This article describes creating an ADCE ADaM for the analysis of Vaccine Reactogenicity Data collected in SDTM CE domain. The current presented example is tested using CE SDTM domains and ADSL ADaM domain. However, other domains could be used if needed (eg temperature data collected in VS).
Note: All examples assume CDISC SDTM and/or ADaM format as input unless otherwise specified.
TOXGR or SEV)ADSLAssumption: The CE domain has already been merged with the SUPPCE dataset. If this is not yet the case, join SUPPCE onto parent CE domain using metatools::combine_supp(CE, SUPPCE).
library(admiraldev)
library(admiral)
library(dplyr)
library(lubridate)
library(admiralvaccine)
data("vx_ce")
data("vx_adsl")
adsl <- vx_adsl
ce <- vx_ce
ce <- convert_blanks_to_na(ce)
adsl <- convert_blanks_to_na(adsl)| USUBJID | TRTSDT | TRTEDT | TRT01A | AP01SDT | AP01EDT | AP02SDT | AP02EDT |
|---|---|---|---|---|---|---|---|
| ABC-1002 | 2021-10-07 | 2021-12-16 | VACCINE A | 2021-10-07 | 2021-12-15 | 2021-12-16 | 2022-06-14 |
| ABC-1001 | 2021-11-03 | 2021-12-30 | VACCINE A | 2021-11-03 | 2021-12-29 | 2021-12-30 | 2022-04-27 |
This step involves company-specific pre-processing of required input dataset for further analysis. In this step, we will filter records that has only reactogenicity events.
Create period dataset - for joining period information onto CE records. Need to remove datetime variables as otherwise causes duplicate issues.
adsl2 <- adsl %>%
select(-c(starts_with("AP") & ends_with("DTM")))
adperiods <- create_period_dataset(
adsl2,
new_vars = exprs(APERSDT = APxxSDT, APEREDT = APxxEDT)
)| USUBJID | APERIOD | APERSDT | APEREDT |
|---|---|---|---|
| ABC-1002 | 1 | 2021-10-07 | 2021-12-15 |
| ABC-1002 | 2 | 2021-12-16 | 2022-06-14 |
| ABC-1001 | 1 | 2021-11-03 | 2021-12-29 |
| ABC-1001 | 2 | 2021-12-30 | 2022-04-27 |
At this step, it may be useful to join ADSL to your CE domain. Only the ADSL variables used for derivations are selected at this step. The rest of the relevant ADSL variables would be added later.
adsl_vars <- exprs(TRTSDT, TRTEDT)
adce <- adce %>%
# join ADSL to CE
derive_vars_merged(
dataset_add = adsl,
new_vars = adsl_vars,
by = exprs(STUDYID, USUBJID)
) %>%
derive_vars_dt(
dtc = CESTDTC,
new_vars_prefix = "AST",
highest_imputation = "n"
) %>%
derive_vars_dt(
dtc = CEENDTC,
new_vars_prefix = "AEN",
highest_imputation = "n"
) %>%
derive_vars_dy(
reference_date = TRTSDT,
source_vars = exprs(ASTDT, AENDT)
)| USUBJID | TRTSDT | CESTDTC | CEENDTC | ASTDT | AENDT | ASTDY | AENDY |
|---|---|---|---|---|---|---|---|
| ABC-1001 | 2021-11-03 | NA | NA | NA | NA | NA | NA |
| ABC-1001 | 2021-11-03 | 2021-11-04 | 2021-11-07 | 2021-11-04 | 2021-11-07 | 2 | 5 |
| ABC-1001 | 2021-11-03 | 2021-11-04 | 2021-11-04 | 2021-11-04 | 2021-11-04 | 2 | 2 |
| ABC-1001 | 2021-11-03 | 2021-11-03 | 2021-11-09 | 2021-11-03 | 2021-11-09 | 1 | 7 |
| ABC-1001 | 2021-11-03 | NA | NA | NA | NA | NA | NA |
| ABC-1001 | 2021-11-03 | 2021-11-03 | 2021-11-04 | 2021-11-03 | 2021-11-04 | 1 | 2 |
| ABC-1001 | 2021-11-03 | NA | NA | NA | NA | NA | NA |
| ABC-1001 | 2021-11-03 | NA | NA | NA | NA | NA | NA |
| ABC-1001 | 2021-11-03 | 2021-11-04 | 2021-11-04 | 2021-11-04 | 2021-11-04 | 2 | 2 |
| ABC-1001 | 2021-11-03 | 2021-11-04 | 2021-11-04 | 2021-11-04 | 2021-11-04 | 2 | 2 |
Also add analysis version of CEREL(AREL).
