdd, t.test.

Examples

# Look at the relationship between power and sample size for a two-sample t-test,
# assuming a scaled difference of 0.5 and a 5% significance level:

dev.new()
plotTTestDesign(sample.type = "two")

#----------

# For a two-sample t-test, plot sample size vs. the scaled minimal detectable
# difference for various levels of power, using a 5% significance level:

dev.new()
plotTTestDesign(x.var = "delta.over.sigma", y.var = "n", sample.type = "two",

ylim = c(0, 110), main="")
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plotTTestDesign(x.var = "delta.over.sigma", y.var = "n", sample.type = "two",
power = 0.9, add = TRUE, plot.col = "red")

plotTTestDesign(x.var = "delta.over.sigma", y.var = "n", sample.type = "two",
power = 0.8, add = TRUE, plot.col = "blue")

legend("topright", c("95%", "90%", "80%"), lty = 1,
lwd = 3 * par("cex"), col = c("black", "red", "blue"), bty = "n")

title(main = paste("Sample Size vs. Scaled Difference for",
"Two-Sample t-Test, with Alpha=0.05 and Various Powers",
sep="\n"))

#==========

# Modifying the example on pages 21-4 to 21-5 of USEPA (2009), look at
# power versus scaled minimal detectable difference for various sample
# sizes in the context of the problem of using a one-sample t-test to
# compare the mean for the well with the MCL of 7 ppb. Use alpha = 0.01,
# assume an upper one-sided alternative (i.e., compliance well mean larger
# than 7 ppb).

dev.new()
plotTTestDesign(x.var = "delta.over.sigma", y.var = "power",

range.x.var = c(0.5, 2), n.or.n1 = 8, alpha = 0.01,
alternative = "greater", ylim = c(0, 1), main = "")

plotTTestDesign(x.var = "delta.over.sigma", y.var = "power",
range.x.var = c(0.5, 2), n.or.n1 = 6, alpha = 0.01,
alternative = "greater", add = TRUE, plot.col = "red")

plotTTestDesign(x.var = "delta.over.sigma", y.var = "power",
range.x.var = c(0.5, 2), n.or.n1 = 4, alpha = 0.01,
alternative = "greater", add = TRUE, plot.col = "blue")

legend("topleft", paste("N =", c(8, 6, 4)), lty = 1, lwd = 3 * par("cex"),
col = c("black", "red", "blue"), bty = "n")

title(main = paste("Power vs. Scaled Difference for One-Sample t-Test",
"with Alpha=0.01 and Various Sample Sizes", sep="\n"))

#==========

# Clean up
#---------
graphics.off()

plotTTestLnormAltDesign

Plots for a Sampling Design Based on a One- or Two-Sample t-Test,
Assuming Lognormal Data

Description

Create plots involving sample size, power, ratio of means, coefficient of variation, and significance
level for a one- or two-sample t-test, assuming lognormal data.
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Usage

plotTTestLnormAltDesign(x.var = "n", y.var = "power", range.x.var = NULL,
n.or.n1 = 25, n2 = n.or.n1,
ratio.of.means = switch(alternative, greater = 2, less = 0.5,
two.sided = ifelse(two.sided.direction == "greater", 2, 0.5)),

cv = 1, alpha = 0.05, power = 0.95,
sample.type = ifelse(!missing(n2), "two.sample", "one.sample"),
alternative = "two.sided", two.sided.direction = "greater", approx = FALSE,
round.up = FALSE, n.max = 5000, tol = 1e-07, maxiter = 1000, plot.it = TRUE,
add = FALSE, n.points = 50, plot.col = "black", plot.lwd = 3 * par("cex"),
plot.lty = 1, digits = .Options$digits, cex.main = par("cex"), ...,
main = NULL, xlab = NULL, ylab = NULL, type = "l")

Arguments

x.var character string indicating what variable to use for the x-axis. Possible values
are "n" (sample size; the default), "ratio.of.means" (minimal or maximal
detectable ratio of means), "cv" (coefficient of variaiton), "power" (power of
the test), and "alpha" (significance level of the test).

y.var character string indicating what variable to use for the y-axis. Possible values
are "power" (power of the test; the default), "ratio.of.means" (minimal or
maximal detectable ratio of means), and "n" (sample size).

range.x.var numeric vector of length 2 indicating the range of the x-variable to use for the
plot. The default value depends on the value of x.var. When x.var="n" the de-
fault value is c(2,50). When x.var="ratio.of.means" and alternative="greater"
or alternative="two.sided" and two.sided.direction="greater", the de-
fault value is c(1, 2). When x.var="delta" and alternative="less" or
alternative="two.sided" and two.sided.direction="less", the default
value is c(0.5, 1). When x.var="cv" the default value is c(0.5, 2). When
x.var="power" the default value is c(alpha + .Machine$double.eps, 0.95).
When x.var="alpha", the default value is c(0.01, 0.2).

n.or.n1 numeric scalar indicating the sample size. The default value is n.or.n1=25.
When sample.type="one.sample", n.or.n1 denotes the number of observa-
tions in the single sample. When sample.type="two.sample", n.or.n1 de-
notes the number of observations from group 1. Missing (NA), undefined (NaN),
and infinite (Inf, -Inf) values are not allowed. This argument is ignored if
either x.var="n" or y.var="n".

n2 numeric scalar indicating the sample size for group 2. The default value is the
value of n.or.n1. Missing (NA), undefined (NaN), and infinite (Inf, -Inf) values
are not allowed. This argument is ignored when sample.type="one.sample".

ratio.of.means numeric scalar specifying the ratio of the first mean to the second mean. When
sample.type="one.sample", this is the ratio of the population mean to the
hypothesized mean. When sample.type="two.sample", this is the ratio of the
mean of the first population to the mean of the second population.
When alternative="greater" or alternative="two.sided" and two.sided.direction="greater",
the default value is ratio.of.means=2. When alternative="less" or alternative="two.sided"
and two.sided.direction="less", the default value is ratio.of.means=0.5.
This argument is ignored when x.var="ratio.of.means" or y.var="ratio.of.means".

cv numeric scalar: a positive value specifying the coefficient of variation. When
sample.type="one.sample", this is the population coefficient of variation. When



plotTTestLnormAltDesign 737

sample.type="two.sample", this is the coefficient of variation for both the first
and second population. The default value is cv=1.

alpha numeric scalar between 0 and 1 indicating the Type I error level associated with
the hypothesis test. The default value is alpha=0.05.

power numeric scalar between 0 and 1 indicating the power associated with the hypoth-
esis test. The default value is power=0.95.

sample.type character string indicating whether to compute power based on a one-sample or
two-sample hypothesis test. When sample.type="one.sample", the computed
power is based on a hypothesis test for a single mean. When sample.type="two.sample",
the computed power is based on a hypothesis test for the difference between two
means. The default value is sample.type="one.sample" unless the argument
n2 is supplied.

alternative character string indicating the kind of alternative hypothesis. The possible val-
ues are "two.sided" (the default), "greater", and "less".

two.sided.direction

character string indicating the direction (greater than 1 or less than 1) for the de-
tectable ratio of means when alternative="two.sided". When two.sided.direction="greater"
(the default), the detectable ratio of means is greater than 1. When two.sided.direction="less",
the detectable ratio of means is less than 1 (but greater than 0). This argument
is ignored if alternative="less" or alternative="greater".

approx logical scalar indicating whether to compute the power based on an approxima-
tion to the non-central t-distribution. The default value is approx=FALSE.

round.up logical scalar indicating whether to round up the values of the computed sample
size(s) to the next smallest integer. The default value is TRUE.

n.max for the case when y.var="n", a positive integer greater than 1 indicating the
maximum sample size when sample.type="one.sample" or the maximum
sample size for group 1 when sample.type="two.sample". The default value
is n.max=5000.

tol numeric scalar indicating the toloerance to use in the uniroot search algorithm.
The default value is tol=1e-7.

maxiter positive integer indicating the maximum number of iterations argument to pass
to the uniroot function. The default value is maxiter=1000.

plot.it a logical scalar indicating whether to create a new plot or add to the existing
plot (see add) on the current graphics device. If plot.it=FALSE, no plot is
produced, but a list of (x,y) values is returned (see VALUE). The default value
is plot.it=TRUE.

add a logical scalar indicating whether to add the design plot to the existing plot
(add=TRUE), or to create a plot from scratch (add=FALSE). The default value is
add=FALSE. This argument is ignored if plot.it=FALSE.

n.points a numeric scalar specifying how many (x,y) pairs to use to produce the plot.
There are n.points x-values evenly spaced between range.x.var[1] and range.x.var[2].
The default value is n.points=100.

plot.col a numeric scalar or character string determining the color of the plotted line or
points. The default value is plot.col="black". See the entry for col in the
help file for par for more information.

plot.lwd a numeric scalar determining the width of the plotted line. The default value is
3*par("cex"). See the entry for lwd in the help file for par for more informa-
tion.



738 plotTTestLnormAltDesign

plot.lty a numeric scalar determining the line type of the plotted line. The default value
is plot.lty=1. See the entry for lty in the help file for par for more informa-
tion.

digits a scalar indicating how many significant digits to print out on the plot. The
default value is the current setting of options("digits").

cex.main, main, xlab, ylab, type, ...

additional graphical parameters (see par).

Details

See the help files for tTestLnormAltPower, tTestLnormAltN, and tTestLnormAltRatioOfMeans
for information on how to compute the power, sample size, or ratio of means for a one- or two-
sample t-test assuming lognormal data.

Value

plotTTestLnormAltDesign invisibly returns a list with components x.var and y.var, giving co-
ordinates of the points that have been or would have been plotted.

Note

See the help files for tTestLnormAltPower, tTestLnormAltN, and tTestLnormAltRatioOfMeans.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

See the help files for tTestLnormAltPower, tTestLnormAltN, and tTestLnormAltRatioOfMeans.

See Also

tTestLnormAltPower, tTestLnormAltN, tTestLnormAltRatioOfMeans, t.test.

Examples

# Look at the relationship between power and sample size for a two-sample t-test,
# assuming lognormal data, a ratio of means of 2, a coefficient of variation
# of 1, and a 5% significance level:

dev.new()
plotTTestLnormAltDesign(sample.type = "two")

#----------

# For a two-sample t-test based on lognormal data, plot sample size vs. the
# minimal detectable ratio for various levels of power, assuming a coefficient
# of variation of 1 and using a 5% significance level:

dev.new()
plotTTestLnormAltDesign(x.var = "ratio.of.means", y.var = "n",

range.x.var = c(1.5, 2), sample.type = "two", ylim = c(20, 120), main="")

plotTTestLnormAltDesign(x.var = "ratio.of.means", y.var = "n",
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range.x.var = c(1.5, 2), sample.type="two", power = 0.9,
add = TRUE, plot.col = "red")

plotTTestLnormAltDesign(x.var = "ratio.of.means", y.var = "n",
range.x.var = c(1.5, 2), sample.type="two", power = 0.8,
add = TRUE, plot.col = "blue")

legend("topright", c("95%", "90%", "80%"), lty=1, lwd = 3*par("cex"),
col = c("black", "red", "blue"), bty = "n")

title(main = paste("Sample Size vs. Ratio of Lognormal Means for",
"Two-Sample t-Test, with CV=1, Alpha=0.05 and Various Powers",
sep="\n"))

#==========

# The guidance document Soil Screening Guidance: Technical Background Document
# (USEPA, 1996c, Part 4) discusses sampling design and sample size calculations
# for studies to determine whether the soil at a potentially contaminated site
# needs to be investigated for possible remedial action. Let theta denote the
# average concentration of the chemical of concern. The guidance document
# establishes the following goals for the decision rule (USEPA, 1996c, p.87):
#
# Pr[Decide Dont Investigate | theta > 2 * SSL] = 0.05
#
# Pr[Decide to Investigate | theta <= (SSL/2)] = 0.2
#
# where SSL denotes the pre-established soil screening level.
#
# These goals translate into a Type I error of 0.2 for the null hypothesis
#
# H0: [theta / (SSL/2)] <= 1
#
# and a power of 95% for the specific alternative hypothesis
#
# Ha: [theta / (SSL/2)] = 4
#
# Assuming a lognormal distribution, a coefficient of variation of 2, and the above
# values for Type I error and power, create a performance goal diagram
# (USEPA, 1996c, p.89) showing the power of a one-sample test versus the minimal
# detectable ratio of theta/(SSL/2) when the sample size is 6 and the exact power
# calculations are used.

dev.new()
plotTTestLnormAltDesign(x.var = "ratio.of.means", y.var = "power",

range.x.var = c(1, 5), n.or.n1 = 6, cv = 2, alpha = 0.2,
alternative = "greater", approx = FALSE, ylim = c(0.2, 1),
xlab = "theta / (SSL/2)")

#==========

# Clean up
#---------
graphics.off()
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pointwise Pointwise Confidence Limits for Predictions

Description

Computes pointwise confidence limits for predictions computed by the function predict.

Usage

pointwise(results.predict, coverage = 0.99,
simultaneous = FALSE, individual = FALSE)

Arguments

results.predict

output from a call to predict with se.fit=TRUE.

coverage optional numeric scalar between 0 and 1 indicating the confidence level associ-
ated with the confidence limits. The default value is coverage=0.99.

simultaneous optional logical scalar indicating whether to base the confidence limits for the
predicted values on simultaneous or non-simultaneous prediction limits. The
default value is simultaneous=FALSE.

individual optional logical scalar indicating whether to base the confidence intervals for
the predicted values on prediction limits for the mean (individual=FALSE) or
prediction limits for an individual observation (individual=TRUE). The default
value is individual=FALSE.

Details

This function computes pointwise confidence limits for predictions computed by the function
predict. The limits are computed at those points specified by the argument newdata of predict.

The predict function is a generic function with methods for several different classes. The funciton
pointwise was part of the S language. The modifications to pointwise in the package EnvStats
involve confidence limits for predictions for a linear model (i.e., an object of class lm).

Confidence Limits for a Predicted Mean Value (individual=FALSE). Consider a standard linear
model with p predictor variables. Often, one of the major goals of regression analysis is to predict a
future value of the response variable given known values of the predictor variables. The equations
for the predicted mean value of the response given fixed values of the predictor variables as well as
the equation for a two-sided (1-α)100% confidence interval for the mean value of the response can
be found in Draper and Smith (1998, p.80) and Millard and Neerchal (2001, p.547).

Technically, this formula is a confidence interval for the mean of the response for one set of fixed
values of the predictor variables and corresponds to the case when simultaneous=FALSE. To create
simultaneous confidence intervals over the range of of the predictor variables, the critical t-value in
the equation has to be replaced with a critical F-value and the modified formula is given in Draper
and Smith (1998, p. 83), Miller (1981a, p. 111), and Millard and Neerchal (2001, p. 547). This
formula is used in the case when simultaneous=TRUE.

Confidence Limits for a Predicted Individual Value (individual=TRUE). In the above section
we discussed how to create a confidence interval for the mean of the response given fixed values
for the predictor variables. If instead we want to create a prediction interval for a single future
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observation of the response variable, the fomula is given in Miller (1981a, p. 115) and Millard and
Neerchal (2001, p. 551).

Technically, this formula is a prediction interval for a single future observation for one set of fixed
values of the predictor variables and corresponds to the case when simultaneous=FALSE. Miller
(1981a, p. 115) gives a formula for simultaneous prediction intervals for k future observations.
If we are interested in creating an interval that will encompass all possible future observations
over the range of the preictor variables with some specified probability however, we need to create
simultaneous tolerance intervals. A formula for such an interval was developed by Lieberman
and Miller (1963) and is given in Miller (1981a, p. 124). This formula is used in the case when
simultaneous=TRUE.

Value

a list with the following components:

upper upper limits of pointwise confidence intervals.

fit surface values. This is the same as the component fit of the argument
results.predict.

lower lower limits of pointwise confidence intervals.

Note

The function pointwise is called by the functions detectionLimitCalibrate and
inversePredictCalibrate, which are used in calibration.

Almost always the process of determining the concentration of a chemical in a soil, water, or air
sample involves using some kind of machine that produces a signal, and this signal is related to
the concentration of the chemical in the physical sample. The process of relating the machine
signal to the concentration of the chemical is called calibration (see calibrate). Once calibration
has been performed, estimated concentrations in physical samples with unknown concentrations are
computed using inverse regression. The uncertainty in the process used to estimate the concentration
may be quantified with decision, detection, and quantitation limits.

In practice, only the point estimate of concentration is reported (along with a possible qualifier),
without confidence bounds for the true concentration C. This is most unfortunate because it gives
the impression that there is no error associated with the reported concentration. Indeed, both the
International Organization for Standardization (ISO) and the International Union of Pure and Ap-
plied Chemistry (IUPAC) recommend always reporting both the estimated concentration and the
uncertainty associated with this estimate (Currie, 1997).

Author(s)

Authors of S (for code for pointwise in S).

Steven P. Millard (for modification to allow the arguments simultaneous and individual);
<EnvStats@ProbStatInfo.com>)

References

Chambers, J.M., and Hastie, T.J., eds. (1992). Statistical Models in S. Chapman and Hall/CRC,
Boca Raton, FL.

Draper, N., and H. Smith. (1998). Applied Regression Analysis. Third Edition. John Wiley and
Sons, New York, Chapter 3.
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Millard, S.P., and N.K. Neerchal. (2001). Environmental Statistics with S-PLUS. CRC Press, Boca
Raton, FL, pp.546-553.

Miller, R.G. (1981a). Simultaneous Statistical Inference. Springer-Verlag, New York, pp.111, 124.

See Also

predict, lm, calibrate, inversePredictCalibrate, detectionLimitCalibrate.

Examples

# Using the data in the built-in data frame Air.df,
# fit the cube root of ozone as a function of temperature.
# Then compute predicted values for ozone at 70 and 90
# degrees F, and compute 95% confidence intervals for the
# mean value of ozone at these temperatures.

# First create the lm object
#---------------------------

ozone.fit <- lm(ozone ~ temperature, data = Air.df)

# Now get predicted values and CIs at 70 and 90 degrees
#------------------------------------------------------

predict.list <- predict(ozone.fit,
newdata = data.frame(temperature = c(70, 90)), se.fit = TRUE)

pointwise(predict.list, coverage = 0.95)
# $upper
# 1 2
# 2.839145 4.278533

# $fit
# 1 2
# 2.697810 4.101808

# $lower
# 1 2
# 2.556475 3.925082

#--------------------------------------------------------------------

# Continuing with the above example, create a scatterplot of ozone
# vs. temperature, and add the fitted line along with simultaneous
# 95% confidence bands.

x <- Air.df$temperature

y <- Air.df$ozone

dev.new()
plot(x, y, xlab="Temperature (degrees F)",

ylab = expression(sqrt("Ozone (ppb)", 3)))

abline(ozone.fit, lwd = 2)
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new.x <- seq(min(x), max(x), length=100)

predict.ozone <- predict(ozone.fit,
newdata = data.frame(temperature = new.x), se.fit = TRUE)

ci.ozone <- pointwise(predict.ozone, coverage=0.95,
simultaneous=TRUE)

lines(new.x, ci.ozone$lower, lty=2, lwd = 2, col = 2)

lines(new.x, ci.ozone$upper, lty=2, lwd = 2, col = 2)

title(main=paste("Cube Root Ozone vs. Temperature with Fitted Line",
"and Simultaneous 95% Confidence Bands",
sep="\n"))

#--------------------------------------------------------------------

# Redo the last example by creating non-simultaneous
# confidence bounds and prediction bounds as well.

dev.new()
plot(x, y, xlab = "Temperature (degrees F)",

ylab = expression(sqrt("Ozone (ppb)", 3)))

abline(ozone.fit, lwd = 2)

new.x <- seq(min(x), max(x), length=100)

predict.ozone <- predict(ozone.fit,
newdata = data.frame(temperature = new.x), se.fit = TRUE)

ci.ozone <- pointwise(predict.ozone, coverage=0.95)

lines(new.x, ci.ozone$lower, lty=2, col = 2, lwd = 2)

lines(new.x, ci.ozone$upper, lty=2, col = 2, lwd = 2)

pi.ozone <- pointwise(predict.ozone, coverage = 0.95,
individual = TRUE)

lines(new.x, pi.ozone$lower, lty=4, col = 4, lwd = 2)

lines(new.x, pi.ozone$upper, lty=4, col = 4, lwd = 2)

title(main=paste("Cube Root Ozone vs. Temperature with Fitted Line",
"and 95% Confidence and Prediction Bands",
sep="\n"))

#--------------------------------------------------------------------

# Clean up
rm(predict.list, ozone.fit, x, y, new.x, predict.ozone, ci.ozone,

pi.ozone)
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ppointsCensored Plotting Positions for Type I Censored Data

Description

Returns a list of “ordered” observations and associated plotting positions based on Type I left-
censored or right-censored data. These plotting positions may be used to construct empirical cumu-
lative distribution plots or quantile-quantile plots, or to estimate distribution parameters.

Usage

ppointsCensored(x, censored, censoring.side = "left",
prob.method = "michael-schucany", plot.pos.con = 0.375)

Arguments

x numeric vector of observations. Missing (NA), undefined (NaN), and infinite (Inf,
-Inf) values are allowed but will be removed.

censored numeric or logical vector indicating which values of x are censored. This must
be the same length as x. If the mode of censored is "logical", TRUE values
correspond to elements of x that are censored, and FALSE values correspond to
elements of x that are not censored. If the mode of censored is "numeric",
it must contain only 1’s and 0’s; 1 corresponds to TRUE and 0 corresponds to
FALSE. Missing (NA) values are allowed but will be removed.

censoring.side character string indicating on which side the censoring occurs. The possible
values are "left" (the default) and "right".

prob.method character string indicating what method to use to compute the plotting positions
(empirical probabilities). Possible values are "kaplan-meier" (product-limit
method of Kaplan and Meier (1958)), "modified kaplan-meier" (modifica-
tion of Kaplan-Meier method), "nelson" (hazard plotting method of Nelson
(1972)), "michael-schucany" (generalization of the product-limit method due
to Michael and Schucany (1986)), and "hirsch-stedinger" (generalization of
the product-limit method due to Hirsch and Stedinger (1987)). The default value
is prob.method="michael-schucany".
The "nelson" method is only available for censoring.side="right", and the
"modified kaplan-meier" method is only available for censoring.side="left".
See the DETAILS section for more explanation.

plot.pos.con numeric scalar between 0 and 1 containing the value of the plotting position
constant. The default value is plot.pos.con=0.375. See the DETAILS section
for more information. This argument is used only if prob.method is equal to
"michael-schucany" or "hirsch-stedinger".

Details

Methods for computing plotting positions for complete data sets (no censored observations) are dis-
cussed in D’Agostino, R.B. (1986a) and Cleveland (1993). For data sets with censored observations,
these methods must be modified. The function ppointsCensored allows you to compute plotting
positions based on the product-limit method of Kaplan and Meier (1958) (prob.method="kaplan-meier"),
the hazard plotting method of Nelson (1972) (prob.method="nelson"), the generalization of the
product-limit method due to Michael and Schucany (1986) (prob.method="michael-schucany";
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the default), and the generalization of the product-limit method due to Hirsch and Stedinger (1987)
(prob.method="hirsch-stedinger").

Let x denote a random sample of N observations from some distribution. Assume n (0 < n < N )
of these observations are known and c (c = N − n) of these observations are all censored below
(left-censored) or all censored above (right-censored) at k fixed censoring levels

T1, T2, . . . , TK ; K ≥ 1 (1)

For the case when K ≥ 2, the data are said to be Type I multiply censored. For the case when
K = 1, set T = T1. If the data are left-censored and all n known observations are greater than
or equal to T , or if the data are right-censored and all n known observations are less than or equal
to T , then the data are said to be Type I singly censored (Nelson, 1982, p.7), otherwise they are
considered to be Type I multiply censored.

Let cj denote the number of observations censored below or above censoring level Tj for j =
1, 2, . . . ,K, so that

K∑
i=1

cj = c (2)

Let x(1), x(2), . . . , x(N) denote the “ordered” observations, where now “observation” means either
the actual observation (for uncensored observations) or the censoring level (for censored observa-
tions). For right-censored data, if a censored observation has the same value as an uncensored one,
the uncensored observation should be placed first. For left-censored data, if a censored observation
has the same value as an uncensored one, the censored observation should be placed first.

Note that in this case the quantity x(i) does not necessarily represent the i’th “largest” observation
from the (unknown) complete sample.

Finally, let Ω (omega) denote the set of n subscripts in the “ordered” sample that correspond to
uncensored observations.

Product-Limit Method of Kaplan and Meier (prob.method="kaplan-meier")
For complete data sets (no censored observations), the empirical probabilities estimator of the
cumulative distribution function evaluated at the i’th ordered observation is given by (D’Agostino,
1986a, p.8):

F̂ [x(i)] = p̂i =
#[xj ≤ x(i)]

n
(3)

where #[xj ≤ x(i)] denotes the number of observations less than or equal to x(i) (see the help file
for ecdfPlot). Kaplan and Meier (1958) extended this method of computing the empirical cdf to
the case of right-censored data.

Right-Censored Data (censoring.side="right")
Let S(t) denote the survival function evaluated at t, that is:

S(t) = 1− F (t) = Pr(X > t) (4)

Kaplan and Meier (1958) show that a nonparametric estimate of the survival function at the i’th
ordered observation that is not censored (i.e., i ∈ Ω), is given by:

Ŝ[x(i)] = P̂ r[X > x(i)]

= P̂ r[X > x(1)]

P̂ r[X > x(2)|X > x(1)] · · ·
P̂ r[X > x(i)|X > x(i−1)]

=
∏
j∈Ω,j≤i

nj−dj
nj

, i ∈ Ω (5)
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where nj is the number of observations (uncensored or censored) with values greater than or equal
to x(j), and dj denotes the number of uncensored observations exactly equal to x(j) (if there are no
tied uncensored observations then dj will equal 1 for all values of j). (See also Lee and Wang, 2003,
pp. 64–69; Michael and Schucany, 1986). By convention, the estimate of the survival function at a
censored observation is set equal to the estimated value of the survival function at the largest uncen-
sored observation less than or equal to that censoring level. If there are no uncensored observations
less than or equal to a particular censoring level, the estimate of the survival function is set to 1 for
that censoring level.

Thus the Kaplan-Meier plotting position at the i’th ordered observation that is not censored (i.e.,
i ∈ Ω), is given by:

p̂i = F̂ [x(i)] = 1−
∏

j∈Ω,j≤i

nj − dj
nj

(6)

The plotting position for a censored observation is set equal to the plotting position associated
with the largest uncensored observation less than or equal to that censoring level. If there are no
uncensored observations less than or equal to a particular censoring level, the plotting position is
set to 0 for that censoring level.

As an example, consider the following right-censored data set:

3,≥ 4,≥ 4, 5, 5, 6

The table below shows how the plotting positions are computed.

i x(i) ni di
ni−di
ni

Plotting Position
1 3 6 1 5/6 1− (5/6) = 0.167
2 ≥ 4
3 ≥ 4
4 5 3 2 1/3 1− (5/6)(1/3) = 0.722
5 5 0.722
6 6 1 1 0/1 1− (5/6)(1/3)(0/1) = 1

Note that for complete data sets, Equation (6) reduces to Equation (3).

Left-Censored Data (censoring.side="left")
Gillespie et al. (2010) give formulas for the Kaplan-Meier estimator for the case of left-cesoring
(censoring.side="left"). In this case, the plotting position for the i’th ordered observation,
assuming it is not censored, is computed as:

p̂i = F̂ [x(i)] =
∏

j∈Ω,j>i

nj − dj
nj

(7)

where nj is the number of observations (uncensored or censored) with values less than or equal to
x(j), and dj denotes the number of uncensored observations exactly equal to x(j) (if there are no
tied uncensored observations then dj will equal 1 for all values of j). The plotting position is equal
to 1 for the largest uncensored order statistic.

As an example, consider the following left-censored data set:

3, < 4, < 4, 5, 5, 6

The table below shows how the plotting positions are computed.

i x(i) ni di
ni−di
ni

Plotting Position
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1 3 1 1 0/1 1(5/6)(3/5) = 0.5
2 < 4
3 < 4
4 5 5 2 3/5 0.833
5 5 1(5/6) = 0.833
6 6 6 1 5/6 1

Note that for complete data sets, Equation (7) reduces to Equation (3).

Modified Kaplan-Meier Method (prob.method="modified kaplan-meier")
(Left-Censored Data Only.) For left-censored data, the modified Kaplan-Meier method is the same
as the Kaplan-Meier method, except that for the largest uncensored order statistic, the plotting po-
sition is not set to 1 but rather is set equal to the Blom plotting position: (N − 0.375)/(N + 0.25).
This method is useful, for example, when creating Quantile-Quantile plots.

Hazard Plotting Method of Nelson (prob.method="nelson")
(Right-Censored Data Only.) For right-censored data, Equation (5) can be re-written as:

Ŝ[x(i)] =
∏

j∈Ω,j≤i

N − j
N − j + 1

, i ∈ Ω (8)

Nelson (1972) proposed the following formula for plotting positions for the uncensored observa-
tions in the context of estimating the hazard function (see Michael and Schucany,1986, p.469):

p̂i = F̂ [x(i)] = 1−
∏

j∈Ω,j≤i

exp(
−1

N − j + 1
) (9)

See Lee and Wang (2003) for more information about the hazard function.

As for the Kaplan and Meier (1958) method, the plotting position for a censored observation is set
equal to the plotting position associated with the largest uncensored observation less than or equal
to that censoring level. If there are no uncensored observations less than or equal to a particular
censoring level, the plotting position is set to 0 for that censoring level.

Generalization of Product-Limit Method, Michael and Schucany (prob.method="michael-schucany")
For complete data sets, the disadvantage of using Equation (3) above to define plotting positions
is that it implies the largest observed value is the maximum possible value of the distribution (the
100’th percentile). This may be satisfactory if the underlying distribution is known to be discrete,
but it is usually not satisfactory if the underlying distribution is known to be continuous.

A more frequently used formula for plotting positions for complete data sets is given by:

F̂ [x(i)] = p̂i =
i− a

N − 2a+ 1
(10)

where 0 ≤ a ≤ 1 (Cleveland, 1993, p. 18; D’Agostino, 1986a, pp. 8,25). The value of a is usu-
ally chosen so that the plotting positions are approximately unbiased (i.e., approximate the mean
of their distribution) or else approximate the median value of their distribution (see the help file for
ecdfPlot). Michael and Schucany (1986) extended this method for both left- and right-censored
data sets.

Right-Censored Data (censoring.side="right")
For right-censored data sets, the plotting positions for the uncensored observations are computed
as:

p̂i = 1− N − a+ 1

N − 2a+ 1

∏
j∈Ω,j≤i

N − j − a+ 1

N − j − a+ 2
i ∈ Ω (11)
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Note that the plotting positions proposed by Herd (1960) and Johnson (1964) are a special case of
Equation (11) with a = 0. Equation (11) reduces to Equation (10) in the case of complete data
sets. Note that unlike the Kaplan-Meier method, plotting positions associated with tied uncensored
observations are not the same (just as in the case for complete data using Equation (10)).

As for the Kaplan and Meier (1958) method, for right-censored data the plotting position for a
censored observation is set equal to the plotting position associated with the largest uncensored ob-
servation less than or equal to that censoring level. If there are no uncensored observations less than
or equal to a particular censoring level, the plotting position is set to 0 for that censoring level.

Left-Censored Data (censoring.side="left")
For left-censored data sets the plotting positions are computed as:

p̂i =
N − a+ 1

N − 2a+ 1

∏
j∈Ω,j≥i

j − a
j − a+ 1

i ∈ Ω (12)

Equation (12) reduces to Equation (10) in the case of complete data sets. Note that unlike the
Kaplan-Meier method, plotting positions associated with tied uncensored observations are not the
same (just as in the case for complete data using Equation (10)).

For left-censored data, the plotting position for a censored observation is set equal to the plotting
position associated with the smallest uncensored observation greater than or equal to that censoring
level. If there are no uncensored observations greater than or equal to a particular censoring level,
the plotting position is set to 1 for that censoring level.

Generalization of Product-Limit Method, Hirsch and Stedinger (prob.method="hirsch-stedinger")
Hirsch and Stedinger (1987) use a slightly different approach than Kaplan and Meier (1958) and
Michael and Schucany (1986) to derive a nonparametric estimate of the survival function (probabil-
ity of exceedance) in the context of left-censored data. First they estimate the value of the survival
function at each of the censoring levels. The value of the survival function for an uncensored obser-
vation between two adjacent censoring levels is then computed by linear interpolation (in the form
of a plotting position). See also Helsel and Cohn (1988).

The discussion below presents an extension of the method of Hirsch and Stedinger (1987) to the
case of right-censored data, and then presents the original derivation due to Hirsch and Stedinger
(1987) for left-censored data.

Right-Censored Data (censoring.side="right")
For right-censored data, the survival function is estimated as follows. For the j’th censoring level
(j = 0, 1, . . . ,K), write the value of the survival function as:

S(Tj) = Pr[X > Tj ]
= Pr[X > Tj+1] + Pr[Tj < X ≤ Tj+1]
= S(Tj+1) + Pr[Tj < X ≤ Tj+1|X > Tj ]Pr[X > Tj ]
= S(Tj+1) + Pr[Tj < X ≤ Tj+1|X > Tj ]S(Tj) (13)

where
T0 = −∞, (14)

TK+1 =∞ (15)

Now set

Aj = # uncensored observations in (Tj , Tj+1] (16)
Bj = # observations in (Tj+1,∞) (17)
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for j = 0, 1, . . . ,K. Then the method of moments estimator of the conditional probability in
Equation (13) is given by:

P̂ r[Tj < X ≤ Tj+1|X > Tj ] =
Aj

Aj +Bj
(18)

Hence, by equations (13) and (18) we have

Ŝ(Tj) = Ŝ(Tj+1) + (
Aj

Aj +Bj
)Ŝ(Tj) (19)

which can be rewritten as:

Ŝ(Tj+1) = Ŝ(Tj)[1− (
Aj

Aj +Bj
)] (20)

Equation (20) can be solved interatively for j = 1, 2, . . . ,K. Note that

Ŝ(T0) = Ŝ(−∞) = S(−∞) = 1 (21)

Ŝ(TK+1) = Ŝ(∞) = S(∞) = 0 (22)

Once the values of the survival function at the censoring levels are computed, the plotting positions
for the Aj uncensored observations in the interval (TJ , Tj+1] (j = 0, 1, . . . ,K) are computed as

p̂i = [1− Ŝ(Tj)] + [Ŝ(Tj)− Ŝ(Tj+1)]
r − a

Aj − 2a+ 1
(23)

where a denotes the plotting position constant, 0 ≤ a ≤ 1, and r denotes the rank of the i’th
observation among the Aj uncensored observations in the interval (TJ , Tj+1]. (Tied observations
are given distinct ranks.)

For the cj observations censored at censoring level Tj (j = 1, 2, . . . ,K), the plotting positions are
computed as:

p̂i = 1− [Ŝ(Tj)
r − a

cj − 2a+ 1
] (24)

where r denotes the rank of the i’th observation among the cj observations censored at censoring
level Tj . Note that all the observations censored at the same censoring level are given distinct ranks,
even though there is no way to distinguish between them.

Left-Censored Data (censoring.side="left")
For left-censored data, Hirsch and Stedinger (1987) modify the definition of the survival function
as follows:

S∗(t) = Pr[X ≥ t] (25)

For continuous distributions, the functions in Equations (4) and (25) are identical.

Hirsch and Stedinger (1987) show that for the j’th censoring level (j = 0, 1, . . . ,K), the value of
the survival function can be written as:

S(Tj) = Pr[X ≥ Tj ]
= Pr[X ≥ Tj+1] + Pr[Tj ≤ X < Tj+1]
= S∗(Tj+1) + Pr[Tj ≤ X < Tj+1|X < Tj+1]Pr[X < Tj+1]
= S∗(Tj+1) + Pr[Tj ≤ X < Tj+1|X < Tj ][1− S∗(Tj)] (26)

where T0 and TK+1 are defined in Equations (14) and (15).
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Now set

Aj = # uncensored observations in [Tj , Tj+1) (27)
Bj = # observations in (−∞, Tj) (28)

for j = 0, 1, . . . ,K. Then the method of moments estimator of the conditional probability in
Equation (26) is given by:

Pr[Tj ≤ X < Tj+1|X < Tj+1] =
Aj

Aj +Bj
(29)

Hence, by Equations (26) and (29) we have

Ŝ(Tj) = Ŝ(Tj+1) + (
Aj

Aj +Bj
)Ŝ(Tj) (30)

which can be solved interatively for j = 1, 2, . . . ,K. Note that

Ŝ∗(TK+1) = Ŝ∗(∞) = S∗(∞) = 0 (31)

Ŝ∗(T0) = Ŝ∗(−∞) = S∗(−∞) = 1 (32)

Once the values of the survival function at the censoring levels are computed, the plotting positions
for the Aj uncensored observations in the interval [TJ , Tj+1) (j = 0, 1, . . . ,K) are computed as

p̂i = [1− Ŝ∗(Tj)] + [Ŝ∗(Tj)− Ŝ∗(Tj+1)]
r − a

Aj − 2a+ 1
(33)

where a denotes the plotting position constant, 0 ≤ a ≤ 0.5, and r denotes the rank of the i’th
observation among the Aj uncensored observations in the interval [TJ , Tj+1). (Tied observations
are given distinct ranks.)

For the cj observations censored at censoring level Tj (j = 1, 2, . . . ,K), the plotting positions are
computed as:

p̂i = [1− Ŝ∗(Tj)]
r − a

cj − 2a+ 1
(34)

where r denotes the rank of the i’th observation among the cj observations censored at censoring
level Tj . Note that all the observations censored at the same censoring level are given distinct ranks,
even though there is no way to distinguish between them.

Value

ppointsCensored returns a list with the following components:

Order.Statistics

numeric vector of the “ordered” observations.
Cumulative.Probabilities

numeric vector of the associated plotting positions.
Censored logical vector indicating which of the ordered observations are censored.
Censoring.Side character string indicating whether the data are left- or right-censored. This is

same value as the argument censoring.side.
Prob.Method character string indicating what method was used to compute the plotting posi-

tions. This is the same value as the argument prob.method.

Optional Component (only present when prob.method="michael-schucany" or
prob.method="hirsch-stedinger"):

Plot.Pos.Con numeric scalar containing the value of the plotting position constant that was
used. This is the same as the argument plot.pos.con.
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Note

For censored data sets, plotting positions may be used to construct empirical cumulative distribu-
tion plots (see ecdfPlotCensored), construct quantile-quantile plots (see qqPlotCensored), or to
estimate distribution parameters (see FcnsByCatCensoredData).

The function survfit in the built-in R library survival computes the survival function for right-
censored, left-censored, or interval-censored data. Calling survfit with type="kaplan-meier"
will produce similar results to calling ppointsCensored with prob.method="kaplan-meier".
Also, calling survfit with type="fh2" will produce similar results to calling ppointsCensored
with prob.method="nelson".

Helsel and Cohn (1988, p.2001) found very little effect of changing the value of the plotting position
constant when using the method of Hirsch and Stedinger (1987) to compute plotting positions for
multiply left-censored data. In general, there will be very little difference between plotting positions
computed by the different methods except in the case of very small samples and a large amount of
censoring.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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See Also

ppoints, ecdfPlot, qqPlot, ecdfPlotCensored, qqPlotCensored, survfit.

Examples

# Generate 20 observations from a normal distribution with mean=20 and sd=5,
# censor all observations less than 18, then compute plotting positions for
# this data set. Compare the plotting positions to the plotting positions
# for the uncensored data set. Note that the plotting positions for the
# censored data set start at the first ordered uncensored observation and
# that for values of x > 18 the plotting positions for the two data sets are
# exactly the same. This is because there is only one censoring level and
# no uncensored observations fall below the censored observations.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(333)
x <- rnorm(20, mean=20, sd=5)
censored <- x < 18
censored
# [1] FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE TRUE TRUE TRUE
#[13] FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE

sum(censored)
#[1] 7

new.x <- x
new.x[censored] <- 18
round(sort(new.x),1)
# [1] 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.1 18.7 19.6 20.2 20.3 20.6 21.4
#[15] 21.8 21.8 23.2 26.2 26.8 29.7

p.list <- ppointsCensored(new.x, censored)
p.list
#$Order.Statistics
# [1] 18.00000 18.00000 18.00000 18.00000 18.00000 18.00000 18.00000 18.09771
# [9] 18.65418 19.58594 20.21931 20.26851 20.55296 21.38869 21.76359 21.82364
#[17] 23.16804 26.16527 26.84336 29.67340
#
#$Cumulative.Probabilities
# [1] 0.3765432 0.3765432 0.3765432 0.3765432 0.3765432 0.3765432 0.3765432
# [8] 0.3765432 0.4259259 0.4753086 0.5246914 0.5740741 0.6234568 0.6728395
#[15] 0.7222222 0.7716049 0.8209877 0.8703704 0.9197531 0.9691358
#
#$Censored
# [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE
#[13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#
#$Censoring.Side
#[1] "left"
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#
#$Prob.Method
#[1] "michael-schucany"
#
#$Plot.Pos.Con
#[1] 0.375

#----------

# Round off plotting positions to two decimal places
# and compare to plotting positions that ignore censoring
#--------------------------------------------------------

round(p.list$Cum, 2)
# [1] 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.43 0.48 0.52 0.57 0.62 0.67
#[15] 0.72 0.77 0.82 0.87 0.92 0.97

round(ppoints(x, a=0.375), 2)
# [1] 0.03 0.08 0.13 0.18 0.23 0.28 0.33 0.38 0.43 0.48 0.52 0.57 0.62 0.67
#[15] 0.72 0.77 0.82 0.87 0.92 0.97

#----------

# Clean up
#---------
rm(x, censored, new.x, p.list)

#----------------------------------------------------------------------------

# Reproduce the example in Appendix B of Helsel and Cohn (1988). The data
# are stored in Helsel.Cohn.88.appb.df. This data frame contains 18
# observations, of which 9 are censored below one of 2 distinct censoring
# levels.

Helsel.Cohn.88.app.b.df
# Conc.orig Conc Censored
#1 <1 1 TRUE
#2 <1 1 TRUE
#...
#17 33 33 FALSE
#18 50 50 FALSE

p.list <- with(Helsel.Cohn.88.app.b.df,
ppointsCensored(Conc, Censored, prob.method="hirsch-stedinger", plot.pos.con=0))

lapply(p.list[1:2], round, 3)
#$Order.Statistics
# [1] 1 1 1 1 1 1 3 7 9 10 10 10 12 15 20 27 33 50
#
#$Cumulative.Probabilities
# [1] 0.063 0.127 0.190 0.254 0.317 0.381 0.500 0.556 0.611 0.167 0.333 0.500
#[13] 0.714 0.762 0.810 0.857 0.905 0.952

# Clean up
#---------
rm(p.list)

#----------------------------------------------------------------------------
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# Example 15-1 of USEPA (2009, page 15-10) gives an example of
# computing plotting positions based on censored manganese
# concentrations (ppb) in groundwater collected at 5 monitoring
# wells. The data for this example are stored in
# EPA.09.Ex.15.1.manganese.df.

EPA.09.Ex.15.1.manganese.df
# Sample Well Manganese.Orig.ppb Manganese.ppb Censored
#1 1 Well.1 <5 5.0 TRUE
#2 2 Well.1 12.1 12.1 FALSE
#3 3 Well.1 16.9 16.9 FALSE
#4 4 Well.1 21.6 21.6 FALSE
#5 5 Well.1 <2 2.0 TRUE
#...
#21 1 Well.5 17.9 17.9 FALSE
#22 2 Well.5 22.7 22.7 FALSE
#23 3 Well.5 3.3 3.3 FALSE
#24 4 Well.5 8.4 8.4 FALSE
#25 5 Well.5 <2 2.0 TRUE

p.list.EPA <- with(EPA.09.Ex.15.1.manganese.df,
ppointsCensored(Manganese.ppb, Censored,

prob.method = "kaplan-meier"))
data.frame(Mn = p.list.EPA$Order.Statistics, Censored = p.list.EPA$Censored,

CDF = p.list.EPA$Cumulative.Probabilities)
# Mn Censored CDF
#1 2.0 TRUE 0.21
#2 2.0 TRUE 0.21
#3 2.0 TRUE 0.21
#4 3.3 FALSE 0.28
#5 5.0 TRUE 0.28
#6 5.0 TRUE 0.28
#7 5.0 TRUE 0.28
#8 5.3 FALSE 0.32
#9 6.3 FALSE 0.36
#10 7.7 FALSE 0.40
#11 8.4 FALSE 0.44
#12 9.5 FALSE 0.48
#13 10.0 FALSE 0.52
#14 11.9 FALSE 0.56
#15 12.1 FALSE 0.60
#16 12.6 FALSE 0.64
#17 16.9 FALSE 0.68
#18 17.9 FALSE 0.72
#19 21.6 FALSE 0.76
#20 22.7 FALSE 0.80
#21 34.5 FALSE 0.84
#22 45.9 FALSE 0.88
#23 53.6 FALSE 0.92
#24 77.2 FALSE 0.96
#25 106.3 FALSE 1.00

#----------

# Clean up
#---------
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rm(p.list.EPA)

predict.lm Predict method for Linear Model Fits

Description

Predicted values based on linear model object. This function is a modified version of the built-in
R function predict.lm. The EnvStats function predict.lm returns a component called n.coefs
when the argument se.fit=TRUE. The component n.coefs is used by the function pointwise to
create simultaneous confidence or prediction limits.

Usage

## S3 method for class lm
predict(object, newdata, se.fit = FALSE, scale = NULL, df = Inf,
interval = c("none", "confidence", "prediction"),
level = 0.95, type = c("response", "terms"),
terms = NULL, na.action = na.pass,
pred.var = NULL, weights = 1, ...)

Arguments

object Object of class "lm" or a class that inherits from "lm"

newdata An optional data frame in which to look for variables with which to predict. If
omitted, the fitted values are used.

se.fit A logical scalar indicating whether to compute standard errors. The default
value is se.fit=FALSE.

scale Scale parameter for std.err. calculation.

df Degrees of freedom for scale.

interval Type of interval calculation. Possible values are "none" (the default),
"confidence", and "prediction".

level Tolerance/confidence level.

type Type of prediction (response or model term).

terms If type="terms", this argument determines which terms (the default is all terms).

na.action A function determining what should be done with missing values in newdata.
The default is to predict NA.

pred.var The variance(s) for future observations to be assumed for prediction intervals.
See ‘Details’.

weights The variance weights for prediction. This can be a numeric vector or a one-sided
model formula. In the latter case, it is interpreted as an expression evaluated in
newdata.

... Further arguments passed to or from other methods.

Details

See the R help file for predict.lm.
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Value

predict.lm produces a vector of predictions or a matrix of predictions and bounds with column
names fit, lwr, and upr if interval is set. If se.fit is TRUE, a list with the following components
is returned:

fit vector or matrix as above

se.fit standard error of predicted means

residual.scale residual standard deviations

df degrees of freedom for residual

n.coefs numeric scalar denoting the number of predictor variables used in the model

Note

See the R help file for predict.lm.

Almost always the process of determining the concentration of a chemical in a soil, water, or air
sample involves using some kind of machine that produces a signal, and this signal is related to
the concentration of the chemical in the physical sample. The process of relating the machine
signal to the concentration of the chemical is called calibration (see calibrate). Once calibration
has been performed, estimated concentrations in physical samples with unknown concentrations are
computed using inverse regression. The uncertainty in the process used to estimate the concentration
may be quantified with decision, detection, and quantitation limits.

In practice, only the point estimate of concentration is reported (along with a possible qualifier),
without confidence bounds for the true concentration C. This is most unfortunate because it gives
the impression that there is no error associated with the reported concentration. Indeed, both the
International Organization for Standardization (ISO) and the International Union of Pure and Ap-
plied Chemistry (IUPAC) recommend always reporting both the estimated concentration and the
uncertainty associated with this estimate (Currie, 1997).

Author(s)

R Development Core Team (for code for R version of predict.lm).

Steven P. Millard (for modification to add compenent n.coefs; <EnvStats@ProbStatInfo.com>)

References

Chambers, J.M., and Hastie, T.J., eds. (1992). Statistical Models in S. Chapman and Hall/CRC,
Boca Raton, FL.

Draper, N., and H. Smith. (1998). Applied Regression Analysis. Third Edition. John Wiley and
Sons, New York, Chapter 3.

Millard, S.P., and N.K. Neerchal. (2001). Environmental Statistics with S-PLUS. CRC Press, Boca
Raton, FL, pp.546-553.

Miller, R.G. (1981a). Simultaneous Statistical Inference. Springer-Verlag, New York, pp.111, 124.

See Also

R help file for predict.lm, predict, lm, calibrate, calibrate, inversePredictCalibrate,
detectionLimitCalibrate.

SafePrediction for prediction from polynomial and spline fits.
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Examples

# Using the data from the built-in data frame Air.df,
# fit the cube-root of ozone as a function of temperature,
# then compute predicted values for ozone at 70 and 90 degrees F,
# along with the standard errors of these predicted values.

# First look at the data
#-----------------------
attach(Air.df)

plot(temperature, ozone, xlab = "Temperature (degrees F)",
ylab = "Cube-Root Ozone (ppb)")

# Now create the lm object
#-------------------------
ozone.fit <- lm(ozone ~ temperature, data = Air.df)

# Now get predicted values and CIs at 70 and 90 degrees.
# Note the presence of the last component called n.coefs.
#--------------------------------------------------------
predict.list <- predict(ozone.fit,

newdata = data.frame(temperature = c(70, 90)), se.fit = TRUE)

predict.list
#$fit
# 1 2
#2.697810 4.101808
#
#$se.fit
# 1 2
#0.07134554 0.08921071
#
#$df
#[1] 114
#
#$residual.scale
#[1] 0.5903046
#
#$n.coefs
#[1] 2

#----------

#Continuing with the above example, create a scatterplot of
# cube-root ozone vs. temperature, and add the fitted line
# along with simultaneous 95% confidence bands.

plot(temperature, ozone, xlab = "Temperature (degrees F)",
ylab = "Cube-Root Ozone (ppb)")

abline(ozone.fit, lwd = 3, col = "blue")

new.temp <- seq(min(temperature), max(temperature), length = 100)



758 predIntGamma

predict.list <- predict(ozone.fit,
newdata = data.frame(temperature = new.temp),
se.fit = TRUE)

ci.ozone <- pointwise(predict.list, coverage = 0.95,
simultaneous = TRUE)

lines(new.temp, ci.ozone$lower, lty = 2, lwd = 3, col = "magenta")

lines(new.temp, ci.ozone$upper, lty = 2, lwd = 3, col = "magenta")

title(main=paste("Scatterplot of Cube-Root Ozone vs. Temperature",
"with Fitted Line and Simultaneous 95% Confidence Bands",
sep="\n"))

#----------

# Clean up

rm(ozone.fit, predict.list, new.temp, ci.ozone)
detach("Air.df")

#----------------------------------------------------------------

# Examples from the R help file for predict.lm:

require(graphics)

## Predictions
x <- rnorm(15)
y <- x + rnorm(15)
predict(lm(y ~ x))
new <- data.frame(x = seq(-3, 3, 0.5))
predict(lm(y ~ x), new, se.fit = TRUE)
pred.w.plim <- predict(lm(y ~ x), new, interval="prediction")
pred.w.clim <- predict(lm(y ~ x), new, interval="confidence")
matplot(new$x,cbind(pred.w.clim, pred.w.plim[,-1]),

lty=c(1,2,2,3,3), type="l", ylab="predicted y")

## Prediction intervals, special cases
## The first three of these throw warnings
w <- 1 + x^2
fit <- lm(y ~ x)
wfit <- lm(y ~ x, weights = w)
predict(fit, interval = "prediction")
predict(wfit, interval = "prediction")
predict(wfit, new, interval = "prediction")
predict(wfit, new, interval = "prediction", weights = (new$x)^2)
predict(wfit, new, interval = "prediction", weights = ~x^2)

predIntGamma Prediction Interval for Gamma Distribution
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Description

Construct a prediction interval for the next k observations or next set of k transformed means for a
gamma distribution.

Usage

predIntGamma(x, n.transmean = 1, k = 1, method = "Bonferroni",
pi.type = "two-sided", conf.level = 0.95, est.method = "mle",
normal.approx.transform = "kulkarni.powar")

predIntGammaAlt(x, n.transmean = 1, k = 1, method = "Bonferroni",
pi.type = "two-sided", conf.level = 0.95, est.method = "mle",
normal.approx.transform = "kulkarni.powar")

Arguments

x numeric vector of non-negative observations. Missing (NA), undefined (NaN),
and infinite (Inf, -Inf) values are allowed but will be removed.

n.transmean positive integer specifying the sample size associated with the k future trans-
formed means (see the DETAILS section for an explanation of what the trans-
formation is). The default value is n.transmean=1 (i.e., predicting future ob-
servations). Note that all future transformed means must be based on the same
sample size.

k positive integer specifying the number of future observations or means the pre-
diction interval should contain with confidence level conf.level. The default
value is k=1.

method character string specifying the method to use if the number of future observa-
tions or averages (k) is greater than 1. The possible values are "Bonferroni"
(approximate method based on Bonferonni inequality; the default), and
"exact" (exact method due to Dunnett, 1955). See the DETAILS section for
more information. This argument is ignored if k=1.

pi.type character string indicating what kind of prediction interval to compute. The
possible values are "two-sided" (the default), "lower", and "upper".

conf.level a scalar between 0 and 1 indicating the confidence level associated with the
prediction interval. The default value is conf.level=0.95.

est.method character string specifying the method of estimation for the shape and scale
distribution parameters. The possible values are "mle" (maximum likelihood;
the default), "bcmle" (bias-corrected mle), "mme" (method of moments), and
"mmue" (method of moments based on the unbiased estimator of variance). See
the DETAILS section of the help file for egamma for more information.

normal.approx.transform

character string indicating which power transformation to use. Possible values
are "kulkarni.powar" (the default), "cube.root", and
"fourth.root". See the DETAILS section for more informaiton.

Details

If x contains any missing (NA), undefined (NaN) or infinite (Inf, -Inf) values, they will be removed
prior to performing the estimation.
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The function predIntGamma returns a prediction interval as well as estimates of the shape and scale
parameters. The function predIntGammaAlt returns a prediction interval as well as estimates of the
mean and coefficient of variation.

Following Krishnamoorthy et al. (2008), the prediction interval is computed by:

1. using a power transformation on the original data to induce approximate normality,

2. calling predIntNorm with the transformed data to compute the prediction interval, and then

3. back-transforming the interval to create a prediction interval on the original scale.

The argument normal.approx.transform determines which transformation is used. The value
normal.approx.transform="cube.root" uses the cube root transformation suggested by Wil-
son and Hilferty (1931) and used by Krishnamoorthy et al. (2008) and Singh et al. (2010b),
and the value normal.approx.transform="fourth.root" uses the fourth root transformation
suggested by Hawkins and Wixley (1986) and used by Singh et al. (2010b). The default value
normal.approx.transform="kulkarni.powar" uses the "Optimum Power Normal Approxima-
tion Method" of Kulkarni and Powar (2010). The "optimum" power p is determined by:

p = −0.0705− 0.178 shape+ 0.475
√
shape if shape ≤ 1.5

p = 0.246 if shape > 1.5

where shape denotes the estimate of the shape parameter. Although Kulkarni and Powar (2010)
use the maximum likelihood estimate of shape to determine the power p, for the functions
predIntGamma and predIntGammaAlt the power p is based on whatever estimate of shape is used
(e.g., est.method="mle", est.method="bcmle", etc.).
When the argument n.transmean is larger than 1 (i.e., you are constructing a prediction interval
for future means, not just single observations), in order to properly compare a future mean with the
prediction limits, you must follow these steps:

1. Take the observations that will be used to compute the mean and transform them by raising
them to the power given by the value in the component interval$normal.transform.power
(see the section VALUE below).

2. Compute the mean of the transformed observations.
3. Take the mean computed in step 2 above and raise it to the inverse of the power originally

used to transform the observations.

Value

A list of class "estimate" containing the estimated parameters, the prediction interval, and other
information. See estimate.object for details.
In addition to the usual components contained in an object of class "estimate", the returned value
also includes two additional components within the "interval" component:

n.transmean the value of n.transmean supplied in the call to predIntGamma or predIntGammaAlt.
normal.transform.power

the value of the power used to transform the original data to approximate nor-
mality.

Warning

It is possible for the lower prediction limit based on the transformed data to be less than 0. In this
case, the lower prediction limit on the original scale is set to 0 and a warning is issued stating that
the normal approximation is not accurate in this case.
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Note

The gamma distribution takes values on the positive real line. Special cases of the gamma are the
exponential distribution and the chi-square distributions. Applications of the gamma include life
testing, statistical ecology, queuing theory, inventory control, and precipitation processes. A gamma
distribution starts to resemble a normal distribution as the shape parameter a tends to infinity.

Some EPA guidance documents (e.g., Singh et al., 2002; Singh et al., 2010a,b) strongly recom-
mend against using a lognormal model for environmental data and recommend trying a gamma
distribuiton instead.

Prediction intervals have long been applied to quality control and life testing problems (Hahn,
1970b,c; Hahn and Nelson, 1973), and are often discussed in the context of linear regression (Draper
and Smith, 1998; Zar, 2010). Prediction intervals are useful for analyzing data from groundwater
detection monitoring programs at hazardous and solid waste facilities. References that discuss pre-
diction intervals in the context of environmental monitoring include: Berthouex and Brown (2002,
Chapter 21), Gibbons et al. (2009), Millard and Neerchal (2001, Chapter 6), Singh et al. (2010b),
and USEPA (2009).

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References
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See Also

GammaDist, GammaAlt, estimate.object, egamma, predIntNorm, tolIntGamma.

Examples

# Generate 20 observations from a gamma distribution with parameters
# shape=3 and scale=2, then create a prediciton interval for the
# next observation.
# (Note: the call to set.seed simply allows you to reproduce this
# example.)

set.seed(250)
dat <- rgamma(20, shape = 3, scale = 2)
predIntGamma(dat)

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Gamma
#
#Estimated Parameter(s): shape = 2.203862
# scale = 2.174928
#
#Estimation Method: mle
#
#Data: dat
#
#Sample Size: 20
#
#Prediction Interval Method: exact using
# Kulkarni & Powar (2010)
# transformation to Normality
# based on mle of shape
#
#Normal Transform Power: 0.246
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#
#Prediction Interval Type: two-sided
#
#Confidence Level: 95%
#
#Number of Future Observations: 1
#
#Prediction Interval: LPL = 0.5371569
# UPL = 15.5313783

#--------------------------------------------------------------------

# Using the same data as in the previous example, create an upper
# one-sided prediction interval for the next three averages of
# order 2 (i.e., each mean is based on 2 future observations), and
# use the bias-corrected estimate of shape.

pred.list <- predIntGamma(dat, n.transmean = 2, k = 3,
pi.type = "upper", est.method = "bcmle")

pred.list

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Gamma
#
#Estimated Parameter(s): shape = 1.906616
# scale = 2.514005
#
#Estimation Method: bcmle
#
#Data: dat
#
#Sample Size: 20
#
#Prediction Interval Method: Bonferroni using
# Kulkarni & Powar (2010)
# transformation to Normality
# based on bcmle of shape
#
#Normal Transform Power: 0.246
#
#Prediction Interval Type: upper
#
#Confidence Level: 95%
#
#Number of Future
#Transformed Means: 3
#
#Sample Size for
#Transformed Means: 2
#
#Prediction Interval: LPL = 0.00000
# UPL = 12.17404

#--------------------------------------------------------------------



764 predIntGamma

# Continuing with the above example, assume the distribution shifts
# in the future to a gamma distribution with shape = 5 and scale = 2.
# Create 6 future observations from this distribution, and create 3
# means by pairing the observations sequentially. Note we must first
# transform these observations using the power 0.246, then compute the
# means based on the transformed data, and then transform the means
# back to the original scale and compare them to the upper prediction
# limit of 12.17

set.seed(427)
new.dat <- rgamma(6, shape = 5, scale = 2)

p <- pred.list$interval$normal.transform.power
p
#[1] 0.246

new.dat.trans <- new.dat^p
means.trans <- c(mean(new.dat.trans[1:2]), mean(new.dat.trans[3:4]),

mean(new.dat.trans[5:6]))
means <- means.trans^(1/p)
means
#[1] 11.74214 17.05299 11.65272

any(means > pred.list$interval$limits["UPL"])
#[1] TRUE

#----------

# Clean up
rm(dat, pred.list, new.dat, p, new.dat.trans, means.trans, means)

#--------------------------------------------------------------------

# Reproduce part of the example on page 73 of
# Krishnamoorthy et al. (2008), which uses alkalinity concentrations
# reported in Gibbons (1994) and Gibbons et al. (2009) to construct a
# one-sided upper 90% prediction limit.

predIntGamma(Gibbons.et.al.09.Alkilinity.vec, pi.type = "upper",
conf.level = 0.9, normal.approx.transform = "cube.root")

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Gamma
#
#Estimated Parameter(s): shape = 9.375013
# scale = 6.202461
#
#Estimation Method: mle
#
#Data: Gibbons.et.al.09.Alkilinity.vec
#
#Sample Size: 27
#
#Prediction Interval Method: exact using
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# Wilson & Hilferty (1931) cube-root
# transformation to Normality
#
#Normal Transform Power: 0.3333333
#
#Prediction Interval Type: upper
#
#Confidence Level: 90%
#
#Number of Future Observations: 1
#
#Prediction Interval: LPL = 0.0000
# UPL = 85.3495

predIntGammaSimultaneous

Simultaneous Prediction Interval for a Gamma Distribution

Description

Estimate the shape and scale parameters for a gamma distribution, or estimate the mean and coef-
ficient of variation for a gamma distribution (alternative parameterization), and construct a simul-
taneous prediction interval for the next r sampling occasions, based on one of three possible rules:
k-of-m, California, or Modified California.

Usage

predIntGammaSimultaneous(x, n.transmean = 1, k = 1, m = 2, r = 1,
rule = "k.of.m", delta.over.sigma = 0, pi.type = "upper", conf.level = 0.95,
K.tol = 1e-07, est.method = "mle", normal.approx.transform = "kulkarni.powar")

predIntGammaAltSimultaneous(x, n.transmean = 1, k = 1, m = 2, r = 1,
rule = "k.of.m", delta.over.sigma = 0, pi.type = "upper", conf.level = 0.95,
K.tol = 1e-07, est.method = "mle", normal.approx.transform = "kulkarni.powar")

Arguments

x numeric vector of non-negative observations. Missing (NA), undefined (NaN),
and infinite (Inf, -Inf) values are allowed but will be removed.

n.transmean positive integer specifying the sample size associated with future transformed
means (see the DETAILS section for an explanation of what the transformation
is). The default value is n.transmean=1 (i.e., individual observations). Note
that all future transformed means must be based on the same sample size.

k for the k-of-m rule (rule="k.of.m"), a positive integer specifying the mini-
mum number of observations (or transformed means) out of m observations (or
transformed means) (all obtained on one future sampling “occassion”) the pre-
diction interval should contain with confidence level conf.level. The default
value is k=1. This argument is ignored when the argument rule is not equal to
"k.of.m".



766 predIntGammaSimultaneous

m positive integer specifying the maximum number of future observations (or trans-
formed means) on one future sampling “occasion”. The default value is m=2,
except when rule="Modified.CA", in which case this argument is ignored and
m is automatically set equal to 4.

r positive integer specifying the number of future sampling “occasions”. The de-
fault value is r=1.

rule character string specifying which rule to use. The possible values are "k.of.m"
(k-of-m rule; the default), "CA" (California rule), and "Modified.CA" (modified
California rule). See the DETAILS section below for more information.

delta.over.sigma

numeric scalar indicating the ratio ∆/σ. The quantity ∆ (delta) denotes the dif-
ference between the mean of the population (on the transformed scale) that was
sampled to construct the prediction interval, and the mean of the population (on
the transformed scale) that will be sampled to produce the future observations.
The quantity σ (sigma) denotes the population standard deviation (on the trans-
formed scale) for both populations. See the DETAILS section below for more
information. The default value is delta.over.sigma=0.

pi.type character string indicating what kind of prediction interval to compute. The
possible values are pi.type="upper" (the default), and pi.type="lower".

conf.level a scalar between 0 and 1 indicating the confidence level of the prediction inter-
val. The default value is conf.level=0.95.

K.tol numeric scalar indicating the tolerance to use in the nonlinear search algorithm
to compute K. The default value is K.tol=.Machine$double.eps^(1/2). For
many applications, the value ofK needs to be known only to the second decimal
place, in which case setting K.tol=1e-4 will speed up computation a bit.

est.method character string specifying the method of estimation for the shape and scale
distribution parameters. The possible values are "mle" (maximum likelihood;
the default), "bcmle" (bias-corrected mle), "mme" (method of moments), and
"mmue" (method of moments based on the unbiased estimator of variance). See
the DETAILS section of the help file for egamma for more information.

normal.approx.transform

character string indicating which power transformation to use. Possible values
are "kulkarni.powar" (the default), "cube.root", and
"fourth.root". See the DETAILS section for more informaiton.

Details

The function predIntGammaSimultaneous returns a simultaneous prediction interval as well as
estimates of the shape and scale parameters. The function predIntGammaAltSimultaneous returns
a simultaneous prediction interval as well as estimates of the mean and coefficient of variation.

Following Krishnamoorthy et al. (2008), the simultaneous prediction interval is computed by:

1. using a power transformation on the original data to induce approximate normality,

2. calling predIntNormSimultaneous with the transformed data to compute the simultaneous
prediction interval, and then

3. back-transforming the interval to create a simultaneous prediction interval on the original
scale.

The argument normal.approx.transform determines which transformation is used. The value
normal.approx.transform="cube.root" uses the cube root transformation suggested by Wil-
son and Hilferty (1931) and used by Krishnamoorthy et al. (2008) and Singh et al. (2010b),
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and the value normal.approx.transform="fourth.root" uses the fourth root transformation
suggested by Hawkins and Wixley (1986) and used by Singh et al. (2010b). The default value
normal.approx.transform="kulkarni.powar" uses the "Optimum Power Normal Approxima-
tion Method" of Kulkarni and Powar (2010). The "optimum" power p is determined by:

p = −0.0705− 0.178 shape+ 0.475
√
shape if shape ≤ 1.5

p = 0.246 if shape > 1.5

where shape denotes the estimate of the shape parameter. Although Kulkarni and Powar (2010)
use the maximum likelihood estimate of shape to determine the power p, for the functions
predIntGammaSimultaneous and predIntGammaAltSimultaneous the power p is based on what-
ever estimate of shape is used (e.g., est.method="mle", est.method="bcmle", etc.).

When the argument n.transmean is larger than 1 (i.e., you are constructing a prediction interval
for future means, not just single observations), in order to properly compare a future mean with the
prediction limits, you must follow these steps:

1. Take the observations that will be used to compute the mean and transform them by raising
them to the power given by the value in the component interval$normal.transform.power
(see the section VALUE below).

2. Compute the mean of the transformed observations.

3. Take the mean computed in step 2 above and raise it to the inverse of the power originally
used to transform the observations.

Value

A list of class "estimate" containing the estimated parameters, the simultaneous prediction inter-
val, and other information. See estimate.object for details.

In addition to the usual components contained in an object of class "estimate", the returned value
also includes two additional components within the "interval" component:

n.transmean the value of n.transmean supplied in the call to predIntGammaSimultaneous
or predIntGammaAltSimultaneous.

normal.transform.power

the value of the power used to transform the original data to approximate nor-
mality.

Warning

It is possible for the lower prediction limit based on the transformed data to be less than 0. In this
case, the lower prediction limit on the original scale is set to 0 and a warning is issued stating that
the normal approximation is not accurate in this case.

Note

The Gamma Distribution
The gamma distribution takes values on the positive real line. Special cases of the gamma are the
exponential distribution and the chi-square distributions. Applications of the gamma include life
testing, statistical ecology, queuing theory, inventory control, and precipitation processes. A gamma
distribution starts to resemble a normal distribution as the shape parameter a tends to infinity.

Some EPA guidance documents (e.g., Singh et al., 2002; Singh et al., 2010a,b) strongly recom-
mend against using a lognormal model for environmental data and recommend trying a gamma
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distribuiton instead.

Motivation
Prediction and tolerance intervals have long been applied to quality control and life testing problems
(Hahn, 1970b,c; Hahn and Nelson, 1973). In the context of environmental statistics, prediction in-
tervals are useful for analyzing data from groundwater detection monitoring programs at hazardous
and solid waste facilities.

One of the main statistical problems that plague groundwater monitoring programs at hazardous
and solid waste facilities is the requirement of testing several wells and several constituents at each
well on each sampling occasion. This is an obvious multiple comparisons problem, and the naive
approach of using a standard t-test at a conventional α-level (e.g., 0.05 or 0.01) for each test leads to
a very high probability of at least one significant result on each sampling occasion, when in fact no
contamination has occurred. This problem was pointed out years ago by Millard (1987) and others.

Davis and McNichols (1987) proposed simultaneous prediction intervals as a way of controlling
the facility-wide false positive rate (FWFPR) while maintaining adequate power to detect contam-
ination in the groundwater. Because of the ubiquitous presence of spatial variability, it is usually
best to use simultaneous prediction intervals at each well (Davis, 1998a). That is, by constructing
prediction intervals based on background (pre-landfill) data on each well, and comparing future
observations at a well to the prediction interval for that particular well. In each of these cases, the
individual α-level at each well is equal to the FWFRP divided by the product of the number of wells
and constituents.

Often, observations at downgradient wells are not available prior to the construction and operation
of the landfill. In this case, upgradient well data can be combined to create a background prediction
interval, and observations at each downgradient well can be compared to this prediction interval. If
spatial variability is present and a major source of variation, however, this method is not really valid
(Davis, 1994; Davis, 1998a).

Chapter 19 of USEPA (2009) contains an extensive discussion of using the 1-of-m rule and the
Modified California rule.

Chapters 1 and 3 of Gibbons et al. (2009) discuss simultaneous prediction intervals for the normal
and lognormal distributions, respectively.

The k-of-m Rule
For the k-of-m rule, Davis and McNichols (1987) give tables with “optimal” choices of k (in terms
of best power for a given overall confidence level) for selected values of m, r, and n. They found
that the optimal ratios of k to m (i.e., k/m) are generally small, in the range of 15-50%.

The California Rule
The California rule was mandated in that state for groundwater monitoring at waste disposal facil-
ities when resampling verification is part of the statistical program (Barclay’s Code of California
Regulations, 1991). The California code mandates a “California” rule with m ≥ 3. The motiva-
tion for this rule may have been a desire to have a majority of the observations in bounds (Davis,
1998a). For example, for a k-of-m rule with k = 1 and m = 3, a monitoring location will pass if
the first observation is out of bounds, the second resample is out of bounds, but the last resample is
in bounds, so that 2 out of 3 observations are out of bounds. For the California rule with m = 3,
either the first observation must be in bounds, or the next 2 observations must be in bounds in order
for the monitoring location to pass.

Davis (1998a) states that if the FWFPR is kept constant, then the California rule offers little in-
creased power compared to the k-of-m rule, and can actually decrease the power of detecting con-
tamination.



predIntGammaSimultaneous 769

The Modified California Rule
The Modified California Rule was proposed as a compromise between a 1-of-m rule and the Califor-
nia rule. For a given FWFPR, the Modified California rule achieves better power than the California
rule, and still requires at least as many observations in bounds as out of bounds, unlike a 1-of-m rule.

Different Notations Between Different References
For the k-of-m rule described in this help file, both Davis and McNichols (1987) and USEPA (2009,
Chapter 19) use the variable p instead of k to represent the minimum number of future observations
the interval should contain on each of the r sampling occasions.

Gibbons et al. (2009, Chapter 1) presents extensive lists of the value of K for both k-of-m rules
and California rules. Gibbons et al.’s notation reverses the meaning of k and r compared to the
notation used in this help file. That is, in Gibbons et al.’s notation, k represents the number of future
sampling occasions or monitoring wells, and r represents the minimum number of observations the
interval should contain on each sampling occasion.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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See Also

GammaDist, GammaAlt, predIntNorm, predIntNormSimultaneous, predIntNormSimultaneousTestPower,
tolIntGamma, egamma, egammaAlt, estimate.object.

Examples

# Generate 8 observations from a gamma distribution with parameters
# mean=10 and cv=1, then use predIntGammaAltSimultaneous to estimate the
# mean and coefficient of variation of the true distribution and construct an
# upper 95% prediction interval to contain at least 1 out of the next
# 3 observations.
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# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(479)
dat <- rgammaAlt(8, mean = 10, cv = 1)

predIntGammaAltSimultaneous(dat, k = 1, m = 3)

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Gamma
#
#Estimated Parameter(s): mean = 13.875825
# cv = 1.049504
#
#Estimation Method: MLE
#
#Data: dat
#
#Sample Size: 8
#
#Prediction Interval Method: exact using
# Kulkarni & Powar (2010)
# transformation to Normality
# based on MLE of shape
#
#Normal Transform Power: 0.2204908
#
#Prediction Interval Type: upper
#
#Confidence Level: 95%
#
#Minimum Number of
#Future Observations
#Interval Should Contain: 1
#
#Total Number of
#Future Observations: 3
#
#Prediction Interval: LPL = 0.00000
# UPL = 15.87101

#----------

# Compare the 95% 1-of-3 upper prediction limit to the California and
# Modified California upper prediction limits. Note that the upper
# prediction limit for the Modified California rule is between the limit
# for the 1-of-3 rule and the limit for the California rule.

predIntGammaAltSimultaneous(dat, k = 1, m = 3)$interval$limits["UPL"]
# UPL
#15.87101

predIntGammaAltSimultaneous(dat, m = 3, rule = "CA")$interval$limits["UPL"]
# UPL
#34.11499
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predIntGammaAltSimultaneous(dat, rule = "Modified.CA")$interval$limits["UPL"]
# UPL
#22.58809

#----------

# Show how the upper 95% simultaneous prediction limit increases
# as the number of future sampling occasions r increases.
# Here, well use the 1-of-3 rule.

predIntGammaAltSimultaneous(dat, k = 1, m = 3)$interval$limits["UPL"]
# UPL
#15.87101

predIntGammaAltSimultaneous(dat, k = 1, m = 3, r = 10)$interval$limits["UPL"]
# UPL
#37.86825

#----------

# Compare the upper simultaneous prediction limit for the 1-of-3 rule
# based on individual observations versus based on transformed means of
# order 4.

predIntGammaAltSimultaneous(dat, k = 1, m = 3)$interval$limits["UPL"]
# UPL
#15.87101

predIntGammaAltSimultaneous(dat, n.transmean = 4, k = 1,
m = 3)$interval$limits["UPL"]

# UPL
#14.76528

#==========

# Example 19-1 of USEPA (2009, p. 19-17) shows how to compute an
# upper simultaneous prediction limit for the 1-of-3 rule for
# r = 2 future sampling occasions. The data for this example are
# stored in EPA.09.Ex.19.1.sulfate.df.

# We will pool data from 4 background wells that were sampled on
# a number of different occasions, giving us a sample size of
# n = 25 to use to construct the prediction limit.

# There are 50 compliance wells and we will monitor 10 different
# constituents at each well at each of the r=2 future sampling
# occasions. To determine the confidence level we require for
# the simultaneous prediction interval, USEPA (2009) recommends
# setting the individual Type I Error level at each well to

# 1 - (1 - SWFPR)^(1 / (Number of Constituents * Number of Wells))

# which translates to setting the confidence limit to

# (1 - SWFPR)^(1 / (Number of Constituents * Number of Wells))

# where SWFPR = site-wide false positive rate. For this example, we
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# will set SWFPR = 0.1. Thus, the confidence level is given by:

nc <- 10
nw <- 50
SWFPR <- 0.1
conf.level <- (1 - SWFPR)^(1 / (nc * nw))

conf.level
#[1] 0.9997893

#----------

# Look at the data:

names(EPA.09.Ex.19.1.sulfate.df)
#[1] "Well" "Month" "Day"
#[4] "Year" "Date" "Sulfate.mg.per.l"
#[7] "log.Sulfate.mg.per.l"

EPA.09.Ex.19.1.sulfate.df[,
c("Well", "Date", "Sulfate.mg.per.l", "log.Sulfate.mg.per.l")]

# Well Date Sulfate.mg.per.l log.Sulfate.mg.per.l
#1 GW-01 1999-07-08 63.0 4.143135
#2 GW-01 1999-09-12 51.0 3.931826
#3 GW-01 1999-10-16 60.0 4.094345
#4 GW-01 1999-11-02 86.0 4.454347
#5 GW-04 1999-07-09 104.0 4.644391
#6 GW-04 1999-09-14 102.0 4.624973
#7 GW-04 1999-10-12 84.0 4.430817
#8 GW-04 1999-11-15 72.0 4.276666
#9 GW-08 1997-10-12 31.0 3.433987
#10 GW-08 1997-11-16 84.0 4.430817
#11 GW-08 1998-01-28 65.0 4.174387
#12 GW-08 1999-04-20 41.0 3.713572
#13 GW-08 2002-06-04 51.8 3.947390
#14 GW-08 2002-09-16 57.5 4.051785
#15 GW-08 2002-12-02 66.8 4.201703
#16 GW-08 2003-03-24 87.1 4.467057
#17 GW-09 1997-10-16 59.0 4.077537
#18 GW-09 1998-01-28 85.0 4.442651
#19 GW-09 1998-04-12 75.0 4.317488
#20 GW-09 1998-07-12 99.0 4.595120
#21 GW-09 2000-01-30 75.8 4.328098
#22 GW-09 2000-04-24 82.5 4.412798
#23 GW-09 2000-10-24 85.5 4.448516
#24 GW-09 2002-12-01 188.0 5.236442
#25 GW-09 2003-03-24 150.0 5.010635

# The EPA guidance document constructs the upper simultaneous
# prediction limit for the 1-of-3 plan assuming a lognormal
# distribution for the sulfate data. Here we will compare
# the value of the limit based on assuming a lognormal distribution
# versus assuming a gamma distribution.

Sulfate <- EPA.09.Ex.19.1.sulfate.df$Sulfate.mg.per.l
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pred.int.list.lnorm <-
predIntLnormSimultaneous(x = Sulfate, k = 1, m = 3, r = 2,

rule = "k.of.m", pi.type = "upper", conf.level = conf.level)

pred.int.list.gamma <-
predIntGammaSimultaneous(x = Sulfate, k = 1, m = 3, r = 2,

rule = "k.of.m", pi.type = "upper", conf.level = conf.level)

pred.int.list.lnorm$interval$limits["UPL"]
# UPL
#159.5497

pred.int.list.gamma$interval$limits["UPL"]
# UPL
#153.3232

#==========

# Cleanup
#--------
rm(dat, nc, nw, SWFPR, conf.level, Sulfate, pred.int.list.lnorm,

pred.int.list.gamma)

predIntLnorm Prediction Interval for a Lognormal Distribution

Description

Estimate the mean and standard deviation on the log-scale for a lognormal distribution, or estimate
the mean and coefficient of variation for a lognormal distribution (alternative parameterization), and
construct a prediction interval for the next k observations or next set of k geometric means.

Usage

predIntLnorm(x, n.geomean = 1, k = 1, method = "Bonferroni",
pi.type = "two-sided", conf.level = 0.95)

predIntLnormAlt(x, n.geomean = 1, k = 1, method = "Bonferroni",
pi.type = "two-sided", conf.level = 0.95, est.arg.list = NULL)

Arguments

x For predIntLnorm, x can be a numeric vector of positive observations, or an
object resulting from a call to an estimating function that assumes a lognor-
mal distribution (i.e., elnorm or elnormCensored). You cannot supply objects
resulting from a call to estimating functions that use the alternative parameteri-
zation such as elnormAlt or elnormAltCensored.
For predIntLnormAlt, a numeric vector of positive observations.
If x is a numeric vector, missing (NA), undefined (NaN), and infinite (Inf, -Inf)
values are allowed but will be removed.
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n.geomean positive integer specifying the sample size associated with the k future geomet-
ric means. The default value is n.geomean=1 (i.e., individual observations).
Note that all future geometric means must be based on the same sample size.

k positive integer specifying the number of future observations or geometric means
the prediction interval should contain with confidence level conf.level. The
default value is k=1.

method character string specifying the method to use if the number of future obser-
vations (k) is greater than 1. The possible values are method="Bonferroni"
(approximate method based on Bonferonni inequality; the default), and
method="exact" (exact method due to Dunnett, 1955). See the DETAILS sec-
tion of predIntNormK for more information. This argument is ignored if k=1.

pi.type character string indicating what kind of prediction interval to compute. The pos-
sible values are pi.type="two-sided" (the default), pi.type="lower", and
pi.type="upper".

conf.level a scalar between 0 and 1 indicating the confidence level of the prediction inter-
val. The default value is conf.level=0.95.

est.arg.list for predIntLnormAlt, a list containing arguments to pass to the function elnormAlt
for estimating the mean and coefficient of variation. The default value is est.arg.list=NULL,
which implies the default values will be used in the call to elnormAlt.

Details

The function predIntLnorm returns a prediction interval as well as estimates of the meanlog and
sdlog parameters. The function predIntLnormAlt returns a prediction interval as well as estimates
of the mean and coefficient of variation.

A prediction interval for a lognormal distribution is constructed by taking the natural logarithm of
the observations and constructing a prediction interval based on the normal (Gaussian) distribution
by calling predIntNorm. These prediction limits are then exponentiated to produce a prediction
interval on the original scale of the data.

Value

If x is a numeric vector, a list of class "estimate" containing the estimated parameters, the predic-
tion interval, and other information. See the help file for
estimate.object for details.

If x is the result of calling an estimation function, predIntLnorm returns a list whose class is the
same as x. The list contains the same components as x, as well as a component called interval
containing the prediction interval information. If x already has a component called interval, this
component is replaced with the prediction interval information.

Note

Prediction and tolerance intervals have long been applied to quality control and life testing problems
(Hahn, 1970b,c; Hahn and Nelson, 1973; Krishnamoorthy and Mathew, 2009). In the context
of environmental statistics, prediction intervals are useful for analyzing data from groundwater
detection monitoring programs at hazardous and solid waste facilities (e.g., Gibbons et al., 2009;
Millard and Neerchal, 2001; USEPA, 2009).

Author(s)
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Examples

# Generate 20 observations from a lognormal distribution with parameters
# meanlog=0 and sdlog=1. The exact two-sided 90% prediction interval for
# k=1 future observation is given by: [exp(-1.645), exp(1.645)] = [0.1930, 5.181].
# Use predIntLnorm to estimate the distribution parameters, and construct a
# two-sided 90% prediction interval.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(47)
dat <- rlnorm(20, meanlog = 0, sdlog = 1)
predIntLnorm(dat, conf = 0.9)

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Lognormal
#
#Estimated Parameter(s): meanlog = -0.1035722
# sdlog = 0.9106429
#
#Estimation Method: mvue
#
#Data: dat
#
#Sample Size: 20
#
#Prediction Interval Method: exact
#
#Prediction Interval Type: two-sided
#
#Confidence Level: 90%
#
#Number of Future Observations: 1
#
#Prediction Interval: LPL = 0.1795898
# UPL = 4.5264399

#----------

# Repeat the above example, but do it in two steps.
# First create a list called est.list containing information about the
# estimated parameters, then create the prediction interval.

est.list <- elnorm(dat)

est.list
#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Lognormal
#
#Estimated Parameter(s): meanlog = -0.1035722
# sdlog = 0.9106429
#
#Estimation Method: mvue
#
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#Data: dat
#
#Sample Size: 20

predIntLnorm(est.list, conf = 0.9)
#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Lognormal
#
#Estimated Parameter(s): meanlog = -0.1035722
# sdlog = 0.9106429
#
#Estimation Method: mvue
#
#Data: dat
#
#Sample Size: 20
#
#Prediction Interval Method: exact
#
#Prediction Interval Type: two-sided
#
#Confidence Level: 90%
#
#Number of Future Observations: 1
#
#Prediction Interval: LPL = 0.1795898
# UPL = 4.5264399

#----------

# Using the same data from the first example, create a one-sided
# upper 99% prediction limit for the next 3 geometric means of order 2
# (i.e., each of the 3 future geometric means is based on a sample size
# of 2 future observations).

predIntLnorm(dat, n.geomean = 2, k = 3, conf.level = 0.99,
pi.type = "upper")

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Lognormal
#
#Estimated Parameter(s): meanlog = -0.1035722
# sdlog = 0.9106429
#
#Estimation Method: mvue
#
#Data: dat
#
#Sample Size: 20
#
#Prediction Interval Method: Bonferroni
#
#Prediction Interval Type: upper
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#
#Confidence Level: 99%
#
#Number of Future
#Geometric Means: 3
#
#Sample Size for
#Geometric Means: 2
#
#Prediction Interval: LPL = 0.000000
# UPL = 7.047571

#----------

# Compare the result above that is based on the Bonferroni method
# with the exact method

predIntLnorm(dat, n.geomean = 2, k = 3, conf.level = 0.99,
pi.type = "upper", method = "exact")$interval$limits["UPL"]

# UPL
#7.00316

#----------

# Clean up
rm(dat, est.list)

#--------------------------------------------------------------------

# Example 18-2 of USEPA (2009, p.18-15) shows how to construct a 99%
# upper prediction interval for the log-scale mean of 4 future observations
# (future mean of order 4) assuming a lognormal distribution based on
# chrysene concentrations (ppb) in groundwater at 2 background wells.
# Data were collected once per month over 4 months at the 2 background
# wells, and also at a compliance well.
# The question to be answered is whether there is evidence of
# contamination at the compliance well.

# Here we will follow the example, but look at the geometric mean
# instead of the log-scale mean.

#----------

# The data for this example are stored in EPA.09.Ex.18.2.chrysene.df.

EPA.09.Ex.18.2.chrysene.df

# Month Well Well.type Chrysene.ppb
#1 1 Well.1 Background 6.9
#2 2 Well.1 Background 27.3
#3 3 Well.1 Background 10.8
#4 4 Well.1 Background 8.9
#5 1 Well.2 Background 15.1
#6 2 Well.2 Background 7.2
#7 3 Well.2 Background 48.4
#8 4 Well.2 Background 7.8
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#9 1 Well.3 Compliance 68.0
#10 2 Well.3 Compliance 48.9
#11 3 Well.3 Compliance 30.1
#12 4 Well.3 Compliance 38.1

Chrysene.bkgd <- with(EPA.09.Ex.18.2.chrysene.df,
Chrysene.ppb[Well.type == "Background"])

Chrysene.cmpl <- with(EPA.09.Ex.18.2.chrysene.df,
Chrysene.ppb[Well.type == "Compliance"])

#----------

# A Shapiro-Wilks goodness-of-fit test for normality indicates
# we should reject the assumption of normality and assume a
# lognormal distribution for the background well data:

gofTest(Chrysene.bkgd)

#Results of Goodness-of-Fit Test
#-------------------------------
#
#Test Method: Shapiro-Wilk GOF
#
#Hypothesized Distribution: Normal
#
#Estimated Parameter(s): mean = 16.55000
# sd = 14.54441
#
#Estimation Method: mvue
#
#Data: Chrysene.bkgd
#
#Sample Size: 8
#
#Test Statistic: W = 0.7289006
#
#Test Statistic Parameter: n = 8
#
#P-value: 0.004759859
#
#Alternative Hypothesis: True cdf does not equal the
# Normal Distribution.

gofTest(Chrysene.bkgd, dist = "lnorm")

#Results of Goodness-of-Fit Test
#-------------------------------
#
#Test Method: Shapiro-Wilk GOF
#
#Hypothesized Distribution: Lognormal
#
#Estimated Parameter(s): meanlog = 2.5533006
# sdlog = 0.7060038
#
#Estimation Method: mvue
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#
#Data: Chrysene.bkgd
#
#Sample Size: 8
#
#Test Statistic: W = 0.8546352
#
#Test Statistic Parameter: n = 8
#
#P-value: 0.1061057
#
#Alternative Hypothesis: True cdf does not equal the
# Lognormal Distribution.

#----------

# Here is the one-sided 99% upper prediction limit for
# a geometric mean based on 4 future observations:

predIntLnorm(Chrysene.bkgd, n.geomean = 4, k = 1,
conf.level = 0.99, pi.type = "upper")

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Lognormal
#
#Estimated Parameter(s): meanlog = 2.5533006
# sdlog = 0.7060038
#
#Estimation Method: mvue
#
#Data: Chrysene.bkgd
#
#Sample Size: 8
#
#Prediction Interval Method: exact
#
#Prediction Interval Type: upper
#
#Confidence Level: 99%
#
#Number of Future
#Geometric Means: 1
#
#Sample Size for
#Geometric Means: 4
#
#Prediction Interval: LPL = 0.00000
# UPL = 46.96613

UPL <- predIntLnorm(Chrysene.bkgd, n.geomean = 4, k = 1,
conf.level = 0.99, pi.type = "upper")$interval$limits["UPL"]

UPL
# UPL
#46.96613
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# Is there evidence of contamination at the compliance well?

geoMean(Chrysene.cmpl)
#[1] 44.19034

# Since the geometric mean at the compliance well is less than
# the upper prediction limit, there is no evidence of contamination.

#----------

# Cleanup
#--------

rm(Chrysene.bkgd, Chrysene.cmpl, UPL)

predIntLnormAltSimultaneousTestPower

Probability That at Least One Set of Future Observations Violates the
Given Rule Based on a Simultaneous Prediction Interval for a Log-
normal Distribution

Description

Compute the probability that at least one set of future observations violates the given rule based
on a simultaneous prediction interval for the next r future sampling occasions for a lognormal
distribution. The three possible rules are: k-of-m, California, or Modified California.

Usage

predIntLnormAltSimultaneousTestPower(n, df = n - 1, n.geomean = 1, k = 1,
m = 2, r = 1, rule = "k.of.m", ratio.of.means = 1, cv = 1, pi.type = "upper",
conf.level = 0.95, r.shifted = r, K.tol = .Machine$double.eps^0.5,
integrate.args.list = NULL)

Arguments

n vector of positive integers greater than 2 indicating the sample size upon which
the prediction interval is based.

df vector of positive integers indicating the degrees of freedom associated with the
sample size. The default value is df=n-1.

n.geomean positive integer specifying the sample size associated with the future geometric
means. The default value is n.geomean=1 (i.e., individual observations). Note
that all future geometric means must be based on the same sample size.

k for the k-of-m rule (rule="k.of.m"), vector of positive integers specifying the
minimum number of observations (or averages) out of m observations (or aver-
ages) (all obtained on one future sampling “occassion”) the prediction interval
should contain with confidence level conf.level. The default value is k=1.
This argument is ignored when the argument rule is not equal to "k.of.m".
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m vector of positive integers specifying the maximum number of future observa-
tions (or averages) on one future sampling “occasion”. The default value is m=2,
except when rule="Modified.CA", in which case this argument is ignored and
m is automatically set equal to 4.

r vector of positive integers specifying the number of future sampling “occa-
sions”. The default value is r=1.

rule character string specifying which rule to use. The possible values are "k.of.m"
(k-of-m rule; the default), "CA" (California rule), and "Modified.CA" (modified
California rule). See the DETAILS section below for more information.

ratio.of.means numeric vector specifying the ratio of the mean of the population that will be
sampled to produce the future observations vs. the mean of the population that
was sampled to construct the prediction interval. See the DETAILS section
below for more information. The default value is ratio.of.means=1.

cv numeric vector of positive values specifying the coefficient of variation for both
the population that was sampled to construct the prediction interval and the
population that will be sampled to produce the future observations. The default
value is cv=1.

pi.type character string indicating what kind of prediction interval to compute. The
possible values are pi.type="upper" (the default), and pi.type="lower".

conf.level vector of values between 0 and 1 indicating the confidence level of the prediction
interval. The default value is conf.level=0.95.

r.shifted vector of positive integers specifying the number of future sampling occasions
for which the mean is shifted. All values must be integeters between 1 and the
corresponding element of r. The default value is r.shifted=r.

K.tol numeric scalar indicating the tolerance to use in the nonlinear search algorithm
to compute K. The default value is K.tol=.Machine$double.eps^(1/2). For
many applications, the value ofK needs to be known only to the second decimal
place, in which case setting K.tol=1e-4 will speed up computation a bit.

integrate.args.list

a list of arguments to supply to the integrate function. The default value is
integrate.args.list=NULL which means that the default values of integrate
are used.

Details

What is a Simultaneous Prediction Interval?
A prediction interval for some population is an interval on the real line constructed so that it will
contain k future observations from that population with some specified probability (1 − α)100%,
where 0 < α < 1 and k is some pre-specified positive integer. The quantity (1− α)100% is called
the confidence coefficient or confidence level associated with the prediction interval. The function
predIntNorm computes a standard prediction interval based on a sample from a normal distribution.

The function predIntLnormAltSimultaneous computes a simultaneous prediction interval (as-
suming lognormal observations) that will contain a certain number of future observations with
probability (1− α)100% for each of r future sampling “occasions”, where r is some pre-specified
positive integer. The quantity r may refer to r distinct future sampling occasions in time, or it may
for example refer to sampling at r distinct locations on one future sampling occasion, assuming that
the population standard deviation is the same at all of the r distinct locations.

The function predIntLnormAltSimultaneous computes a simultaneous prediction interval based
on one of three possible rules:
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• For the k-of-m rule (rule="k.of.m"), at least k of the next m future observations will fall
in the prediction interval with probability (1 − α)100% on each of the r future sampling
occasions. If obserations are being taken sequentially, for a particular sampling occasion, up to
m observations may be taken, but once k of the observations fall within the prediction interval,
sampling can stop. Note: When k = m and r = 1, the results of predIntNormSimultaneous
are equivalent to the results of predIntNorm.

• For the California rule (rule="CA"), with probability (1 − α)100%, for each of the r future
sampling occasions, either the first observation will fall in the prediction interval, or else all of
the next m− 1 observations will fall in the prediction interval. That is, if the first observation
falls in the prediction interval then sampling can stop. Otherwise, m − 1 more observations
must be taken.

• For the Modified California rule (rule="Modified.CA"), with probability (1 − α)100%, for
each of the r future sampling occasions, either the first observation will fall in the prediction
interval, or else at least 2 out of the next 3 observations will fall in the prediction interval. That
is, if the first observation falls in the prediction interval then sampling can stop. Otherwise, up
to 3 more observations must be taken.

Computing Power
The function predIntNormSimultaneousTestPower computes the probability that at least one set
of future observations or averages will violate the given rule based on a simultaneous prediction in-
terval for the next r future sampling occasions for a normal distribution, based on the assumption of
normally distributed observations, where the population mean for the future observations is allowed
to differ from the population mean for the observations used to construct the prediction interval.

The function predIntLnormAltSimultaneousTestPower assumes all observations are from a log-
normal distribution. The observations used to construct the prediction interval are assumed to come
from a lognormal distribution with mean θ2 and coefficient of variation τ . The future observations
are assumed to come from a lognormal distribution with mean θ1 and coefficient of variation τ ; that
is, the means are allowed to differ between the two populations, but not the coefficient of variation.

The function predIntLnormAltSimultaneousTestPower calls the function predIntNormSimultaneousTestPower,
with the argument delta.over.sigma given by:

δ

σ
=

log(R)√
log(τ2 + 1)

(1)

where R is given by:

R =
θ1

θ2
(2)

and corresponds to the argument ratio.of.means for the function predIntLnormAltSimultaneousTestPower,
and τ corresponds to the argument cv.

Value

vector of values between 0 and 1 equal to the probability that the rule will be violated.

Note

See the help files for predIntLnormAltSimultaneous and predIntNormSimultaneousTestPower.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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References

See the help file for predIntLnormAltSimultaneous.

See Also

predIntLnormAltSimultaneous, plotPredIntLnormAltSimultaneousTestPowerCurve, predIntNormSimultaneous,
plotPredIntNormSimultaneousTestPowerCurve, Prediction Intervals, LognormalAlt.

Examples

# For the k-of-m rule with n=4, k=1, m=3, and r=1, show how the power increases
# as ratio.of.means increases. Assume a 95% upper prediction interval.

predIntLnormAltSimultaneousTestPower(n = 4, m = 3, ratio.of.means = 1:3)
#[1] 0.0500000 0.2356914 0.4236723

#----------

# Look at how the power increases with sample size for an upper one-sided
# prediction interval using the k-of-m rule with k=1, m=3, r=20,
# ratio.of.means=4, and a confidence level of 95%.

predIntLnormAltSimultaneousTestPower(n = c(4, 8), m = 3, r = 20, ratio.of.means = 4)
#[1] 0.4915743 0.8218175

#----------

# Compare the power for the 1-of-3 rule with the power for the California and
# Modified California rules, based on a 95% upper prediction interval and
# ratio.of.means=4. Assume a sample size of n=8. Note that in this case the
# power for the Modified California rule is greater than the power for the
# 1-of-3 rule and California rule.

predIntLnormAltSimultaneousTestPower(n = 8, k = 1, m = 3, ratio.of.means = 4)
#[1] 0.6594845

predIntLnormAltSimultaneousTestPower(n = 8, m = 3, rule = "CA", ratio.of.means = 4)
#[1] 0.5864311

predIntLnormAltSimultaneousTestPower(n = 8, rule = "Modified.CA", ratio.of.means = 4)
#[1] 0.691135

#----------

# Show how the power for an upper 95% simultaneous prediction limit increases
# as the number of future sampling occasions r increases. Here, well use the
# 1-of-3 rule with n=8 and ratio.of.means=4.

predIntLnormAltSimultaneousTestPower(n = 8, k = 1, m = 3, r = c(1, 2, 5, 10),
ratio.of.means = 4)

#[1] 0.6594845 0.7529576 0.8180814 0.8302302



786 predIntLnormAltTestPower

predIntLnormAltTestPower

Probability That at Least One Future Observation Falls Outside a Pre-
diction Interval for a Lognormal Distribution

Description

Compute the probability that at least one out of k future observations (or geometric means) falls
outside a prediction interval for k future observations (or geometric means) for a normal distribu-
tion.

Usage

predIntLnormAltTestPower(n, df = n - 1, n.geomean = 1, k = 1,
ratio.of.means = 1, cv = 1, pi.type = "upper", conf.level = 0.95)

Arguments

n vector of positive integers greater than 2 indicating the sample size upon which
the prediction interval is based.

df vector of positive integers indicating the degrees of freedom associated with the
sample size. The default value is df=n-1.

n.geomean positive integer specifying the sample size associated with the future geometric
means. The default value is n.geomean=1 (i.e., individual observations). Note
that all future geometric means must be based on the same sample size.

k vector of positive integers specifying the number of future observations that the
prediction interval should contain with confidence level conf.level. The de-
fault value is k=1.

ratio.of.means numeric vector specifying the ratio of the mean of the population that will be
sampled to produce the future observations vs. the mean of the population that
was sampled to construct the prediction interval. See the DETAILS section
below for more information. The default value is ratio.of.means=1.

cv numeric vector of positive values specifying the coefficient of variation for both
the population that was sampled to construct the prediction interval and the
population that will be sampled to produce the future observations. The default
value is cv=1.

pi.type character string indicating what kind of prediction interval to compute. The
possible values are pi.type="upper" (the default), and pi.type="lower".

conf.level numeric vector of values between 0 and 1 indicating the confidence level of the
prediction interval. The default value is conf.level=0.95.

Details

A prediction interval for some population is an interval on the real line constructed so that it will
contain k future observations or averages from that population with some specified probability (1−
α)100%, where 0 < α < 1 and k is some pre-specified positive integer. The quantity (1−α)100%
is call the confidence coefficient or confidence level associated with the prediction interval. The
function predIntNorm computes a standard prediction interval based on a sample from a normal
distribution.
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The function predIntNormTestPower computes the probability that at least one out of k future
observations or averages will not be contained in a prediction interval based on the assumption of
normally distributed observations, where the population mean for the future observations is allowed
to differ from the population mean for the observations used to construct the prediction interval.

The function predIntLnormAltTestPower assumes all observations are from a lognormal distri-
bution. The observations used to construct the prediction interval are assumed to come from a
lognormal distribution with mean θ2 and coefficient of variation τ . The future observations are
assumed to come from a lognormal distribution with mean θ1 and coefficient of variation τ ; that is,
the means are allowed to differ between the two populations, but not the coefficient of variation.

The function predIntLnormAltTestPower calls the function predIntNormTestPower, with the
argument delta.over.sigma given by:

δ

σ
=

log(R)√
log(τ2 + 1)

(1)

where R is given by:

R =
θ1

θ2
(2)

and corresponds to the argument ratio.of.means for the function predIntLnormAltTestPower,
and τ corresponds to the argument cv.

Value

vector of numbers between 0 and 1 equal to the probability that at least one of k future observations
or geometric means will fall outside the prediction interval.

Note

See the help files for predIntNormTestPower.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

See the help files for predIntNormTestPower and tTestLnormAltPower.

See Also

plotPredIntLnormAltTestPowerCurve, predIntLnormAlt, predIntNorm, predIntNormK, plotPredIntNormTestPowerCurve,
predIntLnormAltSimultaneous, predIntLnormAltSimultaneousTestPower, Prediction Inter-
vals, LognormalAlt.

Examples

# Show how the power increases as ratio.of.means increases. Assume a
# 95% upper prediction interval.

predIntLnormAltTestPower(n = 4, ratio.of.means = 1:3)
#[1] 0.0500000 0.1459516 0.2367793

#----------
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# Look at how the power increases with sample size for an upper one-sided
# prediction interval with k=3, ratio.of.means=4, and a confidence level of 95%.

predIntLnormAltTestPower(n = c(4, 8), k = 3, ratio.of.means = 4)
#[1] 0.2860952 0.4533567

#----------

# Show how the power for an upper 95% prediction limit increases as the
# number of future observations k increases. Here, well use n=20 and
# ratio.of.means=2.

predIntLnormAltTestPower(n = 20, k = 1:3, ratio.of.means = 2)
#[1] 0.1945886 0.2189538 0.2321562

predIntLnormSimultaneous

Simultaneous Prediction Interval for a Lognormal Distribution

Description

Estimate the mean and standard deviation on the log-scale for a lognormal distribution, or estimate
the mean and coefficient of variation for a lognormal distribution (alternative parameterization),
and construct a simultaneous prediction interval for the next r sampling occasions, based on one of
three possible rules: k-of-m, California, or Modified California.

Usage

predIntLnormSimultaneous(x, n.geomean = 1, k = 1, m = 2, r = 1, rule = "k.of.m",
delta.over.sigma = 0, pi.type = "upper", conf.level = 0.95,
K.tol = .Machine$double.eps^0.5)

predIntLnormAltSimultaneous(x, n.geomean = 1, k = 1, m = 2, r = 1, rule = "k.of.m",
delta.over.sigma = 0, pi.type = "upper", conf.level = 0.95,
K.tol = .Machine$double.eps^0.5, est.arg.list = NULL)

Arguments

x For predIntLnormSimultaneous, x can be a numeric vector of positive obser-
vations, or an object resulting from a call to an estimating function that assumes
a lognormal distribution (i.e., elnorm or elnormCensored). You cannot sup-
ply objects resulting from a call to estimating functions that use the alternative
parameterization such as elnormAlt or elnormAltCensored.
For predIntLnormAltSimultaneous, a numeric vector of positive observa-
tions.
If x is a numeric vector, missing (NA), undefined (NaN), and infinite (Inf, -Inf)
values are allowed but will be removed.

n.geomean positive integer specifying the sample size associated with future geometric
means. The default value is n.geomean=1 (i.e., individual observations). Note
that all future geometric means must be based on the same sample size.
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k for the k-of-m rule (rule="k.of.m"), a positive integer specifying the mini-
mum number of observations (or geometric means) out of m observations (or
geometric means) (all obtained on one future sampling “occassion”) the pre-
diction interval should contain with confidence level conf.level. The default
value is k=1. This argument is ignored when the argument rule is not equal to
"k.of.m".

m positive integer specifying the maximum number of future observations (or ge-
ometric means) on one future sampling “occasion”. The default value is m=2,
except when rule="Modified.CA", in which case this argument is ignored and
m is automatically set equal to 4.

r positive integer specifying the number of future sampling “occasions”. The de-
fault value is r=1.

rule character string specifying which rule to use. The possible values are "k.of.m"
(k-of-m rule; the default), "CA" (California rule), and "Modified.CA" (modified
California rule). See the DETAILS section below for more information.

delta.over.sigma

numeric scalar indicating the ratio ∆/σ. The quantity ∆ (delta) denotes the
difference between the mean of the population (on the log-scale) that was sam-
pled to construct the prediction interval, and the mean of the population (on the
log-scale) that will be sampled to produce the future observations. The quantity
σ (sigma) denotes the population standard deviation (on the log-scale) for both
populations. See the DETAILS section below for more information. The default
value is delta.over.sigma=0.

pi.type character string indicating what kind of prediction interval to compute. The
possible values are pi.type="upper" (the default), and pi.type="lower".

conf.level a scalar between 0 and 1 indicating the confidence level of the prediction inter-
val. The default value is conf.level=0.95.

K.tol numeric scalar indicating the tolerance to use in the nonlinear search algorithm
to compute K. The default value is K.tol=.Machine$double.eps^(1/2). For
many applications, the value ofK needs to be known only to the second decimal
place, in which case setting K.tol=1e-4 will speed up computation a bit.

est.arg.list a list containing arguments to pass to the function elnormAlt for estimating the
mean and coefficient of variation. The default value is est.arg.list=NULL,
which implies the default values will be used in the call to elnormAlt.

Details

The function predIntLnormSimultaneous returns a simultaneous prediction interval as well as
estimates of the meanlog and sdlog parameters. The function predIntLnormAltSimultaneous
returns a prediction interval as well as estimates of the mean and coefficient of variation.

A simultaneous prediction interval for a lognormal distribution is constructed by taking the natural
logarithm of the observations and constructing a prediction interval based on the normal (Gaussian)
distribution by calling predIntNormSimultaneous. These prediction limits are then exponentiated
to produce a prediction interval on the original scale of the data.

Value

If x is a numeric vector, predIntLnormSimultaneous returns a list of class "estimate" containing
the estimated parameters, the prediction interval, and other information. See the help file for
estimate.object for details.
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If x is the result of calling an estimation function, predIntLnormSimultaneous returns a list whose
class is the same as x. The list contains the same components as x, as well as a component called
interval containing the prediction interval information. If x already has a component called
interval, this component is replaced with the prediction interval information.

Note

Motivation
Prediction and tolerance intervals have long been applied to quality control and life testing problems
(Hahn, 1970b,c; Hahn and Nelson, 1973). In the context of environmental statistics, prediction in-
tervals are useful for analyzing data from groundwater detection monitoring programs at hazardous
and solid waste facilities.

One of the main statistical problems that plague groundwater monitoring programs at hazardous
and solid waste facilities is the requirement of testing several wells and several constituents at each
well on each sampling occasion. This is an obvious multiple comparisons problem, and the naive
approach of using a standard t-test at a conventional α-level (e.g., 0.05 or 0.01) for each test leads to
a very high probability of at least one significant result on each sampling occasion, when in fact no
contamination has occurred. This problem was pointed out years ago by Millard (1987) and others.

