In this tutorial you will learn how to use the Bayesmodels package and how to integrate it with the usual Modeltime workflow. The main purposes are:
Use an Arima Bayesian model to see how it would apply in the Bayesmodels package.
Compare the above model with the classic implementation of the Modeltime package through the usual workflow of the escosystem.
Bayesmodels unlocks the following models in one package. Precisely its greatest advantage is to be able to integrate these models with the Modeltime and Tidymodels ecosystems.
Arima: bayesmodels connects to the bayesforecast package.
Garch: bayesmodels connects to the bayesforecast package.
Random Walk (Naive): bayesmodels connects to the bayesforecast package.
State Space Model: bayesmodels connects to the bayesforecast and bsts packages.
Stochastic Volatility Model: bayesmodels connects to the bayesforecast package.
Generalized Additive Models (GAMS): bayesmodels connects to the brms package.
Adaptive Splines Surface: bayesmodels connects to the BASS package.
Exponential Smoothing: bayesmodels connects to the Rglt package.
Here’s the general process and where the functions fit.
The Modeltime Workflow
Just follow the modeltime workflow, which is detailed in 6 convenient steps:
Let’s go through a guided tour to kick the tires on modeltime.
Load libraries to complete this short tutorial.
library(tidymodels)
library(bayesmodels)
library(modeltime)
library(tidyverse)
library(timetk)
library(lubridate)
# This toggles plots from plotly (interactive) to ggplot (static)
interactive <- FALSEWe can visualize the dataset.
Let’s split the data into training and test sets using initial_time_split()
We can easily create dozens of forecasting models by combining bayesmodels, modeltime and parsnip. We can also use the workflows interface for adding preprocessing! Your forecasting possibilities are endless. Let’s model a couple of arima models:
Important note: Handling Date Features
Bayesmodels and Modeltime models (e.g. sarima_reg() and arima_reg()) are created with a date or date time feature in the model. You will see that most models include a formula like fit(value ~ date, data).
Parsnip models (e.g. linear_reg()) typically should not have date features, but may contain derivatives of dates (e.g. month, year, etc). You will often see formulas like fit(value ~ as.numeric(date) + month(date), data).
First, we create a basic univariate ARIMA model using “Arima” using arima_reg()
Now, we create the same model but from a Bayesian perspective with the package bayesmodels:
# Model 2: arima_boost ----
model_fit_arima_bayes<- sarima_reg(non_seasonal_ar = 0,
non_seasonal_differences = 1,
non_seasonal_ma = 1,
seasonal_period = 12,
seasonal_ar = 0,
seasonal_differences = 1,
seasonal_ma = 1,
pred_seed = 100) %>%
set_engine(engine = "stan") %>%
fit(value ~ date, data = training(splits))
#>
#> SAMPLING FOR MODEL 'Sarima' NOW (CHAIN 1).
#> Chain 1:
#> Chain 1: Gradient evaluation took 0 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
#> Chain 1: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 1: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 1: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 1: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 1: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 1: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 1: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 1: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 1: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 1: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 1: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 1: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 1:
#> Chain 1: Elapsed Time: 1.091 seconds (Warm-up)
#> Chain 1: 0.771 seconds (Sampling)
#> Chain 1: 1.862 seconds (Total)
#> Chain 1:
#>
#> SAMPLING FOR MODEL 'Sarima' NOW (CHAIN 2).
#> Chain 2:
#> Chain 2: Gradient evaluation took 0 seconds
#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
#> Chain 2: Adjust your expectations accordingly!
#> Chain 2:
#> Chain 2:
#> Chain 2: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 2: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 2: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 2: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 2: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 2: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 2: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 2: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 2: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 2: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 2: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 2: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 2:
#> Chain 2: Elapsed Time: 1.145 seconds (Warm-up)
#> Chain 2: 0.81 seconds (Sampling)
#> Chain 2: 1.955 seconds (Total)
#> Chain 2:
#>
#> SAMPLING FOR MODEL 'Sarima' NOW (CHAIN 3).
#> Chain 3:
#> Chain 3: Gradient evaluation took 0 seconds
#> Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
#> Chain 3: Adjust your expectations accordingly!
#> Chain 3:
#> Chain 3:
#> Chain 3: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 3: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 3: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 3: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 3: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 3: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 3: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 3: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 3: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 3: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 3: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 3: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 3:
#> Chain 3: Elapsed Time: 1.081 seconds (Warm-up)
#> Chain 3: 0.817 seconds (Sampling)
#> Chain 3: 1.898 seconds (Total)
#> Chain 3:
#>
#> SAMPLING FOR MODEL 'Sarima' NOW (CHAIN 4).
#> Chain 4:
#> Chain 4: Gradient evaluation took 0.001 seconds
#> Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 10 seconds.
#> Chain 4: Adjust your expectations accordingly!