adce <-
derive_vars_joined(
adce,
dataset_add = adperiods,
by_vars = exprs(STUDYID, USUBJID),
filter_join = ASTDT >= APERSDT & ASTDT <= APEREDT
) %>%
mutate(
APERSTDY = as.integer(ASTDT - APERSDT) + 1,
AREL = CEREL
)| USUBJID | TRTSDT | ASTDT | AENDT | ASTDY | AENDY | APERIOD | APERSDT | APERSTDY |
|---|---|---|---|---|---|---|---|---|
| ABC-1001 | 2021-11-03 | NA | NA | NA | NA | NA | NA | NA |
| ABC-1001 | 2021-11-03 | 2021-11-04 | 2021-11-07 | 2 | 5 | 1 | 2021-11-03 | 2 |
| ABC-1001 | 2021-11-03 | 2021-11-04 | 2021-11-04 | 2 | 2 | 1 | 2021-11-03 | 2 |
| ABC-1001 | 2021-11-03 | 2021-11-03 | 2021-11-09 | 1 | 7 | 1 | 2021-11-03 | 1 |
| ABC-1001 | 2021-11-03 | NA | NA | NA | NA | NA | NA | NA |
| ABC-1001 | 2021-11-03 | 2021-11-03 | 2021-11-04 | 1 | 2 | 1 | 2021-11-03 | 1 |
| ABC-1001 | 2021-11-03 | NA | NA | NA | NA | NA | NA | NA |
| ABC-1001 | 2021-11-03 | NA | NA | NA | NA | NA | NA | NA |
| ABC-1001 | 2021-11-03 | 2021-11-04 | 2021-11-04 | 2 | 2 | 1 | 2021-11-03 | 2 |
| ABC-1001 | 2021-11-03 | 2021-11-04 | 2021-11-04 | 2 | 2 | 1 | 2021-11-03 | 2 |
TOXGR or SEV)Depending on which variable is collected for the Grading (TOXGR or SEV) in CE domain, derive the associated analysis version. In current example, SEV is collected, so the code is using this as an example. In addition, derivation of Extreme Flags: in current example: flag the first occurrence of the most severe grade within a Period (AOCC01FL).
adce <- adce %>%
mutate(
ASEV = CESEV,
ASEVN = as.integer(factor(ASEV,
levels = c("MILD", "MODERATE", "SEVERE", "DEATH THREATENING")
))
) %>%
restrict_derivation(
derivation = derive_var_extreme_flag,
args = params(
by_vars = exprs(USUBJID, APERIOD),
order = exprs(desc(ASEVN), ASTDY, CEDECOD),
new_var = AOCC01FL,
mode = "first"
),
filter = !is.na(APERIOD) & !is.na(ASEV)
)| USUBJID | TRTSDT | ASTDT | APERIOD | APERSDT | APERSTDY | CEDECOD | ASEVN | AOCC01FL | CESEQ |
|---|---|---|---|---|---|---|---|---|---|
| ABC-1001 | 2021-11-03 | 2021-11-03 | 1 | 2021-11-03 | 1 | Swelling | 2 | Y | 4 |
| ABC-1001 | 2021-11-03 | 2021-11-04 | 1 | 2021-11-03 | 2 | Erythema | 2 | NA | 3 |
| ABC-1001 | 2021-11-03 | 2021-11-04 | 1 | 2021-11-03 | 2 | Injection site pain | 2 | NA | 2 |
| ABC-1001 | 2021-11-03 | 2021-11-03 | 1 | 2021-11-03 | 1 | Fatigue | 1 | NA | 6 |
| ABC-1001 | 2021-11-03 | 2021-11-04 | 1 | 2021-11-03 | 2 | Arthralgia | 1 | NA | 9 |
| ABC-1001 | 2021-11-03 | 2021-11-04 | 1 | 2021-11-03 | 2 | Myalgia | 1 | NA | 10 |
| ABC-1002 | 2021-10-07 | 2021-10-11 | 1 | 2021-10-07 | 5 | Headache | 2 | Y | 8 |
| ABC-1002 | 2021-10-07 | 2021-10-09 | 1 | 2021-10-07 | 3 | Erythema | 1 | NA | 3 |
| ABC-1002 | 2021-10-07 | 2021-12-16 | 2 | 2021-12-16 | 1 | Injection site pain | 1 | Y | 13 |