Davis and McNichols (1987) proposed simultaneous prediction intervals as a way of controlling
the facility-wide false positive rate (FWFPR) while maintaining adequate power to detect contam-
ination in the groundwater. Because of the ubiquitous presence of spatial variability, it is usually
best to use simultaneous prediction intervals at each well (Davis, 1998a). That is, by constructing
prediction intervals based on background (pre-landfill) data on each well, and comparing future
observations at a well to the prediction interval for that particular well. In each of these cases, the
individual α-level at each well is equal to the FWFRP divided by the product of the number of wells
and constituents.

Often, observations at downgradient wells are not available prior to the construction and operation
of the landfill. In this case, upgradient well data can be combined to create a background prediction
interval, and observations at each downgradient well can be compared to this prediction interval. If
spatial variability is present and a major source of variation, however, this method is not really valid
(Davis, 1994; Davis, 1998a).

Chapter 19 of USEPA (2009) contains an extensive discussion of using the 1-of-m rule and the
Modified California rule.

Chapters 1 and 3 of Gibbons et al. (2009) discuss simultaneous prediction intervals for the normal
and lognormal distributions, respectively.

The k-of-m Rule
For the k-of-m rule, Davis and McNichols (1987) give tables with “optimal” choices of k (in terms
of best power for a given overall confidence level) for selected values of m, r, and n. They found
that the optimal ratios of k to m (i.e., k/m) are generally small, in the range of 15-50%.

The California Rule
The California rule was mandated in that state for groundwater monitoring at waste disposal facil-
ities when resampling verification is part of the statistical program (Barclay’s Code of California
Regulations, 1991). The California code mandates a “California” rule with m ≥ 3. The motiva-
tion for this rule may have been a desire to have a majority of the observations in bounds (Davis,
1998a). For example, for a k-of-m rule with k = 1 and m = 3, a monitoring location will pass if
the first observation is out of bounds, the second resample is out of bounds, but the last resample is
in bounds, so that 2 out of 3 observations are out of bounds. For the California rule with m = 3,
either the first observation must be in bounds, or the next 2 observations must be in bounds in order
for the monitoring location to pass.
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Davis (1998a) states that if the FWFPR is kept constant, then the California rule offers little in-
creased power compared to the k-of-m rule, and can actually decrease the power of detecting con-
tamination.

The Modified California Rule
The Modified California Rule was proposed as a compromise between a 1-of-m rule and the Califor-
nia rule. For a given FWFPR, the Modified California rule achieves better power than the California
rule, and still requires at least as many observations in bounds as out of bounds, unlike a 1-of-m rule.

Different Notations Between Different References
For the k-of-m rule described in this help file, both Davis and McNichols (1987) and USEPA (2009,
Chapter 19) use the variable p instead of k to represent the minimum number of future observations
the interval should contain on each of the r sampling occasions.

Gibbons et al. (2009, Chapter 1) presents extensive lists of the value of K for both k-of-m rules
and California rules. Gibbons et al.’s notation reverses the meaning of k and r compared to the
notation used in this help file. That is, in Gibbons et al.’s notation, k represents the number of future
sampling occasions or monitoring wells, and r represents the minimum number of observations the
interval should contain on each sampling occasion.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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See Also

predIntLnormAltSimultaneousTestPower, predIntNorm, predIntNormSimultaneous, predIntNormSimultaneousTestPower,
tolIntLnorm, Lognormal, LognormalAlt, estimate.object, elnorm, elnormAlt.

Examples

# Generate 8 observations from a lognormal distribution with parameters
# mean=10 and cv=1, then use predIntLnormAltSimultaneous to estimate the
# mean and coefficient of variation of the true distribution and construct an
# upper 95% prediction interval to contain at least 1 out of the next
# 3 observations.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(479)
dat <- rlnormAlt(8, mean = 10, cv = 1)

predIntLnormAltSimultaneous(dat, k = 1, m = 3)

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Lognormal
#
#Estimated Parameter(s): mean = 11.2984322
# cv = 0.9524441
#
#Estimation Method: mvue
#
#Data: dat
#
#Sample Size: 8
#
#Prediction Interval Method: exact
#
#Prediction Interval Type: upper
#
#Confidence Level: 95%
#
#Minimum Number of
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#Future Observations
#Interval Should Contain: 1
#
#Total Number of
#Future Observations: 3
#
#Prediction Interval: LPL = 0.00000
# UPL = 12.67555

#----------

# Compare the 95% 1-of-3 upper prediction limit to the California and
# Modified California upper prediction limits. Note that the upper
# prediction limit for the Modified California rule is between the limit
# for the 1-of-3 rule and the limit for the California rule.

predIntLnormAltSimultaneous(dat, k = 1, m = 3)$interval$limits["UPL"]
# UPL
#12.67555

predIntLnormAltSimultaneous(dat, m = 3, rule = "CA")$interval$limits["UPL"]
# UPL
#25.03606

predIntLnormAltSimultaneous(dat, rule = "Modified.CA")$interval$limits["UPL"]
# UPL
#17.10475

#----------

# Show how the upper 95% simultaneous prediction limit increases
# as the number of future sampling occasions r increases.
# Here, well use the 1-of-3 rule.

predIntLnormAltSimultaneous(dat, k = 1, m = 3)$interval$limits["UPL"]
# UPL
#12.67555

predIntLnormAltSimultaneous(dat, k = 1, m = 3, r = 10)$interval$limits["UPL"]
# UPL
#27.72615

#----------

# Compare the upper simultaneous prediction limit for the 1-of-3 rule
# based on individual observations versus based on geometric means of
# order 4.

predIntLnormAltSimultaneous(dat, k = 1, m = 3)$interval$limits["UPL"]
# UPL
#12.67555

predIntLnormAltSimultaneous(dat, n.geomean = 4, k = 1,
m = 3)$interval$limits["UPL"]

# UPL
#11.95532
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#==========

# Example 19-1 of USEPA (2009, p. 19-17) shows how to compute an
# upper simultaneous prediction limit for the 1-of-3 rule for
# r = 2 future sampling occasions. The data for this example are
# stored in EPA.09.Ex.19.1.sulfate.df.

# We will pool data from 4 background wells that were sampled on
# a number of different occasions, giving us a sample size of
# n = 25 to use to construct the prediction limit.

# There are 50 compliance wells and we will monitor 10 different
# constituents at each well at each of the r=2 future sampling
# occasions. To determine the confidence level we require for
# the simultaneous prediction interval, USEPA (2009) recommends
# setting the individual Type I Error level at each well to

# 1 - (1 - SWFPR)^(1 / (Number of Constituents * Number of Wells))

# which translates to setting the confidence limit to

# (1 - SWFPR)^(1 / (Number of Constituents * Number of Wells))

# where SWFPR = site-wide false positive rate. For this example, we
# will set SWFPR = 0.1. Thus, the confidence level is given by:

nc <- 10
nw <- 50
SWFPR <- 0.1
conf.level <- (1 - SWFPR)^(1 / (nc * nw))

conf.level
#[1] 0.9997893

#----------

# Look at the data:

names(EPA.09.Ex.19.1.sulfate.df)
#[1] "Well" "Month" "Day"
#[4] "Year" "Date" "Sulfate.mg.per.l"
#[7] "log.Sulfate.mg.per.l"

EPA.09.Ex.19.1.sulfate.df[,
c("Well", "Date", "Sulfate.mg.per.l", "log.Sulfate.mg.per.l")]

# Well Date Sulfate.mg.per.l log.Sulfate.mg.per.l
#1 GW-01 1999-07-08 63.0 4.143135
#2 GW-01 1999-09-12 51.0 3.931826
#3 GW-01 1999-10-16 60.0 4.094345
#4 GW-01 1999-11-02 86.0 4.454347
#5 GW-04 1999-07-09 104.0 4.644391
#6 GW-04 1999-09-14 102.0 4.624973
#7 GW-04 1999-10-12 84.0 4.430817
#8 GW-04 1999-11-15 72.0 4.276666
#9 GW-08 1997-10-12 31.0 3.433987
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#10 GW-08 1997-11-16 84.0 4.430817
#11 GW-08 1998-01-28 65.0 4.174387
#12 GW-08 1999-04-20 41.0 3.713572
#13 GW-08 2002-06-04 51.8 3.947390
#14 GW-08 2002-09-16 57.5 4.051785
#15 GW-08 2002-12-02 66.8 4.201703
#16 GW-08 2003-03-24 87.1 4.467057
#17 GW-09 1997-10-16 59.0 4.077537
#18 GW-09 1998-01-28 85.0 4.442651
#19 GW-09 1998-04-12 75.0 4.317488
#20 GW-09 1998-07-12 99.0 4.595120
#21 GW-09 2000-01-30 75.8 4.328098
#22 GW-09 2000-04-24 82.5 4.412798
#23 GW-09 2000-10-24 85.5 4.448516
#24 GW-09 2002-12-01 188.0 5.236442
#25 GW-09 2003-03-24 150.0 5.010635

# Construct the upper simultaneous prediction limit for the
# 1-of-3 plan assuming a lognormal distribution for the
# sulfate data

Sulfate <- EPA.09.Ex.19.1.sulfate.df$Sulfate.mg.per.l

predIntLnormSimultaneous(x = Sulfate, k = 1, m = 3, r = 2,
rule = "k.of.m", pi.type = "upper", conf.level = conf.level)

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Lognormal
#
#Estimated Parameter(s): meanlog = 4.3156194
# sdlog = 0.3756697
#
#Estimation Method: mvue
#
#Data: Sulfate
#
#Sample Size: 25
#
#Prediction Interval Method: exact
#
#Prediction Interval Type: upper
#
#Confidence Level: 99.97893%
#
#Minimum Number of
#Future Observations
#Interval Should Contain
#(per Sampling Occasion): 1
#
#Total Number of
#Future Observations
#(per Sampling Occasion): 3
#
#Number of Future
#Sampling Occasions: 2
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#
#Prediction Interval: LPL = 0.0000
# UPL = 159.5497

#==========

# Cleanup
#--------
rm(dat, nc, nw, SWFPR, conf.level, Sulfate)

predIntNorm Prediction Interval for a Normal Distribution

Description

Estimate the mean and standard deviation of a normal distribution, and construct a prediction inter-
val for the next k observations or next set of k means.

Usage

predIntNorm(x, n.mean = 1, k = 1, method = "Bonferroni",
pi.type = "two-sided", conf.level = 0.95)

Arguments

x a numeric vector of observations, or an object resulting from a call to an estimat-
ing function that assumes a normal (Gaussian) distribution (e.g., enorm, eqnorm,
enormCensored, etc.). If x is a numeric vector, missing (NA), undefined (NaN),
and infinite (Inf, -Inf) values are allowed but will be removed.

n.mean positive integer specifying the sample size associated with the k future averages.
The default value is n.mean=1 (i.e., individual observations). Note that all future
averages must be based on the same sample size.

k positive integer specifying the number of future observations or averages the
prediction interval should contain with confidence level conf.level. The de-
fault value is k=1.

method character string specifying the method to use if the number of future obser-
vations (k) is greater than 1. The possible values are method="Bonferroni"
(approximate method based on Bonferonni inequality; the default), and
method="exact" (exact method due to Dunnett, 1955). See the DETAILS sec-
tion of predIntNormK for more information. This argument is ignored if k=1.

pi.type character string indicating what kind of prediction interval to compute. The pos-
sible values are pi.type="two-sided" (the default), pi.type="lower", and
pi.type="upper".

conf.level a scalar between 0 and 1 indicating the confidence level of the prediction inter-
val. The default value is conf.level=0.95.
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Details

What is a Prediction Interval?
A prediction interval for some population is an interval on the real line constructed so that it will
contain k future observations or averages from that population with some specified probability
(1 − α)100%, where 0 < α < 1 and k is some pre-specified positive integer. The quantity
(1 − α)100% is called the confidence coefficient or confidence level associated with the predic-
tion interval.

The Form of a Prediction Interval
Let x = x1, x2, . . . , xn denote a vector of n observations from a normal distribution with param-
eters mean=µ and sd=σ. Also, let m denote the sample size associated with the k future averages
(i.e., n.mean=m). When m = 1, each average is really just a single observation, so in the rest of
this help file the term “averages” will replace the phrase “observations or averages”.

For a normal distribution, the form of a two-sided (1− α)100% prediction interval is:

[x̄−Ks, x̄+Ks] (1)

where x̄ denotes the sample mean:

x̄ =
1

n

n∑
i=1

xi (2)

s denotes the sample standard deviation:

s2 =
1

n− 1

n∑
i=1

(xi − x̄)2 (3)

and K denotes a constant that depends on the sample size n, the confidence level, the number of
future averages k, and the sample size associated with the future averages, m. Do not confuse the
constant K (uppercase K) with the number of future averages k (lowercase k). The symbol K is
used here to be consistent with the notation used for tolerance intervals (see tolIntNorm).

Similarly, the form of a one-sided lower prediction interval is:

[x̄−Ks,∞] (4)

and the form of a one-sided upper prediction interval is:

[−∞, x̄+Ks] (5)

but K differs for one-sided versus two-sided prediction intervals. The derivation of the constant K
is explained in the help file for predIntNormK.

A Prediction Interval is a Random Interval
A prediction interval is a random interval; that is, the lower and/or upper bounds are random vari-
ables computed based on sample statistics in the baseline sample. Prior to taking one specific
baseline sample, the probability that the prediction interval will contain the next k averages is
(1 − α)100%. Once a specific baseline sample is taken and the prediction interval based on that
sample is computed, the probability that that prediction interval will contain the next k averages is
not necessarily (1− α)100%, but it should be close.

If an experiment is repeated N times, and for each experiment:

1. A sample is taken and a (1 − α)100% prediction interval for k = 1 future observation is
computed, and
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2. One future observation is generated and compared to the prediction interval,

then the number of prediction intervals that actually contain the future observation generated in step
2 above is a binomial random variable with parameters size=N and prob=(1− α)100%.

If, on the other hand, only one baseline sample is taken and only one prediction interval for k = 1
future observation is computed, then the number of future observations out of a total of N future
observations that will be contained in that one prediction interval is a binomial random variable with
parameters size=N and prob=(1−α∗)100%, where α∗ depends on the true population parameters
and the computed bounds of the prediction interval.

Value

If x is a numeric vector, predIntNorm returns a list of class "estimate" containing the estimated
parameters, the prediction interval, and other information. See the help file for
estimate.object for details.

If x is the result of calling an estimation function, predIntNorm returns a list whose class is the
same as x. The list contains the same components as x, as well as a component called interval
containing the prediction interval information. If x already has a component called interval, this
component is replaced with the prediction interval information.

Note

Prediction and tolerance intervals have long been applied to quality control and life testing problems
(Hahn, 1970b,c; Hahn and Nelson, 1973; Krishnamoorthy and Mathew, 2009). In the context
of environmental statistics, prediction intervals are useful for analyzing data from groundwater
detection monitoring programs at hazardous and solid waste facilities (e.g., Gibbons et al., 2009;
Millard and Neerchal, 2001; USEPA, 2009).
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See Also

predIntNormK, predIntNormSimultaneous, predIntLnorm, tolIntNorm, Normal, estimate.object,
enorm, eqnorm.

Examples

# Generate 20 observations from a normal distribution with parameters
# mean=10 and sd=2, then create a two-sided 95% prediction interval for
# the next observation.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(47)
dat <- rnorm(20, mean = 10, sd = 2)
predIntNorm(dat)

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Normal
#
#Estimated Parameter(s): mean = 9.792856
# sd = 1.821286
#
#Estimation Method: mvue
#
#Data: dat
#
#Sample Size: 20
#

http://pubs.usgs.gov/twri/twri4a3/
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#Prediction Interval Method: exact
#
#Prediction Interval Type: two-sided
#
#Confidence Level: 95%
#
#Number of Future Observations: 1
#
#Prediction Interval: LPL = 5.886723
# UPL = 13.698988

#----------

# Using the same data from the last example, create a one-sided
# upper 99% prediction limit for the next 3 averages of order 2
# (i.e., each of the 3 future averages is based on a sample size
# of 2 future observations).

predIntNorm(dat, n.mean = 2, k = 3, conf.level = 0.99,
pi.type = "upper")

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Normal
#
#Estimated Parameter(s): mean = 9.792856
# sd = 1.821286
#
#Estimation Method: mvue
#
#Data: dat
#
#Sample Size: 20
#
#Prediction Interval Method: Bonferroni
#
#Prediction Interval Type: upper
#
#Confidence Level: 99%
#
#Number of Future Averages: 3
#
#Sample Size for Averages: 2
#
#Prediction Interval: LPL = -Inf
# UPL = 13.90537

#----------

# Compare the result above that is based on the Bonferroni method
# with the exact method

predIntNorm(dat, n.mean = 2, k = 3, conf.level = 0.99,
pi.type = "upper", method = "exact")$interval$limits["UPL"]

# UPL
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#13.89272

#----------

# Clean up
rm(dat)

#--------------------------------------------------------------------

# Example 18-1 of USEPA (2009, p.18-9) shows how to construct a 95%
# prediction interval for 4 future observations assuming a
# normal distribution based on arsenic concentrations (ppb) in
# groundwater at a solid waste landfill. There were 4 years of
# quarterly monitoring, and years 1-3 are considered background.
# The question to be answered is whether there is evidence of
# contamination in year 4.

# The data for this example is stored in EPA.09.Ex.18.1.arsenic.df.

EPA.09.Ex.18.1.arsenic.df

# Year Sampling.Period Arsenic.ppb
#1 1 Background 12.6
#2 1 Background 30.8
#3 1 Background 52.0
#4 1 Background 28.1
#5 2 Background 33.3
#6 2 Background 44.0
#7 2 Background 3.0
#8 2 Background 12.8
#9 3 Background 58.1
#10 3 Background 12.6
#11 3 Background 17.6
#12 3 Background 25.3
#13 4 Compliance 48.0
#14 4 Compliance 30.3
#15 4 Compliance 42.5
#16 4 Compliance 15.0

As.bkgd <- with(EPA.09.Ex.18.1.arsenic.df,
Arsenic.ppb[Sampling.Period == "Background"])

As.cmpl <- with(EPA.09.Ex.18.1.arsenic.df,
Arsenic.ppb[Sampling.Period == "Compliance"])

# A Shapiro-Wilks goodness-of-fit test for normality indicates
# there is no evidence to reject the assumption of normality
# for the background data:

gofTest(As.bkgd)

#Results of Goodness-of-Fit Test
#-------------------------------
#
#Test Method: Shapiro-Wilk GOF
#
#Hypothesized Distribution: Normal
#
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#Estimated Parameter(s): mean = 27.51667
# sd = 17.10119
#
#Estimation Method: mvue
#
#Data: As.bkgd
#
#Sample Size: 12
#
#Test Statistic: W = 0.94695
#
#Test Statistic Parameter: n = 12
#
#P-value: 0.5929102
#
#Alternative Hypothesis: True cdf does not equal the
# Normal Distribution.

# Here is the one-sided 95% upper prediction limit:

UPL <- predIntNorm(As.bkgd, k = 4,
pi.type = "upper")$interval$limits["UPL"]

UPL
# UPL
#73.67237

# Are any of the compliance observations above the prediction limit?

any(As.cmpl > UPL)
#[1] FALSE

#==========

# Cleanup
#--------

rm(As.bkgd, As.cmpl, UPL)

predIntNormHalfWidth Half-Width of a Prediction Interval for the next k Observations from a
Normal Distribution

Description

Compute the half-width of a prediction interval for the next k observations from a normal distribu-
tion.

Usage

predIntNormHalfWidth(n, df = n - 1, n.mean = 1, k = 1, sigma.hat = 1,
method = "Bonferroni", conf.level = 0.95)
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Arguments

n numeric vector of positive integers greater than 1 indicating the sample size
upon which the prediction interval is based. Missing (NA), undefined (NaN), and
infinite (Inf, -Inf) values are not allowed.

df numeric vector of positive integers indicating the degrees of freedom associated
with the prediction interval. The default is df=n-1.

n.mean numeric vector of positive integers specifying the sample size associated with
the k future averages. The default value is n.mean=1 (i.e., individual observa-
tions). Note that all future averages must be based on the same sample size.

k numeric vector of positive integers specifying the number of future observa-
tions or averages the prediction interval should contain with confidence level
conf.level. The default value is k=1.

sigma.hat numeric vector specifying the value(s) of the estimated standard deviation(s).
The default value is sigma.hat=1.

method character string specifying the method to use if the number of future obser-
vations (k) is greater than 1. The possible values are method="Bonferroni"
(approximate method based on Bonferonni inequality; the default), and
method="exact" (exact method due to Dunnett, 1955). This argument is ig-
nored if k=1.

conf.level numeric vector of values between 0 and 1 indicating the confidence level of the
prediction interval. The default value is conf.level=0.95.

Details

If the arguments n, k, n.mean, sigma.hat, and conf.level are not all the same length, they are
replicated to be the same length as the length of the longest argument.

The help files for predIntNorm and predIntNormK give formulas for a two-sided prediction interval
based on the sample size, the observed sample mean and sample standard deviation, and specified
confidence level. Specifically, the two-sided prediction interval is given by:

[x̄−Ks, x̄+Ks] (1)

where x̄ denotes the sample mean:

x̄ =
1

n

n∑
i=1

xi (2)

s denotes the sample standard deviation:

s2 =
1

n− 1

n∑
i=1

(xi − x̄)2 (3)

and K denotes a constant that depends on the sample size n, the confidence level, the number of
future averages k, and the sample size associated with the future averages, m (see the help file for
predIntNormK). Thus, the half-width of the prediction interval is given by:

HW = Ks (4)

Value

numeric vector of half-widths.
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Note

See the help file for predIntNorm.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

See the help file for predIntNorm.

See Also

predIntNorm, predIntNormK, predIntNormN, plotPredIntNormDesign.

Examples

# Look at how the half-width of a prediction interval increases with
# increasing number of future observations:

1:5
#[1] 1 2 3 4 5

hw <- predIntNormHalfWidth(n = 10, k = 1:5)

round(hw, 2)
#[1] 2.37 2.82 3.08 3.26 3.41

#----------

# Look at how the half-width of a prediction interval decreases with
# increasing sample size:

2:5
#[1] 2 3 4 5

hw <- predIntNormHalfWidth(n = 2:5)

round(hw, 2)
#[1] 15.56 4.97 3.56 3.04

#----------

# Look at how the half-width of a prediction interval increases with
# increasing estimated standard deviation for a fixed sample size:

seq(0.5, 2, by = 0.5)
#[1] 0.5 1.0 1.5 2.0

hw <- predIntNormHalfWidth(n = 10, sigma.hat = seq(0.5, 2, by = 0.5))

round(hw, 2)
#[1] 1.19 2.37 3.56 4.75

#----------
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# Look at how the half-width of a prediction interval increases with
# increasing confidence level for a fixed sample size:

seq(0.5, 0.9, by = 0.1)
#[1] 0.5 0.6 0.7 0.8 0.9

hw <- predIntNormHalfWidth(n = 5, conf = seq(0.5, 0.9, by = 0.1))

round(hw, 2)
#[1] 0.81 1.03 1.30 1.68 2.34

#==========

# The data frame EPA.92c.arsenic3.df contains arsenic concentrations (ppb)
# collected quarterly for 3 years at a background well and quarterly for
# 2 years at a compliance well. Using the data from the background well, compute
# the half-width associated with sample sizes of 12 (3 years of quarterly data),
# 16 (4 years of quarterly data), and 20 (5 years of quarterly data) for a
# two-sided 90% prediction interval for k=4 future observations.

EPA.92c.arsenic3.df
# Arsenic Year Well.type
#1 12.6 1 Background
#2 30.8 1 Background
#3 52.0 1 Background
#...
#18 3.8 5 Compliance
#19 2.6 5 Compliance
#20 51.9 5 Compliance

mu.hat <- with(EPA.92c.arsenic3.df,
mean(Arsenic[Well.type=="Background"]))

mu.hat
#[1] 27.51667

sigma.hat <- with(EPA.92c.arsenic3.df,
sd(Arsenic[Well.type=="Background"]))

sigma.hat
#[1] 17.10119

hw <- predIntNormHalfWidth(n = c(12, 16, 20), k = 4, sigma.hat = sigma.hat,
conf.level = 0.9)

round(hw, 2)
#[1] 46.16 43.89 42.64

#==========

# Clean up
#---------
rm(hw, mu.hat, sigma.hat)
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predIntNormK Compute the Value of K for a Prediction Interval for a Normal Distri-
bution

Description

Compute the value of K (the multiplier of estimated standard deviation) used to construct a pre-
diction interval for the next k observations or next set of k means based on data from a normal
distribution. The function predIntNormK is called by predIntNorm.

Usage

predIntNormK(n, df = n - 1, n.mean = 1, k = 1,
method = "Bonferroni", pi.type = "two-sided",
conf.level = 0.95)

Arguments

n a positive integer greater than 2 indicating the sample size upon which the pre-
diction interval is based.

df the degrees of freedom associated with the prediction interval. The default is
df=n-1.

n.mean positive integer specifying the sample size associated with the k future averages.
The default value is n.mean=1 (i.e., individual observations). Note that all future
averages must be based on the same sample size.

k positive integer specifying the number of future observations or averages the
prediction interval should contain with confidence level conf.level. The de-
fault value is k=1.

method character string specifying the method to use if the number of future obser-
vations (k) is greater than 1. The possible values are method="Bonferroni"
(approximate method based on Bonferonni inequality; the default), and
method="exact" (exact method due to Dunnett, 1955). See the DETAILS sec-
tion for more information. This argument is ignored if k=1.

pi.type character string indicating what kind of prediction interval to compute. The pos-
sible values are pi.type="two-sided" (the default), pi.type="lower", and
pi.type="upper".

conf.level a scalar between 0 and 1 indicating the confidence level of the prediction inter-
val. The default value is conf.level=0.95.

Details

A prediction interval for some population is an interval on the real line constructed so that it will
contain k future observations or averages from that population with some specified probability (1−
α)100%, where 0 < α < 1 and k is some pre-specified positive integer. The quantity (1−α)100%
is called the confidence coefficient or confidence level associated with the prediction interval.

Let x = x1, x2, . . . , xn denote a vector of n observations from a normal distribution with param-
eters mean=µ and sd=σ. Also, let m denote the sample size associated with the k future averages
(i.e., n.mean=m). When m = 1, each average is really just a single observation, so in the rest of
this help file the term “averages” will replace the phrase “observations or averages”.
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For a normal distribution, the form of a two-sided (1− α)100% prediction interval is:

[x̄−Ks, x̄+Ks] (1)

where x̄ denotes the sample mean:

x̄ =
1

n

n∑
i=1

xi (2)

s denotes the sample standard deviation:

s2 =
1

n− 1

n∑
i=1

(xi − x̄)2 (3)

and K denotes a constant that depends on the sample size n, the confidence level, the number of
future averages k, and the sample size associated with the future averages, m. Do not confuse the
constant K (uppercase K) with the number of future averages k (lowercase k). The symbol K is
used here to be consistent with the notation used for tolerance intervals (see tolIntNorm).

Similarly, the form of a one-sided lower prediction interval is:

[x̄−Ks,∞] (4)

and the form of a one-sided upper prediction interval is:

[−∞, x̄+Ks] (5)

but K differs for one-sided versus two-sided prediction intervals. The derivation of the constant
K is explained below. The function predIntNormK computes the value of K and is called by
predIntNorm.

The Derivation of K for One Future Observation or Average (k = 1)
Let X denote a random variable from a normal distribution with parameters mean=µ and sd=σ, and
let xp denote the p’th quantile of X .

A true two-sided (1− α)100% prediction interval for the next k = 1 observation of X is given by:

[xα/2, x1−α/2] = [µ− z1−α/2σ, µ+ z1−α/2σ] (6)

where zp denotes the p’th quantile of a standard normal distribution.

More generally, a true two-sided (1− α)100% prediction interval for the next k = 1 average based
on a sample of size m is given by:

[µ− z1−α/2
σ√
m
,µ+ z1−α/2

σ√
m

] (7)

Because the values of µ and σ are unknown, they must be estimated, and a prediction interval then
constructed based on the estimated values of µ and σ.

For a two-sided prediction interval (pi.type="two-sided"), the constant K for a (1 − α)100%
prediction interval for the next k = 1 average based on a sample size of m is computed as:

K = tn−1,1−α/2

√
1

m
+

1

n
(8)

where tν,p denotes the p’th quantile of the Student’s t-distribution with ν degrees of freedom. For
a one-sided prediction interval (pi.type="lower" or pi.type="lower"), the prediction interval is
given by:

K = tn−1,1−α

√
1

m
+

1

n
(9)
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.

The formulas for these prediction intervals are derived as follows. Let ȳ denote the future average
based on m observations. Then the quantity ȳ − x̄ has a normal distribution with expectation and
variance given by:

E(ȳ − x̄) = 0 (10)

V ar(ȳ − x̄) = V ar(ȳ) + V ar(x̄) =
σ2

m
+
σ2

n
= σ2(

1

m
+

1

n
) (11)

so the quantity

t =
ȳ − x̄

s
√

1
m + 1

n

(12)

has a Student’s t-distribution with n− 1 degrees of freedom.

The Derivation of K for More than One Future Observation or Average (k >1)
When k > 1, the function predIntNormK allows for two ways to compute K: an exact method
due to Dunnett (1955) (method="exact"), and an approximate (conservative) method based on
the Bonferroni inequality (method="Bonferroni"; see Miller, 1981a, pp.8, 67-70; Gibbons et al.,
2009, p.4). Each of these methods is explained below.

Exact Method Due to Dunnett (1955) (method="exact")
Dunnett (1955) derived the value of K in the context of the multiple comparisons problem of com-
paring several treatment means to one control mean. The value of K is computed as:

K = c

√
1

m
+

1

n
(13)

where c is a constant that depends on the sample size n, the number of future observations (averages)
k, the sample size associated with the k future averages m, and the confidence level (1− α)100%.

When pi.type="lower" or pi.type="upper", the value of c is the number that satisfies the fol-
lowing equation (Gupta and Sobel, 1957; Hahn, 1970a):

1− α =

∫ ∞
0

F1(cs, k, ρ)h(s
√
n− 1, n− 1)

√
n− 1ds (14)

where

F1(x, k, ρ) =

∫ ∞
∞

[Φ(
x+ ρ1/2y√

1− ρ
)]kφ(y)dy (15)

ρ = 1/(
n

m
+ 1) (16)

h(x, ν) =
xν−1e−x

2/2

2(ν/2)−1Γ(ν2 )
(17)

and Φ() and φ() denote the cumulative distribution function and probability density function, re-
spectively, of the standard normal distribution. Note that the function h(x, ν) is the probability
density function of a chi random variable with ν degrees of freedom.

When pi.type="two-sided", the value of c is the number that satisfies the following equation:

1− α =

∫ ∞
0

F2(cs, k, ρ)h(s
√
n− 1, n− 1)

√
n− 1ds (18)

where

F2(x, k, ρ) =

∫ ∞
∞

[Φ(
x+ ρ1/2y√

1− ρ
)− Φ(

−x+ ρ1/2y√
1− ρ

)]kφ(y)dy (19)
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Approximate Method Based on the Bonferroni Inequality (method="Bonferroni")
As shown above, when k = 1, the value of K is given by Equation (8) or Equation (9) for two-
sided or one-sided prediction intervals, respectively. When k > 1, a conservative way to construct
a (1 − α∗)100% prediction interval for the next k observations or averages is to use a Bonferroni
correction (Miller, 1981a, p.8) and set α = α∗/k in Equation (8) or (9) (Chew, 1968). This value
of K will be conservative in that the computed prediction intervals will be wider than the exact
predictions intervals. Hahn (1969, 1970a) compared the exact values of K with those based on the
Bonferroni inequality for the case of m = 1 and found the approximation to be quite satisfactory
except when n is small, k is large, and α is large. For example, Gibbons (1987a) notes that for a
99% prediction interval (i.e., α = 0.01) for the next k observations, if n > 4, the bias of K is never
greater than 1% no matter what the value of k.

Value

A numeric scalar equal to K, the multiplier of estimated standard deviation that is used to construct
the prediction interval.

Note

Prediction and tolerance intervals have long been applied to quality control and life testing problems
(Hahn, 1970b,c; Hahn and Nelson, 1973). In the context of environmental statistics, prediction in-
tervals are useful for analyzing data from groundwater detection monitoring programs at hazardous
and solid waste facilities (e.g., Gibbons et al., 2009; Millard and Neerchal, 2001; USEPA, 2009).

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Berthouex, P.M., and L.C. Brown. (2002). Statistics for Environmental Engineers. Lewis Publish-
ers, Boca Raton.

Dunnett, C.W. (1955). A Multiple Comparisons Procedure for Comparing Several Treatments with
a Control. Journal of the American Statistical Association 50, 1096-1121.

Dunnett, C.W. (1964). New Tables for Multiple Comparisons with a Control. Biometrics 20, 482-
491.

Gibbons, R.D., D.K. Bhaumik, and S. Aryal. (2009). Statistical Methods for Groundwater Moni-
toring, Second Edition. John Wiley & Sons, Hoboken.

Hahn, G.J. (1969). Factors for Calculating Two-Sided Prediction Intervals for Samples from a
Normal Distribution. Journal of the American Statistical Association 64(327), 878-898.

Hahn, G.J. (1970a). Additional Factors for Calculating Prediction Intervals for Samples from a
Normal Distribution. Journal of the American Statistical Association 65(332), 1668-1676.

Hahn, G.J. (1970b). Statistical Intervals for a Normal Population, Part I: Tables, Examples and
Applications. Journal of Quality Technology 2(3), 115-125.

Hahn, G.J. (1970c). Statistical Intervals for a Normal Population, Part II: Formulas, Assumptions,
Some Derivations. Journal of Quality Technology 2(4), 195-206.

Hahn, G.J., and W.Q. Meeker. (1991). Statistical Intervals: A Guide for Practitioners. John Wiley
and Sons, New York.
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Hahn, G., and W. Nelson. (1973). A Survey of Prediction Intervals and Their Applications. Journal
of Quality Technology 5, 178-188.

Helsel, D.R., and R.M. Hirsch. (1992). Statistical Methods in Water Resources Research. Elsevier,
New York.

Helsel, D.R., and R.M. Hirsch. (2002). Statistical Methods in Water Resources. Techniques of
Water Resources Investigations, Book 4, chapter A3. U.S. Geological Survey. (available on-line at:
http://pubs.usgs.gov/twri/twri4a3/).

Millard, S.P., and Neerchal, N.K. (2001). Environmental Statistics with S-PLUS. CRC Press, Boca
Raton, Florida.

Miller, R.G. (1981a). Simultaneous Statistical Inference. McGraw-Hill, New York.

USEPA. (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Uni-
fied Guidance. EPA 530/R-09-007, March 2009. Office of Resource Conservation and Recovery
Program Implementation and Information Division. U.S. Environmental Protection Agency, Wash-
ington, D.C.

USEPA. (2010). Errata Sheet - March 2009 Unified Guidance. EPA 530/R-09-007a, August 9,
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Division. U.S. Environmental Protection Agency, Washington, D.C.

See Also

predIntNorm, predIntNormSimultaneous, predIntLnorm, tolIntNorm, Normal, estimate.object,
enorm, eqnorm.

Examples

# Compute the value of K for a two-sided 95% prediction interval
# for the next observation given a sample size of n=20.

predIntNormK(n = 20)
#[1] 2.144711

#--------------------------------------------------------------------

# Compute the value of K for a one-sided upper 99% prediction limit
# for the next 3 averages of order 2 (i.e., each of the 3 future
# averages is based on a sample size of 2 future observations) given a
# samle size of n=20.

predIntNormK(n = 20, n.mean = 2, k = 3, pi.type = "upper",
conf.level = 0.99)

#[1] 2.258026

#----------

# Compare the result above that is based on the Bonferroni method
# with the exact method.

predIntNormK(n = 20, n.mean = 2, k = 3, method = "exact",
pi.type = "upper", conf.level = 0.99)

#[1] 2.251084

#--------------------------------------------------------------------

http://pubs.usgs.gov/twri/twri4a3/
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# Example 18-1 of USEPA (2009, p.18-9) shows how to construct a 95%
# prediction interval for 4 future observations assuming a
# normal distribution based on arsenic concentrations (ppb) in
# groundwater at a solid waste landfill. There were 4 years of
# quarterly monitoring, and years 1-3 are considered background,

# So the sample size for the prediciton limit is n = 12,
# and the number of future samples is k = 4.

predIntNormK(n = 12, k = 4, pi.type = "upper")
#[1] 2.698976

predIntNormN Sample Size for a Specified Half-Width of a Prediction Interval for the
next k Observations from a Normal Distribution

Description

Compute the sample size necessary to achieve a specified half-width of a prediction interval for the
next k observations from a normal distribution.

Usage

predIntNormN(half.width, n.mean = 1, k = 1, sigma.hat = 1,
method = "Bonferroni", conf.level = 0.95, round.up = TRUE,
n.max = 5000, tol = 1e-07, maxiter = 1000)

Arguments

half.width numeric vector of (positive) half-widths. Missing (NA), undefined (NaN), and
infinite (Inf, -Inf) values are not allowed.

n.mean numeric vector of positive integers specifying the sample size associated with
the k future averages. The default value is n.mean=1 (i.e., individual observa-
tions). Note that all future averages must be based on the same sample size.

k numeric vector of positive integers specifying the number of future observa-
tions or averages the prediction interval should contain with confidence level
conf.level. The default value is k=1.

sigma.hat numeric vector specifying the value(s) of the estimated standard deviation(s).
The default value is sigma.hat=1.

method character string specifying the method to use if the number of future obser-
vations (k) is greater than 1. The possible values are method="Bonferroni"
(approximate method based on Bonferonni inequality; the default), and
method="exact" (exact method due to Dunnett, 1955). This argument is ig-
nored if k=1.

conf.level numeric vector of values between 0 and 1 indicating the confidence level of the
prediction interval. The default value is conf.level=0.95.

round.up logical scalar indicating whether to round up the values of the computed sample
size(s) to the next smallest integer. The default value is round.up=TRUE.

n.max positive integer greater than 1 indicating the maximum possible sample size.
The default value is n.max=5000.
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tol numeric scalar indicating the tolerance to use in the uniroot search algorithm.
The default value is tol=1e-7.

maxiter positive integer indicating the maximum number of iterations to use in the uniroot
search algorithm. The default value is maxiter=1000.

Details

If the arguments half.width, k, n.mean, sigma.hat, and conf.level are not all the same length,
they are replicated to be the same length as the length of the longest argument.

The help files for predIntNorm and predIntNormK give formulas for a two-sided prediction interval
based on the sample size, the observed sample mean and sample standard deviation, and specified
confidence level. Specifically, the two-sided prediction interval is given by:

[x̄−Ks, x̄+Ks] (1)

where x̄ denotes the sample mean:

x̄ =
1

n

n∑
i=1

xi (2)

s denotes the sample standard deviation:

s2 =
1

n− 1

n∑
i=1

(xi − x̄)2 (3)

and K denotes a constant that depends on the sample size n, the confidence level, the number of
future averages k, and the sample size associated with the future averages, m (see the help file for
predIntNormK). Thus, the half-width of the prediction interval is given by:

HW = Ks (4)

The function predIntNormN uses the uniroot search algorithm to determine the sample size for
specified values of the half-width, number of observations used to create a single future average,
number of future observations or averages, the sample standard deviation, and the confidence level.
Note that unlike a confidence interval, the half-width of a prediction interval does not ap-
proach 0 as the sample size increases.

Value

numeric vector of sample sizes.

Note

See the help file for predIntNorm.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

See the help file for predIntNorm.
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See Also

predIntNorm, predIntNormK, predIntNormHalfWidth, plotPredIntNormDesign.

Examples

# Look at how the required sample size for a prediction interval increases
# with increasing number of future observations:

1:5
#[1] 1 2 3 4 5

predIntNormN(half.width = 3, k = 1:5)
#[1] 6 9 11 14 18

#----------

# Look at how the required sample size for a prediction interval decreases
# with increasing half-width:

2:5
#[1] 2 3 4 5

predIntNormN(half.width = 2:5)
#[1] 86 6 4 3

predIntNormN(2:5, round = FALSE)
#[1] 85.567387 5.122911 3.542393 2.987861

#----------

# Look at how the required sample size for a prediction interval increases
# with increasing estimated standard deviation for a fixed half-width:

seq(0.5, 2, by = 0.5)
#[1] 0.5 1.0 1.5 2.0

predIntNormN(half.width = 4, sigma.hat = seq(0.5, 2, by = 0.5))
#[1] 3 4 7 86

#----------

# Look at how the required sample size for a prediction interval increases
# with increasing confidence level for a fixed half-width:

seq(0.5, 0.9, by = 0.1)
#[1] 0.5 0.6 0.7 0.8 0.9

predIntNormN(half.width = 2, conf.level = seq(0.5, 0.9, by = 0.1))
#[1] 2 2 3 4 9

#==========

# The data frame EPA.92c.arsenic3.df contains arsenic concentrations (ppb)
# collected quarterly for 3 years at a background well and quarterly for
# 2 years at a compliance well. Using the data from the background well,
# compute the required sample size in order to achieve a half-width of
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# 2.25, 2.5, or 3 times the estimated standard deviation for a two-sided
# 90% prediction interval for k=4 future observations.
#
# For a half-width of 2.25 standard deviations, the required sample size is 526,
# or about 131 years of quarterly observations! For a half-width of 2.5
# standard deviations, the required sample size is 20, or about 5 years of
# quarterly observations. For a half-width of 3 standard deviations, the required
# sample size is 9, or about 2 years of quarterly observations.

EPA.92c.arsenic3.df
# Arsenic Year Well.type
#1 12.6 1 Background
#2 30.8 1 Background
#3 52.0 1 Background
#...
#18 3.8 5 Compliance
#19 2.6 5 Compliance
#20 51.9 5 Compliance

mu.hat <- with(EPA.92c.arsenic3.df,
mean(Arsenic[Well.type=="Background"]))

mu.hat
#[1] 27.51667

sigma.hat <- with(EPA.92c.arsenic3.df,
sd(Arsenic[Well.type=="Background"]))

sigma.hat
#[1] 17.10119

predIntNormN(half.width=c(2.25, 2.5, 3) * sigma.hat, k = 4,
sigma.hat = sigma.hat, conf.level = 0.9)

#[1] 526 20 9

#==========

# Clean up
#---------
rm(mu.hat, sigma.hat)

predIntNormSimultaneous

Simultaneous Prediction Interval for a Normal Distribution

Description

Estimate the mean and standard deviation of a normal distribution, and construct a simultaneous
prediction interval for the next r sampling “occasions”, based on one of three possible rules: k-of-
m, California, or Modified California.

Usage

predIntNormSimultaneous(x, n.mean = 1, k = 1, m = 2, r = 1, rule = "k.of.m",
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delta.over.sigma = 0, pi.type = "upper", conf.level = 0.95,
K.tol = .Machine$double.eps^0.5)

Arguments

x a numeric vector of observations, or an object resulting from a call to an estimat-
ing function that assumes a normal (Gaussian) distribution (e.g., enorm, eqnorm,
enormCensored, etc.). If x is a numeric vector, missing (NA), undefined (NaN),
and infinite (Inf, -Inf) values are allowed but will be removed.

n.mean positive integer specifying the sample size associated with the future averages.
The default value is n.mean=1 (i.e., individual observations). Note that all future
averages must be based on the same sample size.

k for the k-of-m rule (rule="k.of.m"), a positive integer specifying the mini-
mum number of observations (or averages) out of m observations (or averages)
(all obtained on one future sampling “occassion”) the prediction interval should
contain with confidence level conf.level. The default value is k=1. This argu-
ment is ignored when the argument rule is not equal to "k.of.m".

m positive integer specifying the maximum number of future observations (or av-
erages) on one future sampling “occasion”. The default value is m=2, except
when rule="Modified.CA", in which case this argument is ignored and m is
automatically set equal to 4.

r positive integer specifying the number of future sampling “occasions”. The de-
fault value is r=1.

rule character string specifying which rule to use. The possible values are "k.of.m"
(k-of-m rule; the default), "CA" (California rule), and "Modified.CA" (modified
California rule). See the DETAILS section below for more information.

delta.over.sigma

numeric scalar indicating the ratio ∆/σ. The quantity ∆ (delta) denotes the
difference between the mean of the population that was sampled to construct
the prediction interval, and the mean of the population that will be sampled to
produce the future observations. The quantity σ (sigma) denotes the population
standard deviation for both populations. See the DETAILS section below for
more information. The default value is delta.over.sigma=0.

pi.type character string indicating what kind of prediction interval to compute. The
possible values are pi.type="upper" (the default), and pi.type="lower".

conf.level a scalar between 0 and 1 indicating the confidence level of the prediction inter-
val. The default value is conf.level=0.95.

K.tol numeric scalar indicating the tolerance to use in the nonlinear search algorithm
to compute K. The default value is K.tol=.Machine$double.eps^(1/2). For
many applications, the value ofK needs to be known only to the second decimal
place, in which case setting K.tol=1e-4 will speed up computation a bit.

Details

What is a Simultaneous Prediction Interval?
A prediction interval for some population is an interval on the real line constructed so that it will
contain k future observations from that population with some specified probability (1 − α)100%,
where 0 < α < 1 and k is some pre-specified positive integer. The quantity (1− α)100% is called
the confidence coefficient or confidence level associated with the prediction interval. The function
predIntNorm computes a standard prediction interval based on a sample from a normal distribution.
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The function predIntNormSimultaneous computes a simultaneous prediction interval that will
contain a certain number of future observations with probability (1 − α)100% for each of r future
sampling “occasions”, where r is some pre-specified positive integer. The quantity r may refer to
r distinct future sampling occasions in time, or it may for example refer to sampling at r distinct
locations on one future sampling occasion, assuming that the population standard deviation is the
same at all of the r distinct locations.

The function predIntNormSimultaneous computes a simultaneous prediction interval based on
one of three possible rules:

• For the k-of-m rule (rule="k.of.m"), at least k of the next m future observations will fall
in the prediction interval with probability (1 − α)100% on each of the r future sampling
occasions. If obserations are being taken sequentially, for a particular sampling occasion, up to
m observations may be taken, but once k of the observations fall within the prediction interval,
sampling can stop. Note: When k = m and r = 1, the results of predIntNormSimultaneous
are equivalent to the results of predIntNorm.

• For the California rule (rule="CA"), with probability (1 − α)100%, for each of the r future
sampling occasions, either the first observation will fall in the prediction interval, or else all of
the next m− 1 observations will fall in the prediction interval. That is, if the first observation
falls in the prediction interval then sampling can stop. Otherwise, m − 1 more observations
must be taken.

• For the Modified California rule (rule="Modified.CA"), with probability (1 − α)100%, for
each of the r future sampling occasions, either the first observation will fall in the prediction
interval, or else at least 2 out of the next 3 observations will fall in the prediction interval. That
is, if the first observation falls in the prediction interval then sampling can stop. Otherwise, up
to 3 more observations must be taken.

Simultaneous prediction intervals can be extended to using averages (means) in place of single ob-
servations (USEPA, 2009, Chapter 19). That is, you can create a simultaneous prediction interval
that will contain a specified number of averages (based on which rule you choose) on each of r
future sampling occassions, where each each average is based on w individual observations. For
the function predIntNormSimultaneous, the argument n.mean corresponds to w.

The Form of a Prediction Interval
Let x = x1, x2, . . . , xn denote a vector of n observations from a normal distribution with parame-
ters mean=µ and sd=σ. Also, let w denote the sample size associated with the future averages (i.e.,
n.mean=w). When w = 1, each average is really just a single observation, so in the rest of this help
file the term “averages” will replace the phrase “observations or averages”.

For a normal distribution, the form of a two-sided (1− α)100% prediction interval is:

[x̄−Ks, x̄+Ks] (1)

where x̄ denotes the sample mean:

x̄ =
1

n

n∑
i=1

xi (2)

s denotes the sample standard deviation:

s2 =
1

n− 1

n∑
i=1

(xi − x̄)2 (3)

and K denotes a constant that depends on the sample size n, the confidence level, the number of
future sampling occassions r, and the sample size associated with the future averages, w. Do not
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confuse the constant K (uppercase K) with the number of future averages k (lowercase k) in the k-
of-m rule. The symbol K is used here to be consistent with the notation used for tolerance intervals
(see tolIntNorm).

Similarly, the form of a one-sided lower prediction interval is:

[x̄−Ks,∞] (4)

and the form of a one-sided upper prediction interval is:

[−∞, x̄+Ks] (5)

Note: For simultaneous prediction intervals, only lower (pi.type="lower") and upper (pi.type="upper")
prediction intervals are available.

The derivation of the constant K is explained in the help file for predIntNormSimultaneousK.

Prediction Intervals are Random Intervals
A prediction interval is a random interval; that is, the lower and/or upper bounds are random vari-
ables computed based on sample statistics in the baseline sample. Prior to taking one specific base-
line sample, the probability that the prediction interval will perform according to the rule chosen is
(1 − α)100%. Once a specific baseline sample is taken and the prediction interval based on that
sample is computed, the probability that that prediction interval will perform according to the rule
chosen is not necessarily (1 − α)100%, but it should be close. See the help file for predIntNorm
for more information.

Value

If x is a numeric vector, predIntNormSimultaneous returns a list of class "estimate" containing
the estimated parameters, the prediction interval, and other information. See the help file for
estimate.object for details.

If x is the result of calling an estimation function, predIntNormSimultaneous returns a list whose
class is the same as x. The list contains the same components as x, as well as a component called
interval containing the prediction interval information. If x already has a component called
interval, this component is replaced with the prediction interval information.

Note

Motivation
Prediction and tolerance intervals have long been applied to quality control and life testing problems
(Hahn, 1970b,c; Hahn and Nelson, 1973). In the context of environmental statistics, prediction in-
tervals are useful for analyzing data from groundwater detection monitoring programs at hazardous
and solid waste facilities.

One of the main statistical problems that plague groundwater monitoring programs at hazardous
and solid waste facilities is the requirement of testing several wells and several constituents at each
well on each sampling occasion. This is an obvious multiple comparisons problem, and the naive
approach of using a standard t-test at a conventional α-level (e.g., 0.05 or 0.01) for each test leads to
a very high probability of at least one significant result on each sampling occasion, when in fact no
contamination has occurred. This problem was pointed out years ago by Millard (1987) and others.

Davis and McNichols (1987) proposed simultaneous prediction intervals as a way of controlling
the facility-wide false positive rate (FWFPR) while maintaining adequate power to detect contam-
ination in the groundwater. Because of the ubiquitous presence of spatial variability, it is usually
best to use simultaneous prediction intervals at each well (Davis, 1998a). That is, by constructing
prediction intervals based on background (pre-landfill) data on each well, and comparing future
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observations at a well to the prediction interval for that particular well. In each of these cases, the
individual α-level at each well is equal to the FWFRP divided by the product of the number of wells
and constituents.

Often, observations at downgradient wells are not available prior to the construction and operation
of the landfill. In this case, upgradient well data can be combined to create a background prediction
interval, and observations at each downgradient well can be compared to this prediction interval. If
spatial variability is present and a major source of variation, however, this method is not really valid
(Davis, 1994; Davis, 1998a).

Chapter 19 of USEPA (2009) contains an extensive discussion of using the 1-of-m rule and the
Modified California rule.

Chapters 1 and 3 of Gibbons et al. (2009) discuss simultaneous prediction intervals for the normal
and lognormal distributions, respectively.

The k-of-m Rule
For the k-of-m rule, Davis and McNichols (1987) give tables with “optimal” choices of k (in terms
of best power for a given overall confidence level) for selected values of m, r, and n. They found
that the optimal ratios of k to m (i.e., k/m) are generally small, in the range of 15-50%.

The California Rule
The California rule was mandated in that state for groundwater monitoring at waste disposal facil-
ities when resampling verification is part of the statistical program (Barclay’s Code of California
Regulations, 1991). The California code mandates a “California” rule with m ≥ 3. The motiva-
tion for this rule may have been a desire to have a majority of the observations in bounds (Davis,
1998a). For example, for a k-of-m rule with k = 1 and m = 3, a monitoring location will pass if
the first observation is out of bounds, the second resample is out of bounds, but the last resample is
in bounds, so that 2 out of 3 observations are out of bounds. For the California rule with m = 3,
either the first observation must be in bounds, or the next 2 observations must be in bounds in order
for the monitoring location to pass.

Davis (1998a) states that if the FWFPR is kept constant, then the California rule offers little in-
creased power compared to the k-of-m rule, and can actually decrease the power of detecting con-
tamination.

The Modified California Rule
The Modified California Rule was proposed as a compromise between a 1-of-m rule and the Califor-
nia rule. For a given FWFPR, the Modified California rule achieves better power than the California
rule, and still requires at least as many observations in bounds as out of bounds, unlike a 1-of-m rule.

Different Notations Between Different References
For the k-of-m rule described in this help file, both Davis and McNichols (1987) and USEPA (2009,
Chapter 19) use the variable p instead of k to represent the minimum number of future observations
the interval should contain on each of the r sampling occasions.

Gibbons et al. (2009, Chapter 1) presents extensive lists of the value of K for both k-of-m rules
and California rules. Gibbons et al.’s notation reverses the meaning of k and r compared to the
notation used in this help file. That is, in Gibbons et al.’s notation, k represents the number of future
sampling occasions or monitoring wells, and r represents the minimum number of observations the
interval should contain on each sampling occasion.

USEPA (2009, Chapter 19) uses p in place of k.
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Examples

# Generate 8 observations from a normal distribution with parameters
# mean=10 and sd=2, then use predIntNormSimultaneous to estimate the
# mean and standard deviation of the true distribution and construct an
# upper 95% prediction interval to contain at least 1 out of the next
# 3 observations.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(479)
dat <- rnorm(8, mean = 10, sd = 2)

predIntNormSimultaneous(dat, k = 1, m = 3)

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Normal
#
#Estimated Parameter(s): mean = 10.269773
# sd = 2.210246
#
#Estimation Method: mvue
#
#Data: dat
#
#Sample Size: 8
#
#Prediction Interval Method: exact
#
#Prediction Interval Type: upper
#
#Confidence Level: 95%
#
#Minimum Number of
#Future Observations
#Interval Should Contain: 1
#
#Total Number of
#Future Observations: 3
#
#Prediction Interval: LPL = -Inf
# UPL = 11.4021

#----------

# Repeat the above example, but do it in two steps. First create a list called
# est.list containing information about the estimated parameters, then create the
# prediction interval.

est.list <- enorm(dat)
est.list

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Normal
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#
#Estimated Parameter(s): mean = 10.269773
# sd = 2.210246
#
#Estimation Method: mvue
#
#Data: dat
#
#Sample Size: 8

predIntNormSimultaneous(est.list, k = 1, m = 3)

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Normal
#
#Estimated Parameter(s): mean = 10.269773
# sd = 2.210246
#
#Estimation Method: mvue
#
#Data: dat
#
#Sample Size: 8
#
#Prediction Interval Method: exact
#
#Prediction Interval Type: upper
#
#Confidence Level: 95%
#
#Minimum Number of
#Future Observations
#Interval Should Contain: 1
#
#Total Number of
#Future Observations: 3
#
#Prediction Interval: LPL = -Inf
# UPL = 11.4021

#----------

# Compare the 95% 1-of-3 upper prediction interval to the California and
# Modified California prediction intervals. Note that the upper prediction
# bound for the Modified California rule is between the bound for the
# 1-of-3 rule bound and the bound for the California rule.

predIntNormSimultaneous(dat, k = 1, m = 3)$interval$limits["UPL"]
# UPL
#11.4021

predIntNormSimultaneous(dat, m = 3, rule = "CA")$interval$limits["UPL"]
# UPL
#13.03717
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predIntNormSimultaneous(dat, rule = "Modified.CA")$interval$limits["UPL"]
# UPL
#12.12201

#----------

# Show how the upper bound on an upper 95% simultaneous prediction limit increases
# as the number of future sampling occasions r increases. Here, well use the
# 1-of-3 rule.

predIntNormSimultaneous(dat, k = 1, m = 3)$interval$limits["UPL"]
# UPL
#11.4021

predIntNormSimultaneous(dat, k = 1, m = 3, r = 10)$interval$limits["UPL"]
# UPL
#13.28234

#----------

# Compare the upper simultaneous prediction limit for the 1-of-3 rule
# based on individual observations versus based on means of order 4.

predIntNormSimultaneous(dat, k = 1, m = 3)$interval$limits["UPL"]
# UPL
#11.4021

predIntNormSimultaneous(dat, n.mean = 4, k = 1,
m = 3)$interval$limits["UPL"]

# UPL
#11.26157

#==========

# Example 19-1 of USEPA (2009, p. 19-17) shows how to compute an
# upper simultaneous prediction limit for the 1-of-3 rule for
# r = 2 future sampling occasions. The data for this example are
# stored in EPA.09.Ex.19.1.sulfate.df.

# We will pool data from 4 background wells that were sampled on
# a number of different occasions, giving us a sample size of
# n = 25 to use to construct the prediction limit.

# There are 50 compliance wells and we will monitor 10 different
# constituents at each well at each of the r=2 future sampling
# occasions. To determine the confidence level we require for
# the simultaneous prediction interval, USEPA (2009) recommends
# setting the individual Type I Error level at each well to

# 1 - (1 - SWFPR)^(1 / (Number of Constituents * Number of Wells))

# which translates to setting the confidence limit to

# (1 - SWFPR)^(1 / (Number of Constituents * Number of Wells))

# where SWFPR = site-wide false positive rate. For this example, we
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# will set SWFPR = 0.1. Thus, the confidence level is given by:

nc <- 10
nw <- 50
SWFPR <- 0.1
conf.level <- (1 - SWFPR)^(1 / (nc * nw))

conf.level
#[1] 0.9997893

#----------

# Look at the data:

names(EPA.09.Ex.19.1.sulfate.df)
#[1] "Well" "Month" "Day"
#[4] "Year" "Date" "Sulfate.mg.per.l"
#[7] "log.Sulfate.mg.per.l"

EPA.09.Ex.19.1.sulfate.df[,
c("Well", "Date", "Sulfate.mg.per.l", "log.Sulfate.mg.per.l")]

# Well Date Sulfate.mg.per.l log.Sulfate.mg.per.l
#1 GW-01 1999-07-08 63.0 4.143135
#2 GW-01 1999-09-12 51.0 3.931826
#3 GW-01 1999-10-16 60.0 4.094345
#4 GW-01 1999-11-02 86.0 4.454347
#5 GW-04 1999-07-09 104.0 4.644391
#6 GW-04 1999-09-14 102.0 4.624973
#7 GW-04 1999-10-12 84.0 4.430817
#8 GW-04 1999-11-15 72.0 4.276666
#9 GW-08 1997-10-12 31.0 3.433987
#10 GW-08 1997-11-16 84.0 4.430817
#11 GW-08 1998-01-28 65.0 4.174387
#12 GW-08 1999-04-20 41.0 3.713572
#13 GW-08 2002-06-04 51.8 3.947390
#14 GW-08 2002-09-16 57.5 4.051785
#15 GW-08 2002-12-02 66.8 4.201703
#16 GW-08 2003-03-24 87.1 4.467057
#17 GW-09 1997-10-16 59.0 4.077537
#18 GW-09 1998-01-28 85.0 4.442651
#19 GW-09 1998-04-12 75.0 4.317488
#20 GW-09 1998-07-12 99.0 4.595120
#21 GW-09 2000-01-30 75.8 4.328098
#22 GW-09 2000-04-24 82.5 4.412798
#23 GW-09 2000-10-24 85.5 4.448516
#24 GW-09 2002-12-01 188.0 5.236442
#25 GW-09 2003-03-24 150.0 5.010635

# Construct the upper simultaneous prediction limit for the
# 1-of-3 plan based on the log-transformed sulfate data

log.Sulfate <- EPA.09.Ex.19.1.sulfate.df$log.Sulfate.mg.per.l

pred.int.list.log <-
predIntNormSimultaneous(x = log.Sulfate, k = 1, m = 3, r = 2,

rule = "k.of.m", pi.type = "upper", conf.level = conf.level)
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pred.int.list.log

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Normal
#
#Estimated Parameter(s): mean = 4.3156194
# sd = 0.3756697
#
#Estimation Method: mvue
#
#Data: log.Sulfate
#
#Sample Size: 25
#
#Prediction Interval Method: exact
#
#Prediction Interval Type: upper
#
#Confidence Level: 99.97893%
#
#Minimum Number of
#Future Observations
#Interval Should Contain
#(per Sampling Occasion): 1
#
#Total Number of
#Future Observations
#(per Sampling Occasion): 3
#
#Number of Future
#Sampling Occasions: 2
#
#Prediction Interval: LPL = -Inf
# UPL = 5.072355

# Now exponentiate the prediction interval to get the limit on
# the original scale

exp(pred.int.list.log$interval$limits["UPL"])
# UPL
#159.5497

#==========

# Cleanup
#--------

rm(dat, est.list, nc, nw, SWFPR, conf.level, log.Sulfate,
pred.int.list.log)
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predIntNormSimultaneousK

Compute the Value of K for a Simultaneous Prediction Interval for a
Normal Distribution

Description

Compute the value ofK (the multiplier of estimated standard deviation) used to construct a simulta-
neous prediction interval based on data from a normal distribution. The function predIntNormSimultaneousK
is called by predIntNormSimultaneous.

Usage

predIntNormSimultaneousK(n, df = n - 1, n.mean = 1, k = 1, m = 2, r = 1,
rule = "k.of.m", delta.over.sigma = 0, pi.type = "upper", conf.level = 0.95,
K.tol = .Machine$double.eps^0.5, integrate.args.list = NULL)

Arguments

n a positive integer greater than 2 indicating the sample size upon which the pre-
diction interval is based.

df the degrees of freedom associated with the prediction interval. The default is
df=n-1.

n.mean positive integer specifying the sample size associated with the future averages.
The default value is n.mean=1 (i.e., individual observations). Note that all future
averages must be based on the same sample size.

k for the k-of-m rule (rule="k.of.m"), a positive integer specifying the mini-
mum number of observations (or averages) out of m observations (or averages)
(all obtained on one future sampling “occassion”) the prediction interval should
contain with confidence level conf.level. The default value is k=1. This argu-
ment is ignored when the argument rule is not equal to "k.of.m".

m positive integer specifying the maximum number of future observations (or av-
erages) on one future sampling “occasion”. The default value is m=2, except
when rule="Modified.CA", in which case this argument is ignored and m is
automatically set equal to 4.

r positive integer specifying the number of future sampling “occasions”. The de-
fault value is r=1.

rule character string specifying which rule to use. The possible values are "k.of.m"
(k-of-m rule; the default), "CA" (California rule), and "Modified.CA" (modified
California rule). See the DETAILS section below for more information.

delta.over.sigma

numeric scalar indicating the ratio ∆/σ. The quantity ∆ (delta) denotes the
difference between the mean of the population that was sampled to construct
the prediction interval, and the mean of the population that will be sampled to
produce the future observations. The quantity σ (sigma) denotes the population
standard deviation for both populations. See the DETAILS section below for
more information. The default value is delta.over.sigma=0.

pi.type character string indicating what kind of prediction interval to compute. The
possible values are pi.type="upper" (the default), and pi.type="lower".
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conf.level a scalar between 0 and 1 indicating the confidence level of the prediction inter-
val. The default value is conf.level=0.95.

K.tol numeric scalar indicating the tolerance to use in the nonlinear search algorithm
to compute K. The default value is K.tol=.Machine$double.eps^(1/2). For
many applications, the value ofK needs to be known only to the second decimal
place, in which case setting K.tol=1e-4 will speed up computation a bit.

integrate.args.list

a list of arguments to supply to the integrate function. The default value is
integrate.args.list=NULL which means that the default values of integrate
are used.

Details

What is a Simultaneous Prediction Interval?
A prediction interval for some population is an interval on the real line constructed so that it will
contain k future observations from that population with some specified probability (1 − α)100%,
where 0 < α < 1 and k is some pre-specified positive integer. The quantity (1− α)100% is called
the confidence coefficient or confidence level associated with the prediction interval. The function
predIntNorm computes a standard prediction interval based on a sample from a normal distribution.

The function predIntNormSimultaneous computes a simultaneous prediction interval that will
contain a certain number of future observations with probability (1 − α)100% for each of r future
sampling “occasions”, where r is some pre-specified positive integer. The quantity r may refer to
r distinct future sampling occasions in time, or it may for example refer to sampling at r distinct
locations on one future sampling occasion, assuming that the population standard deviation is the
same at all of the r distinct locations.

The function predIntNormSimultaneous computes a simultaneous prediction interval based on
one of three possible rules:

• For the k-of-m rule (rule="k.of.m"), at least k of the next m future observations will fall
in the prediction interval with probability (1 − α)100% on each of the r future sampling
occasions. If obserations are being taken sequentially, for a particular sampling occasion, up to
m observations may be taken, but once k of the observations fall within the prediction interval,
sampling can stop. Note: When k = m and r = 1, the results of predIntNormSimultaneous
are equivalent to the results of predIntNorm.

• For the California rule (rule="CA"), with probability (1 − α)100%, for each of the r future
sampling occasions, either the first observation will fall in the prediction interval, or else all of
the next m− 1 observations will fall in the prediction interval. That is, if the first observation
falls in the prediction interval then sampling can stop. Otherwise, m − 1 more observations
must be taken.

• For the Modified California rule (rule="Modified.CA"), with probability (1 − α)100%, for
each of the r future sampling occasions, either the first observation will fall in the prediction
interval, or else at least 2 out of the next 3 observations will fall in the prediction interval. That
is, if the first observation falls in the prediction interval then sampling can stop. Otherwise, up
to 3 more observations must be taken.

Simultaneous prediction intervals can be extended to using averages (means) in place of single ob-
servations (USEPA, 2009, Chapter 19). That is, you can create a simultaneous prediction interval
that will contain a specified number of averages (based on which rule you choose) on each of r
future sampling occassions, where each each average is based on w individual observations. For
the functions predIntNormSimultaneous and predIntNormSimultaneousK, the argument n.mean
corresponds to w.
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The Form of a Prediction Interval
Let x = x1, x2, . . . , xn denote a vector of n observations from a normal distribution with parame-
ters mean=µ and sd=σ. Also, let w denote the sample size associated with the future averages (i.e.,
n.mean=w). When w = 1, each average is really just a single observation, so in the rest of this help
file the term “averages” will sometimes replace the phrase “observations or averages”.

For a normal distribution, the form of a two-sided (1−α)100% simultaneous prediction interval is:

[x̄−Ks, x̄+Ks] (1)

where x̄ denotes the sample mean:

x̄ =
1

n

n∑
i=1

xi (2)

s denotes the sample standard deviation:

s2 =
1

n− 1

n∑
i=1

(xi − x̄)2 (3)

and K denotes a constant that depends on the sample size n, the confidence level, the number of
future sampling occassions r, and the sample size associated with the future averages, w. Do not
confuse the constant K (uppercase K) with the number of future averages k (lowercase k) in the k-
of-m rule. The symbol K is used here to be consistent with the notation used for tolerance intervals
(see tolIntNorm).

Similarly, the form of a one-sided lower prediction interval is:

[x̄−Ks,∞] (4)

and the form of a one-sided upper prediction interval is:

[−∞, x̄+Ks] (5)

Note: For simultaneous prediction intervals, only lower (pi.type="lower") and upper (pi.type="upper")
prediction intervals are available.

The derivation of the constant K is explained below.

The Derivation of K for Future Observations
First we will show the derivation based on future observations (i.e., w = 1, n.mean=1), and then
extend the formulas to future averages.

The Derivation of K for the k-of-m Rule (rule="k.of.m")
For the k-of-m rule (rule="k.of.m") with w = 1 (i.e., n.mean=1), at least k of the next m future
observations will fall in the prediction interval with probability (1−α)100% on each of the r future
sampling occasions. If observations are being taken sequentially, for a particular sampling occasion,
up tom observations may be taken, but once k of the observations fall within the prediction interval,
sampling can stop. Note: When k = m and r = 1, this kind of simultaneous prediction interval
becomes the same as a standard prediction interval for the next k observations (see predIntNorm).

For the case when r = 1 future sampling occasion, both Hall and Prairie (1973) and Fertig and
Mann (1977) discuss the derivation of K. Davis and McNichols (1987) extend the derivation to
the case where r is a positive integer. They show that for a one-sided upper prediction interval
(pi.type="upper"), the probability p that at least k of the next m future observations will be
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contained in the interval given in Equation (5) above, for each of r future sampling occasions, is
given by:

p =

∫ 1

0

T (
√
nK;n− 1,

√
n[Φ−1(v) +

∆

σ
])r[I(v; k,m+ 1− k)]r−1[

vk−1(1− v)m−k

B(k,m+ 1− k)
]dv (6)

where T (x; ν, δ) denotes the cdf of the non-central Student’s t-distribution with parameters df=ν
and ncp=δ evaluated at x; Φ(x) denotes the cdf of the standard normal distribution evaluated at x;
I(x; ν, ω) denotes the cdf of the beta distribution with parameters shape1=ν and shape2=ω; and
B(ν, ω) denotes the value of the beta function with parameters a=ν and b=ω.

The quantity ∆ (upper case delta) denotes the difference between the mean of the population that
was sampled to construct the prediction interval, and the mean of the population that will be sam-
pled to produce the future observations. The quantity σ (sigma) denotes the population standard
deviation of both of these populations. Usually you assume ∆ = 0 unless you are interested
in computing the power of the rule to detect a change in means between the populations (see
predIntNormSimultaneousTestPower).

For given values of the confidence level (p), sample size (n), minimum number of future observa-
tions to be contained in the interval per sampling occasion (k), number of future observations per
sampling occasion (m), and number of future sampling occasions (r), Equation (6) can be solved
for K. The function predIntNormSimultaneousK uses the R function nlminb to solve Equation
(6) for K.

When pi.type="lower", the same value of K is used as when pi.type="upper", but Equation
(4) is used to construct the prediction interval.

The Derivation of K for the California Rule (rule="CA")
For the California rule (rule="CA"), with probability (1−α)100%, for each of the r future sampling
occasions, either the first observation will fall in the prediction interval, or else all of the next m−1
observations will fall in the prediction interval. That is, if the first observation falls in the prediction
interval then sampling can stop. Otherwise, m− 1 more observations must be taken.

The formula for K is the same as for the k-of-m rule, except that Equation (6) becomes the follow-
ing (Davis, 1998b):

p =

∫ 1

0

T (
√
nK;n−1,

√
n[Φ−1(v)+

∆

σ
])r{v[1+vm−2(1−v)]}r−1[1+vm−2(m−1−mv)]dv (7)

The Derivation of K for the Modified California Rule (rule="Modified.CA")
For the Modified California rule (rule="Modified.CA"), with probability (1 − α)100%, for each
of the r future sampling occasions, either the first observation will fall in the prediction interval,
or else at least 2 out of the next 3 observations will fall in the prediction interval. That is, if the
first observation falls in the prediction interval then sampling can stop. Otherwise, up to 3 more
observations must be taken.

The formula for K is the same as for the k-of-m rule, except that Equation (6) becomes the follow-
ing (Davis, 1998b):

p =

∫ 1

0

T (
√
nK;n−1,

√
n[Φ−1(v)+

∆

σ
])r{v[1+v(3−v[5−2v])]}r−1{1+v[6−v(15−8v)]}dv (8)

The Derivation of K for Future Means
For each of the above rules, if we are interested in using averages instead of single observations,
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with w ≥ 1 (i.e., n.mean≥ 1), the first term in the integral in Equations (6)-(8) that involves the cdf
of the non-central Student’s t-distribution becomes:

T (
√
nK;n− 1,

√
n√
w

[Φ−1(v) +

√
w∆

σ
]) (9)

Value

A numeric scalar equal to K, the multiplier of estimated standard deviation that is used to construct
the simultaneous prediction interval.

Note

Motivation
Prediction and tolerance intervals have long been applied to quality control and life testing problems
(Hahn, 1970b,c; Hahn and Nelson, 1973). In the context of environmental statistics, prediction in-
tervals are useful for analyzing data from groundwater detection monitoring programs at hazardous
and solid waste facilities.

One of the main statistical problems that plague groundwater monitoring programs at hazardous
and solid waste facilities is the requirement of testing several wells and several constituents at each
well on each sampling occasion. This is an obvious multiple comparisons problem, and the naive
approach of using a standard t-test at a conventional α-level (e.g., 0.05 or 0.01) for each test leads to
a very high probability of at least one significant result on each sampling occasion, when in fact no
contamination has occurred. This problem was pointed out years ago by Millard (1987) and others.

Davis and McNichols (1987) proposed simultaneous prediction intervals as a way of controlling
the facility-wide false positive rate (FWFPR) while maintaining adequate power to detect contam-
ination in the groundwater. Because of the ubiquitous presence of spatial variability, it is usually
best to use simultaneous prediction intervals at each well (Davis, 1998a). That is, by constructing
prediction intervals based on background (pre-landfill) data on each well, and comparing future
observations at a well to the prediction interval for that particular well. In each of these cases, the
individual α-level at each well is equal to the FWFRP divided by the product of the number of wells
and constituents.

Often, observations at downgradient wells are not available prior to the construction and operation
of the landfill. In this case, upgradient well data can be combined to create a background prediction
interval, and observations at each downgradient well can be compared to this prediction interval. If
spatial variability is present and a major source of variation, however, this method is not really valid
(Davis, 1994; Davis, 1998a).

Chapter 19 of USEPA (2009) contains an extensive discussion of using the 1-of-m rule and the
Modified California rule.

Chapters 1 and 3 of Gibbons et al. (2009) discuss simultaneous prediction intervals for the normal
and lognormal distributions, respectively.

The k-of-m Rule
For the k-of-m rule, Davis and McNichols (1987) give tables with “optimal” choices of k (in terms
of best power for a given overall confidence level) for selected values of m, r, and n. They found
that the optimal ratios of k to m (i.e., k/m) are generally small, in the range of 15-50%.

The California Rule
The California rule was mandated in that state for groundwater monitoring at waste disposal facil-
ities when resampling verification is part of the statistical program (Barclay’s Code of California
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Regulations, 1991). The California code mandates a “California” rule with m ≥ 3. The motiva-
tion for this rule may have been a desire to have a majority of the observations in bounds (Davis,
1998a). For example, for a k-of-m rule with k = 1 and m = 3, a monitoring location will pass if
the first observation is out of bounds, the second resample is out of bounds, but the last resample is
in bounds, so that 2 out of 3 observations are out of bounds. For the California rule with m = 3,
either the first observation must be in bounds, or the next 2 observations must be in bounds in order
for the monitoring location to pass.

Davis (1998a) states that if the FWFPR is kept constant, then the California rule offers little in-
creased power compared to the k-of-m rule, and can actually decrease the power of detecting con-
tamination.

The Modified California Rule
The Modified California Rule was proposed as a compromise between a 1-of-m rule and the Califor-
nia rule. For a given FWFPR, the Modified California rule achieves better power than the California
rule, and still requires at least as many observations in bounds as out of bounds, unlike a 1-of-m rule.

Different Notations Between Different References
For the k-of-m rule described in this help file, both Davis and McNichols (1987) and USEPA (2009,
Chapter 19) use the variable p instead of k to represent the minimum number of future observations
the interval should contain on each of the r sampling occasions.

Gibbons et al. (2009, Chapter 1) presents extensive lists of the value of K for both k-of-m rules
and California rules. Gibbons et al.’s notation reverses the meaning of k and r compared to the
notation used in this help file. That is, in Gibbons et al.’s notation, k represents the number of future
sampling occasions or monitoring wells, and r represents the minimum number of observations the
interval should contain on each sampling occasion.

USEPA (2009, Chapter 19) uses p in place of k.
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Examples

# Compute the value of K for an upper 95% simultaneous prediction
# interval to contain at least 1 out of the next 3 observations
# given a background sample size of n=8.

predIntNormSimultaneousK(n = 8, k = 1, m = 3)
#[1] 0.5123091

#----------

# Compare the value of K for a 95% 1-of-3 upper prediction interval to
# the value for the California and Modified California rules.
# Note that the value of K for the Modified California rule is between
# the value of K for the 1-of-3 rule and the California rule.

predIntNormSimultaneousK(n = 8, k = 1, m = 3)
#[1] 0.5123091

predIntNormSimultaneousK(n = 8, m = 3, rule = "CA")
#[1] 1.252077

predIntNormSimultaneousK(n = 8, rule = "Modified.CA")
#[1] 0.8380233
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#----------

# Show how the value of K for an upper 95% simultaneous prediction
# limit increases as the number of future sampling occasions r increases.
# Here, well use the 1-of-3 rule.

predIntNormSimultaneousK(n = 8, k = 1, m = 3)
#[1] 0.5123091

predIntNormSimultaneousK(n = 8, k = 1, m = 3, r = 10)
#[1] 1.363002

#==========

# Example 19-1 of USEPA (2009, p. 19-17) shows how to compute an
# upper simultaneous prediction limit for the 1-of-3 rule for
# r = 2 future sampling occasions. The data for this example are
# stored in EPA.09.Ex.19.1.sulfate.df.

# We will pool data from 4 background wells that were sampled on
# a number of different occasions, giving us a sample size of
# n = 25 to use to construct the prediction limit.

# There are 50 compliance wells and we will monitor 10 different
# constituents at each well at each of the r=2 future sampling
# occasions. To determine the confidence level we require for
# the simultaneous prediction interval, USEPA (2009) recommends
# setting the individual Type I Error level at each well to

# 1 - (1 - SWFPR)^(1 / (Number of Constituents * Number of Wells))

# which translates to setting the confidence limit to

# (1 - SWFPR)^(1 / (Number of Constituents * Number of Wells))

# where SWFPR = site-wide false positive rate. For this example, we
# will set SWFPR = 0.1. Thus, the confidence level is given by:

nc <- 10
nw <- 50
SWFPR <- 0.1
conf.level <- (1 - SWFPR)^(1 / (nc * nw))

conf.level
#[1] 0.9997893

#----------

# Compute the value of K for the upper simultaneous prediction
# limit for the 1-of-3 plan.

predIntNormSimultaneousK(n = 25, k = 1, m = 3, r = 2,
rule = "k.of.m", pi.type = "upper", conf.level = conf.level)

#[1] 2.014365

#==========
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# Cleanup
#--------

rm(nc, nw, SWFPR, conf.level)

predIntNormSimultaneousTestPower

Probability That at Least One Set of Future Observations Violates the
Given Rule Based on a Simultaneous Prediction Interval for a Normal
Distribution

Description

Compute the probability that at least one set of future observations violates the given rule based on a
simultaneous prediction interval for the next r future sampling occasions for a normal distribution.
The three possible rules are: k-of-m, California, or Modified California.

Usage

predIntNormSimultaneousTestPower(n, df = n - 1, n.mean = 1, k = 1, m = 2, r = 1,
rule = "k.of.m", delta.over.sigma = 0, pi.type = "upper", conf.level = 0.95,
r.shifted = r, K.tol = .Machine$double.eps^0.5, integrate.args.list = NULL)

Arguments

n vector of positive integers greater than 2 indicating the sample size upon which
the prediction interval is based.

df vector of positive integers indicating the degrees of freedom associated with the
sample size. The default value is df=n-1.

n.mean positive integer specifying the sample size associated with the future averages.
The default value is n.mean=1 (i.e., individual observations). Note that all future
averages must be based on the same sample size.

k for the k-of-m rule (rule="k.of.m"), vector of positive integers specifying the
minimum number of observations (or averages) out of m observations (or aver-
ages) (all obtained on one future sampling “occassion”) the prediction interval
should contain with confidence level conf.level. The default value is k=1.
This argument is ignored when the argument rule is not equal to "k.of.m".

m vector of positive integers specifying the maximum number of future observa-
tions (or averages) on one future sampling “occasion”. The default value is m=2,
except when rule="Modified.CA", in which case this argument is ignored and
m is automatically set equal to 4.

r vector of positive integers specifying the number of future sampling “occa-
sions”. The default value is r=1.

rule character string specifying which rule to use. The possible values are "k.of.m"
(k-of-m rule; the default), "CA" (California rule), and "Modified.CA" (modified
California rule). See the DETAILS section below for more information.
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delta.over.sigma

numeric vector indicating the ratio ∆/σ. The quantity ∆ (delta) denotes the
difference between the mean of the population that was sampled to construct
the prediction interval, and the mean of the population that will be sampled to
produce the future observations. The quantity σ (sigma) denotes the population
standard deviation for both populations. See the DETAILS section below for
more information. The default value is delta.over.sigma=0.

pi.type character string indicating what kind of prediction interval to compute. The
possible values are pi.type="upper" (the default), and pi.type="lower".

conf.level vector of values between 0 and 1 indicating the confidence level of the prediction
interval. The default value is conf.level=0.95.

r.shifted vector of positive integers specifying the number of future sampling occasions
for which the scaled mean is shifted by ∆/σ. All values must be integeters be-
tween 1 and the corresponding element of r. The default value is r.shifted=r.

K.tol numeric scalar indicating the tolerance to use in the nonlinear search algorithm
to compute K. The default value is K.tol=.Machine$double.eps^(1/2). For
many applications, the value ofK needs to be known only to the second decimal
place, in which case setting K.tol=1e-4 will speed up computation a bit.

integrate.args.list

a list of arguments to supply to the integrate function. The default value is
integrate.args.list=NULL which means that the default values of integrate
are used.

Details

What is a Simultaneous Prediction Interval?
A prediction interval for some population is an interval on the real line constructed so that it will
contain k future observations from that population with some specified probability (1 − α)100%,
where 0 < α < 1 and k is some pre-specified positive integer. The quantity (1− α)100% is called
the confidence coefficient or confidence level associated with the prediction interval. The function
predIntNorm computes a standard prediction interval based on a sample from a normal distribution.

The function predIntNormSimultaneous computes a simultaneous prediction interval that will
contain a certain number of future observations with probability (1 − α)100% for each of r future
sampling “occasions”, where r is some pre-specified positive integer. The quantity r may refer to
r distinct future sampling occasions in time, or it may for example refer to sampling at r distinct
locations on one future sampling occasion, assuming that the population standard deviation is the
same at all of the r distinct locations.

The function predIntNormSimultaneous computes a simultaneous prediction interval based on
one of three possible rules:

• For the k-of-m rule (rule="k.of.m"), at least k of the next m future observations will fall
in the prediction interval with probability (1 − α)100% on each of the r future sampling
occasions. If obserations are being taken sequentially, for a particular sampling occasion, up to
m observations may be taken, but once k of the observations fall within the prediction interval,
sampling can stop. Note: When k = m and r = 1, the results of predIntNormSimultaneous
are equivalent to the results of predIntNorm.

• For the California rule (rule="CA"), with probability (1 − α)100%, for each of the r future
sampling occasions, either the first observation will fall in the prediction interval, or else all of
the next m− 1 observations will fall in the prediction interval. That is, if the first observation
falls in the prediction interval then sampling can stop. Otherwise, m − 1 more observations
must be taken.
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• For the Modified California rule (rule="Modified.CA"), with probability (1 − α)100%, for
each of the r future sampling occasions, either the first observation will fall in the prediction
interval, or else at least 2 out of the next 3 observations will fall in the prediction interval. That
is, if the first observation falls in the prediction interval then sampling can stop. Otherwise, up
to 3 more observations must be taken.

Simultaneous prediction intervals can be extended to using averages (means) in place of single ob-
servations (USEPA, 2009, Chapter 19). That is, you can create a simultaneous prediction interval
that will contain a specified number of averages (based on which rule you choose) on each of r
future sampling occassions, where each each average is based on w individual observations. For
the function predIntNormSimultaneous, the argument n.mean corresponds to w.

The Form of a Prediction Interval
Let x = x1, x2, . . . , xn denote a vector of n observations from a normal distribution with parame-
ters mean=µ and sd=σ. Also, let w denote the sample size associated with the future averages (i.e.,
n.mean=w). When w = 1, each average is really just a single observation, so in the rest of this help
file the term “averages” will replace the phrase “observations or averages”.

For a normal distribution, the form of a two-sided (1− α)100% prediction interval is:

[x̄−Ks, x̄+Ks] (1)

where x̄ denotes the sample mean:

x̄ =
1

n

n∑
i=1

xi (2)

s denotes the sample standard deviation:

s2 =
1

n− 1

n∑
i=1

(xi − x̄)2 (3)

and K denotes a constant that depends on the sample size n, the confidence level, the number of
future sampling occassions r, and the sample size associated with the future averages, w. Do not
confuse the constant K (uppercase K) with the number of future averages k (lowercase k) in the k-
of-m rule. The symbol K is used here to be consistent with the notation used for tolerance intervals
(see tolIntNorm).

Similarly, the form of a one-sided lower prediction interval is:

[x̄−Ks,∞] (4)

and the form of a one-sided upper prediction interval is:

[−∞, x̄+Ks] (5)

Note: For simultaneous prediction intervals, only lower (pi.type="lower") and upper (pi.type="upper")
prediction intervals are available.

The derivation of the constant K is explained in the help file for predIntNormSimultaneousK.

Computing Power
The "power" of the prediction interval is defined as the probability that at least one set of future
observations violates the given rule based on a simultaneous prediction interval for the next r future
sampling occasions, where the population mean for the future observations is allowed to differ from
the population mean for the observations used to construct the prediction interval.
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The quantity ∆ (upper case delta) denotes the difference between the mean of the population that
was sampled to construct the prediction interval, and the mean of the population that will be sam-
pled to produce the future observations. The quantity σ (sigma) denotes the population standard
deviation of both of these populations. The argument delta.over.sigma corresponds to the quan-
tity ∆/σ.

Power Based on the k-of-m Rule (rule="k.of.m")
For the k-of-m rule (rule="k.of.m") with w = 1 (i.e., n.mean=1), at least k of the next m future
observations will fall in the prediction interval with probability (1−α)100% on each of the r future
sampling occasions. If observations are being taken sequentially, for a particular sampling occasion,
up tom observations may be taken, but once k of the observations fall within the prediction interval,
sampling can stop. Note: When k = m and r = 1, this kind of simultaneous prediction interval
becomes the same as a standard prediction interval for the next k observations (see predIntNorm).

Davis and McNichols (1987) show that for a one-sided upper prediction interval (pi.type="upper"),
the probability p that at least k of the next m future observations will be contained in the interval
given in Equation (5) above, for each of r future sampling occasions, is given by:

p =

∫ 1

0

T (
√
nK;n− 1,

√
n[Φ−1(v) +

∆

σ
])r[I(v; k,m+ 1− k)]r−1[

vk−1(1− v)m−k

B(k,m+ 1− k)
]dv (6)

where T (x; ν, δ) denotes the cdf of the non-central Student’s t-distribution with parameters df=ν
and ncp=δ evaluated at x; Φ(x) denotes the cdf of the standard normal distribution evaluated at x;
I(x; ν, ω) denotes the cdf of the beta distribution with parameters shape1=ν and shape2=ω; and
B(ν, ω) denotes the value of the beta function with parameters a=ν and b=ω.

The quantity ∆ (upper case delta) denotes the difference between the mean of the population that
was sampled to construct the prediction interval, and the mean of the population that will be sam-
pled to produce the future observations. The quantity σ (sigma) denotes the population standard
deviation of both of these populations. Usually you assume ∆ = 0 unless you are interested in
computing the power of the rule to detect a change in means between the populations, as we are
here.

If we are interested in using averages instead of single observations, with w ≥ 1 (i.e., n.mean≥ 1),
the first term in the integral in Equation (6) that involves the cdf of the non-central Student’s t-
distribution becomes:

T (
√
nK;n− 1,

√
n√
w

[Φ−1(v) +

√
w∆

σ
]) (7)

For a given confidence level (1 − α)100%, the power of the rule to detect a change in means is
simply given by:

Power = 1− p (8)

where p is defined in Equation (6) above using the value of K that corresponds to ∆/σ = 0. Thus,
when the argument delta.over.sigma=0, the value of p is 1− α and the power is simply α100%.
As delta.over.sigma increases above 0, the power increases.

When pi.type="lower", the same value of K is used as when pi.type="upper", but Equation
(4) is used to construct the prediction interval. Thus, the power increases as delta.over.sigma
decreases below 0.

Power Based on the California Rule (rule="CA")
For the California rule (rule="CA"), with probability (1−α)100%, for each of the r future sampling
occasions, either the first observation will fall in the prediction interval, or else all of the next m−1
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observations will fall in the prediction interval. That is, if the first observation falls in the prediction
interval then sampling can stop. Otherwise, m− 1 more observations must be taken.

The derivation of the power is the same as for the k-of-m rule, except that Equation (6) becomes
the following (Davis, 1998b):

p =

∫ 1

0

T (
√
nK;n−1,

√
n[Φ−1(v)+

∆

σ
])r{v[1+vm−2(1−v)]}r−1[1+vm−2(m−1−mv)]dv (9)

Power Based on the Modified California Rule (rule="Modified.CA")
For the Modified California rule (rule="Modified.CA"), with probability (1 − α)100%, for each
of the r future sampling occasions, either the first observation will fall in the prediction interval,
or else at least 2 out of the next 3 observations will fall in the prediction interval. That is, if the
first observation falls in the prediction interval then sampling can stop. Otherwise, up to 3 more
observations must be taken.

The derivation of the power is the same as for the k-of-m rule, except that Equation (6) becomes
the following (Davis, 1998b):

p =

∫ 1

0

T (
√
nK;n−1,

√
n[Φ−1(v)+

∆

σ
])r{v[1+v(3−v[5−2v])]}r−1{1+v[6−v(15−8v)]}dv (10)

Value

vector of values between 0 and 1 equal to the probability that the rule will be violated.

Note

See the help file for predIntNormSimultaneous.

In the course of designing a sampling program, an environmental scientist may wish to determine
the relationship between sample size, significance level, power, and scaled difference if one of the
objectives of the sampling program is to determine whether two distributions differ from each other.
The functions predIntNormSimultaneousTestPower and plotPredIntNormSimultaneousTestPowerCurve
can be used to investigate these relationships for the case of normally-distributed observations.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

See the help file for predIntNormSimultaneous.

See Also

predIntNormSimultaneous, predIntNormSimultaneousK, plotPredIntNormSimultaneousTestPowerCurve,
predIntNorm, predIntNormK, predIntNormTestPower, Prediction Intervals, Normal.

Examples

# For the k-of-m rule with n=4, k=1, m=3, and r=1, show how the power increases
# as delta.over.sigma increases. Assume a 95% upper prediction interval.

predIntNormSimultaneousTestPower(n = 4, m = 3, delta.over.sigma = 0:2)
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#[1] 0.0500000 0.2954156 0.7008558

#----------

# Look at how the power increases with sample size for an upper one-sided
# prediction interval using the k-of-m rule with k=1, m=3, r=20,
# delta.over.sigma=2, and a confidence level of 95%.

predIntNormSimultaneousTestPower(n = c(4, 8), m = 3, r = 20, delta.over.sigma = 2)
#[1] 0.6075972 0.9240924

#----------

# Compare the power for the 1-of-3 rule with the power for the California and
# Modified California rules, based on a 95% upper prediction interval and
# delta.over.sigma=2. Assume a sample size of n=8. Note that in this case the
# power for the Modified California rule is greater than the power for the
# 1-of-3 rule and California rule.

predIntNormSimultaneousTestPower(n = 8, k = 1, m = 3, delta.over.sigma = 2)
#[1] 0.788171

predIntNormSimultaneousTestPower(n = 8, m = 3, rule = "CA", delta.over.sigma = 2)
#[1] 0.7160434

predIntNormSimultaneousTestPower(n = 8, rule = "Modified.CA", delta.over.sigma = 2)
#[1] 0.8143687

#----------

# Show how the power for an upper 95% simultaneous prediction limit increases
# as the number of future sampling occasions r increases. Here, well use the
# 1-of-3 rule with n=8 and delta.over.sigma=1.

predIntNormSimultaneousTestPower(n = 8, k = 1, m = 3, r=c(1, 2, 5, 10),
delta.over.sigma = 1)

#[1] 0.3492512 0.4032111 0.4503603 0.4633773

#==========

# USEPA (2009) contains an example on page 19-23 that involves monitoring
# nw=100 compliance wells at a large facility with minimal natural spatial
# variation every 6 months for nc=20 separate chemicals.
# There are n=25 background measurements for each chemical to use to create
# simultaneous prediction intervals. We would like to determine which kind of
# resampling plan based on normal distribution simultaneous prediction intervals to
# use (1-of-m, 1-of-m based on means, or Modified California) in order to have
# adequate power of detecting an increase in chemical concentration at any of the
# 100 wells while at the same time maintaining a site-wide false positive rate
# (SWFPR) of 10% per year over all 4,000 comparisons
# (100 wells x 20 chemicals x semi-annual sampling).

# The function predIntNormSimultaneousTestPower includes the argument "r"
# that is the number of future sampling occasions (r=2 in this case because
# we are performing semi-annual sampling), so to compute the individual test
# Type I error level alpha.test (and thus the individual test confidence level),
# we only need to worry about the number of wells (100) and the number of
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# constituents (20): alpha.test = 1-(1-alpha)^(1/(nw x nc)). The individual
# confidence level is simply 1-alpha.test. Plugging in 0.1 for alpha,
# 100 for nw, and 20 for nc yields an individual test confidence level of
# 1-alpha.test = 0.9999473.

nc <- 20
nw <- 100
conf.level <- (1 - 0.1)^(1 / (nc * nw))
conf.level
#[1] 0.9999473

# Now we can compute the power of any particular sampling strategy using
# predIntNormSimultaneousTestPower. For example, here is the power of
# detecting an increase of three standard deviations in concentration using
# the prediction interval based on the "1-of-2" resampling rule:

predIntNormSimultaneousTestPower(n = 25, k = 1, m = 2, r = 2, rule = "k.of.m",
delta.over.sigma = 3, pi.type = "upper", conf.level = conf.level)

#[1] 0.3900202

# The following commands will reproduce the table shown in Step 2 on page
# 19-23 of USEPA (2009). Because these commands can take more than a few
# seconds to execute, we have commented them out here. To run this example,
# just remove the pound signs (#) that are in front of R commands.

#rule.vec <- c(rep("k.of.m", 3), "Modified.CA", rep("k.of.m", 3))

#m.vec <- c(2, 3, 4, 4, 1, 2, 1)

#n.mean.vec <- c(rep(1, 4), 2, 2, 3)

#n.scenarios <- length(rule.vec)

#K.vec <- numeric(n.scenarios)

#Power.vec <- numeric(n.scenarios)

#K.vec <- predIntNormSimultaneousK(n = 25, k = 1, m = m.vec, n.mean = n.mean.vec,
# r = 2, rule = rule.vec, pi.type = "upper", conf.level = conf.level)

#Power.vec <- predIntNormSimultaneousTestPower(n = 25, k = 1, m = m.vec,
# n.mean = n.mean.vec, r = 2, rule = rule.vec, delta.over.sigma = 3,
# pi.type = "upper", conf.level = conf.level)

#Power.df <- data.frame(Rule = rule.vec, k = rep(1, n.scenarios), m = m.vec,
# N.Mean = n.mean.vec, K = round(K.vec, 2), Power = round(Power.vec, 2),
# Total.Samples = m.vec * n.mean.vec)

#Power.df

# Rule k m N.Mean K Power Total.Samples
#1 k.of.m 1 2 1 3.16 0.39 2
#2 k.of.m 1 3 1 2.33 0.65 3
#3 k.of.m 1 4 1 1.83 0.81 4
#4 Modified.CA 1 4 1 2.57 0.71 4
#5 k.of.m 1 1 2 3.62 0.41 2
#6 k.of.m 1 2 2 2.33 0.85 4
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#7 k.of.m 1 1 3 2.99 0.71 3

# The above table shows the K-multipliers for each prediction interval, along with
# the power of detecting a change in concentration of three standard deviations at
# any of the 100 wells during the course of a year, for each of the sampling
# strategies considered. The last three rows of the table correspond to sampling
# strategies that involve using the mean of two or three observations.

#==========

# Clean up
#---------
rm(nc, nw, conf.level, rule.vec, m.vec, n.mean.vec, n.scenarios, K.vec,

Power.vec, Power.df)

predIntNormTestPower Probability That at Least One Future Observation Falls Outside a Pre-
diction Interval for a Normal Distribution

Description

Compute the probability that at least one out of k future observations (or means) falls outside a
prediction interval for k future observations (or means) for a normal distribution.

Usage

predIntNormTestPower(n, df = n - 1, n.mean = 1, k = 1, delta.over.sigma = 0,
pi.type = "upper", conf.level = 0.95)

Arguments

n vector of positive integers greater than 2 indicating the sample size upon which
the prediction interval is based.

df vector of positive integers indicating the degrees of freedom associated with the
sample size. The default value is df=n-1.

n.mean positive integer specifying the sample size associated with the future averages.
The default value is n.mean=1 (i.e., individual observations). Note that all future
averages must be based on the same sample size.

k vector of positive integers specifying the number of future observations that the
prediction interval should contain with confidence level conf.level. The de-
fault value is k=1.

delta.over.sigma

vector of numbers indicating the ratio ∆/σ. The quantity ∆ (delta) denotes the
difference between the mean of the population that was sampled to construct
the prediction interval, and the mean of the population that will be sampled to
produce the future observations. The quantity σ (sigma) denotes the population
standard deviation for both populations. See the DETAILS section below for
more information. The default value is delta.over.sigma=0.

pi.type character string indicating what kind of prediction interval to compute. The
possible values are pi.type="upper" (the default), and pi.type="lower".

conf.level numeric vector of values between 0 and 1 indicating the confidence level of the
prediction interval. The default value is conf.level=0.95.
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Details

What is a Prediction Interval?
A prediction interval for some population is an interval on the real line constructed so that it will
contain k future observations or averages from that population with some specified probability
(1 − α)100%, where 0 < α < 1 and k is some pre-specified positive integer. The quantity
(1−α)100% is call the confidence coefficient or confidence level associated with the prediction in-
terval. The function predIntNorm computes a standard prediction interval based on a sample from
a normal distribution. The function predIntNormTestPower computes the probability that at least
one out of k future observations or averages will not be contained in the prediction interval, where
the population mean for the future observations is allowed to differ from the population mean for
the observations used to construct the prediction interval.

The Form of a Prediction Interval
Let x = x1, x2, . . . , xn denote a vector of n observations from a normal distribution with param-
eters mean=µ and sd=σ. Also, let m denote the sample size associated with the k future averages
(i.e., n.mean=m). When m = 1, each average is really just a single observation, so in the rest of
this help file the term “averages” will replace the phrase “observations or averages”.

For a normal distribution, the form of a two-sided (1− α)100% prediction interval is:

[x̄−Ks, x̄+Ks] (1)

where x̄ denotes the sample mean:

x̄ =
1

n

n∑
i=1

xi (2)

s denotes the sample standard deviation:

s2 =
1

n− 1

n∑
i=1

(xi − x̄)2 (3)

and K denotes a constant that depends on the sample size n, the confidence level, the number of
future averages k, and the sample size associated with the future averages, m. Do not confuse the
constant K (uppercase K) with the number of future averages k (lowercase k). The symbol K is
used here to be consistent with the notation used for tolerance intervals (see tolIntNorm).

Similarly, the form of a one-sided lower prediction interval is:

[x̄−Ks,∞] (4)

and the form of a one-sided upper prediction interval is:

[−∞, x̄+Ks] (5)

but K differs for one-sided versus two-sided prediction intervals. The derivation of the constant K
is explained in the help file for predIntNormK.

Computing Power
The "power" of the prediction interval is defined as the probability that at least one out of the k future
observations or averages will not be contained in the prediction interval, where the population mean
for the future observations is allowed to differ from the population mean for the observations used
to construct the prediction interval. The probability p that all k future observations will be contained
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in a one-sided upper prediction interval (pi.type="upper") is given in Equation (6) of the help file
for predIntNormSimultaneousK, where k = m and r = 1:

p =

∫ 1

0

T (
√
nK;n− 1,

√
n[Φ−1(v) +

∆

σ
])[

vk−1

B(k, 1)
]dv (6)

where T (x; ν, δ) denotes the cdf of the non-central Student’s t-distribution with parameters df=ν
and ncp=δ evaluated at x; Φ(x) denotes the cdf of the standard normal distribution evaluated at x;
and B(ν, ω) denotes the value of the beta function with parameters a=ν and b=ω.

The quantity ∆ (upper case delta) denotes the difference between the mean of the population that
was sampled to construct the prediction interval, and the mean of the population that will be sam-
pled to produce the future observations. The quantity σ (sigma) denotes the population standard
deviation of both of these populations. Usually you assume ∆ = 0 unless you are interested in
computing the power of the rule to detect a change in means between the populations, as we are
here.

If we are interested in using averages instead of single observations, with w ≥ 1 (i.e., n.mean≥ 1),
the first term in the integral in Equation (6) that involves the cdf of the non-central Student’s t-
distribution becomes:

T (
√
nK;n− 1,

√
n√
w

[Φ−1(v) +

√
w∆

σ
]) (7)

For a given confidence level (1 − α)100%, the power of the rule to detect a change in means is
simply given by:

Power = 1− p (8)

where p is defined in Equation (6) above using the value of K that corresponds to ∆/σ = 0. Thus,
when the argument delta.over.sigma=0, the value of p is 1− α and the power is simply α100%.
As delta.over.sigma increases above 0, the power increases.

When pi.type="lower", the same value of K is used as when pi.type="upper", but Equation
(4) is used to construct the prediction interval. Thus, the power increases as delta.over.sigma
decreases below 0.

Value

vector of values between 0 and 1 equal to the probability that at least one of k future observations
or averages will fall outside the prediction interval.

Note

See the help files for predIntNorm and predIntNormSimultaneous.

In the course of designing a sampling program, an environmental scientist may wish to determine
the relationship between sample size, significance level, power, and scaled difference if one of
the objectives of the sampling program is to determine whether two distributions differ from each
other. The functions predIntNormTestPower and plotPredIntNormTestPowerCurve can be used
to investigate these relationships for the case of normally-distributed observations. In the case of a
simple shift between the two means, the test based on a prediction interval is not as powerful as the
two-sample t-test. However, the test based on a prediction interval is more efficient at detecting a
shift in the tail.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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References

See the help files for predIntNorm and predIntNormSimultaneous.

See Also

predIntNorm, predIntNormK, plotPredIntNormTestPowerCurve, predIntNormSimultaneous,
predIntNormSimultaneousK, predIntNormSimultaneousTestPower, Prediction Intervals, Nor-
mal.

Examples

# Show how the power increases as delta.over.sigma increases.
# Assume a 95% upper prediction interval.

predIntNormTestPower(n = 4, delta.over.sigma = 0:2)
#[1] 0.0500000 0.1743014 0.3990892

#----------

# Look at how the power increases with sample size for a one-sided upper
# prediction interval with k=3, delta.over.sigma=2, and a confidence level
# of 95%.

predIntNormTestPower(n = c(4, 8), k = 3, delta.over.sigma = 2)
#[1] 0.3578250 0.5752113

#----------

# Show how the power for an upper 95% prediction limit increases as the
# number of future observations k increases. Here, well use n=20 and
# delta.over.sigma=1.

predIntNormTestPower(n = 20, k = 1:3, delta.over.sigma = 1)
#[1] 0.2408527 0.2751074 0.2936486

predIntNpar Nonparametric Prediction Interval for a Continuous Distribution

Description

Construct a nonparametric prediction interval to contain at least k out of the next m future observa-
tions with probability (1− α)100% for a continuous distribution.

Usage

predIntNpar(x, k = m, m = 1, lpl.rank = ifelse(pi.type == "upper", 0, 1),
n.plus.one.minus.upl.rank = ifelse(pi.type == "lower", 0, 1),
lb = -Inf, ub = Inf, pi.type = "two-sided")
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Arguments

x a numeric vector of observations. Missing (NA), undefined (NaN), and infinite
(Inf, -Inf) values are allowed but will be removed.

k positive integer specifying the minimum number of future observations out of m
that should be contained in the prediction interval. The default value is k=m.

m positive integer specifying the number of future observations. The default value
is m=1.

lpl.rank positive integer indicating the rank of the order statistic to use for the lower
bound of the prediction interval. If pi.type="two-sided" or pi.type="lower",
the default value is lpl.rank=1 (implying the minimum value of x is used as
the lower bound of the prediction interval). If pi.type="upper", this argument
is set equal to 0 and the value of lb is used as the lower bound of the tolerance
interval.

n.plus.one.minus.upl.rank

positive integer related to the rank of the order statistic to use for the upper
bound of the prediction interval. A value of n.plus.one.minus.upl.rank=1
(the default when pi.type="two.sided" or pi.type="upper") means use the
first largest value, and in general a value of n.plus.one.minus.upl.rank=i
means use the i’th largest value. If pi.type="lower", this argument is set equal
to 0 and the value of ub is used as the upper bound of the prediction interval.

lb, ub scalars indicating lower and upper bounds on the distribution. By default, lb=-Inf
and ub=Inf. If you are constructing a prediction interval for a distribution that
you know has a lower bound other than -Inf (e.g., 0), set lb to this value.
Similarly, if you know the distribution has an upper bound other than Inf,
set ub to this value. The argument lb is ignored if pi.type="two-sided" or
pi.type="lower". The argument ub is ignored if pi.type="two-sided" or
pi.type="upper".

pi.type character string indicating what kind of prediction interval to compute. The
possible values are "two-sided" (the default), "lower", and "upper".

Details

What is a Nonparametric Prediction Interval?
A nonparametric prediction interval for some population is an interval on the real line constructed
so that it will contain at least k of m future observations from that population with some specified
probability (1 − α)100%, where 0 < α < 1 and k and m are pre-specified positive integer where
k ≤ m. The quantity (1−α)100% is called the confidence coefficient or confidence level associated
with the prediction interval.

The Form of a Nonparametric Prediction Interval
Let x = x1, x2, . . . , xn denote a vector of n independent observations from some continuous dis-
tribution, and let x(i) denote the the i’th order statistics in x. A two-sided nonparametric prediction
interval is constructed as:

[x(u), x(v)] (1)

where u and v are positive integers between 1 and n, and u < v. That is, u denotes the rank of
the lower prediction limit, and v denotes the rank of the upper prediction limit. To make it easier
to write some equations later on, we can also write the prediction interval (1) in a slightly different
way as:

[x(u), x(n+1−w)] (2)

where
w = n+ 1− v (3)
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so that w is a positive integer between 1 and n − 1, and u < n + 1 − w. In terms of the argu-
ments to the function predIntNpar, the argument lpl.rank corresponds to u, and the argument
n.plus.one.minus.upl.rank corresponds to w.

If we allow u = 0 and w = 0 and define lower and upper bounds as:

x(0) = lb (4)

x(n+1) = ub (5)

then Equation (2) above can also represent a one-sided lower or one-sided upper prediction interval
as well. That is, a one-sided lower nonparametric prediction interval is constructed as:

[x(u), x(n+1)] = [x(u), ub] (6)

and a one-sided upper nonparametric prediction interval is constructed as:

[x(0), x(n+1−w)] = [lb, x(n+1−w)] (7)

Usually, lb = −∞ or lb = 0 and ub =∞.