#> Chain 4:
#> Chain 4:
#> Chain 4: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 4: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 4: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 4: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 4: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 4: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 4: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 4: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 4: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 4: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 4: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 4: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 4:
#> Chain 4: Elapsed Time: 1.081 seconds (Warm-up)
#> Chain 4: 0.76 seconds (Sampling)
#> Chain 4: 1.841 seconds (Total)
#> Chain 4:model_fit_naive <- random_walk_reg(seasonal_random_walk = TRUE, seasonal_period = 12) %>%
set_engine("stan") %>%
fit(value ~ date + month(date), data = training(splits))
#>
#> SAMPLING FOR MODEL 'Sarima' NOW (CHAIN 1).
#> Chain 1:
#> Chain 1: Gradient evaluation took 0 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
#> Chain 1: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 1: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 1: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 1: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 1: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 1: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 1: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 1: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 1: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 1: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 1: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 1: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 1:
#> Chain 1: Elapsed Time: 0.867 seconds (Warm-up)
#> Chain 1: 0.319 seconds (Sampling)
#> Chain 1: 1.186 seconds (Total)
#> Chain 1:
#>
#> SAMPLING FOR MODEL 'Sarima' NOW (CHAIN 2).
#> Chain 2:
#> Chain 2: Gradient evaluation took 0 seconds
#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
#> Chain 2: Adjust your expectations accordingly!
#> Chain 2:
#> Chain 2:
#> Chain 2: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 2: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 2: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 2: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 2: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 2: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 2: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 2: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 2: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 2: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 2: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 2: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 2:
#> Chain 2: Elapsed Time: 0.658 seconds (Warm-up)
#> Chain 2: 0.428 seconds (Sampling)
#> Chain 2: 1.086 seconds (Total)
#> Chain 2:
#>
#> SAMPLING FOR MODEL 'Sarima' NOW (CHAIN 3).
#> Chain 3:
#> Chain 3: Gradient evaluation took 0 seconds
#> Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
#> Chain 3: Adjust your expectations accordingly!
#> Chain 3:
#> Chain 3:
#> Chain 3: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 3: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 3: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 3: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 3: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 3: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 3: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 3: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 3: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 3: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 3: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 3: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 3:
#> Chain 3: Elapsed Time: 0.945 seconds (Warm-up)
#> Chain 3: 0.343 seconds (Sampling)
#> Chain 3: 1.288 seconds (Total)
#> Chain 3:
#>
#> SAMPLING FOR MODEL 'Sarima' NOW (CHAIN 4).
#> Chain 4:
#> Chain 4: Gradient evaluation took 0 seconds
#> Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
#> Chain 4: Adjust your expectations accordingly!
#> Chain 4:
#> Chain 4:
#> Chain 4: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 4: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 4: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 4: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 4: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 4: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 4: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 4: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 4: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 4: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 4: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 4: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 4:
#> Chain 4: Elapsed Time: 0.991 seconds (Warm-up)
#> Chain 4: 0.324 seconds (Sampling)
#> Chain 4: 1.315 seconds (Total)
#> Chain 4:The next step is to add each of the models to a Modeltime Table using modeltime_table(). This step does some basic checking to make sure each of the models are fitted and that organizes into a scalable structure called a “Modeltime Table” that is used as part of our forecasting workflow.
We have 2 models to add.
models_tbl <- modeltime_table(
model_fit_arima,
model_fit_arima_bayes,
model_fit_naive
)
models_tbl
#> # Modeltime Table
#> # A tibble: 3 x 3
#> .model_id .model .model_desc
#> <int> <list> <chr>
#> 1 1 <fit[+]> ARIMA(0,1,1)(0,1,1)[12]
#> 2 2 <fit[+]> BAYESIAN ARIMA MODEL
#> 3 3 <fit[+]> NAIVE MODELCalibrating adds a new column, .calibration_data, with the test predictions and residuals inside. A few notes on Calibration:
calibration_tbl <- models_tbl %>%
modeltime_calibrate(new_data = testing(splits))
calibration_tbl
#> # Modeltime Table
#> # A tibble: 3 x 5
#> .model_id .model .model_desc .type .calibration_data
#> <int> <list> <chr> <chr> <list>
#> 1 1 <fit[+]> ARIMA(0,1,1)(0,1,1)[12] Test <tibble[,4] [31 x 4]>
#> 2 2 <fit[+]> BAYESIAN ARIMA MODEL Test <tibble[,4] [31 x 4]>
#> 3 3 <fit[+]> NAIVE MODEL Test <tibble[,4] [31 x 4]>There are 2 critical parts to an evaluation.
Visualizing the Test Error is easy to do using the interactive plotly visualization (just toggle the visibility of the models using the Legend).
calibration_tbl %>%
modeltime_forecast(
new_data = testing(splits),
actual_data = m750
) %>%
plot_modeltime_forecast(
.legend_max_width = 25, # For mobile screens
.interactive = interactive
)We can use modeltime_accuracy() to collect common accuracy metrics. The default reports the following metrics using yardstick functions:
mae()mape()mase()smape()rmse()rsq()These of course can be customized following the rules for creating new yardstick metrics, but the defaults are very useful. Refer to default_forecast_accuracy_metrics() to learn more.