| ABC-1002 | 2021-10-07 | 2021-12-17 | 2 | 2021-12-16 | 2 | Erythema | 1 | NA | 14 |
adce <- adce %>%
derive_var_obs_number(
new_var = ASEQ,
by_vars = exprs(STUDYID, USUBJID),
order = exprs(CEDECOD, CELAT, CETPTREF, APERIOD),
check_type = "error"
) %>%
derive_vars_duration(
new_var = ADURN,
new_var_unit = ADURU,
start_date = ASTDT,
end_date = AENDT,
in_unit = "days",
out_unit = "days",
add_one = TRUE,
trunc_out = FALSE
)| USUBJID | TRTSDT | ASTDT | APERIOD | APERSDT | APERSTDY | CEDECOD | ASEVN | AOCC01FL | CESEQ | ASEQ |
|---|---|---|---|---|---|---|---|---|---|---|
| ABC-1001 | 2021-11-03 | 2021-11-04 | 1 | 2021-11-03 | 2 | Arthralgia | 1 | NA | 9 | 1 |
| ABC-1001 | 2021-11-03 | NA | NA | NA | NA | Arthralgia | NA | NA | 20 | 2 |
| ABC-1001 | 2021-11-03 | NA | NA | NA | NA | Chills | NA | NA | 1 | 3 |
| ABC-1001 | 2021-11-03 | NA | NA | NA | NA | Chills | NA | NA | 12 | 4 |
| ABC-1001 | 2021-11-03 | NA | NA | NA | NA | Diarrhoea | NA | NA | 5 | 5 |
| ABC-1001 | 2021-11-03 | NA | NA | NA | NA | Diarrhoea | NA | NA | 16 | 6 |
| ABC-1001 | 2021-11-03 | 2021-11-04 | 1 | 2021-11-03 | 2 | Erythema | 2 | NA | 3 | 7 |
| ABC-1001 | 2021-11-03 | NA | NA | NA | NA | Erythema | NA | NA | 14 | 8 |
| ABC-1001 | 2021-11-03 | 2021-11-03 | 1 | 2021-11-03 | 1 | Fatigue | 1 | NA | 6 | 9 |
| ABC-1001 | 2021-11-03 | NA | NA | NA | NA | Fatigue | NA | NA | 17 | 10 |
ADSLGet list of ADSL vars as per trial specific which needs to be adjusted when using the template
adsl_list <- adsl %>%
select(STUDYID, USUBJID, TRT01A, TRT01P, AGE, AGEU, SEX, RACE, COUNTRY, ETHNIC, SITEID, SUBJID)
adce <- adce %>%
derive_vars_merged(
dataset_add = adsl_list,
by_vars = exprs(STUDYID, USUBJID)
)| USUBJID | TRTSDT | ASTDT | APERIOD | APERSDT | APERSTDY | CEDECOD | ASEVN | AOCC01FL | CESEQ | ASEQ | AGE | SEX |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| ABC-1001 | 2021-11-03 | 2021-11-04 | 1 | 2021-11-03 | 2 | Arthralgia | 1 | NA | 9 | 1 | 74 | F |
| ABC-1001 | 2021-11-03 | NA | NA | NA | NA | Arthralgia | NA | NA | 20 | 2 | 74 | F |
| ABC-1001 | 2021-11-03 | NA | NA | NA | NA | Chills | NA | NA | 1 | 3 | 74 | F |
| ABC-1001 | 2021-11-03 | NA | NA | NA | NA | Chills | NA | NA | 12 | 4 | 74 | F |
| ABC-1001 | 2021-11-03 | NA | NA | NA | NA | Diarrhoea | NA | NA | 5 | 5 | 74 | F |
| ABC-1001 | 2021-11-03 | NA | NA | NA | NA | Diarrhoea | NA | NA | 16 | 6 | 74 | F |
| ABC-1001 | 2021-11-03 | 2021-11-04 | 1 | 2021-11-03 | 2 | Erythema | 2 | NA | 3 | 7 | 74 | F |
| ABC-1001 | 2021-11-03 | NA | NA | NA | NA | Erythema | NA | NA | 14 | 8 | 74 | F |
| ABC-1001 | 2021-11-03 | 2021-11-03 | 1 | 2021-11-03 | 1 | Fatigue | 1 | NA | 6 | 9 | 74 | F |
| ABC-1001 | 2021-11-03 | NA | NA | NA | NA | Fatigue | NA | NA | 17 | 10 | 74 | F |
| ADaM | Sample Code |
|---|---|
| ADCE | ad_adce.R |