Constructing Nonparametric Prediction Intervals for Future Observations
Danziger and Davis (1964) show that the probability that at least k out of the next m observations
will fall in the interval defined in Equation (2) is given by:

(1− α) = [

m∑
i=k

(
m− i+ u+ w − 1

m− i

)(
i+ n− u− w

i

)
]/

(
n+m

m

)
(8)

(Note that computing a nonparametric prediction interval for the case k = m = 1 is equivalent
to computing a nonparametric β-expectation tolerance interval with coverage (1 − α)100%; see
tolIntNpar).

The Special Case of Using the Minimum and the Maximum
Setting u = w = 1 implies using the smallest and largest observed values as the prediction limits.
In this case, it can be shown that the probability that at least k out of the next m observations will
fall in the interval

[x(1), x(n)] (9)

is given by:

(1− α) = [

m∑
i=k

(m− i− 1)

(
n+ i− 2

i

)
]/

(
n+m

m

)
(10)

Setting k = m in Equation (10), the probability that all of the next m observations will fall in the
interval defined in Equation (9) is given by:

(1− α) =
n(n− 1)

(n+m)(n+m− 1)
(11)

For one-sided prediction limits, the probability that all m future observations will fall below x(n)

(upper prediction limit; pi.type="upper") and the probabilitiy that all m future observations will
fall above x(1) (lower prediction limit; pi.type="lower") are both given by:

(1− α) =
n

n+m
(12)

Constructing Nonparametric Prediction Intervals for Future Medians
To construct a nonparametric prediction interval for a future median based on s future observations,
where s is odd, note that this is equivalent to constructing a nonparametric prediction interval that
must hold at least k = (s+ 1)/2 of the next m = s future observations.
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Value

a list of class "estimate" containing the prediction interval and other information. See the help file
for estimate.object for details.

Note

Prediction and tolerance intervals have long been applied to quality control and life testing problems
(Hahn, 1970b,c; Hahn and Nelson, 1973; Krishnamoorthy and Mathew, 2009). In the context
of environmental statistics, prediction intervals are useful for analyzing data from groundwater
detection monitoring programs at hazardous and solid waste facilities (e.g., Gibbons et al., 2009;
Millard and Neerchal, 2001; USEPA, 2009).

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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See Also

estimate.object, predIntNparN, predIntNparConfLevel, plotPredIntNparDesign.

Examples

# Generate 20 observations from a lognormal mixture distribution with
# parameters mean1=1, cv1=0.5, mean2=5, cv2=1, and p.mix=0.1. Use
# predIntNpar to construct a two-sided prediction interval using the
# minimum and maximum observed values. Note that the associated confidence
# level is 90%. A larger sample size is required to obtain a larger
# confidence level (see the help file for predIntNparN).
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(250)
dat <- rlnormMixAlt(n = 20, mean1 = 1, cv1 = 0.5,

mean2 = 5, cv2 = 1, p.mix = 0.1)

predIntNpar(dat)

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: None
#
#Data: dat
#
#Sample Size: 20
#
#Prediction Interval Method: Exact
#
#Prediction Interval Type: two-sided
#
#Confidence Level: 90.47619%
#
#Prediction Limit Rank(s): 1 20
#
#Number of Future Observations: 1
#
#Prediction Interval: LPL = 0.3647875
# UPL = 1.8173115

#----------

# Repeat the above example, but specify m=5 future observations should be
# contained in the prediction interval. Note that the confidence level is
# now only 63%.
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predIntNpar(dat, m = 5)

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: None
#
#Data: dat
#
#Sample Size: 20
#
#Prediction Interval Method: Exact
#
#Prediction Interval Type: two-sided
#
#Confidence Level: 63.33333%
#
#Prediction Limit Rank(s): 1 20
#
#Number of Future Observations: 5
#
#Prediction Interval: LPL = 0.3647875
# UPL = 1.8173115

#----------

# Repeat the above example, but specify that a minimum of k=3 observations
# out of a total of m=5 future observations should be contained in the
# prediction interval. Note that the confidence level is now 98%.

predIntNpar(dat, k = 3, m = 5)

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: None
#
#Data: dat
#
#Sample Size: 20
#
#Prediction Interval Method: Exact
#
#Prediction Interval Type: two-sided
#
#Confidence Level: 98.37945%
#
#Prediction Limit Rank(s): 1 20
#
#Minimum Number of
#Future Observations
#Interval Should Contain: 3
#
#Total Number of
#Future Observations: 5
#
#Prediction Interval: LPL = 0.3647875
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# UPL = 1.8173115

#==========

# Example 18-3 of USEPA (2009, p.18-19) shows how to construct
# a one-sided upper nonparametric prediction interval for the next
# 4 future observations of trichloroethylene (TCE) at a downgradient well.
# The data for this example are stored in EPA.09.Ex.18.3.TCE.df.
# There are 6 monthly observations of TCE (ppb) at 3 background wells,
# and 4 monthly observations of TCE at a compliance well.

# Look at the data
#-----------------

EPA.09.Ex.18.3.TCE.df

# Month Well Well.type TCE.ppb.orig TCE.ppb Censored
#1 1 BW-1 Background <5 5.0 TRUE
#2 2 BW-1 Background <5 5.0 TRUE
#3 3 BW-1 Background 8 8.0 FALSE
#...
#22 4 CW-4 Compliance <5 5.0 TRUE
#23 5 CW-4 Compliance 8 8.0 FALSE
#24 6 CW-4 Compliance 14 14.0 FALSE

longToWide(EPA.09.Ex.18.3.TCE.df, "TCE.ppb.orig", "Month", "Well",
paste.row.name = TRUE)

# BW-1 BW-2 BW-3 CW-4
#Month.1 <5 7 <5
#Month.2 <5 6.5 <5
#Month.3 8 <5 10.5 7.5
#Month.4 <5 6 <5 <5
#Month.5 9 12 <5 8
#Month.6 10 <5 9 14

# Construct the prediction limit based on the background well data
# using the maximum value as the upper prediction limit.
# Note that since all censored observations are censored at one
# censoring level and the censoring level is less than all of the
# uncensored observations, we can just supply the censoring level
# to predIntNpar.
#-----------------------------------------------------------------

with(EPA.09.Ex.18.3.TCE.df,
predIntNpar(TCE.ppb[Well.type == "Background"],

m = 4, pi.type = "upper", lb = 0))

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: None
#
#Data: TCE.ppb[Well.type == "Background"]
#
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#Sample Size: 18
#
#Prediction Interval Method: Exact
#
#Prediction Interval Type: upper
#
#Confidence Level: 81.81818%
#
#Prediction Limit Rank(s): 18
#
#Number of Future Observations: 4
#
#Prediction Interval: LPL = 0
# UPL = 12

# Since the value of 14 ppb for Month 6 at the compliance well exceeds
# the upper prediction limit of 12, we might conclude that there is
# statistically significant evidence of an increase over background
# at CW-4. However, the confidence level associated with this
# prediction limit is about 82%, which implies a Type I error level of
# 18%. This means there is nearly a one in five chance of a false positive.
# Only additional background data and/or use of a retesting strategy
# (see predIntNparSimultaneous) would lower the false positive rate.

#==========

# Example 18-4 of USEPA (2009, p.18-19) shows how to construct
# a one-sided upper nonparametric prediction interval for the next
# median of order 3 of xylene at a downgradient well.
# The data for this example are stored in EPA.09.Ex.18.4.xylene.df.
# There are 8 monthly observations of xylene (ppb) at 3 background wells,
# and 3 montly observations of TCE at a compliance well.

# Look at the data
#-----------------

EPA.09.Ex.18.4.xylene.df

# Month Well Well.type Xylene.ppb.orig Xylene.ppb Censored
#1 1 Well.1 Background <5 5.0 TRUE
#2 2 Well.1 Background <5 5.0 TRUE
#3 3 Well.1 Background 7.5 7.5 FALSE
#...
#30 6 Well.4 Compliance <5 5.0 TRUE
#31 7 Well.4 Compliance 7.8 7.8 FALSE
#32 8 Well.4 Compliance 10.4 10.4 FALSE

longToWide(EPA.09.Ex.18.4.xylene.df, "Xylene.ppb.orig", "Month", "Well",
paste.row.name = TRUE)

# Well.1 Well.2 Well.3 Well.4
#Month.1 <5 9.2 <5
#Month.2 <5 <5 5.4
#Month.3 7.5 <5 6.7
#Month.4 <5 6.1 <5
#Month.5 <5 8 <5
#Month.6 <5 5.9 <5 <5



predIntNpar 851

#Month.7 6.4 <5 <5 7.8
#Month.8 6 <5 <5 10.4

# Construct the prediction limit based on the background well data
# using the maximum value as the upper prediction limit.
# Note that since all censored observations are censored at one
# censoring level and the censoring level is less than all of the
# uncensored observations, we can just supply the censoring level
# to predIntNpar.
#
# To compute a prediction interval for a median of order 3 (i.e.,
# a median based on 3 observations), this is equivalent to
# constructing a nonparametric prediction interval that must hold
# at least 2 of the next 3 future observations.
#-----------------------------------------------------------------

with(EPA.09.Ex.18.4.xylene.df,
predIntNpar(Xylene.ppb[Well.type == "Background"],

k = 2, m = 3, pi.type = "upper", lb = 0))

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: None
#
#Data: Xylene.ppb[Well.type == "Background"]
#
#Sample Size: 24
#
#Prediction Interval Method: Exact
#
#Prediction Interval Type: upper
#
#Confidence Level: 99.1453%
#
#Prediction Limit Rank(s): 24
#
#Minimum Number of
#Future Observations
#Interval Should Contain: 2
#
#Total Number of
#Future Observations: 3
#
#Prediction Interval: LPL = 0.0
# UPL = 9.2

# The Month 8 observation at the Complance well is 10.4 ppb of Xylene,
# which is greater than the upper prediction limit of 9.2 ppb, so
# conclude there is evidence of contamination at the
# 100% - 99% = 1% Type I Error Level

#==========

# Cleanup
#--------
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rm(dat)

predIntNparConfLevel Confidence Level for Nonparametric Prediction Interval for Continu-
ous Distribution

Description

Compute the confidence level associated with a nonparametric prediction interval that should con-
tain at least k out of the next m future observations for a continuous distribution.

Usage

predIntNparConfLevel(n, k = m, m = 1, lpl.rank = ifelse(pi.type == "upper", 0, 1),
n.plus.one.minus.upl.rank = ifelse(pi.type == "lower", 0, 1),
pi.type = "two.sided")

Arguments

n vector of positive integers specifying the sample sizes. Missing (NA), undefined
(NaN), and infinite (Inf, -Inf) values are not allowed.

k vector of positive integers specifying the minimum number of future observa-
tions out of m that should be contained in the prediction interval. The default
value is k=m.

m vector of positive integers specifying the number of future observations. The
default value is m=1.

lpl.rank vector of positive integers indicating the rank of the order statistic to use for the
lower bound of the prediction interval. If pi.type="two-sided" or pi.type="lower",
the default value is lpl.rank=1 (implying the minimum value is used as the
lower bound of the prediction interval). If pi.type="upper", this argument is
set equal to 0.

n.plus.one.minus.upl.rank

vector of positive integers related to the rank of the order statistic to use for the
upper bound of the prediction interval. A value of n.plus.one.minus.upl.rank=1
(the default) means use the first largest value, and in general a value of n.plus.one.minus.upl.rank=i
means use the i’th largest value. If pi.type="lower", this argument is set equal
to 0.

pi.type character string indicating what kind of prediction interval to compute. The
possible values are "two.sided" (the default), "lower", and "upper".

Details

If the arguments n, k, m, lpl.rank, and n.plus.one.minus.upl.rank are not all the same length,
they are replicated to be the same length as the length of the longest argument.

The help file for predIntNpar explains how nonparametric prediction intervals are constructed and
how the confidence level associated with the prediction interval is computed based on specified
values for the sample size and the ranks of the order statistics used for the bounds of the prediction
interval.
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Value

vector of values between 0 and 1 indicating the confidence level associated with the specified non-
parametric prediction interval.

Note

See the help file for predIntNpar.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

See the help file for predIntNpar.

See Also

predIntNpar, predIntNparN, plotPredIntNparDesign.

Examples

# Look at how the confidence level of a nonparametric prediction interval
# increases with increasing sample size:

seq(5, 25, by = 5)
#[1] 5 10 15 20 25

round(predIntNparConfLevel(n = seq(5, 25, by = 5)), 2)
#[1] 0.67 0.82 0.87 0.90 0.92

#---------

# Look at how the confidence level of a nonparametric prediction interval
# decreases as the number of future observations increases:

round(predIntNparConfLevel(n = 10, m = 1:5), 2)
#[1] 0.82 0.68 0.58 0.49 0.43

#----------

# Look at how the confidence level of a nonparametric prediction interval
# decreases with minimum number of observations that must be contained within
# the interval (k):

round(predIntNparConfLevel(n = 10, k = 1:5, m = 5), 2)
#[1] 1.00 0.98 0.92 0.76 0.43

#----------

# Look at how the confidence level of a nonparametric prediction interval
# decreases with the rank of the lower prediction limit:

round(predIntNparConfLevel(n = 10, lpl.rank = 1:5), 2)
#[1] 0.82 0.73 0.64 0.55 0.45
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#==========

# Example 18-3 of USEPA (2009, p.18-19) shows how to construct
# a one-sided upper nonparametric prediction interval for the next
# 4 future observations of trichloroethylene (TCE) at a downgradient well.
# The data for this example are stored in EPA.09.Ex.18.3.TCE.df.
# There are 6 monthly observations of TCE (ppb) at 3 background wells,
# and 4 monthly observations of TCE at a compliance well.

# Look at the data
#-----------------

EPA.09.Ex.18.3.TCE.df

# Month Well Well.type TCE.ppb.orig TCE.ppb Censored
#1 1 BW-1 Background <5 5.0 TRUE
#2 2 BW-1 Background <5 5.0 TRUE
#3 3 BW-1 Background 8 8.0 FALSE
#...
#22 4 CW-4 Compliance <5 5.0 TRUE
#23 5 CW-4 Compliance 8 8.0 FALSE
#24 6 CW-4 Compliance 14 14.0 FALSE

longToWide(EPA.09.Ex.18.3.TCE.df, "TCE.ppb.orig", "Month", "Well",
paste.row.name = TRUE)

# BW-1 BW-2 BW-3 CW-4
#Month.1 <5 7 <5
#Month.2 <5 6.5 <5
#Month.3 8 <5 10.5 7.5
#Month.4 <5 6 <5 <5
#Month.5 9 12 <5 8
#Month.6 10 <5 9 14

# If we construct the prediction limit based on the background well
# data using the maximum value as the upper prediction limit,
# the associated confidence level is only 82%.
#-----------------------------------------------------------------

predIntNparConfLevel(n = 18, m = 4, pi.type = "upper")
#[1] 0.8181818

# We would have to collect an additional 18 observations to achieve a
# confidence level of at least 90%:

predIntNparN(m = 4, pi.type = "upper", conf.level = 0.9)
#[1] 36

predIntNparConfLevel(n = 36, m = 4, pi.type = "upper")
#[1] 0.9

predIntNparN Sample Size for a Nonparametric Prediction Interval for a Continuous
Distribution
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Description

Compute the sample size necessary for a nonparametric prediction interval to contain at least k out
of the next m future observations with probability (1− α)100% for a continuous distribution.

Usage

predIntNparN(k = m, m = 1, lpl.rank = ifelse(pi.type == "upper", 0, 1),
n.plus.one.minus.upl.rank = ifelse(pi.type == "lower", 0, 1),
pi.type = "two.sided", conf.level = 0.95, n.max = 5000, maxiter = 1000)

Arguments

k vector of positive integers specifying the minimum number of future observa-
tions out of m that should be contained in the prediction interval. The default
value is k=m.

m vector of positive integers specifying the number of future observations. The
default value is m=1.

lpl.rank vector of positive integers indicating the rank of the order statistic to use for the
lower bound of the prediction interval. If pi.type="two-sided" or pi.type="lower",
the default value is lpl.rank=1 (implying the minimum value is used as the
lower bound of the prediction interval). If pi.type="upper", this argument is
set equal to 0.

n.plus.one.minus.upl.rank

vector of positive integers related to the rank of the order statistic to use for the
upper bound of the prediction interval. A value of n.plus.one.minus.upl.rank=1
(the default) means use the first largest value, and in general a value of n.plus.one.minus.upl.rank=i
means use the i’th largest value. If pi.type="lower", this argument is set equal
to 0.

pi.type character string indicating what kind of prediction interval to compute. The
possible values are "two.sided" (the default), "lower", and "upper".

conf.level numeric vector of values between 0 and 1 indicating the confidence level asso-
ciated with the prediction interval. The default value is conf.level=0.95.

n.max positive integer greater than 1 indicating the maximum possible sample size.
The default value is n.max=5000.

maxiter positive integer indicating the maximum number of iterations to use in the uniroot
search algorithm. The default value is maxiter=1000.

Details

If the arguments k, m, lpl.rank, and n.plus.one.minus.upl.rank are not all the same length,
they are replicated to be the same length as the length of the longest argument.

The function predIntNparN initially computes the required sample size n by solving Equation (11)
or (12) in the help file for predIntNpar for n, depending on the value of the argument pi.type. If
k < m, lpl.rank > 1 (two-sided and lower prediction intervals only), or n.plus.one.minus.upl.rank > 1
(two-sided and upper prediction intervals only), then this initial value of n is used as the upper bound
in a binary search based on Equation (8) in the help file for predIntNpar and is implemented via
the R function uniroot with the argument tolerance set to 1.
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Value

vector of positive integers indicating the required sample size(s) for the specified nonparametric
prediction interval(s).

Note

See the help file for predIntNpar.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

See the help file for predIntNpar.

See Also

predIntNpar, predIntNparConfLevel, plotPredIntNparDesign.

Examples

# Look at how the required sample size for a nonparametric prediction interval
# increases with increasing confidence level:

seq(0.5, 0.9, by = 0.1)
#[1] 0.5 0.6 0.7 0.8 0.9

predIntNparN(conf.level = seq(0.5, 0.9, by = 0.1))
#[1] 3 4 6 9 19

#----------

# Look at how the required sample size for a nonparametric prediction interval
# increases with number of future observations (m):

1:5
#[1] 1 2 3 4 5

predIntNparN(m = 1:5)
#[1] 39 78 116 155 193

#----------

# Look at how the required sample size for a nonparametric prediction interval
# increases with minimum number of observations that must be contained within
# the interval (k):

predIntNparN(k = 1:5, m = 5)
#[1] 4 7 13 30 193

#----------

# Look at how the required sample size for a nonparametric prediction interval
# increases with the rank of the lower prediction limit:
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predIntNparN(lpl.rank = 1:5)
#[1] 39 59 79 100 119

#==========

# Example 18-3 of USEPA (2009, p.18-19) shows how to construct
# a one-sided upper nonparametric prediction interval for the next
# 4 future observations of trichloroethylene (TCE) at a downgradient well.
# The data for this example are stored in EPA.09.Ex.18.3.TCE.df.
# There are 6 monthly observations of TCE (ppb) at 3 background wells,
# and 4 monthly observations of TCE at a compliance well.

# Look at the data
#-----------------

EPA.09.Ex.18.3.TCE.df

# Month Well Well.type TCE.ppb.orig TCE.ppb Censored
#1 1 BW-1 Background <5 5.0 TRUE
#2 2 BW-1 Background <5 5.0 TRUE
#3 3 BW-1 Background 8 8.0 FALSE
#...
#22 4 CW-4 Compliance <5 5.0 TRUE
#23 5 CW-4 Compliance 8 8.0 FALSE
#24 6 CW-4 Compliance 14 14.0 FALSE

longToWide(EPA.09.Ex.18.3.TCE.df, "TCE.ppb.orig", "Month", "Well",
paste.row.name = TRUE)

# BW-1 BW-2 BW-3 CW-4
#Month.1 <5 7 <5
#Month.2 <5 6.5 <5
#Month.3 8 <5 10.5 7.5
#Month.4 <5 6 <5 <5
#Month.5 9 12 <5 8
#Month.6 10 <5 9 14

# If we construct the prediction limit based on the background well
# data using the maximum value as the upper prediction limit,
# the associated confidence level is only 82%.
#-----------------------------------------------------------------

predIntNparConfLevel(n = 18, m = 4, pi.type = "upper")
#[1] 0.8181818

# We would have to collect an additional 18 observations to achieve a
# confidence level of at least 90%:

predIntNparN(m = 4, pi.type = "upper", conf.level = 0.9)
#[1] 36

predIntNparConfLevel(n = 36, m = 4, pi.type = "upper")
#[1] 0.9
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predIntNparSimultaneous

Nonparametric Simultaneous Prediction Interval for a Continuous
Distribution

Description

Construct a nonparametric simultaneous prediction interval for the next r sampling “occasions”
based on one of three possible rules: k-of-m, California, or Modified California. The simultaneous
prediction interval assumes the observations from from a continuous distribution.

Usage

predIntNparSimultaneous(x, n.median = 1, k = 1, m = 2, r = 1, rule = "k.of.m",
lpl.rank = ifelse(pi.type == "upper", 0, 1),
n.plus.one.minus.upl.rank = ifelse(pi.type == "lower", 0, 1),
lb = -Inf, ub = Inf, pi.type = "upper", integrate.args.list = NULL)

Arguments

x a numeric vector of observations. Missing (NA), undefined (NaN), and infinite
(Inf, -Inf) values are allowed but will be removed.

n.median positive odd integer specifying the sample size associated with the future medi-
ans. The default value is n.median=1 (i.e., individual observations). Note that
all future medians must be based on the same sample size.

k for the k-of-m rule (rule="k.of.m"), a positive integer specifying the mini-
mum number of observations (or medians) out of m observations (or medians)
(all obtained on one future sampling “occassion”) the prediction interval should
contain. The default value is k=1. This argument is ignored when the argument
rule is not equal to "k.of.m".

m positive integer specifying the maximum number of future observations (or me-
dians) on one future sampling “occasion”. The default value is m=2, except when
rule="Modified.CA", in which case this argument is ignored and m is automat-
ically set equal to 4.

r positive integer specifying the number of future sampling “occasions”. The de-
fault value is r=1.

rule character string specifying which rule to use. The possible values are "k.of.m"
(k-of-m rule; the default), "CA" (California rule), and "Modified.CA" (modified
California rule). See the DETAILS section below for more information.

lpl.rank positive integer indicating the rank of the order statistic to use for the lower
bound of the prediction interval. When pi.type="lower", the default value is
lpl.rank=1 (implying the minimum value of x is used as the lower bound of
the prediction interval). When pi.type="upper", the argument lpl.rank is
set equal to 0 and the value of lb is used as the lower bound of the tolerance
interval.

n.plus.one.minus.upl.rank

positive integer related to the rank of the order statistic to use for the upper bound
of the prediction interval. A value of n.plus.one.minus.upl.rank=1 means
use the first largest value, and in general a value of n.plus.one.minus.upl.rank=i
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means use the i’th largest value. When pi.type="upper", the default value
is n.plus.one.minus.upl.rank=1. When pi.type="lower", the argument
n.plus.one.minus.upl.rank is set equal to 0 and the value of ub is used as
the upper bound of the prediction interval.

lb, ub scalars indicating lower and upper bounds on the distribution. By default, lb=-Inf
and ub=Inf. If you are constructing a prediction interval for a distribution that
you know has a lower bound other than -Inf (e.g., 0), set lb to this value.
Similarly, if you know the distribution has an upper bound other than Inf,
set ub to this value. The argument lb is ignored if pi.type="two-sided" or
pi.type="lower". The argument ub is ignored if pi.type="two-sided" or
pi.type="upper".

pi.type character string indicating what kind of prediction interval to compute. The
possible values are "upper" (the default) and "lower".

integrate.args.list

a list of arguments to supply to the integrate function. The default value is
integrate.args.list=NULL which means that the default values of integrate
are used.

Details

What is a Nonparametric Simultaneous Prediction Interval?
A nonparametric prediction interval for some population is an interval on the real line constructed
so that it will contain at least k of m future observations from that population with some specified
probability (1 − α)100%, where 0 < α < 1 and k and m are some pre-specified positive integers
and k ≤ m. The quantity (1−α)100% is called the confidence coefficient or confidence level asso-
ciated with the prediction interval. The function predIntNpar computes a standard nonparametric
prediction interval.

The function predIntNparSimultaneous computes a nonparametric simultaneous prediction in-
terval that will contain a certain number of future observations with probability (1 − α)100% for
each of r future sampling “occasions”, where r is some pre-specified positive integer. The quantity
r may refer to r distinct future sampling occasions in time, or it may for example refer to sam-
pling at r distinct locations on one future sampling occasion, assuming that the population standard
deviation is the same at all of the r distinct locations.

The function predIntNparSimultaneous computes a nonparametric simultaneous prediction in-
terval based on one of three possible rules:

• For the k-of-m rule (rule="k.of.m"), at least k of the next m future observations will fall
in the prediction interval with probability (1 − α)100% on each of the r future sampling
occasions. If obserations are being taken sequentially, for a particular sampling occasion, up to
m observations may be taken, but once k of the observations fall within the prediction interval,
sampling can stop. Note: For this rule, when r = 1, the results of predIntNparSimultaneous
are equivalent to the results of predIntNpar.

• For the California rule (rule="CA"), with probability (1 − α)100%, for each of the r future
sampling occasions, either the first observation will fall in the prediction interval, or else all of
the next m− 1 observations will fall in the prediction interval. That is, if the first observation
falls in the prediction interval then sampling can stop. Otherwise, m − 1 more observations
must be taken.

• For the Modified California rule (rule="Modified.CA"), with probability (1 − α)100%, for
each of the r future sampling occasions, either the first observation will fall in the prediction
interval, or else at least 2 out of the next 3 observations will fall in the prediction interval. That
is, if the first observation falls in the prediction interval then sampling can stop. Otherwise, up
to 3 more observations must be taken.
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Nonparametric simultaneous prediction intervals can be extended to using medians in place of sin-
gle observations (USEPA, 2009, Chapter 19). That is, you can create a nonparametric simultaneous
prediction interval that will contain a specified number of medians (based on which rule you choose)
on each of r future sampling occassions, where each each median is based on b individual observa-
tions. For the function predIntNparSimultaneous, the argument n.median corresponds to b.

The Form of a Nonparametric Prediction Interval
Let x = x1, x2, . . . , xn denote a vector of n independent observations from some continuous dis-
tribution, and let x(i) denote the the i’th order statistics in x. A two-sided nonparametric prediction
interval is constructed as:

[x(u), x(v)] (1)

where u and v are positive integers between 1 and n, and u < v. That is, u denotes the rank of
the lower prediction limit, and v denotes the rank of the upper prediction limit. To make it easier
to write some equations later on, we can also write the prediction interval (1) in a slightly different
way as:

[x(u), x(n+1−w)] (2)

where
w = n+ 1− v (3)

so that w is a positive integer between 1 and n− 1, and u < n+ 1− w. In terms of the arguments
to the function predIntNparSimultaneous, the argument lpl.rank corresponds to u, and the
argument n.plus.one.minus.upl.rank corresponds to w.

If we allow u = 0 and w = 0 and define lower and upper bounds as:

x(0) = lb (4)

x(n+1) = ub (5)

then Equation (2) above can also represent a one-sided lower or one-sided upper prediction interval
as well. That is, a one-sided lower nonparametric prediction interval is constructed as:

[x(u), x(n+1)] = [x(u), ub] (6)

and a one-sided upper nonparametric prediction interval is constructed as:

[x(0), x(n+1−w)] = [lb, x(n+1−w)] (7)

Usually, lb = −∞ or lb = 0 and ub =∞.

Note: For nonparametric simultaneous prediction intervals, only lower (pi.type="lower") and
upper (pi.type="upper") prediction intervals are available.

Constructing Nonparametric Simultaneous Prediction Intervals for Future Observations
First we will show how to construct a nonparametric simultaneous prediction interval based on fu-
ture observations (i.e., b = 1, n.median=1), and then extend the formulas to future medians.

Simultaneous Prediction Intervals for the k-of-m Rule (rule="k.of.m")
For the k-of-m rule (rule="k.of.m") withw = 1 (i.e., n.median=1), at least k of the nextm future
observations will fall in the prediction interval with probability (1−α)100% on each of the r future
sampling occasions. If observations are being taken sequentially, for a particular sampling occasion,
up tom observations may be taken, but once k of the observations fall within the prediction interval,
sampling can stop. Note: When r = 1, this kind of simultaneous prediction interval becomes the
same as a standard nonparametric prediction interval (see predIntNpar).
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Chou and Owen (1986) developed the theory for nonparametric simultaneous prediction limits for
various rules, including the 1-of-m rule. Their theory, however, does not cover the California
or Modified California rules, and uses an r-fold summation involving a minimum of 2r terms.
Davis and McNichols (1994b; 1999) extended the results of Chou and Owen (1986) to include the
California and Modified California rule, and developed algorithms that involve summing far fewer
terms.

Davis and McNichols (1999) give formulas for the probabilities associated with the one-sided upper
simultaneous prediction interval shown in Equation (7). For the k-of-m rule, the probability that at
least k of the next m future observations will be contained in the interval given in Equation (7) for
each of r future sampling occasions is given by:

1− α = E[
∑m−k
i=0

(
k−1+i
k−1

)
Y k(1− Y )i]r

=
∫ 1

0
[
∑m−k
i=0

(
k−1+i
k−1

)
yk(1− y)i]rf(y)dy (8)

where Y denotes a random variable with a beta distribution with parameters v and n + 1 − v, and
f() denotes the pdf of this distribution. Note that v denotes the rank of the order statistic used as the
upper prediction limit (i.e., n.plus.one.minus.upl.rank=n+ 1− v), and that v is usually equal
to n.

Also note that the summation term in Equation (8) corresponds to the cumulative distribution func-
tion of a Negative Binomial distribution with parameters size=k and prob=y evaluated at q=m−k.

When pi.type="lower", Y denotes a random variable with a beta distribution with parameters
n+1−u and u. Note that u denotes the rank of the order statistic used as the lower prediction limit
(i.e., lpl.rank=u), and that u is usually equal to 1.

Simultaneous Prediction Intervals for the California Rule (rule="CA")
For the California rule (rule="CA"), with probability (1−α)100%, for each of the r future sampling
occasions, either the first observation will fall in the prediction interval, or else all of the next m−1
observations will fall in the prediction interval. That is, if the first observation falls in the prediction
interval then sampling can stop. Otherwise, m− 1 more observations must be taken.

In this case, the probability is given by:

1− α = E[
∑r
i=0

(
r
i

)
Y r−i+(m−1)i(1− Y )i]

=
∫ 1

0
[
∑r
i=0

(
r
i

)
yr−i+(m−1)i(1− y)i]f(y)dy (9)

Simultaneous Prediction Intervals for the Modified California Rule (rule="Modified.CA")
For the Modified California rule (rule="Modified.CA"), with probability (1 − α)100%, for each
of the r future sampling occasions, either the first observation will fall in the prediction interval,
or else at least 2 out of the next 3 observations will fall in the prediction interval. That is, if the
first observation falls in the prediction interval then sampling can stop. Otherwise, up to 3 more
observations must be taken.

In this case, the probability is given by:

1− α = E[Y r(1 +Q+Q2 − 2Q3)r]

=
∫ 1

0
[yr(1 + q + q2 − 2q3)r]f(y)dy (10)

where Q = 1− Y and q = 1− y.
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Davis and McNichols (1999) provide algorithms for computing the probabilities based on expand-
ing polynomials and the formula for the expected value of a beta random variable. In the discussion
section of Davis and McNichols (1999), however, Vangel points out that numerical integration is ad-
equate, and this is how these probabilities are computed in the function predIntNparSimultaneous.

Constructing Nonparametric Simultaneous Prediction Intervals for Future Medians
USEPA (2009, Chapter 19; Cameron, 2011) extends nonparametric simultaneous prediction inter-
vals to testing future medians for the case of the 1-of-1 and 1-of-2 plans for medians of order 3. In
general, each of the rules (k-of-m, California, and Modified California) can be easily extended to
the case of using medians as long as the medians are based on an odd (as opposed to even) sample
size.

For each of the above rules, if we are interested in using medians instead of single observations
(i.e., b ≥ 1; n.median≥ 1), and we force b to be odd, then a median will be less than a prediction
limit once (b + 1)/2 observations are less than the prediction limit. Thus, Equations (8) - (10) are
modified by replacing y with the term:

b−b′∑
i=0

(
b′ − 1 + i

b′ − 1

)
yb
′
(1− y)i (11)

where
b′ =

b+ 1

2
(12)

Value

a list of class "estimate" containing the simultaneous prediction interval and other information.
See the help file for estimate.object for details.

Note

Prediction and tolerance intervals have long been applied to quality control and life testing problems
(Hahn, 1970b,c; Hahn and Nelson, 1973; Krishnamoorthy and Mathew, 2009). In the context
of environmental statistics, prediction intervals are useful for analyzing data from groundwater
detection monitoring programs at hazardous and solid waste facilities (e.g., Gibbons et al., 2009;
Millard and Neerchal, 2001; USEPA, 2009).
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Examples

# Generate 20 observations from a lognormal mixture distribution with
# parameters mean1=1, cv1=0.5, mean2=5, cv2=1, and p.mix=0.1. Use
# predIntNparSimultaneous to construct an upper one-sided prediction interval
# using the maximum observed value using the 1-of-3 rule.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(250)
dat <- rlnormMixAlt(n = 20, mean1 = 1, cv1 = 0.5,

mean2 = 5, cv2 = 1, p.mix = 0.1)

predIntNparSimultaneous(dat, k = 1, m = 3, lb = 0)
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#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: None
#
#Data: dat
#
#Sample Size: 20
#
#Prediction Interval Method: exact
#
#Prediction Interval Type: upper
#
#Confidence Level: 99.94353%
#
#Prediction Limit Rank(s): 20
#
#Minimum Number of
#Future Observations
#Interval Should Contain: 1
#
#Total Number of
#Future Observations: 3
#
#Prediction Interval: LPL = 0.000000
# UPL = 1.817311

#----------

# Compare the confidence levels for the 1-of-3 rule, California Rule, and
# Modified California Rule.

predIntNparSimultaneous(dat, k = 1, m = 3, lb = 0)$interval$conf.level
#[1] 0.9994353

predIntNparSimultaneous(dat, m = 3, rule = "CA", lb = 0)$interval$conf.level
#[1] 0.9919066

predIntNparSimultaneous(dat, rule = "Modified.CA", lb = 0)$interval$conf.level
#[1] 0.9984943

#=========

# Repeat the above example, but create the baseline data using just
# n=8 observations and set r to 4 future sampling occasions

set.seed(598)
dat <- rlnormMixAlt(n = 8, mean1 = 1, cv1 = 0.5,

mean2 = 5, cv2 = 1, p.mix = 0.1)

predIntNparSimultaneous(dat, k = 1, m = 3, r = 4, lb = 0)

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: None
#
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#Data: dat
#
#Sample Size: 8
#
#Prediction Interval Method: exact
#
#Prediction Interval Type: upper
#
#Confidence Level: 97.7599%
#
#Prediction Limit Rank(s): 8
#
#Minimum Number of
#Future Observations
#Interval Should Contain
#(per Sampling Occasion): 1
#
#Total Number of
#Future Observations
#(per Sampling Occasion): 3
#
#Number of Future
#Sampling Occasions: 4
#
#Prediction Interval: LPL = 0.000000
# UPL = 5.683453

#----------

# Compare the confidence levels for the 1-of-3 rule, California Rule, and
# Modified California Rule.

predIntNparSimultaneous(dat, k = 1, m = 3, r = 4, lb = 0)$interval$conf.level
#[1] 0.977599

predIntNparSimultaneous(dat, m = 3, r = 4, rule = "CA", lb = 0)$interval$conf.level
#[1] 0.8737798

predIntNparSimultaneous(dat, r = 4, rule = "Modified.CA", lb = 0)$interval$conf.level
#[1] 0.9510178

#==========

# Example 19-5 of USEPA (2009, p. 19-33) shows how to compute nonparametric upper
# simultaneous prediction limits for various rules based on trace mercury data (ppb)
# collected in the past year from a site with four background wells and 10 compliance
# wells (data for two of the compliance wells are shown in the guidance document).
# The facility must monitor the 10 compliance wells for five constituents
# (including mercury) annually.

# Here we will compute the confidence level associated with two different sampling plans:
# 1) the 1-of-2 retesting plan for a median of order 3 using the background maximum and
# 2) the 1-of-4 plan on individual observations using the 3rd highest background value.
# The data for this example are stored in EPA.09.Ex.19.5.mercury.df.

# We will pool data from 4 background wells that were sampled on
# a number of different occasions, giving us a sample size of
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# n = 20 to use to construct the prediction limit.

# There are 10 compliance wells and we will monitor 5 different
# constituents at each well annually. For this example, USEPA (2009)
# recommends setting r to the product of the number of compliance wells and
# the number of evaluations per year.

# To determine the minimum confidence level we require for
# the simultaneous prediction interval, USEPA (2009) recommends
# setting the maximum allowed individual Type I Error level per constituent to:

# 1 - (1 - SWFPR)^(1 / Number of Constituents)

# which translates to setting the confidence limit to

# (1 - SWFPR)^(1 / Number of Constituents)

# where SWFPR = site-wide false positive rate. For this example, we
# will set SWFPR = 0.1. Thus, the required individual Type I Error level
# and confidence level per constituent are given as follows:

# n = 20 based on 4 Background Wells
# nw = 10 Compliance Wells
# nc = 5 Constituents
# ne = 1 Evaluation per year

n <- 20
nw <- 10
nc <- 5
ne <- 1

# Set number of future sampling occasions r to
# Number Compliance Wells x Number Evaluations per Year
r <- nw * ne

conf.level <- (1 - 0.1)^(1 / nc)
conf.level
#[1] 0.9791484

alpha <- 1 - conf.level
alpha
#[1] 0.02085164

#----------

# Look at the data:

head(EPA.09.Ex.19.5.mercury.df)
# Event Well Well.type Mercury.ppb.orig Mercury.ppb Censored
#1 1 BG-1 Background 0.21 0.21 FALSE
#2 2 BG-1 Background <.2 0.20 TRUE
#3 3 BG-1 Background <.2 0.20 TRUE
#4 4 BG-1 Background <.2 0.20 TRUE
#5 5 BG-1 Background <.2 0.20 TRUE
#6 6 BG-1 Background NA FALSE

longToWide(EPA.09.Ex.19.5.mercury.df, "Mercury.ppb.orig",
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"Event", "Well", paste.row.name = TRUE)
# BG-1 BG-2 BG-3 BG-4 CW-1 CW-2
#Event.1 0.21 <.2 <.2 <.2 0.22 0.36
#Event.2 <.2 <.2 0.23 0.25 0.2 0.41
#Event.3 <.2 <.2 <.2 0.28 <.2 0.28
#Event.4 <.2 0.21 0.23 <.2 0.25 0.45
#Event.5 <.2 <.2 0.24 <.2 0.24 0.43
#Event.6 <.2 0.54

# Construct the upper simultaneous prediction limit using the 1-of-2
# retesting plan for a median of order 3 based on the background maximum

Hg.Back <- with(EPA.09.Ex.19.5.mercury.df,
Mercury.ppb[Well.type == "Background"])

pred.int.1.of.2.med.3 <- predIntNparSimultaneous(Hg.Back, n.median = 3,
k = 1, m = 2, r = r, lb = 0)

pred.int.1.of.2.med.3

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: None
#
#Data: Hg.Back
#
#Sample Size: 20
#
#Number NA/NaN/Infs: 4
#
#Prediction Interval Method: exact
#
#Prediction Interval Type: upper
#
#Confidence Level: 99.40354%
#
#Prediction Limit Rank(s): 20
#
#Minimum Number of
#Future Medians
#Interval Should Contain
#(per Sampling Occasion): 1
#
#Total Number of
#Future Medians
#(per Sampling Occasion): 2
#
#Number of Future
#Sampling Occasions: 10
#
#Sample Size for Medians: 3
#
#Prediction Interval: LPL = 0.00
# UPL = 0.28
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# Note that the achieved confidence level of 99.4% is greater than the
# required confidence level of 97.9%.

# Now determine whether either compliance well indicates evidence of
# Mercury contamination.

# Compliance Well 1
#------------------
Hg.CW.1 <- with(EPA.09.Ex.19.5.mercury.df, Mercury.ppb.orig[Well == "CW-1"])

Hg.CW.1
#[1] "0.22" "0.2" "<.2" "0.25" "0.24" "<.2"

# The median of the first 3 observations is 0.2, which is less than
# the UPL of 0.28, so there is no evidence of contamination.

# Compliance Well 2
#------------------
Hg.CW.2 <- with(EPA.09.Ex.19.5.mercury.df, Mercury.ppb.orig[Well == "CW-2"])

Hg.CW.2
#[1] "0.36" "0.41" "0.28" "0.45" "0.43" "0.54"

# The median of the first 3 observations is 0.36, so 3 more observations have to
# be looked at. The median of the second 3 observations is 0.45, which is
# larger than the UPL of 0.28, so there is evidence of contamination.

#----------

# Now create the upper simultaneous prediction limit using the 1-of-4 plan
# on individual observations using the 3rd highest background value.

pred.int.1.of.4.3rd <- predIntNparSimultaneous(Hg.Back, k = 1, m = 4,
r = r, lb = 0, n.plus.one.minus.upl.rank = 3)

pred.int.1.of.4.3rd

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: None
#
#Data: Hg.Back
#
#Sample Size: 20
#
#Number NA/NaN/Infs: 4
#
#Prediction Interval Method: exact
#
#Prediction Interval Type: upper
#
#Confidence Level: 98.64909%
#
#Prediction Limit Rank(s): 18
#
#Minimum Number of
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#Future Observations
#Interval Should Contain
#(per Sampling Occasion): 1
#
#Total Number of
#Future Observations
#(per Sampling Occasion): 4
#
#Number of Future
#Sampling Occasions: 10
#
#Prediction Interval: LPL = 0.00
# UPL = 0.24

# Note that the achieved confidence level of 98.6% is greater than the
# required confidence level of 97.9%.

# Now determine whether either compliance well indicates evidence of
# Mercury contamination.

# Compliance Well 1
#------------------
Hg.CW.1 <- with(EPA.09.Ex.19.5.mercury.df, Mercury.ppb.orig[Well == "CW-1"])

Hg.CW.1
#[1] "0.22" "0.2" "<.2" "0.25" "0.24" "<.2"

# The first observation is less than the UPL of 0.24, which is less than
# the UPL of 0.28, so there is no evidence of contamination.

# Compliance Well 2
#------------------
Hg.CW.2 <- with(EPA.09.Ex.19.5.mercury.df, Mercury.ppb.orig[Well == "CW-2"])

Hg.CW.2
#[1] "0.36" "0.41" "0.28" "0.45" "0.43" "0.54"

# All of the first 4 observations are greater than the UPL of 0.24, so there
# is evidence of contamination.

#==========

# Cleanup
#--------
rm(dat, n, nw, nc, ne, r, conf.level, alpha, Hg.Back, pred.int.1.of.2.med.3,

pred.int.1.of.4.3rd, Hg.CW.1, Hg.CW.2)

predIntNparSimultaneousConfLevel

Confidence Level of Simultaneous Nonparametric Prediction Interval
for Continuous Distribution
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Description

Compute the confidence level associated with a nonparametric simultaneous prediction interval
based on one of three possible rules: k-of-m, California, or Modified California. Observations are
assumed to come from from a continuous distribution.

Usage

predIntNparSimultaneousConfLevel(n, n.median = 1, k = 1, m = 2, r = 1,
rule = "k.of.m", lpl.rank = ifelse(pi.type == "upper", 0, 1),
n.plus.one.minus.upl.rank = ifelse(pi.type == "lower", 0, 1),
pi.type = "upper", integrate.args.list = NULL)

Arguments

n vector of positive integers specifying the sample sizes. Missing (NA), undefined
(NaN), and infinite (Inf, -Inf) values are not allowed.

n.median vector of positive odd integers specifying the sample size associated with the
future medians. The default value is n.median=1 (i.e., individual observations).
Note that all future medians must be based on the same sample size.

k for the k-of-m rule (rule="k.of.m"), a vector of positive integers specifying
the minimum number of observations (or medians) out of m observations (or
medians) (all obtained on one future sampling “occassion”) the prediction inter-
val should contain. The default value is k=1. This argument is ignored when the
argument rule is not equal to "k.of.m".

m vector of positive integers specifying the maximum number of future observa-
tions (or medians) on one future sampling “occasion”. The default value is m=2,
except when rule="Modified.CA", in which case this argument is ignored and
m is automatically set equal to 4.

r vector of positive integers specifying the number of future sampling “occa-
sions”. The default value is r=1.

rule character string specifying which rule to use. The possible values are "k.of.m"
(k-of-m rule; the default), "CA" (California rule), and "Modified.CA" (modified
California rule).

lpl.rank vector of positive integers indicating the rank of the order statistic to use for
the lower bound of the prediction interval. When pi.type="lower", the de-
fault value is lpl.rank=1 (implying the minimum value of x is used as the
lower bound of the prediction interval). When pi.type="upper", the argument
lpl.rank is set equal to 0.

n.plus.one.minus.upl.rank

vector of positive integers related to the rank of the order statistic to use for the
upper bound of the prediction interval. A value of n.plus.one.minus.upl.rank=1
means use the first largest value, and in general a value of n.plus.one.minus.upl.rank=i
means use the i’th largest value. When pi.type="upper", the default value
is n.plus.one.minus.upl.rank=1. When pi.type="lower", the argument
n.plus.one.minus.upl.rank is set equal to 0.

pi.type character string indicating what kind of prediction interval to compute. The
possible values are "two.sided" (the default), "lower", and "upper".

integrate.args.list

list of arguments to supply to the integrate function. The default value is NULL.
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Details

If the arguments n, k, m, r, lpl.rank, and n.plus.one.minus.upl.rank are not all the same
length, they are replicated to be the same length as the length of the longest argument.

The function predIntNparSimultaneousConfLevel computes the confidence level based on Equa-
tion (8), (9), or (10) in the help file for predIntNparSimultaneous, depending on the value of the
argument rule.

Note that when rule="k.of.m" and r=1, this is equivalent to a standard nonparametric prediction
interval and you can use the function predIntNparConfLevel instead.

Value

vector of values between 0 and 1 indicating the confidence level associated with the specified si-
multaneous nonparametric prediction interval.

Note

See the help file for predIntNparSimultaneous.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

See the help file for predIntNparSimultaneous.

See Also

predIntNparSimultaneous, predIntNparSimultaneousN, plotPredIntNparSimultaneousDesign,
predIntNparSimultaneousTestPower, predIntNpar, tolIntNpar.

Examples

# For the 1-of-3 rule with r=20 future sampling occasions, look at how the
# confidence level of a simultaneous nonparametric prediction interval
# increases with increasing sample size:

seq(5, 25, by = 5)
#[1] 5 10 15 20 25

conf <- predIntNparSimultaneousConfLevel(n = seq(5, 25, by = 5),
k = 1, m = 3, r = 20)

round(conf, 2)
#[1] 0.82 0.95 0.98 0.99 0.99

#----------

# For the 1-of-m rule with r=20 future sampling occasions, look at how the
# confidence level of a simultaneous nonparametric prediction interval
# increases as the number of future observations increases:

1:5
#[1] 1 2 3 4 5
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conf <- predIntNparSimultaneousConfLevel(n = 10, k = 1, m = 1:5, r = 20)
round(conf, 2)
#[1] 0.33 0.81 0.95 0.98 0.99

#----------

# For the 1-of-3 rule, look at how the confidence level of a simultaneous
# nonparametric prediction interval decreases with number of future sampling
# occasions (r):

seq(5, 20, by = 5)
#[1] 5 10 15 20

conf <- predIntNparSimultaneousConfLevel(n = 10, k = 1, m = 3,
r = seq(5, 20, by = 5))

round(conf, 2)
#[1] 0.98 0.97 0.96 0.95

#----------

# For the 1-of-3 rule with r=20 future sampling occasions, look at how the
# confidence level of a simultaneous nonparametric prediction interval
# decreases as the rank of the upper prediction limit decreases:

conf <- predIntNparSimultaneousConfLevel(n = 10, k = 1, m = 3, r = 20,
n.plus.one.minus.upl.rank = 1:5)

round(conf, 2)
#[1] 0.95 0.82 0.63 0.43 0.25

#----------

# Clean up
#---------
rm(conf)

#==========

# Example 19-5 of USEPA (2009, p. 19-33) shows how to compute nonparametric upper
# simultaneous prediction limits for various rules based on trace mercury data (ppb)
# collected in the past year from a site with four background wells and 10 compliance
# wells (data for two of the compliance wells are shown in the guidance document).
# The facility must monitor the 10 compliance wells for five constituents
# (including mercury) annually.

# Here we will compute the confidence level associated with two different sampling plans:
# 1) the 1-of-2 retesting plan for a median of order 3 using the background maximum and
# 2) the 1-of-4 plan on individual observations using the 3rd highest background value.
# The data for this example are stored in EPA.09.Ex.19.5.mercury.df.

# We will pool data from 4 background wells that were sampled on
# a number of different occasions, giving us a sample size of
# n = 20 to use to construct the prediction limit.

# There are 10 compliance wells and we will monitor 5 different
# constituents at each well annually. For this example, USEPA (2009)
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# recommends setting r to the product of the number of compliance wells and
# the number of evaluations per year.

# To determine the minimum confidence level we require for
# the simultaneous prediction interval, USEPA (2009) recommends
# setting the maximum allowed individual Type I Error level per constituent to:

# 1 - (1 - SWFPR)^(1 / Number of Constituents)

# which translates to setting the confidence limit to

# (1 - SWFPR)^(1 / Number of Constituents)

# where SWFPR = site-wide false positive rate. For this example, we
# will set SWFPR = 0.1. Thus, the required individual Type I Error level
# and confidence level per constituent are given as follows:

# n = 20 based on 4 Background Wells
# nw = 10 Compliance Wells
# nc = 5 Constituents
# ne = 1 Evaluation per year

n <- 20
nw <- 10
nc <- 5
ne <- 1

# Set number of future sampling occasions r to
# Number Compliance Wells x Number Evaluations per Year
r <- nw * ne

conf.level <- (1 - 0.1)^(1 / nc)
conf.level
#[1] 0.9791484

# So the required confidence level is 0.98, or 98%.
# Now determine the confidence level associated with each plan.
# Note that both plans achieve the required confidence level.

# 1) the 1-of-2 retesting plan for a median of order 3 using the
# background maximum

predIntNparSimultaneousConfLevel(n = 20, n.median = 3, k = 1, m = 2, r = r)
#[1] 0.9940354

# 2) the 1-of-4 plan on individual observations using the 3rd highest
# background value.

predIntNparSimultaneousConfLevel(n = 20, k = 1, m = 4, r = r,
n.plus.one.minus.upl.rank = 3)

#[1] 0.9864909

#==========

# Cleanup
#--------
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rm(n, nw, nc, ne, r, conf.level)

predIntNparSimultaneousN

Sample Size for Simultaneous Nonparametric Prediction Interval for
Continuous Distribution

Description

Compute the sample size necessary for a nonparametric simultaneous prediction interval to achieve
a specified confidence level based on one of three possible rules: k-of-m, California, or Modified
California. Observations are assumed to come from from a continuous distribution.

Usage

predIntNparSimultaneousN(n.median = 1, k = 1, m = 2, r = 1, rule = "k.of.m",
lpl.rank = ifelse(pi.type == "upper", 0, 1),
n.plus.one.minus.upl.rank = ifelse(pi.type == "lower", 0, 1), pi.type = "upper",
conf.level = 0.95, n.max = 5000, integrate.args.list = NULL, maxiter = 1000)

Arguments

n.median vector of positive odd integers specifying the sample size associated with the
future medians. The default value is n.median=1 (i.e., individual observations).
Note that all future medians must be based on the same sample size.

k for the k-of-m rule (rule="k.of.m"), a vector of positive integers specifying
the minimum number of observations (or medians) out of m observations (or
medians) (all obtained on one future sampling “occassion”) the prediction inter-
val should contain. The default value is k=1. This argument is ignored when the
argument rule is not equal to "k.of.m".

m vector of positive integers specifying the maximum number of future observa-
tions (or medians) on one future sampling “occasion”. The default value is m=2,
except when rule="Modified.CA", in which case this argument is ignored and
m is automatically set equal to 4.

r vector of positive integers specifying the number of future sampling “occa-
sions”. The default value is r=1.

rule character string specifying which rule to use. The possible values are "k.of.m"
(k-of-m rule; the default), "CA" (California rule), and "Modified.CA" (modified
California rule).

lpl.rank vector of positive integers indicating the rank of the order statistic to use for
the lower bound of the prediction interval. When pi.type="lower", the de-
fault value is lpl.rank=1 (implying the minimum value of x is used as the
lower bound of the prediction interval). When pi.type="upper", the argument
lpl.rank is set equal to 0.

n.plus.one.minus.upl.rank

vector of positive integers related to the rank of the order statistic to use for the
upper bound of the prediction interval. A value of n.plus.one.minus.upl.rank=1
means use the first largest value, and in general a value of n.plus.one.minus.upl.rank=i
means use the i’th largest value. When pi.type="upper", the default value
is n.plus.one.minus.upl.rank=1. When pi.type="lower", the argument
n.plus.one.minus.upl.rank is set equal to 0.
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pi.type character string indicating what kind of prediction interval to compute. The
possible values are "two.sided" (the default), "lower", and "upper".

conf.level numeric vector of values between 0 and 1 indicating the confidence level asso-
ciated with the prediction interval. The default value is conf=0.95.

n.max numeric scalar indicating the maximum sample size to consider. This argument
is used in the search algorithm to determine the required sample size. The de-
fault value is n.max=5000.

integrate.args.list

list of arguments to supply to the integrate function. The default value is NULL.

maxiter positive integer indicating the maximum number of iterations to use in the uniroot
search algorithm. The default value is maxiter=1000.

Details

If the arguments k, m, r, lpl.rank, and n.plus.one.minus.upl.rank are not all the same length,
they are replicated to be the same length as the length of the longest argument.

The function predIntNparSimultaneousN computes the required sample size n by solving Equa-
tion (8), (9), or (10) in the help file for predIntNparSimultaneous for n, depending on the value
of the argument rule.

Note that when rule="k.of.m" and r=1, this is equivalent to a standard nonparametric prediction
interval and you can use the function predIntNparN instead.

Value

vector of positive integers indicating the required sample size(s) for the specified nonparametric
simultaneous prediction interval(s).

Note

See the help file for predIntNparSimultaneous.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

See the help file for predIntNparSimultaneous.

See Also

predIntNparSimultaneous, predIntNparSimultaneousConfLevel, plotPredIntNparSimultaneousDesign,
predIntNparSimultaneousTestPower, predIntNpar, tolIntNpar.

Examples

# For the 1-of-2 rule, look at how the required sample size for a one-sided
# upper simultaneous nonparametric prediction interval for r=20 future
# sampling occasions increases with increasing confidence level:

seq(0.5, 0.9, by = 0.1)
#[1] 0.5 0.6 0.7 0.8 0.9
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predIntNparSimultaneousN(r = 20, conf.level = seq(0.5, 0.9, by = 0.1))
#[1] 4 5 7 10 17

#----------

# For the 1-of-m rule, look at how the required sample size for a one-sided
# upper simultaneous nonparametric prediction interval decreases with increasing
# number of future observations (m), given r=20 future sampling occasions:

predIntNparSimultaneousN(k = 1, m = 1:5, r = 20)
#[1] 380 26 11 7 5

#----------

# For the 1-of-3 rule, look at how the required sample size for a one-sided
# upper simultaneous nonparametric prediction interval increases with number
# of future sampling occasions (r):

predIntNparSimultaneousN(k = 1, m = 3, r = c(5, 10, 15, 20))
#[1] 7 8 10 11

#----------

# For the 1-of-3 rule, look at how the required sample size for a one-sided
# upper simultaneous nonparametric prediction interval increases as the rank
# of the upper prediction limit decreases, given r=20 future sampling occasions:

predIntNparSimultaneousN(k = 1, m = 3, r = 20, n.plus.one.minus.upl.rank = 1:5)
#[1] 11 19 26 34 41

#----------

# Compare the required sample size for r=20 future sampling occasions based
# on the 1-of-3 rule, the CA rule with m=3, and the Modified CA rule.

predIntNparSimultaneousN(k = 1, m = 3, r = 20, rule = "k.of.m")
#[1] 11

predIntNparSimultaneousN(m = 3, r = 20, rule = "CA")
#[1] 36

predIntNparSimultaneousN(r = 20, rule = "Modified.CA")
#[1] 15

#==========

# Example 19-5 of USEPA (2009, p. 19-33) shows how to compute nonparametric upper
# simultaneous prediction limits for various rules based on trace mercury data (ppb)
# collected in the past year from a site with four background wells and 10 compliance
# wells (data for two of the compliance wells are shown in the guidance document).
# The facility must monitor the 10 compliance wells for five constituents
# (including mercury) annually.

# Here we will modify the example to compute the required number of background
# observations for two different sampling plans:
# 1) the 1-of-2 retesting plan for a median of order 3 using the background maximum and
# 2) the 1-of-4 plan on individual observations using the 3rd highest background value.
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# The data for this example are stored in EPA.09.Ex.19.5.mercury.df.

# There are 10 compliance wells and we will monitor 5 different
# constituents at each well annually. For this example, USEPA (2009)
# recommends setting r to the product of the number of compliance wells and
# the number of evaluations per year.

# To determine the minimum confidence level we require for
# the simultaneous prediction interval, USEPA (2009) recommends
# setting the maximum allowed individual Type I Error level per constituent to:

# 1 - (1 - SWFPR)^(1 / Number of Constituents)

# which translates to setting the confidence limit to

# (1 - SWFPR)^(1 / Number of Constituents)

# where SWFPR = site-wide false positive rate. For this example, we
# will set SWFPR = 0.1. Thus, the required individual Type I Error level
# and confidence level per constituent are given as follows:

# nw = 10 Compliance Wells
# nc = 5 Constituents
# ne = 1 Evaluation per year

nw <- 10
nc <- 5
ne <- 1

# Set number of future sampling occasions r to
# Number Compliance Wells x Number Evaluations per Year
r <- nw * ne

conf.level <- (1 - 0.1)^(1 / nc)
conf.level
#[1] 0.9791484

# So the required confidence level is 0.98, or 98%.

# Now determine the required number of background observations for each plan.

# 1) the 1-of-2 retesting plan for a median of order 3 using the
# background maximum

predIntNparSimultaneousN(n.median = 3, k = 1, m = 2, r = r,
conf.level = conf.level)

#[1] 14

# 2) the 1-of-4 plan on individual observations using the 3rd highest
# background value.

predIntNparSimultaneousN(k = 1, m = 4, r = r,
n.plus.one.minus.upl.rank = 3, conf.level = conf.level)

#[1] 18

#==========
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# Cleanup
#--------
rm(nw, nc, ne, r, conf.level)

predIntNparSimultaneousTestPower

Probability That at Least One Set of Future Observations Violates the
Given Rule Based on a Nonparametric Simultaneous Prediction Inter-
val

Description

Compute the probability that at least one set of future observations violates the given rule based
on a nonparametric simultaneous prediction interval for the next r future sampling occasions. The
three possible rules are: k-of-m, California, or Modified California. The probability is based on
assuming the true distribution of the observations is normal.

Usage

predIntNparSimultaneousTestPower(n, n.median = 1, k = 1, m = 2, r = 1,
rule = "k.of.m", lpl.rank = ifelse(pi.type == "upper", 0, 1),
n.plus.one.minus.upl.rank = ifelse(pi.type == "lower", 0, 1),
delta.over.sigma = 0, pi.type = "upper", r.shifted = r,
method = "approx", NMC = 100, ci = FALSE, ci.conf.level = 0.95,
integrate.args.list = NULL)

Arguments

n vector of positive integers specifying the sample sizes. Missing (NA), undefined
(NaN), and infinite (Inf, -Inf) values are not allowed.

n.median vector of positive odd integers specifying the sample size associated with the
future medians. The default value is n.median=1 (i.e., individual observations).
Note that all future medians must be based on the same sample size.

k for the k-of-m rule (rule="k.of.m"), a vector of positive integers specifying
the minimum number of observations (or medians) out of m observations (or
medians) (all obtained on one future sampling “occassion”) the prediction inter-
val should contain. The default value is k=1. This argument is ignored when the
argument rule is not equal to "k.of.m".

m vector of positive integers specifying the maximum number of future observa-
tions (or medians) on one future sampling “occasion”. The default value is m=2,
except when rule="Modified.CA", in which case this argument is ignored and
m is automatically set equal to 4.

r vector of positive integers specifying the number of future sampling “occa-
sions”. The default value is r=1.

rule character string specifying which rule to use. The possible values are "k.of.m"
(k-of-m rule; the default), "CA" (California rule), and "Modified.CA" (modified
California rule).
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lpl.rank vector of non-negative integers indicating the rank of the order statistic to use
for the lower bound of the prediction interval. When pi.type="lower", the
default value is lpl.rank=1 (implying the minimum value of x is used as the
lower bound of the prediction interval). When pi.type="upper", the argument
lpl.rank is set equal to 0.

n.plus.one.minus.upl.rank

vector of non-negative integers related to the rank of the order statistic to use for
the upper bound of the prediction interval. A value of n.plus.one.minus.upl.rank=1
means use the first largest value, and in general a value of n.plus.one.minus.upl.rank=i
means use the i’th largest value. When pi.type="upper", the default value
is n.plus.one.minus.upl.rank=1. When pi.type="lower", the argument
n.plus.one.minus.upl.rank is set equal to 0.

delta.over.sigma

numeric vector indicating the ratio ∆/σ. The quantity ∆ (delta) denotes the
difference between the mean of the population that was sampled to construct
the prediction interval, and the mean of the population that will be sampled to
produce the future observations. The quantity σ (sigma) denotes the population
standard deviation for both populations. The default value is delta.over.sigma=0.

pi.type character string indicating what kind of prediction interval to compute. The
possible values are "two.sided" (the default), "lower", and "upper".

r.shifted vector of positive integers specifying the number of future sampling occasions
for which the scaled mean is shifted by ∆/σ. All values must be integeters be-
tween 1 and the corresponding element of r. The default value is r.shifted=r.

method character string indicating what method to use to compute the power. The possi-
ble values are "approx" (approximation based on predIntNormSimultaneousTestPower;
the default) and "simulate" (Monte Carlo simulation).

NMC positive integer indicating the number of Monte Carlo trials to run when method="simulate".
The default value is NMC=100.

ci logical scalar indicating whether to compute a confidence interval for the power
when method="simulate". The default value is ci=FALSE.

ci.conf.level numeric scalar between 0 and 1 indicating the confidence level associated with
the confidence interval for the power. The argument is ignored if ci=FALSE or
method="approx".

integrate.args.list

list of arguments to supply to the integrate function. The default value is NULL.

Details

What is a Nonparametric Simultaneous Prediction Interval?
A nonparametric prediction interval for some population is an interval on the real line constructed
so that it will contain at least k of m future observations from that population with some specified
probability (1 − α)100%, where 0 < α < 1 and k and m are some pre-specified positive integers
and k ≤ m. The quantity (1−α)100% is called the confidence coefficient or confidence level asso-
ciated with the prediction interval. The function predIntNpar computes a standard nonparametric
prediction interval.

The function predIntNparSimultaneous computes a nonparametric simultaneous prediction in-
terval that will contain a certain number of future observations with probability (1 − α)100% for
each of r future sampling “occasions”, where r is some pre-specified positive integer. The quantity
r may refer to r distinct future sampling occasions in time, or it may for example refer to sam-
pling at r distinct locations on one future sampling occasion, assuming that the population standard
deviation is the same at all of the r distinct locations.
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The function predIntNparSimultaneous computes a nonparametric simultaneous prediction in-
terval based on one of three possible rules:

• For the k-of-m rule (rule="k.of.m"), at least k of the next m future observations will fall
in the prediction interval with probability (1 − α)100% on each of the r future sampling
occasions. If obserations are being taken sequentially, for a particular sampling occasion, up to
m observations may be taken, but once k of the observations fall within the prediction interval,
sampling can stop. Note: For this rule, when r = 1, the results of predIntNparSimultaneous
are equivalent to the results of predIntNpar.

• For the California rule (rule="CA"), with probability (1 − α)100%, for each of the r future
sampling occasions, either the first observation will fall in the prediction interval, or else all of
the next m− 1 observations will fall in the prediction interval. That is, if the first observation
falls in the prediction interval then sampling can stop. Otherwise, m − 1 more observations
must be taken.

• For the Modified California rule (rule="Modified.CA"), with probability (1 − α)100%, for
each of the r future sampling occasions, either the first observation will fall in the prediction
interval, or else at least 2 out of the next 3 observations will fall in the prediction interval. That
is, if the first observation falls in the prediction interval then sampling can stop. Otherwise, up
to 3 more observations must be taken.

Nonparametric simultaneous prediction intervals can be extended to using medians in place of sin-
gle observations (USEPA, 2009, Chapter 19). That is, you can create a nonparametric simultaneous
prediction interval that will contain a specified number of medians (based on which rule you choose)
on each of r future sampling occassions, where each each median is based on b individual observa-
tions. For the function predIntNparSimultaneous, the argument n.median corresponds to b.

The Form of a Nonparametric Prediction Interval
Let x = x1, x2, . . . , xn denote a vector of n independent observations from some continuous dis-
tribution, and let x(i) denote the the i’th order statistics in x. A two-sided nonparametric prediction
interval is constructed as:

[x(u), x(v)] (1)

where u and v are positive integers between 1 and n, and u < v. That is, u denotes the rank of
the lower prediction limit, and v denotes the rank of the upper prediction limit. To make it easier
to write some equations later on, we can also write the prediction interval (1) in a slightly different
way as:

[x(u), x(n+1−w)] (2)

where
w = n+ 1− v (3)

so that w is a positive integer between 1 and n− 1, and u < n+ 1− w. In terms of the arguments
to the function predIntNparSimultaneous, the argument lpl.rank corresponds to u, and the
argument n.plus.one.minus.upl.rank corresponds to w.

If we allow u = 0 and w = 0 and define lower and upper bounds as:

x(0) = lb (4)

x(n+1) = ub (5)

then Equation (2) above can also represent a one-sided lower or one-sided upper prediction interval
as well. That is, a one-sided lower nonparametric prediction interval is constructed as:

[x(u), x(n+1)] = [x(u), ub] (6)
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and a one-sided upper nonparametric prediction interval is constructed as:

[x(0), x(n+1−w)] = [lb, x(n+1−w)] (7)

Usually, lb = −∞ or lb = 0 and ub =∞.

Note: For nonparametric simultaneous prediction intervals, only lower (pi.type="lower") and
upper (pi.type="upper") prediction intervals are available.

Computing Power
The "power" of the prediction interval is defined as the probability that at least one set of future
observations violates the given rule based on a simultaneous prediction interval for the next r future
sampling occasions, where the population for the future observations is allowed to differ from the
population for the observations used to construct the prediction interval.

For the function predIntNparSimultaneousTestPower, power is computed assuming both the
background and future the observations come from normal distributions with the same standard
deviation, but the means of the distributions are allowed to differ. The quantity ∆ (upper case
delta) denotes the difference between the mean of the population that was sampled to construct
the prediction interval, and the mean of the population that will be sampled to produce the future
observations. The quantity σ (sigma) denotes the population standard deviation of both of these
populations. The argument delta.over.sigma corresponds to the quantity ∆/σ.

Approximate Power (method="approx")
Based on Gansecki (2009), the power of a nonparametric simultaneous prediction interval when
the underlying observations come from a nomral distribution can be approximated by the power of
a normal simultaneous prediction interval (see predIntNormSimultaneousTestPower) where the
multiplier K is replaced with the expected value of the normal order statistic that corresponds to
the rank of the order statistic used for the upper or lower bound of the prediction interval. Gansecki
(2009) uses the approximation:

K = Φ−1(
i− 0.5

n
) (8)

where Φ denotes the cumulative distribution function of the standard normal distribution and i de-
notes the rank of the order statistic used as the prediction limit. The function predIntNparSimultaneousTestPower
uses the exact value of the expected value of the normal order statistic by calling the function
evNormOrdStatsScalar.

Power Based on Monte Carlo Simulation (method="simulate")
When method="simulate", the power of the nonparametric simultaneous prediction interval is
estimated based on a Monte Carlo simulation. The argument NMC determines the number of Monte
Carlo trials. If ci=TRUE, a confidence interval for the power is created based on the NMC Monte
Carlo estimates of power.

Value

vector of values between 0 and 1 equal to the probability that the rule will be violated.

Note

See the help file for predIntNparSimultaneous.

In the course of designing a sampling program, an environmental scientist may wish to determine
the relationship between sample size, significance level, power, and scaled difference if one of the
objectives of the sampling program is to determine whether two distributions differ from each other.
The functions predIntNparSimultaneousTestPower and plotPredIntNparSimultaneousTestPowerCurve
can be used to investigate these relationships for the case of normally-distributed observations.
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Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

See the help file for predIntNparSimultaneous.

Gansecki, M. (2009). Using the Optimal Rank Values Calculator. US Environmental Protection
Agency, Region 8, March 10, 2009. http://www.epa.gov/osw/hazard/correctiveaction/
resources/guidance/sitechar/gwstats/calculator-use.pdf.

See Also

plotPredIntNparSimultaneousTestPowerCurve, predIntNparSimultaneous, predIntNparSimultaneousN,
predIntNparSimultaneousConfLevel, plotPredIntNparSimultaneousDesign, predIntNpar,
tolIntNpar.

Examples

# Example 19-5 of USEPA (2009, p. 19-33) shows how to compute nonparametric upper
# simultaneous prediction limits for various rules based on trace mercury data (ppb)
# collected in the past year from a site with four background wells and 10 compliance
# wells (data for two of the compliance wells are shown in the guidance document).
# The facility must monitor the 10 compliance wells for five constituents
# (including mercury) annually.

# Here we will compute the confidence levels and powers associated with
# two different sampling plans:
# 1) the 1-of-2 retesting plan for a median of order 3 using the
# background maximum and
# 2) the 1-of-4 plan on individual observations using the 3rd highest
# background value.
# Power will be computed assuming a normal distribution and setting
# delta.over.sigma equal to 2, 3, and 4.
# The data for this example are stored in EPA.09.Ex.19.5.mercury.df.

# We will pool data from 4 background wells that were sampled on
# a number of different occasions, giving us a sample size of
# n = 20 to use to construct the prediction limit.

# There are 10 compliance wells and we will monitor 5 different
# constituents at each well annually. For this example, USEPA (2009)
# recommends setting r to the product of the number of compliance wells and
# the number of evaluations per year.

# To determine the minimum confidence level we require for
# the simultaneous prediction interval, USEPA (2009) recommends
# setting the maximum allowed individual Type I Error level per constituent to:

# 1 - (1 - SWFPR)^(1 / Number of Constituents)

# which translates to setting the confidence limit to

# (1 - SWFPR)^(1 / Number of Constituents)

# where SWFPR = site-wide false positive rate. For this example, we

http://www.epa.gov/osw/hazard/correctiveaction/resources/guidance/sitechar/gwstats/calculator-use.pdf
http://www.epa.gov/osw/hazard/correctiveaction/resources/guidance/sitechar/gwstats/calculator-use.pdf
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# will set SWFPR = 0.1. Thus, the required individual Type I Error level
# and confidence level per constituent are given as follows:

# n = 20 based on 4 Background Wells
# nw = 10 Compliance Wells
# nc = 5 Constituents
# ne = 1 Evaluation per year

n <- 20
nw <- 10
nc <- 5
ne <- 1

# Set number of future sampling occasions r to
# Number Compliance Wells x Number Evaluations per Year
r <- nw * ne

conf.level <- (1 - 0.1)^(1 / nc)
conf.level
#[1] 0.9791484

# So the required confidence level is 0.98, or 98%.
# Now determine the confidence level associated with each plan.
# Note that both plans achieve the required confidence level.

# 1) the 1-of-2 retesting plan for a median of order 3 using the
# background maximum

predIntNparSimultaneousConfLevel(n = 20, n.median = 3, k = 1, m = 2, r = r)
#[1] 0.9940354

# 2) the 1-of-4 plan based on individual observations using the 3rd highest
# background value.

predIntNparSimultaneousConfLevel(n = 20, k = 1, m = 4, r = r,
n.plus.one.minus.upl.rank = 3)

#[1] 0.9864909

#------------------------------------------------------------------------------
# Compute approximate power of each plan to detect contamination at just 1 well
# assuming true underying distribution of Hg is Normal at all wells and
# using delta.over.sigma equal to 2, 3, and 4.
#------------------------------------------------------------------------------

# Computer aproximate power for
# 1) the 1-of-2 retesting plan for a median of order 3 using the
# background maximum

predIntNparSimultaneousTestPower(n = 20, n.median = 3, k = 1, m = 2, r = r,
delta.over.sigma = 2:4, r.shifted = 1)

#[1] 0.3953712 0.9129671 0.9983054

# Compute approximate power for
# 2) the 1-of-4 plan based on individual observations using the 3rd highest
# background value.
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predIntNparSimultaneousTestPower(n = 20, k = 1, m = 4, r = r,
n.plus.one.minus.upl.rank = 3, delta.over.sigma = 2:4, r.shifted = 1)

#[1] 0.4367972 0.8694664 0.9888779

#----------

# Compare estimated power using approximation method with estimated power
# using Monte Carlo simulation for the 1-of-4 plan based on individual
# observations using the 3rd highest background value.

predIntNparSimultaneousTestPower(n = 20, k = 1, m = 4, r = r,
n.plus.one.minus.upl.rank = 3, delta.over.sigma = 2:4, r.shifted = 1,
method = "simulate", ci = TRUE, NMC = 1000)

#[1] 0.437 0.863 0.989
#attr(,"conf.int")
# [,1] [,2] [,3]
#LCL 0.4111999 0.8451148 0.9835747
#UCL 0.4628001 0.8808852 0.9944253

#==========

# Cleanup
#--------
rm(n, nw, nc, ne, r, conf.level)

predIntPois Prediction Interval for a Poisson Distribution

Description

Estimate the mean of a Poisson distribution, and construct a prediction interval for the next k
observations or next set of k sums.

Usage

predIntPois(x, k = 1, n.sum = 1, method = "conditional",
pi.type = "two-sided", conf.level = 0.95, round.limits = TRUE)

Arguments

x numeric vector of observations, or an object resulting from a call to an estimat-
ing function that assumes a Poisson distribution (i.e., epois or epoisCensored).
If x is a numeric vector, missing (NA), undefined (NaN), and infinite (Inf, -Inf)
values are allowed but will be removed.

k positive integer specifying the number of future observations or sums the pre-
diction interval should contain with confidence level conf.level. The default
value is k=1.

n.sum positive integer specifying the sample size associated with the k future sums.
The default value is n.sum=1 (i.e., individual observations). Note that all future
sums must be based on the same sample size.
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method character string specifying the method to use. The possible values are "conditional"
(based on a conditional distribution; the default), "conditional.approx.normal"
(method based on approximating a conditional distribution with the standard
normal distribution), "conditional.approx.t" (method based on approximat-
ing a conditional distribution with Student’s t-distribution), and "normal.approx"
(approximate method based on the fact that the mean and varaince of a Poisson
distribution are the same). See the DETAILS section for more information on
these methods. The "conditional" method is only implemented for k=1; when
k is bigger than 1, the value of method cannot be "conditional".

pi.type character string indicating what kind of prediction interval to compute. The pos-
sible values are pi.type="two-sided" (the default), pi.type="lower", and
pi.type="upper".

conf.level a scalar between 0 and 1 indicating the confidence level of the prediction inter-
val. The default value is conf.level=0.95.

round.limits logical scalar indicating whether to round the computed prediction limits to the
nearest integer. The default value is round.limits=TRUE.

Details

A prediction interval for some population is an interval on the real line constructed so that it will
contain k future observations or averages from that population with some specified probability (1−
α)100%, where 0 < α < 1 and k is some pre-specified positive integer. The quantity (1 − α)100%
is call the confidence coefficient or confidence level associated with the prediction interval.

In the case of a Poisson distribution, we have modified the usual meaning of a prediction interval
and instead construct an interval that will contain k future observations or k future sums with a
certain confidence level.

A prediction interval is a random interval; that is, the lower and/or upper bounds are random vari-
ables computed based on sample statistics in the baseline sample. Prior to taking one specific
baseline sample, the probability that the prediction interval will contain the next k averages is
(1 − α)100%. Once a specific baseline sample is taken and the prediction interval based on that
sample is computed, the probability that that prediction interval will contain the next k averages is
not necessarily (1− a)100%, but it should be close.

If an experiment is repeated N times, and for each experiment:

1. A sample is taken and a (1 − a)100% prediction interval for k = 1 future observation is
computed, and

2. One future observation is generated and compared to the prediction interval,

then the number of prediction intervals that actually contain the future observation generated in
step 2 above is a binomial random variable with parameters size=N and prob=(1 − α)100% (see
Binomial).

If, on the other hand, only one baseline sample is taken and only one prediction interval for k = 1
future observation is computed, then the number of future observations out of a total of N future
observations that will be contained in that one prediction interval is a binomial random variable with
parameters size=N and prob=(1−α∗)100%, where α∗ depends on the true population parameters
and the computed bounds of the prediction interval.

Because of the discrete nature of the Poisson distribution, even if the true mean of the distribution λ
were known exactly, the actual confidence level associated with a prediction limit will usually not be
exactly equal to (1−α)100%. For example, for the Poisson distribution with parameter lambda=2,
the interval [0, 4] contains 94.7% of this distribution and the interval [0,5] contains 98.3% of this
distribution. Thus, no interval can contain exactly 95% of this distribution, so it is impossible to



886 predIntPois

construct an exact 95% prediction interval for the next k = 1 observation for a Poisson distribution
with parameter lambda=2.

The Form of a Poisson Prediction Interval
Let x = x1, x2, . . . , xn denote a vector of n observations from a Poisson distribution with parameter
lambda=λ. Also, let X denote the sum of these n random variables, i.e.,

X =

n∑
i=1

xi (1)

Finally, let m denote the sample size associated with the k future sums (i.e., n.sum=m). When
m = 1, each sum is really just a single observation, so in the rest of this help file the term “sums”
replaces the phrase “observations or sums”.

Let y = y1, y2, . . . , ym denote a vector of m future observations from a Poisson distribution with
parameter lambda=λ∗, and set Y equal to the sum of these m random variables, i.e.,

Y =

m∑
i=1

yi (2)

Then Y has a Poisson distribution with parameter lambda=mλ∗ (Johnson et al., 1992, p.160). We
are interested in constructing a prediction limit for the next value of Y , or else the next k sums of
m Poisson random variables, based on the observed value of X and assuming λ∗ = λ.

For a Poisson distribution, the form of a two-sided prediction interval is:

[mx̄−K,mx̄+K] = [cX −K, cX +K] (3)

where

x̄ =
X

n
=

n∑
i=1

xi (4)

c =
m

n
(5)

and K is a constant that depends on the sample size n, the confidence level (1 − α)100%, the
number of future sums k, and the sample size associated with the future sums m. Do not confuse
the constant K (uppercase K) with the number of future sums k (lowercase k). The symbol K is
used here to be consistent with the notation used for prediction intervals for the normal distribution
(see predIntNorm).

Similarly, the form of a one-sided lower prediction interval is:

[mx̄−K,∞] = [cX −K,∞] (6)

and the form of a one-sided upper prediction interval is:

[0,mx̄+K] = [0, cX +K] (7)

The derivation of the constant K is explained below.

Conditional Distribution (method="conditional")
Nelson (1970) derives a prediction interval for the case k = 1 based on the conditional distribution
of Y given X + Y . He notes that the conditional distribution of Y given the quantity X + Y = w
is binomial with parameters size=w and prob=[mλ∗/(mλ∗ + nλ)] (Johnson et al., 1992, p.161).
When k = 1, the prediction limits are computed as those most extreme values of Y that still yield
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a non-significant test of the hypothesis H0 : λ∗ = λ, which for the conditional distribution of Y is
equivalent to the hypothesis H0: prob=[m /(m + n)].

Using the relationship between the binomial and F-distribution (see the explanation of exact con-
fidence intervals in the help file for ebinom), Nelson (1982, p. 203) states that exact two-sided
(1 − α)100% prediction limits [LPL, UPL] are the closest integer solutions to the following equa-
tions:

m

LPL+ 1
=

n

X
F (2LPL+ 2, 2X, 1− α/2) (8)

UPL

n
=
X + 1

n
F (2X + 2, 2UPL, 1− α/2) (9)

where F (ν1, ν2, p) denotes the p’th quantile of the F-distribution with ν1 and ν2 degrees of freedom.

If ci.type="lower", α/2 is replaced with α in Equation (8) above for LPL, and UPL is set to
∞.

If ci.type="upper", α/2 is replaced with α in Equation (9) above for UPL, and LPL is set to 0.

NOTE: This method is not extended to the case k > 1.

Conditional Distribution Approximation Based on Normal Distribution
(method="conditional.approx.normal")
Cox and Hinkley (1974, p.245) derive an approximate prediction interval for the case k = 1. Like
Nelson (1970), they note that the conditional distribution of Y given the quantity X + Y = w
is binomial with parameters size=w and prob=[mλ∗/(mλ∗ + nλ)], and that the hypothesis H0 :
λ∗ = λ is equivalent to the hypothesis H0: prob=[m /(m + n)].

Cox and Hinkley (1974, p.245) suggest using the normal approximation to the binomial distribution
(in this case, without the continuity correction; see Zar, 2010, pp.534-536 for information on the
continuity correction associated with the normal approximation to the binomial distribution). Under
the null hypothesis H0 : λ∗ = λ, the quantity

z = [Y − c(X + Y )

1 + c
]/{[c(X + Y )

(1 + c)2
]1/2} (10)

is approximately distributed as a standard normal random variable.

The Case When k = 1
When k = 1 and pi.type="two-sided", the prediction limits are computed by solving the equa-
tion

z2 ≤ z2
1−α/2 (11)

where zp denotes the p’th quantile of the standard normal distribution. In this case, Gibbons (1987b)
notes that the quantity K in Equation (3) above is given by:

K =
t2c

2
tc[X(1 +

1

c
) +

t2

4
]1/2 (12)

where t = z1−α/2.

When pi.type="lower" or pi.type="upper", K is computed exactly as above, except t is set to
t = z1−α.

The Case When k > 1
When k > 1, Gibbons (1987b) suggests using the Bonferroni inequality. That is, the value of K
is computed exactly as for the case k = 1 described above, except that the Bonferroni value of t is
used in place of the usual value of t:

When pi.type="two-side", t = z1−(α/k)/2.
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When pi.type="lower" or pi.type="upper", t = z1−α/k.

Conditional Distribution Approximation Based on Student’s t-Distribution
(method="conditional.approx.t")
When method="conditional.approx.t", the exact same procedure is used as when method="conditional.approx.normal",
except that the quantity in Equation (10) is assumed to follow a Student’s t-distribution with n− 1
degrees of freedom. Thus, all occurrences of zp are replaced with tn−1,p, where tν,p denotes the
p’th quantile of Student’s t-distribution with ν degrees of freedom.

Normal Approximation (method="normal.approx")
The normal approximation for Poisson prediction limits was given by Nelson (1970; 1982, p.203)
and is based on the fact that the mean and variance of a Poisson distribution are the same (Johnson
et al, 1992, p.157), and for “large” values of n and m, both X and Y are approximately normally
distributed.

The Case When k = 1
The quantity Y − cX is approximately normally distributed with expectation and variance given
by:

E(Y − cX) = E(Y )− cE(X) = mλ− cnλ = 0 (13)

V ar(Y − cX) = V ar(Y ) + c2V ar(X) = mλ+ c2nλ = mλ(1 +
m

n
) (14)

so the quantity

z =
Y − cX√
mλ̂(1 + m

n )
=

Y − cX√
mx̄(1 + m

n )
(15)

is approximately distributed as a standard normal random variable. The function predIntPois,
however, assumes this quantity is distributed as approximately a Student’s t-distribution with n− 1
degrees of freedom.

Thus, following the idea of prediction intervals for a normal distribution (see predIntNorm), when
pi.type="two-sided", the constant K for a (1 − α)100% prediction interval for the next k = 1
sum of m observations is computed as:

K = tn−1,1−α/2

√
mx̄(1 +

m

n
) (16)

where tν,p denotes the p’th quantile of a Student’s t-distribution with ν degrees of freedom.

Similarly, when pi.type="lower" or pi.type="upper", the constant K is computed as:

K = tn−1,1−α

√
mx̄(1 +

m

n
) (17)

The Case When k > 1
When k > 1, the value of K is computed exactly as for the case k = 1 described above, except that
the Bonferroni value of t is used in place of the usual value of t:

When pi.type="two-sided",

K = tn−1,1−(α/k)/2

√
mx̄(1 +

m

n
) (18)

When pi.type="lower" or pi.type="upper",

K = tn−1,1−(α/k)

√
mx̄(1 +

m

n
) (19)

Hahn and Nelson (1973, p.182) discuss another method of computing K when k > 1, but this
method is not implemented here.
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Value

If x is a numeric vector, predIntPois returns a list of class "estimate" containing the estimated
parameter, the prediction interval, and other information. See the help file for
estimate.object for details.

If x is the result of calling an estimation function, predIntPois returns a list whose class is the
same as x. The list contains the same components as x, as well as a component called interval
containing the prediction interval information. If x already has a component called interval, this
component is replaced with the prediction interval information.

Note

Prediction and tolerance intervals have long been applied to quality control and life testing prob-
lems. Nelson (1970) notes that his development of confidence and prediction limits for the Poisson
distribution is based on well-known results dating back to the 1950’s. Hahn and Nelson (1973)
review predicion intervals for several distributions, including Poisson prediction intervals. The
mongraph by Hahn and Meeker (1991) includes a discussion of Poisson prediction intervals.

Gibbons (1987b) uses the Poisson distribution to model the number of detected compounds per scan
of the 32 volatile organic priority pollutants (VOC), and also to model the distribution of chemical
concentration (in ppb), and presents formulas for prediction and tolerance intervals. The formulas
for prediction intervals are based on Cox and Hinkley (1974, p.245). Gibbons (1987b) only deals
with the case where n.sum=1.

Gibbons et al. (2009, pp. 72–76) discuss methods for Poisson prediction limits.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References
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245.
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See Also

Poisson, epois, estimate.object, Prediction Intervals, tolIntPois, Estimating Distribution Pa-
rameters.

Examples

# Generate 20 observations from a Poisson distribution with parameter
# lambda=2. The interval [0, 4] contains 94.7% of this distribution and
# the interval [0,5] contains 98.3% of this distribution. Thus, because
# of the discrete nature of the Poisson distribution, no interval contains
# exactly 95% of this distribution. Use predIntPois to estimate the mean
# parameter of the true distribution, and construct a one-sided upper
# 95% prediction interval for the next single observation from this distribution.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(250)
dat <- rpois(20, lambda = 2)

predIntPois(dat, pi.type = "upper")

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Poisson
#
#Estimated Parameter(s): lambda = 1.8
#
#Estimation Method: mle/mme/mvue
#
#Data: dat
#
#Sample Size: 20
#
#Prediction Interval Method: conditional
#
#Prediction Interval Type: upper
#
#Confidence Level: 95%
#
#Number of Future Observations: 1
#
#Prediction Interval: LPL = 0
# UPL = 5

#----------

# Compare results above with the other approximation methods:

predIntPois(dat, method = "conditional.approx.normal",
pi.type = "upper")$interval$limits

#LPL UPL
# 0 4

predIntPois(dat, method = "conditional.approx.t",
pi.type = "upper")$interval$limits
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#LPL UPL
# 0 4

predIntPois(dat, method = "normal.approx",
pi.type = "upper")$interval$limits

#LPL UPL
# 0 4
#Warning message:
#In predIntPois(dat, method = "normal.approx", pi.type = "upper") :
# Estimated value of lambda and/or number of future observations
# is/are probably too small for the normal approximation to work well.

#==========

# Using the same data as in the previous example, compute a one-sided
# upper 95% prediction limit for k=10 future observations.

# Using conditional approximation method based on the normal distribution.

predIntPois(dat, k = 10, method = "conditional.approx.normal",
pi.type = "upper")

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Poisson
#
#Estimated Parameter(s): lambda = 1.8
#
#Estimation Method: mle/mme/mvue
#
#Data: dat
#
#Sample Size: 20
#
#Prediction Interval Method: conditional.approx.normal
#
#Prediction Interval Type: upper
#
#Confidence Level: 95%
#
#Number of Future Observations: 10
#
#Prediction Interval: LPL = 0
# UPL = 6

# Using method based on approximating conditional distribution with
# Students t-distribution

predIntPois(dat, k = 10, method = "conditional.approx.t",
pi.type = "upper")$interval$limits

#LPL UPL
# 0 6

#==========
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# Repeat the above example, but set k=5 and n.sum=3. Thus, we want a
# 95% upper prediction limit for the next 5 sets of sums of 3 observations.

predIntPois(dat, k = 5, n.sum = 3, method = "conditional.approx.t",
pi.type = "upper")$interval$limits

#LPL UPL
# 0 12

#==========

# Reproduce Example 3.6 in Gibbons et al. (2009, p. 75)
# A 32-constituent VOC scan was performed for n=16 upgradient
# samples and there were 5 detections out of these 16. We
# want to construct a one-sided upper 95% prediction limit
# for 20 monitoring wells (so k=20 future observations) based
# on these data.

# First we need to create a data set that will yield a mean
# of 5/16 based on a sample size of 16. Any number of data
# sets will do. Here are two possible ones:

dat <- c(rep(1, 5), rep(0, 11))
dat <- c(2, rep(1, 3), rep(0, 12))

# Now call predIntPois. Dont round the limits so we can
# compare to the example in Gibbons et al. (2009).

predIntPois(dat, k = 20, method = "conditional.approx.t",
pi.type = "upper", round.limits = FALSE)

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Poisson
#
#Estimated Parameter(s): lambda = 0.3125
#
#Estimation Method: mle/mme/mvue
#
#Data: dat
#
#Sample Size: 16
#
#Prediction Interval Method: conditional.approx.t
#
#Prediction Interval Type: upper
#
#Confidence Level: 95%
#
#Number of Future Observations: 20
#
#Prediction Interval: LPL = 0.000000
# UPL = 2.573258

#==========
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# Cleanup
#--------
rm(dat)

print.boxcox Print Output of Objective for Box-Cox Power Transformations

Description

Formats and prints the results of calling the function boxcox. This method is automatically called by
print when given an object of class "boxcox". The names of other functions involved in Box-Cox
transformations are listed under Data Transformations.

Usage

## S3 method for class boxcox
print(x, ...)

Arguments

x an object of class "boxcox". See boxcox.object for details.

... arguments that can be supplied to the format function.

Details

This is the "boxcox" method for the generic function print. Prints the objective name, the name
of the data object used, the sample size, the values of the powers, and the values of the objective. In
the case of optimization, also prints the range of powers over which the optimization took place.

Value

Invisibly returns the input x.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Chambers, J. M. and Hastie, T. J. (1992). Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

boxcox, boxcox.object, plot.boxcox, Data Transformations, print.
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print.boxcoxCensored Print Output of Objective for Box-Cox Power Transformations Based
on Type I Censored Data

Description

Formats and prints the results of calling the function boxcoxCensored. This method is automati-
cally called by print when given an object of class "boxcoxCensored".

Usage

## S3 method for class boxcoxCensored
print(x, ...)

Arguments

x an object of class "boxcoxCensored". See boxcoxCensored.object for de-
tails.

... arguments that can be supplied to the format function.

Details

This is the "boxcoxCensored" method for the generic function print. Prints the objective name,
the name of the data object used, the sample size, the percentage of censored observations, the
values of the powers, and the values of the objective. In the case of optimization, also prints the
range of powers over which the optimization took place.

Value

Invisibly returns the input x.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Chambers, J. M. and Hastie, T. J. (1992). Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

boxcoxCensored, boxcoxCensored.object, plot.boxcoxCensored, Data Transformations, print.
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print.boxcoxLm Print Output of Objective for Box-Cox Power Transformations for an
"lm" Object

Description

Formats and prints the results of calling the function boxcox when the argument x supplied to
boxcox is an object of class "lm". This method is automatically called by print when given an
object of class "boxcoxLm". The names of other functions involved in Box-Cox transformations are
listed under Data Transformations.

Usage

## S3 method for class boxcoxLm
print(x, ...)

Arguments

x an object of class "boxcoxLm". See boxcoxLm.object for details.

... arguments that can be supplied to the format function.

Details

This is the "boxcoxLm" method for the generic function print. Prints the objective name, the
details of the "lm" object used, the sample size, the values of the powers, and the values of the
objective. In the case of optimization, also prints the range of powers over which the optimization
took place.

Value

Invisibly returns the input x.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Chambers, J. M. and Hastie, T. J. (1992). Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

boxcox, boxcoxLm.object, plot.boxcoxLm, Data Transformations, print.



896 print.estimate

print.estimate Print Objects of Class "estimate"

Description

Formats and prints the results of EnvStats functions that estimate the parameters or quantiles of a
probability distribution and optionally construct confidence, prediction, or tolerance intervals based
on a sample of data assumed to come from that distribution. This method is automatically called by
print when given an object of class "estimate".

See the help files Estimating Distribution Parameters and Estimating Distribution Quantiles for
lists of functions that estimate distribution parameters and quantiles. See the help files Prediction
Intervals and Tolerance Intervals for lists of functions that create prediction and tolerance intervals.

Usage

## S3 method for class estimate
print(x, conf.cov.sig.digits = .Options$digits,
limits.sig.digits = .Options$digits, ...)

Arguments

x an object of class "estimate". See estimate.object for details.
conf.cov.sig.digits

numeric scalar indicating the number of significant digits to print for the confi-
dence level or coverage of a confidence, prediction, or tolerance interval.

limits.sig.digits

numeric scalar indicating the number of significant digits to print for the upper
and lower limits of a confidence, prediction, or tolerance interval.

... arguments that can be supplied to the format function.

Details

This is the "estimate" method for the generic function print. Prints estimated parameters and, if
present in the object, information regarding confidence, prediction, or tolerance intervals.

Value

Invisibly returns the input x.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Chambers, J. M. and Hastie, T. J. (1992). Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

estimate.object, Estimating Distribution Parameters, Estimating Distribution Quantiles, Predic-
tion Intervals, Tolerance Intervals, print.
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print.estimateCensored

Print Objects of Class "estimateCensored"

Description

Formats and prints the results of EnvStats functions that estimate the parameters or quantiles of a
probability distribution and optionally construct confidence, prediction, or tolerance intervals based
on a sample of Tyep I censored data assumed to come from that distribution. This method is
automatically called by print when given an object of class "estimateCensored".

See the subsections Estimating Distribution Parameters and Estimating Distribution Quantiles in
the help file Censored Data for lists of functions that estimate distribution parameters and quantiles
based on Type I censored data.

See the subsection Prediction and Tolerance Intervals in the help file Censored Data for lists of
functions that create prediction and tolerance intervals.

Usage

## S3 method for class estimateCensored
print(x, show.cen.levels = TRUE,
pct.censored.digits = .Options$digits,
conf.cov.sig.digits = .Options$digits, limits.sig.digits = .Options$digits,
...)

Arguments

x an object of class "estimateCensored". See estimateCensored.object for
details.

show.cen.levels

logical scalar indicating whether to print the censoring levels. The default is
show.cen.levels=TRUE.

pct.censored.digits

numeric scalar indicating the number of significant digits to print for the percent
of censored observations.

conf.cov.sig.digits

numeric scalar indicating the number of significant digits to print for the confi-
dence level or coverage of a confidence, prediction, or tolerance interval.

limits.sig.digits

numeric scalar indicating the number of significant digits to print for the upper
and lower limits of a confidence, prediction, or tolerance interval.

... arguments that can be supplied to the format function.

Details

This is the "estimateCensored" method for the generic function print. Prints estimated pa-
rameters and, if present in the object, information regarding confidence, prediction, or tolerance
intervals.

Value

Invisibly returns the input x.
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Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Chambers, J. M. and Hastie, T. J. (1992). Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

estimateCensored.object, Censored Data, print.

print.gof Print Output of Goodness-of-Fit Tests

Description

Formats and prints the results of performing a goodness-of-fit test. This method is automatically
called by print when given an object of class "gof". The names of the functions that perform
goodness-of-fit tests and that produce objects of class "gof" are listed under Goodness-of-Fit Tests.

Usage

## S3 method for class gof
print(x, ...)

Arguments

x an object of class "gof". See gof.object for details.

... arguments that can be supplied to the format function.

Details

This is the "gof" method for the generic function print. Prints name of the test, hypothesized
distribution, estimated population parameter(s), estimation method, data name, sample size, value
of the test statistic, parameters associated with the null distribution of the test statistic, p-value
associated with the test statistic, and the alternative hypothesis.

Value

Invisibly returns the input x.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Chambers, J. M. and Hastie, T. J. (1992). Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

Goodness-of-Fit Tests, gof.object, print.
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print.gofCensored Print Output of Goodness-of-Fit Tests Based on Censored Data

Description

Formats and prints the results of performing a goodness-of-fit test. This method is automatically
called by print when given an object of class "gofCensored". Currently, the only function that
produces an object of this class is gofTestCensored.

Usage

## S3 method for class gofCensored
print(x, ...)

Arguments

x an object of class "gofCensored". See gofCensored.object for details.

... arguments that can be supplied to the format function.

Details

This is the "gofCensored" method for the generic function print. Prints name of the test, hypoth-
esized distribution, estimated population parameter(s), estimation method, data name, sample size,
censoring information, value of the test statistic, parameters associated with the null distribution of
the test statistic, p-value associated with the test statistic, and the alternative hypothesis.

Value

Invisibly returns the input x.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Chambers, J. M. and Hastie, T. J. (1992). Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

Censored Data, gofCensored.object, print.
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print.gofGroup Print Output of Group Goodness-of-Fit Tests

Description

Formats and prints the results of performing a group goodness-of-fit test. This method is automat-
ically called by print when given an object of class "gofGroup". Currently, the only EnvStats
function that performs a group goodness-of-fit test that produces an object of class "gofGroup" is
gofGroupTest.

Usage

## S3 method for class gofGroup
print(x, ...)

Arguments

x an object of class "gofGroup". See gofGroup.object for details.

... arguments that can be supplied to the format function.

Details

This is the "gofGroup" method for the generic function print. See the help file for gofGroup.object
for information on the information contained in this kind of object.

Value

Invisibly returns the input x.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Chambers, J. M. and Hastie, T. J. (1992). Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

Goodness-of-Fit Tests, gofGroup.object, print.
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print.gofTwoSample Print Output of Two-Sample Goodness-of-Fit Tests

Description

Formats and prints the results of performing a two-sample goodness-of-fit test. This method is
automatically called by print when given an object of class "gofTwoSample". Currently, the only
EnvStats function that performs a two-sample goodness-of-fit test that produces an object of class
"gofTwoSample" is gofTest.

Usage

## S3 method for class gofTwoSample
print(x, ...)

Arguments

x an object of class "gofTwoSample". See gofTwoSample.object for details.

... arguments that can be supplied to the format function.

Details

This is the "gofTwoSample" method for the generic function print. See the help file for gofTwoSample.object
for information on the information contained in this kind of object.

Value

Invisibly returns the input x.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Chambers, J. M. and Hastie, T. J. (1992). Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

Goodness-of-Fit Tests, gofTwoSample.object, print.
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print.htest Print Output of Hypothesis Tests

Description

Formats and prints the results of performing a hypothesis test. This method is automatically called
by print when given an object of class "htest". The names of the EnvStats functions that perform
hypothesis tests and that produce objects of class "htest" are listed under Hypothesis Tests.

Usage

## S3 method for class htest
print(x, ...)

Arguments

x an object of class "htest". See htest.object for details.

... arguments that can be supplied to the format function.

Details

This is the "htest" method for the generic function print. Prints null and alternative hypotheses,
name of the test, estimated population parameter(s) involved in the null hypothesis, estimation
method (if present), data name, sample size (if present), number of missing observations removed
prior to performing the test (if present), value of the test statistic, parameters associated with the
null distribution of the test statistic, p-value associated with the test statistic, and confidence interval
for the population parameter (if present).

Value

Invisibly returns the input x.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Chambers, J. M. and Hastie, T. J. (1992). Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

Hypothesis Tests, htest.object, print.
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print.htestCensored Print Output of Hypothesis Tests Based on Censored Data

Description

Formats and prints the results of performing a hypothesis test based on censored data. This method
is automatically called by print when given an object of class "htestCensored". The names of the
EnvStats functions that perform hypothesis tests based on censored data and that produce objects
of class "htestCensored" are listed in the section Hypothesis Tests in the help file EnvStats Func-
tions for Censored Data. Currently, the only function listed is twoSampleLinearRankTestCensored.

Usage

## S3 method for class htestCensored
print(x, show.cen.levels = TRUE, ...)

Arguments

x an object of class "htestCensored". See htestCensored.object for details.
show.cen.levels

logical scalar indicating whether to print the censoring levels. The default value
is show.cen.levels=TRUE.

... arguments that can be supplied to the format function.

Details

This is the "htestCensored" method for the generic function print. Prints null and alternative
hypotheses, name of the test, censoring side, estimated population parameter(s) involved in the null
hypothesis, estimation method (if present), data name, censoring variable, sample size (if present),
percent of observations that are censored, number of missing observations removed prior to per-
forming the test (if present), value of the test statistic, parameters associated with the null distri-
bution of the test statistic, p-value associated with the test statistic, and confidence interval for the
population parameter (if present).

Value

Invisibly returns the input x.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Chambers, J. M. and Hastie, T. J. (1992). Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

Censored Data, htestCensored.object, print.



904 print.permutationTest

print.permutationTest Print Output of Permutation Tests

Description

Formats and prints the results of performing a permutation test. This method is automatically
called by print when given an object of class "permutationTest". Currently, the EnvStats
functions that perform permutation tests and produce objects of class "permutationTest" are:
oneSamplePermutationTest, twoSamplePermutationTestLocation, and twoSamplePermutationTestProportion.

Usage

## S3 method for class permutationTest
print(x, ...)

Arguments

x an object of class "permutationTest". See permutationTest.object for de-
tails.

... arguments that can be supplied to the format function.

Details

This is the "permutationTest" method for the generic function print. Prints null and alternative
hypotheses, name of the test, estimated population parameter(s) involved in the null hypothesis,
estimation method (if present), data name, sample size (if present), number of missing observations
removed prior to performing the test (if present), value of the test statistic, parameters associated
with the null distribution of the test statistic, and p-value associated with the test statistic.

Value

Invisibly returns the input x.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Chambers, J. M. and Hastie, T. J. (1992). Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

permutationTest.object, oneSamplePermutationTest, twoSamplePermutationTestLocation,
twoSamplePermutationTestProportion, Hypothesis Tests, print.
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print.summaryStats Print Summary Statistics

Description

Formats and prints the results of calling summaryStats or summaryFull. This method is automati-
cally called by print when given an object of class "summaryStats".

Usage

## S3 method for class summaryStats
print(x, ...)

Arguments

x an object of class "summaryStats". See summaryStats.object for details.

... arguments that can be supplied to the format function.

Details

This is the "summaryStats" method for the generic function print. Prints summary statistics.

Value

Invisibly returns the input x.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Chambers, J. M. and Hastie, T. J. (1992). Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

summaryStats, summaryFull, summaryStats.object, print.

propTestMdd Minimal Detectable Difference Associated with a One- or Two-Sample
Proportion Test

Description

Compute the minimal detectable difference associated with a one- or two-sample proportion test,
given the sample size, power, and significance level.
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Usage

propTestMdd(n.or.n1, n2 = n.or.n1, p0.or.p2 = 0.5, alpha = 0.05, power = 0.95,
sample.type = "one.sample", alternative = "two.sided",
two.sided.direction = "greater", approx = TRUE,
correct = sample.type == "two.sample", warn = TRUE,
return.exact.list = TRUE, tol = 1e-07, maxiter = 1000)

Arguments

n.or.n1 numeric vector of sample sizes. When sample.type="one.sample", this ar-
gument denotes n, the number of observations in the single sample. When
sample.type="two.sample", this argument denotes n1, the number of obser-
vations from group 1. Missing (NA), undefined (NaN), and infinite (Inf, -Inf)
values are not allowed.

n2 numeric vector of sample sizes for group 2. The default value is n2=n.or.n1.
This argument is ignored when sample.type="one.sample". Missing (NA),
undefined (NaN), and infinite (Inf, -Inf) values are not allowed.

p0.or.p2 numeric vector of proportions. When sample.type="one.sample", this argu-
ment denotes the hypothesized value of p, the probability of dQuotesuccess.
When sample.type="two.sample", this argument denotes the value of p2, the
probability of dQuotesuccess in group 2. The default value is
p0.or.p2=0.5. Missing (NA), undefined (NaN), and infinite (Inf, -Inf) values
are not allowed.

alpha numeric vector of numbers between 0 and 1 indicating the Type I error level
associated with the hypothesis test. The default value is alpha=0.05.

power numeric vector of numbers between 0 and 1 indicating the power associated with
the hypothesis test. The default value is power=0.95.

sample.type character string indicating whether to compute power based on a one-sample or
two-sample hypothesis test. When sample.type="one.sample", the computed
power is based on a hypothesis test for a single proportion. When
sample.type="two.sample", the computed power is based on a hypothesis test
for the difference between two proportions. The default value is
sample.type="one.sample".

alternative character string indicating the kind of alternative hypothesis. The possible val-
ues are "two.sided" (the default), "less", and "greater".

two.sided.direction

character string indicating the direction (positive or negative) for the minimal de-
tectable difference when alternative="two.sided". When two.sided.direction="greater"
(the default), the minimal detectable difference is positive. When two.sided.direction="less",
the minimal detectable difference is negative. This argument is ignored if alternative="less"
or alternative="greater".

approx logical scalar indicating whether to compute the power based on the normal
approximation to the binomial distribution. The default value is approx=TRUE.
Currently, the exact method (approx=FALSE) is only available for the one-sample
case (i.e., sample.type="one.sample").

correct logical scalar indicating whether to use the continuity correction when
approx=TRUE. The default value is approx=TRUE when
sample.type="two.sample" and approx=FALSE when
sample.type="one.sample". This argument is ignored when
approx=FALSE.
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warn logical scalar indicating whether to issue a warning. The default value is
warn=TRUE. When approx=TRUE (power based on the normal approximation)
and warn=TRUE, a warning is issued for cases when the normal approximation
to the binomial distribution probably is not accurate. When
approx=FALSE (power based on the exact test) and warn=TRUE, a warning is
issued when the user-supplied sample size is too small to yield a significance
level less than or equal to the user-supplied value of alpha.

return.exact.list

logical scalar relevant to the case when approx=FALSE (i.e., when the power is
based on the exact test). This argument indicates whether to return a list contain-
ing extra information about the exact test in addition to the power of the exact
test. By default, propTestMdd returns only a vector containing the computed
minimal detectable difference(s) (see the VALUE section below). When
return.exact.list=TRUE (the default) and approx=FALSE,
propTestMdd returns a list with components indicating the minimal detectable
difference(s), power of the exact test, the true significance level associated with
the exact test, and the critical values associated with the exact test (see the DE-
TAILS section for more information).

tol numeric scalar passed to the uniroot function that indicates the tolerance to use
in the search algorithm. The default value is tol=1e-7.

maxiter integer passed to the uniroot function that indicates the maximum number of
iterations to use in the search algorithm. The default value is maxiter=1000.

Details

If the arguments n.or.n1, n2, p0.or.p2, alpha, and power are not all the same length, they are
replicated to be the same length as the length of the longest argument.

One-Sample Case (sample.type="one.sample")
The help file for propTestPower gives references that explain how the power of the one-sample
proportion test is computed based on the values of p0 (the hypothesized value for p, the probability
of “success”), p (the true value of p), the sample size n, and the Type I error level α. The function
propTestMdd computes the value of the minimal detectable difference p − p0 for specified values
of sample size, power, and Type I error level by calling the uniroot function to perform a search.

Two-Sample Case (sample.type="two.sample")
The help file for propTestPower gives references that explain how the power of the two-sample
proportion test is computed based on the values of p1 (the value of the probability of “success” for
group 1), p2 (the value of the probability of “success” for group 2), the sample sizes for groups 1
and 2 (n1 and n2), and the Type I error level α. The function propTestMdd computes the value of
the minimal detectable difference p1 − p2 for specified values of sample size, power, and Type I
error level by calling the uniroot function to perform a search.

Value

Approximate Test (approx=TRUE). numeric vector of minimal detectable differences.

Exact Test (approx=FALSE). If return.exact.list=FALSE, propTestMdd returns a numeric vec-
tor of minimal detectable differences.

If return.exact.list=TRUE, propTestMdd returns a list with the following components:

delta numeric vector of minimal detectable differences.

power numeric vector of powers.



908 propTestMdd

alpha numeric vector containing the true significance levels. Because of the discrete
nature of the binomial distribution, the true significance levels usually do not
equal the significance level supplied by the user in the argument alpha.

q.critical.lower

numeric vector of lower critical values for rejecting the null hypothesis. If the
observed number of "successes" is less than or equal to these values, the null
hypothesis is rejected. (Not present if alternative="greater".)

q.critical.upper

numeric vector of upper critical values for rejecting the null hypothesis. If the
observed number of "successes" is greater than these values, the null hypothesis
is rejected. (Not present if alternative="less".)

Note

See the help file for propTestPower.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

See the help file for propTestPower.

See Also

propTestPower, propTestN, plotPropTestDesign, prop.test, binom.test.

Examples

# Look at how the minimal detectable difference of the one-sample
# proportion test increases with increasing required power:

seq(0.5, 0.9, by = 0.1)
#[1] 0.5 0.6 0.7 0.8 0.9

mdd <- propTestMdd(n.or.n1 = 50, power = seq(0.5, 0.9, by=0.1))

round(mdd, 2)
#[1] 0.14 0.16 0.17 0.19 0.22

#----------

# Repeat the last example, but compute the minimal detectable difference
# based on the exact test instead of the approximation. Note that with a
# sample size of 50, the largest significance level less than or equal to
# 0.05 for the two-sided alternative is 0.03.

mdd.list <- propTestMdd(n.or.n1 = 50, power = seq(0.5, 0.9, by = 0.1),
approx = FALSE)

lapply(mdd.list, round, 2)
#$delta
#[1] 0.15 0.17 0.18 0.20 0.23
#
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#$power
#[1] 0.5 0.6 0.7 0.8 0.9
#
#$alpha
#[1] 0.03 0.03 0.03 0.03 0.03
#
#$q.critical.lower
#[1] 17 17 17 17 17
#
#$q.critical.upper
#[1] 32 32 32 32 32

#==========

# Look at how the minimal detectable difference for the two-sample
# proportion test decreases with increasing sample sizes. Note that for
# the specified significance level, power, and true proportion in group 2,
# no minimal detectable difference is attainable for a sample size of 10 in
# each group.

seq(10, 50, by=10)
#[1] 10 20 30 40 50

propTestMdd(n.or.n1 = seq(10, 50, by = 10), p0.or.p2 = 0.5,
sample.type = "two", alternative="greater")

#[1] NA 0.4726348 0.4023564 0.3557916 0.3221412
#Warning messages:
#1: In propTestMdd(n.or.n1 = seq(10, 50, by = 10), p0.or.p2 = 0.5,
# sample.type = "two", :
# Elements with a missing value (NA) indicate no attainable minimal detectable
# difference for the given values of n1, n2, p2, alpha, and power
#2: In propTestMdd(n.or.n1 = seq(10, 50, by = 10), p0.or.p2 = 0.5,
# sample.type = "two", :
# The sample sizes n1 and n2 are too small, relative to the computed value
# of p1 and the given value of p2, for the normal approximation to work
# well for the following element indices:
# 2 3

#----------

# Look at how the minimal detectable difference for the two-sample proportion
# test decreases with increasing values of Type I error:

mdd <- propTestMdd(n.or.n1 = 100, n2 = 120, p0.or.p2 = 0.4, sample.type = "two",
alpha = c(0.01, 0.05, 0.1, 0.2))

round(mdd, 2)
#[1] 0.29 0.25 0.23 0.20

#----------

# Clean up
#---------
rm(mdd, mdd.list)

#==========
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# Modifying the example on pages 8-5 to 8-7 of USEPA (1989b), determine the
# minimal detectable difference to detect a difference in the proportion of
# detects of cadmium between the background and compliance wells. Set the
# compliance well to "group 1" and the background well to "group 2". Assume
# the true probability of a "detect" at the background well is 1/3, use a
# 5% significance level, use 80%, 90%, and 95% power, use the given sample
# sizes of 64 observations at the compliance well and 24 observations at the
# background well, and use the upper one-sided alternative (probability of a
# "detect" at the compliance well is greater than the probability of a "detect"
# at the background well).
# (The data are stored in EPA.89b.cadmium.df.)
#
# Note that the minimal detectable difference increases from 0.32 to 0.37 to 0.40 as
# the required power increases from 80% to 90% to 95%. Thus, in order to detect a
# difference in probability of detection between the compliance and background
# wells, the probability of detection at the compliance well must be 0.65, 0.70,
# or 0.74 (depending on the required power).

EPA.89b.cadmium.df
# Cadmium.orig Cadmium Censored Well.type
#1 0.1 0.100 FALSE Background
#2 0.12 0.120 FALSE Background
#3 BDL 0.000 TRUE Background
# ..........................................
#86 BDL 0.000 TRUE Compliance
#87 BDL 0.000 TRUE Compliance
#88 BDL 0.000 TRUE Compliance

p.hat.back <- with(EPA.89b.cadmium.df,
mean(!Censored[Well.type=="Background"]))

p.hat.back
#[1] 0.3333333

p.hat.comp <- with(EPA.89b.cadmium.df,
mean(!Censored[Well.type=="Compliance"]))

p.hat.comp
#[1] 0.375

n.back <- with(EPA.89b.cadmium.df,
sum(Well.type == "Background"))

n.back
#[1] 24

n.comp <- with(EPA.89b.cadmium.df,
sum(Well.type == "Compliance"))

n.comp
#[1] 64

mdd <- propTestMdd(n.or.n1 = n.comp, n2 = n.back,
p0.or.p2 = p.hat.back, power = c(.80, .90, .95),
sample.type = "two", alternative = "greater")

round(mdd, 2)



propTestN 911

#[1] 0.32 0.37 0.40

round(mdd + p.hat.back, 2)
#[1] 0.65 0.70 0.73

#----------

# Clean up
#---------
rm(p.hat.back, p.hat.comp, n.back, n.comp, mdd)

propTestN Compute Sample Size Necessary to Achieve a Specified Power for a
One- or Two-Sample Proportion Test

Description

Compute the sample size necessary to achieve a specified power for a one- or two-sample proportion
test, given the true proportion(s) and significance level.

Usage

propTestN(p.or.p1, p0.or.p2, alpha = 0.05, power = 0.95,
sample.type = "one.sample", alternative = "two.sided",
ratio = 1, approx = TRUE,
correct = sample.type == "two.sample",
round.up = TRUE, warn = TRUE, return.exact.list = TRUE,
n.min = 2, n.max = 10000, tol.alpha = 0.1 * alpha,
tol = 1e-7, maxiter = 1000)

Arguments

p.or.p1 numeric vector of proportions. When sample.type="one.sample", this argu-
ment denotes the true value of p, the probability of dQuotesuccess.
When sample.type="two.sample", this argument denotes the value of p1, the
probability of dQuotesuccess in group 1. The default value is
p.or.p1=0.5. Missing (NA), undefined (NaN), and infinite (Inf, -Inf) values
are not allowed.

p0.or.p2 numeric vector of proportions. When sample.type="one.sample", this argu-
ment denotes the hypothesized value of p, the probability of dQuotesuccess.
When sample.type="two.sample", this argument denotes the value of p2, the
probability of dQuotesuccess in group 2. The default value is
p0.or.p2=0.5. Missing (NA), undefined (NaN), and infinite (Inf, -Inf) values
are not allowed.

alpha numeric vector of numbers between 0 and 1 indicating the Type I error level
associated with the hypothesis test. The default value is alpha=0.05.

power numeric vector of numbers between 0 and 1 indicating the power associated with
the hypothesis test. The default value is power=0.95.
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sample.type character string indicating whether to compute sample size based on a one-
sample or two-sample hypothesis test.
When sample.type="one.sample", the computed sample size is based on a
hypothesis test for a single proportion.
When sample.type="two.sample", the computed sample size is based on a
hypothesis test for the difference between two proportions.
The default value is sample.type="one.sample".

alternative character string indicating the kind of alternative hypothesis. The possible val-
ues are "two.sided" (the default), "less", and "greater".

ratio numeric vector indicating the ratio of sample size in group 2 to sample size in
group 1 (n2/n1). The default value is ratio=1. All values of ratio must be
greater than or equal to 1. This argument is ignored if
sample.type="one.sample".

approx logical scalar indicating whether to compute the sample size based on the normal
approximation to the binomial distribution. The default value is approx=TRUE.
Currently, the exact method (approx=FALSE) is only available for the one-sample
case (i.e., sample.type="one.sample").

correct logical scalar indicating whether to use the continuity correction when
approx=TRUE. The default value is approx=TRUE when
sample.type="two.sample" and approx=FALSE when
sample.type="one.sample". This argument is ignored when
approx=FALSE.

round.up logical scalar indicating whether to round up the values of the computed sample
size(s) to the next smallest integer. The default value is round.up=TRUE.

warn logical scalar indicating whether to issue a warning. The default value is
warn=TRUE. When approx=TRUE (sample size based on the normal approxima-
tion) and warn=T, a warning is issued for cases when the normal approximation
to the binomial distribution probably is not accurate.
When approx=FALSE (sample size based on the exact test) and warn=TRUE, a
warning is issued when the user-supplied sample size is too small to yield a
significance level less than or equal to the user-supplied value of alpha.

return.exact.list

logical scalar relevant to the case when approx=FALSE (i.e., when the power
is based on the exact test). This argument indicates whether to return a list
containing extra information about the exact test in addition to the power of the
exact test. By default, propTestN returns only a vector containing the computed
sample size(s) (see the VALUE section below). When
return.exact.list=TRUE (the default) and approx=FALSE,
propTestN returns a list with components indicating the required sample size,
power of the exact test, the true significance level associated with the exact test,
and the critical values associated with the exact test (see the DETAILS section
for more information).

n.min integer relevant to the case when approx=FALSE (i.e., when the power is based
on the exact test). This argument indicates the minimum allowed value for n to
use in the search algorithm. The default value is n.min=2.

n.max integer relevant to the case when approx=FALSE (i.e., when the power is based
on the exact test). This argument indicates the maximum allowed value for n to
use in the search algorithm. The default value is n.max=10000.

tol.alpha numeric vector relevant to the case when approx=FALSE (i.e., when the power
is based on the exact test). This argument indicates the tolerance on alpha to
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use in the search algorithm (i.e., how close the actual Type I error level is to the
value prescribed by alpha). The default value is tol.alpha=0.1*alpha.

tol numeric scalar relevant to the case when approx=FALSE (i.e., when the power
is based on the exact test). This argument is passed to the uniroot function
and indicates the tolerance to use in the search algorithm. The default value is
tol=1e-7.

maxiter integer relevant to the case when approx=FALSE (i.e., when the power is based
on the exact test). This argument is passed to the uniroot function and indicates
the maximum number of iterations to use in the search algorithm. The default
value is maxiter=1000.

Details

If the arguments p.or.p1, p0.or.p2, alpha, power, ratio, and tol.alpha are not all the same
length, they are replicated to be the same length as the length of the longest argument.

One-Sample Case (sample.type="one.sample").

approx=TRUE When sample.type="one.sample" and approx=TRUE, sample size is computed
based on the test that uses the normal approximation to the binomial distribution; see the
help file for prop.test. The formula for this test and the associated power is presented in
standard statistics texts, including Zar (2010, pp. 534-537, 539-541). These equations can be
inverted to solve for the sample size, given a specified power, significance level, hypothesized
proportion, and true proportion.

approx=FALSE When sample.type="one.sample" and approx=FALSE, sample size is computed
based on the exact binomial test; see the help file for binom.test. The formula for this test
and its associated power is presented in standard statistics texts, including Zar (2010, pp.
532-534, 539) and Millard and Neerchal (2001, pp. 385-386, 504-506). The formula for
the power involves five quantities: the hypothesized proportion (p0), the true proportion (p),
the significance level (alpha), the power, and the sample size (n). In this case the function
propTestN uses a search algorithm to determine the required sample size to attain a specified
power, given the values of the hypothesized and true proportions and the significance level.

Two-Sample Case (sample.type="two.sample").

When sample.type="two.sample", sample size is computed based on the test that uses the normal
approximation to the binomial distribution; see the help file for prop.test. The formula for this
test and its associated power is presented in standard statistics texts, including Zar (2010, pp. 549-
550, 552-553) and Millard and Neerchal (2001, pp. 443-445, 508-510). These equations can be
inverted to solve for the sample size, given a specified power, significance level, true proportions,
and ratio of sample size in group 2 to sample size in group 1.

Value

Approximate Test (approx=TRUE).

When sample.type="one.sample", or sample.type="two.sample" and ratio=1 (i.e., equal
sample sizes for each group), propTestN returns a numeric vector of sample sizes. When
sample.type="two.sample" and at least one element of ratio is greater than 1, propTestN re-
turns a list with two components called n1 and n2, specifying the sample sizes for each group.

Exact Test (approx=FALSE).

If return.exact.list=FALSE, propTestN returns a numeric vector of sample sizes.

If return.exact.list=TRUE, propTestN returns a list with the following components:
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n numeric vector of sample sizes.

power numeric vector of powers.

alpha numeric vector containing the true significance levels. Because of the discrete
nature of the binomial distribution, the true significance levels usually do not
equal the significance level supplied by the user in the argument alpha.

q.critical.lower

numeric vector of lower critical values for rejecting the null hypothesis. If the
observed number of "successes" is less than or equal to these values, the null
hypothesis is rejected. (Not present if alternative="greater".)

q.critical.upper

numeric vector of upper critical values for rejecting the null hypothesis. If the
observed number of "successes" is greater than these values, the null hypothesis
is rejected. (Not present if alternative="less".)

Note

The binomial distribution is used to model processes with binary (Yes-No, Success-Failure, Heads-
Tails, etc.) outcomes. It is assumed that the outcome of any one trial is independent of any other
trial, and that the probability of dQuotesuccess, p, is the same on each trial. A binomial discrete
random variable X is the number of "successes" in n independent trials. A special case of the
binomial distribution occurs when n = 1, in which case X is also called a Bernoulli random
variable.

In the context of environmental statistics, the binomial distribution is sometimes used to model the
proportion of times a chemical concentration exceeds a set standard in a given period of time (e.g.,
Gilbert, 1987, p.143), or to compare the proportion of detects in a compliance well vs. a background
well (e.g., USEPA, 1989b, Chapter 8, p.3-7).

In the course of designing a sampling program, an environmental scientist may wish to determine
the relationship between sample size, power, significance level, and the difference between the
hypothesized and true proportions if one of the objectives of the sampling program is to determine
whether a proprtion differs from a specified level or two proportions differ from each other. The
functions propTestPower, propTestN, propTestMdd, and plotPropTestDesign can be used to
investigate these relationships for the case of binomial proportions.

Studying the two-sample proportion test, Haseman (1978) found that the formulas used to esti-
mate the power that do not incorporate the continuity correction tend to underestimate the power.
Casagrande, Pike, and Smith (1978) found that the formulas that do incorporate the continuity cor-
rection provide an excellent approximation.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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See Also

propTestPower, propTestMdd, plotPropTestDesign, prop.test, binom.test.

Examples

# Look at how the required sample size of the one-sample
# proportion test with a two-sided alternative and Type I error
# set to 5% increases with increasing power:

seq(0.5, 0.9, by = 0.1)
#[1] 0.5 0.6 0.7 0.8 0.9

propTestN(p.or.p1 = 0.7, p0.or.p2 = 0.5,
power = seq(0.5, 0.9, by = 0.1))

#[1] 25 31 38 47 62

#----------

# Repeat the last example, but compute the sample size based on
# the exact test instead of the approximation. Note that because
# we require the actual Type I error (alpha) to be within
# 10% of the supplied value of alpha (which is 0.05 by default),
# due to the discrete nature of the exact binomial test
# we end up with more power then we specified.

n.list <- propTestN(p.or.p1 = 0.7, p0.or.p2 = 0.5,
power = seq(0.5, 0.9, by = 0.1), approx = FALSE)

lapply(n.list, round, 3)
#$n
#[1] 37 37 44 51 65
#
#$power
#[1] 0.698 0.698 0.778 0.836 0.910
#
#$alpha
#[1] 0.047 0.047 0.049 0.049 0.046
#
#$q.critical.lower
#[1] 12 12 15 18 24
#
#$q.critical.upper
#[1] 24 24 28 32 40

#----------

# Using the example above, see how the sample size changes
# if we allow the Type I error to deviate by more than 10 percent
# of the value of alpha (i.e., by more than 0.005).
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n.list <- propTestN(p.or.p1 = 0.7, p0.or.p2 = 0.5,
power = seq(0.5, 0.9, by = 0.1), approx = FALSE, tol.alpha = 0.01)

lapply(n.list, round, 3)
#$n
#[1] 25 35 42 49 65
#
#$power
#[1] 0.512 0.652 0.743 0.810 0.910
#
#$alpha
#[1] 0.043 0.041 0.044 0.044 0.046
#
#$q.critical.lower
#[1] 7 11 14 17 24
#
#$q.critical.upper
#[1] 17 23 27 31 40

#----------

# Clean up
#---------
rm(n.list)

#==========

# Look at how the required sample size for the two-sample
# proportion test decreases with increasing difference between
# the two population proportions:

seq(0.4, 0.1, by = -0.1)
#[1] 0.4 0.3 0.2 0.1

propTestN(p.or.p1 = seq(0.4, 0.1, by = -0.1),
p0.or.p2 = 0.5, sample.type = "two")

#[1] 661 163 70 36
#Warning message:
#In propTestN(p.or.p1 = seq(0.4, 0.1, by = -0.1), p0.or.p2 = 0.5, :
# The computed sample sizes n1 and n2 are too small,
# relative to the given values of p1 and p2, for the normal
# approximation to work well for the following element indices:
# 4

#----------

# Look at how the required sample size for the two-sample
# proportion test decreases with increasing values of Type I error:

propTestN(p.or.p1 = 0.7, p0.or.p2 = 0.5,
sample.type = "two",
alpha = c(0.001, 0.01, 0.05, 0.1))

#[1] 299 221 163 137

#==========
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# Modifying the example on pages 8-5 to 8-7 of USEPA (1989b),
# determine the required sample size to detect a difference in the
# proportion of detects of cadmium between the background and
# compliance wells. Set the complicance well to "group 1" and
# the backgound well to "group 2". Assume the true probability
# of a "detect" at the background well is 1/3, set the probability
# of a "detect" at the compliance well to 0.4 and 0.5, use a 5%
# significance level and 95% power, and use the upper
# one-sided alternative (probability of a "detect" at the compliance
# well is greater than the probability of a "detect" at the background
# well). (The original data are stored in EPA.89b.cadmium.df.)
#
# Note that the required sample size decreases from about
# 1160 at each well to about 200 at each well as the difference in
# proportions changes from (0.4 - 1/3) to (0.5 - 1/3), but both of
# these sample sizes are enormous compared to the number of samples
# usually collected in the field.

EPA.89b.cadmium.df
# Cadmium.orig Cadmium Censored Well.type
#1 0.1 0.100 FALSE Background
#2 0.12 0.120 FALSE Background
#3 BDL 0.000 TRUE Background
# ..........................................
#86 BDL 0.000 TRUE Compliance
#87 BDL 0.000 TRUE Compliance
#88 BDL 0.000 TRUE Compliance

p.hat.back <- with(EPA.89b.cadmium.df,
mean(!Censored[Well.type=="Background"]))

p.hat.back
#[1] 0.3333333

p.hat.comp <- with(EPA.89b.cadmium.df,
mean(!Censored[Well.type=="Compliance"]))

p.hat.comp
#[1] 0.375

n.back <- with(EPA.89b.cadmium.df,
sum(Well.type == "Background"))

n.back
#[1] 24

n.comp <- with(EPA.89b.cadmium.df,
sum(Well.type == "Compliance"))

n.comp
#[1] 64

propTestN(p.or.p1 = c(0.4, 0.50), p0.or.p2 = p.hat.back,
alt="greater", sample.type="two")

#[1] 1159 199

#----------



918 propTestPower

# Clean up
#---------
rm(p.hat.back, p.hat.comp, n.back, n.comp)

propTestPower Compute the Power of a One- or Two-Sample Proportion Test

Description

Compute the power of a one- or two-sample proportion test, given the sample size(s), true propor-
tion(s), and significance level.

Usage

propTestPower(n.or.n1, p.or.p1 = 0.5, n2 = n.or.n1,
p0.or.p2 = 0.5, alpha = 0.05, sample.type = "one.sample",
alternative = "two.sided", approx = TRUE,
correct = sample.type == "two.sample", warn = TRUE,
return.exact.list = TRUE)

Arguments

n.or.n1 numeric vector of sample sizes. When sample.type="one.sample", this ar-
gument denotes n, the number of observations in the single sample. When
sample.type="two.sample", this argument denotes n1, the number of obser-
vations from group 1. Missing (NA), undefined (NaN), and infinite (Inf, -Inf)
values are not allowed.

p.or.p1 numeric vector of proportions. When sample.type="one.sample", this argu-
ment denotes the true value of p, the probability of dQuotesuccess. When
sample.type="two.sample", this argument denotes the value of p1, the proba-
bility of dQuotesuccess in group 1. The default value is p.or.p1=0.5. Missing
(NA), undefined (NaN), and infinite (Inf, -Inf) values are not allowed.

n2 numeric vector of sample sizes for group 2. The default value is n2=n.or.n1.
This argument is ignored when sample.type="one.sample". Missing (NA),
undefined (NaN), and infinite (Inf, -Inf) values are not allowed.

p0.or.p2 numeric vector of proportions. When sample.type="one.sample", this argu-
ment denotes the hypothesized value of p, the probability of dQuotesuccess.
When sample.type="two.sample", this argument denotes the value of p2, the
probability of dQuotesuccess in group 2. The default value is
p0.or.p2=0.5. Missing (NA), undefined (NaN), and infinite (Inf, -Inf) values
are not allowed.

alpha numeric vector of numbers between 0 and 1 indicating the Type I error level
associated with the hypothesis test. The default value is alpha=0.05.

sample.type character string indicating whether to compute power based on a one-sample or
two-sample hypothesis test. When sample.type="one.sample", the computed
power is based on a hypothesis test for a single proportion. When
sample.type="two.sample", the computed power is based on a hypothesis test
for the difference between two proportions. The default value is
sample.type="one.sample".
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alternative character string indicating the kind of alternative hypothesis. The possible val-
ues are "two.sided" (the default), "less", and "greater".

approx logical scalar indicating whether to compute the power based on the normal
approximation to the binomial distribution. The default value is approx=TRUE.
Currently, the exact method (approx=FALSE) is only available for the one-sample
case (i.e., sample.type="one.sample").

correct logical scalar indicating whether to use the continuity correction when
approx=TRUE. The default value is approx=TRUE when
sample.type="two.sample" and approx=FALSE when
sample.type="one.sample". This argument is ignored when
approx=FALSE.

warn logical scalar indicating whether to issue a warning. The default value is
warn=TRUE. When approx=TRUE (power based on the normal approximation)
and warn=TRUE, a warning is issued for cases when the normal approximation
to the binomial distribution probably is not accurate. When
approx=FALSE (power based on the exact test) and warn=TRUE, a warning is
issued when the user-supplied sample size is too small to yield a significance
level less than or equal to the user-supplied value of alpha.

return.exact.list

logical scalar relevant to the case when approx=FALSE (i.e., when the power is
based on the exact test). This argument indicates whether to return a list contain-
ing extra information about the exact test in addition to the power of the exact
test. By default, propTestPower returns only a vector containing the computed
power(s) (see the VALUE section below). When
return.exact.list=TRUE (the default) and approx=FALSE,
propTestPower returns a list with components indicating the power of the ex-
act test, the true significance level associated with the exact test, and the critical
values associated with the exact test (see the DETAILS section for more infor-
mation).

Details

If the arguments n.or.n1, p.or.p1, n2, p0.or.p2, and alpha are not all the same length, they are
replicated to be the same length as the length of the longest argument.

One-Sample Case (sample.type="one.sample").

approx=TRUE When sample.type="one.sample" and approx=TRUE, power is computed based on
the test that uses the normal approximation to the binomial distribution; see the help file for
prop.test. The formula for this test and its associated power is presented in most standard
statistics texts, including Zar (2010, pp. 534-537, 539-541).

approx=FALSE When sample.type="one.sample" and approx=FALSE, power is computed based
on the exact binomial test; see the help file for binom.test. The formula for this test and
its associated power is presented in most standard statistics texts, including Zar (2010, pp.
532-534, 539) and Millard and Neerchal (2001, pp. 385-386, 504-506).

Two-Sample Case (sample.type="two.sample").

When sample.type="two.sample", power is computed based on the test that uses the normal
approximation to the binomial distribution; see the help file for prop.test. The formula for this
test and its associated power is presented in standard statistics texts, including Zar (2010, pp. 549-
550, 552-553) and Millard and Neerchal (2001, pp. 443-445, 508-510).
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Value

By default, propTestPower returns a numeric vector of powers. For the one-sample proportion test
(sample.type="one.sample"), when approx=FALSE and
return.exact.list=TRUE, propTestPower returns a list with the following components:

power numeric vector of powers.

alpha numeric vector containing the true significance levels. Because of the discrete
nature of the binomial distribution, the true significance levels usually do not
equal the significance level supplied by the user in the argument alpha.

q.critical.lower

numeric vector of lower critical values for rejecting the null hypothesis. If the
observed number of "successes" is less than or equal to these values, the null
hypothesis is rejected. (Not present if alternative="greater".)

q.critical.upper

numeric vector of upper critical values for rejecting the null hypothesis. If the
observed number of "successes" is greater than these values, the null hypothesis
is rejected. (Not present if alternative="less".)

Note

The binomial distribution is used to model processes with binary (Yes-No, Success-Failure, Heads-
Tails, etc.) outcomes. It is assumed that the outcome of any one trial is independent of any other
trial, and that the probability of dQuotesuccess, p, is the same on each trial. A binomial discrete
random variable X is the number of "successes" in n independent trials. A special case of the
binomial distribution occurs when n = 1, in which case X is also called a Bernoulli random
variable.

In the context of environmental statistics, the binomial distribution is sometimes used to model the
proportion of times a chemical concentration exceeds a set standard in a given period of time (e.g.,
Gilbert, 1987, p.143), or to compare the proportion of detects in a compliance well vs. a background
well (e.g., USEPA, 1989b, Chapter 8, p.3-7).

In the course of designing a sampling program, an environmental scientist may wish to determine
the relationship between sample size, power, significance level, and the difference between the
hypothesized and true proportions if one of the objectives of the sampling program is to determine
whether a proprtion differs from a specified level or two proportions differ from each other. The
functions propTestPower, propTestN, propTestMdd, and plotPropTestDesign can be used to
investigate these relationships for the case of binomial proportions.

Studying the two-sample proportion test, Haseman (1978) found that the formulas used to esti-
mate the power that do not incorporate the continuity correction tend to underestimate the power.
Casagrande, Pike, and Smith (1978) found that the formulas that do incorporate the continuity cor-
rection provide an excellent approximation.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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See Also

propTestN, propTestMdd, plotPropTestDesign, prop.test, binom.test.

Examples

# Look at how the power of the one-sample proportion test
# increases with increasing sample size:

seq(20, 50, by=10)
#[1] 20 30 40 50

power <- propTestPower(n.or.n1 = seq(20, 50, by=10),
p.or.p1 = 0.7, p0 = 0.5)

round(power, 2)
#[1] 0.43 0.60 0.73 0.83

#----------

# Repeat the last example, but compute the power based on
# the exact test instead of the approximation.
# Note that the significance level varies with sample size and
# never attains the requested level of 0.05.

prop.test.list <- propTestPower(n.or.n1 = seq(20, 50, by=10),
p.or.p1 = 0.7, p0 = 0.5, approx=FALSE)

lapply(prop.test.list, round, 2)
#$power:
#[1] 0.42 0.59 0.70 0.78
#
#$alpha:
#[1] 0.04 0.04 0.04 0.03
#
#$q.critical.lower:
#[1] 5 9 13 17
#
#$q.critical.upper:
#[1] 14 20 26 32

#==========

# Look at how the power of the two-sample proportion test
# increases with increasing difference between the two
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# population proportions:

seq(0.5, 0.1, by=-0.1)
#[1] 0.5 0.4 0.3 0.2 0.1

power <- propTestPower(30, sample.type = "two",
p.or.p1 = seq(0.5, 0.1, by=-0.1))

#Warning message:
#In propTestPower(30, sample.type = "two", p.or.p1 = seq(0.5, 0.1, :
#The sample sizes n1 and n2 are too small, relative to the given
# values of p1 and p2, for the normal approximation to work well
# for the following element indices:
# 5

round(power, 2)
#[1] 0.05 0.08 0.26 0.59 0.90

#----------

# Look at how the power of the two-sample proportion test
# increases with increasing values of Type I error:

power <- propTestPower(30, sample.type = "two",
p.or.p1 = 0.7,
alpha = c(0.001, 0.01, 0.05, 0.1))

round(power, 2)
#[1] 0.02 0.10 0.26 0.37

#==========

# Clean up
#---------
rm(power, prop.test.list)

#==========

# Modifying the example on pages 8-5 to 8-7 of USEPA (1989b),
# determine how adding another 20 observations to the background
# well to increase the sample size from 24 to 44 will affect the
# power of detecting a difference in the proportion of detects of
# cadmium between the background and compliance wells. Set the
# compliance well to "group 1" and set the background well to
# "group 2". Assume the true probability of a "detect" at the
# background well is 1/3, set the probability of a "detect" at the
# compliance well to 0.4, use a 5% significance level, and use the
# upper one-sided alternative (probability of a "detect" at the
# compliance well is greater than the probability of a "detect" at
# the background well).
# (The original data are stored in EPA.89b.cadmium.df.)
#
# Note that the power does increase (from 9% to 12%), but is relatively
# very small.

EPA.89b.cadmium.df
# Cadmium.orig Cadmium Censored Well.type
#1 0.1 0.100 FALSE Background
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#2 0.12 0.120 FALSE Background
#3 BDL 0.000 TRUE Background
# ..........................................
#86 BDL 0.000 TRUE Compliance
#87 BDL 0.000 TRUE Compliance
#88 BDL 0.000 TRUE Compliance

p.hat.back <- with(EPA.89b.cadmium.df,
mean(!Censored[Well.type=="Background"]))

p.hat.back
#[1] 0.3333333

p.hat.comp <- with(EPA.89b.cadmium.df,
mean(!Censored[Well.type=="Compliance"]))

p.hat.comp
#[1] 0.375

n.back <- with(EPA.89b.cadmium.df,
sum(Well.type == "Background"))

n.back
#[1] 24

n.comp <- with(EPA.89b.cadmium.df,
sum(Well.type == "Compliance"))

n.comp
#[1] 64

propTestPower(n.or.n1 = n.comp,
p.or.p1 = 0.4,
n2 = c(n.back, 44), p0.or.p2 = p.hat.back,
alt="greater", sample.type="two")

#[1] 0.08953013 0.12421135

#----------

# Clean up
#---------
rm(p.hat.back, p.hat.comp, n.back, n.comp)

pwMoment Estimate Probability-Weighted Moments

Description

Estimate the 1jk’th probability-weighted moment from a random sample, where either j = 0,
k = 0, or both.

Usage

pwMoment(x, j = 0, k = 0, method = "unbiased",
plot.pos.cons = c(a = 0.35, b = 0), na.rm = FALSE)
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Arguments

x numeric vector of observations.

j, k non-negative integers specifying the order of the moment.

method character string specifying what method to use to compute the probability-weighted
moment. The possible values are "unbiased" (method based on the U-statistic;
the default), or "plotting.position" (method based on the plotting position
formula). See the DETAILS section for more information.

plot.pos.cons numeric vector of length 2 specifying the constants used in the formula for the
plotting positions when method="plotting.position". The default value is
plot.pos.cons=c(a=0.35, b=0). If this vector has a names attribute with
the value c("a","b") or c("b","a"), then the elements will be matched by
name in the formula for computing the plotting positions. Otherwise, the first
element is mapped to the name "a" and the second element to the name "b".
See the DETAILS section for more information. This argument is ignored if
method="ubiased".

na.rm logical scalar indicating whether to remove missing values from x. If na.rm=FALSE
(the default) and x contains missing values, then a missing value (NA) is re-
turned. If na.rm=TRUE, missing values are removed from x prior to computing
the probability-weighted moment.

Details

The definition of a probability-weighted moment, introduced by Greenwood et al. (1979), is as
follows. Let X denote a random variable with cdf F , and let x(p) denote the p’th quantile of the
distribution. Then the ijk’th probability-weighted moment is given by:

M(i, j, k) = E[XiF j(1− F )k] =

∫ 1

0

[x(F )]iF j(1− F )k dF

where i, j, and k are real numbers. Note that if i is a nonnegative integer, then M(i, 0, 0) is the
conventional i’th moment about the origin.

Greenwood et al. (1979) state that in the special case where i, j, and k are nonnegative integers:

M(i, j, k) = B(j + 1, k + 1)E[Xi
j+1,j+k+1]

where B(a, b) denotes the beta function evaluated at a and b, and

E[Xi
j+1,j+k+1]

denotes the i’th moment about the origin of the (j + 1)’th order statistic for a sample of size
(j + k + 1). In particular,

M(1, 0, k) =
1

k + 1
E[X1,k+1]

M(1, j, 0) =
1

j + 1
E[Xj+1,j+1]

where
E[X1,k+1]

denotes the expected value of the first order statistic (i.e., the minimum) in a sample of size (k+ 1),
and

E[Xj+1,j+1]
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denotes the expected value of the (j + 1)’th order statistic (i.e., the maximum) in a sample of size
(j + 1).

Unbiased Estimators (method="unbiased")
Landwehr et al. (1979) show that, given a random sample of n values from some arbitrary distribu-
tion, an unbiased, distribution-free, and parameter-free estimator of M(1, 0, k) is given by:

M̂(1, 0, k) =
1

n

n−k∑
i=1

xi,n

(
n−i
k

)(
n−1
k

)
where the quantity xi,n denotes the i’th order statistic in the random sample of size n. Hosking et al.
(1985) note that this estimator is closely related to U-statistics (Hoeffding, 1948; Lehmann, 1975,
pp. 362-371). Hosking et al. (1985) note that an unbiased, distribution-free, and parameter-free
estimator of M(1, j, 0) is given by:

M̂(1, j, 0) =
1

n

n∑
i=j+1

xi,n

(
i−1
j

)(
n−1
j

)

Plotting-Position Estimators (method="plotting.position")
Hosking et al. (1985) propose alternative estimators of M(1, 0, k) and M(1, j, 0) based on plotting
positions:

M̂(1, 0, k) =
1

n

n∑
i=1

(1− pi,n)kxi,n

M̂(1, j, 0) =
1

n

n∑
i=1

pji,nxi,n

where
pi,n = F̂ (xi,n)

denotes the plotting position of the i’th order statistic in the random sample of size n, that is, a
distribution-free estimate of the cdf of X evaluated at the i’th order statistic. Typically, plotting
positions have the form:

pi,n =
i− a
n+ b

where b > −a > −1. For this form of plotting position, the plotting-position estimators are
asymptotically equivalent to the U-statistic estimators.

Value

A numeric scalar–the value of the 1jk’th probability-weighted moment as defined by Greenwood
et al. (1979).

Note

Greenwood et al. (1979) introduced the concept of probability-weighted moments as a tool to derive
estimates of distribution parameters for distributions that can be (perhaps only be) expressed in
inverse form. The term “inverse form” simply means that instead of characterizing the distribution
by the formula for its cumulative distribution function (cdf), the distribution is characterized by the
formula for the p’th quantile (0 ≤ p ≤ 1).

For distributions that can only be expressed in inverse form, moment estimates of their parame-
ters are not available, and maximum likelihood estimates are not easy to compute. Greenwood et
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al. (1979) show that in these cases, it is often possible to derive expressions for the distribution
parameters in terms of probability-weighted moments. Thus, for these cases the distribution param-
eters can be estimated based on the sample probability-weighted moments, which are fairly easy to
compute. Furthermore, for distributions whose parameters can be expressed as functions of con-
ventional moments, the method of probability-weighted moments provides an alternative to method
of moments and maximum likelihood estimators.

Landwehr et al. (1979) use the method of probability-weighted moments to estimate the parameters
of the Type I Extreme Value (Gumbel) distribution.

Hosking et al. (1985) use the method of probability-weighted moments to estimate the parameters
of the generalized extreme value distribution.

Hosking (1990) and Hosking and Wallis (1995) show the relationship between probabiity-weighted
moments and L-moments.

Hosking and Wallis (1995) recommend using the unbiased estimators of probability-weighted mo-
ments for almost all applications.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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See Also

eevd, egevd, lMoment.

Examples

# Generate 20 observations from a generalized extreme value distribution
# with parameters location=10, scale=2, and shape=.25, then compute the
# 0th, 1st and 2nd probability-weighted moments.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(250)
dat <- rgevd(20, location = 10, scale = 2, shape = 0.25)
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pwMoment(dat)
#[1] 10.59556

pwMoment(dat, 1)
#[1] 5.798481

pwMoment(dat, 2)
#[1] 4.060574

pwMoment(dat, k = 1)
#[1] 4.797081

pwMoment(dat, k = 2)
#[1] 3.059173

pwMoment(dat, 1, method = "plotting.position")
# [1] 5.852913

pwMoment(dat, 1, method = "plotting.position",
plot.pos = c(.325, 1))

#[1] 5.586817

#----------

# Clean Up
#---------
rm(dat)

qqPlot Quantile-Quantile (Q-Q) Plot

Description

Produces a quantile-quantile (Q-Q) plot, also called a probability plot. The qqPlot function is a
modified version of the R functions qqnorm and qqplot. The EnvStats function qqPlot allows
the user to specify a number of different distributions in addition to the normal distribution, and to
optionally estimate the distribution parameters of the fitted distribution.

Usage

qqPlot(x, y = NULL, distribution = "norm", param.list = list(mean = 0, sd = 1),
estimate.params = plot.type == "Tukey Mean-Difference Q-Q",
est.arg.list = NULL, plot.type = "Q-Q", plot.pos.con = NULL, plot.it = TRUE,
equal.axes = qq.line.type == "0-1" || estimate.params, add.line = FALSE,
qq.line.type = "least squares", duplicate.points.method = "standard",
points.col = 1, line.col = 1, line.lwd = par("cex"), line.lty = 1,
digits = .Options$digits, ..., main = NULL, xlab = NULL, ylab = NULL,
xlim = NULL, ylim = NULL)

Arguments

x numeric vector of observations. When y is not supplied, x represents a sam-
ple from the hypothesized distribution specifed by distribution. When y is
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supplied, the distribution of x is compared with the distribuiton of y. Missing
(NA), undefined (NaN), and infinite (Inf, -Inf) values are allowed but will be
removed.

y optional numeric vector of observations (not necessarily the same lenght as x).
Missing (NA), undefined (NaN), and infinite (Inf, -Inf) values are allowed but
will be removed.

distribution when y is not supplied, a character string denoting the distribution abbreviation.
The default value is distribution="norm". See the help file for Distribution.df
for a list of possible distribution abbreviations. This argument is ignored if y is
supplied.

param.list when y is not supplied, a list with values for the parameters of the distribu-
tion. The default value is param.list=list(mean=0, sd=1). See the help
file for Distribution.df for the names and possible values of the parameters
associated with each distribution. This argument is ignored if y is supplied or
estimate.params=TRUE.

estimate.params

when y is not supplied, a logical scalar indicating whether to compute quantiles
based on estimating the distribution parameters (estimate.params=TRUE) or
using the known distribution parameters specified in param.list (estimate.params=FALSE).
The default value of estimate.params is FALSE if plot.type="Q-Q" because
the default configuration is a standard normal (mean=0, sd=1) Q-Q plot, which
will yield roughly a straight line if the observations in x are from any normal dis-
tribution. The default value of estimate.params is TRUE if plot.type="Tukey Mean-Difference Q-Q".
The argument estimate.params is ignored if y is supplied.

est.arg.list when y is not supplied and estimate.params=TRUE, a list whose components
are optional arguments associated with the function used to estimate the pa-
rameters of the assumed distribution (see the help file Estimating Distribution
Parameters). For example, all functions used to estimate distribution parame-
ters have an optional argument called method that specifies the method to use
to estimate the parameters. (See the help file for Distribution.df for a list of
available estimation methods for each distribution.) To override the default es-
timation method, supply the argument est.arg.list with a component called
method; for example est.arg.list=list(method="mle"). The default value
is est.arg.list=NULL so that all default values for the estimating function are
used. This argument is ignored if estimate.params=FALSE or y is supplied.

plot.type a character string denoting the kind of plot. Possible values are "Q-Q" (Quantile-
Quantile plot, the default) and "Tukey Mean-Difference Q-Q" (Tukey mean-
difference Q-Q plot). This argument may be abbreviated (e.g., plot.type="T"
to indicate a Tukey mean-difference Q-Q plot).

plot.pos.con numeric scalar between 0 and 1 containing the value of the plotting position con-
stant. The default value of plot.pos.con depends on whether the argument y
is supplied, and if not the value of the argument distribution. When y is sup-
plied, the default value is plot.pos.con=0.5, corresponding to Hazen plotting
positions. When y is not supplied, for the normal, lognormal, three-parameter
lognormal, zero-modified normal, and zero-modified lognormal distributions,
the default value is plot.pos.con=0.375. For the Type I extreme value (Gum-
bel) distribution (distribution="evd"), the default value is
plot.pos.con=0.44. For all other distributions, the default value is plot.pos.con=0.4.

plot.it a logical scalar indicating whether to create a plot on the current graphics device.
The default value is plot.it=TRUE.
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equal.axes a logical scalar indicating whether to use the same range on the x- and y-axes
when plot.type="Q-Q". The default value is TRUE if qq.line.type="0-1"
or estimate.params=TRUE, otherwise it is FALSE. This argument is ignored if
plot.type="Tukey Mean-Difference Q-Q".

add.line a logical scalar indicating whether to add a line to the plot. If add.line=TRUE
and plot.type="Q-Q", a line determined by the value of qq.line.type is
added to the plot. If add.line=TRUE and
plot.type="Tukey Mean-Difference Q-Q", a horizontal line at y = 0 is
added to the plot. The default value is add.line=FALSE.

qq.line.type character string determining what kind of line to add to the Q-Q plot. Possible
values are "least squares" (the default), "0-1" and "robust". For the value
"least squares", a least squares line is fit and added. For the value "0-1", a
line with intercept 0 and slope 1 is added. For the value "robust", a line is fit
through the first and third quartiles of the x and y data. This argument is ignored
if add.line=FALSE or plot.type="Tukey Mean-Difference Q-Q".

duplicate.points.method

a character string denoting how to plot points with duplicate (x, y) values. Pos-
sible values are "standard" (the default), "jitter", and "number". For the
value "standard", a single plotting symbol is plotted (this is the default be-
havior of R). For the value "jitter", a separate plotting symbol is plotted for
each duplicate point, where the plotting symbols cluster around the true value
of x and y. For the value "number", a single number is plotted at (x, y) that
represents how many duplicate points are at that (x, y) coordinate.

points.col a numeric scalar or character string determining the color of the points in the
plot. The default value is points.col=1. See the entry for col in the help file
for par for more information.

line.col a numeric scalar or character string determining the color of the line in the plot.
The default value is points.col=1. See the entry for col in the help file for par
for more information. This argument is ignored if add.line=FALSE.

line.lwd a numeric scalar determining the width of the line in the plot. The default value
is line.lwd=par("cex"). See the entry for lwd in the help file for par for more
information. This argument is ignored if add.line=FALSE.

line.lty a numeric scalar determining the line type of the line in the plot. The default
value is line.lty=1. See the entry for lty in the help file for par for more
information. This argument is ignored if add.line=FALSE.

digits a scalar indicating how many significant digits to print for the distribution pa-
rameters. The default value is digits=.Options$digits.

main, xlab, ylab, xlim, ylim, ...

additional graphical parameters (see par).

Details

If y is not supplied, the vector x is assumed to be a sample from the probability distribution
specified by the argument distribution (and param.list if estimate.params=FALSE). When
plot.type="Q-Q", the quantiles of x are plotted on the y-axis against the quantiles of the assumed
distribution on the x-axis.

If y is supplied and plot.type="Q-Q", the empirical quantiles of y are plotted against the empirical
quantiles of x.

When plot.type="Tukey Mean-Difference Q-Q", the difference of the quantiles is plotted on
the y-axis against the mean of the quantiles on the x-axis.
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Special Distributions
When y is not supplied and the argument distribution specifies one of the following distributions,
the function qqPlot behaves in the manner described below.

"lnorm" Lognormal Distribution. The log-transformed quantiles are plotted against quantiles from
a Normal (Gaussian) distribution.

"lnormAlt" Lognormal Distribution (alternative parameterization). The untransformed quantiles
are plotted against quantiles from a Lognormal distribution.

"lnorm3" Three-Parameter Lognormal Distribution. The quantiles of log(x-threshold) are
plotted against quantiles from a Normal (Gaussian) distribution. The value of threshold
is either specified in the argument param.list, or, if estimate.params=TRUE, then it is esti-
mated.

"zmnorm" Zero-Modified Normal Distribution. The quantiles of the non-zero values (i.e., x[x!=0])
are plotted against quantiles from a Normal (Gaussian) distribution.

"zmlnorm" Zero-Modified Lognormal Distribution. The quantiles of the log-transformed positive
values (i.e., log(x[x>0])) are plotted against quantiles from a Normal (Gaussian) distribu-
tion.

"zmlnormAlt" Lognormal Distribution (alternative parameterization). The quantiles of the un-
transformed positive values (i.e., x[x>0]) are plotted against quantiles from a Lognormal
distribution.

Explanation of Q-Q Plots
A probability plot or quantile-quantile (Q-Q) plot is a graphical display invented by Wilk and
Gnanadesikan (1968) to compare a data set to a particular probability distribution or to compare it
to another data set. The idea is that if two population distributions are exactly the same, then they
have the same quantiles (percentiles), so a plot of the quantiles for the first distribution vs. the quan-
tiles for the second distribution will fall on the 0-1 line (i.e., the straight line y = x with intercept
0 and slope 1). If the two distributions have the same shape and spread but different locations, then
the plot of the quantiles will fall on the line y = x + b (parallel to the 0-1 line) where b denotes
the difference in locations. If the distributions have different locations and differ by a multiplicative
constant m, then the plot of the quantiles will fall on the line y = mx + b (D’Agostino, 1986a, p.
25; Helsel and Hirsch, 1986, p. 42). Various kinds of differences between distributions will yield
various kinds of deviations from a straight line.

Comparing Observations to a Hypothesized Distribution
Let x = x1, x2, . . . , xn denote the observations in a random sample of size n from some unknown
distribution with cumulative distribution function F (), and let x(1), x(2), . . . , x(n) denote the or-
dered observations. Depending on the particular formula used for the empirical cdf (see ecdfPlot),
the i’th order statistic is an estimate of the i/(n + 1)’th, (i − 0.5)/n’th, etc., quantile. For the
moment, assume the i’th order statistic is an estimate of the i/(n+ 1)’th quantile, that is:

F̂ [x(i)] = p̂i =
i

n+ 1
(1)

so
x(i) ≈ F−1(p̂i) (2)

If we knew the form of the true cdf F , then the plot of x(i) vs. F−1(p̂i) would form approximately
a straight line based on Equation (2) above. A probability plot is a plot of x(i) vs. F−1

0 (p̂i), where
F0 denotes the cdf associated with the hypothesized distribution. The probability plot should fall
roughly on the line y = x if F = F0. If F and F0 merely differ by a shift in location and scale, that
is, if F [(x− µ)/σ] = F0(x), then the plot should fall roughly on the line y = σx+ µ.
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The quantity p̂i = i/(n+ 1) in Equation (1) above is called the plotting position for the probability
plot. This particular formula for the plotting position is appealing because it can be shown that for
any continuous distribution

E{F [x(i)]} =
i

n+ 1
(3)

(Nelson, 1982, pp. 299-300; Stedinger et al., 1993). That is, the i’th plotting position defined as in
Equation (1) is the expected value of the true cdf evaluated at the i’th order statistic. Many authors
and practitioners, however, prefer to use a plotting position that satisfies:

F−1(p̂i) = E[x(i)] (4)

or one that satisfies
F−1(p̂i) = M [x(i)] = F−1{M [u(i)]} (5)

where M [x(i)] denotes the median of the distribution of the i’th order statistic, and u(i) denotes the
i’th order statistic in a random sample of n uniform (0,1) random variates.

The plotting positions in Equation (4) are often approximated since the expected value of the i’th
order statistic is often difficult and time-consuming to compute. Note that these plotting positions
will differ for different distributions.

The plotting positions in Equation (5) were recommended by Filliben (1975) because they require
computing or approximating only the medians of uniform (0,1) order statistics, no matter what the
form of the assumed cdf F0. Also, the median may be preferred as a measure of central tendency
because the distributions of most order statistics are skewed.

Most plotting positions can be written as:

p̂i =
i− a

n− 2a+ 1
(6)

where 0 ≤ a ≤ 1 (D’Agostino, 1986a, p.25; Stedinger et al., 1993). The quantity a is sometimes
called the “plotting position constant”, and is determined by the argument plot.pos.con in the
function qqPlot. The table below, adapted from Stedinger et al. (1993), displays commonly used
plotting positions based on equation (6) for several distributions.

Distribution
Often Used

Name a With References
Weibull 0 Weibull, Weibull (1939),

Uniform Stedinger et al. (1993)
Median 0.3175 Several Filliben (1975),

Vogel (1986)
Blom 0.375 Normal Blom (1958),

and Others Looney and Gulledge (1985)
Cunnane 0.4 Several Cunnane (1978),

Chowdhury et al. (1991)
Gringorten 0.44 Gumbel Gringorton (1963),

Vogel (1986)
Hazen 0.5 Several Hazen (1914),

Chambers et al. (1983),
Cleveland (1993)

For moderate and large sample sizes, there is very little difference in visual appearance of the Q-Q
plot for different choices of plotting positions.
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Comparing Two Data Sets
Let x = x1, x2, . . . , xn denote the observations in a random sample of size n from some un-
known distribution with cumulative distribution function F (), and let x(1), x(2), . . . , x(n) denote
the ordered observations. Similarly, let y = y1, y2, . . . , ym denote the observations in a random
sample of size m from some unknown distribution with cumulative distribution function G(), and
let y(1), y(2), . . . , y(m) denote the ordered observations. Suppose we are interested in investigating
whether the shape of the distribution with cdf F is the same as the shape of the distribution with cdf
G (e.g., F and G may both be normal distributions but differ in mean and standard deviation).

When n = m, we can visually explore this question by plotting y(i) vs. x(i), for i = 1, 2, . . . , n.
The values in y are spread out in a certain way depending on the true distribution: they may be
more or less symmetric about some value (the population mean or median) or they may be skewed
to the right or left; they may be concentrated close to the mean or median (platykurtic) or there may
be several observations “far away” from the mean or median on either side (leptokurtic). Similarly,
the values in x are spread out in a certain way. If the values in x and y are spread out in the same
way, then the plot of y(i) vs. x(i) will be approximately a straight line. If the cdf F is exactly the
same as the cdf G, then the plot of y(i) vs. x(i) will fall roughly on the straight line y = x. If F
and G differ by a shift in location and scale, that is, if F [(x− µ)/σ] = G(x), then the plot will fall
roughly on the line y = σx+ µ.

When n > m, a slight adjustment has to be made to produce the plot. Let p̂1, p̂2, . . . , p̂m denote
the plotting positions corresponding to the m empirical quantiles for the y’s and let p̂∗1, p̂

∗
2, . . . , p̂

∗
n

denote the plotting positions corresponding the n empirical quantiles for the x’s. Then we plot y(j)

vs. x∗(j) for j = 1, 2, . . . ,m where

x∗(j) = (1− r)x(i) + rx(i+1) (7)

r =
p̂j − p̂∗i
p̂∗i+1 − p̂∗i

(8)

p̂∗i ≤ p̂j ≤ p̂∗i+1 (9)

That is, the values for the x∗(j)’s are determined by linear interpolation based on the values of the
plotting positions for x and y.

A similar adjustment is made when n < m.

Note that the R function qqplot uses a different method than the one in Equation (7) above; it uses
linear interpolation based on 1:n and m by calling the approx function.

Value

qqPlot returns a list with components x and y, giving the (x, y) coordinates of the points that have
been or would have been plotted. There are four cases to consider:

1. The argument y is not supplied and plot.type="Q-Q".

x the quantiles from the theoretical distribution.

y the observed quantiles (order statistics) based on the data in the argument x.

2. The argument y is not supplied and plot.type="Tukey Mean-Difference Q-Q".

x the averages of the observed and theoretical quantiles.

y the differences between the observed quantiles (order statistics) and the theoret-
ical quantiles.
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3. The argument y is supplied and plot.type="Q-Q".

x the observed quantiles based on the data in the argument x. Note that these are
adjusted quantiles if the number of observations in the argument x is greater then
the number of observations in the argument y.

y the observed quantiles based on the data in the argument y. Note that these are
adjusted quantiles if the number of observations in the argument y is greater then
the number of observations in the argument x.

4. The argument y is supplied and plot.type="Tukey Mean-Difference Q-Q".

x the averages of the quantiles based on the argument x and the quantiles based on
the argument y.

y the differences between the quantiles based on the argument x and the quantiles
based on the argument y.

Note

A quantile-quantile (Q-Q) plot, also called a probability plot, is a plot of the observed order statistics
from a random sample (the empirical quantiles) against their (estimated) mean or median values
based on an assumed distribution, or against the empirical quantiles of another set of data (Wilk and
Gnanadesikan, 1968). Q-Q plots are used to assess whether data come from a particular distribution,
or whether two datasets have the same parent distribution. If the distributions have the same shape
(but not necessarily the same location or scale parameters), then the plot will fall roughly on a
straight line. If the distributions are exactly the same, then the plot will fall roughly on the straight
line y = x.

A Tukey mean-difference Q-Q plot, also called an m-d plot, is a modification of a Q-Q plot. Rather
than plotting observed quantiles vs. theoretical quantiles or observed y-quantiles vs. observed
x-quantiles, a Tukey mean-difference Q-Q plot plots the difference between the quantiles on the
y-axis vs. the average of the quantiles on the x-axis (Cleveland, 1993, pp.22-23). If the two sets
of quantiles come from the same parent distribution, then the points in this plot should fall roughly
along the horizontal line y = 0. If one set of quantiles come from the same distribution with a shift
in median, then the points in this plot should fall along a horizontal line above or below the line
y = 0. A Tukey mean-difference Q-Q plot enhances our perception of how the points in the Q-Q
plot deviate from a straight line, because it is easier to judge deviations from a horizontal line than
from a line with a non-zero slope.

In a Q-Q plot, the extreme points have more variability than points toward the center. A U-shaped
Q-Q plot indicates that the underlying distribution for the observations on the y-axis is skewed to
the right relative to the underlying distribution for the observations on the x-axis. An upside-down-
U-shaped Q-Q plot indicates the y-axis distribution is skewed left relative to the x-axis distribution.
An S-shaped Q-Q plot indicates the y-axis distribution has shorter tails than the x-axis distribution.
Conversely, a plot that is bent down on the left and bent up on the right indicates that the y-axis
distribution has longer tails than the x-axis distribution.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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See Also

ppoints, ecdfPlot, Distribution.df, qqPlotGestalt, qqPlotCensored, qqnorm.

Examples

# The guidance document USEPA (1994b, pp. 6.22--6.25)
# contains measures of 1,2,3,4-Tetrachlorobenzene (TcCB)
# concentrations (in parts per billion) from soil samples
# at a Reference area and a Cleanup area. These data are strored
# in the data frame EPA.94b.tccb.df.
#
# Create an Q-Q plot for the reference area data first assuming a
# normal distribution, then a lognormal distribution, then a
# gamma distribution.

# Assume a normal distribution
#-----------------------------

dev.new()
with(EPA.94b.tccb.df, qqPlot(TcCB[Area == "Reference"]))

dev.new()
with(EPA.94b.tccb.df, qqPlot(TcCB[Area == "Reference"], add.line = TRUE))

dev.new()
with(EPA.94b.tccb.df, qqPlot(TcCB[Area == "Reference"],

plot.type = "Tukey", add.line = TRUE))

# The Q-Q plot based on assuming a normal distribution shows a U-shape,
# indicating the Reference area TcCB data are skewed to the right
# compared to a normal distribuiton.

# Assume a lognormal distribution
#--------------------------------

dev.new()
with(EPA.94b.tccb.df,

qqPlot(TcCB[Area == "Reference"], dist = "lnorm",
digits = 2, points.col = "blue", add.line = TRUE))

dev.new()
with(EPA.94b.tccb.df,

qqPlot(TcCB[Area == "Reference"], dist = "lnorm",
digits = 2, plot.type = "Tukey", points.col = "blue",
add.line = TRUE))
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# Alternative parameterization

dev.new()
with(EPA.94b.tccb.df,

qqPlot(TcCB[Area == "Reference"], dist = "lnormAlt",
estimate.params = TRUE, digits = 2, points.col = "blue",
add.line = TRUE))

dev.new()
with(EPA.94b.tccb.df,

qqPlot(TcCB[Area == "Reference"], dist = "lnormAlt",
digits = 2, plot.type = "Tukey", points.col = "blue",
add.line = TRUE))

# The lognormal distribution appears to be an adequate fit.
# Now look at a Q-Q plot assuming a gamma distribution.
#----------------------------------------------------------

dev.new()
with(EPA.94b.tccb.df,

qqPlot(TcCB[Area == "Reference"], dist = "gamma",
estimate.params = TRUE, digits = 2, points.col = "blue",
add.line = TRUE))

dev.new()
with(EPA.94b.tccb.df,

qqPlot(TcCB[Area == "Reference"], dist = "gamma",
digits = 2, plot.type = "Tukey", points.col = "blue",
add.line = TRUE))

# Alternative Parameterization

dev.new()
with(EPA.94b.tccb.df,

qqPlot(TcCB[Area == "Reference"], dist = "gammaAlt",
estimate.params = TRUE, digits = 2, points.col = "blue",
add.line = TRUE))

dev.new()
with(EPA.94b.tccb.df,

qqPlot(TcCB[Area == "Reference"], dist = "gammaAlt",
digits = 2, plot.type = "Tukey", points.col = "blue",
add.line = TRUE))

#-------------------------------------------------------------------------------------

# Generate 20 observations from a gamma distribution with parameters
# shape=2 and scale=2, then create a normal (Gaussian) Q-Q plot for these data.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(357)
dat <- rgamma(20, shape=2, scale=2)
dev.new()
qqPlot(dat, add.line = TRUE)

# Now assume a gamma distribution and estimate the parameters
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#------------------------------------------------------------

dev.new()
qqPlot(dat, dist = "gamma", estimate.params = TRUE, add.line = TRUE)

# Clean up
#---------
rm(dat)
graphics.off()

qqPlotCensored Quantile-Quantile (Q-Q) Plot for Type I Censored Data

Description

Produces a quantile-quantile (Q-Q) plot, also called a probability plot, for Type I censored data.

Usage

qqPlotCensored(x, censored, censoring.side = "left",
prob.method = "michael-schucany", plot.pos.con = NULL,
distribution = "norm", param.list = list(mean = 0, sd = 1),
estimate.params = plot.type == "Tukey Mean-Difference Q-Q",
est.arg.list = NULL, plot.type = "Q-Q", plot.it = TRUE,
equal.axes = qq.line.type == "0-1" || estimate.params,
add.line = FALSE, qq.line.type = "least squares",
duplicate.points.method = "standard", points.col = 1, line.col = 1,
line.lwd = par("cex"), line.lty = 1, digits = .Options$digits,
include.cen = FALSE, cen.pch = ifelse(censoring.side == "left", 6, 2),
cen.cex = par("cex"), cen.col = 4, ..., main = NULL, xlab = NULL,
ylab = NULL, xlim = NULL, ylim = NULL)

Arguments

x numeric vector of observations that is assumed to represent a sample from the
hypothesized distribution specifed by distribution. Missing (NA), undefined
(NaN), and infinite (Inf, -Inf) values are allowed but will be removed.

censored numeric or logical vector indicating which values of x are censored. This must
be the same length as x. If the mode of censored is "logical", TRUE values
correspond to elements of x that are censored, and FALSE values correspond to
elements of x that are not censored. If the mode of censored is "numeric",
it must contain only 1’s and 0’s; 1 corresponds to TRUE and 0 corresponds to
FALSE. Missing (NA) values are allowed but will be removed.

censoring.side character string indicating on which side the censoring occurs. The possible
values are "left" (the default) and "right".

prob.method character string indicating what method to use to compute the plotting positions
(empirical probabilities). Possible values are "kaplan-meier" (product-limit
method of Kaplan and Meier (1958)), "modified kaplan-meier" (same as
"kaplan-meier" except the maximum value is plotted too), "nelson" (hazard
plotting method of Nelson (1972)), "michael-schucany" (generalization of the
product-limit method due to Michael and Schucany (1986)), and "hirsch-stedinger"
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(generalization of the product-limit method due to Hirsch and Stedinger (1987)).
The default value is prob.method="michael-schucany".
The "nelson" method is only available for censoring.side="right", and the
"modified kaplan-meier" method is only available for censoring.side="left".
See the DETAILS section for more explanation.

plot.pos.con numeric scalar between 0 and 1 containing the value of the plotting position
constant. The default value is plot.pos.con=0.375. See the DETAILS section
for more information. This argument is used only if prob.method is equal to
"michael-schucany" or "hirsch-stedinger".

distribution a character string denoting the distribution abbreviation. The default value is
distribution="norm". See the help file for Distribution.df for a list of
possible distribution abbreviations.

param.list a list with values for the parameters of the distribution. The default value is
param.list=list(mean=0, sd=1). See the help file for Distribution.df
for the names and possible values of the parameters associated with each distri-
bution. This argument is ignored if estimate.params=TRUE.

estimate.params

a logical scalar indicating whether to compute quantiles based on estimating
the distribution parameters (estimate.params=TRUE) or using the known dis-
tribution parameters specified in param.list (estimate.params=FALSE, the de-
fault). The default value of estimate.params is FALSE if plot.type="Q-Q"
because the default configuration is a standard normal (mean=0, sd=1) Q-Q
plot, which will yield roughly a straight line if the observations in x are from
any normal distribution. The default value of estimate.params is TRUE if
plot.type="Tukey Mean-Difference Q-Q".
You can set estimate.params=TRUE only when the argument distribution
specifies a distribution that has an associated function for estimating distribu-
tion parameters in the case of Type I censored data. Currently this includes the
normal (dist="norm"), lognormal (dist="lnorm" or dist="lnormAlt"), and
Poisson (dist="pois") distributions (see the section Estimating Distribution
Parameters in the help file EnvStats Functions for Censored Data).

est.arg.list a list whose components are optional arguments associated with the function
used to estimate the parameters of the assumed distribution (see the section Es-
timating Distribution Parameters in the help file EnvStats Functions for Cen-
sored Data). For example, the function enormCensored has an optional argu-
ment called method that specifies the method to use to estimate the parameters.
To override the default estimation method, supply the argument est.arg.list
with a component called method; for example est.arg.list=list(method="impute.w.qq.reg").
The default value is est.arg.list=NULL so that all default values for the esti-
mating function are used. This argument is ignored if estimate.params=FALSE.

plot.type a character string denoting the kind of plot. Possible values are "Q-Q" (Quantile-
Quantile plot, the default) and "Tukey Mean-Difference Q-Q" (Tukey mean-
difference Q-Q plot). This argument may be abbreviated (e.g., plot.type="T"
to indicate a Tukey mean-difference Q-Q plot).

plot.it a logical scalar indicating whether to create a plot on the current graphics device.
The default value is plot.it=TRUE.

equal.axes a logical scalar indicating whether to use the same range on the x- and y-axes
when plot.type="Q-Q". The default value is TRUE if qq.line.type="0-1"
or estimate.params=TRUE, otherwise it is FALSE. This argument is ignored if
plot.type="Tukey Mean-Difference Q-Q".
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add.line a logical scalar indicating whether to add a line to the plot. If add.line=TRUE
and plot.type="Q-Q", a line determined by the value of qq.line.type is
added to the plot. If add.line=TRUE and
plot.type="Tukey Mean-Difference Q-Q", a horizontal line at y = 0 is
added to the plot. The default value is add.line=FALSE.

qq.line.type character string determining what kind of line to add to the Q-Q plot. Possible
values are "least squares" (the default), "0-1" and "robust". For the value
"least squares", a least squares line is fit and added. For the value "0-1", a
line with intercept 0 and slope 1 is added. For the value "robust", a line is fit
through the first and third quartiles of the x and y data. This argument is ignored
if add.line=FALSE or plot.type="Tukey Mean-Difference Q-Q".

duplicate.points.method

a character string denoting how to plot points with duplicate (x, y) values. Pos-
sible values are "standard" (the default), "jitter", and "number". For the
value "standard", a single plotting symbol is plotted (this is the default be-
havior of R). For the value "jitter", a separate plotting symbol is plotted for
each duplicate point, where the plotting symbols cluster around the true value
of x and y. For the value "number", a single number is plotted at (x, y) that
represents how many duplicate points are at that (x, y) coordinate.

points.col a numeric scalar or character string determining the color of the points in the
plot. The default value is points.col=1. See the entry for col in the help file
for par for more information.

line.col a numeric scalar or character string determining the color of the line in the plot.
The default value is points.col=1. See the entry for col in the help file for par
for more information. This argument is ignored if add.line=FALSE.

line.lwd a numeric scalar determining the width of the line in the plot. The default value
is line.lwd=par("cex"). See the entry for lwd in the help file for par for more
information. This argument is ignored if add.line=FALSE.

line.lty a numeric scalar determining the line type of the line in the plot. The default
value is line.lty=1. See the entry for lty in the help file for par for more
information. This argument is ignored if add.line=FALSE.

digits a scalar indicating how many significant digits to print for the distribution pa-
rameters. The default value is digits=.Options$digits.

include.cen logical scalar indicating whether to include censored values in the plot. The
default value is include.cen=FALSE. If include.cen=TRUE, censored values
are plotted using the plotting character indicated by the argument cen.pch (see
below).

cen.pch numeric scalar or character string indicating the plotting character to use to
plot censored values. The default value is cen.pch=2 (hollow triangle pointing
up) when censoring.side="right", and cen.pch=6 (hollow triangle pointing
down) when censoring.side="left". See the help file for points for a list of
other possible plotting characters. This argument is ignored if
include.cen=FALSE.

cen.cex numeric scalar that determines the size of the plotting character used to plot
censored values. The default value is the current value of the cex graphics pa-
rameter. See the entry for cex in the help file for par for more information. This
argument is ignored if include.cen=FALSE.

cen.col numeric scalar or character string that determines the color of the plotting char-
acter used to plot censored values. The default value is cen.col=4. See the
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entry for col in the help file for par for more information. This argument is
ignored if include.cen=FALSE.

main, xlab, ylab, xlim, ylim, ...

additional graphical parameters (see par).

Details

The function qqPlotCensored does exactly the same thing as qqPlot (when the argument y is not
supplied to qqPlot), except qqPlotCensored calls the function ppointsCensored to compute the
plotting positions (estimated cumulative probabilities).

The vector x is assumed to be a sample from the probability distribution specified by the argu-
ment distribution (and param.list if estimate.params=FALSE). When plot.type="Q-Q", the
quantiles of x are plotted on the y-axis against the quantiles of the assumed distribution on the x-
axis.

When plot.type="Tukey Mean-Difference Q-Q", the difference of the quantiles is plotted on
the y-axis against the mean of the quantiles on the x-axis.

When prob.method="kaplan-meier" and censoring.side="left" and the assumed distribution
has a maximum support of infinity (Inf; e.g., the normal or lognormal distribution), the point
invovling the largest value of x is not plotted because it corresponds to an estimated cumulative
probability of 1 which corresponds to an infinite plotting position.

When prob.method="modified kaplan-meier" and censoring.side="left", the estimated cu-
mulative probability associated with the maximum value is modified from 1 to be (N− .375)/(N+
.25) where N denotes the sample size (i.e., the Blom plotting position) so that the point associated
with the maximum value can be displayed.

Value

qqPlotCensored returns a list with the following components:

x numeric vector of x-coordinates for the plot. When plot.type="Q-Q" these are
the quantiles from the theoretical distribution. When plot.type="Tukey Mean-Difference Q-Q"
these are the averages of the observed and theoretical quantiles.

y numeric vector of y-coordinates for the plot. When plot.type="Q-Q" these are
the observed quantiles (order statistics). When plot.type="Tukey Mean-Difference Q-Q"
these are the differences between the observed quantiles (order statistics) and the
theoretical quantiles.

Order.Statistics

numeric vector of the “ordered” observations. When plot.type="Q-Q" this
component is exactly the same as the component y.

Cumulative.Probabilities

numeric vector of the plotting positions associated with the order statistics.
Censored logical vector indicating which of the ordered observations are censored.
Censoring.Side character string indicating whether the data are left- or right-censored. This is

same value as the argument censoring.side.
Prob.Method character string indicating what method was used to compute the plotting posi-

tions. This is the same value as the argument prob.method.

Optional Component (only present when prob.method="michael-schucany" or
prob.method="hirsch-stedinger"):

Plot.Pos.Con numeric scalar containing the value of the plotting position constant that was
used. This is the same as the argument plot.pos.con.



940 qqPlotCensored

Note

A quantile-quantile (Q-Q) plot, also called a probability plot, is a plot of the observed order statistics
from a random sample (the empirical quantiles) against their (estimated) mean or median values
based on an assumed distribution, or against the empirical quantiles of another set of data (Wilk and
Gnanadesikan, 1968). Q-Q plots are used to assess whether data come from a particular distribution,
or whether two datasets have the same parent distribution. If the distributions have the same shape
(but not necessarily the same location or scale parameters), then the plot will fall roughly on a
straight line. If the distributions are exactly the same, then the plot will fall roughly on the straight
line y = x.

A Tukey mean-difference Q-Q plot, also called an m-d plot, is a modification of a Q-Q plot. Rather
than plotting observed quantiles vs. theoretical quantiles or observed y-quantiles vs. observed
x-quantiles, a Tukey mean-difference Q-Q plot plots the difference between the quantiles on the
y-axis vs. the average of the quantiles on the x-axis (Cleveland, 1993, pp.22-23). If the two sets
of quantiles come from the same parent distribution, then the points in this plot should fall roughly
along the horizontal line y = 0. If one set of quantiles come from the same distribution with a shift
in median, then the points in this plot should fall along a horizontal line above or below the line
y = 0. A Tukey mean-difference Q-Q plot enhances our perception of how the points in the Q-Q
plot deviate from a straight line, because it is easier to judge deviations from a horizontal line than
from a line with a non-zero slope.

In a Q-Q plot, the extreme points have more variability than points toward the center. A U-shaped
Q-Q plot indicates that the underlying distribution for the observations on the y-axis is skewed to
the right relative to the underlying distribution for the observations on the x-axis. An upside-down-
U-shaped Q-Q plot indicates the y-axis distribution is skewed left relative to the x-axis distribution.
An S-shaped Q-Q plot indicates the y-axis distribution has shorter tails than the x-axis distribution.
Conversely, a plot that is bent down on the left and bent up on the right indicates that the y-axis
distribution has longer tails than the x-axis distribution.

Censored observations complicate the procedures used to graphically explore data. Techniques from
survival analysis and life testing have been developed to generalize the procedures for constructing
plotting positions, empirical cdf plots, and Q-Q plots to data sets with censored observations (see
ppointsCensored).

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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See Also

ppointsCensored, EnvStats Functions for Censored Data, qqPlot, ecdfPlotCensored, qqPlotGestalt.

Examples

# Generate 20 observations from a normal distribution with mean=20 and sd=5,
# censor all observations less than 18, then generate a Q-Q plot assuming
# a normal distribution for the complete data set and the censored data set.
# Note that the Q-Q plot for the censored data set starts at the first ordered
# uncensored observation, and that for values of x > 18 the two Q-Q plots are
# exactly the same. This is because there is only one censoring level and
# no uncensored observations fall below the censored observations.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(333)
x <- rnorm(20, mean=20, sd=5)
censored <- x < 18

sum(censored)
#[1] 7

new.x <- x
new.x[censored] <- 18

dev.new()
qqPlot(x, ylim = range(pretty(x)),

main = "Q-Q Plot for\nComplete Data Set")

dev.new()
qqPlotCensored(new.x, censored, ylim = range(pretty(x)),

main="Q-Q Plot for\nCensored Data Set")

# Clean up
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#---------
rm(x, censored, new.x)

#------------------------------------------------------------------------------------

# Example 15-1 of USEPA (2009, page 15-10) gives an example of
# computing plotting positions based on censored manganese
# concentrations (ppb) in groundwater collected at 5 monitoring
# wells. The data for this example are stored in
# EPA.09.Ex.15.1.manganese.df. Here we will create a Q-Q
# plot based on the Kaplan-Meier method. First well assume
# a normal distribution, then a lognormal distribution, then a
# gamma distribution.

EPA.09.Ex.15.1.manganese.df
# Sample Well Manganese.Orig.ppb Manganese.ppb Censored
#1 1 Well.1 <5 5.0 TRUE
#2 2 Well.1 12.1 12.1 FALSE
#3 3 Well.1 16.9 16.9 FALSE
#4 4 Well.1 21.6 21.6 FALSE
#5 5 Well.1 <2 2.0 TRUE
#...
#21 1 Well.5 17.9 17.9 FALSE
#22 2 Well.5 22.7 22.7 FALSE
#23 3 Well.5 3.3 3.3 FALSE
#24 4 Well.5 8.4 8.4 FALSE
#25 5 Well.5 <2 2.0 TRUE

# Assume normal distribution
#---------------------------

dev.new()
with(EPA.09.Ex.15.1.manganese.df,

qqPlotCensored(Manganese.ppb, Censored,
prob.method = "kaplan-meier", points.col = "blue", add.line = TRUE,
main = paste("Normal Q-Q Plot of Manganese Data",

"Based on Kaplan-Meier Plotting Positions", sep = "\n")))

# Include max value in the plot
#------------------------------

dev.new()
with(EPA.09.Ex.15.1.manganese.df,

qqPlotCensored(Manganese.ppb, Censored,
prob.method = "modified kaplan-meier", points.col = "blue",
add.line = TRUE,
main = paste("Normal Q-Q Plot of Manganese Data",

"Based on Kaplan-Meier Plotting Positions",
"(Max Included)", sep = "\n")))

# Assume lognormal distribution
#------------------------------

dev.new()
with(EPA.09.Ex.15.1.manganese.df,

qqPlotCensored(Manganese.ppb, Censored, dist = "lnorm",
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prob.method = "kaplan-meier", points.col = "blue", add.line = TRUE,
main = paste("Lognormal Q-Q Plot of Manganese Data",

"Based on Kaplan-Meier Plotting Positions", sep = "\n")))

# Include max value in the plot
#------------------------------

dev.new()
with(EPA.09.Ex.15.1.manganese.df,

qqPlotCensored(Manganese.ppb, Censored, dist = "lnorm",
prob.method = "modified kaplan-meier", points.col = "blue",
add.line = TRUE,
main = paste("Lognormal Q-Q Plot of Manganese Data",

"Based on Kaplan-Meier Plotting Positions",
"(Max Included)", sep = "\n")))

# The lognormal distribution appears to be a better fit.
# Now create a Q-Q plot assuming a gamma distribution. Here well
# need to set estimate.params=TRUE.

dev.new()
with(EPA.09.Ex.15.1.manganese.df,

qqPlotCensored(Manganese.ppb, Censored, dist = "gamma",
estimate.params = TRUE, prob.method = "kaplan-meier",
points.col = "blue", add.line = TRUE,
main = paste("Gamma Q-Q Plot of Manganese Data",

"Based on Kaplan-Meier Plotting Positions", sep = "\n")))

# Include max value in the plot
#------------------------------

dev.new()
with(EPA.09.Ex.15.1.manganese.df,

qqPlotCensored(Manganese.ppb, Censored, dist = "gamma",
estimate.params = TRUE, prob.method = "modified kaplan-meier",
points.col = "blue", add.line = TRUE,
main = paste("Gamma Q-Q Plot of Manganese Data",

"Based on Kaplan-Meier Plotting Positions",
"(Max Included)", sep = "\n")))

#==========

# Clean up
#---------
graphics.off()

qqPlotGestalt Develop Gestalt of Q-Q Plots for Specific Distributions

Description

Produce a series of quantile-quantile (Q-Q) plots (also called probability plots) or Tukey mean-
difference Q-Q plots for a user-specified distribution.
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Usage

qqPlotGestalt(distribution = "norm", param.list = list(mean = 0, sd = 1),
estimate.params = FALSE, est.arg.list = NULL, sample.size = 10, num.pages = 2,
num.plots.per.page = 4, nrow = ceiling(num.plots.per.page/2), plot.type = "Q-Q",
plot.pos.con = switch(dist.abb, norm = , lnorm = , lnormAlt = , lnorm3 = 0.375,
evd = 0.44, 0.4), equal.axes = (qq.line.type == "0-1" || estimate.params),

margin.title = NULL, add.line = FALSE, qq.line.type = "least squares",
duplicate.points.method = "standard", points.col = 1, line.col = 1,
line.lwd = par("cex"), line.lty = 1, digits = .Options$digits,
same.window = TRUE, ask = same.window & num.pages > 1,
mfrow = c(nrow, num.plots.per.page/nrow),
mar = c(4, 4, 1, 1) + 0.1, oma = c(0, 0, 7, 0), mgp = c(2, 0.5, 0), ...,
main = NULL, xlab = NULL, ylab = NULL, xlim = NULL, ylim = NULL)

Arguments

distribution a character string denoting the distribution abbreviation. The default value is
distribution="norm". See the help file for Distribution.df for a list of
possible distribution abbreviations. This argument is ignored if y is supplied.

param.list a list with values for the parameters of the distribution. The default value is
param.list=list(mean=0, sd=1). See the help file for Distribution.df
for the names and possible values of the parameters associated with each distri-
bution. This argument is ignored if estimate.params=TRUE.

estimate.params

a logical scalar indicating whether to compute quantiles based on estimating
the distribution parameters (estimate.params=TRUE) or using the known dis-
tribution parameters specified in param.list (estimate.params=FALSE, the
default). The default value of estimate.params is FALSE because the default
configuration is to generate random numbers from a standard normal (mean=0,
sd=1) distribution and produce a standard normal Q-Q plot.

est.arg.list a list whose components are optional arguments associated with the function
used to estimate the parameters of the assumed distribution (see the help file
Estimating Distribution Parameters). For example, all functions used to es-
timate distribution parameters have an optional argument called method that
specifies the method to use to estimate the parameters. (See the help file for
Distribution.df for a list of available estimation methods for each distribu-
tion.) To override the default estimation method, supply the argument est.arg.list
with a component called method; for example est.arg.list=list(method="mle").
The default value is est.arg.list=NULL so that all default values for the esti-
mating function are used. This argument is ignored if estimate.params=FALSE.

sample.size numeric scalar indicating the number of observations to generate for each Q-Q
plot. The default value is sample.size=10.

num.pages numeric scalar indicating the number of pages of plots to generate. The default
value is num.pages=2.

num.plots.per.page

numeric scalar indicating the number of plots per page. The default value is
num.pages=4.

nrow numeric scalar indicating the number of rows of plots on each page. The default
value is the smallest integer greater than or equal to num.plots.per.page/2.
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plot.type a character string denoting the kind of plot. Possible values are "Q-Q" (Quantile-
Quantile plot, the default) and "Tukey Mean-Difference Q-Q" (Tukey mean-
difference Q-Q plot). This argument may be abbreviated (e.g., plot.type="T"
to indicate a Tukey mean-difference Q-Q plot).

plot.pos.con numeric scalar between 0 and 1 containing the value of the plotting position
constant. The default value of plot.pos.con depends on the value of the ar-
gument distribution. For the normal, lognormal, three-parameter lognormal,
zero-modified normal, and zero-modified lognormal distributions, the default
value is plot.pos.con=0.375. For the Type I extreme value (Gumbel) distri-
bution (distribution="evd"), the default value is plot.pos.con=0.44. For
all other distributions, the default value is plot.pos.con=0.4. See the help file
for qqPlot for the motivation behind these values for plotting positions.

equal.axes logical scalar indicating whether to use the same range on the x- and y-axes
when plot.type="Q-Q". The default value is TRUE if qq.line.type="0-1"
or estimate.params=TRUE, otherwise it is FALSE. This argument is ignored if
plot.type="Tukey Mean-Difference Q-Q".

margin.title character string indicating the title printed in the top margin on each page of
plots. The default value indicates the kind of Q-Q plot, the probability distribu-
tion, the sample size, and the estimation method used (if any).

add.line logical scalar indicating whether to add a line to the plot. If add.line=TRUE and
plot.type="Q-Q", a line determined by the value of qq.line.type is added to
the plot. If add.line=TRUE and
plot.type="Tukey Mean-Difference Q-Q", a horizontal line at y = 0 is
added to the plot. The default value is add.line=FALSE.

qq.line.type character string determining what kind of line to add to the Q-Q plot. Possible
values are "least squares" (the default), "0-1" and "robust". For the value
"least squares", a least squares line is fit and added. For the value "0-1", a
line with intercept 0 and slope 1 is added. For the value "robust", a line is fit
through the first and third quartiles of the x and y data. This argument is ignored
if add.line=FALSE or plot.type="Tukey Mean-Difference Q-Q".

duplicate.points.method

character string denoting how to plot points with duplicate (x, y) values. Pos-
sible values are "standard" (the default), "jitter", and "number". For the
value "standard", a single plotting symbol is plotted (this is the default be-
havior of R). For the value "jitter", a separate plotting symbol is plotted for
each duplicate point, where the plotting symbols cluster around the true value
of x and y. For the value "number", a single number is plotted at (x, y) that
represents how many duplicate points are at that (x, y) coordinate.

points.col numeric scalar or character string determining the color of the points in the plot.
The default value is points.col=1. See the entry for col in the help file for par
for more information.

line.col numeric scalar or character string determining the color of the line in the plot.
The default value is points.col=1. See the entry for col in the help file for par
for more information. This argument is ignored if add.line=FALSE.

line.lwd numeric scalar determining the width of the line in the plot. The default value is
line.lwd=par("cex"). See the entry for lwd in the help file for par for more
information. This argument is ignored if add.line=FALSE.

line.lty a numeric scalar determining the line type of the line in the plot. The default
value is line.lty=1. See the entry for lty in the help file for par for more
information. This argument is ignored if add.line=FALSE.
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digits a scalar indicating how many significant digits to print for the distribution pa-
rameters. The default value is digits=.Options$digits.

same.window logical scalar indicating whether to produce all plots in the same graphics win-
dow (same.window=TRUE; the default), or to create a new graphics window for
each separate plot (same.window=FALSE).

ask logical scalar supplied to the function devAskNewPage, indicating whether to
prompt the user before creating a new plot within a single graphics window. The
default value is TRUE if same.window=TRUE and num.pages > 1, otherwise it is
FALSE.

mfrow, mar, oma, mgp, main, xlab, ylab, xlim, ylim, ...

additional graphical parameters (see par).

Details

The function qqPlotGestalt allows the user to display several Q-Q plots or Tukey mean-difference
Q-Q plots for a specified probability distribution. The distribution is specified with the arguments
distribution and param.list. By default, normal (Gaussian) Q-Q plots are produced.

If estimate.params=FALSE (the default), the theoretical quantiles on the x-axis are computed us-
ing the known distribution parameters specified in param.list. If estimate.params=TRUE, the
distribution parameters are estimated based on the sample, and these estimated parameters are then
used to compute the theoretical quantiles. For distributions that can be specified by a location and
scale parameter (e.g., Normal, Logistic, extreme value, etc.), the value of estimate.params will
not affect the general shape of the plot, only the values recorded on the x-axis. For distributions
that cannot be specified by a location and scale parameter (e.g., exponential, gamma, etc.), it is
recommended that estimate.params be set to TRUE since in pracitice the values of the distribution
parameters are not known but must be estimated from the sample.

The purpose of qqPlotGestalt is to allow the user to build-up a visual memory of “typical” Q-
Q plots. A Q-Q plot is a graphical tool that allows you to assess how well a particular set of
observations fit a particular probability distribution. The value of this tool depends on the user
having an internal reference set of Q-Q plots with which to compare the current Q-Q plot.

See the help file for qqPlot for more information.

Value

The NULL value is returned.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

See the REFERENCES section for qqPlot.

See Also

qqPlot.
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Examples

# Look at eight typical normal (Gaussian) Q-Q plots for random samples
# of size 10 from a N(0,1) distribution
# Are you surprised by the variability in the plots?
#
# (Note: you must use set.seed if you want to reproduce the exact
# same plots more than once.)

set.seed(298)
qqPlotGestalt(same.window = FALSE)

# Add lines to these same Q-Q plots
#----------------------------------
set.seed(298)
qqPlotGestalt(same.window = FALSE, add.line = TRUE)

# Add lines to different Q-Q plots
#---------------------------------
qqPlotGestalt(same.window = FALSE, add.line = TRUE)

# Look at 4 sets of plots all in the same graphics window
#--------------------------------------------------------
# NOT DONE. Remove the hash sign (#) from the beginning
# of the next line to run this example.
# qqPlotGestalt(add.line = TRUE, num.pages = 4)

#==========

# Look at Q-Q plots for a gamma distribution
#-------------------------------------------

qqPlotGestalt(dist = "gammaAlt",
param.list = list(mean = 10, cv = 1),
estimate.params = TRUE, num.pages = 3,
same.window = FALSE, add.line = TRUE)

# Look at Tukey Mean Difference Q-Q plots
# for a gamma distribution
#----------------------------------------

qqPlotGestalt(dist = "gammaAlt",
param.list = list(mean = 10, cv = 1),
estimate.params = TRUE, num.pages = 3,
plot.type = "Tukey", same.window = FALSE, add.line = TRUE)

#==========

# Clean up
#---------
graphics.off()

quantileTest Two-Sample Rank Test to Detect a Shift in a Proportion of the
"Treated" Population
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Description

Two-sample rank test to detect a positive shift in a proportion of one population (here called the
“treated” population) compared to another (here called the “reference” population). This test is
usually called the quantile test (Johnson et al., 1987).

Usage

quantileTest(x, y, alternative = "greater", target.quantile = 0.5,
target.r = NULL, exact.p = TRUE)

Arguments

x numeric vector of observations from the “treatment” group. Missing (NA), unde-
fined (NaN), and infinite (Inf, -Inf) values are allowed but will be removed.

y numeric vector of observations from the “reference” group. Missing (NA), unde-
fined (NaN), and infinite (Inf, -Inf) values are allowed but will be removed.

alternative character string indicating the kind of alternative hypothesis. The possible val-
ues are "greater" (right tail of treatment group shifted to the right of the right
tail of the reference group) and "less" (left tail of treatment group shifted to the
left of the left tail of the reference group). The default value is alternative="greater".

target.quantile

numeric scalar between 0 and 1 indicating the desired quantile to use as the lower
cut off point for the test. Because of the discrete nature of empirical quantiles,
the upper bound for the possible empirical quantiles will often differ from the
value of target.quantile. The default value is target.quantile=0.5 (i.e.,
the median). This argument is ignored if the argument target.r is supplied.

target.r integer indicating the rank of the observation to use as the lower cut off point for
the test. The value of target.r must be greater than or equal to 2 and less than
or equal toN (the total number of valid observations contained in the arguments
x and y). The actual rank of the cut off point may differ from target.r in the
case of tied observations in x and/or y. The default value of this argument is
NULL, in which case the argument target.quantile is used to determine the
lower cut off for the test.

exact.p logical scalar indicating whether to compute the p-value based on the exact dis-
tribution of the test statistic (exact.p=TRUE; the default) or based on the normal
approximation (exact.p=FALSE).

Details

Let X denote a random variable representing measurements from a “treatment” group with cumu-
lative distribution function (cdf)

FX(t) = Pr(X ≤ t) (1)

and let x1, x2, . . . , xm denote m observations from this treatment group. Let Y denote a random
variable from a “reference” group with cdf

FY (t) = Pr(Y ≤ t) (2)

and let y1, y2, . . . , yn denote n observations from this reference group. Consider the null hypothesis:

H0 : FX(t) = FY (t), −∞ < t <∞ (3)
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versus the alternative hypothesis

Ha : FX(t) = (1− ε)FY (t) + εFZ(t) (4)

where Z denotes some random variable with cdf

FZ(t) = Pr(Z ≤ t) (5)

and 0 < ε ≤ 1, FZ(t) ≤ FY (t) for all values of t, and FZ(t) 6= FY (t) for at least one value of t.

In English, the alternative hypothesis (4) says that a portion ε of the distribution for the treatment
group (the distribution of X) is shifted to the right of the distribution for the reference group (the
distribution of Y ). The alternative hypothesis (4) with ε = 1 is the alternative hypothesis associated
with testing a location shift, for which the the Wilcoxon rank sum test can be used.

Johnson et al. (1987) investigated locally most powerful rank tests for the test of the null hypothesis
(3) against the alternative hypothesis (4). They considered the case when Y and Z were normal
random variables and the case when the densities of Y and Z assumed only two positive values.
For the latter case, the locally most powerful rank test reduces to the following procedure, which
Johnson et al. (1987) call the quantile test.

1. Combine the n observations from the reference group and the m observations from the treat-
ment group and rank them from smallest to largest. Tied observations receive the average rank
of all observations tied at that value.

2. Choose a quantile q and determine the smallest rank r such that

r

m+ n+ 1
> q (6)

Note that because of the discrete nature of ranks, any quantile q′ such that

r

m+ n+ 1
> q′ ≥ r − 1

m+ n+ 1
(7)

will yield the same value for r as the quantile q does. Alternatively, choose a value of r. The
bounds on an associated quantile are then given in Equation (7). Note: the component called
parameters in the list returned by quantileTest contains an element named quantile.ub.
The value of this element is the left-hand side of Equation (7).

3. Set k equal to the number of observations from the treatment group (the number of X obser-
vations) with ranks bigger than or equal to r.

4. Under the null hypothesis (3), the probability that at least k out of the r largest observations
come from the treatment group is given by:

p =

r∑
i=k

(
m+n−r
m−i

)(
r
i

)(
m+n
n

) (8)

This probability may be approximated by:

p = 1− Φ(
k − µk − 1/2

σk
) (9)

where
µk =

mr

m+ n
(10)

σ2
k =

mnr(m+ n− r)
(m+ n)2(m+ n− 1)

(11)

and Φ denotes the cumulative distribution function of the standard normal distribution (USEPA,
1994, pp.7.16-7.17). (See quantileTestPValue.)
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5. Reject the null hypothesis (3) in favor of the alternative hypothesis (4) at significance level α
if p ≤ α.

Johnson et al. (1987) note that their quantile test is asymptotically equivalent to one proposed by
Carrano and Moore (1982) in the context of a two-sided test. Also, when q = 0.5, the quantile test
reduces to Mood’s median test for two groups (see Zar, 2010, p.172; Conover, 1980, pp.171-178).

The optimal choice of q or r in Step 2 above (i.e., the choice that yields the largest power) depends
on the true underlying distributions of Y and Z and the mixing proportion ε. Johnson et al. (1987)
performed a simulation study and showed that the quantile test performs better than the Wilcoxon
rank sum test and the normal scores test under the alternative of a mixed normal distribution with a
shift of at least 2 standard deviations in the Z distribution. USEPA (1994, pp.7.17-7.21) shows that
when the mixing proportion ε is small and the shift is large, the quantile test is more powerful than
the Wilcoxon rank sum test, and when ε is large and the shift is small the Wilcoxon rank sum test is
more powerful than the quantile test.

Value

A list of class "htest" containing the results of the hypothesis test. See the help file for htest.object
for details.

Note

The EPA guidance document Statistical Methods for Evaluating the Attainment of Cleanup Stan-
dards, Volume 3: Reference-Based Standards for Soils and Solid Media (USEPA, 1994, pp.4.7-4.9)
recommends three different statistical tests for determining whether a remediated Superfund site
has attained compliance: the Wilcoxon rank sum test, the quantile test, and the “hot measurement”
comparison test. The Wilcoxon rank sum test and quantile test are nonparametric tests that compare
chemical concentrations in the cleanup area with those in the reference area. The hot-measurement
comparison test compares concentrations in the cleanup area with a pre-specified upper limit value
Hm (the value of Hm must be negotiated between the EPA and the Superfund-site owner or oper-
ator). The Wilcoxon rank sum test is appropriate for detecting uniform failure of remedial action
throughout the cleanup area. The quantile test is appropriate for detecting failure in only a few
areas within the cleanup area. The hot-measurement comparison test is appropriate for detecting
hot spots that need to be remediated regardless of the outcomes of the other two tests.

USEPA (1994, pp.4.7-4.9) recommends applying all three tests to all cleanup units within a cleanup
area. This leads to the usual multiple comparisons problem: the probability of at least one of the
tests indicating non-compliance, when in fact the cleanup area is in compliance, is greater than the
pre-set Type I error level for any of the individual tests. USEPA (1994, p.3.3) recommends against
using multiple comparison procedures to control the overall Type I error and suggests instead a re-
sampling scheme where additional samples are taken in cases where non-compliance is indicated.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Carrano, A., and D. Moore. (1982). The Rationale and Methodology for Quantifying Sister Chro-
matid Exchange in Humans. In Heddle, J.A., ed., Mutagenicity: New Horizons in Genetic Toxocol-
ogy. Academic Press, New York, pp.268-304.

Conover, W.J. (1980). Practical Nonparametric Statistics. Second Edition. John Wiley and Sons,
New York, Chapter 4.
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Johnson, R.A., S. Verrill, and D.H. Moore. (1987). Two-Sample Rank Tests for Detecting Changes
That Occur in a Small Proportion of the Treated Population. Biometrics 43, 641-655.

Millard, S.P., and N.K. Neerchal. (2001). Environmental Statistics with S-PLUS. CRC Press, Boca
Raton, FL, pp.435-439.

USEPA. (1994). Statistical Methods for Evaluating the Attainment of Cleanup Standards, Volume
3: Reference-Based Standards for Soils and Solid Media. EPA/230-R-94-004. Office of Policy,
Planning, and Evaluation, U.S. Environmental Protection Agency, Washington, D.C.

Zar, J.H. (2010). Biostatistical Analysis. Fifth Edition. Prentice-Hall, Upper Saddle River, NJ.

See Also

quantileTestPValue, wilcox.test, htest.object, Hypothesis Tests.

Examples

# Following Example 7.5 on pages 7.23-7.24 of USEPA (1994b), perform the
# quantile test for the TcCB data (the data are stored in EPA.94b.tccb.df).
# There are n=47 observations from the reference area and m=77 observations
# from the cleanup unit. The target rank is set to 9, resulting in a value
# of quantile.ub=0.928. Note that the p-value is 0.0114, not 0.0117.

EPA.94b.tccb.df
# TcCB.orig TcCB Censored Area
#1 0.22 0.22 FALSE Reference
#2 0.23 0.23 FALSE Reference
#...
#46 1.20 1.20 FALSE Reference
#47 1.33 1.33 FALSE Reference
#48 <0.09 0.09 TRUE Cleanup
#49 0.09 0.09 FALSE Cleanup
#...
#123 51.97 51.97 FALSE Cleanup
#124 168.64 168.64 FALSE Cleanup

# Determine the values to use for r and k for
# a desired significance level of 0.01
#--------------------------------------------

p.vals <- quantileTestPValue(m = 77, n = 47,
r = c(rep(8, 3), rep(9, 3), rep(10, 3)),
k = c(6, 7, 8, 7, 8, 9, 8, 9, 10))

round(p.vals, 3)
#[1] 0.355 0.122 0.019 0.264 0.081 0.011 0.193 0.053 0.007

# Choose r=9, k=9 to get a significance level of 0.011
#-----------------------------------------------------

with(EPA.94b.tccb.df,
quantileTest(TcCB[Area=="Cleanup"], TcCB[Area=="Reference"],
target.r = 9))

#Results of Hypothesis Test
#--------------------------
#
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#Null Hypothesis: e = 0
#
#Alternative Hypothesis: Tail of Fx Shifted to Right of
# Tail of Fy.
# 0 < e <= 1, where
# Fx(t) = (1-e)*Fy(t) + e*Fz(t),
# Fz(t) <= Fy(t) for all t,
# and Fy != Fz
#
#Test Name: Quantile Test
#
#Data: x = TcCB[Area == "Cleanup"]
# y = TcCB[Area == "Reference"]
#
#Sample Sizes: nx = 77
# ny = 47
#
#Test Statistics: k (# x obs of r largest) = 9
# r = 9
#
#Test Statistic Parameters: m = 77.000
# n = 47.000
# quantile.ub = 0.928
#
#P-value: 0.01136926

#==========

# Clean up
#---------

rm(p.vals)

quantileTestPValue Compute p-Value for the Quantile Test

Description

Compute the p-value associated with a specified combination of m, n, r, and k for the quantile test
(useful for determining r and k for a given significance level α).

Usage

quantileTestPValue(m, n, r, k, exact.p = TRUE)

Arguments

m numeric vector of integers indicating the number of observations from the “treat-
ment” group. Missing (NA), undefined (NaN), and infinite (Inf, -Inf) values are
allowed but will be removed.

n numeric vector of integers indicating the number of observations from the “ref-
erence” group. Missing (NA), undefined (NaN), and infinite (Inf, -Inf) values
are allowed but will be removed.
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r numeric vector of integers indicating the ranks of the observations to use as the
lower cut off for the quantile test. All values of r must be greater than or equal to
2 and less than or equal to the corresponding elements of m+n (the total number
of observations from both groups). Missing (NA), undefined (NaN), and infinite
(Inf, -Inf) values are allowed but will be removed.

k numeric vector of integers indicating the number of observations from the “treat-
ment” group contained in the r largest observations. This is the critical value
used to decide whether to reject the null hypothesis. All values of k must be
greater than or equal to 0 and less than or equal to the corresponding elements
of r. Missing (NA), undefined (NaN), and infinite (Inf, -Inf) values are allowed
but will be removed.

exact.p logical scalar indicating whether to compute the p-value based on the exact dis-
tribution of the test statistic (exact.p=TRUE; the default) or based on the normal
approximation (exact.p=FALSE).

Details

If the arguments m, n, r, and k are not all the same length, they are replicated to be the same length
as the length of the longest argument.

For details on how the p-value is computed, see the help file for quantileTest.

The function quantileTestPValue is useful for determining what values to use for r and k, given
the values of m, n, and a specified significance level α. The function quantileTestPValue can be
used to reproduce Tables A.6-A.9 in USEPA (1994, pp.A.22-A.25).

Value

numeric vector of p-values.

Note

See the help file for quantileTest.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

See the help file for quantileTest.

See Also

quantileTest, wilcox.test, htest.object, Hypothesis Tests.

Examples

# Reproduce the first column of Table A.9 in USEPA (1994, p.A.25):
#-----------------------------------------------------------------

p.vals <- quantileTestPValue(m = 5, n = seq(15, 45, by = 5),
r = c(9, 3, 4, 4, 5, 5, 6), k = c(4, 2, 2, 2, 2, 2, 2))

round(p.vals, 3)
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#[1] 0.098 0.091 0.119 0.089 0.109 0.087 0.103

#==========

# Clean up
#---------

rm(p.vals)

Refinery.CO.df Carbon Monoxide Emissions from Oil Refinery.

Description

Carbon monoxide (CO) emissions (ppm) from an oil refinery near San Francisco. The refinery
submitted 31 daily measurements from its stack for the period April 16, 1993 through May 16,
1993 to the Bay Area Air Quality Management District (BAAQMD). The BAAQMD made nine of
its own indepent measurements for the period September 11, 1990 through March 30, 1993.

Usage

data(Refinery.CO.df)

Format

A data frame with 40 observations on the following 3 variables.

CO.ppm a numeric vector of CO emissions (ppm)

Source a factor indicating the source of the measurment (BAAQMD or refinery

Date a Date object indicating the date the measurement was taken

Source

Data and Story Library, http://lib.stat.cmu.edu/DASL/Datafiles/Refinery.html.

References

Zou, G.Y., C.Y. Huo, and J. Taleban. (2009). Simple Confidence Intervals for Lognormal Means
and their Differences with Environmental Applications. Environmetrics, 20, 172–180.
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serialCorrelationTest Test for the Presence of Serial Correlation

Description

serialCorrelationTest is a generic function used to test for the presence of lag-one serial corre-
lation using either the rank von Neumann ratio test, the normal approximation based on the Yule-
Walker estimate of lag-one correlation, or the normal approximation based on the MLE of lag-one
correlation. The function invokes particular methods which depend on the class of the first argu-
ment.

Currently, there is a default method and a method for objects of class "lm".

Usage

serialCorrelationTest(x, ...)

## Default S3 method:
serialCorrelationTest(x, test = "rank.von.Neumann",

alternative = "two.sided", conf.level = 0.95, ...)

## S3 method for class lm
serialCorrelationTest(x, test = "rank.von.Neumann",

alternative = "two.sided", conf.level = 0.95, ...)

Arguments

x numeric vector of observations, a numeric univariate time series of class "ts",
or an object of class "lm". Undefined (NaN) and infinite (Inf, -Inf) values are
not allowed for x when x is a numeric vector or time series, nor for the residuals
associated with x when x is an object of class "lm".
When test="AR1.mle", missing (NA) values are allowed, otherwise they are
not allowed. When x is a numeric vector of observations or a numeric univariate
time series of class "ts", it must contain at least 3 non-missing values. When
x is an object of class "lm", the residuals must contain at least 3 non-missing
values.
Note: when x is an object of class "lm", the linear model should have been fit us-
ing the argument na.action=na.exclude in the call to lm in order to correctly
deal with missing values.

test character string indicating which test to use. The possible values are: "rank.von.Neumann"
(rank von Neumann ratio test; the default), "AR1.yw" (z-test based on Yule-
Walker lag-one estimate of correlation), and "AR1.mle" (z-test based on MLE
of lag-one correlation).

alternative character string indicating the kind of alternative hypothesis. The possible val-
ues are "two.sided" (the default), "greater", and "less".

conf.level numeric scalar between 0 and 1 indicating the confidence level associated with
the confidence interval for the population lag-one autocorrelation. The default
value is conf.level=0.95.

... optional arguments for possible future methods. Currently not used.



956 serialCorrelationTest

Details

Let x = x1, x2, . . . , xn denote n observations from a stationary time series sampled at equispaced
points in time with normal (Gaussian) errors. The function serialCorrelationTest tests the null
hypothesis:

H0 : ρ1 = 0 (1)

where ρ1 denotes the true lag-1 autocorrelation (also called the lag-1 serial correlation coefficient).
Actually, the null hypothesis is that the lag-k autocorrelation is 0 for all values of k greater than 0
(i.e., the time series is purely random).

In the case when the argument x is a linear model, the function serialCorrelationTest tests the
null hypothesis (1) for the residuals.

The three possible alternative hypotheses are the upper one-sided alternative (alternative="greater"):

Ha : ρ1 > 0 (2)

the lower one-sided alternative (alternative="less"):

Ha : ρ1 < 0 (3)

and the two-sided alternative:
Ha : ρ1 6= 0 (4)

Testing the Null Hypothesis of No Lag-1 Autocorrelation
There are several possible methods for testing the null hypothesis (1) versus any of the three al-
ternatives (2)-(4). The function serialCorrelationTest allows you to use one of three possible
tests:

• The rank von Neuman ratio test.

• The test based on the normal approximation for the distribution of the Yule-Walker estimate
of lag-one correlation.

• The test based on the normal approximation for the distribution of the maximum likelihood
estimate (MLE) of lag-one correlation.

Each of these tests is described below.

Test Based on Yule-Walker Estimate (test="AR1.yw")
The Yule-Walker estimate of the lag-1 autocorrelation is given by:

ρ̂1 =
γ̂1

γ̂0
(5)

where

γ̂k =
1

n

n−k∑
t=1

(xt − x̄)(xt+k − x̄) (6)

is the estimate of the lag-k autocovariance. (This estimator does not allow for missing values.)

Under the null hypothesis (1), the estimator of lag-1 correlation in Equation (5) is approximately
distributed as a normal (Gaussian) random variable with mean 0 and variance given by:

V ar(ρ̂1) ≈ 1

n
(7)

(Box and Jenkins, 1976, pp.34-35). Thus, the null hypothesis (1) can be tested with the statistic

z =
√
nρ̂1 (8)
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which is distributed approximately as a standard normal random variable under the null hypothesis
that the lag-1 autocorrelation is 0.

Test Based on the MLE (test="AR1.mle")
The function serialCorrelationTest the R function arima to compute the MLE of the lag-one
autocorrelation and the estimated variance of this estimator. As for the test based on the Yule-
Walker estimate, the z-statistic is computed as the estimated lag-one autocorrelation divided by the
square root of the estimated variance.

Test Based on Rank von Neumann Ratio (test="rank.von.Neumann")
The null distribution of the serial correlation coefficient may be badly affected by departures from
normality in the underlying process (Cox, 1966; Bartels, 1977). It is therefore a good idea to
consider using a nonparametric test for randomness if the normality of the underlying process is in
doubt (Bartels, 1982).

Wald and Wolfowitz (1943) introduced the rank serial correlation coefficient, which for lag-1 au-
tocorrelation is simply the Yule-Walker estimate (Equation (5) above) with the actual observations
replaced with their ranks.

von Neumann et al. (1941) introduced a test for randomness in the context of testing for trend in
the mean of a process. Their statistic is given by:

V =

∑n−1
i=1 (xi − xi+1)2∑n
i=1(xi − x̄)2

(9)

which is the ratio of the square of successive differences to the usual sums of squared deviations
from the mean. This statistic is bounded between 0 and 4, and for a purely random process is
symmetric about 2. Small values of this statistic indicate possible positive autocorrelation, and
large values of this statistics indicate possible negative autocorrelation. Durbin and Watson (1950,
1951, 1971) proposed using this statistic in the context of checking the independence of residuals
from a linear regression model and provided tables for the distribution of this statistic. This statistic
is therefore often called the “Durbin-Watson statistic” (Draper and Smith, 1998, p.181).

The rank version of the von Neumann ratio statistic is given by:

Vrank =

∑n−1
i=1 (Ri −Ri+1)2∑n
i=1(Ri − R̄)2

(10)

where Ri denotes the rank of the i’th observation (Bartels, 1982). (This test statistic does not allow
for missing values.) In the absence of ties, the denominator of this test statistic is equal to

n∑
i=1

(Ri − R̄)2 =
n(n2 − 1)

12
(11)

The range of the Vrank test statistic is given by:

[
12

(n)(n+ 1)
, 4− 12

(n)(n+ 1)
] (12)

if n is even, with a negligible adjustment if n is odd (Bartels, 1982), so asymptotically the range is
from 0 to 4, just as for the V test statistic in Equation (9) above.

Bartels (1982) shows that asymptotically, the rank von Neumann ratio statistic is a linear transfor-
mation of the rank serial correlation coefficient, so any asymptotic results apply to both statistics.

For any fixed sample size n, the exact distribution of the Vrank statistic in Equation (10) above can
be computed by simply computing the value of Vrank for all possible permutations of the serial
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order of the ranks. Based on this exact distribution, Bartels (1982) presents a table of critical values
for the numerator of the RVN statistic for sample sizes between 4 and 10.

Determining the exact distribution of Vrank becomes impractical as the sample size increases. For
values of n between 10 and 100, Bartels (1982) approximated the distribution of Vrank by a beta
distribution over the range 0 to 4 with shape parameters shape1=ν and shape2=ω and:

ν = ω =
5n(n+ 1)(n− 1)2

2(n− 2)(5n2 − 2n− 9)
− 1

2
(13)

Bartels (1982) checked this approximation by simulating the distribution of Vrank for n = 25
and n = 50 and comparing the empirical quantiles at 0.005, 0.01, 0.025, 0.05, and 0.1 with the
approximated quantiles based on the beta distribution. He found that the quantiles agreed to 2
decimal places for eight of the 10 values, and differed by 0.01 for the other two values.

Note: The definition of the beta distribution assumes the random variable ranges from 0 to 1. This
definition can be generalized as follows. Suppose the random variable Y has a beta distribution
over the range a ≤ y ≤ b, with shape parameters ν and ω. Then the random variable X defined as:

X =
Y − a
b− a

(14)

has the “standard beta distribution” as described in the help file for Beta (Johnson et al., 1995,
p.210).

Bartels (1982) shows that asymptotically, Vrank has normal distribution with mean 2 and variance
4/n, but notes that a slightly better approximation is given by using a variance of 20/(5n+ 7).

To test the null hypothesis (1) when test="rank.von.Neumann", the function serialCorrelationTest
does the following:

• When the sample size is between 3 and 10, the exact distribution of Vrank is used to compute
the p-value.

• When the sample size is between 11 and 100, the beta approximation to the distribution of
Vrank is used to compute the p-value.

• When the sample size is larger than 100, the normal approximation to the distribution of Vrank
is used to compute the p-value. (This uses the variance 20/(5n+ 7).)

When ties are present in the observations and midranks are used for the tied observations, the
distribution of the Vrank statistic based on the assumption of no ties is not applicable. If the number
of ties is small, however, they may not grossly affect the assumed p-value.

When ties are present, the function serialCorrelationTest issues a warning. When the sample
size is between 3 and 10, the p-value is computed based on rounding up the computed value of
Vrank to the nearest possible value that could be observed in the case of no ties.

Computing a Confidence Interval for the Lag-1 Autocorrelation
The function serialCorrelationTest computes an approximate 100(1−α)% confidence interval
for the lag-1 autocorrelation as follows:

[ρ̂1 − z1−α/2σ̂ρ̂1 , ρ̂1 + z1−α/2σ̂ρ̂1 ] (15)

where σ̂ρ̂1 denotes the estimated standard deviation of the estimated of lag-1 autocorrelation and zp
denotes the p’th quantile of the standard normal distribution.

When test="AR1.yw" or test="rank.von.Neumann", the Yule-Walker estimate of lag-1 autocor-
relation is used and the variance of the estimated lag-1 autocorrelation is approximately:

V ar(ρ̂1) ≈ 1

n
(1− ρ2

1) (16)
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(Box and Jenkins, 1976, p.34), so

σ̂ρ̂1 =

√
1− ρ̂2

1

n
(17)

When test="AR1.mle", the MLE of the lag-1 autocorrelation is used, and its standard deviation is
estimated with the square root of the estimated variance returned by arima.

Value

A list of class "htest" containing the results of the hypothesis test. See the help file for htest.object
for details.

Note

Data collected over time on the same phenomenon are called a time series. A time series is usually
modeled as a single realization of a stochastic process; that is, if we could go back in time and repeat
the experiment, we would get different results that would vary according to some probabilistic law.
The simplest kind of time series is a stationary time series, in which the mean value is constant
over time, the variability of the observations is constant over time, etc. That is, the probability
distribution associated with each future observation is the same.

A common concern in applying standard statistical tests to time series data is the assumption of
independence. Most conventional statistical hypothesis tests assume the observations are indepen-
dent, but data collected sequentially in time may not satisfy this assumption. For example, high
observations may tend to follow high observations (positive serial correlation), or low observa-
tions may tend to follow high observations (negative serial correlation). One way to investigate
the assumption of independence is to estimate the lag-one serial correlation and test whether it is
significantly different from 0.

The null distribution of the serial correlation coefficient may be badly affected by departures from
normality in the underlying process (Cox, 1966; Bartels, 1977). It is therefore a good idea to
consider using a nonparametric test for randomness if the normality of the underlying process is
in doubt (Bartels, 1982). Knoke (1977) showed that under normality, the test based on the rank
serial correlation coefficient (and hence the test based on the rank von Neumann ratio statistic) has
asymptotic relative efficiency of 0.91 with respect to using the test based on the ordinary serial
correlation coefficient against the alternative of first-order autocorrelation.

Bartels (1982) performed an extensive simulation study of the power of the rank von Neumann ratio
test relative to the standard von Neumann ratio test (based on the statistic in Equation (9) above)
and the runs test (Lehmann, 1975, 313-315). He generated a first-order autoregressive process for
sample sizes of 10, 25, and 50, using 6 different parent distributions: normal, Cauchy, contaminated
normal, Johnson, Stable, and exponential. Values of lag-1 autocorrelation ranged from -0.8 to 0.8.
Bartels (1982) found three important results:

• The rank von Neumann ratio test is far more powerful than the runs test.

• For the normal process, the power of the rank von Neumann ratio test was never less than 89%
of the power of the standard von Neumann ratio test.

• For non-normal processes, the rank von Neumann ratio test was often much more powerful
than of the standard von Neumann ratio test.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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See Also

htest.object, acf, ar, arima, arima.sim, link{ts.plot}, plot.ts, lag.plot, Hypothesis
Tests.

Examples

# Generate a purely random normal process, then use serialCorrelationTest
# to test for the presence of correlation.
# (Note: the call to set.seed allows you to reproduce this example.)

set.seed(345)
x <- rnorm(100)

# Look at the data
#-----------------
dev.new()
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ts.plot(x)

dev.new()
acf(x)

# Test for serial correlation
#----------------------------
serialCorrelationTest(x)

#Results of Hypothesis Test
#--------------------------
#
#Null Hypothesis: rho = 0
#
#Alternative Hypothesis: True rho is not equal to 0
#
#Test Name: Rank von Neumann Test for
# Lag-1 Autocorrelation
# (Beta Approximation)
#
#Estimated Parameter(s): rho = 0.02773737
#
#Estimation Method: Yule-Walker
#
#Data: x
#
#Sample Size: 100
#
#Test Statistic: RVN = 1.929733
#
#P-value: 0.7253405
#
#Confidence Interval for: rho
#
#Confidence Interval Method: Normal Approximation
#
#Confidence Interval Type: two-sided
#
#Confidence Level: 95%
#
#Confidence Interval: LCL = -0.1681836
# UCL = 0.2236584

# Clean up
#---------
rm(x)
graphics.off()

#==========

# Now use the R function arima.sim to generate an AR(1) process with a
# lag-1 autocorrelation of 0.8, then test for autocorrelation.

set.seed(432)
y <- arima.sim(model = list(ar = 0.8), n = 100)

# Look at the data
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#-----------------
dev.new()
ts.plot(y)

dev.new()
acf(y)

# Test for serial correlation
#----------------------------
serialCorrelationTest(y)

#Results of Hypothesis Test
#--------------------------
#
#Null Hypothesis: rho = 0
#
#Alternative Hypothesis: True rho is not equal to 0
#
#Test Name: Rank von Neumann Test for
# Lag-1 Autocorrelation
# (Beta Approximation)
#
#Estimated Parameter(s): rho = 0.835214
#
#Estimation Method: Yule-Walker
#
#Data: y
#
#Sample Size: 100
#
#Test Statistic: RVN = 0.3743174
#
#P-value: 0
#
#Confidence Interval for: rho
#
#Confidence Interval Method: Normal Approximation
#
#Confidence Interval Type: two-sided
#
#Confidence Level: 95%
#
#Confidence Interval: LCL = 0.7274307
# UCL = 0.9429973

#----------

# Clean up
#---------
rm(y)
graphics.off()

#==========

# The data frame Air.df contains information on ozone (ppb^1/3),
# radiation (langleys), temperature (degrees F), and wind speed (mph)
# for 153 consecutive days between May 1 and September 30, 1973.
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# First test for serial correlation in (the cube root of) ozone.
# Note that we must use the test based on the MLE because the time series
# contains missing values. Serial correlation appears to be present.
# Next fit a linear model that includes the predictor variables temperature,
# radiation, and wind speed, and test for the presence of serial correlation
# in the residuals. There is no evidence of serial correlation.

# Look at the data
#-----------------

Air.df
# ozone radiation temperature wind
#05/01/1973 3.448217 190 67 7.4
#05/02/1973 3.301927 118 72 8.0
#05/03/1973 2.289428 149 74 12.6
#05/04/1973 2.620741 313 62 11.5
#05/05/1973 NA NA 56 14.3
#...
#09/27/1973 NA 145 77 13.2
#09/28/1973 2.410142 191 75 14.3
#09/29/1973 2.620741 131 76 8.0
#09/30/1973 2.714418 223 68 11.5

#----------

# Test for serial correlation
#----------------------------

with(Air.df,
serialCorrelationTest(ozone, test = "AR1.mle"))

#Results of Hypothesis Test
#--------------------------
#
#Null Hypothesis: rho = 0
#
#Alternative Hypothesis: True rho is not equal to 0
#
#Test Name: z-Test for
# Lag-1 Autocorrelation
# (Wald Test Based on MLE)
#
#Estimated Parameter(s): rho = 0.5641616
#
#Estimation Method: Maximum Likelihood
#
#Data: ozone
#
#Sample Size: 153
#
#Number NA/NaN/Infs: 37
#
#Test Statistic: z = 7.586952
#
#P-value: 3.28626e-14
#
#Confidence Interval for: rho
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#
#Confidence Interval Method: Normal Approximation
#
#Confidence Interval Type: two-sided
#
#Confidence Level: 95%
#
#Confidence Interval: LCL = 0.4184197
# UCL = 0.7099034

#----------

# Next fit a linear model that includes the predictor variables temperature,
# radiation, and wind speed, and test for the presence of serial correlation
# in the residuals. Note setting the argument na.action = na.exclude in the
# call to lm to correctly deal with missing values.
#----------------------------------------------------------------------------

lm.ozone <- lm(ozone ~ radiation + temperature + wind +
I(temperature^2) + I(wind^2),
data = Air.df, na.action = na.exclude)

# Now test for serial correlation in the residuals.
#--------------------------------------------------

serialCorrelationTest(lm.ozone, test = "AR1.mle")

#Results of Hypothesis Test
#--------------------------
#
#Null Hypothesis: rho = 0
#
#Alternative Hypothesis: True rho is not equal to 0
#
#Test Name: z-Test for
# Lag-1 Autocorrelation
# (Wald Test Based on MLE)
#
#Estimated Parameter(s): rho = 0.1298024
#
#Estimation Method: Maximum Likelihood
#
#Data: Residuals
#
#Data Source: lm.ozone
#
#Sample Size: 153
#
#Number NA/NaN/Infs: 42
#
#Test Statistic: z = 1.285963
#
#P-value: 0.1984559
#
#Confidence Interval for: rho
#
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#Confidence Interval Method: Normal Approximation
#
#Confidence Interval Type: two-sided
#
#Confidence Level: 95%
#
#Confidence Interval: LCL = -0.06803223
# UCL = 0.32763704

# Clean up
#---------
rm(lm.ozone)

signTest One-Sample or Paired-Sample Sign Test on a Median

Description

Estimate the median, test the null hypothesis that the median is equal to a user-specified value based
on the sign test, and create a confidence interval for the median.

Usage

signTest(x, y = NULL, alternative = "two.sided", mu = 0, paired = FALSE,
conf.level = 0.95)

Arguments

x numeric vector of observations. Missing (NA), undefined (NaN), and infinite (Inf,
-Inf) values are allowed but will be removed.

y optional numeric vector of observations that are paired with the observations
in x. The length of y must be the same as the length of x. This argument is
ignored if paired=FALSE, and must be supplied if paired=TRUE. The default
value is y=NULL. Missing (NA), undefined (NaN), and infinite (Inf, -Inf) values
are allowed but will be removed.

alternative character string indicating the kind of alternative hypothesis. The possible val-
ues are "two.sided" (the default), "greater", and "less".

mu numeric scalar indicating the hypothesized value of the median. The default
value is mu=0.

paired logical scalar indicating whether to perform a paired or one-sample sign test.
The possible values are paired=FALSE (the default; indicates a one-sample sign
test) and paired=TRUE.

conf.level numeric scalar between 0 and 1 indicating the confidence level associated with
the confidence interval for the population median. The default value is conf.level=0.95.
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Details

One-Sample Case (paired=FALSE)
Let x = x1, x2, . . . , xn be a vector of n independent observations from one or more distributions
that all have the same median µ.

Consider the test of the null hypothesis:

H0 : µ = µ0 (1)

The three possible alternative hypotheses are the upper one-sided alternative (alternative="greater")

Ha : µ > µ0 (2)

the lower one-sided alternative (alternative="less")

Ha : µ < µ0 (3)

and the two-sided alternative (alternative="two.sided")

Ha : µ 6= µ0 (4)

To perform the test of the null hypothesis (1) versus any of the three alternatives (2)-(4), the sign
test uses the test statistic T which is simply the number of observations that are greater than µ0

(Conover, 1980, p. 122; van Belle et al., 2004, p. 256; Hollander and Wolfe, 1999, p. 60; Lehmann,
1975, p. 120; Sheskin, 2011; Zar, 2010, p. 537). Under the null hypothesis, the distribution of T
is a binomial random variable with parameters size=n and prob=0.5. Usually, however, cases for
which the observations are equal to µ0 are discarded, so the distribution of T is taken to be binomial
with parameters size=r and prob=0.5, where r denotes the number of observations not equal to
µ0. The sign test only requires that the observations are independent and that they all come from
one or more distributions (not necessarily the same ones) that all have the same population median.

For a two-sided alternative hypothesis (Equation (4)), the p-value is computed as:

p = Pr(Xr,0.5 ≤ r −m) + Pr(Xr,0.5 > m) (5)

where Xr,p denotes a binomial random variable with parameters size=r and prob=p, and m is
defined by:

m = max(T, r − T ) (6)

For a one-sided lower alternative hypothesis (Equation (3)), the p-value is computed as:

p = Pr(Xm,0.5 ≤ T ) (7)

and for a one-sided upper alternative hypothesis (Equation (2)), the p-value is computed as:

p = Pr(Xm,0.5 ≥ T ) (8)

It is obvious that the sign test is simply a special case of the binomial test with p=0.5.

Computing Confidence Intervals
Based on the relationship between hypothesis tests and confidence intervals, we can construct a
confidence interval for the population median based on the sign test (e.g., Hollander and Wolfe,
1999, p. 72; Lehmann, 1975, p. 182). It turns out that this is equivalent to using the formulas for a
nonparametric confidence intervals for the 0.5 quantile (see eqnpar).

Paired-Sample Case (paired=TRUE)
When the argument paired=TRUE, the arguments x and y are assumed to have the same length, and
the n differences di = xi − yi, i = 1, 2, . . . , n are assumed to be independent observations from
distributions with the same median µ. The sign test can then be applied to the differences.
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Value

A list of class "htest" containing the results of the hypothesis test. See the help file for htest.object
for details.

Note

A frequent question in environmental statistics is “Is the concentration of chemical X greater than
Y units?”. For example, in groundwater assessment (compliance) monitoring at hazardous and
solid waste sites, the concentration of a chemical in the groundwater at a downgradient well must
be compared to a groundwater protection standard (GWPS). If the concentration is “above” the
GWPS, then the site enters corrective action monitoring. As another example, soil screening at a
Superfund site involves comparing the concentration of a chemical in the soil with a pre-determined
soil screening level (SSL). If the concentration is “above” the SSL, then further investigation and
possible remedial action is required. Determining what it means for the chemical concentration to
be “above” a GWPS or an SSL is a policy decision: the average of the distribution of the chem-
ical concentration must be above the GWPS or SSL, or the median must be above the GWPS or
SSL, or the 95th percentile must be above the GWPS or SSL, or something else. Often, the first
interpretation is used.

Hypothesis tests you can use to perform tests of location include: Student’s t-test, Fisher’s random-
ization test, the Wilcoxon signed rank test, Chen’s modified t-test, the sign test, and a test based
on a bootstrap confidence interval. For a discussion comparing the performance of these tests, see
Millard and Neerchal (2001, pp.408-409).

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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Examples

# Generate 10 observations from a lognormal distribution with parameters
# meanlog=2 and sdlog=1. The median of this distribution is e^2 (about 7.4).
# Test the null hypothesis that the true median is equal to 5 against the
# alternative that the true mean is greater than 5.
# (Note: the call to set.seed allows you to reproduce this example).

set.seed(23)
dat <- rlnorm(10, meanlog = 2, sdlog = 1)
signTest(dat, mu = 5)

#Results of Hypothesis Test
#--------------------------
#
#Null Hypothesis: median = 5
#
#Alternative Hypothesis: True median is not equal to 5
#
#Test Name: Sign test
#
#Estimated Parameter(s): median = 19.21717
#
#Data: dat
#
#Test Statistic: # Obs > median = 9
#
#P-value: 0.02148438
#
#Confidence Interval for: median
#
#Confidence Interval Method: exact
#
#Confidence Interval Type: two-sided
#
#Confidence Level: 93.45703%
#
#Confidence Limit Rank(s): 3 9
#
#Confidence Interval: LCL = 7.732538
# UCL = 35.722459

# Clean up
#---------
rm(dat)

#==========

# The guidance document "Supplemental Guidance to RAGS: Calculating the
# Concentration Term" (USEPA, 1992d) contains an example of 15 observations
# of chromium concentrations (mg/kg) which are assumed to come from a
# lognormal distribution. These data are stored in the vector
# EPA.92d.chromium.vec. Here, we will use the sign test to test the null
# hypothesis that the median chromium concentration is less than or equal to
# 100 mg/kg vs. the alternative that it is greater than 100 mg/kg. The
# estimated median is 110 mg/kg. There are 8 out of 15 observations greater
# than 100 mg/kg, the p-value is equal to 0.5, and the lower 94% confidence
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# limit is 41 mg/kg.

signTest(EPA.92d.chromium.vec, mu = 100, alternative = "greater")

#Results of Hypothesis Test
#--------------------------
#
#Null Hypothesis: median = 100
#
#Alternative Hypothesis: True median is greater than 100
#
#Test Name: Sign test
#
#Estimated Parameter(s): median = 110
#
#Data: EPA.92d.chromium.vec
#
#Test Statistic: # Obs > median = 8
#
#P-value: 0.5
#
#Confidence Interval for: median
#
#Confidence Interval Method: exact
#
#Confidence Interval Type: lower
#
#Confidence Level: 94.07654%
#
#Confidence Limit Rank(s): 5
#
#Confidence Interval: LCL = 41
# UCL = Inf

simulateMvMatrix Simulate a Multivariate Matrix Based on a Specified Rank Correlation
Mat

Description

Simulate a multivariate matrix of random numbers from specified theoretical probability distribu-
tions and/or empirical probability distributions based on a specified rank correlation matrix, using
either Latin Hypercube sampling or simple random sampling.

Usage

simulateMvMatrix(n, distributions = c(Var.1 = "norm", Var.2 = "norm"),
param.list = list(Var.1 = list(mean = 0, sd = 1), Var.2 = list(mean = 0, sd = 1)),
cor.mat = diag(length(distributions)), sample.method = "SRS", seed = NULL,
left.tail.cutoff = ifelse(is.finite(supp.min), 0, .Machine$double.eps),
right.tail.cutoff = ifelse(is.finite(supp.max), 0, .Machine$double.eps),
tol.1 = .Machine$double.eps, tol.symmetry = .Machine$double.eps,
tol.recip.cond.num = .Machine$double.eps, max.iter = 10)
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Arguments

n a positive integer indicating the number of random vectors (i.e., the number of
rows of the matrix) to generate.

distributions a character vector of length k denoting the distribution abbreviations for each
of the k distributions. If there is a names attribute associated with this charac-
ter vector, these names will be the column names of the resulting matrix. The
default value of distributions is c(Var.1="norm", Var.2="norm"), indi-
cating that k = 2, both distributions are the normal distribution, and the column
names of the resulting n× k matrix will be "Var.1" and "Var.2". See the help
file for Distribution.df for a list of possible distribution abbreviations.
Alternatively, the character string "emp" may be used to denote sampling from
an empirical distribution based on a set of observations. The vector containing
the observations is specified in the argument param.list.

param.list a list containing k lists that specify the values for the parameters of the k dis-
tributions. If param.list has a names attribute (not necessary), the names
attribute should be exactly the same as the names attribute of the argument
distributions. The default value of param.list is list(Var.1=list(mean=0, sd=1), Var.2=list(mean=0, sd=1)).
See the help file for Distribution.df for the names and possible values of the
parameters associated with each distribution.
Alternatively, if you specify an empirical distribution for the j’th distribution
by setting the j’th element of distribution to "emp", then the j’th component
of param.list must be a list of the form list(obs=name), where name de-
notes the name of the vector containing the observations to use for the empirical
distribution. In this case, you may also supply arguments to the qemp function
through the j’th component of param.list. For example, you may set this com-
ponent to list(obs=name, discrete=T) to specify an empirical distribution
based on a discrete random variable.

cor.mat a k × k matrix specifying the rank correlations between the k distributions.
This argument must be a positive definite symmetric matrix, with all 1’s on
the diagonal. All elements on the off-diagonal must be between -1 and 1. The
default value is the k×k identity matrix, specifying no rank correlation between
any of the variables.

sample.method a character vector of length 1 or k indicating, for each distribution, whether to
use Latin Hypercube sampling or simple random sampling. If sample.method
is of length 1, it is replicated to length k. Each element of sample.method
must be the character string "LHS" (Latin Hypercube sampling) or "SRS" (sim-
ple random sampling), or an abbreviation of one of these strings. The default
value is "SRS", indicating simple random sampling for each distribution. Note
that by specifying sample.method as a vector of length k, you may use different
sampling methods for different distributions.

seed integer to supply to the R function set.seed. The default value is seed=NULL,
in which case the random seed is not set but instead based on the current value
of .Random.seed.

left.tail.cutoff

a numeric vector of length k indicating, for each distribution, what proportion of
the left-tail of the probability distribution to omit for Latin Hypercube sampling.
All elements of left.tail.cutoff must be between 0 and 1. For densities
with a finite support minimum (e.g., Lognormal or Empirical) the default value
is left.tail.cutoff=0; for densities with a support minimum of −∞, the
default value is left.tail.cutoff=.Machine$double.eps. The j’th element
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of this argument is ignored if the j’th element of sample.method is equal to
"SRS".

right.tail.cutoff

a numeric vector of length k indicating, for each distribution, what proportion
of the right-tail of the probability distribution to omit for Latin Hypercube sam-
pling. All elements of right.tail.cutoff must be between 0 and 1. For
densities with a finite support maximum (e.g., Beta or Empirical) the default
value is right.tail.cutoff=0; for densities with a support maximum of ∞,
the default value is right.tail.cutoff=.Machine$double.eps. The j’th ele-
ment of this argument is ignored if the j’th element of sample.method is equal
to "SRS".

tol.1 a positive numeric scalar indicating the allowable absolute deviation from 1 for
the diagonal elements of cor.mat. The default value is .Machine$double.eps.

tol.symmetry a positive numeric scalar indicating the allowable absolute deviation from 0 for
the difference between symmetric elements of cor.mat (e.g., abs(cor.mat[3,2]-cor.mat[2,3]).
The default value is .Machine$double.eps.

tol.recip.cond.num

a positive numeric scalar indicating the allowable minimum value of the recip-
rocal of the condition number for cor.mat. The condition number is defined to
be the largest eigen value divided by the smallest eigen value. The reciprocal
of the condition number is some number between 0 and 1. This value must be
sufficiently large for cor.mat to be of full rank (i.e., to not be singular). The
default value of tol.recip.cond.num is .Machine$double.eps.

max.iter a positive integer indicating the maximum number of iterations to use to produce
theRmatrix in the algorithm to create the output matrix. The sample correlation
matrix of R must be positive definite. The number of iterations will rarely be
more than 2 for moderate to large sample sizes (e.g., n > 2k). The default value
is max.iter=10. See the DETAILS section below for more information on the
R matrix.

Details

Motivation
In risk assessment and Monte Carlo simulation, the outcome variable of interest, say Y , is usually
some function of one or more other random variables:

Y = h(X) = h(X1, X2, . . . , Xk) (1)

For example, Y may be the incremental lifetime cancer risk due to ingestion of soil contaminated
with benzene (Thompson et al., 1992; Hamed and Bedient, 1997). In this case the random vector
X may represent observations from several kinds of distributions that characterize exposure and
dose-response, such as benzene concentration in the soil, soil ingestion rate, average body weight,
the cancer potency factor for benzene, etc. These distributions may or may not be assumed to be
independent of one another (Smith et al., 1992; Bukowski et al., 1995). Often, input variables in a
Monte Carlo simulation are in fact known to be correlated, such as body weight and dermal area.

Characterizing the joint distribution of a random vector X , where different elements of X come
from different distributions, is usually mathematically complex or impossible unless the elements
(random variables) of X are independent. Iman and Conover (1982) present an algorithm for cre-
ating a set of n multivariate observations with a rank correlation matrix that is approximately equal
to a specified rank correlation matrix. This method allows for different probability distributions for
each element of the multivariate vector. The details of this algorithm are as follows.
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Algorithm

1. Specify n, the desired number of random vectors (i.e., number of rows of the n × k output
matrix). This is specified by the argument n for the function simulateMvMatrix.

2. Create C, the desired k × k correlation matrix. This is specified by the argument cor.mat.

3. Compute P , where P is a lower triangular k × k matrix and

PP
′

= C (2)

where P
′

denotes the transpose of P . The function simulateMvMatrix uses the Cholesky
decomposition to compute P (see the R help file for chol).

4. Create R, an n × k matrix, whose columns represent k independent permutations of van der
Waerden scores. That is, each column of R is a random permutation of the scores

Φ−1(
i

n+ 1
), i = 1, 2, . . . , n (3)

where Φ denotes the cumulative distribution function of the standard normal distribution.

5. Compute T , the k × k Pearson sample correlation matrix of R. Make sure T is positive
definite; if it is not, then repeat step 4.

6. Compute Q, where Q is a lower triangular k × k matrix and

QQ
′

= T (4)

The function simulateMvMatrix uses the Cholesky decomposition to compute Q (see the R
help file for chol).

7. Compute the lower triangular k × k matrix S, where

S = PQ−1 (5)

8. Compute the matrix R∗, where
R∗ = RS

′
(6)

9. Generate an n×k matrix of random numbersX , where each column ofX comes from the dis-
tribution specified by the arguments distributions and param.list. Generate each column
of random numbers independently of the other columns. If the j’th element of sample.method
equals "SRS", use simple random sampling to generate the random numbers for the j’th col-
umn ofX . If the j’th element of sample.method equals "LHS", use Latin Hypercube sampling
to generate the random numbers for the j’th column of X . At this stage in the algorithm, the
function simulateMvMatrix calls the function simulateVector to create each column of X .

10. Order the observations within each column of X so that the order of the ranks within each
column of X matches the order of the ranks within each column of R∗. This way, X and R∗

have exactly the same sample rank correlation matrix.

Explanation
Iman and Conover (1982) present two algorithms for computing an n × k output matrix with a
specified rank correlation. The algorithm presented above is the second, more complicated one. In
order to explain the reasoning behind this algorithm, we need to explain the simple algorithm first.

Simple Algorithm
Let Ri denote the i’th row vector of the matrix R, the matrix of scores. This row vector has a
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population correlation matrix of I , where I denotes the k×k identity matrix. Thus, the 1×k vector
RiP

′
has a population correlation matrix equal to C. Therefore, if we define R∗ by

R∗ = RP
′

(7)

each row of R∗ has the same multivariate distribution with population correlation matrix C. The
rank correlation matrix of R∗ should therefore be close to C. Ordering the columns of X as de-
scribed in Step 10 above will yield a matrix of observations with the specified distributions and the
exact same rank correlation matrix as the rank correlation matrix of R∗.

Iman and Conover (1982) use van der Waerden scores instead of raw ranks to create R because van
der Waerden scores yield more "natural-looking" pairwise scatterplots.

If the Pearson sample correlation matrix of R, denoted T in Step 5 above, is exactly equal to the
true population correlation matrix I , then the sample correlation matrix of R∗ is exactly equal to C,
and the rank correlation matrix of R∗ is approximately equal to C. The Pearson sample correlation
matrix of R, however, is an estimate of the true population correlation matrix I , and is therefore
“bouncing around” I . Likewise, the Pearson sample correlation matrix of R∗ is an estimate of the
true population correlation matrix C, and is therefore bouncing around C. Using this simple algo-
rithm, the Pearson sample correlation matrix of R∗, as R∗ is defined in Equation (7) above, may
not be “close” enough to the desired rank correlation matrix C, and thus the rank correlation of R∗

will not be close enough to C. Iman and Conover (1982), therefore present a more complicated
algorithm.

More Complicated Algorithm
To get around the problem mentioned above, Iman and Conover (1982) find a k×k lower triangular
matrix S such that the matrix R∗ as defined in Equation (6) above has a correlation matrix exactly
equal to C. The formula for S is given in Steps 6 and 7 of the algorithm above.

Iman and Conover (1982, p.330) note that even if the desired rank correlation matrix C is in fact
the identity matrix I , this method of generating the matrix will produce a matrix with an associated
rank correlation that more closely resembles I than you would get by simply generating random
numbers within each column of X .

Value

A numeric matrix of dimension n × k of random numbers, where the j’th column of numbers
comes from the distribution specified by the j’th elements of the arguments distributions and
param.list, and the rank correlation of this matrix is approximately equal to the argument cor.mat.
The value of n is determined by the argument n, and the value of k is determined by the length of
the argument distributions.

Note

Monte Carlo simulation and risk assessment often involve looking at the distribution or character-
istics of the distribution of some outcome variable that depends upon several input variables (see
Equation (1) above). Usually these input variables can be considered random variables. An impor-
tant part of both sensitivity analysis and uncertainty analysis involves looking at how the distribution
of the outcome variable changes with changing assumptions on the input variables. One important
assumption is the correlation between the input random variables.

Often, the input random variables are assumed to be independent when in fact they are know to be
correlated (Smith et al., 1992; Bukowski et al., 1995). It is therefore important to assess the effect
of the assumption of independence on the distribution of the outcome variable. One way to assess
the effect of this assumption is to run the Monte Carlo simulation assuming independence and then
also run it assuming certain forms of correlations among the input variables.
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Iman and Davenport (1982) present a series of scatterplots showing “typical” scatterplots with vari-
ous distributions on the x- and y-axes and various assumed rank correlations. These plots are meant
to aid in developing reasonable estimates of rank correlation between input variables. These plots
can easily be produced using the simulateMvMatrix and plot functions.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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See Also

Probability Distributions and Random Numbers, Empirical, simulateVector, cor, set.seed.

Examples

# Generate 5 observations from a standard bivariate normal distribution
# with a rank correlation matrix (approximately) equal to the 2 x 2
# identity matrix, using simple random sampling for each
# marginal distribution.
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simulateMvMatrix(5, seed = 47)
# Var.1 Var.2
#[1,] 0.01513086 0.03960243
#[2,] -1.08573747 0.09147291
#[3,] -0.98548216 0.49382018
#[4,] -0.25204590 -0.92245624
#[5,] -1.46575030 -1.82822917

#==========

# Look at the observed rank correlation matrix for 100 observations
# from a standard bivariate normal distribution with a rank correlation matrix
# (approximately) equal to the 2 x 2 identity matrix. Compare this observed
# rank correlation matrix with the observed rank correlation matrix based on
# generating two independent sets of standard normal random numbers.
# Note that the cross-correlation is closer to 0 for the matrix created with
# simulateMvMatrix.

cor(simulateMvMatrix(100, seed = 47), method = "spearman")
# Var.1 Var.2
#Var.1 1.000000000 -0.005976598
#Var.2 -0.005976598 1.000000000

cor(matrix(simulateVector(200, seed = 47), 100 , 2), method = "spearman")
# [,1] [,2]
#[1,] 1.00000000 -0.05374137
#[2,] -0.05374137 1.00000000

#==========

# Generate 1000 observations from a bivariate distribution, where the first
# distribution is a normal distribution with parameters mean=10 and sd=2,
# the second distribution is a lognormal distribution with parameters
# mean=10 and cv=1, and the desired rank correlation between the two
# distributions is 0.8. Look at the observed rank correlation matrix, and
# plot the results.

mat <- simulateMvMatrix(1000,
distributions = c(N.10.2 = "norm", LN.10.1 = "lnormAlt"),
param.list = list(N.10.2 = list(mean=10, sd=2),

LN.10.1 = list(mean=10, cv=1)),
cor.mat = matrix(c(1, .8, .8, 1), 2, 2), seed = 47)

round(cor(mat, method = "spearman"), 2)
# N.10.2 LN.10.1
#N.10.2 1.00 0.78
#LN.10.1 0.78 1.00

dev.new()
plot(mat, xlab = "Observations from N(10, 2)",

ylab = "Observations from LN(mean=10, cv=1)",
main = "Lognormal vs. Normal Deviates with Rank Correlation 0.8")

#----------

# Repeat the last example, but use Latin Hypercube sampling for both
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# distributions. Note the wider range on the y-axis.

mat.LHS <- simulateMvMatrix(1000,
distributions = c(N.10.2 = "norm", LN.10.1 = "lnormAlt"),
param.list = list(N.10.2 = list(mean=10, sd=2),

LN.10.1 = list(mean=10, cv=1)),
cor.mat = matrix(c(1, .8, .8, 1), 2, 2),
sample.method = "LHS", seed = 298)

round(cor(mat.LHS, method = "spearman"), 2)
# N.10.2 LN.10.1
#N.10.2 1.00 0.79
#LN.10.1 0.79 1.00

dev.new()
plot(mat.LHS, xlab = "Observations from N(10, 2)",

ylab = "Observations from LN(mean=10, cv=1)",
main = paste("Lognormal vs. Normal Deviates with Rank Correlation 0.8",

"(Latin Hypercube Sampling)", sep = "\n"))

#==========

# Generate 1000 observations from a multivariate distribution, where the
# first distribution is a normal distribution with parameters
# mean=10 and sd=2, the second distribution is a lognormal distribution
# with parameters mean=10 and cv=1, the third distribution is a beta
# distribution with parameters shape1=2 and shape2=3, and the fourth
# distribution is an empirical distribution of 100 observations that
# well generate from a Pareto distribution with parameters
# location=10 and shape=2. Set the desired rank correlation matrix to:

cor.mat <- matrix(c(1, .8, 0, .5, .8, 1, 0, .7,
0, 0, 1, .2, .5, .7, .2, 1), 4, 4)

cor.mat
# [,1] [,2] [,3] [,4]
#[1,] 1.0 0.8 0.0 0.5
#[2,] 0.8 1.0 0.0 0.7
#[3,] 0.0 0.0 1.0 0.2
#[4,] 0.5 0.7 0.2 1.0

# Use Latin Hypercube sampling for each variable, look at the observed
# rank correlation matrix, and plot the results.

pareto.rns <- simulateVector(100, "pareto",
list(location = 10, shape = 2), sample.method = "LHS",
seed = 56)

mat <- simulateMvMatrix(1000,
distributions = c(Normal = "norm", Lognormal = "lnormAlt",

Beta = "beta", Empirical = "emp"),
param.list = list(Normal = list(mean=10, sd=2),

Lognormal = list(mean=10, cv=1),
Beta = list(shape1 = 2, shape2 = 3),
Empirical = list(obs = pareto.rns)),

cor.mat = cor.mat, seed = 47, sample.method = "LHS")
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round(cor(mat, method = "spearman"), 2)
# Normal Lognormal Beta Empirical
#Normal 1.00 0.78 -0.01 0.47
#Lognormal 0.78 1.00 -0.01 0.67
#Beta -0.01 -0.01 1.00 0.19
#Empirical 0.47 0.67 0.19 1.00

dev.new()
pairs(mat)

#==========

# Clean up
#---------
rm(mat, mat.LHS, pareto.rns)
graphics.off()

simulateVector Simulate a Vector of Random Numbers From a Specified Theoretical
or Empirical Probability Distribution

Description

Simulate a vector of random numbers from a specified theoretical probability distribution or empir-
ical probability distribution, using either Latin Hypercube sampling or simple random sampling.

Usage

simulateVector(n, distribution = "norm", param.list = list(mean = 0, sd = 1),
sample.method = "SRS", seed = NULL, sorted = FALSE,
left.tail.cutoff = ifelse(is.finite(supp.min), 0, .Machine$double.eps),
right.tail.cutoff = ifelse(is.finite(supp.max), 0, .Machine$double.eps))

Arguments

n a positive integer indicating the number of random numbers to generate.

distribution a character string denoting the distribution abbreviation. The default value is
distribution="norm". See the help file for Distribution.df for a list of
possible distribution abbreviations.
Alternatively, the character string "emp" may be used to denote sampling from
an empirical distribution based on a set of observations. The vector containing
the observations is specified in the argument param.list.

param.list a list with values for the parameters of the distribution. The default value is
param.list=list(mean=0, sd=1). See the help file for Distribution.df
for the names and possible values of the parameters associated with each distri-
bution.
Alternatively, if you specify an empirical distribution by setting distribution="emp",
then param.list must be a list of the form list(obs=name), where name de-
notes the name of the vector containing the observations to use for the empirical
distribution. In this case, you may also supply arguments to the qemp function
through param.list. For example, you may set param.list=list(obs=name, discrete=T)
to specify an empirical distribution based on a discrete random variable.
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sample.method a character string indicating whether to use simple random sampling (sample.method="SRS",
the default) or Latin Hypercube sampling (sample.method="LHS").

seed integer to supply to the R function set.seed. The default value is seed=NULL,
in which case the random seed is not set but instead based on the current value
of .Random.seed.

sorted logical scalar indicating whether to return the random numbers in sorted (as-
cending) order. The default value is sorted=FALSE.

left.tail.cutoff

a scalar between 0 and 1 indicating what proportion of the left-tail of the prob-
ability distribution to omit for Latin Hypercube sampling. For densities with
a finite support minimum (e.g., Lognormal or Empirical) the default value is
left.tail.cutoff=0; for densities with a support minimum of −∞, the de-
fault value is left.tail.cutoff=.Machine$double.eps. This argument is
ignored if sample.method="SRS".

right.tail.cutoff

a scalar between 0 and 1 indicating what proportion of the right-tail of the
probability distribution to omit for Latin Hypercube sampling. For densities
with a finite support maximum (e.g., Beta or Empirical) the default value is
right.tail.cutoff=0; for densities with a support maximum of ∞, the de-
fault value is right.tail.cutoff=.Machine$double.eps. This argument is
ignored if sample.method="SRS".

Details

Simple Random Sampling (sample.method="SRS")
When sample.method="SRS", the function simulateVector simply calls the function rabb, where
abb denotes the abbreviation of the specified distribution (e.g., rlnorm, remp, etc.).

Latin Hypercube Sampling (sample.method="LHS")
When sample.method="LHS", the function simulateVector generates n random numbers using
Latin Hypercube sampling. The distribution is divided into n intervals of equal probability 1/n and
simple random sampling is performed once within each interval; i.e., Latin Hypercube sampling is
simply stratified sampling without replacement, where the strata are defined by the 0’th, 100(1/n)’th,
100(2/n)’th, ..., and 100’th percentiles of the distribution.

Latin Hypercube sampling, sometimes abbreviated LHS, is a method of sampling from a probabil-
ity distribution that ensures all portions of the probability distribution are represented in the sample.
It was introduced in the published literature by McKay et al. (1979) to overcome the following
problem in Monte Carlo simulation based on simple random sampling (SRS). Suppose we want to
generate random numbers from a specified distribution. If we use simple random sampling, there is
a low probability of getting very many observations in an area of low probability of the distribution.
For example, if we generate n observations from the distribution, the probability that none of these
observations falls into the upper 98’th percentile of the distribution is 0.98n. So, for example, there
is a 13% chance that out of 100 random numbers, none will fall at or above the 98’th percentile. If
we are interested in reproducing the shape of the distribution, we will need a very large number of
observations to ensure that we can adequately characterize the tails of the distribution (Vose, 2008,
pp. 59–62).

See Millard (2013) for a visual explanation of Latin Hypercube sampling.

Value

a numeric vector of random numbers from the specified distribution.
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Note

Latin Hypercube sampling, sometimes abbreviated LHS, is a method of sampling from a probabil-
ity distribution that ensures all portions of the probability distribution are represented in the sample.
It was introduced in the published literature by McKay et al. (1979). Latin Hypercube sampling is
often used in probabilistic risk assessment, specifically for sensitivity and uncertainty analysis (e.g.,
Iman and Conover, 1980; Iman and Helton, 1988; Iman and Helton, 1991; Vose, 1996).
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Examples

# Generate 10 observations from a lognormal distribution with
# parameters mean=10 and cv=1 using simple random sampling:

simulateVector(10, distribution = "lnormAlt",
param.list = list(mean = 10, cv = 1), seed = 47,
sort = TRUE)

# [1] 2.086931 2.863589 3.112866 5.592502 5.732602 7.160707
# [7] 7.741327 8.251306 12.782493 37.214748

#----------

# Repeat the above example by calling rlnormAlt directly:

set.seed(47)
sort(rlnormAlt(10, mean = 10, cv = 1))
# [1] 2.086931 2.863589 3.112866 5.592502 5.732602 7.160707
# [7] 7.741327 8.251306 12.782493 37.214748

#----------
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# Now generate 10 observations from the same lognormal distribution
# but use Latin Hypercube sampling. Note that the largest value
# is larger than for simple random sampling:

simulateVector(10, distribution = "lnormAlt",
param.list = list(mean = 10, cv = 1), seed = 47,
sample.method = "LHS", sort = TRUE)

# [1] 2.406149 2.848428 4.311175 5.510171 6.467852 8.174608
# [7] 9.506874 12.298185 17.022151 53.552699

#==========

# Generate 50 observations from a Pareto distribution with parameters
# location=10 and shape=2, then use this resulting vector of
# observations as the basis for generating 3 observations from an
# empirical distribution using Latin Hypercube sampling:

set.seed(321)
pareto.rns <- rpareto(50, location = 10, shape = 2)

simulateVector(3, distribution = "emp",
param.list = list(obs = pareto.rns), sample.method = "LHS")

#[1] 11.50685 13.50962 17.47335

#==========

# Clean up
#---------
rm(pareto.rns)

Skagit.NH3_N.df Ammonia Nitrogen Concentrations in the Skagit River, Marblemount,
Washington

Description

Ammonia nitrogen (NH3—N) concentration (mg/L) in the Skagit River measured monthly from
January 1978 through December 2010 at the Marblemount, Washington monitoring station.

Usage

Skagit.NH3_N.df

Format

A data frame with 396 observations on the following 6 variables.

Date Date of collection.

NH3_N.Orig.mg.per.L a character vector of the ammonia nitrogen concentrations where values
for non-detects are preceeded with the less-than sign (<).

NH3_N.mg.per.L a numeric vector of ammonia nitrogen concentrations; non-detects have been
coded to their detection limit.
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DQ1 factor of data qualifier values.

• U = The analyte was not detected at or above the reported result.
• J = The analyte was positively identified. The associated numerical result is an estimate.
• UJ = The analyte was not detected at or above the reported estimated result.

DQ2 factor of data qualifier values. An asterisk (*) indicates a possible quality problem for the
result.

Censored a logical vector indicating which observations are censored.

Details

Station 04A100 - Skagit R \@ Marblemount. Located at the bridge on the Casdace River Road
where Highway 20 (North Cascades Highway) turns 90 degrees in Marblemount.

Source

Washington State Deparment of Ecology.
http://www.ecy.wa.gov/apps/watersheds/riv/station.asp?sta=04A100
http://www.ecy.wa.gov/apps/watersheds/riv/parameters_ref.html

skewness Coefficient of Skewness

Description

Compute the sample coefficient of skewness.

Usage

skewness(x, na.rm = FALSE, method = "fisher", l.moment.method = "unbiased",
plot.pos.cons = c(a = 0.35, b = 0))

Arguments

x numeric vector of observations.

na.rm logical scalar indicating whether to remove missing values from x. If na.rm=FALSE
(the default) and x contains missing values, then a missing value (NA) is returned.
If na.rm=TRUE, missing values are removed from x prior to computing the coef-
ficient of variation.

method character string specifying what method to use to compute the sample coeffi-
cient of skewness. The possible values are "fisher" (ratio of unbiased moment
estimators; the default), "moments" (ratio of product moment estimators), or
"l.moments" (ratio of L-moment estimators).

l.moment.method

character string specifying what method to use to compute the L-moments when
method="l.moments". The possible values are "ubiased" (method based on
the U -statistic; the default), or "plotting.position" (method based on the
plotting position formula).

http://www.ecy.wa.gov/apps/watersheds/riv/station.asp?sta=04A100
http://www.ecy.wa.gov/apps/watersheds/riv/parameters_ref.html
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plot.pos.cons numeric vector of length 2 specifying the constants used in the formula for the
plotting positions when method="l.moments" and l.moment.method="plotting.position".
The default value is plot.pos.cons=c(a=0.35, b=0). If this vector has a
names attribute with the value c("a","b") or c("b","a"), then the elements
will be matched by name in the formula for computing the plotting positions.
Otherwise, the first element is mapped to the name "a" and the second element
to the name "b".

Details

Let x denote a random sample of n observations from some distribution with mean µ and standard
deviation σ.

Product Moment Coefficient of Skewness (method="moment" or method="fisher")
The coefficient of skewness of a distribution is the third standardized moment about the mean:

η3 =
√
β1 =

µ3

σ3
(1)

where
ηr = E[(

X − µ
σ

)r] =
1

σr
E[(X − µ)r] =

µr
σr

(2)

and
µr = E[(X − µ)r] (3)

denotes the r’th moment about the mean (central moment). That is, the coefficient of skewness is
the third central moment divided by the cube of the standard deviation. The coefficient of skewness
is 0 for a symmetric distribution. Distributions with positive skew have heavy right-hand tails, and
distributions with negative skew have heavy left-hand tails.

When method="moment", the coefficient of skewness is estimated using the method of moments
estimator for the third central moment and and the method of moments estimator for the variance:

η̂3 =
µ̂3

σ3
=

1
n

∑n
i=1(xi − x̄)3

[ 1
n

∑n
i=1(xi − x̄)2]3/2

(5)

where

σ̂2
m = s2

m =
1

n

n∑
i=1

(xi − x̄)2 (6)

This form of estimation should be used when resampling (bootstrap or jackknife).

When method="fisher", the coefficient of kurtosis is estimated using the unbiased estimator for
the fourth central moment (Serfling, 1980, p.73; Chen, 1995, p.769) and the unbiased estimator for
the variance.

η̂3 =

n
(n−1)(n−2)

∑n
i=1(xi − x̄)3

s3
(7)

where

σ̂2 = s2 =
1

n− 1

n∑
i=1

(xi − x̄)2 (8)

(Note that Serfling, 1980, p.73 contains a typographical error in the numerator for the unbiased
estimator of the third central moment.)

L-Moment Coefficient of Kurtosis (method="l.moments")
Hosking (1990) defines the L-moment analog of the coefficient of kurtosis as:

τ3 =
λ3

λ2
(9)
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that is, the third L-moment divided by the second L-moment. He shows that this quantity lies in the
interval (-1, 1).
When l.moment.method="unbiased", the L-skewness is estimated by:

t3 =
l3
l2

(10)

that is, the unbiased estimator of the third L-moment divided by the unbiased estimator of the
second L-moment.
When l.moment.method="plotting.position", the L-skewness is estimated by:

τ̃3 =
λ̃3

λ̃2

(11)

that is, the plotting-position estimator of the third L-moment divided by the plotting-position esti-
mator of the second L-moment.
See the help file for lMoment for more information on estimating L-moments.

Value

A numeric scalar – the sample coefficient of skewness.

Note

Traditionally, the coefficient of skewness has been estimated using product moment estimators.
Sometimes an estimate of skewness is used in a goodness-of-fit test for normality (e.g., set test="skew"
in the call to gofTest).
Hosking (1990) introduced the idea of L-moments and L-kurtosis.
Vogel and Fennessey (1993) argue that L-moment ratios should replace product moment ratios be-
cause of their superior performance (they are nearly unbiased and better for discriminating between
distributions). They compare product moment diagrams with L-moment diagrams.
Hosking and Wallis (1995) recommend using unbiased estimators of L-moments (vs. plotting-
position estimators) for almost all applications.
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See Also

var, sd, cv, kurtosis, summaryFull, Summary Statistics.

Examples

# Generate 20 observations from a lognormal distribution with parameters
# mean=10 and cv=1, and estimate the coefficient of skewness.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(250)

dat <- rlnormAlt(20, mean = 10, cv = 1)

skewness(dat)
#[1] 0.9876632

skewness(dat, method = "moment")
#[1] 0.9119889

skewness(dat, meth = "l.moment")
#[1] 0.2656674

#----------
# Clean up
rm(dat)

stripChart 1-D Scatter Plots with Confidence Intervals

Description

stripChart is a modification of the R function stripchart. It is a generic function used to produce
one dimensional scatter plots (or dot plots) of the given data, along with text indicating sample size
and estimates of location (mean or median) and scale (standard deviation or interquartile range),
as well as confidence intervals for the population location parameter. One dimensional scatterplots
are a good alternative to boxplots when sample sizes are small or moderate. The function invokes
particular methods which depend on the class of the first argument.

Usage

stripChart(x, ...)

## S3 method for class formula
stripChart(x, data = NULL, dlab = NULL,

subset, na.action = NULL, ...)

## Default S3 method:
stripChart(x, method = "stack", seed = 47,

jitter = 0.1 * cex, offset = 1/2, vertical = TRUE, group.names,
drop.unused.levels = TRUE, add = FALSE, at = NULL,
xlim = NULL, ylim = NULL, ylab = NULL, xlab = NULL,
dlab = "", glab = "", log = "", pch = 1, col = par("fg"),
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cex = par("cex"), points.cex = cex, axes = TRUE, frame.plot = axes,
show.ci = TRUE, location.pch = 16, location.cex = cex,
conf.level = 0.95, min.n.for.ci = 2,
ci.offset = 3/ifelse(n > 2, (n-1)^(1/3), 1),
ci.bar.ends = TRUE, ci.bar.ends.size = 0.5 * cex,
ci.bar.gap = FALSE, n.text = "bottom",
n.text.line = ifelse(n.text == "bottom", 2, 0),
n.text.cex = cex, location.scale.text = "top",
location.scale.digits = 1, location.scale.text.line =
ifelse(location.scale.text == "top", 0, 3.5),

location.scale.text.cex =
cex * 0.8 * ifelse(n > 6, max(0.4, 1 - (n-6) * 0.06), 1),

p.value = FALSE, p.value.digits = 3, p.value.line = 2,
p.value.cex = cex, group.difference.ci = p.value,
group.difference.conf.level = 0.95,
group.difference.digits = location.scale.digits,
ci.and.test = "parametric", ci.arg.list = NULL,
test.arg.list = NULL, alternative = "two.sided", ...)

Arguments

x the data from which the plots are to be produced. In the default method the
data can be specified as a single numeric vector, or as a list of numeric vectors,
each corresponding to a component plot. In the formula method, a symbolic
specification of the form y ~ g can be given, indicating the observations in the
vector y are to be grouped according to the levels of the factor g (the form y ~ 1
indicates no grouping). NAs are allowed in the data.

data a data.frame (or list) from which the variables in x should be taken.

subset an optional vector specifying a subset of observations to be used for plotting.

na.action a function which indicates what should happen when the data contain NAs. The
default is to ignore missing values in either the response or the group.

... additional parameters passed to the default method, or by it to plot, points,
axis, and title to control the appearance of the plot.

method the method to be used to separate coincident points. The method "overplot"
causes such points to be overplotted, but it is also possible to specify "jitter"
to jitter the points, or "stack" to have coincident points stacked (the default).
Note that the default value of method (method="stack") differs from the de-
fault value for the R function stripchart, which uses method="overplot" by
default.

seed when method="jitter" is used, the argument seed is passed to the R function
set.seed. Since jittering depends on the R random number generator, using
the same value of seed each time the same data are plotted with stripChart
ensures that the resulting plot is the same.

jitter when method="jitter" is used, jitter gives the amount of jittering applied.

offset when stacking is used, points are stacked this many line-heights (symbol widths)
apart.

vertical when vertical=TRUE (the default), the plots are drawn vertically rather than
horizontally.

group.names group labels which will be printed alongside (or underneath) each plot.
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drop.unused.levels

when drop.unused.levels=TRUE, groups with no observations are dropped.

add logical, if true add the chart to the current plot.

at numeric vector giving the locations where the charts should be drawn, particu-
larly when add=TRUE; defaults to 1:n where n is the number of groups.

xlim, ylim plot limits: see plot.window.

ylab, xlab labels: see title.

dlab, glab alternate way to specify axis labels. The dlab and glab labels may be used in-
stead of xlab and ylab if those are not specified. dlab applies to the continuous
data axis (the y-axis unless vertical=FALSE), and glab to the group axis.

log on which axes to use a log scale: see plot.default.

pch, col, cex Graphical parameters: see par.

points.cex Sets the cex value for the points plotted.
axes, frame.plot

Axis control: see plot.default.

show.ci logical scalar indicating whether to plot the confidence interval. The default is
show.ci=TRUE.

location.pch integer indicating which plotting character to use to indicate the estimate of
location (mean or median) for each group (see the help file for plot.default).
The default is location.pch=16, a filled circle.

location.cex integer giving the amount by which the plotting characters indicating the esti-
mate of location for each group should be scaled relative to the default (see the
help file for plot.default). The default is the current value of the graphics
parameter cex.

conf.level numeric scalar between 0 and 1 indicating the confidence level associated with
the confidence interval for the group location (population mean or median). The
default value is conf.level=0.95.

min.n.for.ci integer indicating the minimum sample size required in order to plot a confi-
dence interval for the group location. The default value is min.n.for.ci=2.

ci.offset numeric scalar in units of cex indicating the amount of space between the line
showing the confidence interval and the center of the plotted points for a group.
The default value depends on the number of groups and is given by 3/ifelse(n > 2, (n-1)^(1/3), 1).

ci.bar.ends logical scalar indicating whether to add flat ends to the confidence interval bars.
The default value is ci.bar.ends=TRUE.

ci.bar.ends.size

numeric scalar in units of cxy indicating the size of confidence interval bar ends.
The default value is half of the current value of cex.

ci.bar.gap logical scalar indicating with to add a gap between the estimate of group location
and the confidence interval bar. The default value is ci.bar.gap=FALSE.

n.text character string indicating whether and where to indicate the sample size for
each group. Possible values are "bottom" (the default), "top", and "none".

n.text.line integer indicating on which plot margin line to show the sample sizes for each
group. The default value is n.text.line=2 when n.text="bottom" and 0 oth-
erwise.

n.text.cex integer giving the amount by which the text indicating the sample size for each
group should be scaled relative to the default (see the help file for
plot.default). The default is the current value of the graphics parameter cex.
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location.scale.text

character string indicating whether and where to indicate the estimates of loca-
tion (mean or median) and scale (standard deviation or interquartile range) for
each group. Possible values are "top" (the default), "bottom", and "none".

location.scale.digits

integer indicating the number of digits to round the estimates of location and
scale. The default value is location.scale.digits=1.

location.scale.text.line

integer indicating on which plot margin line to show the estimates of location
and scale for each group. The default value is
location.scale.text.line=0 when n.text="top" and 3.5 otherwise.

location.scale.text.cex

integer giving the amount by which the text indicating the estimates of location
and scale for each group should be scaled relative to the default (see the help file
for plot.default). The default depends on the number of groups and is given
by cex * 0.8 * ifelse(n > 6, max(0.4, 1 - (n-6) * 0.06), 1). where
cex denotes the current value of the graphics parameter cex.

p.value logical scalar indicating whether to show the p-value associated with testing
whether all groups have the same population location. The default value is
p.value=TRUE. The p-value is displayed at the top of the graph.

p.value.digits integer indicating the number of digits to round to when displaying the p-value
associated with the test of equal group locations. The default value is
p.value.digits=3.

p.value.line integer indicating on which plot margin line to show the p-value associated with
the test of equal group locations. The default value is p.value.line=2.

p.value.cex integer giving the amount by which the text indicating the p-value associated
with the test of equal group locations should be scaled relative to the default
(see the help file for plot.default). The default is the current value of the
graphics parameter cex.

group.difference.ci

for the case when there are just 2 groups, a logical scalar indicating whether to
show the confidence interval for the difference between group locations. The de-
fault is the value of the p.value argument. The confidence interval is displayed
at the top of the graph.

group.difference.conf.level

for the case when there are just 2 groups, a numeric scalar between 0 and 1
indicating the confidence level associated with the confidence interval for the
difference between group locations. The default is conf.level=0.95.

group.difference.digits

for the case when there are just 2 groups, an integer indicating the number of dig-
its to round to when displaying the confidence interval for the difference between
group locations. The default value is group.difference.digits=location.scale.digits.

ci.and.test character string indicating whether confidence intervals and tests should be based
on parametric or nonparametric (ci.and.test="nonparametric") methods.
When ci.and.test="parametric" (the default), confidence intervals for the
population mean are based on the one-sample t-test (see t.test), and the test
of group differences is based on the two-sample t-test if there are two groups
and the F-test (i.e., one-way analysis of variance, see aov) if there are three
or more groups. When ci.and.test="nonparametric", confidence intervals
for the population pseudo-median are based on the Wilcoxon signed rank test
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(see wilcox.test and page 56 of Hollander and Wolfe, 1999), and the test of
group differences is based on the Wilcoxon rank sum test if there are two groups
(see kruskal.test) and the Kruskal-Wallis test (see kruskal.test) if there
are three or more groups.

ci.arg.list an optional list of arguments to pass to the function used to compute confidence
intervals. The default value is ci.arg.list=NULL.

test.arg.list an optional list of arguments to pass to the function used to test for group dif-
ferences in location. The default value is test.arg.list=NULL. In particu-
lar, in the case when there are two groups, ci.and.test="parametric", and
ci.arg.list is NULL or does not contain a component specifying the value for
var.equal, this argument is updated to include the component var.equal=TRUE,
which is not the default behavior of t.test.

alternative character string describing the alternative hypothesis for the test of group differ-
ences in the case when there are two groups. Possible values are "two.sided"
(the default), "less", and "greater".

Value

stripChart invisibly returns a list with the following components:

group.centers numeric vector of values on the group axis (the x-axis unless vertical=FALSE)
indicating the centers of the groups.

group.stats a matrix with the number of rows equal to the number of groups and six columns
indicating the sample size of the group (N), the estimate of the group location
parameter (Mean or Median), the estimate of the group scale (SD or IQR), the
lower confidence limit for the group location parameter (LCL), the upper con-
fidence limit for the group location parameter (UCL), and the confidence level
associated with the confidence interval (Conf.Level)

group.difference.p.value

numeric scalar indicating the p-value associated with the test of equal group
locations.

group.difference.conf.int

numeric vector of two elements indicating the confidence interval for the differ-
ence between the group locations. Only present when there are two groups.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Hollander, M., and D.A. Wolfe. (1999). Nonparametric Statistical Methods. Second Edition. John
Wiley and Sons, New York.

Millard, S.P., and N.K. Neerchal. (2001). Environmental Statistics with S-PLUS. CRC Press, Boca
Raton, FL.

Zar, J.H. (2010). Biostatistical Analysis. Fifth Edition. Prentice-Hall, Upper Saddle River, NJ.

See Also

stripchart, t.test, wilcox.test, aov, kruskal.test, t.test.
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Examples

# The guidance document USEPA (1994b, pp. 6.22--6.25)
# contains measures of 1,2,3,4-Tetrachlorobenzene (TcCB)
# concentrations (in parts per billion) from soil samples
# at a Reference area and a Cleanup area. These data are strored
# in the data frame EPA.94b.tccb.df.
#
# First create one-dimensional scatterplots to compare the
# TcCB concentrations between the areas and use a nonparametric
# test to test for a difference between areas.

dev.new()
stripChart(TcCB ~ Area, data = EPA.94b.tccb.df,

p.value = TRUE, ci.and.test = "nonparametric",
ylab = "TcCB (ppb)")

#----------

# Now log-transform the TcCB data and use a parametric test
# to compare the areas.

dev.new()
stripChart(log10(TcCB) ~ Area, data = EPA.94b.tccb.df,

p.value = TRUE, ci.and.test = "parametric",
ylab = "log10 [ TcCB (ppb) ]")

#----------

# Repeat the above procedure, but allow the variances to differ.

dev.new()
stripChart(log10(TcCB) ~ Area, data = EPA.94b.tccb.df,

p.value = TRUE, ci.and.test = "parametric",
ylab = "log10 [ TcCB (ppb) ]",
test.arg.list = list(var.equal = FALSE))

#----------

# Repeat the above procedure, but jitter the points instead of
# stacking them.

dev.new()
stripChart(log10(TcCB) ~ Area, data = EPA.94b.tccb.df,

p.value = TRUE, ci.and.test = "parametric",
ylab = "log10 [ TcCB (ppb) ]",
test.arg.list = list(var.equal = FALSE),
method = "jitter", ci.offset = 4)

#==========

# Clean up
#---------
graphics.off()
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summaryFull Full Complement of Summary Statistics

Description

summaryFull is a generic function used to produce a full complement of summary statistics. The
function invokes particular methods which depend on the class of the first argument. The summary
statistics include: sample size, number of missing values, mean, median, trimmed mean, geometric
mean, skew, kurtosis, min, max, range, 1st quartile, 3rd quartile, standard deviation, geometric
standard deviation, interquartile range, median absolute deviation, and coefficient of variation.

Usage

summaryFull(object, ...)

## S3 method for class formula
summaryFull(object, data = NULL, subset,
na.action = na.pass, ...)

## Default S3 method:
summaryFull(object, group = NULL,

combine.groups = FALSE, drop.unused.levels = TRUE,
rm.group.na = TRUE, stats = NULL, trim = 0.1,
sd.method = "sqrt.unbiased", geo.sd.method = "sqrt.unbiased",
skew.list = list(), kurtosis.list = list(),
cv.list = list(), digits = max(3, getOption("digits") - 3),
digit.type = "signif", stats.in.rows = TRUE,
drop0trailing = TRUE, data.name = deparse(substitute(object)),
...)

## S3 method for class data.frame
summaryFull(object, ...)

## S3 method for class matrix
summaryFull(object, ...)

## S3 method for class list
summaryFull(object, ...)

Arguments

object an object for which summary statistics are desired. In the default method, the
argument object must be a numeric vector, a data frame, a matrix, or a list.
When object is a data frame, all columns must be numeric. When object is a
matrix, it must be a numeric matrix. When object is a list, all components must
be numeric vectors. In the formula method, a symbolic specification of the form
y ~ g can be given, indicating the observations in the vector y are to be grouped
according to the levels of the factor g (the form y ~ 1 indicates no grouping).
NAs are allowed in the data.

data when object is a formula, data specifies an optional data frame, list or en-
vironment (or object coercible by as.data.frame to a data frame) containing
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the variables in the model. If not found in data, the variables are taken from
environment(formula), typically the environment from which
summaryFull is called.

subset when object is a formula, subset specifies an optional vector specifying a
subset of observations to be used.

na.action when object is a formula, na.action specifies a function which indicates what
should happen when the data contain NAs. The default is na.pass.

group when object is a numeric vector, group is a factor or character vector indicating
which group each observation belongs to. When object is a matrix or data
frame this argument is ignored and the columns define the groups. When object
is a formula, this argument is ignored and the right-hand side of the formula
specifies the grouping variable.

combine.groups logical scalar indicating whether to show summary statistics for all groups com-
bined. The default value is FALSE.

drop.unused.levels

when drop.unused.levels=TRUE, groups with no observations are dropped.

rm.group.na logical scalar indicating whether to remove missing values from the group ar-
gument. By default rm.group.na=TRUE.

stats character vector indicating which statistics to compute. Possible elements of the
character vector include: "all" (indicating to include all summary statistics),
"for.non.pos" (only compute statistics that are meaningful for datasets with
non-positive values), "n" (number of non-missing values), "n.miss" (number
of missing values), "mean", "median",
"trimmed.mean", "geo.mean", "skew", "kurtosis", "min", "max",
"range", "1st.quart", "3rd.quart", "sd", "geo.sd", "iqr",
"mad", "cv". The default value is stats="for.non.pos" when object con-
tains non-positive values (i.e., values ≤ 0), and stats="all" when object
contains only positive values.

trim fraction (between 0 and 0.5 inclusive) of values to be trimmed from each end of
the ordered data to compute the trimmed mean. The default value is trim=0.1.
If trim=0.5, this yields the median.

sd.method character string specifying what method to use to compute the sample standard
deviation. The possible values are "sqrt.ubiased" (the square root of the un-
biased estimate of variance; the default), or "moments" (the method of moments
estimator).

geo.sd.method character string specifying what method to use to compute the sample standard
deviation of the log-transformed observations prior to exponentiating this quan-
tity. The possible values are "sqrt.ubiased" (the square root of the unbiased
estimate of variance; the default), or "moments" (the method of moments esti-
mator). See the help file for geoSD for more information.

skew.list list of arguments to supply to the skewness function. See the help file for
skewness for more information. The default value is skew.list=list(), which
results in using the default arguments to skewness.

kurtosis.list list of arguments to supply to the kurtosis function. See the help file for
kurtosis for more information. The default value is
kurtosis.list=list(), which results in using the default arguments to kurtosis.

cv.list list of arguments to supply to the cv function. See the help file for cv for more
information. The default value is cv.list=list(), which results in using the
default arguments to cv.
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digits integer indicating the number of digits to use for the summary statistics. When
digit.type="signif", digits indicates the number of significant digits. When
digit.type="round", digits indicates the number of decimal places to round
to. The default value is max(3, getOption("digits") - 3), that is, the max-
imum of 3 versus the current setting of the "digits" component of .Options
minus 3.

digit.type character string indicating whether the digits argument refers to significant
digits (digit.type="signif", the default), or how many decimal places to
round to (digit.type="round").

stats.in.rows logical scalar indicating whether to show the summary statistics in the rows or
columns of the output. The default is stats.in.rows=TRUE.

drop0trailing logical scalar indicating whether to drop trailing 0’s when printing the summary
statistics. The value of this argument is added as an attribute to the returned list
and is used by the print.summaryStats function. The default value is TRUE.

data.name character string indicating the name of the data used for the summary statistics.

... additional arguments affecting the summary statistics produced.

Details

The function summaryFull returns summary statistics that are useful to describe various charac-
teristics of one or more variables. It is an extended version of the built-in R function summary
specifically for non-factor numeric data. The table below shows what statistics are computed and
what functions are called by summaryFull to compute these statistics.

The object returned by summaryFull is useful for printing or report purposes. You may also use
the functions that summaryFull calls (see table below) to compute summary statistics to be used by
other functions.

See the help files for the functions listed in the table below for more information on these summary
statistics.

Summary Statistic Function Used
Mean mean
Median median
Trimmed Mean mean with trim argument
Geometric Mean geoMean
Skew skewness
Kurtosis kurtosis
Min min
Max max
Range range and diff
1st Quartile quantile
3rd Quartile quantile
Standard Deviation sd
Geometric Standard Deviation geoSD
Interquartile Range iqr
Median Absolute Deviation mad
Coefficient of Variation cv
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Value

an object of class "summaryStats" (see summaryStats.object. Objects of class "summaryStats"
are numeric matrices that contain the summary statisics produced by a call to summaryStats or
summaryFull. These objects have a special printing method that by default removes trailing ze-
ros for sample size entries and prints blanks for statistics that are normally displayed as NA (see
print.summaryStats).

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Berthouex, P.M., and L.C. Brown. (2002). Statistics for Environmental Engineers, Second Edition.
Lewis Publishers, Boca Raton, FL.

Gilbert, R.O. (1987). Statistical Methods for Environmental Pollution Monitoring. Van Nostrand
Reinhold, NY.

Helsel, D.R., and R.M. Hirsch. (1992). Statistical Methods in Water Resources Research. Elsevier,
New York, NY.

Leidel, N.A., K.A. Busch, and J.R. Lynch. (1977). Occupational Exposure Sampling Strategy
Manual. U.S. Department of Health, Education, and Welfare, Public Health Service, Center for
Disease Control, National Institute for Occupational Safety and Health, Cincinnati, Ohio 45226,
January, 1977, pp.102-103.

Millard, S.P., and N.K. Neerchal. (2001). Environmental Statistics with S-PLUS. CRC Press, Boca
Raton, FL.

Ott, W.R. (1995). Environmental Statistics and Data Analysis. Lewis Publishers, Boca Raton, FL.

Zar, J.H. (2010). Biostatistical Analysis, Fifth Edition. Prentice-Hall, Upper Saddle River, NJ.

See Also

summary, summaryStats.

Examples

# Generate 20 observations from a lognormal distribution with
# parameters mean=10 and cv=1, and compute the summary statistics.
# (Note: the call to set.seed simply allows you to reproduce this
# example.)

set.seed(250)

dat <- rlnormAlt(20, mean=10, cv=1)

summary(dat)
# Min. 1st Qu. Median Mean 3rd Qu. Max.
#2.608 4.995 6.235 7.490 9.295 15.440

summaryFull(dat)
# dat
#N 20
#Mean 7.49
#Median 6.235
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#10% Trimmed Mean 7.125
#Geometric Mean 6.674
#Skew 0.9877
#Kurtosis -0.03539
#Min 2.608
#Max 15.44
#Range 12.83
#1st Quartile 4.995
#3rd Quartile 9.295
#Standard Deviation 3.803
#Geometric Standard Deviation 1.634
#Interquartile Range 4.3
#Median Absolute Deviation 2.607
#Coefficient of Variation 0.5078

#----------

# Compare summary statistics for normal and lognormal data:
log.dat <- log(dat)

summaryFull(list(dat = dat, log.dat = log.dat))
# dat log.dat
#N 20 20
#Mean 7.49 1.898
#Median 6.235 1.83
#10% Trimmed Mean 7.125 1.902
#Geometric Mean 6.674 1.835
#Skew 0.9877 0.1319
#Kurtosis -0.03539 -0.4288
#Min 2.608 0.9587
#Max 15.44 2.737
#Range 12.83 1.778
#1st Quartile 4.995 1.607
#3rd Quartile 9.295 2.227
#Standard Deviation 3.803 0.4913
#Geometric Standard Deviation 1.634 1.315
#Interquartile Range 4.3 0.62
#Median Absolute Deviation 2.607 0.4915
#Coefficient of Variation 0.5078 0.2588

# Clean up
rm(dat, log.dat)

#--------------------------------------------------------------------

# Compute summary statistics for 10 observations from a normal
# distribution with parameters mean=0 and sd=1. Note that the
# geometric mean and geometric standard deviation are not computed
# since some of the observations are non-positive.

set.seed(287)

dat <- rnorm(10)

summaryFull(dat)
# dat
#N 10
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#Mean 0.07406
#Median 0.1095
#10% Trimmed Mean 0.1051
#Skew -0.1646
#Kurtosis -0.7135
#Min -1.549
#Max 1.449
#Range 2.998
#1st Quartile -0.5834
#3rd Quartile 0.6966
#Standard Deviation 0.9412
#Interquartile Range 1.28
#Median Absolute Deviation 1.05

# Clean up
rm(dat)

#--------------------------------------------------------------------

# Compute summary statistics for the TcCB data given in USEPA (1994b)
# (the data are stored in EPA.94b.tccb.df). Arbitrarily set the one
# censored observation to the censoring level. Group by the variable
# Area.

summaryFull(TcCB ~ Area, data = EPA.94b.tccb.df)
# Cleanup Reference
#N 77 47
#Mean 3.915 0.5985
#Median 0.43 0.54
#10% Trimmed Mean 0.6846 0.5728
#Geometric Mean 0.5784 0.5382
#Skew 7.717 0.9019
#Kurtosis 62.67 0.132
#Min 0.09 0.22
#Max 168.6 1.33
#Range 168.5 1.11
#1st Quartile 0.23 0.39
#3rd Quartile 1.1 0.75
#Standard Deviation 20.02 0.2836
#Geometric Standard Deviation 3.898 1.597
#Interquartile Range 0.87 0.36
#Median Absolute Deviation 0.3558 0.2669
#Coefficient of Variation 5.112 0.4739

summaryStats Summary Statistics

Description

summaryStats is a generic function used to produce summary statistics, confidence intervals, and
results of hypothesis tests. The function invokes particular methods which depend on the class of
the first argument.

The summary statistics include: sample size, number of missing values, mean, standard deviation,
median, min, and max. Optional additional summary statistics include 1st quartile, 3rd quartile, and
stadard error.
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Usage

summaryStats(object, ...)

## S3 method for class formula
summaryStats(object, data = NULL, subset,
na.action = na.pass, ...)

## Default S3 method:
summaryStats(object, group = NULL,

drop.unused.levels = TRUE, se = FALSE, quartiles = FALSE,
digits = max(3, getOption("digits") - 3),
digit.type = "round", drop0trailing = TRUE,
show.na = TRUE, show.0.na = FALSE, p.value = FALSE,
p.value.digits = 2, p.value.digit.type = "signif",
test = "parametric", test.arg.list = NULL,
combine.groups = p.value, rm.group.na = TRUE,
group.p.value.type = NULL, alternative = "two.sided",
ci = NULL, ci.between = NULL, conf.level = 0.95,
stats.in.rows = FALSE,
data.name = deparse(substitute(object)), ...)

## S3 method for class factor
summaryStats(object, group = NULL,

drop.unused.levels = TRUE,
digits = max(3, getOption("digits") - 3),
digit.type = "round", drop0trailing = TRUE,
show.na = TRUE, show.0.na = FALSE, p.value = FALSE,
p.value.digits = 2, p.value.digit.type = "signif",
test = "chisq", test.arg.list = NULL, combine.levels = TRUE,
combine.groups = FALSE, rm.group.na = TRUE,
ci = p.value & test != "chisq", conf.level = 0.95,
stats.in.rows = FALSE, ...)

## S3 method for class data.frame
summaryStats(object, ...)

## S3 method for class matrix
summaryStats(object, ...)

## S3 method for class list
summaryStats(object, ...)

Arguments

object an object for which summary statistics are desired. In the default method, the
argument object must be a numeric vector, a factor, a data frame, a matrix, or a
list. When object is a data frame, all columns must be numeric or all columns
must be factors. When object is a matrix, it must be a numeric or character
matrix. When object is a list, all components must be numeric vectors. In
the formula method, a symbolic specification of the form y ~ g can be given,
indicating the observations in the vector y are to be grouped according to the
levels of the factor g (the form y ~ 1 indicates no grouping). NAs are allowed in
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the data.

data when object is a formula, data specifies an optional data frame, list or en-
vironment (or object coercible by as.data.frame to a data frame) containing
the variables in the model. If not found in data, the variables are taken from
environment(formula), typically the environment from which
summaryStats is called.

subset when object is a formula, subset specifies an optional vector specifying a
subset of observations to be used.

na.action when object is a formula, na.action specifies a function which indicates what
should happen when the data contain NAs. The default is na.pass.

group when object is a numeric vector or factor, group is a factor or character vector
indicating which group each observation belongs to. When object is a matrix
or data frame this argument is ignored and the columns define the groups. When
object is a formula, this argument is ignored and the right-hand side of the
formula specifies the grouping variable.

drop.unused.levels

when drop.unused.levels=TRUE, groups with no observations are dropped.

se for numeric data, logical scalar indicating whether to include the standard error
of the mean in the summary statistics. The default value is se=FALSE.

quartiles for numeric data, logical scalar indicating whether to include the estimated 25th
and 75th percentiles in the summary statistics. The default value is
quartiles=FALSE.

digits integer indicating the number of digits to use for the summary statistics. When
digit.type="signif", digits indicates the number of significant digits. When
digit.type="round", digits indicates the number of decimal places to round
to. The default value is max(3, getOption("digits") - 3), that is, the max-
imum of 3 versus the current setting of the "digits" component of .Options
minus 3.

digit.type character string indicating whether the digits argument refers to significant
digits (digit.type="signif"), or how many decimal places to round to
(digit.type="round", the default).

drop0trailing logical scalar indicating whether to drop trailing 0’s when printing the summary
statistics. The value of this argument is added as an attribute to the returned list
and is used by the print.summaryStats function. The default value is TRUE.

show.na logical scalar indicating whether to return the number of missing values. The
default value is show.na=TRUE.

show.0.na logical scalar indicating whether to diplay the number of missing values in the
case when there are no missing values. The default value is
show.0.na=FALSE.

p.value logical scalar indicating whether to return the p-value associated with a test of
hypothesis. The default value is p.value=FALSE. Numeric data: if there are
no groups the p-value is associated with the t-test to test whether the mean
is different from 0; if there are groups see the explanation for the argument
group.p.value.type below. Factors: the p-value is associated with the test
specified by the argument test (see below).

p.value.digits integer indicating the number of digits to use for the p-value. When
p.value.digit.type="signif", p.value.digits indicates the number of sig-
nificant digits. When p.value.digit.type="round", p.value.digits indi-
cates the number of decimal places to round to. The default value is p.value.digits=2.
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p.value.digit.type

character string indicating whether the p.value.digits argument refers to sig-
nificant digits (p.value.digit.type="signif", the default), or how many dec-
imal places to round to (p.value.digit.type="round").

test Numeric data: character string indicating whether to compute p-values and
confidence intervals based on parametric (test="parametric"; the default)
or nonparametric (test="nonparametric") tests when p.value=TRUE and/or
ci=TRUE. When test="parametric", confidence intervals are based on the t-
test (see t.test) and p-values are based on the t-test or F-test (see anova.lm).
When test="nonparametric", confidence intervals are based on the Wilcoxon
rank sum test (see wilcox.test) and p-values are based on the Wilcoxon rank
sum test or the Kruskal-Wallis rank sum test
(see kruskal.test).
Factors: character string indicating which test to perform when
p.value=TRUE. Possible values are test="chisq" for the chi-squared test as
performed by the function chisq.test (the default), test="prop" for the chi-
squared test as performed by the function prop.test, test="fisher" for Fisher’s
exact test as performed by the function fisher.test, and
test="binom" for the one-sample exact binomial test as performed by
binom.test. The chi-squared test as performed by prop.test is only available
when the number of levels in object is 2 and either group is not supplied or
the number of levels in group is 2. Fisher’s exact test is only available when
the number of levels in group is ≥ 2. The exact binomial test is only available
when group is not supplied and the number of levels in object is 2.

test.arg.list a list with additional arguments to pass to the test used to compute p-values and
confidence intervals. For numeric data, when test="parametric", p.value=TRUE,
group.p.value.type="between" and there are two groups, if this argument is
NULL or does not contain a component named
var.equal, it will be modified to contain the component var.equal=TRUE.
Note that this overrides the default behavior of t.test when there are two
groups.

combine.groups logical scalar indicating whether to show summary statistics for all groups com-
bined. Numeric data: the default value is TRUE if p.value=TRUE, otherwise
FALSE. Factors: the default value is FALSE.

rm.group.na logical scalar indicating whether to remove missing values from the group argu-
ment. If rm.group.na=FALSE and group contains missing values then an error
is returned. If rm.group.na=TRUE and group contains missing values then a
warning is issued. By default rm.group.na=TRUE.

group.p.value.type

for numeric data, character string indicating which p-value(s) to compute when
there is more than one group. When group.p.value.type="between" (the
default when combine.groups=TRUE), the p-value is associated with the two-
sample t-test (or the Wilcoxon rank sum test) in the case of two groups, and
the one-way analysis of variance F-test (or Krukal-Wallis test) in the case of
three or more groups to test whether the group means (locations) are differ-
ent from each other. When group.p.value.type="within" (the default when
combine.groups=FALSE), the computed p-values for each group are associated
with the one-sample t-test (or Wilcox signed rank test) to test whether the group
mean (location) is different from 0.

alternative for numeric data, character string indicating which alternative to assume for p-
values and confidence intervals. Possible values are "two.sided" (the default),
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"less", and "greater". This argument is ignored for p-values in the case of
three or more groups when group.p.value.type="between", and is ignored
for confidence intervals in the case of three or more groups when
ci.between=TRUE.

ci Numeric data: logical scalar indicating whether to compute a confidence in-
terval for the mean or each group mean. The default value is FALSE unless
p.value=TRUE and there are no groups, or when p.value=TRUE and there are
groups and group.p.value.type="within".
Factors: logical scalar indicating whether to compute a confidence interval. A
confidence interval is computed only if the number of levels in object is 2.
When group is not supplied, if ci=TRUE and test="prop" or
test="binom", a confidence interval for the percent (not probability) of the first
level of object is computed. When group is supplied and the number of levels
in group is 2, if ci=TRUE and test="prop", a confidence interval for the differ-
ence between percents (not proportions) is computed, and if test="fisher" a
confidence interval for the odds ratio is computed.

ci.between for numeric data, logical scalar indicating whether to compute a confidence in-
terval for the difference between group means when there are two groups. The
default value is ci.between=TRUE when p.value=TRUE and
group.p.value.type="between", otherwise this argument is ignored.

conf.level numeric scalar between 0 and 1 indicating the confidence level associated with
the confidence intervals. The default value is conf.level=0.95.

stats.in.rows logical scalar indicating whether to show the summary statistics in the rows or
columns of the output. The default is stats.in.rows=FALSE.

data.name character string indicating the name of the data used for the summary statistics.

combine.levels for factors, a logical scalar indicating whether to compute summary statistics
based on combining all levels of a factor.

... additional arguments affecting the summary statistics produced.

Value

an object of class "summaryStats" (see summaryStats.object. Objects of class "summaryStats"
are numeric matrices that contain the summary statisics produced by a call to summaryStats or
summaryFull. These objects have a special printing method that by default removes trailing ze-
ros for sample size entries and prints blanks for statistics that are normally displayed as NA (see
print.summaryStats).

Summary statistics for numeric data include sample size, mean, standard deviation, median, min,
and max. Options include the standard error of the mean (when se=TRUE), the estimated quar-
tiles (when quartiles=TRUE), p-values (when p.value=TRUE), and/or confidence intervals (when
ci=TRUE and/or ci.between=TRUE).

Summary statistics for factors include the sample size for each level of the factor and the percent of
the total for that level. Options include a p-value (when p.value=TRUE).

Note that unlike the R function summary and the EnvStats function summaryFull, by default the
digits argument for the EnvStats function summaryStats refers to how many decimal places to
round to, not how many significant digits to use (see the explanation of the argument digit.type
above).

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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See Also

summary, summaryFull, t.test, anova.lm, wilcox.test, kruskal.test, chisq.test, fisher.test,
binom.test.

Examples

# Page 9-3 of USEPA (2009) lists trichloroethene
# concentrations (TCE; mg/L) collected from groundwater at two wells.
# Here, the seven non-detects have been set to their detection limit.

#----------
# First, compute summary statistics for all TCE observations.

summaryStats(TCE.mg.per.L ~ 1, data = EPA.09.Table.9.1.TCE.df,
digits = 3, data.name = "TCE")

# N Mean SD Median Min Max NAs N.Total
#TCE 27 0.09 0.064 0.1 0.004 0.25 3 30

summaryStats(TCE.mg.per.L ~ 1, data = EPA.09.Table.9.1.TCE.df,
se = TRUE, quartiles = TRUE, digits = 3, data.name = "TCE")

# N Mean SD SE Median Min Max 1st Qu. 3rd Qu. NAs N.Total
#TCE 27 0.09 0.064 0.012 0.1 0.004 0.25 0.031 0.12 3 30

#----------
# Now compute summary statistics by well.

summaryStats(TCE.mg.per.L ~ Well, data = EPA.09.Table.9.1.TCE.df,
digits = 3)

# N Mean SD Median Min Max NAs N.Total
#Well.1 14 0.063 0.079 0.031 0.004 0.25 1 15
#Well.2 13 0.118 0.020 0.110 0.099 0.17 2 15

summaryStats(TCE.mg.per.L ~ Well, data = EPA.09.Table.9.1.TCE.df,
digits = 3, stats.in.rows = TRUE)

# Well.1 Well.2
#N 14 13
#Mean 0.063 0.118
#SD 0.079 0.02
#Median 0.031 0.11
#Min 0.004 0.099
#Max 0.25 0.17
#NAs 1 2
#N.Total 15 15

# If you want to keep trailing 0s, use the drop0trailing argument:
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summaryStats(TCE.mg.per.L ~ Well, data = EPA.09.Table.9.1.TCE.df,
digits = 3, stats.in.rows = TRUE, drop0trailing = FALSE)

# Well.1 Well.2
#N 14.000 13.000
#Mean 0.063 0.118
#SD 0.079 0.020
#Median 0.031 0.110
#Min 0.004 0.099
#Max 0.250 0.170
#NAs 1.000 2.000
#N.Total 15.000 15.000

#--------------------------------------------------------------------

# Page 13-3 of USEPA (2009) lists iron concentrations (ppm) in
# groundwater collected from 6 wells.

#----------
# First, compute summary statistics for each well.

summaryStats(Iron.ppm ~ Well, data = EPA.09.Ex.13.1.iron.df,
combine.groups = FALSE, digits = 2, stats.in.rows = TRUE)

# Well.1 Well.2 Well.3 Well.4 Well.5 Well.6
#N 4 4 4 4 4 4
#Mean 47.01 55.73 90.86 70.43 145.24 156.32
#SD 12.4 20.34 59.35 25.95 92.16 51.2
#Median 50.05 57.05 76.73 76.95 137.66 171.93
#Min 29.96 32.14 39.25 34.12 60.95 83.1
#Max 57.97 76.71 170.72 93.69 244.69 198.34

#----------
# Note the large differences in standard deviations between wells.
# Compute summary statistics for log(Iron), by Well.

summaryStats(log(Iron.ppm) ~ Well, data = EPA.09.Ex.13.1.iron.df,
combine.groups = FALSE, digits = 2, stats.in.rows = TRUE)

# Well.1 Well.2 Well.3 Well.4 Well.5 Well.6
#N 4 4 4 4 4 4
#Mean 3.82 3.97 4.35 4.19 4.8 5
#SD 0.3 0.4 0.66 0.45 0.7 0.4
#Median 3.91 4.02 4.29 4.34 4.8 5.14
#Min 3.4 3.47 3.67 3.53 4.11 4.42
#Max 4.06 4.34 5.14 4.54 5.5 5.29

#----------
# Include confidence intervals for the mean log(Fe) concentration
# at each well, and also the p-value from the one-way
# analysis of variance to test for a difference in well means.

summaryStats(log(Iron.ppm) ~ Well, data = EPA.09.Ex.13.1.iron.df,
digits = 1, ci = TRUE, p.value = TRUE, stats.in.rows = TRUE)

# Well.1 Well.2 Well.3 Well.4 Well.5 Well.6 Combined
#N 4 4 4 4 4 4 24
#Mean 3.8 4 4.3 4.2 4.8 5 4.4
#SD 0.3 0.4 0.7 0.5 0.7 0.4 0.6
#Median 3.9 4 4.3 4.3 4.8 5.1 4.3
#Min 3.4 3.5 3.7 3.5 4.1 4.4 3.4
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#Max 4.1 4.3 5.1 4.5 5.5 5.3 5.5
#95%.LCL 3.3 3.3 3.3 3.5 3.7 4.4 4.1
#95%.UCL 4.3 4.6 5.4 4.9 5.9 5.6 4.6
#p.value.between 0.025

#--------------------------------------------------------------------

# Using the built-in dataset HairEyeColor, summarize the frequencies
# of hair color and test whether there is a difference in proportions.
# NOTE: The data that was originally factor data has already been
# collapsed into frequency counts by catetory in the object
# HairEyeColor. In the examples in this section, we recreate
# the factor objects in order to show how summaryStats works
# for factor objects.

Hair <- apply(HairEyeColor, 1, sum)
Hair
#Black Brown Red Blond
# 108 286 71 127

Hair.color <- names(Hair)
Hair.fac <- factor(rep(Hair.color, times = Hair),

levels = Hair.color)

#----------
# Compute summary statistics and perform the chi-square test
# for equal proportions of hair color

summaryStats(Hair.fac, digits = 1, p.value = TRUE)
# N Pct ChiSq_p
#Black 108 18.2
#Brown 286 48.3
#Red 71 12.0
#Blond 127 21.5
#Combined 592 100.0 2.5e-39

#----------
# Now test the hypothesis that 10% of the population from which
# this sample was drawn has Red hair, and compute a 95% confidence
# interval for the percent of subjects with red hair.

Red.Hair.fac <- factor(Hair.fac == "Red", levels = c(TRUE, FALSE),
labels = c("Red", "Not Red"))

summaryStats(Red.Hair.fac, digits = 1, p.value = TRUE,
ci = TRUE, test = "binom", test.arg.list = list(p = 0.1))

# N Pct Exact_p 95%.LCL 95%.UCL
#Red 71 12 9.5 14.9
#Not Red 521 88
#Combined 592 100 0.11

#----------
# Now test whether the percent of people with Green eyes is the
# same for people with and without Red hair.

HairEye <- apply(HairEyeColor, 1:2, sum)
Hair.color <- rownames(HairEye)
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Eye.color <- colnames(HairEye)

n11 <- HairEye[Hair.color == "Red", Eye.color == "Green"]
n12 <- sum(HairEye[Hair.color == "Red", Eye.color != "Green"])
n21 <- sum(HairEye[Hair.color != "Red", Eye.color == "Green"])
n22 <- sum(HairEye[Hair.color != "Red", Eye.color != "Green"])

Hair.fac <- factor(rep(c("Red", "Not Red"), c(n11+n12, n21+n22)),
levels = c("Red", "Not Red"))

Eye.fac <- factor(c(rep("Green", n11), rep("Not Green", n12),
rep("Green", n21), rep("Not Green", n22)),
levels = c("Green", "Not Green"))

#----------
# Here are the results using the chi-square test and computing
# confidence limits for the difference between the two percentages

summaryStats(Eye.fac, group = Hair.fac, digits = 1,
p.value = TRUE, ci = TRUE, test = "prop",
stats.in.rows = TRUE, test.arg.list = list(correct = FALSE))

# Green Not Green Combined
#Red(N) 14 57 71
#Red(Pct) 19.7 80.3 100
#Not Red(N) 50 471 521
#Not Red(Pct) 9.6 90.4 100
#ChiSq_p 0.01
#95%.LCL.between 0.5
#95%.UCL.between 19.7

#----------
# Here are the results using Fishers exact test and computing
# confidence limits for the odds ratio

summaryStats(Eye.fac, group = Hair.fac, digits = 1,
p.value = TRUE, ci = TRUE, test = "fisher",
stats.in.rows = TRUE)

# Green Not Green Combined
#Red(N) 14 57 71
#Red(Pct) 19.7 80.3 100
#Not Red(N) 50 471 521
#Not Red(Pct) 9.6 90.4 100
#Fisher_p 0.015
#95%.LCL.OR 1.1
#95%.UCL.OR 4.6

rm(Hair, Hair.color, Hair.fac, Red.Hair.fac, HairEye, Eye.color,
n11, n12, n21, n22, Eye.fac)

#--------------------------------------------------------------------

# The data set EPA.89b.cadmium.df contains information on
# cadmium concentrations in groundwater collected from a
# background and compliance well. Compare detection frequencies
# between the well types and test for a difference using
# Fishers exact test.
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summaryStats(factor(Censored) ~ Well.type,
data = EPA.89b.cadmium.df, digits = 1, p.value = TRUE,
test = "fisher", stats.in.rows = TRUE)

# FALSE TRUE Combined
#Background(N) 8 16 24
#Background(Pct) 33.3 66.7 100
#Compliance(N) 24 40 64
#Compliance(Pct) 37.5 62.5 100
#Fisher_p 0.81
#95%.LCL.OR 0.3
#95%.UCL.OR 2.5

summaryStats.object S3 Class "summaryStats"

Description

Objects of S3 class "summaryStats" are returned by the functions summaryStats and summaryFull.

Details

Objects of S3 class "summaryStats" are matrices that contain information about the summary
statistics.

Value

Required Attributes
The following attributes must be included in a legitimate matrix of class "summaryStats".

stats.in.rows logical scalar indicating whether the statistics are stored by row (stats.in.rows=TRUE)
or by column (stats.in.rows=FALSE).

drop0trailing logical scalar indicating whether to drop trailing 0’s when printing the summary
statistics.

Methods

Generic functions that have methods for objects of class "summaryStats" include:
print.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

See Also

summaryStats, summaryFull.
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Examples

# Create an object of class "summaryStats", then print it out.
#-------------------------------------------------------------

summaryStats.obj <- summaryStats(TCE.mg.per.L ~ Well,
data = EPA.09.Table.9.1.TCE.df, digits = 3)

is.matrix(summaryStats.obj)
#[1] TRUE

class(summaryStats.obj)
#[1] "summaryStats"

attributes(summaryStats.obj)
#$dim
#[1] 2 8
#
#$dimnames
#$dimnames[[1]]
#[1] "Well.1" "Well.2"
#
#$dimnames[[2]]
#[1] "N" "Mean" "SD" "Median" "Min" "Max"
#[7] "NAs" "N.Total"
#
#
#$class
#[1] "summaryStats"
#
#$stats.in.rows
#[1] FALSE
#
#$drop0trailing
#[1] TRUE

summaryStats.obj
# N Mean SD Median Min Max NAs N.Total
#Well.1 14 0.063 0.079 0.031 0.004 0.25 1 15
#Well.2 13 0.118 0.020 0.110 0.099 0.17 2 15

#----------

# Clean up
#---------
rm(summaryStats.obj)

tolIntGamma Tolerance Interval for a Gamma Distribution

Description

Construct a β-content or β-expectation tolerance interval for a gamma distribution.
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Usage

tolIntGamma(x, coverage = 0.95, cov.type = "content",
ti.type = "two-sided", conf.level = 0.95, method = "exact",
est.method = "mle", normal.approx.transform = "kulkarni.powar")

tolIntGammaAlt(x, coverage = 0.95, cov.type = "content",
ti.type = "two-sided", conf.level = 0.95, method = "exact",
est.method = "mle", normal.approx.transform = "kulkarni.powar")

Arguments

x numeric vector of non-negative observations. Missing (NA), undefined (NaN),
and infinite (Inf, -Inf) values are allowed but will be removed.

coverage a scalar between 0 and 1 indicating the desired coverage of the tolerance inter-
val. The default value is coverage=0.95. If cov.type="expectation", this
argument is ignored.

cov.type character string specifying the coverage type for the tolerance interval. The
possible values are "content" (β-content; the default), and "expectation"
(β-expectation). See the DETAILS section for more information.

ti.type character string indicating what kind of tolerance interval to compute. The pos-
sible values are "two-sided" (the default), "lower", and "upper".

conf.level a scalar between 0 and 1 indicating the confidence level associated with the
tolerance interval. The default value is conf.level=0.95.

method for the case of a two-sided tolerance interval, a character string specifying the
method for constructing the two-sided normal distribution tolerance interval us-
ing the transformed data. This argument is ignored if ti.type="lower" or
ti.type="upper". The possible values are "exact" (the default) and
"wald.wolfowitz" (the Wald-Wolfowitz approximation). See the DETAILS
section of the help file for tolIntNorm for more information.

est.method character string specifying the method of estimation for the shape and scale
distribution parameters. The possible values are "mle" (maximum likelihood;
the default), "bcmle" (bias-corrected mle), "mme" (method of moments), and
"mmue" (method of moments based on the unbiased estimator of variance). See
the DETAILS section of the help file for egamma for more information.

normal.approx.transform

character string indicating which power transformation to use. Possible values
are "kulkarni.powar" (the default), "cube.root", and
"fourth.root". See the DETAILS section for more informaiton.

Details

The function tolIntGamma returns a tolerance interval as well as estimates of the shape and scale
parameters. The function tolIntGammaAlt returns a tolerance interval as well as estimates of the
mean and coefficient of variation.

The tolerance interval is computed by 1) using a power transformation on the original data to induce
approximate normality, 2) using tolIntNorm to compute the tolerance interval, and then 3) back-
transforming the interval to create a tolerance interval on the original scale. (Krishnamoorthy et
al., 2008). The value normal.approx.transform="cube.root" uses the cube root transformation
suggested by Wilson and Hilferty (1931) and used by Krishnamoorthy et al. (2008) and Singh
et al. (2010b), and the value normal.approx.transform="fourth.root" uses the fourth root
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transformation suggested by Hawkins and Wixley (1986) and used by Singh et al. (2010b). The
default value normal.approx.transform="kulkarni.powar" uses the "Optimum Power Normal
Approximation Method" of Kulkarni and Powar (2010). The "optimum" power p is determined by:

p = −0.0705− 0.178 shape+ 0.475
√
shape if shape ≤ 1.5

p = 0.246 if shape > 1.5

where shape denotes the estimate of the shape parameter. Although Kulkarni and Powar (2010)
use the maximum likelihood estimate of shape to determine the power p, for the functions
tolIntGamma and tolIntGammaAlt the power p is based on whatever estimate of shape is used
(e.g., est.method="mle", est.method="bcmle", etc.).

Value

A list of class "estimate" containing the estimated parameters, the tolerance interval, and other
information. See estimate.object for details.

In addition to the usual components contained in an object of class "estimate", the returned value
also includes an additional component within the "interval" component:

normal.transform.power

the value of the power used to transform the original data to approximate nor-
mality.

Warning

It is possible for the lower tolerance limit based on the transformed data to be less than 0. In this
case, the lower tolerance limit on the original scale is set to 0 and a warning is issued stating that
the normal approximation is not accurate in this case.

Note

The gamma distribution takes values on the positive real line. Special cases of the gamma are the
exponential distribution and the chi-square distributions. Applications of the gamma include life
testing, statistical ecology, queuing theory, inventory control, and precipitation processes. A gamma
distribution starts to resemble a normal distribution as the shape parameter a tends to infinity.

Some EPA guidance documents (e.g., Singh et al., 2002; Singh et al., 2010a,b) strongly recom-
mend against using a lognormal model for environmental data and recommend trying a gamma
distribuiton instead.

Tolerance intervals have long been applied to quality control and life testing problems (Hahn,
1970b,c; Hahn and Meeker, 1991). References that discuss tolerance intervals in the context of en-
vironmental monitoring include: Berthouex and Brown (2002, Chapter 21), Gibbons et al. (2009),
Millard and Neerchal (2001, Chapter 6), Singh et al. (2010b), and USEPA (2009).

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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See Also

GammaDist, estimate.object, egamma, tolIntNorm, predIntGamma.

Examples

# Generate 20 observations from a gamma distribution with parameters
# shape=3 and scale=2, then create a tolerance interval.
# (Note: the call to set.seed simply allows you to reproduce this
# example.)

set.seed(250)
dat <- rgamma(20, shape = 3, scale = 2)
tolIntGamma(dat)

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Gamma
#
#Estimated Parameter(s): shape = 2.203862
# scale = 2.174928
#
#Estimation Method: mle
#
#Data: dat
#
#Sample Size: 20
#
#Tolerance Interval Coverage: 95%
#
#Coverage Type: content
#
#Tolerance Interval Method: Exact using
# Kulkarni & Powar (2010)
# transformation to Normality
# based on mle of shape
#
#Tolerance Interval Type: two-sided
#
#Confidence Level: 95%
#
#Number of Future Observations: 1
#
#Tolerance Interval: LTL = 0.2340438
# UTL = 21.2996464

#--------------------------------------------------------------------

# Using the same data as in the previous example, create an upper
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# one-sided tolerance interval and use the bias-corrected estimate of
# shape.

tolIntGamma(dat, ti.type = "upper", est.method = "bcmle")

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Gamma
#
#Estimated Parameter(s): shape = 1.906616
# scale = 2.514005
#
#Estimation Method: bcmle
#
#Data: dat
#
#Sample Size: 20
#
#Tolerance Interval Coverage: 95%
#
#Coverage Type: content
#
#Tolerance Interval Method: Exact using
# Kulkarni & Powar (2010)
# transformation to Normality
# based on bcmle of shape
#
#Tolerance Interval Type: upper
#
#Confidence Level: 95%
#
#Tolerance Interval: LTL = 0.00000
# UTL = 17.72107

#----------

# Clean up
rm(dat)

#--------------------------------------------------------------------

# Example 17-3 of USEPA (2009, p. 17-17) shows how to construct a
# beta-content upper tolerance limit with 95% coverage and 95%
# confidence using chrysene data and assuming a lognormal
# distribution. Here we will use the same chrysene data but assume a
# gamma distribution.

attach(EPA.09.Ex.17.3.chrysene.df)
Chrysene <- Chrysene.ppb[Well.type == "Background"]

#----------
# First perform a goodness-of-fit test for a gamma distribution

gofTest(Chrysene, dist = "gamma")

#Results of Goodness-of-Fit Test
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#-------------------------------
#
#Test Method: Shapiro-Wilk GOF Based on
# Chen & Balakrisnan (1995)
#
#Hypothesized Distribution: Gamma
#
#Estimated Parameter(s): shape = 2.806929
# scale = 5.286026
#
#Estimation Method: mle
#
#Data: Chrysene
#
#Sample Size: 8
#
#Test Statistic: W = 0.9156306
#
#Test Statistic Parameter: n = 8
#
#P-value: 0.3954223
#
#Alternative Hypothesis: True cdf does not equal the
# Gamma Distribution.

#----------
# Now compute the upper tolerance limit

tolIntGamma(Chrysene, ti.type = "upper", coverage = 0.95,
conf.level = 0.95)

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Gamma
#
#Estimated Parameter(s): shape = 2.806929
# scale = 5.286026
#
#Estimation Method: mle
#
#Data: Chrysene
#
#Sample Size: 8
#
#Tolerance Interval Coverage: 95%
#
#Coverage Type: content
#
#Tolerance Interval Method: Exact using
# Kulkarni & Powar (2010)
# transformation to Normality
# based on mle of shape
#
#Tolerance Interval Type: upper
#
#Confidence Level: 95%
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#
#Tolerance Interval: LTL = 0.00000
# UTL = 69.32425

#----------
# Compare this upper tolerance limit of 69 ppb to the upper tolerance limit
# assuming a lognormal distribution.

tolIntLnorm(Chrysene, ti.type = "upper", coverage = 0.95,
conf.level = 0.95)$interval$limits["UTL"]

# UTL
#90.9247

#----------
# Clean up

rm(Chrysene)
detach("EPA.09.Ex.17.3.chrysene.df")

#--------------------------------------------------------------------

# Reproduce some of the example on page 73 of
# Krishnamoorthy et al. (2008), which uses alkalinity concentrations
# reported in Gibbons (1994) and Gibbons et al. (2009) to construct
# two-sided and one-sided upper tolerance limits for various values
# of coverage using a 95% confidence level.

tolIntGamma(Gibbons.et.al.09.Alkilinity.vec, ti.type = "upper",
coverage = 0.9, normal.approx.transform = "cube.root")

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Gamma
#
#Estimated Parameter(s): shape = 9.375013
# scale = 6.202461
#
#Estimation Method: mle
#
#Data: Gibbons.et.al.09.Alkilinity.vec
#
#Sample Size: 27
#
#Tolerance Interval Coverage: 90%
#
#Coverage Type: content
#
#Tolerance Interval Method: Exact using
# Wilson & Hilferty (1931) cube-root
# transformation to Normality
#
#Tolerance Interval Type: upper
#
#Confidence Level: 95%
#
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#Tolerance Interval: LTL = 0.00000
# UTL = 97.70502

tolIntGamma(Gibbons.et.al.09.Alkilinity.vec,
coverage = 0.99, normal.approx.transform = "cube.root")

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Gamma
#
#Estimated Parameter(s): shape = 9.375013
# scale = 6.202461
#
#Estimation Method: mle
#
#Data: Gibbons.et.al.09.Alkilinity.vec
#
#Sample Size: 27
#
#Tolerance Interval Coverage: 99%
#
#Coverage Type: content
#
#Tolerance Interval Method: Exact using
# Wilson & Hilferty (1931) cube-root
# transformation to Normality
#
#Tolerance Interval Type: two-sided
#
#Confidence Level: 95%
#
#Tolerance Interval: LTL = 13.14318
# UTL = 148.43876

tolIntLnorm Tolerance Interval for a Lognormal Distribution

Description

Estimate the mean and standard deviation on the log-scale for a lognormal distribution, or estimate
the mean and coefficient of variation for a lognormal distribution (alternative parameterization), and
construct a β-content or β-expectation tolerance interval.

Usage

tolIntLnorm(x, coverage = 0.95, cov.type = "content", ti.type = "two-sided",
conf.level = 0.95, method = "exact")

tolIntLnormAlt(x, coverage = 0.95, cov.type = "content", ti.type = "two-sided",
conf.level = 0.95, method = "exact", est.method = "mvue")
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Arguments

x For tolIntLnorm, x can be a numeric vector of positive observations, or an
object resulting from a call to an estimating function that assumes a lognor-
mal distribution (i.e., elnorm or elnormCensored). You cannot supply objects
resulting from a call to estimating functions that use the alternative parameteri-
zation such as elnormAlt or elnormAltCensored.
For tolIntLnormAlt, a numeric vector of positive observations.
If x is a numeric vector, missing (NA), undefined (NaN), and infinite (Inf, -Inf)
values are allowed but will be removed.

coverage a scalar between 0 and 1 indicating the desired coverage of the tolerance inter-
val. The default value is coverage=0.95. If cov.type="expectation", this
argument is ignored.

cov.type character string specifying the coverage type for the tolerance interval. The
possible values are "content" (β-content; the default), and "expectation"
(β-expectation). See the DETAILS section for more information.

ti.type character string indicating what kind of tolerance interval to compute. The pos-
sible values are "two-sided" (the default), "lower", and "upper".

conf.level a scalar between 0 and 1 indicating the confidence level associated with the
tolerance interval. The default value is conf.level=0.95.

method for the case of a two-sided tolerance interval, a character string specifying the
method for constructing the tolerance interval. This argument is ignored if
ti.type="lower" or ti.type="upper". The possible values are
"exact" (the default) and "wald.wolfowitz" (the Wald-Wolfowitz approxima-
tion). See the DETAILS section in this help file and the DETAILS section in the
help file for tolIntNorm for more information.

est.method for tolIntLnormAlt, a character string specifying the method of estimating the
mean and coefficient of variation. This argument has no effect on the method
of constructing the tolerance interval. Possible values are "mvue" (minimum
variance unbiased; the default), "qmle" (quasi maximum likelihood), "mle"
(maximum likelihood), "mme" (method of moments), and "mmue" (method of
moments based on the unbiased estimate of variance). See the DETAILS sec-
tion of elnormAlt for more information on these estimation methods.

Details

The function tolIntLnorm returns a tolerance interval as well as estimates of the meanlog and
sdlog parameters. The function tolIntLnormAlt returns a tolerance interval as well as estimates
of the mean and coefficient of variation.
A tolerance interval for a lognormal distribution is constructed by taking the natural logarithm of the
observations and constructing a tolerance interval based on the normal (Gaussian) distribution by
calling tolIntNorm. These tolerance limits are then exponentiated to produce a tolerance interval
on the original scale of the data.

Value

If x is a numeric vector, a list of class "estimate" containing the estimated parameters, a com-
ponent called interval containing the tolerance interval information, and other information. See
estimate.object for details.
If x is the result of calling an estimation function, a list whose class is the same as x. The list
contains the same components as x. If x already has a component called interval, this component
is replaced with the tolerance interval information.
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Note

Tolerance intervals have long been applied to quality control and life testing problems (Hahn,
1970b,c; Hahn and Meeker, 1991; Krishnamoorthy and Mathew, 2009). References that discuss tol-
erance intervals in the context of environmental monitoring include: Berthouex and Brown (2002,
Chapter 21), Gibbons et al. (2009), Millard and Neerchal (2001, Chapter 6), Singh et al. (2010b),
and USEPA (2009).

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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See Also

tolIntNorm, Lognormal, LognormalAlt, estimate.object, elnorm, elnormAlt, eqlnorm, predIntLnorm,
Tolerance Intervals, Estimating Distribution Parameters, Estimating Distribution Quantiles.

Examples

# Generate 20 observations from a lognormal distribution with parameters
# meanlog=0 and sdlog=1. Use tolIntLnorm to estimate
# the mean and standard deviation of the log of the true distribution, and
# construct a two-sided 90% beta-content tolerance interval with associated
# confidence level 95%.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(250)
dat <- rlnorm(20)
tolIntLnorm(dat, coverage = 0.9)

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Lognormal
#
#Estimated Parameter(s): meanlog = -0.06941976
# sdlog = 0.59011300
#
#Estimation Method: mvue
#
#Data: dat
#
#Sample Size: 20
#
#Tolerance Interval Coverage: 90%
#
#Coverage Type: content
#
#Tolerance Interval Method: Exact
#
#Tolerance Interval Type: two-sided
#
#Confidence Level: 95%
#
#Tolerance Interval: LTL = 0.237457
# UTL = 3.665369

# The exact two-sided interval that contains 90% of this distribution
# is given by: [0.193, 5.18].

qlnorm(p = c(0.05, 0.95))
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#[1] 0.1930408 5.1802516

# Clean up
rm(dat)

#==========

# Example 17-3 of USEPA (2009, p. 17-17) shows how to construct a
# beta-content upper tolerance limit with 95% coverage and 95%
# confidence using chrysene data and assuming a lognormal distribution.
# The data for this example are stored in EPA.09.Ex.17.3.chrysene.df,
# which contains chrysene concentration data (ppb) found in water
# samples obtained from two background wells (Wells 1 and 2) and
# three compliance wells (Wells 3, 4, and 5). The tolerance limit
# is based on the data from the background wells.

head(EPA.09.Ex.17.3.chrysene.df)
# Month Well Well.type Chrysene.ppb
#1 1 Well.1 Background 19.7
#2 2 Well.1 Background 39.2
#3 3 Well.1 Background 7.8
#4 4 Well.1 Background 12.8
#5 1 Well.2 Background 10.2
#6 2 Well.2 Background 7.2

longToWide(EPA.09.Ex.17.3.chrysene.df, "Chrysene.ppb", "Month", "Well")
# Well.1 Well.2 Well.3 Well.4 Well.5
#1 19.7 10.2 68.0 26.8 47.0
#2 39.2 7.2 48.9 17.7 30.5
#3 7.8 16.1 30.1 31.9 15.0
#4 12.8 5.7 38.1 22.2 23.4

with(EPA.09.Ex.17.3.chrysene.df,
tolIntLnorm(Chrysene.ppb[Well.type == "Background"],
ti.type = "upper", coverage = 0.95, conf.level = 0.95))

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Lognormal
#
#Estimated Parameter(s): meanlog = 2.5085773
# sdlog = 0.6279479
#
#Estimation Method: mvue
#
#Data: Chrysene.ppb[Well.type == "Background"]
#
#Sample Size: 8
#
#Tolerance Interval Coverage: 95%
#
#Coverage Type: content
#
#Tolerance Interval Method: Exact
#
#Tolerance Interval Type: upper
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#
#Confidence Level: 95%
#
#Tolerance Interval: LTL = 0.0000
# UTL = 90.9247

#----------

# Repeat the above example, but estimate the mean and
# coefficient of variation on the original scale
#-----------------------------------------------

with(EPA.09.Ex.17.3.chrysene.df,
tolIntLnormAlt(Chrysene.ppb[Well.type == "Background"],
ti.type = "upper", coverage = 0.95, conf.level = 0.95))

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Lognormal
#
#Estimated Parameter(s): mean = 14.5547353
# cv = 0.6390825
#
#Estimation Method: mvue
#
#Data: Chrysene.ppb[Well.type == "Background"]
#
#Sample Size: 8
#
#Tolerance Interval Coverage: 95%
#
#Coverage Type: content
#
#Tolerance Interval Method: Exact
#
#Tolerance Interval Type: upper
#
#Confidence Level: 95%
#
#Tolerance Interval: LTL = 0.0000
# UTL = 90.9247

tolIntLnormCensored Tolerance Interval for a Lognormal Distribution Based on Censored
Data

Description

Construct a β-content or β-expectation tolerance interval for a lognormal distribution based on Type
I or Type II censored data.



tolIntLnormCensored 1019

Usage

tolIntLnormCensored(x, censored, censoring.side = "left", coverage = 0.95,
cov.type = "content", ti.type = "two-sided", conf.level = 0.95,
method = "mle", ti.method = "exact.for.complete", seed = NULL,
nmc = 1000)

Arguments

x numeric vector of positive observations. Missing (NA), undefined (NaN), and
infinite (Inf, -Inf) values are allowed but will be removed.

censored numeric or logical vector indicating which values of x are censored. This must
be the same length as x. If the mode of censored is "logical", TRUE values
correspond to elements of x that are censored, and FALSE values correspond to
elements of x that are not censored. If the mode of censored is "numeric",
it must contain only 1’s and 0’s; 1 corresponds to TRUE and 0 corresponds to
FALSE. Missing (NA) values are allowed but will be removed.

censoring.side character string indicating on which side the censoring occurs. The possible
values are "left" (the default) and "right".

coverage a scalar between 0 and 1 indicating the desired coverage of the tolerance interval.
The default value is coverage=0.95.

cov.type character string specifying the coverage type for the tolerance interval. The
possible values are "content" (β-content; the default), and "expectation"
(β-expectation). See the DETAILS section for more information.

ti.type character string indicating what kind of tolerance interval to compute. The pos-
sible values are "two-sided" (the default), "lower", and "upper".

conf.level a scalar between 0 and 1 indicating the confidence level associated with the
tolerance interval. The default value is conf.level=0.95.

method character string indicating the method to use for parameter estimation on the
log-scale.

For singly censored data, possible values are "mle" (the default), "bcmle",
"qq.reg", "qq.reg.w.cen.level", "impute.w.qq.reg", "impute.w.qq.reg.w.cen.level",
"impute.w.mle", "iterative.impute.w.qq.reg", "m.est", and "half.cen.level".
See the help file for enormCensored for details.

For multiply censored data, possible values are "mle" (the default), "qq.reg",
"impute.w.qq.reg", and "half.cen.level". See the help file for enormCensored
for details.

ti.method character string specifying the method for constructing the tolerance interval.
Possible values are "exact.for.complete" (the default), "gpq" (Generalized
Pivotal Quantity), and, for a two-sided tolerance interval (i.e., when ti.type="two-sided"),
"wald.wolfowitz.for.complete". See the DETAILS section for more infor-
mation.

seed for the case when ti.method="gpq", a positive integer to pass to the function
gpqTolIntNormSinglyCensored or gpqTolIntNormMultiplyCensored. This
argument is ignored if seed=NULL (the default). Using the seed argument lets
you reproduce the exact same result if all other arguments stay the same.

nmc for the case when ti.method="gpq", a positive integer ≥ 10 indicating the
number of Monte Carlo trials to run in order to compute the GPQ(s).
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Details

A tolerance interval for a lognormal distribution is constructed by taking the natural logarithm of the
observations and constructing a tolerance interval based on the normal (Gaussian) distribution by
calling tolIntNormCensored. These tolerance limits are then exponentiated to produce a tolerance
interval on the original scale of the data.

Value

A list of class "estimateCensored" containing the estimated parameters, the tolerance interval,
and other information. See estimateCensored.object for details.

Note

Tolerance intervals have long been applied to quality control and life testing problems (Hahn,
1970b,c; Hahn and Meeker, 1991; Krishnamoorthy and Mathew, 2009). References that discuss tol-
erance intervals in the context of environmental monitoring include: Berthouex and Brown (2002,
Chapter 21), Gibbons et al. (2009), Millard and Neerchal (2001, Chapter 6), Singh et al. (2010b),
and USEPA (2009).
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See Also

tolIntNormCensored, gpqTolIntNormSinglyCensored, eqnormCensored, enormCensored, estimateCensored.object.

Examples

# Generate 20 observations from a lognormal distribution with parameters
# mean=10 and cv=1, censor the observations less than 5,
# then create a one-sided upper tolerance interval with 90%
# coverage and 95% confidence based on these Type I left, singly
# censored data.
# (Note: the call to set.seed allows you to reproduce this example.)

set.seed(250)
dat <- rlnormAlt(20, mean = 10, cv = 1)
sort(dat)
# [1] 2.608298 3.185459 4.196216 4.383764 4.569752 5.136130
# [7] 5.209538 5.916284 6.199076 6.214755 6.255779 6.778361
#[13] 7.074972 7.100494 8.930845 10.388766 11.402769 14.247062
#[19] 14.559506 15.437340

censored <- dat < 5
dat[censored] <- 5

tolIntLnormCensored(dat, censored, coverage = 0.9, ti.type="upper")

#Results of Distribution Parameter Estimation
#Based on Type I Censored Data
#--------------------------------------------
#
#Assumed Distribution: Lognormal
#
#Censoring Side: left
#
#Censoring Level(s): 5
#
#Estimated Parameter(s): meanlog = 1.8993686
# sdlog = 0.4804343
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#
#Estimation Method: MLE
#
#Data: dat
#
#Censoring Variable: censored
#
#Sample Size: 20
#
#Percent Censored: 25%
#
#Assumed Sample Size: 20
#
#Tolerance Interval Coverage: 90%
#
#Coverage Type: content
#
#Tolerance Interval Method: Exact for
# Complete Data
#
#Tolerance Interval Type: upper
#
#Confidence Level: 95%
#
#Tolerance Interval: LTL = 0.00000
# UTL = 16.85556

# Note: The true 90th percentile is 20.55231
#---------------------------------------------
qlnormAlt(0.9, mean = 10, cv = 1)
#[1] 20.55231

# Compare the result using the method "gpq"
tolIntLnormCensored(dat, censored, coverage = 0.9, ti.type="upper",

ti.method = "gpq", seed = 432)$interval$limits

# LTL UTL
# 0.00000 17.85474

# Clean Up
#---------
rm(dat, censored)

#--------------------------------------------------------------

# Example 15-1 of USEPA (2009, p. 15-10) shows how to estimate
# the mean and standard deviation using log-transformed multiply
# left-censored manganese concentration data. Here well construct a
# 95% upper tolerance limit with 90% coverage using these data.

EPA.09.Ex.15.1.manganese.df
# Sample Well Manganese.Orig.ppb Manganese.ppb Censored
# 1 1 Well.1 <5 5.0 TRUE
# 2 2 Well.1 12.1 12.1 FALSE
# 3 3 Well.1 16.9 16.9 FALSE
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# ...
# 23 3 Well.5 3.3 3.3 FALSE
# 24 4 Well.5 8.4 8.4 FALSE
# 25 5 Well.5 <2 2.0 TRUE

with(EPA.09.Ex.15.1.manganese.df,
tolIntLnormCensored(Manganese.ppb, Censored, coverage = 0.9,

ti.type = "upper"))

#Results of Distribution Parameter Estimation
#Based on Type I Censored Data
#--------------------------------------------
#
#Assumed Distribution: Lognormal
#
#Censoring Side: left
#
#Censoring Level(s): 2 5
#
#Estimated Parameter(s): meanlog = 2.215905
# sdlog = 1.356291
#
#Estimation Method: MLE
#
#Data: Manganese.ppb
#
#Censoring Variable: censored
#
#Sample Size: 25
#
#Percent Censored: 24%
#
#Assumed Sample Size: 25
#
#Tolerance Interval Coverage: 90%
#
#Coverage Type: content
#
#Tolerance Interval Method: Exact for
# Complete Data
#
#Tolerance Interval Type: upper
#
#Confidence Level: 95%
#
#Tolerance Interval: LTL = 0.0000
# UTL = 110.9305

tolIntNorm Tolerance Interval for a Normal Distribution

Description

Construct a β-content or β-expectation tolerance interval for a normal distribution.
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Usage

tolIntNorm(x, coverage = 0.95, cov.type = "content",
ti.type = "two-sided", conf.level = 0.95, method = "exact")

Arguments

x numeric vector of observations, or an object resulting from a call to an esti-
mating function that assumes a normal (Gaussian) distribution (i.e., enorm or
enormCensored). If x is a numeric vector, missing (NA), undefined (NaN), and
infinite (Inf, -Inf) values are allowed but will be removed.

coverage a scalar between 0 and 1 indicating the desired coverage of the tolerance inter-
val. The default value is coverage=0.95. If cov.type="expectation", this
argument is ignored.

cov.type character string specifying the coverage type for the tolerance interval. The
possible values are "content" (β-content; the default), and "expectation"
(β-expectation). See the DETAILS section for more information.

ti.type character string indicating what kind of tolerance interval to compute. The pos-
sible values are "two-sided" (the default), "lower", and "upper".

conf.level a scalar between 0 and 1 indicating the confidence level associated with the
tolerance interval. The default value is conf.level=0.95.

method for the case of a two-sided tolerance interval, a character string specifying the
method for constructing the tolerance interval. This argument is ignored if
ti.type="lower" or ti.type="upper". The possible values are
"exact" (the default) and "wald.wolfowitz" (the Wald-Wolfowitz approxima-
tion). See the DETAILS section for more information.

Details

If x contains any missing (NA), undefined (NaN) or infinite (Inf, -Inf) values, they will be removed
prior to performing the estimation.

A tolerance interval for some population is an interval on the real line constructed so as to contain
100β% of the population (i.e., 100β% of all future observations), where 0 < β < 1. The quantity
100β% is called the coverage.

There are two kinds of tolerance intervals (Guttman, 1970):

• A β-content tolerance interval with confidence level 100(1 − α)% is constructed so that it
contains at least 100β% of the population (i.e., the coverage is at least 100β%) with probability
100(1− α)%, where 0 < α < 1. The quantity 100(1− α)% is called the confidence level or
confidence coefficient associated with the tolerance interval.

• A β-expectation tolerance interval is constructed so that the average coverage of the interval
is 100β%.

Note: A β-expectation tolerance interval with coverage 100β% is equivalent to a prediction interval
for one future observation with associated confidence level 100β%. Note that there is no explicit
confidence level associated with a β-expectation tolerance interval. If a β-expectation tolerance in-
terval is treated as a β-content tolerance interval, the confidence level associated with this tolerance
interval is usually around 50% (e.g., Guttman, 1970, Table 4.2, p.76).

For a normal distribution, the form of a two-sided 100(1− α)% tolerance interval is:

[x̄−Ks, x̄+Ks]
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where x̄ denotes the sample mean, s denotes the sample standard deviation, and K denotes a con-
stant that depends on the sample size n, the coverage, and, for a β-content tolerance interval (but
not a β-expectation tolerance interval), the confidence level.

Similarly, the form of a one-sided lower tolerance interval is:

[x̄−Ks, ∞]

and the form of a one-sided upper tolerance interval is:

[−∞, x̄+Ks]

but K differs for one-sided versus two-sided tolerance intervals. The derivation of the constant K
is explained in the help file for tolIntNormK.

Value

If x is a numeric vector, tolIntNorm returns a list of class "estimate" containing the estimated
parameters, a component called interval containing the tolerance interval information, and other
information. See estimate.object for details.

If x is the result of calling an estimation function, tolIntNorm returns a list whose class is the same
as x. The list contains the same components as x. If x already has a component called interval,
this component is replaced with the tolerance interval information.

Note

Tolerance intervals have long been applied to quality control and life testing problems (Hahn,
1970b,c; Hahn and Meeker, 1991; Krishnamoorthy and Mathew, 2009). References that discuss tol-
erance intervals in the context of environmental monitoring include: Berthouex and Brown (2002,
Chapter 21), Gibbons et al. (2009), Millard and Neerchal (2001, Chapter 6), Singh et al. (2010b),
and USEPA (2009).
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Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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See Also

tolIntNormK, tolIntLnorm, Normal, estimate.object, enorm, eqnorm, predIntNorm, Toler-
ance Intervals, Estimating Distribution Parameters, Estimating Distribution Quantiles.

Examples

# Generate 20 observations from a normal distribution with parameters
# mean=10 and sd=2, then create a tolerance interval.
# (Note: the call to set.seed simply allows you to reproduce this
# example.)

set.seed(250)
dat <- rnorm(20, mean = 10, sd = 2)
tolIntNorm(dat)

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Normal
#
#Estimated Parameter(s): mean = 9.861160
# sd = 1.180226
#
#Estimation Method: mvue
#
#Data: dat
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#
#Sample Size: 20
#
#Tolerance Interval Coverage: 95%
#
#Coverage Type: content
#
#Tolerance Interval Method: Exact
#
#Tolerance Interval Type: two-sided
#
#Confidence Level: 95%
#
#Tolerance Interval: LTL = 6.603328
# UTL = 13.118993

#----------

# Clean up
rm(dat)

#--------------------------------------------------------------------

# Example 17-3 of USEPA (2009, p. 17-17) shows how to construct a
# beta-content upper tolerance limit with 95% coverage and 95%
# confidence using chrysene data and assuming a lognormal distribution.
# The data for this example are stored in EPA.09.Ex.17.3.chrysene.df,
# which contains chrysene concentration data (ppb) found in water
# samples obtained from two background wells (Wells 1 and 2) and
# three compliance wells (Wells 3, 4, and 5). The tolerance limit
# is based on the data from the background wells.

# Here we will first take the log of the data and
# then construct the tolerance interval; note however that it is
# easier to call the function tolIntLnorm instead using the
# original data.

head(EPA.09.Ex.17.3.chrysene.df)
# Month Well Well.type Chrysene.ppb
#1 1 Well.1 Background 19.7
#2 2 Well.1 Background 39.2
#3 3 Well.1 Background 7.8
#4 4 Well.1 Background 12.8
#5 1 Well.2 Background 10.2
#6 2 Well.2 Background 7.2

longToWide(EPA.09.Ex.17.3.chrysene.df, "Chrysene.ppb", "Month", "Well")
# Well.1 Well.2 Well.3 Well.4 Well.5
#1 19.7 10.2 68.0 26.8 47.0
#2 39.2 7.2 48.9 17.7 30.5
#3 7.8 16.1 30.1 31.9 15.0
#4 12.8 5.7 38.1 22.2 23.4

tol.int.list <- with(EPA.09.Ex.17.3.chrysene.df,
tolIntNorm(log(Chrysene.ppb[Well.type == "Background"]),
ti.type = "upper", coverage = 0.95, conf.level = 0.95))
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tol.int.list

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Normal
#
#Estimated Parameter(s): mean = 2.5085773
# sd = 0.6279479
#
#Estimation Method: mvue
#
#Data: log(Chrysene.ppb[Well.type == "Background"])
#
#Sample Size: 8
#
#Tolerance Interval Coverage: 95%
#
#Coverage Type: content
#
#Tolerance Interval Method: Exact
#
#Tolerance Interval Type: upper
#
#Confidence Level: 95%
#
#Tolerance Interval: LTL = -Inf
# UTL = 4.510032

# Compute the upper tolerance interaval on the original scale
# by exponentiating the upper tolerance limit:

exp(tol.int.list$interval$limits["UTL"])
# UTL
#90.9247

#----------

# Clean up

rm(tol.int.list)

tolIntNormCensored Tolerance Interval for a Normal Distribution Based on Censored Data

Description

Construct a β-content or β-expectation tolerance interval for a normal distribution based on Type I
or Type II censored data.

Usage

tolIntNormCensored(x, censored, censoring.side = "left", coverage = 0.95,
cov.type = "content", ti.type = "two-sided", conf.level = 0.95,
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method = "mle", ti.method = "exact.for.complete", seed = NULL,
nmc = 1000)

Arguments

x numeric vector of observations. Missing (NA), undefined (NaN), and infinite (Inf,
-Inf) values are allowed but will be removed.

censored numeric or logical vector indicating which values of x are censored. This must
be the same length as x. If the mode of censored is "logical", TRUE values
correspond to elements of x that are censored, and FALSE values correspond to
elements of x that are not censored. If the mode of censored is "numeric",
it must contain only 1’s and 0’s; 1 corresponds to TRUE and 0 corresponds to
FALSE. Missing (NA) values are allowed but will be removed.

censoring.side character string indicating on which side the censoring occurs. The possible
values are "left" (the default) and "right".

coverage a scalar between 0 and 1 indicating the desired coverage of the tolerance interval.
The default value is coverage=0.95.

cov.type character string specifying the coverage type for the tolerance interval. The
possible values are "content" (β-content; the default), and "expectation"
(β-expectation). See the DETAILS section for more information.

ti.type character string indicating what kind of tolerance interval to compute. The pos-
sible values are "two-sided" (the default), "lower", and "upper".

conf.level a scalar between 0 and 1 indicating the confidence level associated with the
tolerance interval. The default value is conf.level=0.95.

method character string indicating the method to use for parameter estimation.

For singly censored data, possible values are "mle" (the default), "bcmle",
"qq.reg", "qq.reg.w.cen.level", "impute.w.qq.reg", "impute.w.qq.reg.w.cen.level",
"impute.w.mle", "iterative.impute.w.qq.reg", "m.est", and "half.cen.level".
See the help file for enormCensored for details.

For multiply censored data, possible values are "mle" (the default), "qq.reg",
"impute.w.qq.reg", and "half.cen.level". See the help file for enormCensored
for details.

ti.method character string specifying the method for constructing the tolerance interval.
Possible values are "exact.for.complete" (the default), "gpq" (Generalized
Pivotal Quantity), and, for a two-sided tolerance interval (i.e., when ti.type="two-sided"),
"wald.wolfowitz.for.complete". See the DETAILS section for more infor-
mation.

seed for the case when ti.method="gpq", a positive integer to pass to the function
gpqTolIntNormSinglyCensored or gpqTolIntNormMultiplyCensored. This
argument is ignored if seed=NULL (the default). Using the seed argument lets
you reproduce the exact same result if all other arguments stay the same.

nmc for the case when ti.method="gpq", a positive integer ≥ 10 indicating the
number of Monte Carlo trials to run in order to compute the GPQ(s).

Details

See the help file for tolIntNorm for an explanation of tolerance intervals. When ti.method="gpq",
the tolerance interval is constructed using the method of Generalized Pivotal Quantities as explained
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in Krishnamoorthy and Mathew (2009, p. 327). When ti.method="exact.for.complete" or
ti.method="wald.wolfowitz.for.complete", the tolerance interval is constructed by first com-
puting the maximum likelihood estimates of the mean and standard deviation by calling enormCensored,
then passing these values to the function tolIntNorm to produce the tolerance interval as if the esti-
mates were based on complete rather than censored data. These last two methods are purely ad-hoc
and their properties need to be studied.

Value

A list of class "estimateCensored" containing the estimated parameters, the tolerance interval,
and other information. See estimateCensored.object for details.

Note

Tolerance intervals have long been applied to quality control and life testing problems (Hahn,
1970b,c; Hahn and Meeker, 1991; Krishnamoorthy and Mathew, 2009). References that discuss tol-
erance intervals in the context of environmental monitoring include: Berthouex and Brown (2002,
Chapter 21), Gibbons et al. (2009), Millard and Neerchal (2001, Chapter 6), Singh et al. (2010b),
and USEPA (2009).
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See Also

gpqTolIntNormSinglyCensored, eqnormCensored, enormCensored, estimateCensored.object.

Examples

# Generate 20 observations from a normal distribution with parameters
# mean=10 and sd=3, censor the observations less than 9,
# then create a one-sided upper tolerance interval with 90%
# coverage and 95% confidence based on these Type I left, singly
# censored data.
# (Note: the call to set.seed allows you to reproduce this example.

set.seed(250)
dat <- sort(rnorm(20, mean = 10, sd = 3))
dat
# [1] 6.406313 7.126621 8.119660 8.277216 8.426941 8.847961
# [7] 8.899098 9.357509 9.525756 9.534858 9.558567 9.847663
#[13] 10.001989 10.014964 10.841384 11.386264 11.721850 12.524300
#[19] 12.602469 12.813429

censored <- dat < 9
dat[censored] <- 9

tolIntNormCensored(dat, censored, coverage = 0.9, ti.type="upper")

#Results of Distribution Parameter Estimation
#Based on Type I Censored Data
#--------------------------------------------
#
#Assumed Distribution: Normal
#
#Censoring Side: left
#
#Censoring Level(s): 9
#
#Estimated Parameter(s): mean = 9.700962
# sd = 1.845067
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#
#Estimation Method: MLE
#
#Data: dat
#
#Censoring Variable: censored
#
#Sample Size: 20
#
#Percent Censored: 35%
#
#Assumed Sample Size: 20
#
#Tolerance Interval Coverage: 90%
#
#Coverage Type: content
#
#Tolerance Interval Method: Exact for
# Complete Data
#
#Tolerance Interval Type: upper
#
#Confidence Level: 95%
#
#Tolerance Interval: LTL = -Inf
# UTL = 13.25454

# Note: The true 90th percentile is 13.84465
#---------------------------------------------
qnorm(0.9, mean = 10, sd = 3)
# [1] 13.84465

# Compare the result using the method "gpq"
tolIntNormCensored(dat, censored, coverage = 0.9, ti.type="upper",

ti.method = "gpq", seed = 432)$interval$limits
# LTL UTL
# -Inf 13.56826

# Clean Up
#---------
rm(dat, censored)

#==========

# Example 15-1 of USEPA (2009, p. 15-10) shows how to estimate
# the mean and standard deviation using log-transformed multiply
# left-censored manganese concentration data. Here well construct a
# 95% upper tolerance limit with 90% coverage using these data.

EPA.09.Ex.15.1.manganese.df
# Sample Well Manganese.Orig.ppb Manganese.ppb Censored
# 1 1 Well.1 <5 5.0 TRUE
# 2 2 Well.1 12.1 12.1 FALSE
# 3 3 Well.1 16.9 16.9 FALSE
# ...
# 23 3 Well.5 3.3 3.3 FALSE
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# 24 4 Well.5 8.4 8.4 FALSE
# 25 5 Well.5 <2 2.0 TRUE

with(EPA.09.Ex.15.1.manganese.df,
tolIntNormCensored(log(Manganese.ppb), Censored, coverage = 0.9,

ti.type = "upper"))

# Results of Distribution Parameter Estimation
# Based on Type I Censored Data
# --------------------------------------------
#
# Assumed Distribution: Normal
#
# Censoring Side: left
#
# Censoring Level(s): 0.6931472 1.6094379
#
# Estimated Parameter(s): mean = 2.215905
# sd = 1.356291
#
# Estimation Method: MLE
#
# Data: log(Manganese.ppb)
#
# Censoring Variable: censored
#
# Sample Size: 25
#
# Percent Censored: 24%
#
# Assumed Sample Size: 25
#
# Tolerance Interval Coverage: 90%
#
# Coverage Type: content
#
# Tolerance Interval Method: Exact for
# Complete Data
#
# Tolerance Interval Type: upper
#
# Confidence Level: 95%
#
# Tolerance Interval: LTL = -Inf
# UTL = 4.708904

tolIntNormHalfWidth Half-Width of a Tolerance Interval for a Normal Distribution

Description

Compute the half-width of a tolerance interval for a normal distribution.
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Usage

tolIntNormHalfWidth(n, sigma.hat = 1, coverage = 0.95, cov.type = "content",
conf.level = 0.95, method = "wald.wolfowitz")

Arguments

n numeric vector of positive integers greater than 1 indicating the sample size
upon which the prediction interval is based. Missing (NA), undefined (NaN), and
infinite (Inf, -Inf) values are not allowed.

sigma.hat numeric vector specifying the value(s) of the estimated standard deviation(s).
The default value is sigma.hat=1.

coverage numeric vector of values between 0 and 1 indicating the desired coverage of the
tolerance interval. The default value is coverage=0.95.

cov.type character string specifying the coverage type for the tolerance interval. The
possible values are "content" (β-content; the default), and "expectation"
(β-expectation).

conf.level numeric vector of values between 0 and 1 indicating the confidence level of the
prediction interval. The default value is conf.level=0.95.

method character string specifying the method for constructing the tolerance interval.
The possible values are "exact" (the default) and "wald.wolfowitz" (the Wald-
Wolfowitz approximation).

Details

If the arguments n, sigma.hat, coverage, and conf.level are not all the same length, they are
replicated to be the same length as the length of the longest argument.

The help files for tolIntNorm and tolIntNormK give formulas for a two-sided tolerance interval
based on the sample size, the observed sample mean and sample standard deviation, and specified
confidence level and coverage. Specifically, the two-sided tolerance interval is given by:

[x̄−Ks, x̄+Ks] (1)

where x̄ denotes the sample mean:

x̄ =
1

n

n∑
i=1

xi (2)

s denotes the sample standard deviation:

s2 =
1

n− 1

n∑
i=1

(xi − x̄)2 (3)

and K denotes a constant that depends on the sample size n, the confidence level, and the coverage
(see the help file for tolIntNormK). Thus, the half-width of the tolerance interval is given by:

HW = Ks (4)

Value

numeric vector of half-widths.
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Note

See the help file for tolIntNorm.

In the course of designing a sampling program, an environmental scientist may wish to determine
the relationship between sample size, confidence level, and half-width if one of the objectives of
the sampling program is to produce tolerance intervals. The functions tolIntNormHalfWidth,
tolIntNormN, and plotTolIntNormDesign can be used to investigate these relationships for the
case of normally-distributed observations.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

See the help file for tolIntNorm.

See Also

tolIntNorm, tolIntNormK, tolIntNormN, plotTolIntNormDesign, Normal.

Examples

# Look at how the half-width of a tolerance interval increases with
# increasing coverage:

seq(0.5, 0.9, by=0.1)
#[1] 0.5 0.6 0.7 0.8 0.9

round(tolIntNormHalfWidth(n = 10, coverage = seq(0.5, 0.9, by = 0.1)), 2)
#[1] 1.17 1.45 1.79 2.21 2.84

#----------

# Look at how the half-width of a tolerance interval decreases with
# increasing sample size:

2:5
#[1] 2 3 4 5

round(tolIntNormHalfWidth(n = 2:5), 2)
#[1] 37.67 9.92 6.37 5.08

#----------

# Look at how the half-width of a tolerance interval increases with
# increasing estimated standard deviation for a fixed sample size:

seq(0.5, 2, by = 0.5)
#[1] 0.5 1.0 1.5 2.0

round(tolIntNormHalfWidth(n = 10, sigma.hat = seq(0.5, 2, by = 0.5)), 2)
#[1] 1.69 3.38 5.07 6.76

#----------
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# Look at how the half-width of a tolerance interval increases with
# increasing confidence level for a fixed sample size:

seq(0.5, 0.9, by = 0.1)
#[1] 0.5 0.6 0.7 0.8 0.9

round(tolIntNormHalfWidth(n = 5, conf = seq(0.5, 0.9, by = 0.1)), 2)
#[1] 2.34 2.58 2.89 3.33 4.15

#==========

# Example 17-3 of USEPA (2009, p. 17-17) shows how to construct a
# beta-content upper tolerance limit with 95% coverage and 95%
# confidence using chrysene data and assuming a lognormal distribution.
# The data for this example are stored in EPA.09.Ex.17.3.chrysene.df,
# which contains chrysene concentration data (ppb) found in water
# samples obtained from two background wells (Wells 1 and 2) and
# three compliance wells (Wells 3, 4, and 5). The tolerance limit
# is based on the data from the background wells.

# Here we will first take the log of the data and then estimate the
# standard deviation based on the two background wells. We will use this
# estimate of standard deviation to compute the half-widths of
# future tolerance intervals on the log-scale for various sample sizes.

head(EPA.09.Ex.17.3.chrysene.df)
# Month Well Well.type Chrysene.ppb
#1 1 Well.1 Background 19.7
#2 2 Well.1 Background 39.2
#3 3 Well.1 Background 7.8
#4 4 Well.1 Background 12.8
#5 1 Well.2 Background 10.2
#6 2 Well.2 Background 7.2

longToWide(EPA.09.Ex.17.3.chrysene.df, "Chrysene.ppb", "Month", "Well")
# Well.1 Well.2 Well.3 Well.4 Well.5
#1 19.7 10.2 68.0 26.8 47.0
#2 39.2 7.2 48.9 17.7 30.5
#3 7.8 16.1 30.1 31.9 15.0
#4 12.8 5.7 38.1 22.2 23.4

summary.stats <- summaryStats(log(Chrysene.ppb) ~ Well.type,
data = EPA.09.Ex.17.3.chrysene.df)

summary.stats
# N Mean SD Median Min Max
#Background 8 2.5086 0.6279 2.4359 1.7405 3.6687
#Compliance 12 3.4173 0.4361 3.4111 2.7081 4.2195

sigma.hat <- summary.stats["Background", "SD"]
sigma.hat
#[1] 0.6279

tolIntNormHalfWidth(n = c(4, 8, 16), sigma.hat = sigma.hat)
#[1] 3.999681 2.343160 1.822759

#==========
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# Clean up
#---------
rm(summary.stats, sigma.hat)

tolIntNormK Compute the Value of K for a Tolerance Interval for a Normal Distri-
bution

Description

Compute the value of K (the multiplier of estimated standard deviation) used to construct a toler-
ance interval based on data from a normal distribution.

Usage

tolIntNormK(n, df = n - 1, coverage = 0.95, cov.type = "content",
ti.type = "two-sided", conf.level = 0.95, method = "exact",
rel.tol = 1e-07, abs.tol = rel.tol)

Arguments

n a positive integer greater than 2 indicating the sample size upon which the toler-
ance interval is based.

df the degrees of freedom associated with the tolerance interval. The default is
df=n-1.

coverage a scalar between 0 and 1 indicating the desired coverage of the tolerance interval.
The default value is coverage=0.95.

cov.type character string specifying the coverage type for the tolerance interval. The
possible values are "content" (β-content; the default), and "expectation"
(β-expectation). See the help file for tolIntNorm for more information on the
difference between β-content and β-expectation tolerance intervals.

ti.type character string indicating what kind of tolerance interval to compute. The pos-
sible values are "two-sided" (the default), "lower", and "upper".

conf.level a scalar between 0 and 1 indicating the confidence level associated with the
tolerance interval. The default value is conf.level=0.95.

method for the case of a two-sided tolerance interval, a character string specifying the
method for constructing the tolerance interval. This argument is ignored if
ti.type="lower" or ti.type="upper". The possible values are
"exact" (the default) and "wald.wolfowitz" (the Wald-Wolfowitz approxima-
tion). See the DETAILS section for more information.

rel.tol in the case when ti.type="two-sided" and method="exact", the argument
rel.tol is passed to the function integrate. The default value is
rel.tol=1e-07.

abs.tol in the case when ti.type="two-sided" and method="exact", the argument
abs.tol is passed to the function integrate. The default value is the value of
rel.tol.
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Details

A tolerance interval for some population is an interval on the real line constructed so as to contain
100β% of the population (i.e., 100β% of all future observations), where 0 < β < 1. The quantity
100β% is called the coverage.

There are two kinds of tolerance intervals (Guttman, 1970):

• A β-content tolerance interval with confidence level 100(1 − α)% is constructed so that it
contains at least 100β% of the population (i.e., the coverage is at least 100β%) with probability
100(1− α)%, where 0 < α < 1. The quantity 100(1− α)% is called the confidence level or
confidence coefficient associated with the tolerance interval.

• A β-expectation tolerance interval is constructed so that the average coverage of the interval
is 100β%.

Note: A β-expectation tolerance interval with coverage 100β% is equivalent to a prediction interval
for one future observation with associated confidence level 100β%. Note that there is no explicit
confidence level associated with a β-expectation tolerance interval. If a β-expectation tolerance in-
terval is treated as a β-content tolerance interval, the confidence level associated with this tolerance
interval is usually around 50% (e.g., Guttman, 1970, Table 4.2, p.76).

For a normal distribution, the form of a two-sided 100(1− α)% tolerance interval is:

[x̄−Ks, x̄+Ks]

where x̄ denotes the sample mean, s denotes the sample standard deviation, and K denotes a con-
stant that depends on the sample size n, the coverage, and, for a β-content tolerance interval (but
not a β-expectation tolerance interval), the confidence level.

Similarly, the form of a one-sided lower tolerance interval is:

[x̄−Ks, ∞]

and the form of a one-sided upper tolerance interval is:

[−∞, x̄+Ks]

but K differs for one-sided versus two-sided tolerance intervals.

The Derivation of K for a β-Content Tolerance Interval
One-Sided Case

When ti.type="upper" or ti.type="lower", the constant K for a 100β% β-content tolerance
interval with associated confidence level 100(1− α)% is given by:

K = t(n− 1, 1− α, zβ
√
n)/
√
n

where t(ν, p, δ) denotes the p’th quantile of a non-central t-distribution with ν degrees of freedom
and noncentrality parameter δ (see the help file for TDist), and zp denotes the p’th quantile of a
standard normal distribution.

Two-Sided Case

When ti.type="two-sided" and method="exact", the exact formula for the constant K for a
100β% β-content tolerance interval with associated confidence level 100(1−α)% requires numer-
ical integration and has been derived by several different authors, including Odeh (1978), Eberhardt
et al. (1989), Jilek (1988), Fujino (1989), and Janiga and Miklos (2001). Specifically, for given
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values of the sample size n, degrees of freedom ν, confidence level (1 − α), and coverage β, the
constant K is the solution to the equation:√

n

2π

∫ ∞
−∞

F (x,K, ν,R) e(−nx2)/2 dx = 1− α

where F (x,K, ν,R) denotes the upper-tail area from (ν R2)/K2 to∞ of the chi-squared distribu-
tion with ν degrees of freedom, and R is the solution to the equation:

Φ(x+R)− Φ(x−R) = β

where Φ() denotes the standard normal cumulative distribuiton function.

When ti.type="two-sided" and method="wald.wolfowitz", the approximate formula due to
Wald and Wolfowitz (1946) for the constant K for a 100β% β-content tolerance interval with
associated confidence level 100(1− α)% is given by:

K ≈ r u

where r is the solution to the equation:

Φ(
1√
n

+ r)− Φ(
1√
n
− r) = β

Φ() denotes the standard normal cumulative distribuiton function, and u is given by:

u =

√
n− 1

χ2(n− 1, α)

where χ2(ν, p) denotes the p’th quantile of the chi-squared distribution with ν degrees of freedom.

The Derivation of K for a β-Expectation Tolerance Interval
As stated above, a β-expectation tolerance interval with coverage 100β% is equivalent to a predic-
tion interval for one future observation with associated confidence level 100β%. This is because the
probability that any single future observation will fall into this interval is 100β%, so the distribution
of the number of N future observations that will fall into this interval is binomial with parameters
size = N and prob = β (see the help file for Binomial). Hence the expected proportion of future
observations that will fall into this interval is 100β% and is independent of the value of N . See the
help file for predIntNormK for information on how to derive K for these intervals.

Value

The value of K, a numeric scalar used to construct tolerance intervals for a normal (Gaussian)
distribution.

Note

Tabled values of K are given in Gibbons et al. (2009), Gilbert (1987), Guttman (1970), Krish-
namoorthy and Mathew (2009), Owen (1962), Odeh and Owen (1980), and USEPA (2009).

Tolerance intervals have long been applied to quality control and life testing problems (Hahn,
1970b,c; Hahn and Meeker, 1991; Krishnamoorthy and Mathew, 2009). References that discuss tol-
erance intervals in the context of environmental monitoring include: Berthouex and Brown (2002,
Chapter 21), Gibbons et al. (2009), Millard and Neerchal (2001, Chapter 6), Singh et al. (2010b),
and USEPA (2009).
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See Also

tolIntNorm, predIntNorm, Normal, estimate.object, enorm, eqnorm, Tolerance Intervals, Pre-
diction Intervals, Estimating Distribution Parameters, Estimating Distribution Quantiles.

Examples

# Compute the value of K for a two-sided 95% beta-content
# tolerance interval with associated confidence level 95%
# given a sample size of n=20.

#----------
# Exact method

tolIntNormK(n = 20)
#[1] 2.760346

#----------
# Approximate method due to Wald and Wolfowitz (1946)

tolIntNormK(n = 20, method = "wald")
# [1] 2.751789

#--------------------------------------------------------------------

# Compute the value of K for a one-sided upper tolerance limit
# with 99% coverage and associated confidence level 90%
# given a samle size of n=20.

tolIntNormK(n = 20, ti.type = "upper", coverage = 0.99,
conf.level = 0.9)

#[1] 3.051543

#--------------------------------------------------------------------

# Example 17-3 of USEPA (2009, p. 17-17) shows how to construct a
# beta-content upper tolerance limit with 95% coverage and 95%
# confidence using chrysene data and assuming a lognormal
# distribution. The sample size is n = 8 observations from
# the two compliance wells. Here we will compute the
# multiplier for the log-transformed data.

tolIntNormK(n = 8, ti.type = "upper")
#[1] 3.187294
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tolIntNormN Sample Size for a Specified Half-Width of a Tolerance Interval for a
Normal Distribution

Description

Compute the sample size necessary to achieve a specified half-width of a tolerance interval for a
normal distribution, given the estimated standard deviation, coverage, and confidence level.

Usage

tolIntNormN(half.width, sigma.hat = 1, coverage = 0.95, cov.type = "content",
conf.level = 0.95, method = "wald.wolfowitz", round.up = TRUE, n.max = 5000,
tol = 1e-07, maxiter = 1000)

Arguments

half.width numeric vector of (positive) half-widths. Missing (NA), undefined (NaN), and
infinite (Inf, -Inf) values are not allowed.

sigma.hat numeric vector specifying the value(s) of the estimated standard deviation(s).
The default value is sigma.hat=1.

coverage numeric vector of values between 0 and 1 indicating the desired coverage of the
tolerance interval. The default value is coverage=0.95.

cov.type character string specifying the coverage type for the tolerance interval. The
possible values are "content" (β-content; the default), and "expectation"
(β-expectation).

conf.level numeric vector of values between 0 and 1 indicating the confidence level of the
prediction interval. The default value is conf.level=0.95.

method character string specifying the method for constructing the tolerance interval.
The possible values are "exact" (the default) and "wald.wolfowitz" (the Wald-
Wolfowitz approximation).

round.up logical scalar indicating whether to round up the values of the computed sample
size(s) to the next smallest integer. The default value is round.up=TRUE.

n.max positive integer greater than 1 specifying the maximum possible sample size.
The default value is n.max=5000.

tol numeric scalar indicating the tolerance to use in the uniroot search algorithm.
The default value is tol=1e-7.

maxiter positive integer indicating the maximum number of iterations to use in the uniroot
search algorithm. The default value is maxiter=1000.

Details

If the arguments half.width, sigma.hat, coverage, and conf.level are not all the same length,
they are replicated to be the same length as the length of the longest argument.

The help files for tolIntNorm and tolIntNormK give formulas for a two-sided tolerance interval
based on the sample size, the observed sample mean and sample standard deviation, and specified
confidence level and coverage. Specifically, the two-sided tolerance interval is given by:

[x̄−Ks, x̄+Ks] (1)
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where x̄ denotes the sample mean:

x̄ =
1

n

n∑
i=1

xi (2)

s denotes the sample standard deviation:

s2 =
1

n− 1

n∑
i=1

(xi − x̄)2 (3)

and K denotes a constant that depends on the sample size n, the confidence level, and the coverage
(see the help file for tolIntNormK). Thus, the half-width of the tolerance interval is given by:

HW = Ks (4)

The function tolIntNormN uses the uniroot search algorithm to determine the sample size for
specified values of the half-width, sample standard deviation, coverage, and confidence level. Note
that unlike a confidence interval, the half-width of a tolerance interval does not approach 0 as
the sample size increases.

Value

numeric vector of sample sizes.

Note

See the help file for tolIntNorm.

In the course of designing a sampling program, an environmental scientist may wish to determine
the relationship between sample size, confidence level, and half-width if one of the objectives of
the sampling program is to produce tolerance intervals. The functions tolIntNormHalfWidth,
tolIntNormN, and plotTolIntNormDesign can be used to investigate these relationships for the
case of normally-distributed observations.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

See the help file for tolIntNorm.

See Also

tolIntNorm, tolIntNormK, tolIntNormHalfWidth, plotTolIntNormDesign, Normal.

Examples

# Look at how the required sample size for a tolerance interval increases
# with increasing coverage:

seq(0.5, 0.9, by = 0.1)
#[1] 0.5 0.6 0.7 0.8 0.9

tolIntNormN(half.width = 3, coverage = seq(0.5, 0.9, by = 0.1))
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#[1] 4 4 5 6 9

#----------

# Look at how the required sample size for a tolerance interval decreases
# with increasing half-width:

3:6
#[1] 3 4 5 6

tolIntNormN(half.width = 3:6)
#[1] 15 8 6 5

tolIntNormN(3:6, round = FALSE)
#[1] 14.199735 7.022572 5.092374 4.214371

#----------

# Look at how the required sample size for a tolerance interval increases
# with increasing estimated standard deviation for a fixed half-width:

seq(0.5, 2, by = 0.5)
#[1] 0.5 1.0 1.5 2.0

tolIntNormN(half.width = 4, sigma.hat = seq(0.5, 2, by = 0.5))
#[1] 4 8 24 3437

#----------

# Look at how the required sample size for a tolerance interval increases
# with increasing confidence level for a fixed half-width:

seq(0.5, 0.9, by = 0.1)
#[1] 0.5 0.6 0.7 0.8 0.9

tolIntNormN(half.width = 3, conf.level = seq(0.5, 0.9, by = 0.1))
#[1] 3 4 5 7 11

#==========

# Example 17-3 of USEPA (2009, p. 17-17) shows how to construct a
# beta-content upper tolerance limit with 95% coverage and 95%
# confidence using chrysene data and assuming a lognormal distribution.
# The data for this example are stored in EPA.09.Ex.17.3.chrysene.df,
# which contains chrysene concentration data (ppb) found in water
# samples obtained from two background wells (Wells 1 and 2) and
# three compliance wells (Wells 3, 4, and 5). The tolerance limit
# is based on the data from the background wells.

# Here we will first take the log of the data and then estimate the
# standard deviation based on the two background wells. We will use this
# estimate of standard deviation to compute required sample sizes for
# various half-widths on the log-scale.

head(EPA.09.Ex.17.3.chrysene.df)
# Month Well Well.type Chrysene.ppb
#1 1 Well.1 Background 19.7
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#2 2 Well.1 Background 39.2
#3 3 Well.1 Background 7.8
#4 4 Well.1 Background 12.8
#5 1 Well.2 Background 10.2
#6 2 Well.2 Background 7.2

longToWide(EPA.09.Ex.17.3.chrysene.df, "Chrysene.ppb", "Month", "Well")
# Well.1 Well.2 Well.3 Well.4 Well.5
#1 19.7 10.2 68.0 26.8 47.0
#2 39.2 7.2 48.9 17.7 30.5
#3 7.8 16.1 30.1 31.9 15.0
#4 12.8 5.7 38.1 22.2 23.4

summary.stats <- summaryStats(log(Chrysene.ppb) ~ Well.type,
data = EPA.09.Ex.17.3.chrysene.df)

summary.stats
# N Mean SD Median Min Max
#Background 8 2.5086 0.6279 2.4359 1.7405 3.6687
#Compliance 12 3.4173 0.4361 3.4111 2.7081 4.2195

sigma.hat <- summary.stats["Background", "SD"]
sigma.hat
#[1] 0.6279

tolIntNormN(half.width = c(4, 2, 1), sigma.hat = sigma.hat)
#[1] 4 12 NA
#Warning message:
#In tolIntNormN(half.width = c(4, 2, 1), sigma.hat = sigma.hat) :
# Value of half.width is too smallfor element3.
# Try increasing the value of n.max.

# NOTE: We cannot achieve a half-width of 1 for the given value of
# sigma.hat for a tolerance interval with 95% coverage and
# 95% confidence. The default value of n.max is 5000, but in fact,
# even with a million observations the half width is greater than 1.

tolIntNormHalfWidth(n = 1e6, sigma.hat = sigma.hat)
#[1] 1.232095

#==========

# Clean up
#---------
rm(summary.stats, sigma.hat)

tolIntNpar Nonparametric Tolerance Interval for a Continuous Distribution

Description

Construct a β-content or β-expectation tolerance interval nonparametrically without making any
assumptions about the form of the distribution except that it is continuous.
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Usage

tolIntNpar(x, coverage, conf.level, cov.type = "content",
ltl.rank = ifelse(ti.type == "upper", 0, 1),
n.plus.one.minus.utl.rank = ifelse(ti.type == "lower", 0, 1),
lb = -Inf, ub = Inf, ti.type = "two-sided")

Arguments

x numeric vector of observations. Missing (NA), undefined (NaN), and infinite (Inf,
-Inf) values are allowed but will be removed.

coverage a scalar between 0 and 1 indicating the desired coverage of the β-content toler-
ance interval. The default value is coverage=0.95. If cov.type="content",
you must supply a value for coverage or a value for conf.level, but not both.
If cov.type="expectation", this argument is ignored.

conf.level a scalar between 0 and 1 indicating the confidence level associated with the β-
content tolerance interval. The default value is conf.level=0.95. If cov.type="content",
you must supply a value for coverage or a value for conf.level, but not both.
If cov.type="expectation", this argument is ignored.

cov.type character string specifying the coverage type for the tolerance interval. The
possible values are "content" (β-content; the default), and "expectation"
(β-expectation). See the DETAILS section for more information.

ltl.rank positive integer indicating the rank of the order statistic to use for the lower
bound of the tolerance interval. If ti.type="two-sided" or ti.type="lower",
the default value is ltl.rank=1 (implying the minimum value of x is used as
the lower bound of the tolerance interval). If ti.type="upper", this argument
is set equal to 0 and the value of lb is used as the lower bound of the tolerance
interval.

n.plus.one.minus.utl.rank

positive integer related to the rank of the order statistic to use for the upper
bound of the toleracne interval. A value of n.plus.one.minus.utl.rank=1
(the default) means use the first largest value of x, and in general a value of
n.plus.one.minus.utl.rank=imeans use the i’th largest value. If ti.type="lower",
this argument is set equal to 0 and the value of ub is used as the upper bound of
the tolerance interval.

lb, ub scalars indicating lower and upper bounds on the distribution. By default, lb=-Inf
and ub=Inf. If you are constructing a tolerance interval for a distribution that
you know has a lower bound other than -Inf (e.g., 0), set lb to this value.
Similarly, if you know the distribution has an upper bound other than Inf,
set ub to this value. The argument lb is ignored if ti.type="two-sided" or
ti.type="lower". The argument ub is ignored if ti.type="two-sided" or
ti.type="upper".

ti.type character string indicating what kind of tolerance interval to compute. The pos-
sible values are "two-sided" (the default), "lower", and "upper".

Details

A tolerance interval for some population is an interval on the real line constructed so as to contain
100β% of the population (i.e., 100β% of all future observations), where 0 < β < 1. The quantity
100β% is called the coverage.

There are two kinds of tolerance intervals (Guttman, 1970):
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• A β-content tolerance interval with confidence level 100(1 − α)% is constructed so that it
contains at least 100β% of the population (i.e., the coverage is at least 100β%) with probability
100(1− α)%, where 0 < α < 1. The quantity 100(1− α)% is called the confidence level or
confidence coefficient associated with the tolerance interval.

• A β-expectation tolerance interval is constructed so that the average coverage of the interval
is 100β%.

Note: A β-expectation tolerance interval with coverage 100β% is equivalent to a prediction interval
for one future observation with associated confidence level 100β%. Note that there is no explicit
confidence level associated with a β-expectation tolerance interval. If a β-expectation tolerance in-
terval is treated as a β-content tolerance interval, the confidence level associated with this tolerance
interval is usually around 50% (e.g., Guttman, 1970, Table 4.2, p.76).

The Form of a Nonparametric Tolerance Interval
Let x denote a random sample of n independent observations from some continuous distribution
and let x(i) denote the i’th order statistic in x. A two-sided nonparametric tolerance interval is
constructed as:

[x(u), x(v)] (1)

where u and v are positive integers between 1 and n, and u < v. That is, u denotes the rank of the
lower tolerance limit, and v denotes the rank of the upper tolerance limit. To make it easier to write
some equations later on, we can also write the tolerance interval (1) in a slightly different way as:

[x(u), x(n+1−w)] (2)

where
w = n+ 1− v (3)

so that w is a positive integer between 1 and n − 1, and u < n + 1 − w. In terms of the argu-
ments to the function tolIntNpar, the argument ltl.rank corresponds to u, and the argument
n.plus.one.minus.utl.rank corresponds to w.

If we allow u = 0 and w = 0 and define lower and upper bounds as:

x(0) = lb (4)

x(n+1) = ub (5)

then equation (2) above can also represent a one-sided lower or one-sided upper tolerance interval
as well. That is, a one-sided lower nonparametric tolerance interval is constructed as:

[x(u), x(n+1)] = [x(u), ub] (6)

and a one-sided upper nonparametric tolerance interval is constructed as:

[x(0), x(v)] = [lb, x(v)] (7)

Usually, lb = −∞ or lb = 0 and ub =∞.

Let C be a random variable denoting the coverage of the above nonparametric tolerance inter-
vals. Wilks (1941) showed that the distribution of C follows a beta distribution with parameters
shape1=v − u and shape2=w + u when the unknown distribution is continuous.

Computations for a β-Content Tolerance Interval
For a β-content tolerance interval, if the coverageC = β is specified, then the associated confidence
level (1− α)100% is computed as:

1− α = 1− F (β, v − u,w + u) (8)
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where F (y, δ, γ) denotes the cumulative distribution function of a beta random variable with pa-
rameters shape1=δ and shape2=γ evaluated at y.

Similarly, if the confidence level associated with the tolerance interval is specified as (1−α)100%,
then the coverage C = β is computed as:

β = B(α, v − u,w + u) (9)

where B(p, δ, γ) denotes the p’th quantile of a beta distribution with parameters shape1=δ and
shape2=γ.

Computations for a β-Expectation Tolerance Interval
For a β-expectation tolerance interval, the expected coverage is simply the mean of a beta random
variable with parameters shape1=v − u and shape2=w + u, which is given by:

E(C) =
v − u
n+ 1

(10)

As stated above, a β-expectation tolerance interval with coverage β100% is equivalent to a predic-
tion interval for one future observation with associated confidence level β100%. This is because the
probability that any single future observation will fall into this interval is β100%, so the distribution
of the number of N future observations that will fall into this interval is binomial with parameters
size=N and prob=β. Hence the expected proportion of future observations that fall into this in-
terval is β100% and is independent of the value of N . See the help file for predIntNpar for more
information on constructing a nonparametric prediction interval.

Value

A list of class "estimate" containing the estimated parameters, the tolerance interval, and other
information. See estimate.object for details.

Note

Tolerance intervals have long been applied to quality control and life testing problems (Hahn,
1970b,c; Hahn and Meeker, 1991; Krishnamoorthy and Mathew, 2009). References that discuss tol-
erance intervals in the context of environmental monitoring include: Berthouex and Brown (2002,
Chapter 21), Gibbons et al. (2009), Millard and Neerchal (2001, Chapter 6), Singh et al. (2010b),
and USEPA (2009).

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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See Also

eqnpar, estimate.object, tolIntNparN, Tolerance Intervals, Estimating Distribution Parame-
ters, Estimating Distribution Quantiles.

Examples

# Generate 20 observations from a \link[=LognormalMixAlt]{lognormal mixture distribution}
# with parameters mean1=1, cv1=0.5, mean2=5, cv2=1, and p.mix=0.1.
# The exact two-sided interval that contains 90% of this distribution is given by:
# [0.682312, 13.32052]. Use tolIntNpar to construct a two-sided 90%
# \eqn{\beta}-content tolerance interval. Note that the associated confidence level
# is only 61%. A larger sample size is required to obtain a larger confidence
# level (see the help file for \link{tolIntNparN}).
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(23)
dat <- rlnormMixAlt(20, 1, 0.5, 5, 1, 0.1)
tolIntNpar(dat, coverage = 0.9)

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: None
#
#Data: dat
#
#Sample Size: 20
#
#Tolerance Interval Coverage: 90%
#
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#Coverage Type: content
#
#Tolerance Interval Method: Exact
#
#Tolerance Interval Type: two-sided
#
#Confidence Level: 60.8253%
#
#Tolerance Limit Rank(s): 1 20
#
#Tolerance Interval: LTL = 0.5035035
# UTL = 9.9504662

#----------

# Clean up
rm(dat)

#----------

# Reproduce Example 17-4 on page 17-21 of USEPA (2009). This example uses
# copper concentrations (ppb) from 3 background wells to set an upper
# limit for 2 compliance wells. The maximum value from the 3 wells is set
# to the 95% confidence upper tolerance limit, and we need to determine the
# coverage of this tolerance interval. The data are stored in EPA.92c.copper2.df.
# Note that even though these data are Type I left singly censored, it is still
# possible to compute an upper tolerance interval using any of the uncensored
# observations as the upper limit.

EPA.92c.copper2.df
# Copper.orig Copper Censored Month Well Well.type
#1 <5 5.0 TRUE 1 1 Background
#2 <5 5.0 TRUE 2 1 Background
#3 7.5 7.5 FALSE 3 1 Background
#...
#9 9.2 9.2 FALSE 1 2 Background
#10 <5 5.0 TRUE 2 2 Background
#11 <5 5.0 TRUE 3 2 Background
#...
#17 <5 5.0 TRUE 1 3 Background
#18 5.4 5.4 FALSE 2 3 Background
#19 6.7 6.7 FALSE 3 3 Background
#...
#29 6.2 6.2 FALSE 5 4 Compliance
#30 <5 5.0 TRUE 6 4 Compliance
#31 7.8 7.8 FALSE 7 4 Compliance
#...
#38 <5 5.0 TRUE 6 5 Compliance
#39 5.6 5.6 FALSE 7 5 Compliance
#40 <5 5.0 TRUE 8 5 Compliance

with(EPA.92c.copper2.df,
tolIntNpar(Copper[Well.type=="Background"],

conf.level = 0.95, lb = 0, ti.type = "upper"))

#Results of Distribution Parameter Estimation
#--------------------------------------------
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#
#Assumed Distribution: None
#
#Data: Copper[Well.type == "Background"]
#
#Sample Size: 24
#
#Tolerance Interval Coverage: 88.26538%
#
#Coverage Type: content
#
#Tolerance Interval Method: Exact
#
#Tolerance Interval Type: upper
#
#Confidence Level: 95%
#
#Tolerance Limit Rank(s): 24
#
#Tolerance Interval: LTL = 0.0
# UTL = 9.2

#----------

# Repeat the last example, except compute an upper
# \eqn{\beta}-expectation tolerance interval:

with(EPA.92c.copper2.df,
tolIntNpar(Copper[Well.type=="Background"],

cov.type = "expectation", lb = 0, ti.type = "upper"))

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: None
#
#Data: Copper[Well.type == "Background"]
#
#Sample Size: 24
#
#Tolerance Interval Coverage: 96%
#
#Coverage Type: expectation
#
#Tolerance Interval Method: Exact
#
#Tolerance Interval Type: upper
#
#Tolerance Limit Rank(s): 24
#
#Tolerance Interval: LTL = 0.0
# UTL = 9.2

tolIntNparConfLevel Confidence Level for Nonparametric Tolerance Interval for Continu-
ous Distribution
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Description

Compute the confidence level associated with a nonparametric β-content tolerance interval for a
continuous distribution given the sample size, coverage, and ranks of the order statistics used for
the interval.

Usage

tolIntNparConfLevel(n, coverage = 0.95, ltl.rank = ifelse(ti.type == "upper", 0, 1),
n.plus.one.minus.utl.rank = ifelse(ti.type == "lower", 0, 1), ti.type = "two.sided")

Arguments

n vector of positive integers specifying the sample sizes. Missing (NA), undefined
(NaN), and infinite (Inf, -Inf) values are not allowed.

coverage numeric vector of values between 0 and 1 indicating the desired coverage of the
β-content tolerance interval.

ltl.rank vector of positive integers indicating the rank of the order statistic to use for the
lower bound of the tolerance interval. If ti.type="two-sided" or ti.type="lower",
the default value is ltl.rank=1 (implying the minimum value of x is used as
the lower bound of the tolerance interval). If ti.type="upper", this argument
is set equal to 0.

n.plus.one.minus.utl.rank

vector of positive integers related to the rank of the order statistic to use for the
upper bound of the tolerance interval. A value of n.plus.one.minus.utl.rank=1
(the default) means use the first largest value, and in general a value of n.plus.one.minus.utl.rank=i
means use the i’th largest value. If ti.type="lower", this argument is set equal
to 0.

ti.type character string indicating what kind of tolerance interval to compute. The pos-
sible values are "two-sided" (the default), "lower", and "upper".

Details

If the arguments n, coverage, ltl.rank, and n.plus.one.minus.utl.rank are not all the same
length, they are replicated to be the same length as the length of the longest argument.

The help file for tolIntNpar explains how nonparametric β-content tolerance intervals are con-
structed and how the confidence level associated with the tolerance interval is computed based on
specified values for the sample size, the coverage, and the ranks of the order statistics used for the
bounds of the tolerance interval.

Value

vector of values between 0 and 1 indicating the confidence level associated with the specified non-
parametric tolerance interval.

Note

See the help file for tolIntNpar.

In the course of designing a sampling program, an environmental scientist may wish to deter-
mine the relationship between sample size, coverage, and confidence level if one of the objec-
tives of the sampling program is to produce tolerance intervals. The functions tolIntNparN,
tolIntNparCoverage, tolIntNparConfLevel, and plotTolIntNparDesign can be used to in-
vestigate these relationships for constructing nonparametric tolerance intervals.
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Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

See the help file for tolIntNpar.

See Also

tolIntNpar, tolIntNparN, tolIntNparCoverage, plotTolIntNparDesign.

Examples

# Look at how the confidence level of a nonparametric tolerance interval increases with
# increasing sample size:

seq(10, 60, by=10)
#[1] 10 20 30 40 50 60

round(tolIntNparConfLevel(n = seq(10, 60, by = 10)), 2)
#[1] 0.09 0.26 0.45 0.60 0.72 0.81

#----------

# Look at how the confidence level of a nonparametric tolerance interval decreases with
# increasing coverage:

seq(0.5, 0.9, by = 0.1)
#[1] 0.5 0.6 0.7 0.8 0.9

round(tolIntNparConfLevel(n = 10, coverage = seq(0.5, 0.9, by = 0.1)), 2)
#[1] 0.99 0.95 0.85 0.62 0.26

#----------

# Look at how the confidence level of a nonparametric tolerance interval decreases with the
# rank of the lower tolerance limit:

round(tolIntNparConfLevel(n = 60, ltl.rank = 1:5), 2)
#[1] 0.81 0.58 0.35 0.18 0.08

#==========

# Example 17-4 on page 17-21 of USEPA (2009) uses copper concentrations (ppb) from 3
# background wells to set an upper limit for 2 compliance wells. There are 6 observations
# per well, and the maximum value from the 3 wells is set to the 95% confidence upper
# tolerance limit, and we need to determine the coverage of this tolerance interval.

tolIntNparCoverage(n = 24, conf.level = 0.95, ti.type = "upper")
#[1] 0.8826538

# Here we will modify the example and determine the confidence level of the tolerance
# interval when we set the coverage to 95%.

tolIntNparConfLevel(n = 24, coverage = 0.95, ti.type = "upper")
# [1] 0.708011
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tolIntNparCoverage Coverage for Nonparametric Tolerance Interval for Continuous Dis-
tribution

Description

Compute the coverage associated with a nonparametric tolerance interval for a continuous distribu-
tion given the sample size, confidence level, coverage type (β-content versus β-expectation), and
ranks of the order statistics used for the interval.

Usage

tolIntNparCoverage(n, conf.level = 0.95, cov.type = "content",
ltl.rank = ifelse(ti.type == "upper", 0, 1),
n.plus.one.minus.utl.rank = ifelse(ti.type == "lower", 0, 1), ti.type = "two.sided")

Arguments

n vector of positive integers specifying the sample sizes. Missing (NA), undefined
(NaN), and infinite (Inf, -Inf) values are not allowed.

conf.level numeric vector of values between 0 and 1 indicating the confidence level of the
tolerance interval.

cov.type character string specifying the coverage type for the tolerance interval. The
possible values are "content" (β-content; the default), and "expectation"
(β-expectation).

ltl.rank vector of positive integers indicating the rank of the order statistic to use for the
lower bound of the tolerance interval. If ti.type="two-sided" or ti.type="lower",
the default value is ltl.rank=1 (implying the minimum value of x is used as
the lower bound of the tolerance interval). If ti.type="upper", this argument
is set equal to 0.

n.plus.one.minus.utl.rank

vector of positive integers related to the rank of the order statistic to use for the
upper bound of the tolerance interval. A value of n.plus.one.minus.utl.rank=1
(the default) means use the first largest value, and in general a value of n.plus.one.minus.utl.rank=i
means use the i’th largest value. If ti.type="lower", this argument is set equal
to 0.

ti.type character string indicating what kind of tolerance interval to compute. The pos-
sible values are "two-sided" (the default), "lower", and "upper".

Details

If the arguments n, conf.level, ltl.rank, and n.plus.one.minus.utl.rank are not all the same
length, they are replicated to be the same length as the length of the longest argument.

The help file for tolIntNpar explains how nonparametric β-content tolerance intervals are con-
structed and how the coverage associated with the tolerance interval is computed based on specified
values for the sample size, the confidence level, and the ranks of the order statistics used for the
bounds of the tolerance interval.
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Value

vector of values between 0 and 1 indicating the coverage associated with the specified nonparamet-
ric tolerance interval.

Note

See the help file for tolIntNpar.

In the course of designing a sampling program, an environmental scientist may wish to deter-
mine the relationship between sample size, coverage, and confidence level if one of the objec-
tives of the sampling program is to produce tolerance intervals. The functions tolIntNparN,
tolIntNparConfLevel, tolIntNparCoverage, and plotTolIntNparDesign can be used to in-
vestigate these relationships for constructing nonparametric tolerance intervals.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

See the help file for tolIntNpar.

See Also

tolIntNpar, tolIntNparN, tolIntNparConfLevel, plotTolIntNparDesign.

Examples

# Look at how the coverage of a nonparametric tolerance interval increases with
# increasing sample size:

seq(10, 60, by=10)
#[1] 10 20 30 40 50 60

round(tolIntNparCoverage(n = seq(10, 60, by = 10)), 2)
#[1] 0.61 0.78 0.85 0.89 0.91 0.92

#---------

# Look at how the coverage of a nonparametric tolerance interval decreases with
# increasing confidence level:

seq(0.5, 0.9, by=0.1)
#[1] 0.5 0.6 0.7 0.8 0.9

round(tolIntNparCoverage(n = 10, conf.level = seq(0.5, 0.9, by = 0.1)), 2)
#[1] 0.84 0.81 0.77 0.73 0.66

#----------

# Look at how the coverage of a nonparametric tolerance interval decreases with
# the rank of the lower tolerance limit:

round(tolIntNparCoverage(n = 60, ltl.rank = 1:5), 2)
#[1] 0.92 0.90 0.88 0.85 0.83
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#==========

# Example 17-4 on page 17-21 of USEPA (2009) uses copper concentrations (ppb) from 3
# background wells to set an upper limit for 2 compliance wells. The maximum value from
# the 3 wells is set to the 95% confidence upper tolerance limit, and we need to
# determine the coverage of this tolerance interval.

tolIntNparCoverage(n = 24, conf.level = 0.95, ti.type = "upper")
#[1] 0.8826538

tolIntNparN Sample Size for Nonparametric Tolerance Interval for Continuous
Distribution

Description

Compute the sample size necessary for a nonparametric tolerance interval (for a continuous dis-
tribution) with a specified coverage and, in the case of a β-content tolerance interval, a specified
confidence level, given the ranks of the order statistics used for the interval.

Usage

tolIntNparN(coverage = 0.95, conf.level = 0.95, cov.type = "content",
ltl.rank = ifelse(ti.type == "upper", 0, 1),
n.plus.one.minus.utl.rank = ifelse(ti.type == "lower", 0, 1),
ti.type = "two.sided")

Arguments

coverage numeric vector of values between 0 and 1 indicating the desired coverage of the
tolerance interval.

conf.level numeric vector of values between 0 and 1 indicating the confidence level of the
tolerance interval.

cov.type character string specifying the coverage type for the tolerance interval. The
possible values are "content" (β-content; the default), and "expectation"
(β-expectation).

ltl.rank vector of positive integers indicating the rank of the order statistic to use for the
lower bound of the tolerance interval. If ti.type="two-sided" or ti.type="lower",
the default value is ltl.rank=1 (implying the minimum value of x is used as
the lower bound of the tolerance interval). If ti.type="upper", this argument
is set equal to 0.

n.plus.one.minus.utl.rank

vector of positive integers related to the rank of the order statistic to use for the
upper bound of the tolerance interval. A value of n.plus.one.minus.utl.rank=1
(the default) means use the first largest value, and in general a value of n.plus.one.minus.utl.rank=i
means use the i’th largest value. If ti.type="lower", this argument is set equal
to 0.

ti.type character string indicating what kind of tolerance interval to compute. The pos-
sible values are "two-sided" (the default), "lower", and "upper".
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Details

If the arguments coverage, conf.level, ltl.rank, and n.plus.one.minus.utl.rank are not all
the same length, they are replicated to be the same length as the length of the longest argument.

The help file for tolIntNpar explains how nonparametric tolerance intervals are constructed.

Computing Required Sample Size for a β-Content Tolerance Interval (cov.type="content")
For a β-content tolerance interval, if the coverageC = β is specified, then the associated confidence
level (1− α)100% is computed as:

1− α = 1− F (β, v − u,w + u) (1)

where F (y, δ, γ) denotes the cumulative distribution function of a beta random variable with pa-
rameters shape1=δ and shape2=γ evaluated at y. The value of 1−α is determined by the argument
conf.level. The value of β is determined by the argument coverage. The value of u is determined
by the argument ltl.rank. The value ofw is determined by the argument n.plus.one.minus.utl.rank.
Once these values have been determined, the above equation can be solved implicitly for n, since

v = n+ 1− w (2)

Computing Required Sample Size for a β-Expectation Tolerance Interval (cov.type="expectation")
For a β-expectation tolerance interval, the expected coverage is simply the mean of a beta random
variable with parameters shape1=v − u and shape2=w + u, which is given by:

E(C) =
v − u
n+ 1

(3)

or, using Equation (2) above, we can re-write the formula for the expected coverage as:

E(C) =
n+ 1− w − u

n+ 1
= 1− u+ w

n+ 1
(4)

Thus, for user-specified values of u (ltl.rank), w (n.plus.one.minus.utl.rank), and expected
coverage, the required sample size is computed as:

n = Ceiling{[ u+ w

1− E(C)
]− 1} (5)

where Ceiling(x) denotes the smallest integer greater than or equal to x. (See the R help file for
ceiling).

Value

A vector of positive integers indicating the required sample size(s) for the specified nonparametric
tolerance interval(s).

Note

See the help file for tolIntNpar.

In the course of designing a sampling program, an environmental scientist may wish to deter-
mine the relationship between sample size, coverage, and confidence level if one of the objec-
tives of the sampling program is to produce tolerance intervals. The functions tolIntNparN,
tolIntNparCoverage, tolIntNparConfLevel, and plotTolIntNparDesign can be used to in-
vestigate these relationships for constructing nonparametric tolerance intervals.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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References

See the help file for tolIntNpar.

See Also

tolIntNpar, tolIntNparConfLevel, tolIntNparCoverage, plotTolIntNparDesign.

Examples

# Look at how the required sample size for a nonparametric tolerance interval increases
# with increasing confidence level:

seq(0.5, 0.9, by = 0.1)
#[1] 0.5 0.6 0.7 0.8 0.9

tolIntNparN(conf.level = seq(0.5, 0.9, by = 0.1))
#[1] 34 40 49 59 77

#----------

# Look at how the required sample size for a nonparametric tolerance interval increases
# with increasing coverage:

tolIntNparN(coverage = seq(0.5, 0.9, by = 0.1))
#[1] 8 10 14 22 46

#----------

# Look at how the required sample size for a nonparametric tolerance interval increases
# with the rank of the lower tolerance limit:

tolIntNparN(ltl.rank = 1:5)
#[1] 93 124 153 181 208

#==========

# Example 17-4 on page 17-21 of USEPA (2009) uses copper concentrations (ppb) from 3
# background wells to set an upper limit for 2 compliance wells. The maximum value from
# the 3 wells is set to the 95% confidence upper tolerance limit, and we need to
# determine the coverage of this tolerance interval.

tolIntNparCoverage(n = 24, conf.level = 0.95, ti.type = "upper")
#[1] 0.8826538

# Here we will modify the example and determine the sample size required to produce
# a tolerance interval with 95% confidence level AND 95% coverage.

tolIntNparN(coverage = 0.95, conf.level = 0.95, ti.type = "upper")
#[1] 59

tolIntPois Tolerance Interval for a Poisson Distribution
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Description

Construct a β-content or β-expectation tolerance interval for a Poisson distribution.

Usage

tolIntPois(x, coverage = 0.95, cov.type = "content", ti.type = "two-sided",
conf.level = 0.95)

Arguments

x numeric vector of observations, or an object resulting from a call to an estimat-
ing function that assumes a Poisson distribution (i.e., epois or epoisCensored).
If cov.type="content" then x must be a numeric vector. If x is a numeric vec-
tor, missing (NA), undefined (NaN), and infinite (Inf, -Inf) values are allowed
but will be removed.

coverage a scalar between 0 and 1 indicating the desired coverage of the tolerance inter-
val. The default value is coverage=0.95. If cov.type="expectation", this
argument is ignored.

cov.type character string specifying the coverage type for the tolerance interval. The
possible values are "content" (β-content; the default), and "expectation"
(β-expectation). See the DETAILS section for more information.

ti.type character string indicating what kind of tolerance interval to compute. The pos-
sible values are "two-sided" (the default), "lower", and "upper".

conf.level a scalar between 0 and 1 indicating the confidence level associated with the
tolerance interval. The default value is conf.level=0.95.

Details

If x contains any missing (NA), undefined (NaN) or infinite (Inf, -Inf) values, they will be removed
prior to performing the estimation.

A tolerance interval for some population is an interval on the real line constructed so as to contain
100β% of the population (i.e., 100β% of all future observations), where 0 < β < 1. The quantity
100β% is called the coverage.

There are two kinds of tolerance intervals (Guttman, 1970):

• A β-content tolerance interval with confidence level 100(1 − α)% is constructed so that it
contains at least 100β% of the population (i.e., the coverage is at least 100β%) with probability
100(1− α)%, where 0 < α < 1. The quantity 100(1− α)% is called the confidence level or
confidence coefficient associated with the tolerance interval.

• A β-expectation tolerance interval is constructed so that the average coverage of the interval
is 100β%.

Note: A β-expectation tolerance interval with coverage 100β% is equivalent to a prediction interval
for one future observation with associated confidence level 100β%. Note that there is no explicit
confidence level associated with a β-expectation tolerance interval. If a β-expectation tolerance in-
terval is treated as a β-content tolerance interval, the confidence level associated with this tolerance
interval is usually around 50% (e.g., Guttman, 1970, Table 4.2, p.76).

Because of the discrete nature of the Poisson distribution, even true tolerance intervals (tolerance
intervals based on the true value of λ) will usually not contain exactly β% of the population. For
example, for the Poisson distribution with parameter lambda=2, the interval [0, 4] contains 94.7%
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of this distribution and the interval [0, 5] contains 98.3% of this distribution. Thus, no interval can
contain exactly 95% of this distribution.

β-Content Tolerance Intervals for a Poisson Distribution
Zacks (1970) showed that for monotone likelihood ratio (MLR) families of discrete distributions, a
uniformly most accurate upper β100% β-content tolerance interval with associated confidence level
(1 − α)100% is constructed by finding the upper (1 − α)100% confidence limit for the parameter
associated with the distribution, and then computing the β’th quantile of the distribution assuming
the true value of the parameter is equal to the upper confidence limit. This idea can be extended to
one-sided lower and two-sided tolerance limits.

It can be shown that all distributions that are one parameter exponential families have the MLR
property, and the Poisson distribution is a one-parameter exponential family, so the method of Zacks
(1970) can be applied to a Poisson distribution.

Let X denote a Poisson random variable with parameter lambda=λ. Let xp|λ denote the p’th quan-
tile of this distribution. That is,

Pr(X < xp|λ) ≤ p ≤ Pr(X ≤ xp|λ) (1)

Note that due to the discrete nature of the Poisson distribution, there will be several values of p
associated with one value of X . For example, for λ = 2, the value 1 is the p’th quantile for any
value of p between 0.140 and 0.406.

Let x denote a vector of n observations from a Poisson distribution with parameter lambda=λ.
When ti.type="upper", the first step is to compute the one-sided upper (1− α)100% confidence
limit for λ based on the observations x (see the help file for epois). Denote this upper confidence
limit by UCL. The one-sided upper β100% tolerance limit is then given by:

[0, xβ|λ=UCL] (2)

Similarly, when ti.type="lower", the first step is to compute the one-sided lower (1 − α)100%
confidence limit for λ based on the observations x. Denote this lower confidence limit by LCL.
The one-sided lower β100% tolerance limit is then given by:

[x1−β|λ=LCL,∞] (3)

Finally, when ti.type="two-sided", the first step is to compute the two-sided (1 − α)100%
confidence limits for λ based on the observations x. Denote these confidence limits by LCL and
UCL. The two-sided β100% tolerance limit is then given by:

[x 1−β
2 |λ=LCL, x 1+β

2 |λ=UCL] (4)

Note that the function tolIntPois uses the exact confidence limits for λwhen computing β-content
tolerance limits (see epois).

β-Expectation Tolerance Intervals for a Poisson Distribution
As stated above, a β-expectation tolerance interval with coverage β100% is equivalent to a predic-
tion interval for one future observation with associated confidence level β100%. This is because
the probability that any single future observation will fall into this interval is β100%, so the dis-
tribution of the number of N future observations that will fall into this interval is binomial with
parameters size=N and prob=β. Hence the expected proportion of future observations that fall
into this interval is β100% and is independent of the value of N . See the help file for predIntPois
for information on how these intervals are constructed.
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Value

If x is a numeric vector, tolIntPois returns a list of class "estimate" containing the estimated
parameters, a component called interval containing the tolerance interval information, and other
information. See estimate.object for details.

If x is the result of calling an estimation function, tolIntPois returns a list whose class is the same
as x. The list contains the same components as x. If x already has a component called interval,
this component is replaced with the tolerance interval information.

Note

Tolerance intervals have long been applied to quality control and life testing problems (Hahn,
1970b,c; Hahn and Meeker, 1991; Krishnamoorthy and Mathew, 2009). References that discuss tol-
erance intervals in the context of environmental monitoring include: Berthouex and Brown (2002,
Chapter 21), Gibbons et al. (2009), Millard and Neerchal (2001, Chapter 6), Singh et al. (2010b),
and USEPA (2009).

Gibbons (1987b) used the Poisson distribution to model the number of detected compounds per scan
of the 32 volatile organic priority pollutants (VOC), and also to model the distribution of chemical
concentration (in ppb). He explained the derivation of a one-sided upper β-content tolerance limit
for a Poisson distribution based on the work of Zacks (1970) using the Pearson-Hartley approxima-
tion to the confidence limits for the mean parameter λ (see the help file for epois). Note that there
are several typographical errors in the derivation and examples on page 575 of Gibbons (1987b)
because there is confusion between where the value of β (the coverage) should be and where the
value of 1 − α (the confidence level) should be. Gibbons et al. (2009, pp.103-104) gives correct
formulas.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References
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See Also

Poisson, epois, eqpois, estimate.object, Tolerance Intervals, Estimating Distribution Parame-
ters, Estimating Distribution Quantiles.

Examples

# Generate 20 observations from a Poisson distribution with parameter
# lambda=2. The interval [0, 4] contains 94.7% of this distribution and
# the interval [0,5] contains 98.3% of this distribution. Thus, because
# of the discrete nature of the Poisson distribution, no interval contains
# exactly 95% of this distribution. Use tolIntPois to estimate the mean
# parameter of the true distribution, and construct a one-sided upper 95%
# beta-content tolerance interval with associated confidence level 90%.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(250)
dat <- rpois(20, 2)
tolIntPois(dat, conf.level = 0.9)

#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Poisson
#
#Estimated Parameter(s): lambda = 1.8
#
#Estimation Method: mle/mme/mvue
#
#Data: dat
#
#Sample Size: 20
#
#Tolerance Interval Coverage: 95%
#
#Coverage Type: content
#
#Tolerance Interval Method: Zacks
#
#Tolerance Interval Type: two-sided
#
#Confidence Level: 90%
#
#Tolerance Interval: LTL = 0
# UTL = 6

#------

# Clean up
rm(dat)

Total.P.df Total Phosphorus Data from Chesapeake Bay



Triangular 1063

Description

Monthly estimated total phosphorus mass (mg) within a water column at two different stations for
the 5-year time period October 1984 to September 1989 from a study on phosphorus concentration
conducted in the Chesapeake Bay.

Usage

Total.P.df

Format

A data frame with 60 observations on the following 4 variables.

CB3.1 a numeric vector of phosphorus concentrations at station CB3.1

CB3.3e a numeric vector phosphorus concentrations at station CB3.3e

Month a factor indicating the month the observation was taken

Year a numeric vector indicating the year an observation was taken

Source

Neerchal, N. K., and S. L. Brunenmeister. (1993). Estimation of Trend in Chesapeake Bay Water
Quality Data. In Patil, G.P., and C.R. Rao, eds., Handbook of Statistics, Vol. 6: Multivariate
Environmental Statistics. North-Holland, Amsterdam, Chapter 19, 407-422.

Triangular The Triangular Distribution

Description

Density, distribution function, quantile function, and random generation for the triangular distribu-
tion with parameters min, max, and mode.

Usage

dtri(x, min = 0, max = 1, mode = 1/2)
ptri(q, min = 0, max = 1, mode = 1/2)
qtri(p, min = 0, max = 1, mode = 1/2)
rtri(n, min = 0, max = 1, mode = 1/2)

Arguments

x vector of quantiles. Missing values (NAs) are allowed.

q vector of quantiles. Missing values (NAs) are allowed.

p vector of probabilities between 0 and 1. Missing values (NAs) are allowed.

n sample size. If length(n) is larger than 1, then length(n) random values are
returned.

min vector of minimum values of the distribution of the random variable. The default
value is min=0.

max vector of maximum values of the random variable. The default value is max=1.

mode vector of modes of the random variable. The default value is mode=1/2.
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Details

Let X be a triangular random variable with parameters min=a, max=b, and mode=c.

Probability Density and Cumulative Distribution Function
The density function of X is given by:

f(x; a, b, c) = 2(x−a)
(b−a)(c−a) for a ≤ x ≤ c

2(b−x)
(b−a)(b−c) for c ≤ x ≤ b

where a < c < b.

The cumulative distribution function of X is given by:

F (x; a, b, c) = (x−a)2

(b−a)(c−a) for a ≤ x ≤ c
1− (b−x)2

(b−a)(b−c) for c ≤ x ≤ b

where a < c < b.

Quantiles
The pth quantile of X is given by:

xp = a+
√

(b− a)(c− a)p for 0 ≤ p ≤ F (c)

b−
√

(b− a)(b− c)(1− p for F (c) ≤ p ≤ 1

where 0 ≤ p ≤ 1.

Random Numbers
Random numbers are generated using the inverse transformation method:

x = F−1(u)

where u is a random deviate from a uniform [0, 1] distribution.

Mean and Variance
The mean and variance of X are given by:

E(X) =
a+ b+ c

3

V ar(X) =
a2 + b2 + c2 − ab− ac− bc

18

Value

dtri gives the density, ptri gives the distribution function, qtri gives the quantile function, and
rtri generates random deviates.

Note

The triangular distribution is so named because of the shape of its probability density function.
The average of two independent identically distributed uniform random variables with parameters
min=α and max=β has a triangular distribution with parameters min=α, max=β, and mode=(β−α)/2.

The triangular distribution is sometimes used as an input distribution in probability risk assessment.
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Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Forbes, C., M. Evans, N. Hastings, and B. Peacock. (2011). Statistical Distributions. Fourth
Edition. John Wiley and Sons, Hoboken, NJ.

Johnson, N. L., S. Kotz, and N. Balakrishnan. (1995). Continuous Univariate Distributions, Volume
2. Second Edition. John Wiley and Sons, New York.

See Also

Uniform, Probability Distributions and Random Numbers.

Examples

# Density of a triangular distribution with parameters
# min=10, max=15, and mode=12, evaluated at 12, 13 and 14:

dtri(12:14, 10, 15, 12)
#[1] 0.4000000 0.2666667 0.1333333

#----------

# The cdf of a triangular distribution with parameters
# min=2, max=7, and mode=5, evaluated at 3, 4, and 5:

ptri(3:5, 2, 7, 5)
#[1] 0.06666667 0.26666667 0.60000000

#----------

# The 25th percentile of a triangular distribution with parameters
# min=1, max=4, and mode=3:

qtri(0.25, 1, 4, 3)
#[1] 2.224745

#----------

# A random sample of 4 numbers from a triangular distribution with
# parameters min=3 , max=20, and mode=12.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(10)
rtri(4, 3, 20, 12)
#[1] 11.811593 9.850955 11.081885 13.539496

tTestAlpha Type I Error Level for a One- or Two-Sample t-Test
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Description

Compute the Type I Error level necessary to achieve a specified power for a one- or two-sample
t-test, given the sample size(s) and scaled difference.

Usage

tTestAlpha(n.or.n1, n2 = n.or.n1, delta.over.sigma = 0, power = 0.95,
sample.type = ifelse(!missing(n2) && !is.null(n2), "two.sample", "one.sample"),
alternative = "two.sided", approx = FALSE, tol = 1e-07, maxiter = 1000)

Arguments

n.or.n1 numeric vector of sample sizes. When sample.type="one.sample", n.or.n1
denotes n, the number of observations in the single sample. When sample.type="two.sample",
n.or.n1 denotes n1, the number of observations from group 1. Missing (NA),
undefined (NaN), and infinite (Inf, -Inf) values are not allowed.

n2 numeric vector of sample sizes for group 2. The default value is the value of
n.or.n1. This argument is ignored when sample.type="one.sample". Miss-
ing (NA), undefined (NaN), and infinite (Inf, -Inf) values are not allowed.

delta.over.sigma

numeric vector specifying the ratio of the true difference (δ) to the population
standard deviation (σ). This is also called the “scaled difference”.

power numeric vector of numbers between 0 and 1 indicating the power associated with
the hypothesis test. The default value is power=0.95.

sample.type character string indicating whether to compute power based on a one-sample or
two-sample hypothesis test. When sample.type="one.sample", the computed
power is based on a hypothesis test for a single mean. When sample.type="two.sample",
the computed power is based on a hypothesis test for the difference between two
means. The default value is sample.type="one.sample" unless the argument
n2 is supplied.

alternative character string indicating the kind of alternative hypothesis. The possible val-
ues are "two.sided" (the default), "greater", and "less".

approx logical scalar indicating whether to compute the power based on an approxima-
tion to the non-central t-distribution. The default value is FALSE.

tol numeric scalar indicating the tolerance argument to pass to the uniroot func-
tion. The default value is tol=1e-7.

maxiter positive integer indicating the maximum number of iterations argument to pass
to the uniroot function. The default value is maxiter=1000.

Details

Formulas for the power of the t-test for specified values of the sample size, scaled difference, and
Type I error level are given in the help file for tTestPower. The function tTestAlpha uses the
uniroot search algorithm to determine the required Type I error level for specified values of the
sample size, power, and scaled difference.

Value

numeric vector of Type I error levels.
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Note

See tTestPower.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

See tTestPower.

See Also

tTestPower, tTestScaledMdd, tTestN, plotTTestDesign, Normal, t.test, Hypothesis Tests.

Examples

# Look at how the required Type I error level for the one-sample t-test
# decreases with increasing sample size. Set the power to 80% and
# the scaled difference to 0.5.

seq(5, 30, by = 5)
#[1] 5 10 15 20 25 30

alpha <- tTestAlpha(n.or.n1 = seq(5, 30, by = 5),
power = 0.8, delta.over.sigma = 0.5)

round(alpha, 2)
#[1] 0.65 0.45 0.29 0.18 0.11 0.07

#----------

# Repeat the last example, but use the approximation.
# Note how the approximation underestimates the power
# for the smaller sample sizes.
#----------------------------------------------------

alpha <- tTestAlpha(n.or.n1 = seq(5, 30, by = 5),
power = 0.8, delta.over.sigma = 0.5, approx = TRUE)

round(alpha, 2)
#[1] 0.63 0.46 0.30 0.18 0.11 0.07

#----------

# Look at how the required Type I error level for the two-sample
# t-test decreases with increasing scaled difference. Use
# a power of 90% and a sample size of 10 in each group.

seq(0.5, 2, by = 0.5)
#[1] 0.5 1.0 1.5 2.0
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alpha <- tTestAlpha(10, sample.type = "two.sample",
power = 0.9, delta.over.sigma = seq(0.5, 2, by = 0.5))

round(alpha, 2)
#[1] 0.82 0.35 0.06 0.01

#----------

# Look at how the required Type I error level for the two-sample
# t-test increases with increasing values of required power. Use
# a sample size of 20 for each group and a scaled difference of
# 1.

alpha <- tTestAlpha(20, sample.type = "two.sample", delta.over.sigma = 1,
power = c(0.8, 0.9, 0.95))

round(alpha, 2)
#[1] 0.03 0.07 0.14

#----------

# Clean up
#---------
rm(alpha)

tTestLnormAltN Sample Size for a One- or Two-Sample t-Test, Assuming Lognormal
Data

Description

Compute the sample size necessary to achieve a specified power for a one- or two-sample t-test,
given the ratio of means, coefficient of variation, and significance level, assuming lognormal data.

Usage

tTestLnormAltN(ratio.of.means, cv = 1, alpha = 0.05, power = 0.95,
sample.type = ifelse(!is.null(n2), "two.sample", "one.sample"),
alternative = "two.sided", approx = FALSE, n2 = NULL, round.up = TRUE,
n.max = 5000, tol = 1e-07, maxiter = 1000)

Arguments

ratio.of.means numeric vector specifying the ratio of the first mean to the second mean. When
sample.type="one.sample", this is the ratio of the population mean to the
hypothesized mean. When sample.type="two.sample", this is the ratio of the
mean of the first population to the mean of the second population. The default
value is ratio.of.means=1.
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cv numeric vector of positive value(s) specifying the coefficient of variation. When
sample.type="one.sample", this is the population coefficient of variation. When
sample.type="two.sample", this is the coefficient of variation for both the first
and second population. The default value is cv=1.

alpha numeric vector of numbers between 0 and 1 indicating the Type I error level
associated with the hypothesis test. The default value is alpha=0.05.

power numeric vector of numbers between 0 and 1 indicating the power associated with
the hypothesis test. The default value is power=0.95.

sample.type character string indicating whether to compute power based on a one-sample or
two-sample hypothesis test. When sample.type="one.sample", the computed
power is based on a hypothesis test for a single mean. When sample.type="two.sample",
the computed power is based on a hypothesis test for the difference between two
means. The default value is sample.type="one.sample" unless the argument
n2 is supplied.

alternative character string indicating the kind of alternative hypothesis. The possible val-
ues are "two.sided" (the default), "greater", and "less".

approx logical scalar indicating whether to compute the power based on an approxima-
tion to the non-central t-distribution. The default value is FALSE.

n2 numeric vector of sample sizes for group 2. The default value is NULL in which
case it is assumed that the sample sizes for groups 1 and 2 are equal. This argu-
ment is ignored when sample.type="one.sample". Missing (NA), undefined
(NaN), and infinite (Inf, -Inf) values are not allowed.

round.up logical scalar indicating whether to round up the values of the computed sample
size(s) to the next smallest integer. The default value is TRUE.

n.max positive integer greater than 1 indicating the maximum sample size when sample.type="one.sample"
or the maximum sample size for group 1 when sample.type="two.sample".
The default value is n.max=5000.

tol numeric scalar indicating the toloerance to use in the uniroot search algorithm.
The default value is tol=1e-7.

maxiter positive integer indicating the maximum number of iterations argument to pass
to the uniroot function. The default value is maxiter=1000.

Details

If the arguments ratio.of.means, cv, alpha, power, and n2 are not all the same length, they are
replicated to be the same length as the length of the longest argument.

Formulas for the power of the t-test for lognormal data for specified values of the sample size, ratio
of means, and Type I error level are given in the help file for tTestLnormAltPower. The function
tTestLnormAltN uses the uniroot search algorithm to determine the required sample size(s) for
specified values of the power, scaled difference, and Type I error level.

Value

When sample.type="one.sample", or sample.type="two.sample" and n2 is not supplied (so
equal sample sizes for each group is assumed), tTestLnormAltN returns a numeric vector of sample
sizes. When sample.type="two.sample" and n2 is supplied, tTestLnormAltN returns a list with
two components called n1 and n2, specifying the sample sizes for each group.

Note

See tTestLnormAltPower.
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Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

See tTestLnormAltPower.

See Also

tTestLnormAltPower, tTestLnormAltRatioOfMeans, plotTTestLnormAltDesign, LognormalAlt,
t.test, Hypothesis Tests.

Examples

# Look at how the required sample size for the one-sample test increases with
# increasing required power:

seq(0.5, 0.9, by = 0.1)
# [1] 0.5 0.6 0.7 0.8 0.9

tTestLnormAltN(ratio.of.means = 1.5, power = seq(0.5, 0.9, by = 0.1))
# [1] 19 23 28 36 47

#----------

# Repeat the last example, but compute the sample size based on the approximate
# power instead of the exact power:

tTestLnormAltN(ratio.of.means = 1.5, power = seq(0.5, 0.9, by = 0.1), approx = TRUE)
# [1] 19 23 29 36 47

#==========

# Look at how the required sample size for the two-sample t-test decreases with
# increasing ratio of means:

seq(1.5, 2, by = 0.1)
#[1] 1.5 1.6 1.7 1.8 1.9 2.0

tTestLnormAltN(ratio.of.means = seq(1.5, 2, by = 0.1), sample.type = "two")
#[1] 111 83 65 54 45 39

#----------

# Look at how the required sample size for the two-sample t-test decreases with
# increasing values of Type I error:

tTestLnormAltN(ratio.of.means = 1.5, alpha = c(0.001, 0.01, 0.05, 0.1),
sample.type = "two")

#[1] 209 152 111 92

#----------

# For the two-sample t-test, compare the total sample size required to detect a
# ratio of means of 2 for equal sample sizes versus the case when the sample size
# for the second group is constrained to be 30. Assume a coefficient of variation
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# of 1, a 5% significance level, and 95% power. Note that for the case of equal
# sample sizes, a total of 78 samples (39+39) are required, whereas when n2 is
# constrained to be 30, a total of 84 samples (54 + 30) are required.

tTestLnormAltN(ratio.of.means = 2, sample.type = "two")
#[1] 39

tTestLnormAltN(ratio.of.means = 2, n2 = 30)
#$n1:
#[1] 54
#
#$n2:
#[1] 30

#==========

# The guidance document Soil Screening Guidance: Technical Background Document
# (USEPA, 1996c, Part 4) discusses sampling design and sample size calculations
# for studies to determine whether the soil at a potentially contaminated site
# needs to be investigated for possible remedial action. Let theta denote the
# average concentration of the chemical of concern. The guidance document
# establishes the following goals for the decision rule (USEPA, 1996c, p.87):
#
# Pr[Decide Dont Investigate | theta > 2 * SSL] = 0.05
#
# Pr[Decide to Investigate | theta <= (SSL/2)] = 0.2
#
# where SSL denotes the pre-established soil screening level.
#
# These goals translate into a Type I error of 0.2 for the null hypothesis
#
# H0: [theta / (SSL/2)] <= 1
#
# and a power of 95% for the specific alternative hypothesis
#
# Ha: [theta / (SSL/2)] = 4
#
# Assuming a lognormal distribution and the above values for Type I error and
# power, determine the required samples sizes associated with various values of
# the coefficient of variation for the one-sample test. Based on these calculations,
# you need to take at least 6 soil samples to satisfy the requirements for the
# Type I and Type II errors when the coefficient of variation is 2.

cv <- c(0.5, 1, 2)
N <- tTestLnormAltN(ratio.of.means = 4, cv = cv, alpha = 0.2,

alternative = "greater")

names(N) <- paste("CV=", cv, sep = "")
N
#CV=0.5 CV=1 CV=2
# 2 3 6

#----------

# Repeat the last example, but use the approximate power calculation instead of the
# exact. Using the approximate power calculation, you need 7 soil samples when the
# coefficient of variation is 2 (because the approximation underestimates the
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# true power).

N <- tTestLnormAltN(ratio.of.means = 4, cv = cv, alpha = 0.2,
alternative = "greater", approx = TRUE)

names(N) <- paste("CV=", cv, sep = "")
N
#CV=0.5 CV=1 CV=2
# 3 5 7

#----------

# Repeat the last example, but use a Type I error of 0.05.

N <- tTestLnormAltN(ratio.of.means = 4, cv = cv, alternative = "greater",
approx = TRUE)

names(N) <- paste("CV=", cv, sep = "")
N
#CV=0.5 CV=1 CV=2
# 4 6 12

#==========

# Reproduce the second column of Table 2 in van Belle and Martin (1993, p.167).

tTestLnormAltN(ratio.of.means = 1.10, cv = seq(0.1, 0.8, by = 0.1),
power = 0.8, sample.type = "two.sample", approx = TRUE)

#[1] 19 69 150 258 387 533 691 856

#==========

# Clean up
#---------
rm(cv, N)

tTestLnormAltPower Power of a One- or Two-Sample t-Test Assuming Lognormal Data

Description

Compute the power of a one- or two-sample t-test, given the sample size, ratio of means, coefficient
of variation, and significance level, assuming lognormal data.

Usage

tTestLnormAltPower(n.or.n1, n2 = n.or.n1, ratio.of.means = 1, cv = 1, alpha = 0.05,
sample.type = ifelse(!missing(n2), "two.sample", "one.sample"),
alternative = "two.sided", approx = FALSE)

Arguments

n.or.n1 numeric vector of sample sizes. When sample.type="one.sample", n.or.n1
denotes n, the number of observations in the single sample. When sample.type="two.sample",
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n.or.n1 denotes n1, the number of observations from group 1. Missing (NA),
undefined (NaN), and infinite (Inf, -Inf) values are not allowed.

n2 numeric vector of sample sizes for group 2. The default value is the value of
n.or.n1. This argument is ignored when sample.type="one.sample". Miss-
ing (NA), undefined (NaN), and infinite (Inf, -Inf) values are not allowed.

ratio.of.means numeric vector specifying the ratio of the first mean to the second mean. When
sample.type="one.sample", this is the ratio of the population mean to the
hypothesized mean. When sample.type="two.sample", this is the ratio of the
mean of the first population to the mean of the second population. The default
value is ratio.of.means=1.

cv numeric vector of positive value(s) specifying the coefficient of variation. When
sample.type="one.sample", this is the population coefficient of variation. When
sample.type="two.sample", this is the coefficient of variation for both the first
and second population. The default value is cv=1.

alpha numeric vector of numbers between 0 and 1 indicating the Type I error level
associated with the hypothesis test. The default value is alpha=0.05.

sample.type character string indicating whether to compute power based on a one-sample or
two-sample hypothesis test. When sample.type="one.sample", the computed
power is based on a hypothesis test for a single mean. When sample.type="two.sample",
the computed power is based on a hypothesis test for the difference between two
means. The default value is sample.type="one.sample" unless the argument
n2 is supplied.

alternative character string indicating the kind of alternative hypothesis. The possible val-
ues are "two.sided" (the default), "greater", and "less".

approx logical scalar indicating whether to compute the power based on an approxima-
tion to the non-central t-distribution. The default value is FALSE.

Details

If the arguments n.or.n1, n2, ratio.of.means, cv, and alpha are not all the same length, they
are replicated to be the same length as the length of the longest argument.

One-Sample Case (sample.type="one.sample")
Let x = x1, x2, . . . , xn denote a vector of n observations from a lognormal distribution with mean
θ and coefficient of variation τ , and consider the null hypothesis:

H0 : θ = θ0 (1)

The three possible alternative hypotheses are the upper one-sided alternative (alternative="greater"):

Ha : θ > θ0 (2)

the lower one-sided alternative (alternative="less")

Ha : θ < θ0 (3)

and the two-sided alternative (alternative="two.sided")

Ha : θ 6= θ0 (4)

To test the null hypothesis (1) versus any of the three alternatives (2)-(4), one might be tempted to
use Student’s t-test based on the log-transformed observations. Unlike the two-sample case with
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equal coefficients of variation (see below), in the one-sample case Student’s t-test applied to the
log-transformed observations will not test the correct hypothesis, as now explained.

Let
yi = log(xi), i = 1, 2, . . . , n (5)

Then y = y1, y2, . . . , yn denote n observations from a normal distribution with mean µ and standard
deviation σ, where

µ = log(
θ√

τ2 + 1
) (6)

σ = [log(τ2 + 1)]1/2 (7)

θ = exp[µ+ (σ2/2)] (8)

τ = [exp(σ2)− 1]1/2 (9)

(see the help file for LognormalAlt). Hence, by Equations (6) and (8) above, the Student’s t-test on
the log-transformed data would involve a test of hypothesis on both the parameters θ and τ , not just
on θ.

To test the null hypothesis (1) above versus any of the alternatives (2)-(4), you can use the function
elnormAlt to compute a confidence interval for θ, and use the relationship between confidence
intervals and hypothesis tests. To test the null hypothesis (1) above versus the upper one-sided
alternative (2), you can also use Chen’s modified t-test for skewed distributions.

Although you can’t use Student’s t-test based on the log-transformed observations to test a hypoth-
esis about θ, you can use the t-distribution to estimate the power of a test about θ that is based on
confidence intervals or Chen’s modified t-test, if you are willing to assume the population coeffi-
cient of variation τ stays constant for all possible values of θ you are interested in, and you are
willing to postulate possible values for τ .

First, let’s re-write the hypotheses (1)-(4) as follows. The null hypothesis (1) is equivalent to:

H0 :
θ

θ0
= 1 (10)

The three possible alternative hypotheses are the upper one-sided alternative (alternative="greater")

Ha :
θ

θ0
> 1 (11)

the lower one-sided alternative (alternative="less")

Ha :
θ

θ0
< 1 (12)

and the two-sided alternative (alternative="two.sided")

Ha :
θ

θ0
6= 1 (13)

For a constant coefficient of variation τ , the standard deviation of the log-transformed observations
σ is also constant (see Equation (7) above). Hence, by Equation (8), the ratio of the true mean to
the hypothesized mean can be written as:

R =
θ

θ0
=

exp[µ+ (σ2/2)]

exp[µ0 + (σ2/2)]
=
eµ

eµ0
= eµ−µ0 (14)

which only involves the difference
µ− µ0 (15)



tTestLnormAltPower 1075

Thus, for given values of R and τ , the power of the test of the null hypothesis (10) against any of
the alternatives (11)-(13) can be computed based on the power of a one-sample t-test with

δ

σ
=

log(R)√
log(τ2 + 1)

(16)

(see the help file for tTestPower). Note that for the function tTestLnormAltPower,R corresponds
to the argument ratio.of.means, and τ corresponds to the argument cv.

Two-Sample Case (sample.type="two.sample")
Let x1 = x11, x12, . . . , x1n1 denote a vector of n1 observations from a lognormal distribution
with mean θ1 and coefficient of variaiton τ , and let x2 = x21, x22, . . . , x2n2 denote a vector of n2

observations from a lognormal distribution with mean θ2 and coefficient of variation τ , and consider
the null hypothesis:

H0 : θ1 = θ2 (17)

The three possible alternative hypotheses are the upper one-sided alternative (alternative="greater"):

Ha : θ1 > θ2 (18)

the lower one-sided alternative (alternative="less")

Ha : θ1 < θ2 (19)

and the two-sided alternative (alternative="two.sided")

Ha : θ1 6= θ2 (20)

Because we are assuming the coefficient of variation τ is the same for both populations, the test of
the null hypothesis (17) versus any of the three alternatives (18)-(20) can be based on the Student
t-statistic using the log-transformed observations.

To show this, first, let’s re-write the hypotheses (17)-(20) as follows. The null hypothesis (17) is
equivalent to:

H0 :
θ1

θ2
= 1 (21)

The three possible alternative hypotheses are the upper one-sided alternative (alternative="greater")

Ha :
θ1

θ2
> 1 (22)

the lower one-sided alternative (alternative="less")

Ha :
θ1

θ2
< 1 (23)

and the two-sided alternative (alternative="two.sided")

Ha :
θ1

θ2
6= 1 (24)

If coefficient of variation τ is the same for both populations, then the standard deviation of the log-
transformed observations σ is also the same for both populations (see Equation (7) above). Hence,
by Equation (8), the ratio of the means can be written as:

R =
θ1

θ2
=
exp[µ1 + (σ2/2)]

exp[µ2 + (σ2/2)]
=
eµ1
eµ2

= eµ1−µ2 (25)
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which only involves the difference

µ1 − µ2 (26)

Thus, for given values of R and τ , the power of the test of the null hypothesis (21) against any of
the alternatives (22)-(24) can be computed based on the power of a two-sample t-test with

δ

σ
=

log(R)√
log(τ2 + 1)

(27)

(see the help file for tTestPower). Note that for the function tTestLnormAltPower,R corresponds
to the argument ratio.of.means, and τ corresponds to the argument cv.

Value

a numeric vector powers.

Note

The normal distribution and lognormal distribution are probably the two most frequently used dis-
tributions to model environmental data. Often, you need to determine whether a population mean
is significantly different from a specified standard (e.g., an MCL or ACL, USEPA, 1989b, Section
6), or whether two different means are significantly different from each other (e.g., USEPA 2009,
Chapter 16). When you have lognormally-distributed data, you have to be careful about making
statements regarding inference for the mean. For the two-sample case with assumed equal coeffi-
cients of variation, you can perform the Student’s t-test on the log-transformed observations. For
the one-sample case, you can perform a hypothesis test by constructing a confidence interval for the
mean using elnormAlt, or use Chen’s t-test modified for skewed data.

In the course of designing a sampling program, an environmental scientist may wish to determine
the relationship between sample size, significance level, power, and scaled difference if one of
the objectives of the sampling program is to determine whether a mean differs from a specified
level or two means differ from each other. The functions tTestLnormAltPower, tTestLnormAltN,
tTestLnormAltRatioOfMeans, and plotTTestLnormAltDesign can be used to investigate these
relationships for the case of lognormally-distributed observations.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

van Belle, G., and D.C. Martin. (1993). Sample Size as a Function of Coefficient of Variation and
Ratio of Means. The American Statistician 47(3), 165–167.

Also see the list of references in the help file for tTestPower.

See Also

tTestLnormAltN, tTestLnormAltRatioOfMeans, plotTTestLnormAltDesign, LognormalAlt, t.test,
Hypothesis Tests.
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Examples

# Look at how the power of the one-sample test increases with increasing
# sample size:

seq(5, 30, by = 5)
#[1] 5 10 15 20 25 30

power <- tTestLnormAltPower(n.or.n1 = seq(5, 30, by = 5),
ratio.of.means = 1.5, cv = 1)

round(power, 2)
#[1] 0.14 0.28 0.42 0.54 0.65 0.73

#----------

# Repeat the last example, but use the approximation to the power instead of the
# exact power. Note how the approximation underestimates the true power for
# the smaller sample sizes:

power <- tTestLnormAltPower(n.or.n1 = seq(5, 30, by = 5),
ratio.of.means = 1.5, cv = 1, approx = TRUE)

round(power, 2)
#[1] 0.09 0.25 0.40 0.53 0.64 0.73

#==========

# Look at how the power of the two-sample t-test increases with increasing
# ratio of means:

power <- tTestLnormAltPower(n.or.n1 = 20, sample.type = "two",
ratio.of.means = c(1.1, 1.5, 2), cv = 1)

round(power, 2)
#[1] 0.06 0.32 0.73

#----------

# Look at how the power of the two-sample t-test increases with increasing
# values of Type I error:

power <- tTestLnormAltPower(30, sample.type = "two", ratio.of.means = 1.5,
cv = 1, alpha = c(0.001, 0.01, 0.05, 0.1))

round(power, 2)
#[1] 0.07 0.23 0.46 0.59

#==========

# The guidance document Soil Screening Guidance: Technical Background Document
# (USEPA, 1996c, Part 4) discusses sampling design and sample size calculations
# for studies to determine whether the soil at a potentially contaminated site
# needs to be investigated for possible remedial action. Let theta denote the
# average concentration of the chemical of concern. The guidance document
# establishes the following goals for the decision rule (USEPA, 1996c, p.87):
#
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# Pr[Decide Dont Investigate | theta > 2 * SSL] = 0.05
#
# Pr[Decide to Investigate | theta <= (SSL/2)] = 0.2
#
# where SSL denotes the pre-established soil screening level.
#
# These goals translate into a Type I error of 0.2 for the null hypothesis
#
# H0: [theta / (SSL/2)] <= 1
#
# and a power of 95% for the specific alternative hypothesis
#
# Ha: [theta / (SSL/2)] = 4
#
# Assuming a lognormal distribution with a coefficient of variation of 2,
# determine the power associated with various sample sizes for this one-sample test.
# Based on these calculations, you need to take at least 6 soil samples to
# satisfy the requirements for the Type I and Type II errors.

power <- tTestLnormAltPower(n.or.n1 = 2:8, ratio.of.means = 4, cv = 2,
alpha = 0.2, alternative = "greater")

names(power) <- paste("N=", 2:8, sep = "")

round(power, 2)
# N=2 N=3 N=4 N=5 N=6 N=7 N=8
#0.65 0.80 0.88 0.93 0.96 0.97 0.98

#----------

# Repeat the last example, but use the approximate power calculation instead of
# the exact one. Using the approximate power calculation, you need at least
# 7 soil samples instead of 6 (because the approximation underestimates the power).

power <- tTestLnormAltPower(n.or.n1 = 2:8, ratio.of.means = 4, cv = 2,
alpha = 0.2, alternative = "greater", approx = TRUE)

names(power) <- paste("N=", 2:8, sep = "")

round(power, 2)
# N=2 N=3 N=4 N=5 N=6 N=7 N=8
#0.55 0.75 0.84 0.90 0.93 0.95 0.97

#==========

# Clean up
#---------
rm(power)

tTestLnormAltRatioOfMeans

Minimal or Maximal Detectable Ratio of Means for One- or Two-
Sample t-Test, Assuming Lognormal Data
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Description

Compute the minimal or maximal detectable ratio of means associated with a one- or two-sample
t-test, given the sample size, coefficient of variation, significance level, and power, assuming log-
normal data.

Usage

tTestLnormAltRatioOfMeans(n.or.n1, n2 = n.or.n1, cv = 1, alpha = 0.05, power = 0.95,
sample.type = ifelse(!missing(n2), "two.sample", "one.sample"),
alternative = "two.sided", two.sided.direction = "greater", approx = FALSE,
tol = 1e-07, maxiter = 1000)

Arguments

n.or.n1 numeric vector of sample sizes. When sample.type="one.sample", n.or.n1
denotes n, the number of observations in the single sample. When sample.type="two.sample",
n.or.n1 denotes n1, the number of observations from group 1. Missing (NA),
undefined (NaN), and infinite (Inf, -Inf) values are not allowed.

n2 numeric vector of sample sizes for group 2. The default value is the value of
n.or.n1. This argument is ignored when sample.type="one.sample". Miss-
ing (NA), undefined (NaN), and infinite (Inf, -Inf) values are not allowed.

cv numeric vector of positive value(s) specifying the coefficient of variation. When
sample.type="one.sample", this is the population coefficient of variation. When
sample.type="two.sample", this is the coefficient of variation for both the first
and second population. The default value is cv=1.

alpha numeric vector of numbers between 0 and 1 indicating the Type I error level
associated with the hypothesis test. The default value is alpha=0.05.

power numeric vector of numbers between 0 and 1 indicating the power associated with
the hypothesis test. The default value is power=0.95.

sample.type character string indicating whether to compute power based on a one-sample or
two-sample hypothesis test. When sample.type="one.sample", the computed
power is based on a hypothesis test for a single mean. When sample.type="two.sample",
the computed power is based on a hypothesis test for the difference between two
means. The default value is sample.type="one.sample" unless the argument
n2 is supplied.

alternative character string indicating the kind of alternative hypothesis. The possible val-
ues are "two.sided" (the default), "greater", and "less".

two.sided.direction

character string indicating the direction (greater than 1 or less than 1) for the de-
tectable ratio of means when alternative="two.sided". When two.sided.direction="greater"
(the default), the detectable ratio of means is greater than 1. When two.sided.direction="less",
the detectable ratio of means is less than 1 (but greater than 0). This argument
is ignored if alternative="less" or alternative="greater".

approx logical scalar indicating whether to compute the power based on an approxima-
tion to the non-central t-distribution. The default value is FALSE.

tol numeric scalar indicating the toloerance to use in the uniroot search algorithm.
The default value is tol=1e-7.

maxiter positive integer indicating the maximum number of iterations argument to pass
to the uniroot function. The default value is maxiter=1000.
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Details

If the arguments n.or.n1, n2, cv, alpha, and power are not all the same length, they are replicated
to be the same length as the length of the longest argument.

Formulas for the power of the t-test for lognormal data for specified values of the sample size, ratio
of means, and Type I error level are given in the help file for tTestLnormAltPower. The function
tTestLnormAltRatioOfMeans uses the uniroot search algorithm to determine the required ratio
of means for specified values of the power, sample size, and Type I error level.

Value

a numeric vector of computed minimal or maximal detectable ratios of means. When alternative="less",
or alternative="two.sided" and two.sided.direction="less", the computed ratios are less
than 1 (but greater than 0). Otherwise, the ratios are greater than 1.

Note

See tTestLnormAltPower.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

See tTestLnormAltPower.

See Also

tTestLnormAltPower, tTestLnormAltN, plotTTestLnormAltDesign, LognormalAlt, t.test, Hy-
pothesis Tests.

Examples

# Look at how the minimal detectable ratio of means for the one-sample t-test
# increases with increasing required power:

seq(0.5, 0.9, by = 0.1)
#[1] 0.5 0.6 0.7 0.8 0.9

ratio.of.means <- tTestLnormAltRatioOfMeans(n.or.n1 = 20,
power = seq(0.5, 0.9, by = 0.1))

round(ratio.of.means, 2)
#[1] 1.47 1.54 1.63 1.73 1.89

#----------

# Repeat the last example, but compute the minimal detectable ratio of means
# based on the approximate power instead of the exact:

ratio.of.means <- tTestLnormAltRatioOfMeans(n.or.n1 = 20,
power = seq(0.5, 0.9, by = 0.1), approx = TRUE)

round(ratio.of.means, 2)
#[1] 1.48 1.55 1.63 1.73 1.89
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#==========

# Look at how the minimal detectable ratio of means for the two-sample t-test
# decreases with increasing sample size:

seq(10, 50, by = 10)
#[1] 10 20 30 40 50

ratio.of.means <- tTestLnormAltRatioOfMeans(seq(10, 50, by = 10), sample.type="two")

round(ratio.of.means, 2)
#[1] 4.14 2.65 2.20 1.97 1.83

#----------

# Look at how the minimal detectable ratio of means for the two-sample t-test
# decreases with increasing values of Type I error:

ratio.of.means <- tTestLnormAltRatioOfMeans(n.or.n1 = 20,
alpha = c(0.001, 0.01, 0.05, 0.1), sample.type = "two")

round(ratio.of.means, 2)
#[1] 4.06 3.20 2.65 2.42

#==========

# The guidance document Soil Screening Guidance: Technical Background Document
# (USEPA, 1996c, Part 4) discusses sampling design and sample size calculations
# for studies to determine whether the soil at a potentially contaminated site
# needs to be investigated for possible remedial action. Let theta denote the
# average concentration of the chemical of concern. The guidance document
# establishes the following goals for the decision rule (USEPA, 1996c, p.87):
#
# Pr[Decide Dont Investigate | theta > 2 * SSL] = 0.05
#
# Pr[Decide to Investigate | theta <= (SSL/2)] = 0.2
#
# where SSL denotes the pre-established soil screening level.
#
# These goals translate into a Type I error of 0.2 for the null hypothesis
#
# H0: [theta / (SSL/2)] <= 1
#
# and a power of 95% for the specific alternative hypothesis
#
# Ha: [theta / (SSL/2)] = 4
#
# Assuming a lognormal distribution, the above values for Type I and power, and a
# coefficient of variation of 2, determine the minimal detectable increase above
# the soil screening level associated with various sample sizes for the one-sample
# test. Based on these calculations, you need to take at least 6 soil samples to
# satisfy the requirements for the Type I and Type II errors when the coefficient
# of variation is 2.

N <- 2:8
ratio.of.means <- tTestLnormAltRatioOfMeans(n.or.n1 = N, cv = 2, alpha = 0.2,
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alternative = "greater")

names(ratio.of.means) <- paste("N=", N, sep = "")
round(ratio.of.means, 1)
# N=2 N=3 N=4 N=5 N=6 N=7 N=8
#19.9 7.7 5.4 4.4 3.8 3.4 3.1

#----------

# Repeat the last example, but use the approximate power calculation instead of
# the exact. Using the approximate power calculation, you need 7 soil samples
# when the coefficient of variation is 2. Note how poorly the approximation
# works in this case for small sample sizes!

ratio.of.means <- tTestLnormAltRatioOfMeans(n.or.n1 = N, cv = 2, alpha = 0.2,
alternative = "greater", approx = TRUE)

names(ratio.of.means) <- paste("N=", N, sep = "")
round(ratio.of.means, 1)
# N=2 N=3 N=4 N=5 N=6 N=7 N=8
#990.8 18.5 8.3 5.7 4.6 3.9 3.5

#==========

# Clean up
#---------
rm(ratio.of.means, N)

tTestN Sample Size for a One- or Two-Sample t-Test

Description

Compute the sample size necessary to achieve a specified power for a one- or two-sample t-test,
given the scaled difference and significance level.

Usage

tTestN(delta.over.sigma, alpha = 0.05, power = 0.95,
sample.type = ifelse(!is.null(n2), "two.sample", "one.sample"),
alternative = "two.sided", approx = FALSE, n2 = NULL, round.up = TRUE,
n.max = 5000, tol = 1e-07, maxiter = 1000)

Arguments

delta.over.sigma

numeric vector specifying the ratio of the true difference (δ) to the population
standard deviation (σ). This is also called the “scaled difference”.

alpha numeric vector of numbers between 0 and 1 indicating the Type I error level
associated with the hypothesis test. The default value is alpha=0.05.

power numeric vector of numbers between 0 and 1 indicating the power associated with
the hypothesis test. The default value is power=0.95.
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sample.type character string indicating whether to compute power based on a one-sample or
two-sample hypothesis test. When sample.type="one.sample", the computed
power is based on a hypothesis test for a single mean. When sample.type="two.sample",
the computed power is based on a hypothesis test for the difference between two
means. The default value is sample.type="one.sample" unless the argument
n2 is supplied.

alternative character string indicating the kind of alternative hypothesis. The possible val-
ues are "two.sided" (the default), "greater", and "less".

approx logical scalar indicating whether to compute the power based on an approxima-
tion to the non-central t-distribution. The default value is FALSE.

n2 numeric vector of sample sizes for group 2. The default value is NULL in which
case it is assumed that the sample sizes for groups 1 and 2 are equal. This argu-
ment is ignored when sample.type="one.sample". Missing (NA), undefined
(NaN), and infinite (Inf, -Inf) values are not allowed.

round.up logical scalar indicating whether to round up the values of the computed sample
size(s) to the next smallest integer. The default value is TRUE.

n.max positive integer greater than 1 indicating the maximum sample size when sample.type="one.sample"
or the maximum sample size for group 1 when sample.type="two.sample".
The default value is n.max=5000.

tol numeric scalar indicating the toloerance to use in the uniroot search algorithm.
The default value is tol=1e-7.

maxiter positive integer indicating the maximum number of iterations argument to pass
to the uniroot function. The default value is maxiter=1000.

Details

Formulas for the power of the t-test for specified values of the sample size, scaled difference, and
Type I error level are given in the help file for tTestPower. The function tTestN uses the uniroot
search algorithm to determine the required sample size(s) for specified values of the power, scaled
difference, and Type I error level.

Value

When sample.type="one.sample", or sample.type="two.sample" and n2 is not supplied (so
equal sample sizes for each group is assumed), tTestN returns a numeric vector of sample sizes.
When sample.type="two.sample" and n2 is supplied, tTestN returns a list with two components
called n1 and n2, specifying the sample sizes for each group.

Note

See tTestPower.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

See tTestPower.
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See Also

tTestPower, tTestScaledMdd, tTestAlpha, plotTTestDesign, Normal, t.test, Hypothesis Tests.

Examples

# Look at how the required sample size for the one-sample t-test
# increases with increasing required power:

seq(0.5, 0.9, by = 0.1)
#[1] 0.5 0.6 0.7 0.8 0.9

tTestN(delta.over.sigma = 0.5, power = seq(0.5, 0.9, by = 0.1))
#[1] 18 22 27 34 44

#----------

# Repeat the last example, but compute the sample size based on the
# approximation to the power instead of the exact method:

tTestN(delta.over.sigma = 0.5, power = seq(0.5, 0.9, by = 0.1),
approx = TRUE)

#[1] 18 22 27 34 45

#==========

# Look at how the required sample size for the two-sample t-test
# decreases with increasing scaled difference:

seq(0.5, 2,by = 0.5)
#[1] 0.5 1.0 1.5 2.0

tTestN(delta.over.sigma = seq(0.5, 2, by = 0.5), sample.type = "two")
#[1] 105 27 13 8

#----------

# Look at how the required sample size for the two-sample t-test decreases
# with increasing values of Type I error:

tTestN(delta.over.sigma = 0.5, alpha = c(0.001, 0.01, 0.05, 0.1),
sample.type="two")

#[1] 198 145 105 88

#----------

# For the two-sample t-test, compare the total sample size required to
# detect a scaled difference of 1 for equal sample sizes versus the case
# when the sample size for the second group is constrained to be 20.
# Assume a 5% significance level and 95% power. Note that for the case
# of equal sample sizes, a total of 54 samples (27+27) are required,
# whereas when n2 is constrained to be 20, a total of 62 samples
# (42 + 20) are required.

tTestN(1, sample.type="two")
#[1] 27
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tTestN(1, n2 = 20)
#$n1
#[1] 42
#
#$n2
#[1] 20

#==========

# Modifying the example on pages 21-4 to 21-5 of USEPA (2009), determine the
# required sample size to detect a mean aldicarb level greater than the MCL
# of 7 ppb at the third compliance well with a power of 95%, assuming the
# true mean is 10 or 14. Use the estimated standard deviation from the
# first four months of data to estimate the true population standard
# deviation, use a Type I error level of alpha=0.01, and assume an
# upper one-sided alternative (third compliance well mean larger than 7).
# (The data are stored in EPA.09.Ex.21.1.aldicarb.df.)
# Note that the required sample size changes from 11 to 5 as the true mean
# increases from 10 to 14.

EPA.09.Ex.21.1.aldicarb.df
# Month Well Aldicarb.ppb
#1 1 Well.1 19.9
#2 2 Well.1 29.6
#3 3 Well.1 18.7
#4 4 Well.1 24.2
#5 1 Well.2 23.7
#6 2 Well.2 21.9
#7 3 Well.2 26.9
#8 4 Well.2 26.1
#9 1 Well.3 5.6
#10 2 Well.3 3.3
#11 3 Well.3 2.3
#12 4 Well.3 6.9

sigma <- with(EPA.09.Ex.21.1.aldicarb.df,
sd(Aldicarb.ppb[Well == "Well.3"]))

sigma
#[1] 2.101388

tTestN(delta.over.sigma = (c(10, 14) - 7)/sigma,
alpha = 0.01, sample.type="one", alternative="greater")

#[1] 11 5

# Clean up
#---------
rm(sigma)

tTestPower Power of a One- or Two-Sample t-Test
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Description

Compute the power of a one- or two-sample t-test, given the sample size, scaled difference, and
significance level.

Usage

tTestPower(n.or.n1, n2 = n.or.n1, delta.over.sigma = 0, alpha = 0.05,
sample.type = ifelse(!missing(n2), "two.sample", "one.sample"),
alternative = "two.sided", approx = FALSE)

Arguments

n.or.n1 numeric vector of sample sizes. When sample.type="one.sample", n.or.n1
denotes n, the number of observations in the single sample. When sample.type="two.sample",
n.or.n1 denotes n1, the number of observations from group 1. Missing (NA),
undefined (NaN), and infinite (Inf, -Inf) values are not allowed.

n2 numeric vector of sample sizes for group 2. The default value is the value of
n.or.n1. This argument is ignored when sample.type="one.sample". Miss-
ing (NA), undefined (NaN), and infinite (Inf, -Inf) values are not allowed.

delta.over.sigma

numeric vector specifying the ratio of the true difference (δ) to the population
standard deviation (σ). This is also called the “scaled difference”. The default
value is delta.over.sigma=0.

alpha numeric vector of numbers between 0 and 1 indicating the Type I error level
associated with the hypothesis test. The default value is alpha=0.05.

sample.type character string indicating whether to compute power based on a one-sample or
two-sample hypothesis test. When sample.type="one.sample", the computed
power is based on a hypothesis test for a single mean. When sample.type="two.sample",
the computed power is based on a hypothesis test for the difference between two
means. The default value is sample.type="one.sample" unless the argument
n2 is supplied.

alternative character string indicating the kind of alternative hypothesis. The possible val-
ues are "two.sided" (the default), "greater", and "less".

approx logical scalar indicating whether to compute the power based on an approxima-
tion to the non-central t-distribution. The default value is FALSE.

Details

If the arguments n.or.n1, n2, delta.over.sigma, and alpha are not all the same length, they are
replicated to be the same length as the length of the longest argument.

One-Sample Case (sample.type="one.sample")
Let x = x1, x2, . . . , xn denote a vector of n observations from a normal distribution with mean µ
and standard deviation σ, and consider the null hypothesis:

H0 : µ = µ0 (1)

The three possible alternative hypotheses are the upper one-sided alternative (alternative="greater"):

Ha : µ > µ0 (2)

the lower one-sided alternative (alternative="less")

Ha : µ < µ0 (3)
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and the two-sided alternative (alternative="two.sided")

Ha : µ 6= µ0 (4)

The test of the null hypothesis (1) versus any of the three alternatives (2)-(4) is based on the Student
t-statistic:

t =
x̄− µ0

s/
√
n

(5)

where

x̄ =
1

n

n∑
i=1

xi (6)

s2 =
1

n− 1

n∑
i=1

(xi − x̄)2 (7)

Under the null hypothesis (1), the t-statistic in (5) follows a Student’s t-distribution with n − 1
degrees of freedom (Zar, 2010, Chapter 7; Johnson et al., 1995, pp.362-363).

The formula for the power of the test depends on which alternative is being tested. The two sub-
sections below describe exact and approximate formulas for the power of the one-sample t-test.
Note that none of the equations for the power of the t-test requires knowledge of the values δ
(Equation (12) below) or σ (the population standard deviation), only the ratio δ/σ. The argument
delta.over.sigma is this ratio, and it is referred to as the “scaled difference”.

Exact Power Calculations (approx=FALSE)
This subsection describes the exact formulas for the power of the one-sample t-test.

Upper one-sided alternative (alternative="greater")
The standard Student’s t-test rejects the null hypothesis (1) in favor of the upper alternative hypoth-
esis (2) at level-α if

t ≥ tν(1− α) (8)

where
ν = n− 1 (9)

and tν(p) denotes the p’th quantile of Student’s t-distribution with ν degrees of freedom (Zar, 2010;
Berthouex and Brown, 2002). The power of this test, denoted by 1 − β, where β denotes the
probability of a Type II error, is given by:

1− β = Pr[tν,∆ ≥ tν(1− α)] = 1−G[tν(1− α), ν,∆] (10)

where

∆ =
√
n
δ

σ
(11)

δ = µ− µ0 (12)

and tν,∆ denotes a non-central Student’s t-random variable with ν degrees of freedom and non-
centrality parameter ∆, and G(x, ν,∆) denotes the cumulative distribution function of this random
variable evaluated at x (Johnson et al., 1995, pp.508-510).

Lower one-sided alternative (alternative="less")
The standard Student’s t-test rejects the null hypothesis (1) in favor of the lower alternative hypoth-
esis (3) at level-α if

t ≤ tν(α) (13)
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and the power of this test is given by:

1− β = Pr[tν,∆ ≤ tν(α)] = G[tν(α), ν,∆] (14)

Two-sided alternative (alternative="two.sided")
The standard Student’s t-test rejects the null hypothesis (1) in favor of the two-sided alternative
hypothesis (4) at level-α if

|t| ≥ tν(1− α/2) (15)

and the power of this test is given by:

1− β = Pr[tν,∆ ≤ tν(α/2)] + Pr[tν,∆ ≥ tν(1− α/2)]

= G[tν(α/2), ν,∆] + 1−G[tν(1− α/2), ν,∆] (16)

The power of the t-test given in Equation (16) can also be expressed in terms of the cumulative
distribution function of the non-central F-distribution as follows. Let Fν1,ν2,∆ denote a non-central
F random variable with ν1 and ν2 degrees of freedom and non-centrality parameter ∆, and let
H(x, ν1, ν2,∆) denote the cumulative distribution function of this random variable evaluated at x.
Also, let Fν1,ν2(p) denote the p’th quantile of the central F-distribution with ν1 and ν2 degrees of
freedom. It can be shown that

(tν,∆)2 ∼= F1,ν,∆2 (17)

where ∼= denotes “equal in distribution”. Thus, it follows that

[tν(1− α/2)]2 = F1,ν(1− α) (18)

so the formula for the power of the t-test given in Equation (16) can also be written as:

1− β = Pr{(tν,∆)2 ≥ [tν(1− α/2)]2}

= Pr[F1,ν,∆2 ≥ F1,ν(1− α)] = 1−H[F1,ν(1− α), 1, ν,∆2] (19)

Approximate Power Calculations (approx=TRUE)
Zar (2010, pp.115–118) presents an approximation to the power for the t-test given in Equations
(10), (14), and (16) above. His approximation to the power can be derived by using the approxima-
tion

√
n
δ

s
≈
√
n
δ

σ
= ∆ (20)

where≈ denotes “approximately equal to”. Zar’s approximation can be summarized in terms of the
cumulative distribution function of the non-central t-distribution as follows:

G(x, ν,∆) ≈ G(x−∆, ν, 0) = G(x−∆, ν) (21)

where G(x, ν) denotes the cumulative distribution function of the central Student’s t-distribution
with ν degrees of freedom evaluated at x.

The following three subsections explicitly derive the approximation to the power of the t-test for
each of the three alternative hypotheses.

Upper one-sided alternative (alternative="greater")
The power for the upper one-sided alternative (2) given in Equation (10) can be approximated as:

1− β = Pr[t ≥ tν(1− α)]
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= Pr[
x̄− µ
s/
√
n
≥ tν(1− α)−

√
n
δ

s
]

≈ Pr[tν ≥ tν(1− α)−∆]

= 1− Pr[tν ≤ tν(1− α)−∆]

= 1−G[tν(1− α)−∆, ν] (22)

where tν denotes a central Student’s t-random variable with ν degrees of freedom.

Lower one-sided alternative (alternative="less")
The power for the lower one-sided alternative (3) given in Equation (14) can be approximated as:

1− β = Pr[t ≤ tν(α)]

= Pr[
x̄− µ
s/
√
n
≤ tν(α)−

√
n
δ

s
]

≈ Pr[tν ≤ tν(α)−∆]

= G[tν(α)−∆, ν] (23)

Two-sided alternative (alternative="two.sided")
The power for the two-sided alternative (4) given in Equation (16) can be approximated as:

1− β = Pr[t ≤ tν(α/2)] + Pr[t ≥ tν(1− α/2)]

= Pr[
x̄− µ
s/
√
n
≤ tν(α/2)−

√
n
δ

s
] + Pr[

x̄− µ
s/
√
n
≥ tν(1− α)−

√
n
δ

s
]

≈ Pr[tν ≤ tν(α/2)−∆] + Pr[tν ≥ tν(1− α/2)−∆]

= G[tν(α/2)−∆, ν] + 1−G[tν(1− α/2)−∆, ν] (24)

Two-Sample Case (sample.type="two.sample")
Let x1 = x11, x12, . . . , x1n1

denote a vector of n1 observations from a normal distribution with
mean µ1 and standard deviation σ, and let x2 = x21, x22, . . . , x2n2

denote a vector of n2 obser-
vations from a normal distribution with mean µ2 and standard deviation σ, and consider the null
hypothesis:

H0 : µ1 = µ2 (25)

The three possible alternative hypotheses are the upper one-sided alternative (alternative="greater"):

Ha : µ1 > µ2 (26)

the lower one-sided alternative (alternative="less")

Ha : µ1 < µ2 (27)

and the two-sided alternative (alternative="two.sided")

Ha : µ1 6= µ2 (28)
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The test of the null hypothesis (25) versus any of the three alternatives (26)-(28) is based on the
Student t-statistic:

t =
x̄1 − x̄2

sp

√
1
n1

+ 1
n2

(29)

where

x̄1 =
1

n1

n1∑
i=1

x1i (30)

x̄2 =
1

n2

n2∑
i=1

x2i (31)

s2
p =

(n1 − 1)s2
1 + (n2 − 1)s2

2

n1 + n2 − 2
(32)

s2
1 =

1

n1 − 1

n1∑
i=1

(x1i − x̄1)2 (33)

s2
2 =

1

n2 − 1

n2∑
i=1

(x2i − x̄2)2 (34)

Under the null hypothesis (25), the t-statistic in (29) follows a Student’s t-distribution with n1 +
n2 − 2 degrees of freedom (Zar, 2010, Chapter 8; Johnson et al., 1995, pp.508–510, Helsel and
Hirsch, 1992, pp.124–128).

The formulas for the power of the two-sample t-test are precisely the same as those for the one-
sample case, with the following modifications:

ν = n1 + n2 − 2 (35)

∆ = sqrt
n1n2

n1 + n2

δ

σ
(36)

δ = µ1 − µ2 (37)

Note that none of the equations for the power of the t-test requires knowledge of the values δ
or σ (the population standard deviation for both populations), only the ratio δ/σ. The argument
delta.over.sigma is this ratio, and it is referred to as the “scaled difference”.

Value

a numeric vector powers.

Note

The normal distribution and lognormal distribution are probably the two most frequently used dis-
tributions to model environmental data. Often, you need to determine whether a population mean
is significantly different from a specified standard (e.g., an MCL or ACL, USEPA, 1989b, Section
6), or whether two different means are significantly different from each other (e.g., USEPA 2009,
Chapter 16). In this case, assuming normally distributed data, you can perform the Student’s t-test.

In the course of designing a sampling program, an environmental scientist may wish to determine
the relationship between sample size, significance level, power, and scaled difference if one of the
objectives of the sampling program is to determine whether a mean differs from a specified level
or two means differ from each other. The functions tTestPower, tTestN, tTestScaledMdd, and
plotTTestDesign can be used to investigate these relationships for the case of normally-distributed
observations.
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Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Berthouex, P.M., and L.C. Brown. (2002). Statistics for Environmental Engineers. Second Edition.
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Helsel, D.R., and R.M. Hirsch. (1992). Statistical Methods in Water Resources Research. Elsevier,
New York, NY, Chapter 7.

Johnson, N. L., S. Kotz, and N. Balakrishnan. (1995). Continuous Univariate Distributions, Volume
2. Second Edition. John Wiley and Sons, New York, Chapters 28, 31

Millard, S.P., and N.K. Neerchal. (2001). Environmental Statistics with S-PLUS. CRC Press, Boca
Raton, FL.

USEPA. (1989b). Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, In-
terim Final Guidance. EPA/530-SW-89-026. Office of Solid Waste, U.S. Environmental Protection
Agency, Washington, D.C.

USEPA. (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Uni-
fied Guidance. EPA 530/R-09-007, March 2009. Office of Resource Conservation and Recovery
Program Implementation and Information Division. U.S. Environmental Protection Agency, Wash-
ington, D.C.

Zar, J.H. (2010). Biostatistical Analysis. Fifth Edition. Prentice-Hall, Upper Saddle River, NJ.

See Also

tTestN, tTestScaledMdd, tTestAlpha, plotTTestDesign, Normal, t.test, Hypothesis Tests.

Examples

# Look at how the power of the one-sample t-test increases with
# increasing sample size:

seq(5, 30, by = 5)
#[1] 5 10 15 20 25 30

power <- tTestPower(n.or.n1 = seq(5, 30, by = 5), delta.over.sigma = 0.5)

round(power, 2)
#[1] 0.14 0.29 0.44 0.56 0.67 0.75

#----------

# Repeat the last example, but use the approximation.
# Note how the approximation underestimates the power
# for the smaller sample sizes.
#----------------------------------------------------

power <- tTestPower(n.or.n1 = seq(5, 30, by = 5), delta.over.sigma = 0.5,
approx = TRUE)

round(power, 2)
#[1] 0.10 0.26 0.42 0.56 0.67 0.75

#----------
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# Look at how the power of the two-sample t-test increases with increasing
# scaled difference:

seq(0.5, 2, by = 0.5)
#[1] 0.5 1.0 1.5 2.0

power <- tTestPower(10, sample.type = "two.sample",
delta.over.sigma = seq(0.5, 2, by = 0.5))

round(power, 2)
#[1] 0.19 0.56 0.89 0.99

#----------

# Look at how the power of the two-sample t-test increases with increasing values
# of Type I error:

power <- tTestPower(20, sample.type = "two.sample", delta.over.sigma = 0.5,
alpha = c(0.001, 0.01, 0.05, 0.1))

round(power, 2)
#[1] 0.03 0.14 0.34 0.46

#==========

# Modifying the example on pages 21-4 to 21-5 of USEPA (2009), determine how
# adding another four months of observations to increase the sample size from
# 4 to 8 for any one particular compliance well will affect the power of a
# one-sample t-test that compares the mean for the well with the MCL of
# 7 ppb. Use alpha = 0.01, assume an upper one-sided alternative
# (i.e., compliance well mean larger than 7 ppb), and assume a scaled
# difference of 2. (The data are stored in EPA.09.Ex.21.1.aldicarb.df.)
# Note that the power changes from 49% to 98% by increasing the sample size
# from 4 to 8.

tTestPower(n.or.n1 = c(4, 8), delta.over.sigma = 2, alpha = 0.01,
sample.type = "one.sample", alternative = "greater")

#[1] 0.4865800 0.9835401

#==========

# Clean up
#---------
rm(power)

tTestScaledMdd Scaled Minimal Detectable Difference for One- or Two-Sample t-Test

Description

Compute the scaled minimal detectable difference necessary to achieve a specified power for a one-
or two-sample t-test, given the sample size(s) and Type I error level.
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Usage

tTestScaledMdd(n.or.n1, n2 = n.or.n1, alpha = 0.05, power = 0.95,
sample.type = ifelse(!missing(n2) && !is.null(n2), "two.sample", "one.sample"),
alternative = "two.sided", two.sided.direction = "greater",
approx = FALSE, tol = 1e-07, maxiter = 1000)

Arguments

n.or.n1 numeric vector of sample sizes. When sample.type="one.sample", n.or.n1
denotes n, the number of observations in the single sample. When sample.type="two.sample",
n.or.n1 denotes n1, the number of observations from group 1. Missing (NA),
undefined (NaN), and infinite (Inf, -Inf) values are not allowed.

n2 numeric vector of sample sizes for group 2. The default value is the value of
n.or.n1. This argument is ignored when sample.type="one.sample". Miss-
ing (NA), undefined (NaN), and infinite (Inf, -Inf) values are not allowed.

alpha numeric vector of numbers between 0 and 1 indicating the Type I error level
associated with the hypothesis test. The default value is alpha=0.05.

power numeric vector of numbers between 0 and 1 indicating the power associated with
the hypothesis test. The default value is power=0.95.

sample.type character string indicating whether to compute power based on a one-sample or
two-sample hypothesis test. When sample.type="one.sample", the computed
power is based on a hypothesis test for a single mean. When sample.type="two.sample",
the computed power is based on a hypothesis test for the difference between two
means. The default value is sample.type="one.sample" unless the argument
n2 is supplied.

alternative character string indicating the kind of alternative hypothesis. The possible val-
ues are "two.sided" (the default), "greater", and "less".

two.sided.direction

character string indicating the direction (positive or negative) for the scaled min-
imal detectable difference when alternative="two.sided". When two.sided.direction="greater"
(the default), the scaled minimal detectable difference is positive. When two.sided.direction="less",
the scaled minimal detectable difference is negative. This argument is ignored
if alternative="less" or alternative="greater".

approx logical scalar indicating whether to compute the power based on an approxima-
tion to the non-central t-distribution. The default value is FALSE.

tol numeric scalar indicating the tolerance argument to pass to the uniroot func-
tion. The default value is tol=1e-7.

maxiter positive integer indicating the maximum number of iterations argument to pass
to the uniroot function. The default value is maxiter=1000.

Details

Formulas for the power of the t-test for specified values of the sample size, scaled difference, and
Type I error level are given in the help file for tTestPower. The function tTestScaledMdd uses
the uniroot search algorithm to determine the required scaled minimal detectable difference for
specified values of the sample size, power, and Type I error level.

Value

numeric vector of scaled minimal detectable differences.
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Note

See tTestPower.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

See tTestPower.

See Also

tTestPower, tTestAlpha, tTestN, plotTTestDesign, Normal, t.test, Hypothesis Tests.

Examples

# Look at how the scaled minimal detectable difference for the
# one-sample t-test increases with increasing required power:

seq(0.5, 0.9, by = 0.1)
#[1] 0.5 0.6 0.7 0.8 0.9

scaled.mdd <- tTestScaledMdd(n.or.n1 = 20, power = seq(0.5,0.9,by=0.1))

round(scaled.mdd, 2)
#[1] 0.46 0.52 0.59 0.66 0.76

#----------

# Repeat the last example, but compute the scaled minimal detectable
# differences based on the approximation to the power instead of the
# exact formula:

scaled.mdd <- tTestScaledMdd(n.or.n1 = 20, power = seq(0.5, 0.9, by = 0.1),
approx = TRUE)

round(scaled.mdd, 2)
#[1] 0.47 0.53 0.59 0.66 0.76

#==========

# Look at how the scaled minimal detectable difference for the two-sample
# t-test decreases with increasing sample size:

seq(10,50,by=10)
#[1] 10 20 30 40 50

scaled.mdd <- tTestScaledMdd(seq(10, 50, by = 10), sample.type = "two")

round(scaled.mdd, 2)
#[1] 1.71 1.17 0.95 0.82 0.73

#----------

# Look at how the scaled minimal detectable difference for the two-sample
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# t-test decreases with increasing values of Type I error:

scaled.mdd <- tTestScaledMdd(20, alpha = c(0.001, 0.01, 0.05, 0.1),
sample.type="two")

round(scaled.mdd, 2)
#[1] 1.68 1.40 1.17 1.06

#==========

# Modifying the example on pages 21-4 to 21-5 of USEPA (2009),
# determine the minimal mean level of aldicarb at the third compliance
# well necessary to detect a mean level of aldicarb greater than the
# MCL of 7 ppb, assuming 90%, 95%, and 99% power. Use a 99% significance
# level and assume an upper one-sided alternative (third compliance well
# mean larger than 7). Use the estimated standard deviation from the
# first four months of data to estimate the true population standard
# deviation in order to determine the minimal detectable difference based
# on the computed scaled minimal detectable difference, then use this
# minimal detectable difference to determine the mean level of aldicarb
# necessary to detect a difference. (The data are stored in
# EPA.09.Ex.21.1.aldicarb.df.)
#
# Note that the scaled minimal detectable difference changes from 3.4 to
# 3.9 to 4.7 as the power changes from 90% to 95% to 99%. Thus, the
# minimal detectable difference changes from 7.2 to 8.1 to 9.8, and the
# minimal mean level of aldicarb changes from 14.2 to 15.1 to 16.8.

EPA.09.Ex.21.1.aldicarb.df
# Month Well Aldicarb.ppb
#1 1 Well.1 19.9
#2 2 Well.1 29.6
#3 3 Well.1 18.7
#4 4 Well.1 24.2
#5 1 Well.2 23.7
#6 2 Well.2 21.9
#7 3 Well.2 26.9
#8 4 Well.2 26.1
#9 1 Well.3 5.6
#10 2 Well.3 3.3
#11 3 Well.3 2.3
#12 4 Well.3 6.9

sigma <- with(EPA.09.Ex.21.1.aldicarb.df,
sd(Aldicarb.ppb[Well == "Well.3"]))

sigma
#[1] 2.101388

scaled.mdd <- tTestScaledMdd(n.or.n1 = 4, alpha = 0.01,
power = c(0.90, 0.95, 0.99), sample.type="one", alternative="greater")

scaled.mdd
#[1] 3.431501 3.853682 4.668749

mdd <- scaled.mdd * sigma
mdd
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#[1] 7.210917 8.098083 9.810856

minimal.mean <- mdd + 7

minimal.mean
#[1] 14.21092 15.09808 16.81086

#==========

# Clean up
#---------
rm(scaled.mdd, sigma, mdd, minimal.mean)

twoSampleLinearRankTest

Two-Sample Linear Rank Test to Detect a Difference Between Two
Distributions

Description

Two-sample linear rank test to detect a difference (usually a shift) between two distributions. The
Wilcoxon Rank Sum test is a special case of a linear rank test. The function twoSampleLinearRankTest
is part of EnvStats mainly because this help file gives the necessary background to explain two-
sample linear rank tests for censored data (see twoSampleLinearRankTestCensored).

Usage

twoSampleLinearRankTest(x, y, location.shift.null = 0, scale.shift.null = 1,
alternative = "two.sided", test = "wilcoxon", shift.type = "location")

Arguments

x numeric vector of values for the first sample. Missing (NA), undefined (NaN), and
infinite (Inf, -Inf) values are allowed but will be removed.

y numeric vector of values for the second sample. Missing (NA), undefined (NaN),
and infinite (Inf, -Inf) values are allowed but will be removed.

location.shift.null

numeric scalar indicating the hypothesized value of ∆, the location shift be-
tween the two distributions, under the null hypothesis. The default value is
location.shift.null=0. This argument is ignored if shift.type="scale".

scale.shift.null

numeric scalar indicating the hypothesized value of τ , the scale shift between the
two distributions, under the null hypothesis. The default value is scale.shift.null=1.
This argument is ignored if shift.type="location".

alternative character string indicating the kind of alternative hypothesis. The possible val-
ues are "two.sided" (the default), "less", and "greater". See the DETAILS
section below for more information.

test character string indicating which linear rank test to use. The possible val-
ues are: "wilcoxon" (the default), "normal.scores", "moods.median", and
"savage.scores".

shift.type character string indicating which kind of shift is being tested. The possible
values are "location" (the default) and "scale".
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Details

The function twoSampleLinearRankTest allows you to compare two samples using a locally most
powerful rank test (LMPRT) to determine whether the two samples come from the same distribu-
tion. The sections below explain the concepts of location and scale shifts, linear rank tests, and
LMPRT’s.

Definitions of Location and Scale Shifts
Let X denote a random variable representing measurements from group 1 with cumulative distri-
bution function (cdf):

F1(t) = Pr(X ≤ t) (1)

and let x1, x2, . . . , xm denote m independent observations from this distribution. Let Y denote a
random variable from group 2 with cdf:

F2(t) = Pr(Y ≤ t) (2)

and let y1, y2, . . . , yn denote n independent observations from this distribution. Set N = m+ n.

General Hypotheses to Test Differences Between Two Populations
A very general hypothesis to test whether two distributions are the same is given by:

H0 : F1(t) = F2(t),−∞ < t <∞ (3)

versus the two-sided alternative hypothesis:

Ha : F1(t) 6= F2(t) (4)

with strict inequality for at least one value of t. The two possible one-sided hypotheses would be:

H0 : F1(t) ≥ F2(t) (5)

versus the alternative hypothesis:

Ha : F1(t) < F2(t) (6)

and
H0 : F1(t) ≤ F2(t) (7)

versus the alternative hypothesis:

Ha : F1(t) > F2(t) (8)

A similar set of hypotheses to test whether the two distributions are the same are given by (Conover,
1980, p. 216):

H0 : Pr(X < Y ) = 1/2 (9)

versus the two-sided alternative hypothesis:

Ha : Pr(X < Y ) 6= 1/2 (10)

or
H0 : Pr(X < Y ) ≥ 1/2 (11)

versus the alternative hypothesis:

Ha : Pr(X < Y ) < 1/2 (12)
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or
H0 : Pr(X < Y ) ≤ 1/2 (13)

versus the alternative hypothesis:

Ha : Pr(X < Y ) > 1/2 (14)

Note that this second set of hypotheses (9)–(14) is not equivalent to the set of hypotheses (3)–(8).
For example, if X takes on the values 1 and 4 with probability 1/2 for each, and Y only takes on
values in the interval (1, 4) with strict inequality at the enpoints (e.g., Y takes on the values 2 and
3 with probability 1/2 for each), then the null hypothesis (9) is true but the null hypothesis (3) is
not true. However, the null hypothesis (3) implies the null hypothesis (9), (5) implies (11), and (7)
implies (13).

Location Shift
A special case of the alternative hypotheses (4), (6), and (8) above is the location shift alternative:

Ha : F1(t) = F2(t−∆) (15)

where ∆ denotes the shift between the two groups. (Note: some references refer to (15) above
as a shift in the median, but in fact this kind of shift represents a shift in every single quantile,
not just the median.) If ∆ is positive, this means that observations in group 1 tend to be larger
than observations in group 2, and if ∆ is negative, observations in group 1 tend to be smaller than
observations in group 2.

The alternative hypothesis (15) is called a location shift: the only difference between the two dis-
tributions is a difference in location (e.g., the standard deviation is assumed to be the same for both
distributions). A location shift is not applicable to distributions that are bounded below or above
by some constant, such as a lognormal distribution. For lognormal distributions, the location shift
could refer to a shift in location of the distribution of the log-transformed observations.

For a location shift, the null hypotheses (3) can be generalized as:

H0 : F1(t) = F2(t−∆0),−∞ < t <∞ (16)

where ∆0 denotes the null shift between the two groups. Almost always, however, the null shift is
taken to be 0 and we will assume this for the rest of this help file.

Alternatively, the null and alternative hypotheses can be written as

H0 : ∆ = 0 (17)

versus the alternative hypothesis
Ha : ∆ > 0 (18)

The other one-sided alternative hypothesis (∆ < 0) and two-sided alternative hypothesis (∆ 6= 0)
could be considered as well.

The general hypotheses (3)-(14) are not location shift hypotheses (e.g., the standard deviation does
not have to be the same for both distributions), but they do allow for distributions that are bounded
below or above by a constant (e.g., lognormal distributions).

Scale Shift
A special kind of scale shift replaces the alternative hypothesis (15) with the alternative hypothesis:

Ha : F1(t) = F2(t/τ) (19)
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where τ denotes the shift in scale between the two groups. Alternatively, the null and alternative
hypotheses for this scale shift can be written as

H0 : τ = 1 (20)

versus the alternative hypothesis
Ha : τ > 1 (21)

The other one-sided alternative hypothesis (t < 1) and two-sided alternative hypothesis (t 6= 1)
could be considered as well.

This kind of scale shift often involves a shift in both location and scale. For example, suppose the
underlying distribution for both groups is exponential, with parameter rate=λ. Then the mean and
standard deviation of the reference group is 1/λ, while the mean and standard deviation of the treat-
ment group is τ/λ. In this case, the alternative hypothesis (21) implies the more general alternative
hypothesis (8).

Linear Rank Tests
The usual nonparametric test to test the null hypothesis of the same distribution for both groups
versus the location-shift alternative (18) is the Wilcoxon Rank Sum test (Gilbert, 1987, pp.247-250;
Helsel and Hirsch, 1992, pp.118-123; Hollander and Wolfe, 1999). Note that the Mann-Whitney
U test is equivalent to the Wilcoxon Rank Sum test (Hollander and Wolfe, 1999; Conover, 1980,
p.215, Zar, 2010). Hereafter, this test will be abbreviated as the MWW test. The MWW test is
performed by combining the m X observations with the n Y observations and ranking them from
smallest to largest, and then computing the statistic

W =

m∑
i=1

Ri (22)

where R1, R2, . . . , Rm denote the ranks of the X observations when the X and Y observations are
combined ranked. The null hypothesis (5), (11), or (17) is rejected in favor of the alternative hy-
pothesis (6), (12) or (18) if the value ofW is too large. For small sample sizes, the exact distribution
ofW under the null hypothesis is fairly easy to compute and may be found in tables (e.g., Hollander
and Wolfe, 1999; Conover, 1980, pp.448-452). For larger sample sizes, a normal approximation is
usually used (Hollander and Wolfe, 1999; Conover, 1980, p.217). For the R function wilcox.test,
an exact p-value is computed if the samples contain less than 50 finite values and there are no ties.

It is important to note that the MWW test is actually testing the more general hypotheses
(9)-(14) (Conover, 1980, p.216; Divine et al., 2013), even though it is often presented as only
applying to location shifts.
The MWW W-statistic in Equation (22) is an example of a linear rank statistic (Hettmansperger,
1984, p.147; Prentice, 1985), which is any statistic that can be written in the form:

L =

m∑
i=1

a(Ri) (23)

where a() denotes a score function. Statistics of this form are also called general scores statistics
(Hettmansperger, 1984, p.147). The MWW test uses the identity score function:

a(Ri) = Ri (24)

Any test based on a linear rank statistic is called a linear rank test. Under the null hypothesis (3),
(9), (17), or (20), the distribution of the linear rank statistic L does not depend on the form of the
underlying distribution of the X and Y observations. Hence, tests based on L are nonparametric
(also called distribution-free). If the null hypothesis is not true, however, the distribution of L will
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depend not only on the distributions of the X and Y observations, but also upon the form the score
function a().

Locally Most Powerful Linear Rank Tests
The decision of what scores to use may be based on considering the power of the test. A locally
most powerful rank test (LMPRT) of the null hypothesis (17) versus the alternative (18) maximizes
the slope of the power (as a function of ∆) in the neighborhood where ∆ = 0. A LMPRT of the
null hypothesis (20) versus the alternative (21) maximizes the slope of the power (as a function of
τ ) in the neighborhood where τ = 1. That is, LMPRT’s are the best linear rank test you can use for
detecting small shifts in location or scale.

Table 1 below shows the score functions associated with the LMPRT’s for various assumed under-
lying distributions (Hettmansperger, 1984, Chapter 3; Millard and Deverel, 1988, p.2090). A test
based on the identity score function of Equation (24) is equivalent to a test based on the score shown
in Table 1 associated with the logistic distribution, thus the MWW test is the LMPRT for detecting
a location shift when the underlying observations follow the logistic distribution. When the under-
lying distribution is normal or lognormal, the LMPRT for a location shift uses the “Normal scores”
shown in Table 1. When the underlying distribution is exponential, the LMPRT for detecting a scale
shift is based on the “Savage scores” shown in Table 1.

Table 1. Scores of LMPRT’s for Various Distributions

Distribution Score a(Ri) Shift Type Test Name
Logistic [2/(N + 1)]Ri − 1 Location Wilcoxon Rank Sum

Normal or Φ−1[Ri/(N + 1)]* Location Van der Waerden or
Lognormal (log-scale) Normal scores

Double Exponential sign[Ri − (N + 1)/2] Location Mood’s Median

Exponential or
∑Ri
j=1(N − j + 1)−1 Scale Savage scores

Extreme Value

* Denotes an approximation to the true score. The symbol Φ denotes the cumulative distribution
function of the standard normal distribution, and sign denotes the sign function.

A large sample normal approximation to the distribution of the linear rank statistic L for arbitrary
score functions is given by Hettmansperger (1984, p.148). Under the null hypothesis (17) or (20),
the mean and variance of L are given by:

E(L) = µL =
m

N

N∑
i=1

ai = mā (24)

V ar(L) = σ2
L =

mn

N(N − 1)

N∑
i=1

(ai − ā)2 (25)

Hettmansperger (1984, Chapter 3) shows that under the null hypothesis of no difference between
the two groups, the statistic

z =
L− µL
σL

(26)

is approximately distributed as a standard normal random variable for “large” sample sizes. This
statistic will tend to be large if the observations in group 1 tend to be larger than the observations in
group 2.
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Value

a list of class "htest" containing the results of the hypothesis test. See the help file for htest.object
for details.

Note

The Wilcoxon Rank Sum test, also known as the Mann-Whitney U test, is the standard nonpara-
metric test used to test for differences between two groups (e.g., Zar, 2010; USEPA, 2009, pp.16-14
to 16-20). Other possible nonparametric tests include linear rank tests based on scores other than
the ranks, including the “normal scores” test and the “Savage scores” tests. The normal scores test
is actually slightly more powerful than the Wilcoxon Rank Sum test for detecting small shifts in
location if the underlying distribution is normal or lognormal. In general, however, there will be
little difference between these two tests.

The results of calling the function twoSampleLinearRankTest with the argument test="wilcoxon"
will match those of calling the built-in R function wilcox.test with the arguments exact=FALSE
and correct=FALSE. In general, it is better to use the built-in function wilcox.test for perform-
ing the Wilcoxon Rank Sum test, since this function can compute exact (rather than approximate)
p-values.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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See Also

wilcox.test, twoSampleLinearRankTestCensored, htest.object.

Examples

# Generate 15 observations from a normal distribution with parameters
# mean=3 and sd=1. Call these the observations from the reference group.
# Generate 10 observations from a normal distribution with parameters
# mean=3.5 and sd=1. Call these the observations from the treatment group.
# Compare the results of calling wilcox.test to those of calling
# twoSampleLinearRankTest with test="normal.scores".
# (The call to set.seed allows you to reproduce this example.)

set.seed(346)
x <- rnorm(15, mean = 3)
y <- rnorm(10, mean = 3.5)

wilcox.test(x, y)

#Results of Hypothesis Test
#--------------------------
#
#Null Hypothesis: location shift = 0
#
#Alternative Hypothesis: True location shift is not equal to 0
#
#Test Name: Wilcoxon rank sum test
#
#Data: x and y
#
#Test Statistic: W = 32
#
#P-value: 0.0162759

twoSampleLinearRankTest(x, y, test = "normal.scores")

#Results of Hypothesis Test
#--------------------------
#
#Null Hypothesis: Fy(t) = Fx(t)
#
#Alternative Hypothesis: Fy(t) != Fx(t) for at least one t
#
#Test Name: Two-Sample Linear Rank Test:
# Normal Scores Test
# Based on Normal Approximation
#
#Data: x = x
# y = y
#
#Sample Sizes: nx = 15
# ny = 10
#
#Test Statistic: z = -2.431099
#
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#P-value: 0.01505308

#----------

# Clean up
#---------
rm(x, y)

#==========

# Following Example 6.6 on pages 6.22-6.26 of USEPA (1994b), perform the
# Wilcoxon Rank Sum test for the TcCB data (stored in EPA.94b.tccb.df).
# There are m=47 observations from the reference area and n=77 observations
# from the cleanup unit. Then compare the results using the other available
# linear rank tests. Note that Moods median test yields a p-value less
# than 0.10, while the other tests yield non-significant p-values.
# In this case, Moods median test is picking up the residual contamination
# in the cleanup unit. (See the example in the help file for quantileTest.)

names(EPA.94b.tccb.df)
#[1] "TcCB.orig" "TcCB" "Censored" "Area"

summary(EPA.94b.tccb.df$Area)
# Cleanup Reference
# 77 47

with(EPA.94b.tccb.df,
twoSampleLinearRankTest(TcCB[Area=="Cleanup"], TcCB[Area=="Reference"]))

#Results of Hypothesis Test
#--------------------------
#
#Null Hypothesis: Fy(t) = Fx(t)
#
#Alternative Hypothesis: Fy(t) != Fx(t) for at least one t
#
#Test Name: Two-Sample Linear Rank Test:
# Wilcoxon Rank Sum Test
# Based on Normal Approximation
#
#Data: x = TcCB[Area == "Cleanup"]
# y = TcCB[Area == "Reference"]
#
#Sample Sizes: nx = 77
# ny = 47
#
#Test Statistic: z = -1.171872
#
#P-value: 0.2412485

with(EPA.94b.tccb.df,
twoSampleLinearRankTest(TcCB[Area=="Cleanup"],

TcCB[Area=="Reference"], test="normal.scores"))$p.value
#[1] 0.3399484

with(EPA.94b.tccb.df,
twoSampleLinearRankTest(TcCB[Area=="Cleanup"],
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TcCB[Area=="Reference"], test="moods.median"))$p.value
#[1] 0.09707393

with(EPA.94b.tccb.df,
twoSampleLinearRankTest(TcCB[Area=="Cleanup"],

TcCB[Area=="Reference"], test="savage.scores"))$p.value
#[1] 0.2884351

twoSampleLinearRankTestCensored

Two-Sample Linear Rank Test to Detect a Difference Between Two
Distributions Based on Censored Data

Description

Two-sample linear rank test to detect a difference (usually a shift) between two distributions based
on censored data.

Usage

twoSampleLinearRankTestCensored(x, x.censored, y, y.censored,
censoring.side = "left", location.shift.null = 0, scale.shift.null = 1,
alternative = "two.sided", test = "logrank", variance = "hypergeometric",
surv.est = "prentice", shift.type = "location")

Arguments

x numeric vector of values for the first sample. Missing (NA), undefined (NaN), and
infinite (Inf, -Inf) values are allowed but will be removed.

x.censored numeric or logical vector indicating which values of x are censored. This must
be the same length as x. If the mode of x.censored is "logical", TRUE values
correspond to elements of x that are censored, and FALSE values correspond to
elements of x that are not censored. If the mode of x.censored is "numeric",
it must contain only 1’s and 0’s; 1 corresponds to TRUE and 0 corresponds to
FALSE. Missing (NA) values are allowed but will be removed.

y numeric vector of values for the second sample. Missing (NA), undefined (NaN),
and infinite (Inf, -Inf) values are allowed but will be removed.

y.censored numeric or logical vector indicating which values of y are censored. This must
be the same length as y. If the mode of y.censored is "logical", TRUE values
correspond to elements of y that are censored, and FALSE values correspond to
elements of y that are not censored. If the mode of y.censored is "numeric",
it must contain only 1’s and 0’s; 1 corresponds to TRUE and 0 corresponds to
FALSE. Missing (NA) values are allowed but will be removed.

censoring.side character string indicating on which side the censoring occurs for the data in x
and y. The possible values are "left" (the default) and "right".

location.shift.null

numeric scalar indicating the hypothesized value of ∆, the location shift be-
tween the two distributions, under the null hypothesis. The default value is
location.shift.null=0. This argument is ignored if shift.type="scale".
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scale.shift.null

numeric scalar indicating the hypothesized value of τ , the scale shift between the
two distributions, under the null hypothesis. The default value is scale.shift.null=1.
This argument is ignored if shift.type="location".

alternative character string indicating the kind of alternative hypothesis. The possible val-
ues are "two.sided" (the default), "less", and "greater". See the DETAILS
section below for more information.

test character string indicating which linear rank test to use. The possible val-
ues are: "logrank" (the default), "tarone-ware", "gehan", "peto-peto",
"normal.scores.1", "normal.scores.2", and "generalized.sign". See
the DETAILS section below for more information.

variance character string indicating which kind of variance to compute for the test. The
possible values are: "hypergeometric" (the default), "permutation", and
"asymptotic". See the DETAILS section below for more information.

surv.est character string indicating what method to use to estimate the survival function.
The possible values are "prentice" (the default), "kaplan-meier", "peto-peto",
and "altshuler". When test="logrank" the argument surv.est is automat-
ically set to "altshuler" and cannot be changed by the user. See the DETAILS
section below for more information.

shift.type character string indicating which kind of shift is being tested. The possible
values are "location" (the default) and "scale".

Details

The function twoSampleLinearRankTestCensored allows you to compare two samples contain-
ing censored observations using a linear rank test to determine whether the two samples came from
the same distribution. The help file for twoSampleLinearRankTest explains linear rank tests for
complete data (i.e., no censored observations are present), and here we assume you are familiar
with that material The sections below explain how linear rank tests can be extended to the case of
censored data.

Notation
Several authors have proposed extensions of the MWW test to the case of censored data, mainly
in the context of survival analysis (e.g., Breslow, 1970; Cox, 1972; Gehan, 1965; Mantel, 1966;
Peto and Peto, 1972; Prentice, 1978). Prentice (1978) showed how all of these proposed tests are
extensions of a linear rank test to the case of censored observations.

Survival analysis usually deals with right-censored data, whereas environmental data is rarely right-
censored but often left-censored (some observations are reported as less than some detection limit).
Fortunately, all of the methods developed for right-censored data can be applied to left-censored
data as well. (See the sub-section Left-Censored Data below.)

In order to explain Prentice’s (1978) generalization of linear rank tests to censored data, we will use
the following notation that closely follows Prentice (1978), Prentice and Marek (1979), and Latta
(1981). Let X denote a random variable representing measurements from group 1 with cumulative
distribution function (cdf):

F1(t) = Pr(X ≤ t) (1)

and let x1, x2, . . . , xm denote m independent observations from this distribution. Let Y denote a
random variable from group 2 with cdf:

F2(t) = Pr(Y ≤ t) (2)
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and let y1, y2, . . . , yn denote n independent observations from this distribution. Set N = m + n,
the total number of observations. Assume the data are right-censored so that some observations are
only recorded as greater than some censoring level, with possibly several different censoring levels.
Let t1, t2, . . . , tk denote the k ordered, unique, uncensored observations for the combined samples
(in the context of survival data, t usually stands for “time of death”). For i = 1, 2, . . . , k, let d1i

denote the number of observations from sample 1 (the X observations) that are equal to ti, and let
d2i denote the observations from sample 2 (the Y observations) equal to this value. Set

di = d1i + d2i (3)

the total number of observations equal to ti. If there are no tied uncensored observations, then
ti = 1 for i = 1, 2, . . . , k, otherwise it is greater than 1 for at least on value of i.

For i = 1, 2, . . . , k, let e1i denote the number of censored observations from sample 1 (the X ob-
servations) with censoring levels that fall into the interval [ti, ti+1) where tk+1 =∞ by definition,
and let e2i denote the number of censored observations from sample 2 (the Y observations) with
censoring levels that fall into this interval. Set

ei = e1i + e2i (4)

the total number of censoring levels that fall into this interval.

Finally, set n1i equal to the number of observations from sample 1 (uncensored and censored)
known to be greater than or equal to ti, i.e., that lie in the interval [ti,∞), set n2i equal to the
number of observations from sample 2 (uncensored and censored) that lie in this interval, and set

ni = n1i + n2i (5)

In survival analysis jargon, n1i denotes the number of people from sample 1 who are “at risk” at
time ti, that is, these people are known to still be alive at this time. Similarly, n2i denotes the num-
ber of people from sample 2 who are at risk at time ti, and ni denotes the total number of people at
risk at time ti.

Score Statistics for Multiply Censored Data
Prentice’s (1978) generalization of the two-sample score (linear rank) statistic is given by:

ν =

k∑
i=1

(d1ici + e1iCi) (6)

where ci and Ci denote the scores associated with the uncensored and censored observations, re-
spectively. As for complete data, the form of the scores depends upon the assumed underlying
distribution. Table 1 below shows scores for various assumed distributions as presented in Prentice
(1978) and Latta (1981) (also see Table 5 of Millard and Deverel, 1988, p.2091). The last column
shows what these tests reduce to in the case of complete data (no censored observations).

Table 1. Scores Associated with Various Censored Data Rank Tests

Uncensored Censored Uncensored
Distribution Score (ci) Score (Ci) Test Name Analogue
Logistic 2F̂i − 1 F̂i Peto-Peto Wilcoxon Rank Sum

" i− ni i Gehan or Breslow "

" i−√ni i Tarone-Ware "
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Normal, Φ−1(F̂i) φ(ci)/Ŝi Normal Scores 1 Normal Scores
Lognormal
" " niCi−1−ci

ni−1 Normal Scores 2 "

Double sign(F̂i − 0.5) F̂i
1−F̂i

, ifF̂i < 0.5 Generalized Mood’s Median

Exponential 1, ifF̂i ≥ 0.5 Sign

Exponential, −log(S̃i)− 1 −log(S̃i) Logrank Savage Scores
Extreme Value

In Table 1 above, Φ denotes the cumulative distribution function of the standard normal distribution,
φ denotes the probability density function of the standard normal distribution, and sign denotes the
sign function. Also, the quantities F̂i and Ŝi denote the estimates of the cumulative distribution
function (cdf) and survival function, respectively, at time ti for the combined sample. The estimated
cdf is related to the estimated survival function by:

F̂i = 1− Ŝi (7)

The quantity S̃i denotes the Altshuler (1970) estimate of the survival function at time ti for the
combined sample (see below).

The argument surv.est determines what method to use estimate the survival function. When
surv.est="prentice" (the default), the survival function is estimated as:

Ŝi,P =

i∏
j=1

nj − dj + 1

nj + 1
(8)

(Prentice, 1978). When surv.est="kaplan-meier", the survival function is estimated as:

Ŝi,KM =

i∏
j=1

nj − dj
nj

(9)

(Kaplan and Meier, 1958), and when surv.est="peto-peto", the survival function is estimated
as:

Ŝi,PP =
1

2
(Ŝi,KM + Ŝi−1,KM ) (10)

where Ŝ0,KM = 0 (Peto and Peto, 1972). All three of these estimators of the survival function
should produce very similar results. When surv.est="altshuler", the survival function is esti-
mated as:

S̃i = exp(−
i∑

j=1

dj
nj

) (11)

(Altshuler, 1970). The scores for the logrank test use this estimator of survival.

Lee and Wang (2003, p. 116) present a slightly different version of the Peto-Peto test. They use the
Peto-Peto estimate of the survival function for ci, but use the Kaplan-Meier estimate of the survival
function for Ci.

The scores for the “Normal Scores 1” test shown in Table 1 above are based on the approximation
(30) of Prentice (1978). The scores for the “Normal Scores 2” test are based on equation (7) of
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Prentice and Marek (1979). For the “Normal Scores 2” test, the following rules are used to construct
the scores for the censored observations: C0 = 0, and Ck = 0 if nk = 1.

The Distribution of the Score Statistic
Under the null hypothesis that the two distributions are the same, the expected value of the score
statistic ν in Equation (6) is 0. The variance of ν can be computed in at least three different ways.
If the censoring mechanism is the same for both groups, the permutation variance is appropriate
(variance="permutation") and its estimate is given by:

σ̂2
ν =

mn

N(N − 1)

k∑
i=1

(dic
2
i + eiC

2
i ) (12)

Often, however, it is not clear whether this assumption is valid, and both Prentice (1978) and Pren-
tice and Marek (1979) caution against using the permuation variance (Prentice and Marek, 1979,
state it can lead to inflated estimates of variance).

If the censoring mechanisms for the two groups are not necessarily the same, a more general esti-
mator of the variance is based on a conditional permutation approach. In this case, the statistic ν in
Equation (6) is re-written as:

ν =
k∑
i=1

wi[d1i − di
n1i

ni
] (13)

where
wi = ci − Ci (14)

ci and Ci are given above in Table 1, and the conditional permutation or hypergeometric estimate
(variance="hypergeometric") is given by:

σ̂2
ν =

k∑
i=1

diw
2
i (
n1i

ni
)(1− n1i

ni
)(
ni − di
ni − 1

) (15)

(Prentice and Marek, 1979; Latta, 1981; Millard and Deverel, 1988). Note that Equation (13) can
be thought of as the sum of weighed values of observed minus expected observations.

Prentice (1978) derived an asymptotic estimator of the variance of the score statistic ν given in
Equation (6) above based on the log likelihood of the rank vector (variance="asymptotic"). This
estimator is the same as the hypergeometric variance estimator for the logrank and Gehan tests
(assuming no tied uncensored observations), but for the Peto-Peto test, this estimator is given by:

σ̂2
ν =

k∑
i=1

{Ŝi(1− ai)bi − (ai − Ŝi)bi[Ŝibi + 2

k∑
j=i+1

Ŝjbj ]} (16)

where

ai =

i∏
j=1

nj + 1

nj + 2
(17)

bi = 2d1i + e1i (18)

(Prentice, 1978; Latta, 1981; Millard and Deverel, 1988). Note that equation (14) of Millard and
Deverel (1988) contains a typographical error.

The Treatment of Ties
If the hypergeometric estimator of variance is being used, no modifications need to be made for ties;
Equations (13)-(15) already account for ties. For the case of the permutation or asymptotic variance
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estimators, Equations (6), (12), and (16) all assume no ties in the uncensored observations. If ties
exist in the uncensored observations, Prentice (1978) suggests computing the scores shown in Table
1 above as if there were no ties, and then assigning average scores to the tied observations. (This
modification also applies to the quantities ai and Ŝi in Equation (16) above.) For this algorithm, the
statistic in Equation (6) is not in general the same as the one in Equation (13).

Computing a Test Statistic
Under the null hypothesis that the two distributions are the same, the statistic

z =
ν

σ̂ν
(19)

is approximately distributed as a standard normal random variable for “large” sample sizes. This
statistic will tend to be large if the observations in group 1 (the X observations) tend to be
larger than the observations in group 2 (the Y observations).

Left-Censored Data
Most of the time, if censored observations occur in environmental data, they are left-censored (e.g.,
observations are reported as less than one or more detection limits). For the two-sample test of
differences between groups, the methods that apply to right-censored data are easily adapted to left-
censored data: simply multiply the observations by -1, compute the z-statistic shown in Equation
(20), then reverse the sign of this statistic before computing the p-value.

Value

a list of class "htestCensored" containing the results of the hypothesis test. See the help file for
htestCensored.object for details.

Note

All of the tests computed by twoSampleLinearRankTestCensored (logrank, Tarone-Ware, Gehan,
Peto-Peto, normal scores, and generalized sign) are based on a statistic that is essentially the sum
over all uncensored time points of the weighted difference between the observed and expected
number of observations at each time point (see Equation (15) above). The tests differ in how they
weight the differences between the observed and expected number of observations.

Prentice and Marek (1979) point out that the Gehan test uses weights that depend on the censoring
rates within each group and can lead to non-significant outcomes in the case of heavy censoring
when in fact a very large difference between the two groups exists.

Latta (1981) performed a Monte Carlo simulation to study the power of the Gehan, logrank, and
Peto-Peto tests using all three different estimators of variance (permutation, hypergeometric, and
asymptotic). He used lognormal, Weibull, and exponential distributions to generate the observa-
tions, and studied two different cases of censoring: uniform censoring for both samples vs. no
censoring in the first sample and uniform censoring in the second sample. Latta (1981) used sample
sizes of 10 and 50 (both the equal and unequal cases were studied). Latta (1981) found that all
three tests maintained the nominal Type I error level (α-level) in the case of equal sample sizes and
equal censoring. Also, the Peto-Peto test based on the asymptotic variance appeared to maintain
the nominal α-level in all situations, but the other tests were slightly biased in the case of unequal
sample sizes and/or unequal censoring. In particular, tests based on the hypergeometric variance
are slightly biased for unequal sample sizes. Latta (1981) concludes that if there is no censoring or
light censoring, any of the tests may be used (but the hypergeometric variance should not be used if
the sample sizes are very different). In the case of heavy censoring where sample sizes are far apart
and/or the censoring is very different between samples, the Peto-Peto test based on the asymptotic
variance should be used.
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Millard and Deverel (1988) also performed a Monte Carlo simulation similar to Latta’s (1981) study.
They only used the lognormal distribution to generate observations, but also looked at the normal
scores test and two ad-hoc modifications of the MWW test. They found the “Normal Scores 2” test
shown in Table 1 above to be the best behaved test in terms of maintaining the nominal α-level, but
the other tests behaved almost as well. As Latta (1981) found, when sample sizes and censoring are
very different between the two groups, the nominal α-level of most of the tests is slightly biased.
In the cases where the nominal α-level was maintained, the Peto-Peto test based on the asymptotic
variance appeared to be as powerful or more powerful than the normal scores tests.

Neither of the Monte Carlo studies performed by Latta (1981) and Millard and Deverel (1988)
looked at the behavior of the two-sample linear rank tests in the presence of several tied uncensored
observations (because both studies generated observations from continuous distributions). Note that
the results shown in Table 9 of Millard and Deverel (1988, p.2097) are not all correct because they
did not allow for tied uncensored values. The last example in the EXAMPLES section below shows
the correct values that should appear in that table.

Heller and Venkatraman (1996) performed a Monte Carlo simulation study to compare the behav-
iors of the Peto-Peto test (using the Prentice, 1978, estimator of survival; they call this the Prentice-
Wilcoxon test) and logrank test under varying censoring conditions with sample sizes of 20 and
50 per group based on using the following methods to compute p-values: the asymptotic stan-
dard normal approximation, a permutation test approach (this is NOT the same as the permutation
variance), and a bootstrap approach. Observed times were generated from Weibull and lognormal
survival time distributions with independent uniform censoring. They found that for the Peto-Peto
test, "the asymptotic test procedure was the most accurate; resampling procedures did not improve
upon its accuracy." For the logrank test, with sample sizes of 20 per group, the usual test based on
the asymptotic standard normal approximation tended to have a very slightly higher Type I error
rate than assumed (however, for an assumed Type I error rate of 0.05, the largest Type I error rate
observed was less than 0.065), whereas the permuation and bootstrap tests performed better; with
sample sizes of 50 per group there was no difference in test performance.

Fleming and Harrington (1981) introduced a family of tests (sometimes called G-rho tests) that
contain the logrank and Peto-Peto tests as special cases. A single parameter ρ (rho) controls the
weights given to the uncensored and censored observations. Positive values of ρ produce tests more
sensitive to early differences in the survival function, that is, differences in the cdf at small values.
Negative values of ρ produce tests more sensitive to late differences in the survival function, that is,
differences in the cdf at large values.

The function survdiff in the R package survival implements the G-rho family of tests suggested
by Flemming and Harrington (1981). Calling survdiff with rho=0 (the default) yields the logrank
test. Calling survdiff with rho=1 yields the Peto-Peto test based on the Kaplan-Meier estimate
of survival. The function survdiff always uses the hypergeometric estimate of variance and the
Kaplan-Meier estimate of survival, but it uses the “left-continuous” version of the Kaplan-Meier
estimate. The left-continuous K-M estimate of survival is defined as follows: at each death (unique
uncensored observation), the estimated survival is equal to the estimated survival based on the
ordinary K-M estimate at the prior death time (or 1 for the first death).

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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See Also

twoSampleLinearRankTest, survdiff, wilcox.test, htestCensored.object.

Examples

# The last part of the EXAMPLES section in the help file for
# cdfCompareCensored compares the empirical distribution of copper and zinc
# between two sites: Alluvial Fan and Basin-Trough (Millard and Deverel, 1988).
# The data for this example are stored in Millard.Deverel.88.df. Perform a
# test to determine if there is a significant difference between these two
# sites (perform a separate test for the copper and the zinc).

Millard.Deverel.88.df
# Cu.orig Cu Cu.censored Zn.orig Zn Zn.censored Zone Location
#1 < 1 1 TRUE <10 10 TRUE Alluvial.Fan 1
#2 < 1 1 TRUE 9 9 FALSE Alluvial.Fan 2
#3 3 3 FALSE NA NA FALSE Alluvial.Fan 3
#.
#.
#.
#116 5 5 FALSE 50 50 FALSE Basin.Trough 48
#117 14 14 FALSE 90 90 FALSE Basin.Trough 49
#118 4 4 FALSE 20 20 FALSE Basin.Trough 50

#------------------------------
# First look at the copper data
#------------------------------

Cu.AF <- with(Millard.Deverel.88.df,
Cu[Zone == "Alluvial.Fan"])

Cu.AF.cen <- with(Millard.Deverel.88.df,
Cu.censored[Zone == "Alluvial.Fan"])

Cu.BT <- with(Millard.Deverel.88.df,
Cu[Zone == "Basin.Trough"])

Cu.BT.cen <- with(Millard.Deverel.88.df,
Cu.censored[Zone == "Basin.Trough"])

# Note the large number of tied observations in the copper data
#--------------------------------------------------------------

table(Cu.AF[!Cu.AF.cen])
# 1 2 3 4 5 7 8 9 10 11 12 16 20
# 5 21 6 3 3 3 1 1 1 1 1 1 1

table(Cu.BT[!Cu.BT.cen])
# 1 2 3 4 5 6 8 9 12 14 15 17 23
# 7 4 8 5 1 2 1 2 1 1 1 1 1

# Logrank test with hypergeometric variance:
#-------------------------------------------
twoSampleLinearRankTestCensored(x = Cu.AF, x.censored = Cu.AF.cen,
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y = Cu.BT, y.censored = Cu.BT.cen)

#Results of Hypothesis Test
#Based on Censored Data
#--------------------------
#
#Null Hypothesis: Fy(t) = Fx(t)
#
#Alternative Hypothesis: Fy(t) != Fx(t) for at least one t
#
#Test Name: Two-Sample Linear Rank Test:
# Logrank Test
# with Hypergeometric Variance
#
#Censoring Side: left
#
#Censoring Level(s): x = 1 5 10 20
# y = 1 2 5 10 15
#
#Data: x = Cu.AF
# y = Cu.BT
#
#Censoring Variable: x = Cu.AF.cen
# y = Cu.BT.cen
#
#Number NA/NaN/Infs Removed: x = 3
# y = 1
#
#Sample Sizes: nx = 65
# ny = 49
#
#Percent Censored: x = 26.2%
# y = 28.6%
#
#Test Statistics: nu = -1.8791355
# var.nu = 13.6533490
# z = -0.5085557
#
#P-value: 0.6110637

# Compare the p-values produced by the Normal Scores 2 test
# using the hypergeomtric vs. permutation variance estimates.
# Note how much larger the estimated variance is based on
# the permuation variance estimate:
#-----------------------------------------------------------

twoSampleLinearRankTestCensored(x = Cu.AF, x.censored = Cu.AF.cen,
y = Cu.BT, y.censored = Cu.BT.cen,
test = "normal.scores.2")$p.value

#[1] 0.2008913

twoSampleLinearRankTestCensored(x = Cu.AF, x.censored = Cu.AF.cen,
y = Cu.BT, y.censored = Cu.BT.cen,
test = "normal.scores.2", variance = "permutation")$p.value

#[1] [1] 0.657001
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#--------------------------
# Now look at the zinc data
#--------------------------

Zn.AF <- with(Millard.Deverel.88.df,
Zn[Zone == "Alluvial.Fan"])

Zn.AF.cen <- with(Millard.Deverel.88.df,
Zn.censored[Zone == "Alluvial.Fan"])

Zn.BT <- with(Millard.Deverel.88.df,
Zn[Zone == "Basin.Trough"])

Zn.BT.cen <- with(Millard.Deverel.88.df,
Zn.censored[Zone == "Basin.Trough"])

# Note the moderate number of tied observations in the zinc data,
# and the "outlier" of 620 in the Alluvial Fan data.
#---------------------------------------------------------------

table(Zn.AF[!Zn.AF.cen])
# 5 7 8 9 10 11 12 17 18 19 20 23 29 30 33 40 50 620
# 1 1 1 1 20 2 1 1 1 1 14 1 1 1 1 1 1 1

table(Zn.BT[!Zn.BT.cen])
# 3 4 5 6 8 10 11 12 13 14 15 17 20 25 30 40 50 60 70 90
# 2 2 2 1 1 5 1 2 1 1 1 2 11 1 4 3 2 2 1 1

# Logrank test with hypergeometric variance:
#-------------------------------------------
twoSampleLinearRankTestCensored(x = Zn.AF, x.censored = Zn.AF.cen,

y = Zn.BT, y.censored = Zn.BT.cen)

#Results of Hypothesis Test
#Based on Censored Data
#--------------------------
#
#Null Hypothesis: Fy(t) = Fx(t)
#
#Alternative Hypothesis: Fy(t) != Fx(t) for at least one t
#
#Test Name: Two-Sample Linear Rank Test:
# Logrank Test
# with Hypergeometric Variance
#
#Censoring Side: left
#
#Censoring Level(s): x = 3 10
# y = 3 10
#
#Data: x = Zn.AF
# y = Zn.BT
#
#Censoring Variable: x = Zn.AF.cen
# y = Zn.BT.cen
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#
#Number NA/NaN/Infs Removed: x = 1
# y = 0
#
#Sample Sizes: nx = 67
# ny = 50
#
#Percent Censored: x = 23.9%
# y = 8.0%
#
#Test Statistics: nu = -6.992999
# var.nu = 17.203227
# z = -1.686004
#
#P-value: 0.09179512

#----------

# Compare the p-values produced by the Logrank, Gehan, Peto-Peto,
# and Tarone-Ware tests using the hypergeometric variance.
#-----------------------------------------------------------

twoSampleLinearRankTestCensored(x = Zn.AF, x.censored = Zn.AF.cen,
y = Zn.BT, y.censored = Zn.BT.cen,
test = "logrank")$p.value

#[1] 0.09179512

twoSampleLinearRankTestCensored(x = Zn.AF, x.censored = Zn.AF.cen,
y = Zn.BT, y.censored = Zn.BT.cen,
test = "gehan")$p.value

#[1] 0.0185445

twoSampleLinearRankTestCensored(x = Zn.AF, x.censored = Zn.AF.cen,
y = Zn.BT, y.censored = Zn.BT.cen,
test = "peto-peto")$p.value

#[1] 0.009704529

twoSampleLinearRankTestCensored(x = Zn.AF, x.censored = Zn.AF.cen,
y = Zn.BT, y.censored = Zn.BT.cen,
test = "tarone-ware")$p.value

#[1] 0.03457803

#----------

# Clean up
#---------

rm(Cu.AF, Cu.AF.cen, Cu.BT, Cu.BT.cen,
Zn.AF, Zn.AF.cen, Zn.BT, Zn.BT.cen)

#==========

# Example 16.5 on pages 16-22 to 16.23 of USEPA (2009) shows how to perform
# the Tarone-Ware two sample linear rank test based on censored data using
# observations on tetrachloroethylene (PCE) (ppb) collected at one background
# and one compliance well. The data for this example are stored in
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# EPA.09.Ex.16.5.PCE.df.

EPA.09.Ex.16.5.PCE.df

# Well.type PCE.Orig.ppb PCE.ppb Censored
#1 Background <4 4.0 TRUE
#2 Background 1.5 1.5 FALSE
#3 Background <2 2.0 TRUE
#4 Background 8.7 8.7 FALSE
#5 Background 5.1 5.1 FALSE
#6 Background <5 5.0 TRUE
#7 Compliance 6.4 6.4 FALSE
#8 Compliance 10.9 10.9 FALSE
#9 Compliance 7 7.0 FALSE
#10 Compliance 14.3 14.3 FALSE
#11 Compliance 1.9 1.9 FALSE
#12 Compliance 10 10.0 FALSE
#13 Compliance 6.8 6.8 FALSE
#14 Compliance <5 5.0 TRUE

with(EPA.09.Ex.16.5.PCE.df,
twoSampleLinearRankTestCensored(

x = PCE.ppb[Well.type == "Compliance"],
x.censored = Censored[Well.type == "Compliance"],
y = PCE.ppb[Well.type == "Background"],
y.censored = Censored[Well.type == "Background"],
test = "tarone-ware", alternative = "greater"))

#Results of Hypothesis Test
#Based on Censored Data
#--------------------------
#
#Null Hypothesis: Fy(t) = Fx(t)
#
#Alternative Hypothesis: Fy(t) > Fx(t) for at least one t
#
#Test Name: Two-Sample Linear Rank Test:
# Tarone-Ware Test
# with Hypergeometric Variance
#
#Censoring Side: left
#
#Censoring Level(s): x = 5
# y = 2 4 5
#
#Data: x = PCE.ppb[Well.type == "Compliance"]
# y = PCE.ppb[Well.type == "Background"]
#
#Censoring Variable: x = Censored[Well.type == "Compliance"]
# y = Censored[Well.type == "Background"]
#
#Sample Sizes: nx = 8
# ny = 6
#
#Percent Censored: x = 12.5%
# y = 50.0%
#
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#Test Statistics: nu = 8.458912
# var.nu = 20.912407
# z = 1.849748
#
#P-value: 0.03217495

# Compare the p-value for the Tarone-Ware test with p-values from
# the logrank, Gehan, and Peto-Peto tests
#-----------------------------------------------------------------

with(EPA.09.Ex.16.5.PCE.df,
twoSampleLinearRankTestCensored(

x = PCE.ppb[Well.type == "Compliance"],
x.censored = Censored[Well.type == "Compliance"],
y = PCE.ppb[Well.type == "Background"],
y.censored = Censored[Well.type == "Background"],
test = "tarone-ware", alternative = "greater"))$p.value

#[1] 0.03217495

with(EPA.09.Ex.16.5.PCE.df,
twoSampleLinearRankTestCensored(

x = PCE.ppb[Well.type == "Compliance"],
x.censored = Censored[Well.type == "Compliance"],
y = PCE.ppb[Well.type == "Background"],
y.censored = Censored[Well.type == "Background"],
test = "logrank", alternative = "greater"))$p.value

#[1] 0.02752793

with(EPA.09.Ex.16.5.PCE.df,
twoSampleLinearRankTestCensored(

x = PCE.ppb[Well.type == "Compliance"],
x.censored = Censored[Well.type == "Compliance"],
y = PCE.ppb[Well.type == "Background"],
y.censored = Censored[Well.type == "Background"],
test = "gehan", alternative = "greater"))$p.value

#[1] 0.03656224

with(EPA.09.Ex.16.5.PCE.df,
twoSampleLinearRankTestCensored(

x = PCE.ppb[Well.type == "Compliance"],
x.censored = Censored[Well.type == "Compliance"],
y = PCE.ppb[Well.type == "Background"],
y.censored = Censored[Well.type == "Background"],
test = "peto-peto", alternative = "greater"))$p.value

#[1] 0.03127296

#==========

# The results shown in Table 9 of Millard and Deverel (1988, p.2097) are correct
# only for the hypergeometric variance and the modified MWW tests; the other
# results were computed as if there were no ties. Re-compute the correct
# z-statistics and p-values for the copper and zinc data.

test <- c(rep(c("gehan", "logrank", "peto-peto"), 2), "peto-peto",
"normal.scores.1", "normal.scores.2", "normal.scores.2")
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variance <- c(rep("permutation", 3), rep("hypergeometric", 3),
"asymptotic", rep("permutation", 2), "hypergeometric")

stats.mat <- matrix(as.numeric(NA), ncol = 4, nrow = 10)

for(i in 1:10) {
dum.list <- with(Millard.Deverel.88.df,

twoSampleLinearRankTestCensored(
x = Cu[Zone == "Basin.Trough"],
x.censored = Cu.censored[Zone == "Basin.Trough"],
y = Cu[Zone == "Alluvial.Fan"],
y.censored = Cu.censored[Zone == "Alluvial.Fan"],
test = test[i], variance = variance[i]))

stats.mat[i, 1:2] <- c(dum.list$statistic["z"], dum.list$p.value)

dum.list <- with(Millard.Deverel.88.df,
twoSampleLinearRankTestCensored(

x = Zn[Zone == "Basin.Trough"],
x.censored = Zn.censored[Zone == "Basin.Trough"],
y = Zn[Zone == "Alluvial.Fan"],
y.censored = Zn.censored[Zone == "Alluvial.Fan"],
test = test[i], variance = variance[i]))

stats.mat[i, 3:4] <- c(dum.list$statistic["z"], dum.list$p.value)
}

dimnames(stats.mat) <- list(paste(test, variance, sep = "."),
c("Cu.Z", "Cu.p.value", "Zn.Z", "Zn.p.value"))

round(stats.mat, 2)
# Cu.Z Cu.p.value Zn.Z Zn.p.value
#gehan.permutation 0.87 0.38 2.49 0.01
#logrank.permutation 0.79 0.43 1.75 0.08
#peto-peto.permutation 0.92 0.36 2.42 0.02
#gehan.hypergeometric 0.71 0.48 2.35 0.02
#logrank.hypergeometric 0.51 0.61 1.69 0.09
#peto-peto.hypergeometric 1.03 0.30 2.59 0.01
#peto-peto.asymptotic 0.90 0.37 2.37 0.02
#normal.scores.1.permutation 0.94 0.34 2.37 0.02
#normal.scores.2.permutation 0.98 0.33 2.39 0.02
#normal.scores.2.hypergeometric 1.28 0.20 2.48 0.01

#----------

# Clean up
#---------
rm(test, variance, stats.mat, i, dum.list)

twoSamplePermutationTestLocation

Two-Sample or Paired-Sample Randomization (Permutation) Test for
Location
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Description

Perform a two-sample or paired-sample randomization (permutation) test for location based on
either means or medians.

Usage

twoSamplePermutationTestLocation(x, y, fcn = "mean", alternative = "two.sided",
mu1.minus.mu2 = 0, paired = FALSE, exact = FALSE, n.permutations = 5000,
seed = sample(.Random.seed, size = 1), tol = sqrt(.Machine$double.eps))

Arguments

x numeric vector of observations from population 1. Missing (NA), undefined
(NaN), and infinite (Inf, -Inf) values are allowed but will be removed.

y numeric vector of observations from population 2. Missing (NA), undefined
(NaN), and infinite (Inf, -Inf) values are allowed but will be removed.
In the case when paired=TRUE, the argument y must have the same number of
elements as the argument x.

fcn character string indicating which location parameter to compare between the two
groups. The possible values are fcn="mean" (the default) and fcn="median".
This argument is ignored when paired=TRUE.

alternative character string indicating the kind of alternative hypothesis. The possible val-
ues are "two.sided" (the default), "less", and "greater".

mu1.minus.mu2 numeric scalar indicating the hypothesized value of the difference between the
means or medians. The default value is mu1.minus.mu2=0.

paired logical scalar indicating whether to perform a paired or two-sample permutation
test. The possible values are paired=FALSE (the default; indicates a two-sample
permutation test) and paired=TRUE (indicates take differences of pairs and per-
form a one-sample permutation test).

exact logical scalar indicating whether to perform the exact permutation test (i.e., enu-
merate all possible permutations) or simply sample from the permutation distri-
bution. The default value is exact=FALSE.

n.permutations integer indicating how many times to sample from the permutation distribution
when exact=FALSE. The default value is n.permutations=5000. This argu-
ment is ignored when exact=TRUE.

seed positive integer to pass to the R function set.seed. The default is seed=sample(.Random.seed, size=1),
meaning that a randomly sampled single element of the current value of .Random.seed
is used. Using the seed argument lets you reproduce the exact same result if all
other arguments stay the same.

tol numeric scalar indicating the tolerance to use for computing the p-value for the
two-sample permutation test. The default value is tol=sqrt(.Machine$double.eps).
See the DETAILS section below for more information.

Details

Randomization Tests
In 1935, R.A. Fisher introduced the idea of a randomization test (Manly, 2007, p. 107; Efron
and Tibshirani, 1993, Chapter 15), which is based on trying to answer the question: “Did the
observed pattern happen by chance, or does the pattern indicate the null hypothesis is not true?”
A randomization test works by simply enumerating all of the possible outcomes under the null
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hypothesis, then seeing where the observed outcome fits in. A randomization test is also called a
permutation test, because it involves permuting the observations during the enumeration procedure
(Manly, 2007, p. 3).

In the past, randomization tests have not been used as extensively as they are now because of the
“large” computing resources needed to enumerate all of the possible outcomes, especially for large
sample sizes. The advent of more powerful personal computers and software has allowed random-
ization tests to become much easier to perform. Depending on the sample size, however, it may still
be too time consuming to enumerate all possible outcomes. In this case, the randomization test can
still be performed by sampling from the randomization distribution, and comparing the observed
outcome to this sampled permutation distribution.

Two-Sample Randomization Test for Location (paired=FALSE)
Let x = x1, x2, . . . , xn1 be a vector of n1 independent and identically distributed (i.i.d.) obser-
vations from some distribution with location parameter (e.g., mean or median) θ1, and let y =
y1, y2, . . . , yn2 be a vector of n2 i.i.d. observations from the same distribution with possibly differ-
ent location parameter θ2.

Consider the test of the null hypothesis that the difference in the location parameters is equal to
some specified value:

H0 : δ = δ0 (1)

where
δ = θ1 − θ2 (2)

and δ0 denotes the hypothesized difference in the meansures of location (usually δ0 = 0).

The three possible alternative hypotheses are the upper one-sided alternative (alternative="greater")

Ha : δ > δ0 (3)

the lower one-sided alternative (alternative="less")

Ha : δ < δ0 (4)

and the two-sided alternative
Ha : δ 6= δ0 (5)

To perform the test of the null hypothesis (1) versus any of the three alternatives (3)-(5), you can use
the two-sample permutation test. The two sample permutation test is based on trying to answer the
question, “Did the observed difference in means or medians happen by chance, or does the observed
difference indicate that the null hypothesis is not true?” Under the null hypothesis, the underlying
distributions for each group are the same, therefore it should make no difference which group an
observation gets assigned to. The two-sample permutation test works by simply enumerating all
possible permutations of group assignments, and for each permutation computing the difference
between the measures of location for each group (Manly, 2007, p. 113; Efron and Tibshirani, 1993,
p. 202). The measure of location for a group could be the mean, median, or any other measure
you want to use. For example, if the observations from Group 1 are 3 and 5, and the observations
from Group 2 are 4, 6, and 7, then there are 10 different ways of splitting these five observations
into one group of size 2 and another group of size 3. The table below lists all of the possible group
assignments, along with the differences in the group means.

Group 1 Group 2 Mean 1 - Mean 2
3, 4 5, 6, 7 -2.5
3, 5 4, 6, 7 -1.67
3, 6 4, 5, 7 -0.83
3, 7 4, 5, 6 0
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4, 5 3, 6, 7 -0.83
4, 6 3, 5, 7 0
4, 7 3, 5, 6 0.83
5, 6 3, 4, 7 0.83
5, 7 3, 4, 6 1.67
6, 7 3, 4, 5 2.5

In this example, the observed group assignments and difference in means are shown in the second
row of the table.

For a one-sided upper alternative (Equation (3)), the p-value is computed as the proportion of times
that the differences of the means (or medians) in the permutation distribution are greater than or
equal to the observed difference in means (or medians). For a one-sided lower alternative hypothesis
(Equation (4)), the p-value is computed as the proportion of times that the differences in the means
(or medians) in the permutation distribution are less than or equal to the observed difference in the
means (or medians). For a two-sided alternative hypothesis (Equation (5)), the p-value is computed
as the proportion of times the absolute values of the differences in the means (or medians) in the
permutation distribution are greater than or equal to the absolute value of the observed difference in
the means (or medians).

For this simple example, the one-sided upper, one-sided lower, and two-sided p-values are 0.9, 0.2
and 0.4, respectively.

Note: Because of the nature of machine arithmetic and how the permutation distribution is com-
puted, a one-sided upper p-value is computed as the proportion of times that the differences of the
means (or medians) in the permutation distribution are greater than or equal to [the observed differ-
ence in means (or medians) - a small tolerance value], where the tolerance value is determined by
the argument tol. Similarly, a one-sided lower p-value is computed as the proportion of times that
the differences in the means (or medians) in the permutation distribution are less than or equal to
[the observed difference in the means (or medians) + a small tolerance value]. Finally, a two-sided
p-value is computed as the proportion of times the absolute values of the differences in the means
(or medians) in the permutation distribution are greater than or equal to [the absolute value of the
observed difference in the means (or medians) - a small tolerance value].

In this simple example, we assumed the hypothesized differences in the means under the null hy-
pothesis was δ0 = 0. If we had hypothesized a different value for δ0, then we would have had to
subtract this value from each of the observations in Group 1 before permuting the group assign-
ments to compute the permutation distribution of the differences of the means. As in the case of
the one-sample permutation test, if the sample sizes for the groups become too large to compute
all possible permutations of the group assignments, the permutation test can still be performed by
sampling from the permutation distribution and comparing the observed difference in locations to
the sampled permutation distribution of the difference in locations.

Unlike the two-sample Student’s t-test, we do not have to worry about the normality assumption
when we use a permutation test. The permutation test still assumes, however, that under the null
hypothesis, the distributions of the observations from each group are exactly the same, and under
the alternative hypothesis there is simply a shift in location (that is, the whole distribution of group
1 is shifted by some constant relative to the distribution of group 2). Mathematically, this can be
written as follows:

F1(t) = F2(t− δ), −∞ < t <∞ (6)

where F1 and F2 denote the cumulative distribution functions for group 1 and group 2, respectively.
If δ > 0, this implies that the observations in group 1 tend to be larger than the observations in
group 2, and if δ < 0, this implies that the observations in group 1 tend to be smaller than the ob-
servations in group 2. Thus, the shape and spread (variance) of the two distributions should be the
same whether the null hypothesis is true or not. Therefore, the Type I error rate for a permutation
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test can be affected by differences in variances between the two groups.

Confidence Intervals for the Difference in Means or Medians
Based on the relationship between hypothesis tests and confidence intervals, it is possible to con-
struct a two-sided or one-sided (1 − α)100% confidence interval for the difference in means or
medians based on the two-sample permutation test by finding the values of δ0 that correspond to
obtaining a p-value of α (Manly, 2007, pp. 18–20, 114). A confidence interval based on the boot-
strap however, will yield a similar type of confidence interval (Efron and Tibshirani, 1993, p. 214);
see the help file for boot in the R package boot.

Paired-Sample Randomization Test for Location (paired=TRUE)
When the argument paired=TRUE, the arguments x and y are assumed to have the same length,
and the n1 = n2 = n differences yi = xi − yi, i = 1, 2, . . . , n are assumed to be independent
observations from some symmetric distribution with mean µ. The one-sample permutation test can
then be applied to the differences.

Value

A list of class "permutationTest" containing the results of the hypothesis test. See the help file
for permutationTest.object for details.

Note

A frequent question in environmental statistics is “Is the concentration of chemical X in Area A
greater than the concentration of chemical X in Area B?”. For example, in groundwater detection
monitoring at hazardous and solid waste sites, the concentration of a chemical in the groundwater
at a downgradient well must be compared to “background”. If the concentration is “above” the
background then the site enters assessment monitoring. As another example, soil cleanup at a
Superfund site may involve comparing the concentration of a chemical in the soil at a “cleaned
up” site with the concentration at a “background” site. If the concentration at the “cleaned up”
site is “greater” than the background concentration, then further investigation and remedial action
may be required. Determining what it means for the chemical concentration to be “greater” than
background is a policy decision: you may want to compare averages, medians, 95’th percentiles,
etc.

Hypothesis tests you can use to compare “location” between two groups include: Student’s t-test,
Fisher’s randomization test (described in this help file), the Wilcoxon rank sum test, other two-
sample linear rank tests, the quantile test, and a test based on a bootstrap confidence interval.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Efron, B., and R.J. Tibshirani. (1993). An Introduction to the Bootstrap. Chapman and Hall, New
York, Chapter 15.

Manly, B.F.J. (2007). Randomization, Bootstrap and Monte Carlo Methods in Biology. Third
Edition. Chapman & Hall, New York, Chapter 6.

Millard, S.P., and N.K. Neerchal. (2001). Environmental Statistics with S-PLUS. CRC Press, Boca
Raton, FL, pp.426–431.
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See Also

permutationTest.object, plot.permutationTest, oneSamplePermutationTest, twoSamplePermutationTestProportion,
Hypothesis Tests, boot.

Examples

# Generate 10 observations from a lognormal distribution with parameters
# mean=5 and cv=2, and and 20 observations from a lognormal distribution with
# parameters mean=10 and cv=2. Test the null hypothesis that the means of the
# two distributions are the same against the alternative that the mean for
# group 1 is less than the mean for group 2.
# (Note: the call to set.seed allows you to reproduce the same data
# (dat1 and dat2), and setting the argument seed=732 in the call to
# twoSamplePermutationTestLocation() lets you reproduce this example by
# getting the same sample from the permutation distribution).

set.seed(256)
dat1 <- rlnormAlt(10, mean = 5, cv = 2)
dat2 <- rlnormAlt(20, mean = 10, cv = 2)

test.list <- twoSamplePermutationTestLocation(dat1, dat2,
alternative = "less", seed = 732)

# Print the results of the test
#------------------------------
test.list

#Results of Hypothesis Test
#--------------------------
#
#Null Hypothesis: mu.x-mu.y = 0
#
#Alternative Hypothesis: True mu.x-mu.y is less than 0
#
#Test Name: Two-Sample Permutation Test
# Based on Differences in Means
# (Based on Sampling
# Permutation Distribution
# 5000 Times)
#
#Estimated Parameter(s): mean of x = 2.253439
# mean of y = 11.825430
#
#Data: x = dat1
# y = dat2
#
#Sample Sizes: nx = 10
# ny = 20
#
#Test Statistic: mean.x - mean.y = -9.571991
#
#P-value: 0.001

# Plot the results of the test
#-----------------------------
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dev.new()
plot(test.list)

#==========

# The guidance document "Statistical Methods for Evaluating the Attainment of
# Cleanup Standards, Volume 3: Reference-Based Standards for Soils and Solid
# Media" (USEPA, 1994b, pp. 6.22-6.25) contains observations of
# 1,2,3,4-Tetrachlorobenzene (TcCB) in ppb at a Reference Area and a Cleanup Area.
# These data are stored in the data frame EPA.94b.tccb.df. Use the
# two-sample permutation test to test for a difference in means between the
# two areas vs. the alternative that the mean in the Cleanup Area is greater.
# Do the same thing for the medians.
#
# The permutation test based on comparing means shows a significant differnce,
# while the one based on comparing medians does not.

# First test for a difference in the means.
#------------------------------------------

mean.list <- with(EPA.94b.tccb.df,
twoSamplePermutationTestLocation(

TcCB[Area=="Cleanup"], TcCB[Area=="Reference"],
alternative = "greater", seed = 47))

mean.list

#Results of Hypothesis Test
#--------------------------
#
#Null Hypothesis: mu.x-mu.y = 0
#
#Alternative Hypothesis: True mu.x-mu.y is greater than 0
#
#Test Name: Two-Sample Permutation Test
# Based on Differences in Means
# (Based on Sampling
# Permutation Distribution
# 5000 Times)
#
#Estimated Parameter(s): mean of x = 3.9151948
# mean of y = 0.5985106
#
#Data: x = TcCB[Area == "Cleanup"]
# y = TcCB[Area == "Reference"]
#
#Sample Sizes: nx = 77
# ny = 47
#
#Test Statistic: mean.x - mean.y = 3.316684
#
#P-value: 0.0206

dev.new()
plot(mean.list)
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#----------

# Now test for a difference in the medians.
#------------------------------------------

median.list <- with(EPA.94b.tccb.df,
twoSamplePermutationTestLocation(

TcCB[Area=="Cleanup"], TcCB[Area=="Reference"],
fcn = "median", alternative = "greater", seed = 47))

median.list

#Results of Hypothesis Test
#--------------------------
#
#Null Hypothesis: mu.x-mu.y = 0
#
#Alternative Hypothesis: True mu.x-mu.y is greater than 0
#
#Test Name: Two-Sample Permutation Test
# Based on Differences in Medians
# (Based on Sampling
# Permutation Distribution
# 5000 Times)
#
#Estimated Parameter(s): median of x = 0.43
# median of y = 0.54
#
#Data: x = TcCB[Area == "Cleanup"]
# y = TcCB[Area == "Reference"]
#
#Sample Sizes: nx = 77
# ny = 47
#
#Test Statistic: median.x - median.y = -0.11
#
#P-value: 0.936

dev.new()
plot(median.list)

#==========

# Clean up
#---------
rm(test.list, mean.list, median.list)
graphics.off()

twoSamplePermutationTestProportion

Randomization (Permutation) Test to Compare Two Proportions
(Fisher’s Exact Test)
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Description

Perform a two-sample randomization (permutation) test to compare two proportions. This is also
called Fisher’s exact test.

Note: You can perform Fisher’s exact test in R using the function fisher.test.

Usage

twoSamplePermutationTestProportion(x, y, x.and.y = "Binomial Outcomes",
alternative = "two.sided", tol = sqrt(.Machine$double.eps))

Arguments

x, y When x.and.y="Binomial Outcomes" (the default), x and y are vectors of ob-
servations from groups 1 and 2, respectively. The vectors x and y must contain
no more than 2 unique values (e.g., 0 and 1, FALSE and TRUE, "No" and "Yes",
etc.). In this case, the result of sort(unique(x))[2] is taken to be the value that
indicates a “success” for x and the result of sort(unique(y))[2] is taken to be
the value that indicates a “success” for y. For example, x = c(FALSE, TRUE, FALSE, TRUE, TRUE)
indicates 3 successes in 5 trials, and y = c(1, 0, 0, 0) indicates 1 success in
4 trials. When x.and.y="Binomial Outcomes", missing (NA), undefined (NaN),
and infinite (Inf, -Inf) values are allowed but will be removed.
When x.and.y="Number of Successes and Trials", x must be a vector of
length 2 containing the number of successes for groups 1 and 2, respectively,
and y must be a vector of length 2 that contains the number of trials for groups
1 and 2, respectively. For example, x = c(3, 1) and y = c(5, 4) indicates 3
successes in 5 trials for group 1 and 1 success in 4 trials for group 2.

x.and.y character string indicating the kind of data stored in the vectors x and y. The pos-
sible values are x.and.y="Binomial Outcomes" (the default), and x.and.y="Number Successes and Trials".

alternative character string indicating the kind of alternative hypothesis. The possible val-
ues are "two.sided" (the default), "less", and "greater".

tol numeric scalar indicating the tolerance to use for computing the p-value for the
two-sample permutation test. The default value is tol=sqrt(.Machine$double.eps).
See the DETAILS section below for more information.

Details

Randomization Tests
In 1935, R.A. Fisher introduced the idea of a randomization test (Manly, 2007, p. 107; Efron
and Tibshirani, 1993, Chapter 15), which is based on trying to answer the question: “Did the
observed pattern happen by chance, or does the pattern indicate the null hypothesis is not true?”
A randomization test works by simply enumerating all of the possible outcomes under the null
hypothesis, then seeing where the observed outcome fits in. A randomization test is also called a
permutation test, because it involves permuting the observations during the enumeration procedure
(Manly, 2007, p. 3).

In the past, randomization tests have not been used as extensively as they are now because of the
“large” computing resources needed to enumerate all of the possible outcomes, especially for large
sample sizes. The advent of more powerful personal computers and software has allowed random-
ization tests to become much easier to perform. Depending on the sample size, however, it may still
be too time consuming to enumerate all possible outcomes. In this case, the randomization test can
still be performed by sampling from the randomization distribution, and comparing the observed
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outcome to this sampled permutation distribution.

Two-Sample Randomization Test for Proportions
Let x = x1, x2, . . . , xn1

be a vector of n1 independent and identically distributed (i.i.d.) obser-
vations from a binomial distribution with parameter size=1 and probability of success prob=p1,
and let y = y1, y2, . . . , yn2

be a vector of n2 i.i.d. observations from a binomial distribution with
parameter size=1 and probability of success prob=p2.

Consider the test of the null hypothesis:

H0 : p1 = p2 (1)

The three possible alternative hypotheses are the upper one-sided alternative (alternative="greater")

Ha : p1 > p2 (2)

the lower one-sided alternative (alternative="less")

Ha : p1 < p2 (3)

and the two-sided alternative
Ha : p1 6= p2 (4)

To perform the test of the null hypothesis (1) versus any of the three alternatives (2)-(4), you can
use the two-sample permutation test, which is also called Fisher’s exact test. When the observa-
tions are from a B(1, p) distribution, the sample mean is an estimate of p. Fisher’s exact test is
simply a permutation test for the difference between two means from two different groups (see
twoSamplePermutationTestLocation), where the underlying populations are binomial with size
parameter size=1, but possibly different values of the prob parameter p. Fisher’s exact test is usu-
ally described in terms of testing hypotheses concerning a 2 x 2 contingency table (van Bell et al.,
2004, p. 157; Hollander and Wolfe, 1999, p. 473; Sheskin, 2011; Zar, 2010, p. 561). The proba-
bilities associated with the permutation distribution can be computed by using the hypergeometric
distribution.

Value

A list of class "permutationTest" containing the results of the hypothesis test. See the help file
for permutationTest.object for details.

Note

Sometimes in environmental data analysis we are interested in determining whether two probabil-
ities or rates or proportions differ from each other. For example, we may ask the question: “Does
exposure to pesticide X increase the risk of developing cancer Y?”, where cancer Y may be liver
cancer, stomach cancer, or some other kind of cancer. One way environmental scientists attempt
to answer this kind of question is by conducting experiments on rodents in which one group (the
“treatment” or “exposed” group) is exposed to the pesticide and the other group (the control group)
is not. The incidence of cancer Y in the exposed group is compared with the incidence of can-
cer Y in the control group. (See Rodricks (2007) for a discussion of extrapolating results from
experiments involving rodents to consequences in humans and the associated difficulties).

Hypothesis tests you can use to compare proportions or probability of “success” between two groups
include Fisher’s exact test and the test based on the normal approximation (see the R help file for
prop.test).
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See Also

permutationTest.object, plot.permutationTest, twoSamplePermutationTestLocation, oneSamplePermutationTest,
Hypothesis Tests, boot.

Examples

# Generate 10 observations from a binomial distribution with parameters
# size=1 and prob=0.3, and 20 observations from a binomial distribution
# with parameters size=1 and prob=0.5. Test the null hypothesis that the
# probability of "success" for the two distributions is the same against the
# alternative that the probability of "success" for group 1 is less than
# the probability of "success" for group 2.
# (Note: the call to set.seed allows you to reproduce this example).

set.seed(23)
dat1 <- rbinom(10, size = 1, prob = 0.3)
dat2 <- rbinom(20, size = 1, prob = 0.5)

test.list <- twoSamplePermutationTestProportion(
dat1, dat2, alternative = "less")

#----------

# Print the results of the test
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#------------------------------
test.list

#Results of Hypothesis Test
#--------------------------
#
#Null Hypothesis: p.x - p.y = 0
#
#Alternative Hypothesis: True p.x - p.y is less than 0
#
#Test Name: Two-Sample Permutation Test
# Based on Differences in Proportions
# (Fishers Exact Test)
#
#Estimated Parameter(s): p.hat.x = 0.60
# p.hat.y = 0.65
#
#Data: x = dat1
# y = dat2
#
#Sample Sizes: nx = 10
# ny = 20
#
#Test Statistic: p.hat.x - p.hat.y = -0.05
#
#P-value: 0.548026

#----------

# Plot the results of the test
#------------------------------
dev.new()
plot(test.list)

#----------

# Compare to the results of fisher.test
#--------------------------------------
x11 <- sum(dat1)
x21 <- length(dat1) - sum(dat1)
x12 <- sum(dat2)
x22 <- length(dat2) - sum(dat2)
mat <- matrix(c(x11, x12, x21, x22), ncol = 2)
fisher.test(mat, alternative = "less")

#Results of Hypothesis Test
#--------------------------
#
#Null Hypothesis: odds ratio = 1
#
#Alternative Hypothesis: True odds ratio is less than 1
#
#Test Name: Fishers Exact Test for Count Data
#
#Estimated Parameter(s): odds ratio = 0.8135355
#
#Data: mat
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#
#P-value: 0.548026
#
#95% Confidence Interval: LCL = 0.000000
# UCL = 4.076077

#==========

# Rodricks (1992, p. 133) presents data from an experiment by
# Graham et al. (1975) in which different groups of rats were exposed to
# various concentration levels of ethylene thiourea (ETU), a decomposition
# product of a certain class of fungicides that can be found in treated foods.
# In the group exposed to a dietary level of 250 ppm of ETU, 16 out of 69 rats
# (23%) developed thyroid tumors, whereas in the control group
# (no exposure to ETU) only 2 out of 72 (3%) rats developed thyroid tumors.
# If we use Fishers exact test to test the null hypothesis that the proportion
# of rats exposed to 250 ppm of ETU who will develop thyroid tumors over their
# lifetime is no greater than the proportion of rats not exposed to ETU who will
# develop tumors, we get a one-sided upper p-value of 0.0002. Therefore, we
# conclude that the true underlying rate of tumor incidence in the exposed group
# is greater than in the control group.
#
# The data for this example are stored in Graham.et.al.75.etu.df.

# Look at the data
#-----------------

Graham.et.al.75.etu.df
# dose tumors n proportion
#1 0 2 72 0.02777778
#2 5 2 75 0.02666667
#3 25 1 73 0.01369863
#4 125 2 73 0.02739726
#5 250 16 69 0.23188406
#6 500 62 70 0.88571429

# Perform the test for a difference in tumor rates
#-------------------------------------------------

Num.Tumors <- with(Graham.et.al.75.etu.df, tumors[c(5, 1)])
Sample.Sizes <- with(Graham.et.al.75.etu.df, n[c(5, 1)])

test.list <- twoSamplePermutationTestProportion(
x = Num.Tumors, y = Sample.Sizes,
x.and.y="Number Successes and Trials", alternative = "greater")

#----------

# Print the results of the test
#------------------------------
test.list

#Results of Hypothesis Test
#--------------------------
#
#Null Hypothesis: p.x - p.y = 0
#
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#Alternative Hypothesis: True p.x - p.y is greater than 0
#
#Test Name: Two-Sample Permutation Test
# Based on Differences in Proportions
# (Fishers Exact Test)
#
#Estimated Parameter(s): p.hat.x = 0.23188406
# p.hat.y = 0.02777778
#
#Data: x = Num.Tumors
# n = Sample.Sizes
#
#Sample Sizes: nx = 69
# ny = 72
#
#Test Statistic: p.hat.x - p.hat.y = 0.2041063
#
#P-value: 0.0002186462

#----------

# Plot the results of the test
#------------------------------
dev.new()
plot(test.list)

#==========

# Clean up
#---------
rm(test.list, x11, x12, x21, x22, mat, Num.Tumors, Sample.Sizes)
#graphics.off()

varGroupTest Test for Homogeneity of Variance Among Two or More Groups

Description

Test the null hypothesis that the variances of two or more normal distributions are the same using
Levene’s or Bartlett’s test.

Usage

varGroupTest(object, ...)

## S3 method for class formula
varGroupTest(object, data = NULL, subset,

na.action = na.pass, ...)

## Default S3 method:
varGroupTest(object, group, test = "Levene",
correct = TRUE, data.name = NULL, group.name = NULL,
parent.of.data = NULL, subset.expression = NULL, ...)
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## S3 method for class data.frame
varGroupTest(object, ...)

## S3 method for class matrix
varGroupTest(object, ...)

## S3 method for class list
varGroupTest(object, ...)

Arguments

object an object containing data for 2 or more groups whose variances are to be com-
pared. In the default method, the argument object must be a numeric vector.
When object is a data frame, all columns must be numeric. When object is
a matrix, it must be a numeric matrix. When object is a list, all components
must be numeric vectors. In the formula method, a symbolic specification of the
form y ~ g can be given, indicating the observations in the vector y are to be
grouped according to the levels of the factor g. Missing (NA), undefined (NaN),
and infinite (Inf, -Inf) values are allowed but will be removed.

data when object is a formula, data specifies an optional data frame, list or en-
vironment (or object coercible by as.data.frame to a data frame) containing
the variables in the model. If not found in data, the variables are taken from
environment(formula), typically the environment from which
summaryStats is called.

subset when object is a formula, subset specifies an optional vector specifying a
subset of observations to be used.

na.action when object is a formula, na.action specifies a function which indicates what
should happen when the data contain NAs. The default is na.pass.

group when object is a numeric vector, group is a factor or character vector indicating
which group each observation belongs to. When object is a matrix or data
frame this argument is ignored and the columns define the groups. When object
is a list this argument is ignored and the components define the groups. When
object is a formula, this argument is ignored and the right-hand side of the
formula specifies the grouping variable.

test character string indicating which test to use. The possible values are "Levene"
(Levene’s test; the default) and "Bartlett" (Bartlett’s test).

correct logical scalar indicating whether to use the correction factor for Bartlett’s test.
The default value is correct=TRUE. This argument is ignored if test="Levene".

data.name character string indicating the name of the data used for the group variance test.
The default value is data.name=deparse(substitute(object)).

group.name character string indicating the name of the data used to create the groups. The
default value is group.name=deparse(substitute(group)).

parent.of.data character string indicating the source of the data used for the group variance test.

subset.expression

character string indicating the expression used to subset the data.

... additional arguments affecting the group variance test.
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Details

The function varGroupTest performs Levene’s or Bartlett’s test for homogeneity of variance among
two or more groups. The R function var.test compares two variances.

Bartlett’s test is very sensitive to the assumption of normality and will tend to give significant re-
sults even when the null hypothesis is true if the underlying distributions have long tails (e.g., are
leptokurtic). Levene’s test is almost as powerful as Bartlett’s test when the underlying distributions
are normal, and unlike Bartlett’s test it tends to maintain the assumed alpha-level when the underly-
ing distributions are not normal (Snedecor and Cochran, 1989, p.252; Milliken and Johnson, 1992,
p.22; Conover et al., 1981). Thus, Levene’s test is generally recommended over Bartlett’s test.

Value

a list of class "htest" containing the results of the group variance test. Objects of class "htest"
have special printing and plotting methods. See the help file for htest.object for details.

Note

Chapter 11 of USEPA (2009) discusses using Levene’s test to test the assumption of equal variances
between monitoring wells or to test that the variance is stable over time when performing intrawell
tests.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Conover, W.J., M.E. Johnson, and M.M. Johnson. (1981). A Comparative Study of Tests for Homo-
geneity of Variances, with Applications to the Outer Continental Shelf Bidding Data. Technometrics
23(4), 351-361.

Davis, C.B. (1994). Environmental Regulatory Statistics. In Patil, G.P., and C.R. Rao, eds., Hand-
book of Statistics, Vol. 12: Environmental Statistics. North-Holland, Amsterdam, a division of
Elsevier, New York, NY, Chapter 26, 817-865.

Milliken, G.A., and D.E. Johnson. (1992). Analysis of Messy Data, Volume I: Designed Experi-
ments. Chapman & Hall, New York.

Snedecor, G.W., and W.G. Cochran. (1989). Statistical Methods, Eighth Edition. Iowa State Uni-
versity Press, Ames Iowa.

USEPA. (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Uni-
fied Guidance. EPA 530/R-09-007, March 2009. Office of Resource Conservation and Recovery
Program Implementation and Information Division. U.S. Environmental Protection Agency, Wash-
ington, D.C.

USEPA. (2010). Errata Sheet - March 2009 Unified Guidance. EPA 530/R-09-007a, August 9,
2010. Office of Resource Conservation and Recovery, Program Information and Implementation
Division. U.S. Environmental Protection Agency, Washington, D.C.

Zar, J.H. (2010). Biostatistical Analysis. Fifth Edition. Prentice-Hall, Upper Saddle River, NJ.

See Also

var.test, varTest.
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Examples

# Example 11-2 of USEPA (2009, page 11-7) gives an example of
# testing the assumption of equal variances across wells for arsenic
# concentrations (ppb) in groundwater collected at 6 monitoring
# wells over 4 months. The data for this example are stored in
# EPA.09.Ex.11.1.arsenic.df.

head(EPA.09.Ex.11.1.arsenic.df)
# Arsenic.ppb Month Well
#1 22.9 1 1
#2 3.1 2 1
#3 35.7 3 1
#4 4.2 4 1
#5 2.0 1 2
#6 1.2 2 2

longToWide(EPA.09.Ex.11.1.arsenic.df, "Arsenic.ppb", "Month", "Well",
paste.row.name = TRUE, paste.col.name = TRUE)

# Well.1 Well.2 Well.3 Well.4 Well.5 Well.6
#Month.1 22.9 2.0 2.0 7.8 24.9 0.3
#Month.2 3.1 1.2 109.4 9.3 1.3 4.8
#Month.3 35.7 7.8 4.5 25.9 0.8 2.8
#Month.4 4.2 52.0 2.5 2.0 27.0 1.2

varGroupTest(Arsenic.ppb ~ Well, data = EPA.09.Ex.11.1.arsenic.df)

#Results of Hypothesis Test
#--------------------------
#
#Null Hypothesis: Ratio of each pair of variances = 1
#
#Alternative Hypothesis: At least one variance differs
#
#Test Name: Levenes Test for
# Homogenity of Variance
#
#Estimated Parameter(s): Well.1 = 246.8158
# Well.2 = 592.6767
# Well.3 = 2831.4067
# Well.4 = 105.2967
# Well.5 = 207.4467
# Well.6 = 3.9025
#
#Data: Arsenic.ppb
#
#Grouping Variable: Well
#
#Data Source: EPA.09.Ex.11.1.arsenic.df
#
#Sample Sizes: Well.1 = 4
# Well.2 = 4
# Well.3 = 4
# Well.4 = 4
# Well.5 = 4
# Well.6 = 4
#
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#Test Statistic: F = 4.564176
#
#Test Statistic Parameters: num df = 5
# denom df = 18
#
#P-value: 0.007294084

varTest One-Sample Chi-Squared Test on Variance

Description

Estimate the variance, test the null hypothesis using the chi-squared test that the variance is equal
to a user-specified value, and create a confidence interval for the variance.

Usage

varTest(x, alternative = "two.sided", conf.level = 0.95,
sigma.squared = 1, data.name = NULL)

Arguments

x numeric vector of observations. Missing (NA), undefined (NaN), and infinite (Inf,
-Inf) values are allowed but will be removed.

alternative character string indicating the kind of alternative hypothesis. The possible val-
ues are "two.sided" (the default), "greater", and "less".

conf.level numeric scalar between 0 and 1 indicating the confidence level associated with
the confidence interval for the population variance. The default value is
conf.level=0.95.

sigma.squared a numeric scalar indicating the hypothesized value of the variance. The default
value is sigma.squared=1.

data.name character string indicating the name of the data used for the test of variance.

Details

The function varTest performs the one-sample chi-squared test of the hypothesis that the popula-
tion variance is equal to the user specified value given by the argument sigma.squared, and it also
returns a confidence interval for the population variance. The R function var.test performs the
F-test for comparing two variances.

Value

A list of class "htest" containing the results of the hypothesis test. See the help file for htest.object
for details.
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Note

Just as you can perform tests of hypothesis on measures of location (mean, median, percentile,
etc.), you can do the same thing for measures of spread or variability. Usually, we are interested
in estimating variability only because we want to quantify the uncertainty of our estimated location
or percentile. Sometimes, however, we are interested in estimating variability and quantifying the
uncertainty in our estimate of variability (for example, for performing a sensitivity analysis for
power or sample size calculations), or testing whether the population variability is equal to a certain
value. There are at least two possible methods of performing a one-sample hypothesis test on
variability:

• Perform a hypothesis test for the population variance based on the chi-squared statistic, as-
suming the underlying population is normal.

• Perform a hypothesis test for any kind of measure of spread assuming any kind of underlying
distribution based on a bootstrap confidence interval (using, for example, the package boot).

You can use varTest for the first method.

Note: For a one-sample test of location, Student’s t-test is fairly robust to departures from normality
(i.e., the Type I error rate is maintained), as long as the sample size is reasonably "large." The
chi-squared test on the population variance, however, is extremely sensitive to departures from
normality. For example, if the underlying population is skewed, the actual Type I error rate will be
larger than assumed.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

van Belle, G., L.D. Fisher, Heagerty, P.J., and Lumley, T. (2004). Biostatistics: A Methodology for
the Health Sciences, 2nd Edition. John Wiley & Sons, New York.

Millard, S.P., and N.K. Neerchal. (2001). Environmental Statistics with S-PLUS. CRC Press, Boca
Raton, FL.

Zar, J.H. (2010). Biostatistical Analysis. Fifth Edition. Prentice-Hall, Upper Saddle River, NJ.

See Also

var.test, varGroupTest.

Examples

# Generate 20 observations from a normal distribution with parameters
# mean=2 and sd=1. Test the null hypothesis that the true variance is
# equal to 0.5 against the alternative that the true variance is not
# equal to 0.5.
# (Note: the call to set.seed allows you to reproduce this example).

set.seed(23)
dat <- rnorm(20, mean = 2, sd = 1)
varTest(dat, sigma.squared = 0.5)

#Results of Hypothesis Test
#--------------------------
#
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#Null Hypothesis: variance = 0.5
#
#Alternative Hypothesis: True variance is not equal to 0.5
#
#Test Name: Chi-Squared Test on Variance
#
#Estimated Parameter(s): variance = 0.753708
#
#Data: dat
#
#Test Statistic: Chi-Squared = 28.64090
#
#Test Statistic Parameter: df = 19
#
#P-value: 0.1436947
#
#95% Confidence Interval: LCL = 0.4359037
# UCL = 1.6078623

# Note that in this case we would not reject the
# null hypothesis at the 5% or even the 10% level.

# Clean up
rm(dat)

ZeroModifiedLognormal The Zero-Modified Lognormal (Delta) Distribution

Description

Density, distribution function, quantile function, and random generation for the zero-modified log-
normal distribution with parameters meanlog, sdlog, and p.zero.

The zero-modified lognormal (delta) distribution is the mixture of a lognormal distribution with a
positive probability mass at 0.

Usage

dzmlnorm(x, meanlog = 0, sdlog = 1, p.zero = 0.5)
pzmlnorm(q, meanlog = 0, sdlog = 1, p.zero = 0.5)
qzmlnorm(p, meanlog = 0, sdlog = 1, p.zero = 0.5)
rzmlnorm(n, meanlog = 0, sdlog = 1, p.zero = 0.5)

Arguments

x vector of quantiles.

q vector of quantiles.

p vector of probabilities between 0 and 1.

n sample size. If length(n) is larger than 1, then length(n) random values are
returned.

meanlog vector of means of the normal (Gaussian) part of the distribution on the log scale.
The default is meanlog=0.
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sdlog vector of (positive) standard deviations of the normal (Gaussian) part of the
distribution on the log scale. The default is sdlog=1.

p.zero vector of probabilities between 0 and 1 indicating the probability the random
variable equals 0. For rzmlnorm this must be a single, non-missing number.

Details

The zero-modified lognormal (delta) distribution is the mixture of a lognormal distribution with a
positive probability mass at 0. This distribution was introduced without a name by Aitchison (1955),
and the name ∆-distribution was coined by Aitchison and Brown (1957, p.95). It is a special case
of a “zero-modified” distribution (see Johnson et al., 1992, p. 312).

Let f(x;µ, σ) denote the density of a lognormal random variable X with parameters meanlog=µ
and sdlog=σ. The density function of a zero-modified lognormal (delta) random variable Y with
parameters meanlog=µ, sdlog=σ, and p.zero=p, denoted h(y;µ, σ, p), is given by:

h(y;µ, σ, p) = p for y = 0
(1− p)f(y;µ, σ) for y > 0

Note that µ is not the mean of the zero-modified lognormal distribution on the log scale; it is the
mean of the lognormal part of the distribution on the log scale. Similarly, σ is not the standard
deviation of the zero-modified lognormal distribution on the log scale; it is the standard deviation
of the lognormal part of the distribution on the log scale.

Let γ and δ denote the mean and standard deviation of the overall zero-modified lognormal distri-
bution on the log scale. Aitchison (1955) shows that:

E[log(Y )] = γ = (1− p)µ

V ar[log(Y )] = δ2 = (1− p)σ2 + p(1− p)µ2

Note that when p.zero=p=0, the zero-modified lognormal distribution simplifies to the lognormal
distribution.

Value

dzmlnorm gives the density, pzmlnorm gives the distribution function, qzmlnorm gives the quantile
function, and rzmlnorm generates random deviates.

Note

The zero-modified lognormal (delta) distribution is sometimes used to model chemical concentra-
tions for which some observations are reported as “Below Detection Limit” (the nondetects are
assumed equal to 0). See, for example, Gilliom and Helsel (1986), Owen and DeRouen (1980), and
Gibbons et al. (2009, Chapter 12). USEPA (2009, Chapter 15) recommends this strategy only in
specific situations, and Helsel (2012, Chapter 1) strongly discourages this approach to dealing with
non-detects.

A variation of the zero-modified lognormal (delta) distribution is the zero-modified normal distri-
bution, in which a normal distribution is mixed with a positive probability mass at 0.

One way to try to assess whether a zero-modified lognormal (delta), zero-modified normal, censored
normal, or censored lognormal is the best model for the data is to construct both censored and
detects-only probability plots (see qqPlotCensored).
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Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Aitchison, J. (1955). On the Distribution of a Positive Random Variable Having a Discrete Proba-
bility Mass at the Origin. Journal of the American Statistical Association 50, 901-908.

Aitchison, J., and J.A.C. Brown (1957). The Lognormal Distribution (with special reference to its
uses in economics). Cambridge University Press, London. pp.94-99.

Crow, E.L., and K. Shimizu. (1988). Lognormal Distributions: Theory and Applications. Marcel
Dekker, New York, pp.47-51.

Gibbons, RD., D.K. Bhaumik, and S. Aryal. (2009). Statistical Methods for Groundwater Monitor-
ing. Second Edition. John Wiley and Sons, Hoboken, NJ.

Gilliom, R.J., and D.R. Helsel. (1986). Estimation of Distributional Parameters for Censored Trace
Level Water Quality Data: 1. Estimation Techniques. Water Resources Research 22, 135-146.

Helsel, D.R. (2012). Statistics for Censored Environmental Data Using Minitab and R. Second
Edition. John Wiley and Sons, Hoboken, NJ, Chapter 1.

Johnson, N. L., S. Kotz, and A.W. Kemp. (1992). Univariate Discrete Distributions. Second
Edition. John Wiley and Sons, New York, p.312.

Owen, W., and T. DeRouen. (1980). Estimation of the Mean for Lognormal Data Containing
Zeros and Left-Censored Values, with Applications to the Measurement of Worker Exposure to Air
Contaminants. Biometrics 36, 707-719.

USEPA (1992c). Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities: Ad-
dendum to Interim Final Guidance. Office of Solid Waste, Permits and State Programs Division,
US Environmental Protection Agency, Washington, D.C.

USEPA. (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Uni-
fied Guidance. EPA 530/R-09-007, March 2009. Office of Resource Conservation and Recovery
Program Implementation and Information Division. U.S. Environmental Protection Agency, Wash-
ington, D.C.

See Also

Zero-Modified Lognormal (Alternative Parameterization), Lognormal, LognormalAlt, Zero-Modified
Normal, ezmlnorm, Probability Distributions and Random Numbers.

Examples

# Density of the zero-modified lognormal (delta) distribution with
# parameters meanlog=0, sdlog=1, and p.zero=0.5, evaluated at
# 0, 0.5, 1, 1.5, and 2:

dzmlnorm(seq(0, 2, by = 0.5))
#[1] 0.50000000 0.31374804 0.19947114 0.12248683
#[5] 0.07843701

#----------

# The cdf of the zero-modified lognormal (delta) distribution with
# parameters meanlog=1, sdlog=2, and p.zero=0.1, evaluated at 4:

pzmlnorm(4, 1, 2, .1)
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#[1] 0.6189203

#----------

# The median of the zero-modified lognormal (delta) distribution with
# parameters meanlog=2, sdlog=3, and p.zero=0.1:

qzmlnorm(0.5, 2, 3, 0.1)
#[1] 4.859177

#----------

# Random sample of 3 observations from the zero-modified lognormal
# (delta) distribution with parameters meanlog=1, sdlog=2, and p.zero=0.4.
# (Note: The call to set.seed simply allows you to reproduce this example.)

set.seed(20)
rzmlnorm(3, 1, 2, 0.4)
#[1] 0.000000 0.000000 3.146641

ZeroModifiedLognormalAlt

The Zero-Modified Lognormal (Delta) Distribution (Alternative Pa-
rameterization)

Description

Density, distribution function, quantile function, and random generation for the zero-modified log-
normal distribution with parameters mean, cv, and p.zero.

The zero-modified lognormal (delta) distribution is the mixture of a lognormal distribution with a
positive probability mass at 0.

Usage

dzmlnormAlt(x, mean = exp(1/2), cv = sqrt(exp(1) - 1), p.zero = 0.5)
pzmlnormAlt(q, mean = exp(1/2), cv = sqrt(exp(1) - 1), p.zero = 0.5)
qzmlnormAlt(p, mean = exp(1/2), cv = sqrt(exp(1) - 1), p.zero = 0.5)
rzmlnormAlt(n, mean = exp(1/2), cv = sqrt(exp(1) - 1), p.zero = 0.5)

Arguments

x vector of quantiles.
q vector of quantiles.
p vector of probabilities between 0 and 1.
n sample size. If length(n) is larger than 1, then length(n) random values are

returned.
mean vector of means of the lognormal part of the distribution on the. The default is

mean=exp(1/2).
cv vector of (positive) coefficients of variation of the lognormal part of the distri-

bution. The default is cv=sqrt(exp(1) - 1).
p.zero vector of probabilities between 0 and 1 indicating the probability the random

variable equals 0. For rzmlnormAlt this must be a single, non-missing number.
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Details

The zero-modified lognormal (delta) distribution is the mixture of a lognormal distribution with a
positive probability mass at 0. This distribution was introduced without a name by Aitchison (1955),
and the name ∆-distribution was coined by Aitchison and Brown (1957, p.95). It is a special case
of a “zero-modified” distribution (see Johnson et al., 1992, p. 312).

Let f(x; θ, τ) denote the density of a lognormal random variable X with parameters mean=θ and
cv=τ . The density function of a zero-modified lognormal (delta) random variable Y with parameters
mean=θ, cv=τ , and p.zero=p, denoted h(y; θ, τ, p), is given by:

h(y; θ, τ, p) = p for y = 0
(1− p)f(y; θ, τ) for y > 0

Note that θ is not the mean of the zero-modified lognormal distribution; it is the mean of the log-
normal part of the distribution. Similarly, τ is not the coefficient of variation of the zero-modified
lognormal distribution; it is the coefficient of variation of the lognormal part of the distribution.

Let γ, δ, and ω denote the mean, standard deviation, and coefficient of variation of the overall zero-
modified lognormal distribution. Let η denote the standard deviation of the lognormal part of the
distribution, so that η = θτ . Aitchison (1955) shows that:

E(Y ) = γ = (1− p)θ

V ar(Y ) = δ2 = (1− p)η2 + p(1− p)θ2

so that
ω =

√
(τ2 + p)/(1− p)

Note that when p.zero=p=0, the zero-modified lognormal distribution simplifies to the lognormal
distribution.

Value

dzmlnormAlt gives the density, pzmlnormAlt gives the distribution function, qzmlnormAlt gives
the quantile function, and rzmlnormAlt generates random deviates.

Note

The zero-modified lognormal (delta) distribution is sometimes used to model chemical concentra-
tions for which some observations are reported as “Below Detection Limit” (the nondetects are
assumed equal to 0). See, for example, Gilliom and Helsel (1986), Owen and DeRouen (1980), and
Gibbons et al. (2009, Chapter 12). USEPA (2009, Chapter 15) recommends this strategy only in
specific situations, and Helsel (2012, Chapter 1) strongly discourages this approach to dealing with
non-detects.

A variation of the zero-modified lognormal (delta) distribution is the zero-modified normal distri-
bution, in which a normal distribution is mixed with a positive probability mass at 0.

One way to try to assess whether a zero-modified lognormal (delta), zero-modified normal, censored
normal, or censored lognormal is the best model for the data is to construct both censored and
detects-only probability plots (see qqPlotCensored).

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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See Also

Zero-Modified Lognormal, LognormalAlt, ezmlnormAlt, Probability Distributions and Random
Numbers.

Examples

# Density of the zero-modified lognormal (delta) distribution with
# parameters mean=10, cv=1, and p.zero=0.5, evaluated at
# 9, 10, and 11:

dzmlnormAlt(9:11, mean = 10, cv = 1, p.zero = 0.5)
#[1] 0.02552685 0.02197043 0.01891924

#----------

# The cdf of the zero-modified lognormal (delta) distribution with
# parameters mean=10, cv=2, and p.zero=0.1, evaluated at 8:

pzmlnormAlt(8, 10, 2, .1)
#[1] 0.709009

#----------

# The median of the zero-modified lognormal (delta) distribution with
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# parameters mean=10, cv=2, and p.zero=0.1:

qzmlnormAlt(0.5, 10, 2, 0.1)
#[1] 3.74576

#----------

# Random sample of 3 observations from the zero-modified lognormal
# (delta) distribution with parameters mean=10, cv=2, and p.zero=0.4.
# (Note: The call to set.seed simply allows you to reproduce this example.)

set.seed(20)
rzmlnormAlt(3, 10, 2, 0.4)
#[1] 0.000000 0.000000 4.907131

ZeroModifiedNormal The Zero-Modified Normal Distribution

Description

Density, distribution function, quantile function, and random generation for the zero-modified nor-
mal distribution with parameters mean, sd, and p.zero.

The zero-modified normal distribution is the mixture of a normal distribution with a positive prob-
ability mass at 0.

Usage

dzmnorm(x, mean = 0, sd = 1, p.zero = 0.5)
pzmnorm(q, mean = 0, sd = 1, p.zero = 0.5)
qzmnorm(p, mean = 0, sd = 1, p.zero = 0.5)
rzmnorm(n, mean = 0, sd = 1, p.zero = 0.5)

Arguments

x vector of quantiles.

q vector of quantiles.

p vector of probabilities between 0 and 1.

n sample size. If length(n) is larger than 1, then length(n) random values are
returned.

mean vector of means of the normal (Gaussian) part of the distribution. The default is
mean=0.

sd vector of (positive) standard deviations of the normal (Gaussian) part of the
distribution. The default is sd=1.

p.zero vector of probabilities between 0 and 1 indicating the probability the random
variable equals 0. For rzmnorm this must be a single, non-missing number.



1144 ZeroModifiedNormal

Details

The zero-modified normal distribution is the mixture of a normal distribution with a positive prob-
ability mass at 0.

Let f(x;µ, σ) denote the density of a normal (Gaussian) random variable X with parameters
mean=µ and sd=σ. The density function of a zero-modified normal random variable Y with pa-
rameters mean=µ, sd=σ, and p.zero=p, denoted h(y;µ, σ, p), is given by:

h(y;µ, σ, p) = p for y = 0
(1− p)f(y;µ, σ) for y 6= 0

Note that µ is not the mean of the zero-modified normal distribution; it is the mean of the normal
part of the distribution. Similarly, σ is not the standard deviation of the zero-modified normal
distribution; it is the standard deviation of the normal part of the distribution.

Let γ and δ denote the mean and standard deviation of the overall zero-modified normal distribution.
Aitchison (1955) shows that:

E(Y ) = γ = (1− p)µ

V ar(Y ) = δ2 = (1− p)σ2 + p(1− p)µ2

Note that when p.zero=p=0, the zero-modified normal distribution simplifies to the normal distri-
bution.

Value

dzmnorm gives the density, pzmnorm gives the distribution function, qzmnorm gives the quantile
function, and rzmnorm generates random deviates.

Note

The zero-modified normal distribution is sometimes used to model chemical concentrations for
which some observations are reported as “Below Detection Limit”. See, for example USEPA
(1992c, pp.27-34) and Gibbons et al. (2009, Chapter 12). Note, however, that USEPA (1992c)
has been superseded by USEPA (2009) which recommends this strategy only in specific situations
(see Chapter 15 of the document). This strategy is strongly discouraged by Helsel (2012, Chapter
1).

In cases where you want to model chemical concentrations for which some observations are re-
ported as “Below Detection Limit” and you want to treat the non-detects as equal to 0, it will
usually be more appropriate to model the data with a zero-modified lognormal (delta) distribution
since chemical concentrations are bounded below at 0 (e.g., Gilliom and Helsel, 1986; Owen and
DeRouen, 1980).

One way to try to assess whether a zero-modified lognormal (delta), zero-modified normal, censored
normal, or censored lognormal is the best model for the data is to construct both censored and
detects-only probability plots (see qqPlotCensored).

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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See Also
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Examples

# Density of the zero-modified normal distribution with parameters
# mean=2, sd=1, and p.zero=0.5, evaluated at 0, 0.5, 1, 1.5, and 2:

dzmnorm(seq(0, 2, by = 0.5), mean = 2)
#[1] 0.5000000 0.0647588 0.1209854 0.1760327 0.1994711

#----------

# The cdf of the zero-modified normal distribution with parameters
# mean=3, sd=2, and p.zero=0.1, evaluated at 4:

pzmnorm(4, 3, 2, .1)
#[1] 0.7223162

#----------

# The median of the zero-modified normal distribution with parameters
# mean=3, sd=1, and p.zero=0.1:

qzmnorm(0.5, 3, 1, 0.1)
#[1] 2.86029

#----------
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# Random sample of 3 observations from the zero-modified normal distribution
# with parameters mean=3, sd=1, and p.zero=0.4.
# (Note: The call to set.seed simply allows you to reproduce this example.)

set.seed(20)
rzmnorm(3, 3, 1, 0.4)
#[1] 0.000000 0.000000 3.073168

zTestGevdShape Test Whether the Shape Parameter of a Generalized Extreme Value
Distribution is Equal to 0

Description

Estimate the shape parameter of a generalized extreme value distribution and test the null hypothesis
that the true value is equal to 0.

Usage

zTestGevdShape(x, pwme.method = "unbiased",
plot.pos.cons = c(a = 0.35, b = 0), alternative = "two.sided")

Arguments

x numeric vector of observations. Missing (NA), undefined (NaN), and infinite (Inf,
-Inf) values are allowed but will be removed.

pwme.method character string specifying the method of estimating the probability-weighted
moments. Possible values are "unbiased" (method based on the U-statistic; the
default), and "plotting.position" (plotting position). See the help file for
egevd for more information on these estimation methods.

plot.pos.cons numeric vector of length 2 specifying the constants used in the formula for the
plotting positions. The default value is plot.pos.cons=c(a=0.35, b=0). If
this vector has a names attribute with the value c("a","b") or c("b","a"),
then the elements will be matched by name in the formula for computing the
plotting positions. Otherwise, the first element is mapped to the name "a" and
the second element to the name "b". See the help file for egevd for more infor-
mation. This argument is ignored if pwme.method is not equal to "plotting.position".

alternative character string indicating the kind of alternative hypothesis. The possible val-
ues are "two.sided" (shape not equal to 0; the default), "less" (shape less than
0), and "greater" (shape greater than 0).

Details

Let x = x1, x2, . . . , xn be a vector of n observations from a generalized extreme value distri-
bution with parameters location=η, scale=θ, and shape=κ. Furthermore, let κ̂pwme denote the
probability-weighted moments estimator (PWME) of the shape parameter κ (see the help file for
egevd). Then the statistic

z =
κ̂pwme√
0.5633/n

(1)

is asymptotically distributed as a N(0,1) random variable under the null hypothesis H0 : κ = 0
(Hosking et al., 1985). The function zTestGevdShape performs the usual one-sample z-test using
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the statistic computed in Equation (1). The PWME of κ may be computed using either U-statistic
type probability-weighted moments estimators or plotting-position type estimators (see egevd). Al-
though Hosking et al. (1985) base their statistic on plotting-position type estimators, Hosking and
Wallis (1995) recommend using the U-statistic type estimators for almost all applications.

This test is only asymptotically correct. Hosking et al. (1985), however, found that the α-level is
adequately maintained for samples as small as n = 25.

Value

A list of class "htest" containing the results of the hypothesis test. See the help file for htest.object
for details.

Note

Two-parameter extreme value distributions (EVD) have been applied extensively since the 1930’s
to several fields of study, including the distributions of hydrological and meteorological variables,
human lifetimes, and strength of materials. The three-parameter generalized extreme value dis-
tribution (GEVD) was introduced by Jenkinson (1955) to model annual maximum and minimum
values of meteorological events. Since then, it has been used extensively in the hydological and
meteorological fields.

The three families of EVDs are all special kinds of GEVDs. When the shape parameter κ = 0,
the GEVD reduces to the Type I extreme value (Gumbel) distribution. When κ > 0, the GEVD is
the same as the Type II extreme value distribution, and when κ < 0 it is the same as the Type III
extreme value distribution.

Hosking et al. (1985) introduced the test used by the function zTestGevdShape to test the null
hypothesis H0 : κ = 0. They found this test has power comparable to the modified likelihood-ratio
test, which was found by Hosking (1984) to be the best overall test the thirteen tests he considered.

Fill and Stedinger (1995) denote this test the “kappa test” and compare it with the L-Cs test sug-
gested by Chowdhury et al. (1991) and the probability plot correlation coefficient goodness-of-fit
test for the Gumbel distribution given by Vogel (1986) (see the sub-section for test="ppcc" under
the Details section of the help file for gofTest).

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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Vogel, R.M. (1986). The Probability Plot Correlation Coefficient Test for the Normal, Lognormal,
and Gumbel Distributional Hypotheses. Water Resources Research 22(4), 587–590. (Correction,
Water Resources Research 23(10), 2013, 1987.)

See Also

GEVD, egevd, EVD, eevd, Goodness-of-Fit Tests, htest.object.

Examples

# Generate 25 observations from a generalized extreme value distribution with
# parameters location=2, scale=1, and shape=1, and test the null hypothesis
# that the shape parameter is equal to 0.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(250)

dat <- rgevd(25, location = 2, scale = 1, shape = 1)

zTestGevdShape(dat)

#Results of Hypothesis Test
#--------------------------
#
#Null Hypothesis: shape = 0
#
#Alternative Hypothesis: True shape is not equal to 0
#
#Test Name: Z-test of shape=0 for GEVD
#
#Estimated Parameter(s): shape = 0.6623014
#
#Estimation Method: Unbiased pwme
#
#Data: dat
#
#Sample Size: 25
#
#Test Statistic: z = 4.412206
#
#P-value: 1.023225e-05

#----------

# Clean up
#---------
rm(dat)
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∗Topic classes
boxcox.object, 33
boxcoxCensored.object, 45
boxcoxLm.object, 48
estimate.object, 428
estimateCensored.object, 432
gof.object, 483
gofCensored.object, 486
gofGroup.object, 489
gofTwoSample.object, 532
htest.object, 546
htestCensored.object, 549
permutationTest.object, 636
summaryStats.object, 1004

∗Topic datagen
Chi, 80
Empirical, 245
EVD, 440
GammaAlt, 474
GEVD, 480
Lognormal3, 600
LognormalAlt, 603
LognormalMix, 606
LognormalMixAlt, 608
LognormalTrunc, 610
LognormalTruncAlt, 612
NormalMix, 620
NormalTrunc, 622
Pareto, 631
simulateMvMatrix, 969
simulateVector, 977
Triangular, 1063
ZeroModifiedLognormal, 1137
ZeroModifiedLognormalAlt, 1140
ZeroModifiedNormal, 1143

∗Topic datasets
Benthic.df, 23
Distribution.df, 124
Environmental, 283
EPA.02d.Ex.2.ug.per.L.vec, 285
EPA.02d.Ex.4.mg.per.kg.vec, 285
EPA.02d.Ex.6.mg.per.kg.vec, 286
EPA.02d.Ex.9.mg.per.L.vec, 286

EPA.09.Ex.10.1.nickel.df, 287
EPA.09.Ex.11.1.arsenic.df, 287
EPA.09.Ex.12.1.ccl4.df, 288
EPA.09.Ex.12.4.naphthalene.df, 289
EPA.09.Ex.13.1.iron.df, 289
EPA.09.Ex.14.1.manganese.df, 290
EPA.09.Ex.14.3.alkalinity.df, 291
EPA.09.Ex.14.4.arsenic.df, 291
EPA.09.Ex.14.8.df, 292
EPA.09.Ex.15.1.manganese.df, 293
EPA.09.Ex.16.1.sulfate.df, 293
EPA.09.Ex.16.2.benzene.df, 294
EPA.09.Ex.16.4.copper.df, 295
EPA.09.Ex.16.5.PCE.df, 295
EPA.09.Ex.17.1.loglead.df, 296
EPA.09.Ex.17.2.toluene.df, 297
EPA.09.Ex.17.3.chrysene.df, 297
EPA.09.Ex.17.3.log.chrysene.df,

298
EPA.09.Ex.17.4.copper.df, 299
EPA.09.Ex.17.5.chloride.df, 299
EPA.09.Ex.17.6.sulfate.df, 300
EPA.09.Ex.17.7.sodium.df, 301
EPA.09.Ex.18.1.arsenic.df, 302
EPA.09.Ex.18.2.chrysene.df, 302
EPA.09.Ex.18.3.TCE.df, 303
EPA.09.Ex.18.4.xylene.df, 304
EPA.09.Ex.19.1.sulfate.df, 304
EPA.09.Ex.19.2.chloride.df, 305
EPA.09.Ex.19.5.mercury.df, 306
EPA.09.Ex.20.1.nickel.df, 306
EPA.09.Ex.21.1.aldicarb.df, 307
EPA.09.Ex.21.2.benzene.df, 308
EPA.09.Ex.21.5.beryllium.df, 308
EPA.09.Ex.21.6.nitrate.df, 309
EPA.09.Ex.21.7.TCE.df, 310
EPA.09.Ex.22.1.VC.df, 310
EPA.09.Ex.22.2.Specific.Conductance.df,

311
EPA.09.Ex.6.3.sulfate.df, 312
EPA.09.Ex.7.1.arsenic.df, 312
EPA.09.Table.9.1.TCE.df, 313
EPA.09.Table.9.3.df, 314
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EPA.09.Table.9.4.nickel.vec, 314
EPA.89b.aldicarb1.df, 315
EPA.89b.aldicarb2.df, 316
EPA.89b.benzene.df, 316
EPA.89b.cadmium.df, 317
EPA.89b.chlordane1.df, 317
EPA.89b.chlordane2.df, 318
EPA.89b.edb.df, 318
EPA.89b.lead.df, 319
EPA.89b.loglead.df, 320
EPA.89b.manganese.df, 320
EPA.89b.sulfate.df, 321
EPA.89b.t29.df, 321
EPA.89b.toc.vec, 322
EPA.92c.arsenic1.df, 322
EPA.92c.arsenic2.df, 323
EPA.92c.arsenic3.df, 323
EPA.92c.benzene1.df, 324
EPA.92c.benzene2.df, 324
EPA.92c.ccl4.df, 325
EPA.92c.chrysene.df, 326
EPA.92c.copper1.df, 326
EPA.92c.copper2.df, 327
EPA.92c.lognickel1.df, 327
EPA.92c.nickel1.df, 328
EPA.92c.nickel2.df, 328
EPA.92c.toluene.df, 329
EPA.92c.zinc.df, 329
EPA.92d.chromium.df, 330
EPA.92d.chromium.vec, 331
EPA.94b.lead.df, 331
EPA.94b.tccb.df, 332
EPA.97.cadmium.111.df, 332
Gibbons.et.al.09.Alkilinity.vec,

482
Gibbons.et.al.09.Vinyl.Chloride.vec,

483
Graham.et.al.75.etu.df, 540
Helsel.Cohn.88.app.b.df, 541
Helsel.Cohn.88.silver.df, 541
Lin.Evans.80.df, 582
Millard.Deverel.88.df, 617
Modified.TcCB.df, 618
NIOSH.89.air.lead.vec, 619
Olympic.NH4.df, 624
Ozone.NE.df, 630
Refinery.CO.df, 954
Skagit.NH3_N.df, 980
Total.P.df, 1062

∗Topic design
aovN, 15
aovPower, 17

ciBinomHalfWidth, 81
ciBinomN, 87
ciNormHalfWidth, 94
ciNormN, 98
ciNparConfLevel, 101
ciNparN, 105
ciTableMean, 106
ciTableProp, 113
linearTrendTestN, 583
linearTrendTestPower, 585
linearTrendTestScaledMds, 592
plotAovDesign, 670
plotCiBinomDesign, 674
plotCiNormDesign, 680
plotCiNparDesign, 684
plotLinearTrendTestDesign, 687
plotPredIntNormDesign, 698
plotPredIntNormSimultaneousTestPowerCurve,

702
plotPredIntNparDesign, 709
plotPredIntNparSimultaneousDesign,

712
plotPredIntNparSimultaneousTestPowerCurve,

716
plotPropTestDesign, 720
plotTolIntNormDesign, 725
plotTolIntNparDesign, 728
plotTTestDesign, 731
plotTTestLnormAltDesign, 735
predIntNormHalfWidth, 802
predIntNormN, 811
predIntNormSimultaneousTestPower,

833
predIntNparConfLevel, 852
predIntNparN, 854
predIntNparSimultaneous, 858
predIntNparSimultaneousConfLevel,

869
predIntNparSimultaneousN, 874
propTestMdd, 905
propTestN, 911
propTestPower, 918
tolIntNormHalfWidth, 1033
tolIntNormN, 1042
tolIntNparConfLevel, 1051
tolIntNparCoverage, 1054
tolIntNparN, 1056
tTestAlpha, 1065
tTestLnormAltN, 1068
tTestLnormAltPower, 1072
tTestLnormAltRatioOfMeans, 1078
tTestN, 1082
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tTestPower, 1085
tTestScaledMdd, 1092

∗Topic distribution
CastilloAndHadi1994, 56
cdfCompare, 59
cdfCompareCensored, 63
cdfPlot, 71
Chi, 80
ciBinomHalfWidth, 81
ciBinomN, 87
ciNormHalfWidth, 94
ciNormN, 98
ciNparConfLevel, 101
ciNparN, 105
ciTableMean, 106
ciTableProp, 113
ebeta, 131
ebinom, 133
ecdfPlot, 140
ecdfPlotCensored, 144
eevd, 149
eexp, 154
egamma, 157
egammaAltCensored, 165
egammaCensored, 173
egeom, 181
egevd, 183
ehyper, 189
elnorm, 192
elnorm3, 194
elnormAlt, 206
elnormAltCensored, 218
elnormCensored, 233
elogis, 242
Empirical, 245
enbinom, 249
enorm, 252
enormCensored, 257
enparCensored, 275
epareto, 333
epdfPlot, 335
epois, 338
epoisCensored, 341
eqbeta, 349
eqbinom, 351
eqevd, 354
eqexp, 357
eqgamma, 359
eqgeom, 364
eqgevd, 366
eqhyper, 369
eqlnorm, 372

eqlnorm3, 376
eqlnormCensored, 379
eqlogis, 386
eqnbinom, 388
eqnorm, 390
eqnormCensored, 396
eqnpar, 404
eqpareto, 413
eqpois, 415
equnif, 419
eqweibull, 421
eqzmlnorm, 423
eqzmnorm, 426
EulersConstant, 436
eunif, 437
EVD, 440
evNormOrdStats, 442
eweibull, 444
ezmlnorm, 447
ezmnorm, 452
GammaAlt, 474
GEVD, 480
gpqCiNormCensored, 534
gpqTolIntNormCensored, 537
HoskingEtAl1985, 542
linearTrendTestN, 583
linearTrendTestPower, 585
linearTrendTestScaledMds, 592
lMoment, 595
Lognormal3, 600
LognormalAlt, 603
LognormalMix, 606
LognormalMixAlt, 608
LognormalTrunc, 610
LognormalTruncAlt, 612
NormalMix, 620
NormalTrunc, 622
Pareto, 631
pdfPlot, 633
plotCiBinomDesign, 674
plotCiNormDesign, 680
plotCiNparDesign, 684
plotLinearTrendTestDesign, 687
plotPredIntLnormAltSimultaneousTestPowerCurve,

690
plotPredIntLnormAltTestPowerCurve,

695
plotPredIntNormDesign, 698
plotPredIntNormSimultaneousTestPowerCurve,

702
plotPredIntNormTestPowerCurve, 706
plotPredIntNparDesign, 709
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plotPredIntNparSimultaneousDesign,
712

plotPredIntNparSimultaneousTestPowerCurve,
716

plotPropTestDesign, 720
plotTolIntNormDesign, 725
plotTolIntNparDesign, 728
plotTTestDesign, 731
plotTTestLnormAltDesign, 735
ppointsCensored, 744
predIntGamma, 758
predIntGammaSimultaneous, 765
predIntLnorm, 774
predIntLnormAltSimultaneousTestPower,

782
predIntLnormAltTestPower, 786
predIntLnormSimultaneous, 788
predIntNorm, 796
predIntNormHalfWidth, 802
predIntNormK, 806
predIntNormN, 811
predIntNormSimultaneous, 814
predIntNormSimultaneousK, 825
predIntNormSimultaneousTestPower,

833
predIntNormTestPower, 840
predIntNpar, 843
predIntNparConfLevel, 852
predIntNparN, 854
predIntNparSimultaneous, 858
predIntNparSimultaneousConfLevel,

869
predIntNparSimultaneousN, 874
predIntNparSimultaneousTestPower,

878
predIntPois, 884
pwMoment, 923
qqPlot, 927
qqPlotCensored, 936
qqPlotGestalt, 943
simulateMvMatrix, 969
simulateVector, 977
tolIntGamma, 1005
tolIntLnorm, 1013
tolIntLnormCensored, 1018
tolIntNorm, 1023
tolIntNormCensored, 1028
tolIntNormHalfWidth, 1033
tolIntNormK, 1037
tolIntNormN, 1042
tolIntNpar, 1045
tolIntNparConfLevel, 1051

tolIntNparCoverage, 1054
tolIntNparN, 1056
tolIntPois, 1058
Triangular, 1063
tTestAlpha, 1065
tTestLnormAltN, 1068
tTestLnormAltPower, 1072
tTestLnormAltRatioOfMeans, 1078
tTestN, 1082
tTestPower, 1085
tTestScaledMdd, 1092
ZeroModifiedLognormal, 1137
ZeroModifiedLognormalAlt, 1140
ZeroModifiedNormal, 1143

∗Topic dplot
ppointsCensored, 744

∗Topic hplot
cdfCompare, 59
cdfCompareCensored, 63
cdfPlot, 71
ecdfPlot, 140
ecdfPlotCensored, 144
epdfPlot, 335
pdfPlot, 633
plotAovDesign, 670
plotCiBinomDesign, 674
qqPlot, 927
qqPlotCensored, 936
qqPlotGestalt, 943
stripChart, 984

∗Topic htest
aovN, 15
aovPower, 17
chenTTest, 74
ciBinomHalfWidth, 81
ciBinomN, 87
ciNormHalfWidth, 94
ciNormN, 98
ciNparConfLevel, 101
ciNparN, 105
ciTableMean, 106
ciTableProp, 113
ebeta, 131
ebinom, 133
eevd, 149
eexp, 154
egamma, 157
egammaAltCensored, 165
egammaCensored, 173
egeom, 181
egevd, 183
ehyper, 189
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elnorm, 192
elnorm3, 194
elnormAlt, 206
elnormAltCensored, 218
elnormCensored, 233
elogis, 242
enbinom, 249
enorm, 252
enormCensored, 257
enparCensored, 275
epareto, 333
epois, 338
epoisCensored, 341
eqbeta, 349
eqbinom, 351
eqevd, 354
eqexp, 357
eqgamma, 359
eqgeom, 364
eqgevd, 366
eqhyper, 369
eqlnorm, 372
eqlnorm3, 376
eqlnormCensored, 379
eqlogis, 386
eqnbinom, 388
eqnorm, 390
eqnormCensored, 396
eqnpar, 404
eqpareto, 413
eqpois, 415
equnif, 419
eqweibull, 421
eqzmlnorm, 423
eqzmnorm, 426
eunif, 437
eweibull, 444
ezmlnorm, 447
ezmnorm, 452
gofGroupTest, 492
gofTest, 499
gofTestCensored, 519
gpqCiNormCensored, 534
gpqTolIntNormCensored, 537
kendallSeasonalTrendTest, 557
kendallTrendTest, 571
linearTrendTestN, 583
linearTrendTestPower, 585
linearTrendTestScaledMds, 592
lMoment, 595
oneSamplePermutationTest, 625
plotAovDesign, 670

plotCiBinomDesign, 674
plotCiNormDesign, 680
plotCiNparDesign, 684
plotLinearTrendTestDesign, 687
plotPredIntLnormAltSimultaneousTestPowerCurve,

690
plotPredIntLnormAltTestPowerCurve,

695
plotPredIntNormDesign, 698
plotPredIntNormSimultaneousTestPowerCurve,

702
plotPredIntNormTestPowerCurve, 706
plotPredIntNparDesign, 709
plotPredIntNparSimultaneousDesign,

712
plotPredIntNparSimultaneousTestPowerCurve,

716
plotPropTestDesign, 720
plotTolIntNormDesign, 725
plotTolIntNparDesign, 728
plotTTestDesign, 731
plotTTestLnormAltDesign, 735
predIntGamma, 758
predIntGammaSimultaneous, 765
predIntLnorm, 774
predIntLnormAltSimultaneousTestPower,

782
predIntLnormAltTestPower, 786
predIntLnormSimultaneous, 788
predIntNorm, 796
predIntNormHalfWidth, 802
predIntNormK, 806
predIntNormN, 811
predIntNormSimultaneous, 814
predIntNormSimultaneousK, 825
predIntNormSimultaneousTestPower,

833
predIntNormTestPower, 840
predIntNpar, 843
predIntNparConfLevel, 852
predIntNparN, 854
predIntNparSimultaneous, 858
predIntNparSimultaneousConfLevel,

869
predIntNparSimultaneousN, 874
predIntNparSimultaneousTestPower,

878
predIntPois, 884
propTestMdd, 905
propTestN, 911
propTestPower, 918
pwMoment, 923
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quantileTest, 947
quantileTestPValue, 952
signTest, 965
stripChart, 984
summaryStats, 995
tolIntGamma, 1005
tolIntLnorm, 1013
tolIntLnormCensored, 1018
tolIntNorm, 1023
tolIntNormCensored, 1028
tolIntNormHalfWidth, 1033
tolIntNormK, 1037
tolIntNormN, 1042
tolIntNpar, 1045
tolIntNparConfLevel, 1051
tolIntNparCoverage, 1054
tolIntNparN, 1056
tolIntPois, 1058
tTestAlpha, 1065
tTestLnormAltN, 1068
tTestLnormAltPower, 1072
tTestLnormAltRatioOfMeans, 1078
tTestN, 1082
tTestPower, 1085
tTestScaledMdd, 1092
twoSampleLinearRankTest, 1096
twoSampleLinearRankTestCensored,

1104
twoSamplePermutationTestLocation,

1118
twoSamplePermutationTestProportion,

1125
varGroupTest, 1131
varTest, 1135
zTestGevdShape, 1146

∗Topic manip
longToWide, 615

∗Topic math
base, 21

∗Topic models
anovaPE, 13
aovN, 15
aovPower, 17
boxcox, 25
boxcoxCensored, 36
boxcoxTransform, 50
calibrate, 54
chenTTest, 74
detectionLimitCalibrate, 119
gofGroupTest, 492
gofTest, 499
gofTestCensored, 519

inversePredictCalibrate, 552
oneSamplePermutationTest, 625
plotAovDesign, 670
pointwise, 740
predict.lm, 755
propTestMdd, 905
propTestN, 911
propTestPower, 918
quantileTest, 947
quantileTestPValue, 952
serialCorrelationTest, 955
signTest, 965
twoSamplePermutationTestLocation,

1118
twoSamplePermutationTestProportion,

1125
varGroupTest, 1131
varTest, 1135
zTestGevdShape, 1146

∗Topic nonparametric
kendallSeasonalTrendTest, 557
kendallTrendTest, 571
twoSampleLinearRankTest, 1096
twoSampleLinearRankTestCensored,

1104
∗Topic package

EnvStats-package, 8
FcnsByCat, 456
FcnsByCatCalibration, 457
FcnsByCatCensoredData, 457
FcnsByCatDataTrans, 460
FcnsByCatEstDistParams, 461
FcnsByCatEstDistQuants, 462
FcnsByCatGOFTests, 462
FcnsByCatHypothTests, 463
FcnsByCatMCandRisk, 464
FcnsByCatPlotProbDists, 465
FcnsByCatPower, 465
FcnsByCatPredInts, 469
FcnsByCatPrintPlot, 470
FcnsByCatProbDists, 471
FcnsByCatSumStats, 472
FcnsByCatTolInts, 473
FcnsByCatTrend, 473
newsEnvStats, 618

∗Topic plot
plot.boxcox, 639
plot.boxcoxCensored, 642
plot.boxcoxLm, 645
plot.gof, 649
plot.gofCensored, 654
plot.gofGroup, 659
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plot.gofTwoSample, 663
plot.permutationTest, 668

∗Topic print
print.boxcox, 893
print.boxcoxCensored, 894
print.boxcoxLm, 895
print.estimate, 896
print.estimateCensored, 897
print.gof, 898
print.gofCensored, 899
print.gofGroup, 900
print.gofTwoSample, 901
print.htest, 902
print.htestCensored, 903
print.permutationTest, 904
print.summaryStats, 905

∗Topic regression
anovaPE, 13
aovN, 15
aovPower, 17
calibrate, 54
detectionLimitCalibrate, 119
inversePredictCalibrate, 552
kendallSeasonalTrendTest, 557
kendallTrendTest, 571
plotAovDesign, 670
pointwise, 740
predict.lm, 755
twoSampleLinearRankTest, 1096
twoSampleLinearRankTestCensored,

1104
∗Topic univar

boxcox, 25
boxcoxCensored, 36
boxcoxTransform, 50
cv, 116
geoMean, 476
geoSD, 478
iqr, 555
kurtosis, 579
serialCorrelationTest, 955
skewness, 981
summaryFull, 990
summaryStats, 995

(Alternative), 127–131
(Delta), 128, 131
.Random.seed, 626, 1119

abstract for Castillo and Hadi (1994),
185

abstract for Hosking et al. (1985),
185, 186

acf, 960

Air.df (Environmental), 283
Aldicarb (EPA.89b.aldicarb2.df), 316
anova, 14
anova.lm, 14, 998, 1000
anovaPE, 13, 457
aov, 16, 20, 673, 987, 988
aovN, 15, 19, 20, 466, 672, 673
aovPower, 16, 17, 466, 672, 673
approx, 248, 932
ar, 960
arima, 957, 959, 960
arima.sim, 960
as.data.frame, 54
axis, 985

barplot, 473
base, 21
Benthic.df, 23
Benzene (EPA.89b.benzene.df), 316
Beta, 126, 128, 132, 350, 461, 462, 971, 978
beta, 471
beta distribution, 131, 349, 828, 836, 861,

958, 1047, 1048
beta function, 828, 836, 842, 924
beta random variable, 1048, 1057
binom, 471
binom.test, 83, 85, 91, 114, 115, 135, 136,

678, 723, 908, 913, 915, 919, 921,
998, 1000

Binomial, 72, 126–128, 130, 136, 353, 461,
462, 634, 723, 885, 1039

binomial, 886, 887, 966, 1048, 1060
binomial distribution, 190, 340, 351, 370,

417, 1127
binomial random variable, 405, 798, 966
binomial test, 966
boot, 627, 628, 1122, 1123, 1128
Box-Cox (boxcox), 25
Box-Cox Censored (boxcoxCensored), 36
Box-Cox data transformations, 9
Box-Cox Transformation (boxcox), 25
Box-Cox Transformation for Censored

Data (boxcoxCensored), 36
BoxCox (boxcox), 25
boxcox, 25, 33, 35, 41, 48, 49, 51, 53, 460,

639, 641, 646, 648, 893, 895
BoxCox Censored (boxcoxCensored), 36
BoxCox Transformation (boxcox), 25
BoxCox Transformation for Censored

Data (boxcoxCensored), 36
boxcox.default (boxcox), 25
boxcox.lm (boxcox), 25
boxcox.object, 28, 30, 33, 49, 639, 641, 893
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boxcoxCensored, 36, 45, 46, 457, 642–645,
894

boxcoxCensored.object, 40, 41, 45, 642,
644, 645, 894

boxcoxLm.object, 28, 30, 35, 48, 646–648,
895

boxcoxTransform, 27, 30, 38, 50, 461
boxplot, 473, 556
boxplots, 337, 984

Cadmium (EPA.89b.cadmium.df), 317
calibrate, 13, 14, 54, 120, 123, 457,

552–554, 741, 742, 756
Calibration, 456
Calibration (FcnsByCatCalibration), 457
calibration, 10
Castillo and Hadi (1994), 186
Castillo and Hadi 1994

(CastilloAndHadi1994), 56
CastilloAndHadi1994, 56
Cauchy, 126, 128
cauchy, 471
cdfCompare, 59, 61, 74, 143, 248, 337, 465,

652, 666
cdfCompareCensored, 63, 147, 148, 459, 657
cdfPlot, 61, 62, 66, 68, 71, 143, 147, 148,

337, 465, 636
ceiling, 1057
censored (less-than-detection-limit)

data, 10
Censored Data, 64, 125, 126, 456, 488, 550,

658, 897–899, 903
Censored Data (FcnsByCatCensoredData),

457
Chen’s modified t-test, 628, 967
Chen’s modified t-test for skewed

distributions, 1074
Chen’s t-test modified for skewed

data, 1076
chenTTest, 74, 463
Chi, 80, 126, 128
chi, 471
chi random variable, 808
Chi-square, 126, 129
chi-square, 161, 761, 767, 1007
chi-square distribution, 155, 156, 200,

210, 339, 475
chi-square distributions, 360
chi-square random variable, 563
chi-squared, 80
chi-squared distribution, 160, 161, 168,

176, 225, 265, 345
chisq, 471

chisq.test, 509, 513, 998, 1000
Chisquare, 81
Chisquare distribution, 661
Chlordane (EPA.89b.chlordane1.df), 317
chol, 972
ciBinomHalfWidth, 81, 89, 91, 115, 136, 465,

677, 678
ciBinomN, 84, 85, 87, 90, 115, 136, 465, 677,

678
ciNormHalfWidth, 94, 99, 100, 109, 465, 682,

683
ciNormN, 96, 98, 99, 109, 466, 682, 683
ciNparConfLevel, 101, 106, 466, 686
ciNparN, 103, 105, 466, 686
ciTableMean, 106, 115, 465
ciTableProp, 109, 113
class, 13, 14, 25, 55, 955, 984, 990, 995
Coefficient of Variation (cv), 116
coefficient of variation (cv), 116
Compare CDFs (cdfCompare), 59
Compare CDFs for Censored Data

(cdfCompareCensored), 63
cor, 503, 974
cor.test, 569, 572, 576, 577
Cumulative Distribution (cdfPlot), 71
CV (cv), 116
cv, 116, 472, 582, 599, 984, 991, 992

Data Transformations, 30, 41, 53, 456, 639,
641, 645, 646, 648, 893–895

Data Transformations
(FcnsByCatDataTrans), 460

data.frame, 14, 615, 616
dbeta, 126
dchi (Chi), 80
Delta Distribution

(ZeroModifiedLognormal), 1137
DeltaDist (ZeroModifiedLognormal), 1137
DeltaDistAlt

(ZeroModifiedLognormalAlt),
1140

demp (Empirical), 245
density, 246, 248, 336, 337
detectionLimitCalibrate, 56, 119, 457,

554, 741, 742, 756
devAskNewPage, 640, 643, 646, 650, 655, 660,

664, 946
devd (EVD), 440
dgamma, 474
dgammaAlt (GammaAlt), 474
dgevd (GEVD), 480
diff, 992
digamma, 440
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digamma function, 132, 437
distribution quantiles, 9
Distribution.df, 60, 64, 65, 72, 74, 124,

428, 431, 432, 435, 471, 483–485,
487, 488, 490, 491, 494, 495,
500–502, 507, 547, 550, 634, 636,
928, 934, 937, 944, 970, 977

dlnorm, 601, 604
dlnorm3 (Lognormal3), 600
dlnormAlt (LognormalAlt), 603
dlnormMix (LognormalMix), 606
dlnormMixAlt (LognormalMixAlt), 608
dlnormTrunc (LognormalTrunc), 610
dlnormTruncAlt (LognormalTruncAlt), 612
dnormMix (NormalMix), 620
dnormTrunc (NormalTrunc), 622
dotchart, 473
dpareto (Pareto), 631
dtri (Triangular), 1063
dzmlnorm (ZeroModifiedLognormal), 1137
dzmlnormAlt (ZeroModifiedLognormalAlt),

1140
dzmnorm (ZeroModifiedNormal), 1143

ebeta, 126, 131, 349, 350, 461
ebinom, 83, 85, 91, 133, 351, 353, 461, 678,

887
ecdfPlot, 59–62, 64, 74, 140, 146, 148, 169,

177, 227, 248, 267, 278, 337, 346,
465, 651, 656, 665, 745, 747, 752,
930, 934

ecdfPlotCensored, 64, 66, 68, 143, 144, 277,
281, 459, 751, 752, 941

eevd, 149, 188, 354–356, 369, 437, 441, 461,
926, 1148

eexp, 154, 357, 358, 461
egamma, 157, 171, 179, 359, 360, 362, 461,

494, 500, 759, 762, 766, 770, 1006,
1009

egammaAlt, 359, 461, 475, 770
egammaAlt (egamma), 157
egammaAltCensored, 165, 179, 458
egammaCensored, 171, 173, 458
egeom, 181, 251, 365, 366, 389, 461
egevd, 57, 59, 183, 367, 369, 461, 481, 546,

926, 1146–1148
ehyper, 189, 370, 371, 461
elnorm, 78, 192, 239, 372, 374, 461, 479, 513,

774, 776, 788, 792, 1014, 1016
elnorm3, 194, 376–378, 443, 444, 461, 506,

511, 513, 602
elnormAlt, 29, 52, 78, 206, 221, 222, 226,

231, 461, 477, 513, 605, 774–776,

788, 789, 792, 1014, 1016, 1074,
1076

elnormAltCensored, 40, 218, 458, 520, 525,
774, 788, 1014

elnormCensored, 222, 231, 233, 372, 383,
458, 525, 774, 788, 1014

elogis, 242, 386, 387, 461
Empirical, 245, 337, 464, 970, 971, 974, 978,

979
empirical cdf plots, 73
empirical PDF (epdfPlot), 335
empirical pdf plots, 635
enbinom, 182, 249, 366, 388, 389, 461
enorm, 96, 100, 109, 193, 252, 262, 264, 272,

390–392, 429, 461, 513, 683, 796,
799, 810, 815, 819, 831, 1024, 1026,
1041

enormCensored, 40, 221, 231, 236, 239, 257,
383, 390, 398, 400, 433, 458, 525,
534–536, 538, 539, 796, 815, 937,
1019, 1021, 1024, 1029–1031

enparCensored, 275, 458
Environmental, 283
EnvStats (EnvStats-package), 8
EnvStats Functions for Censored Data,

432, 435, 549, 903, 937, 941
EnvStats Functions for Censored Data

(FcnsByCatCensoredData), 457
EnvStats Functions for

Goodness-of-Fit Tests
(FcnsByCatGOFTests), 462

EnvStats-package, 8
EPA.02d.Ex.2.ug.per.L.vec, 285
EPA.02d.Ex.4.mg.per.kg.vec, 285
EPA.02d.Ex.6.mg.per.kg.vec, 286
EPA.02d.Ex.9.mg.per.L.vec, 286
EPA.09.Ex.10.1.nickel.df, 287
EPA.09.Ex.11.1.arsenic.df, 287
EPA.09.Ex.12.1.ccl4.df, 288
EPA.09.Ex.12.4.naphthalene.df, 289
EPA.09.Ex.13.1.iron.df, 289
EPA.09.Ex.14.1.manganese.df, 290
EPA.09.Ex.14.3.alkalinity.df, 291
EPA.09.Ex.14.4.arsenic.df, 291
EPA.09.Ex.14.8.df, 292
EPA.09.Ex.15.1.manganese.df, 293
EPA.09.Ex.16.1.sulfate.df, 293
EPA.09.Ex.16.2.benzene.df, 294
EPA.09.Ex.16.4.copper.df, 295
EPA.09.Ex.16.5.PCE.df, 295
EPA.09.Ex.17.1.loglead.df, 296
EPA.09.Ex.17.2.toluene.df, 297
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EPA.09.Ex.17.3.chrysene.df, 297
EPA.09.Ex.17.3.log.chrysene.df, 298
EPA.09.Ex.17.4.copper.df, 299
EPA.09.Ex.17.5.chloride.df, 299
EPA.09.Ex.17.6.sulfate.df, 300
EPA.09.Ex.17.7.sodium.df, 301
EPA.09.Ex.18.1.arsenic.df, 302
EPA.09.Ex.18.2.chrysene.df, 302
EPA.09.Ex.18.3.TCE.df, 303
EPA.09.Ex.18.4.xylene.df, 304
EPA.09.Ex.19.1.sulfate.df, 304
EPA.09.Ex.19.2.chloride.df, 305
EPA.09.Ex.19.5.mercury.df, 306
EPA.09.Ex.20.1.nickel.df, 306
EPA.09.Ex.21.1.aldicarb.df, 307
EPA.09.Ex.21.2.benzene.df, 308
EPA.09.Ex.21.5.beryllium.df, 308
EPA.09.Ex.21.6.nitrate.df, 309
EPA.09.Ex.21.7.TCE.df, 310
EPA.09.Ex.22.1.VC.df, 310
EPA.09.Ex.22.2.Specific.Conductance.df,

311
EPA.09.Ex.6.3.sulfate.df, 312
EPA.09.Ex.7.1.arsenic.df, 312
EPA.09.Table.9.1.TCE.df, 313
EPA.09.Table.9.3.df, 314
EPA.09.Table.9.4.nickel.vec, 314
EPA.89b.aldicarb1.df, 315
EPA.89b.aldicarb2.df, 316
EPA.89b.benzene.df, 316
EPA.89b.cadmium.df, 317
EPA.89b.chlordane1.df, 317
EPA.89b.chlordane2.df, 318
EPA.89b.edb.df, 318
EPA.89b.lead.df, 319
EPA.89b.loglead.df, 320
EPA.89b.manganese.df, 320
EPA.89b.sulfate.df, 321
EPA.89b.t29.df, 321
EPA.89b.toc.vec, 322
EPA.92c.arsenic1.df, 322
EPA.92c.arsenic2.df, 323
EPA.92c.arsenic3.df, 323
EPA.92c.benzene1.df, 324
EPA.92c.benzene2.df, 324
EPA.92c.ccl4.df, 325
EPA.92c.chrysene.df, 326
EPA.92c.copper1.df, 326
EPA.92c.copper2.df, 327
EPA.92c.lognickel1.df, 327
EPA.92c.nickel1.df, 328
EPA.92c.nickel2.df, 328

EPA.92c.toluene.df, 329
EPA.92c.zinc.df, 329
EPA.92d.chromium.df, 330
EPA.92d.chromium.vec, 331
EPA.94b.lead.df, 331
EPA.94b.tccb.df, 332, 618
EPA.97.cadmium.111.df, 332
epareto, 333, 413, 414, 461, 633
epdfPlot, 248, 335, 465, 636
epois, 338, 344, 348, 415–418, 461, 884, 890,

1059–1062
epoisCensored, 341, 458, 884, 1059
eqbeta, 349, 462
eqbinom, 351, 462
eqevd, 354, 462
eqexp, 357, 462
eqgamma, 162, 359, 462
eqgammaAlt, 462
eqgammaAlt (eqgamma), 359
eqgeom, 364, 462
eqgevd, 366, 462
eqhyper, 369, 462
eqlnorm, 212, 372, 462, 1016
eqlnorm3, 376, 462
eqlnormCensored, 379, 458
eqlogis, 386, 462
eqnbinom, 388, 462
eqnorm, 360, 362, 373, 374, 390, 398, 429,

462, 796, 799, 810, 815, 1026, 1041
eqnormCensored, 380, 383, 396, 433, 458,

538, 539, 1021, 1031
eqnpar, 102, 103, 105, 106, 206, 210, 248,

404, 459, 686, 966, 967, 1049
eqpareto, 413, 462, 633
eqpois, 415, 462, 1062
equnif, 419, 462
eqweibull, 421, 462
eqzmlnorm, 423, 462
eqzmlnormAlt, 462
eqzmlnormAlt (eqzmlnorm), 423
eqzmnorm, 426, 462
estimate (estimate.object), 428
Estimate distribution parameters, 9
estimate.object, 132, 135, 152, 156, 161,

162, 182, 186, 190, 193, 201, 211,
244, 250, 254, 334, 339, 350, 352,
353, 355–358, 360, 362, 365–367,
369–371, 373, 374, 377, 387, 389,
391, 392, 407, 408, 414, 417, 418,
420, 422, 424, 426, 427, 428, 435,
438, 439, 445, 446, 449, 454, 760,
762, 767, 770, 775, 776, 789, 792,
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798, 799, 810, 817, 819, 831, 846,
847, 862, 863, 889, 890, 896, 1007,
1009, 1014, 1016, 1025, 1026, 1041,
1048, 1049, 1061, 1062

estimateCensored
(estimateCensored.object), 432

estimateCensored.object, 170, 171, 178,
179, 228, 231, 236, 239, 269, 272,
279, 281, 347, 348, 380, 383, 398,
400, 431, 432, 536, 539, 897, 898,
1020, 1021, 1030, 1031

Estimating Distribution Parameters, 60,
96, 100, 124, 126, 429, 431, 456,
494, 500, 683, 890, 896, 928, 944,
1016, 1026, 1041, 1049, 1062

Estimating Distribution Parameters
(FcnsByCatEstDistParams), 461

Estimating Distribution Quantiles, 125,
408, 429, 431, 456, 459, 896, 1016,
1026, 1041, 1049, 1062

Estimating Distribution Quantiles
(FcnsByCatEstDistQuants), 462

Euler’s Constant, 153
Euler’s constant, 151, 152, 440
Eulers Constant (EulersConstant), 436
EulersConstant, 436
eunif, 419, 420, 437, 461
EVD, 422, 440, 446, 481, 1148
evd, 471
evNormOrdStats, 198, 442, 472
evNormOrdStatsScalar, 472, 881
evNormOrdStatsScalar (evNormOrdStats),

442
eweibull, 421, 422, 444, 461
exp, 471
Exponential, 126, 129, 156, 358, 422, 446,

461, 462, 633
exponential, 161, 360, 441, 761, 767, 1007,

1099
exponential distribution, 152, 154–156,

334, 355, 357, 414, 422, 441, 446,
475, 632

exponential random variable, 152, 355
Extreme, 126, 127, 129
Extreme Value, 461, 462
Extreme Value Distribution, 153, 188,

356, 369, 437
Extreme Value Distribution (EVD), 440
extreme value distribution, 149, 150,

156, 354, 357, 480
extreme value distributions, 187, 368
extreme value distributions (EVD), 481

ezmlnorm, 423–425, 427, 447, 454, 461, 513,
1139

ezmlnormAlt, 423–425, 461, 513, 1142
ezmlnormAlt (ezmlnorm), 447
ezmnorm, 426, 452, 461, 513, 1145

F, 127, 129
f, 471
F-distribution, 18, 887
FcnsByCat, 456
FcnsByCatCalibration, 457
FcnsByCatCensoredData, 457, 751
FcnsByCatDataTrans, 460
FcnsByCatEstDistParams, 461
FcnsByCatEstDistQuants, 462
FcnsByCatGOFTests, 462
FcnsByCatHypothTests, 463
FcnsByCatMCandRisk, 464
FcnsByCatPlotProbDists, 465
FcnsByCatPower, 465
FcnsByCatPredInts, 469
FcnsByCatPrintPlot, 470
FcnsByCatProbDists, 471
FcnsByCatSumStats, 472
FcnsByCatTolInts, 473
FcnsByCatTrend, 473
Fisher’s exact test, 1127
Fisher’s randomization test, 77, 967
fisher.test, 998, 1000, 1126
Fishers’s exact test, 191, 371
floor, 190
format, 626, 893–905
formula, 54
Functions By Category, 8
Functions By Category (FcnsByCat), 456
Functions for Censored Data

(FcnsByCatCensoredData), 457

Gamma, 127, 129, 157, 461, 462
gamma, 51, 471
Gamma Distribution (GammaAlt), 474
gamma distribution, 155, 156, 158, 165,

166, 173, 174, 357, 359, 761, 765,
767, 1005

gamma distribution (alternative
parameterization), 765

Gamma function, 160
gamma function, 445, 543
GammaAlt, 474, 762, 770
GammaDist, 162, 171, 179, 362, 475, 762, 770,

1009
gammAlt, 471
Generalized, 127, 129
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Generalized Extreme Value, 461, 462
Generalized Extreme Value

Distribution, 59, 188, 369, 546
Generalized Extreme Value

Distribution (GEVD), 480
generalized extreme value

distribution, 57, 183, 185, 187,
366, 368, 542, 926, 1146

geom, 471
geoMean, 472, 476, 479, 992
Geometric, 127, 129, 182, 251, 366, 389, 461,

462
geometric distribution, 181, 182, 251,

364, 365, 389
Geometric Mean (geoMean), 476
geometric mean (geoMean), 476
Geometric SD (geoSD), 478
geometric SD (geoSD), 478
Geometric Standard Deviation (geoSD),

478
geometric standard deviation (geoSD),

478
geoSD, 472, 477, 478, 991, 992
GEVD, 185, 441, 480, 1148
gevd, 471
Gibbons.et.al.09.Alkilinity.vec, 482
Gibbons.et.al.09.Vinyl.Chloride.vec,

483
GOF (FcnsByCatGOFTests), 462
gof (gof.object), 483
gof.object, 483, 510, 513, 649, 652, 653,

663, 898
gofCensored (gofCensored.object), 486
gofCensored.object, 486, 523, 525, 654,

657, 658, 899
gofGroup (gofGroup.object), 489
gofGroup.object, 489, 496, 659, 661, 662,

900
gofGroupTest, 463, 489–491, 492, 511, 659,

661, 662, 900
gofTest, 27, 40, 61, 143, 199, 201, 443, 444,

463, 483–485, 495, 496, 499,
521–523, 525, 532, 649, 652, 653,
663–667, 901, 983, 1147

gofTestCensored, 39, 459, 486, 488, 519,
654, 657, 658, 899

gofTwoSample (gofTwoSample.object), 532
gofTwoSample.object, 510, 532, 666, 667,

901
Goodness-of-Fit Tests, 30, 41, 53, 456,

463, 485, 488, 491, 533, 649, 653,
659, 662, 663, 667, 898, 900, 901,

1148
Goodness-of-Fit Tests

(FcnsByCatGOFTests), 462
goodness-of-fit tests, 9, 546
gpqCiNormCensored, 534
gpqCiNormMultiplyCensored, 269, 458
gpqCiNormMultiplyCensored

(gpqCiNormCensored), 534
gpqCiNormSinglyCensored, 269, 458
gpqCiNormSinglyCensored

(gpqCiNormCensored), 534
gpqTolIntNormCensored, 537
gpqTolIntNormMultiplyCensored, 460,

1019, 1029
gpqTolIntNormMultiplyCensored

(gpqTolIntNormCensored), 537
gpqTolIntNormSinglyCensored, 460, 1019,

1021, 1029, 1031
gpqTolIntNormSinglyCensored

(gpqTolIntNormCensored), 537
Graham.et.al.75.etu.df, 540
Gumbel Distribution (EVD), 440

Helsel.Cohn.88.app.b.df, 541
Helsel.Cohn.88.silver.df, 541
hist, 473, 652, 657
histograms, 337
Hosking et al 1985 (HoskingEtAl1985),

542
Hosking et al., 1985), 57, 59
HoskingEtAl1985, 542
htest.object, 77, 546, 566, 569, 576, 577,

637, 902, 950, 951, 953, 959, 960,
967, 1101, 1102, 1133, 1135, 1147,
1148

htestCensored.object, 549, 903, 1109,
1112

hyper, 471
Hypergeometric, 127, 129, 191, 371, 461, 462
hypergeometric distribution, 189, 190,

369, 370, 1127
Hypothesis Tests, 456, 473, 546, 548, 628,

637, 669, 902, 904, 951, 953, 960,
967, 1067, 1070, 1076, 1080, 1084,
1091, 1094, 1123, 1128

Hypothesis Tests
(FcnsByCatHypothTests), 463

hypothesis tests, 9

integrate, 691, 703, 714, 717, 783, 826, 834,
859, 870, 875, 879, 1037

Interquartile Range (iqr), 555
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inversePredictCalibrate, 55, 56, 123, 457,
552, 741, 742, 756

iqr, 472, 555, 992

Kendall’s nonparametric test for
trend, 590

kendallSeasonalTrendTest, 463, 546, 557,
559, 576, 577

kendallTrendTest, 463, 559–562, 569, 571,
584, 591, 594

kruskal.test, 988, 998, 1000
ks.test, 495, 501, 509, 513
Kurtosis (kurtosis), 579
kurtosis, 119, 472, 579, 599, 984, 991, 992

L-moments, 926
lag.plot, 960
Lin.Evans.80.df, 582
linearTrendTestN, 467, 583, 590, 591, 594,

689
linearTrendTestPower, 467, 584, 585, 593,

594, 689
linearTrendTestScaledMds, 467, 584, 590,

591, 592, 689
lines, 61, 66, 73, 141, 146, 336
lm, 13, 14, 26, 54–56, 554, 584, 590, 591, 594,

742, 756, 955
lmle, mme,, 129
lMoment, 118, 472, 581, 595, 926, 983
lmsreg, 58, 186
lnorm, 471
lnorm3, 471
lnormAlt, 471
lnormMix, 471
lnormMixAlt, 471
lnormTrunc, 471
lnormTruncAlt, 472
logis, 471
Logistic, 127, 129, 244, 387, 461, 462
logistic distribution, 242–244, 334, 386,

387, 414, 632
Lognormal, 72, 127–131, 194, 203, 214, 239,

374, 378, 383, 425, 451, 458, 461,
462, 494, 500, 502, 507, 508, 513,
519, 525, 602, 605, 607, 609, 612,
634, 776, 792, 970, 978, 1016, 1139

lognormal, 651
lognormal distribution, 51, 192, 193, 206,

207, 218, 220, 233, 236, 372, 379,
475, 479, 505, 507, 519, 601, 604,
609, 692, 774, 782, 784, 787, 788,
1013, 1073, 1075, 1076, 1090

lognormal distribution (alternative
parameterization), 519, 774, 788,
1013

Lognormal distribution, alternative
parameterization, 519

lognormal random variable, 607, 609,
1138, 1141

Lognormal3, 203, 378, 513, 600
LognormalAlt, 194, 203, 207, 209, 214, 220,

231, 378, 603, 609, 613, 614, 692,
697, 785, 787, 792, 1016, 1070,
1074, 1076, 1080, 1139, 1142

LognormalMix, 606, 609, 621
LognormalMixAlt, 608
LognormalTrunc, 610
LognormalTruncAlt, 612
longToWide, 615
lse, mle, 130
ltsreg, 186

mad, 992
matrix, 616
max, 992
mean, 472, 477, 992
median, 186, 472, 477, 992
methods, 25, 955, 984, 990, 995
Millard.Deverel.88.df, 617
min, 992
Mixture, 127–130
mle, bcmle, mme, mmue, 129
mle, mme, mmue, 128–130
mle, mme, mmue,, 129
mle, mme, mmue, pwme, 129
mle, mvue, 129
mle, pwme, tsoe, 129
mle/mme, 129
mle/mme, mvue, 129, 130
mle/mme/mvue, 128, 130
mmue, mmme,, 129
model.matrix, 54
Modified.TcCB.df, 618
Monte Carlo simulation and

probabilistic risk
assessement, 10

Monte Carlo Simulation and Risk
Assessment, 456

Monte Carlo Simulation and Risk
Assessment
(FcnsByCatMCandRisk), 464

mvue, 130, 131
mvue, qmle, 129

na.exclude, 54



1162 INDEX

na.fail, 54
na.omit, 54
na.pass, 493, 500, 558, 572, 991, 997, 1132
nbinom, 472
Negative, 127, 130
Negative Binomial, 461, 462
Negative Binomial distribution, 861
negative binomial distribution, 182,

249–251, 365, 388, 389
negative binomial distributions, 250
NegBinomial, 182, 251, 366, 389
news, 619
newsEnvStats, 618
NIOSH.89.air.lead.vec, 619
nlminb, 27, 38, 185, 197, 828
non-central F random variable, 19, 589,

1088
non-central F-distribution, 589, 1088
non-central Student’s t-distribution,

828, 829, 836, 842
non-central Student’s t-random

variable, 588, 1087
Nonparametric Prediction Interval

(predIntNpar), 843
Nonparametric Simultaneous Prediction

Interval
(predIntNparSimultaneous), 858

norm, 472
Normal, 16, 20, 81, 96, 100, 125–128, 130,

131, 194, 203, 214, 255, 272, 378,
392, 400, 427, 444, 454, 458, 461,
462, 494, 500, 502, 507, 508, 513,
519, 525, 584, 591, 594, 621, 624,
673, 683, 700, 704, 708, 727, 799,
810, 819, 831, 837, 843, 1026, 1035,
1041, 1043, 1067, 1084, 1091, 1094,
1145

normal, 80, 651, 716, 878
normal (Gaussian), 946
normal (Gaussian) distribution, 107,

108, 193, 236, 252, 253, 257, 502,
520

normal (Gaussian) random variable,
1144

normal distribuiton, 210
Normal distribution, 534
normal distribution, 210, 259, 390, 396,

442, 443, 519, 783, 796, 797, 806,
807, 814–816, 825–828, 834–836,
841, 842, 958, 1023, 1076, 1086,
1089, 1090

normal probability plot, 507

normal random variable, 620
Normal(0,1) distribution, 661
NormalMix, 607, 609, 620
NormalTrunc, 622
normMix, 472
normTrunc, 472

Olympic.NH4.df, 624
one-sample permutation test, 1121, 1122
oneSamplePermutationTest, 22, 463, 625,

637, 668, 669, 904, 1123, 1128
options, 54, 672, 677, 682, 686, 689, 692,

696, 700, 703, 707, 711, 714, 717,
723, 726, 730, 734, 738

Ozone.NE.df, 630

par, 60, 61, 65, 66, 72, 73, 141, 145, 146, 336,
634, 635, 640, 641, 643, 644, 646,
647, 650–652, 655–657, 660, 661,
664–666, 668, 672, 677, 678, 682,
686, 689, 692, 696, 699, 700, 703,
707, 711, 714, 717, 722, 723, 726,
730, 733, 734, 737, 738, 929, 938,
939, 945, 946, 986

Parameter, 127, 129
Pareto, 128, 130, 333, 334, 414, 461, 462, 631
pareto, 472
Pareto distribution, 333, 413
pbeta, 126
pchi (Chi), 80
pdfPlot, 74, 337, 465, 633, 652, 657
pemp (Empirical), 245
permutationTest.object, 626–628, 636,

668, 669, 904, 1122, 1123, 1127,
1128

pevd (EVD), 440
pgamma, 474
pgammaAlt (GammaAlt), 474
pgevd (GEVD), 480
plnorm, 601, 604
plnorm3 (Lognormal3), 600
plnormAlt (LognormalAlt), 603
plnormMix (LognormalMix), 606
plnormMixAlt (LognormalMixAlt), 608
plnormTrunc (LognormalTrunc), 610
plnormTruncAlt (LognormalTruncAlt), 612
plot, 485, 488, 490, 532, 637, 639, 641, 642,

644–649, 652–654, 657–659,
661–663, 666–669, 974, 985

Plot CDF (cdfPlot), 71
Plot Cumulative Distribution (cdfPlot),

71
Plot PDF (pdfPlot), 633
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Plot Probability Density (pdfPlot), 633
Plot Probability Distributions

(FcnsByCatPlotProbDists), 465
Plot probability distributions, 9
plot.boxcox, 30, 34, 35, 461, 471, 639, 893
plot.boxcoxCensored, 41, 46, 458, 471, 642,

894
plot.boxcoxLm, 30, 49, 461, 471, 645, 895
plot.default, 635, 986, 987
plot.gof, 463, 471, 484, 485, 513, 649
plot.gofCensored, 459, 471, 488, 525, 654
plot.gofGroup, 463, 471, 491, 496, 659
plot.gofTwoSample, 463, 471, 533, 663
plot.permutationTest, 471, 637, 668, 1123,

1128
plot.ts, 960
plot.window, 986
plotAovDesign, 16, 19, 20, 466, 670
plotCiBinomDesign, 84, 85, 90, 91, 115, 136,

465, 674, 677
plotCiNormDesign, 96, 99, 100, 109, 466, 680
plotCiNparDesign, 103, 106, 466, 684
plotLinearTrendTestDesign, 467, 584, 590,

591, 594, 687
plotPredIntLnormAltSimultaneousTestPowerCurve,

468, 690, 785
plotPredIntLnormAltTestPowerCurve, 467,

695, 787
plotPredIntNormDesign, 467, 698, 804, 813
plotPredIntNormSimultaneousTestPowerCurve,

467, 702, 785, 837
plotPredIntNormTestPowerCurve, 467, 697,

706, 787, 842, 843
plotPredIntNparDesign, 468, 709, 847, 853,

856
plotPredIntNparSimultaneousDesign, 468,

712, 718, 863, 871, 875, 882
plotPredIntNparSimultaneousTestPowerCurve,

468, 716, 881, 882
plotPropTestDesign, 466, 720, 908, 914,

915, 920, 921
Plotting Probability Distributions,

457, 473
Plotting Probability Distributions

(FcnsByCatPlotProbDists), 465
plotTolIntNormDesign, 468, 725, 727, 1035,

1043
plotTolIntNparDesign, 469, 728, 1052,

1053, 1055, 1057, 1058
plotTTestDesign, 466, 731, 1067, 1084,

1090, 1091, 1094
plotTTestLnormAltDesign, 466, 735, 1070,

1076, 1080
pnormMix (NormalMix), 620
pnormTrunc (NormalTrunc), 622
points, 65, 66, 145, 938, 985
pointwise, 123, 457, 554, 740, 755
pois, 472
Poisson, 128, 130, 340, 348, 418, 461, 462,

890, 1062
Poisson distribution, 51, 338, 340, 341,

343, 415, 417, 885, 886, 1059, 1060
Poisson random variable, 416, 1060
Power and Sample Size, 469, 473, 584, 591,

594
Power and Sample Size (FcnsByCatPower),

465
power and sample size, 10
Power and Sample Size Calculations,

457, 463
Power and Sample Size Calculations

(FcnsByCatPower), 465
Power t-test (tTestPower), 1085
power t-test (tTestPower), 1085
ppareto (Pareto), 631
ppoints, 143, 148, 752, 934
ppointsCensored, 67, 146–148, 220, 222,

223, 235, 258, 259, 262, 459, 520,
523, 656, 744, 939–941

predict, 740, 742, 756
predict.lm, 457, 755, 755, 756
Prediction Intervals, 125, 429, 431, 457,

460, 692, 697, 704, 708, 785, 787,
837, 843, 890, 896, 1041

Prediction Intervals
(FcnsByCatPredInts), 469

prediction intervals, simultaneous
prediction intervals, 9

predIntGamma, 162, 469, 758, 1009
predIntGammaAlt, 469
predIntGammaAlt (predIntGamma), 758
predIntGammaAltSimultaneous, 469
predIntGammaAltSimultaneous

(predIntGammaSimultaneous), 765
predIntGammaSimultaneous, 469, 765
predIntLnorm, 469, 774, 799, 810, 1016
predIntLnormAlt, 469, 692, 697, 787
predIntLnormAlt (predIntLnorm), 774
predIntLnormAltSimultaneous, 469, 692,

697, 776, 783–785, 787
predIntLnormAltSimultaneous

(predIntLnormSimultaneous), 788
predIntLnormAltSimultaneousTestPower,

468, 692, 697, 782, 787, 792
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predIntLnormAltTestPower, 467, 692, 696,
697, 786

predIntLnormSimultaneous, 469, 776, 788,
819, 831

predIntNorm, 80, 81, 429, 469, 697, 700, 704,
708, 760, 762, 770, 775, 776, 783,
784, 786, 787, 792, 796, 803, 804,
806, 807, 810, 812, 813, 815–817,
819, 826, 827, 831, 834, 836, 837,
841–843, 886, 888, 1026, 1041

predIntNormHalfWidth, 467, 700, 802, 813
predIntNormK, 467, 469, 697, 700, 704, 708,

775, 776, 787, 796, 797, 799, 803,
804, 805, 812, 813, 831, 837, 841,
843, 1039

predIntNormN, 467, 700, 804, 811
predIntNormSimultaneous, 469, 692, 704,

708, 766, 770, 785, 789, 792, 799,
810, 814, 825, 826, 831, 834, 835,
837, 842, 843

predIntNormSimultaneousK, 469, 704, 708,
817, 819, 824, 835, 837, 842, 843

predIntNormSimultaneousTestPower, 467,
703, 704, 708, 770, 784, 792, 819,
828, 831, 833, 843, 879, 881

predIntNormTestPower, 467, 696, 697, 704,
707, 708, 787, 837, 840

predIntNpar, 460, 470, 711, 715, 718, 843,
852, 853, 855, 856, 859, 860, 863,
871, 875, 879, 880, 882, 1048

predIntNparConfLevel, 468, 711, 847, 852,
856, 871

predIntNparN, 468, 711, 847, 853, 854, 875
predIntNparSimultaneous, 460, 470, 714,

715, 718, 858, 871, 875, 879–882
predIntNparSimultaneousConfLevel, 468,

714, 715, 718, 863, 869, 875, 882
predIntNparSimultaneousN, 468, 714, 715,

718, 863, 871, 874, 882
predIntNparSimultaneousTestPower, 443,

444, 468, 715, 717, 718, 863, 871,
875, 878

predIntPois, 470, 884, 1060
print, 34, 46, 49, 430, 434, 485, 488, 490,

532, 547, 550, 637, 893–905, 1004
print.boxcox, 30, 35, 461, 470, 641, 893
print.boxcoxCensored, 41, 46, 458, 470,

645, 894
print.boxcoxLm, 30, 49, 461, 470, 648, 895
print.estimate, 470, 896
print.estimateCensored, 458, 470, 897
print.gof, 463, 470, 485, 513, 652, 653, 898

print.gofCensored, 459, 470, 488, 525, 657,
658, 899

print.gofGroup, 463, 470, 491, 496, 661,
662, 900

print.gofTwoSample, 463, 470, 533, 666,
667, 901

print.htest, 470, 548, 902
print.htestCensored, 459, 470, 550, 903
print.permutationTest, 470, 637, 669, 904
print.summaryStats, 470, 905, 992, 993,

997, 999
Printing and Plotting Methods, 457
Printing and Plotting Methods

(FcnsByCatPrintPlot), 470
Probability Density (pdfPlot), 633
Probability Distributions

(FcnsByCatProbDists), 471
probability distributions, 9
Probability Distributions and Random

Numbers, 81, 441, 457, 475, 481,
602, 605, 607, 609, 612, 614, 621,
624, 633, 974, 979, 1065, 1139,
1142, 1145

Probability Distributions and Random
Numbers (FcnsByCatProbDists),
471

probability plots, 247
probability-weighted moment, 543
prop.test, 83, 85, 91, 114, 115, 135, 136,

678, 723, 908, 913, 915, 919, 921,
998, 1127

propTestMdd, 466, 723, 905, 914, 915, 920,
921

propTestN, 466, 723, 908, 911, 920, 921
propTestPower, 466, 723, 907, 908, 914, 915,

918
ptri (Triangular), 1063
pwMoment, 149–151, 184, 472, 597, 599, 923
pzmlnorm (ZeroModifiedLognormal), 1137
pzmlnormAlt (ZeroModifiedLognormalAlt),

1140
pzmnorm (ZeroModifiedNormal), 1143

qbeta, 126, 349
qbinom, 351
qchi (Chi), 80
qemp, 970, 977
qemp (Empirical), 245
qevd, 355
qevd (EVD), 440
qexp, 357
qgamma, 360, 474
qgammaAlt (GammaAlt), 474
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qgeom, 365
qgevd, 367
qgevd (GEVD), 480
qhyper, 370
qlnorm, 601, 604
qlnorm3, 377
qlnorm3 (Lognormal3), 600
qlnormAlt (LognormalAlt), 603
qlnormMix (LognormalMix), 606
qlnormMixAlt (LognormalMixAlt), 608
qlnormTrunc (LognormalTrunc), 610
qlnormTruncAlt (LognormalTruncAlt), 612
qlogis, 386
qnbinom, 388
qnorm, 391, 398
qnormMix (NormalMix), 620
qnormTrunc (NormalTrunc), 622
qpareto, 414
qpareto (Pareto), 631
qpois, 416
qqnorm, 927, 934
qqPlot, 60, 62, 64, 142, 143, 147, 148, 261,

337, 443, 444, 465, 496, 507, 511,
513, 640, 641, 643, 646, 648, 651,
652, 656, 661, 665, 666, 752, 927,
939, 941, 945, 946

qqplot, 248, 927, 932
qqPlotCensored, 67, 68, 147, 148, 277, 281,

424, 427, 450, 454, 459, 524, 525,
643–645, 657, 751, 752, 934, 936,
1138, 1141, 1144

qqPlotGestalt, 465, 934, 941, 943
qtri (Triangular), 1063
quantile, 169, 177, 227, 248, 267, 279, 346,

405, 408, 472, 534, 538, 556, 992
quantile test, 952, 1122
quantile-quantile plot, 27, 39
Quantile-Quantile plots, 747
quantile-quantile plots, 51
quantileTest, 464, 947, 953
quantileTestPValue, 464, 949, 951, 952
qunif, 420
qweibull, 421
qzmlnorm, 424
qzmlnorm (ZeroModifiedLognormal), 1137
qzmlnormAlt, 424
qzmlnormAlt (ZeroModifiedLognormalAlt),

1140
qzmnorm, 426
qzmnorm (ZeroModifiedNormal), 1143

range, 472, 992
Rank Sum, 128, 130

rbeta, 126
rchi (Chi), 80
Refinery.CO.df, 954
remp, 978
remp (Empirical), 245
reshape, 615, 616
revd (EVD), 440
rgamma, 474
rgammaAlt (GammaAlt), 474
rgevd (GEVD), 480
rlnorm, 601, 604, 978
rlnorm3 (Lognormal3), 600
rlnormAlt (LognormalAlt), 603
rlnormMix (LognormalMix), 606
rlnormMixAlt (LognormalMixAlt), 608
rlnormTrunc (LognormalTrunc), 610
rlnormTruncAlt (LognormalTruncAlt), 612
rnormMix (NormalMix), 620
rnormTrunc (NormalTrunc), 622
royston.skew,, 129
rpareto (Pareto), 631
rtri (Triangular), 1063
rzmlnorm (ZeroModifiedLognormal), 1137
rzmlnormAlt (ZeroModifiedLognormalAlt),

1140
rzmnorm (ZeroModifiedNormal), 1143

SafePrediction, 756
sample, 248
sample kurtosis (kurtosis), 579
sd, 119, 556, 582, 984, 992
serial correlation

(serialCorrelationTest), 955
serial correlation test

(serialCorrelationTest), 955
serialCorrelationTest, 464, 955
set.seed, 235, 258, 380, 397, 534, 538, 626,

970, 974, 978, 979, 985, 1119
shapiro.test, 513, 525
sign, 560, 573, 1100, 1107
sign test, 628
sign test (signTest), 965
signTest, 464, 965
simulateMvMatrix, 248, 464, 969, 979
simulateVector, 248, 464, 972, 974, 977
Skagit.NH3_N.df, 980
Skew (skewness), 981
skew (skewness), 981
Skewness (skewness), 981
skewness, 76, 119, 472, 582, 599, 981, 991,

992
standard normal distribution, 168, 176,

225, 266, 278, 345
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stripChart, 473, 984
stripchart, 473, 984, 985, 988
Student t-statistic, 1087, 1090
Student’s t, 128, 130
Student’s t-distribuiton, 168, 176, 225,

226, 266, 278, 345
Student’s t-distribution, 75, 95, 107,

108, 151, 200, 210, 244, 254, 265,
406, 449, 453, 587, 807, 808, 888,
1087, 1090

Student’s t-test, 77, 628, 967, 1073, 1076,
1121, 1122

summary, 472, 992, 993, 999, 1000
Summary Plots (FcnsByCatSumStats), 472
summary plots, 9
Summary Statistics, 119, 457, 556, 582,

984
Summary Statistics (FcnsByCatSumStats),

472
summary statistics, 9
summary.lm, 584, 590, 591, 594
summaryFull, 119, 472, 477, 479, 556, 582,

905, 984, 990, 999, 1000, 1004
summaryStats, 472, 905, 993, 995, 1004
summaryStats.object, 905, 993, 999, 1004
survdiff, 1110, 1112
survfit, 751, 752

t, 472
T-test power (tTestPower), 1085
t-test Power (tTestPower), 1085
t-test power (tTestPower), 1085
t.test, 75, 78, 96, 100, 109, 546, 584, 591,

594, 683, 734, 738, 987, 988, 998,
1000, 1067, 1070, 1076, 1080, 1084,
1091, 1094

TDist, 1038
the lognormal distribution, 611
the normal distribution, 622
the sign test, 77
the Wilcoxon signed rank test, 77
Three Parameter Lognormal (Lognormal3),

600
Three-, 127, 129
three-parameter generalized extreme

value distribution (GEVD),
1147

Three-Parameter Lognormal, 461, 462, 494,
500, 502

three-parameter lognormal
distribution, 194, 195, 376, 505,
506

three-parameter lognormal
distributions, 651

title, 985, 986
Tolerance Intervals, 408, 429, 431, 457,

460, 896, 1016, 1026, 1041, 1049,
1062

Tolerance Intervals (FcnsByCatTolInts),
473

tolerance intervals, 9
tolIntGamma, 162, 362, 473, 762, 770, 1005
tolIntGammaAlt, 473
tolIntGammaAlt (tolIntGamma), 1005
tolIntLnorm, 473, 776, 792, 1013, 1026
tolIntLnormAlt, 473, 776
tolIntLnormAlt (tolIntLnorm), 1013
tolIntLnormCensored, 460, 1018
tolIntNorm, 391, 392, 429, 473, 726, 727,

797, 799, 807, 810, 817, 819, 827,
831, 835, 841, 1006, 1009, 1014,
1016, 1023, 1029, 1030, 1034, 1035,
1037, 1041–1043

tolIntNormCensored, 383, 398, 400, 433,
460, 538, 539, 1020, 1021, 1028

tolIntNormHalfWidth, 468, 726, 727, 1033,
1043

tolIntNormK, 468, 473, 726, 727, 1025, 1026,
1034, 1035, 1037, 1042, 1043

tolIntNormN, 468, 726, 727, 1035, 1042
tolIntNpar, 408, 460, 473, 715, 718, 730,

731, 845, 863, 871, 875, 882, 1045,
1052–1055, 1057, 1058

tolIntNparConfLevel, 469, 730, 731, 1051,
1055, 1057, 1058

tolIntNparCoverage, 469, 730, 731, 1052,
1053, 1054, 1057, 1058

tolIntNparN, 469, 730, 731, 1049, 1052,
1053, 1055, 1056

tolIntPois, 417, 473, 890, 1058
Total.P.df, 1062
Trend Analysis, 457
Trend Analysis (FcnsByCatTrend), 473
tri, 472
Triangular, 128, 130, 1063
Truncated, 127, 128, 130
tTestAlpha, 466, 1065, 1084, 1091, 1094
tTestLnormAltN, 466, 738, 1068, 1076, 1080
tTestLnormAltPower, 466, 697, 738, 787,

1069, 1070, 1072, 1080
tTestLnormAltRatioOfMeans, 466, 738,

1070, 1076, 1078
tTestN, 466, 734, 1067, 1082, 1090, 1091,

1094
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tTestPower, 466, 734, 1066, 1067, 1075,
1076, 1083, 1084, 1085, 1093, 1094

tTestScaledMdd, 466, 734, 1067, 1084, 1090,
1091, 1092

Two-parameter extreme value
distributions (EVD), 1147

two-parameter lognormal distribution,
601, 602

two-sample linear rank tests, 1122
twoSampleLinearRankTest, 464, 1096, 1105,

1112
twoSampleLinearRankTestCensored, 459,

549, 903, 1096, 1102, 1104
twoSamplePermutationTestLocation, 464,

637, 668, 669, 904, 1118, 1127, 1128
twoSamplePermutationTestProportion,

464, 637, 668, 669, 904, 1123, 1125
Type I (Gumbel) extreme value

distribution, 185
Type I Extreme Value (Gumbel)

distribution, 926
Type I extreme value (Gumbel)

distribution, 422, 437, 446, 481,
651

Type I, also called the Gumbel
extreme value distribution or
simply Gumbel distribution,
152, 355

unif, 472
Uniform, 124–126, 128, 130, 132, 350, 420,

439, 461, 462, 1065
uniform (0,1), 931
Uniform [0,1] distribution, 495, 496,

661
uniform distribution, 419, 420, 437, 438
uniroot, 15, 89, 91, 99, 583, 584, 593, 671,

681, 688, 699, 710, 714, 726, 733,
737, 812, 855, 875, 907, 913, 1042,
1043, 1066, 1069, 1079, 1080, 1083,
1093

Value, 126, 127, 129
var, 119, 472, 556, 582, 984
var.test, 1133, 1135, 1136
varGroupTest, 464, 1131, 1136
varTest, 464, 1133, 1135

Weibull, 128, 130, 422, 446, 461, 462
weibull, 472
Weibull distribution, 153, 355, 421, 422,

441, 444–446
Weibull random variable, 153, 355, 441

wilcox, 472
wilcox.test, 84, 90, 677, 951, 953, 967, 988,

998, 1000, 1099, 1101, 1102, 1112
Wilcoxon, 128, 130
Wilcoxon Rank Sum test, 1096, 1099, 1101
Wilcoxon rank sum test, 949, 1122
Wilcoxon signed rank test, 628, 967
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