To make table-creation a bit easier, I’ve included table_modeltime_accuracy() for outputing results in either interactive (reactable) or static (gt) tables.
| Accuracy Table | ||||||||
|---|---|---|---|---|---|---|---|---|
| .model_id | .model_desc | .type | mae | mape | mase | smape | rmse | rsq |
| 1 | ARIMA(0,1,1)(0,1,1)[12] | Test | 151.33 | 1.41 | 0.52 | 1.43 | 197.71 | 0.93 |
| 2 | BAYESIAN ARIMA MODEL | Test | 141.93 | 1.32 | 0.48 | 1.34 | 184.16 | 0.94 |
| 3 | NAIVE MODEL | Test | 272.65 | 2.55 | 0.93 | 2.60 | 341.68 | 0.85 |
The final step is to refit the models to the full dataset using modeltime_refit() and forecast them forward.
refit_tbl <- calibration_tbl %>%
modeltime_refit(data = m750)
#>
#> SAMPLING FOR MODEL 'Sarima' NOW (CHAIN 1).
#> Chain 1:
#> Chain 1: Gradient evaluation took 0 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
#> Chain 1: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 1: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 1: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 1: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 1: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 1: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 1: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 1: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 1: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 1: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 1: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 1: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 1:
#> Chain 1: Elapsed Time: 6.521 seconds (Warm-up)
#> Chain 1: 5.658 seconds (Sampling)
#> Chain 1: 12.179 seconds (Total)
#> Chain 1:
#>
#> SAMPLING FOR MODEL 'Sarima' NOW (CHAIN 2).
#> Chain 2:
#> Chain 2: Gradient evaluation took 0 seconds
#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
#> Chain 2: Adjust your expectations accordingly!
#> Chain 2:
#> Chain 2:
#> Chain 2: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 2: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 2: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 2: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 2: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 2: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 2: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 2: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 2: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 2: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 2: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 2: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 2:
#> Chain 2: Elapsed Time: 0.986 seconds (Warm-up)
#> Chain 2: 0.858 seconds (Sampling)
#> Chain 2: 1.844 seconds (Total)
#> Chain 2:
#>
#> SAMPLING FOR MODEL 'Sarima' NOW (CHAIN 3).
#> Chain 3:
#> Chain 3: Gradient evaluation took 0 seconds
#> Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
#> Chain 3: Adjust your expectations accordingly!
#> Chain 3:
#> Chain 3:
#> Chain 3: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 3: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 3: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 3: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 3: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 3: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 3: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 3: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 3: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 3: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 3: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 3: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 3:
#> Chain 3: Elapsed Time: 7.642 seconds (Warm-up)
#> Chain 3: 6.304 seconds (Sampling)
#> Chain 3: 13.946 seconds (Total)
#> Chain 3:
#>
#> SAMPLING FOR MODEL 'Sarima' NOW (CHAIN 4).
#> Chain 4:
#> Chain 4: Gradient evaluation took 0 seconds
#> Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
#> Chain 4: Adjust your expectations accordingly!
#> Chain 4:
#> Chain 4:
#> Chain 4: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 4: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 4: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 4: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 4: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 4: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 4: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 4: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 4: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 4: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 4: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 4: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 4:
#> Chain 4: Elapsed Time: 1.278 seconds (Warm-up)
#> Chain 4: 1 seconds (Sampling)
#> Chain 4: 2.278 seconds (Total)
#> Chain 4:
#>
#> SAMPLING FOR MODEL 'Sarima' NOW (CHAIN 1).
#> Chain 1:
#> Chain 1: Gradient evaluation took 0 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
#> Chain 1: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 1: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 1: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 1: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 1: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 1: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 1: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 1: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 1: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 1: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 1: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 1: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 1:
#> Chain 1: Elapsed Time: 1.142 seconds (Warm-up)
#> Chain 1: 0.416 seconds (Sampling)
#> Chain 1: 1.558 seconds (Total)
#> Chain 1:
#>
#> SAMPLING FOR MODEL 'Sarima' NOW (CHAIN 2).
#> Chain 2:
#> Chain 2: Gradient evaluation took 0.001 seconds
#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 10 seconds.
#> Chain 2: Adjust your expectations accordingly!
#> Chain 2:
#> Chain 2:
#> Chain 2: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 2: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 2: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 2: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 2: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 2: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 2: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 2: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 2: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 2: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 2: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 2: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 2:
#> Chain 2: Elapsed Time: 0.636 seconds (Warm-up)
#> Chain 2: 0.305 seconds (Sampling)
#> Chain 2: 0.941 seconds (Total)
#> Chain 2:
#>
#> SAMPLING FOR MODEL 'Sarima' NOW (CHAIN 3).
#> Chain 3:
#> Chain 3: Gradient evaluation took 0 seconds
#> Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
#> Chain 3: Adjust your expectations accordingly!
#> Chain 3:
#> Chain 3:
#> Chain 3: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 3: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 3: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 3: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 3: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 3: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 3: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 3: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 3: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 3: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 3: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 3: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 3:
#> Chain 3: Elapsed Time: 1.197 seconds (Warm-up)
#> Chain 3: 0.308 seconds (Sampling)
#> Chain 3: 1.505 seconds (Total)
#> Chain 3:
#>
#> SAMPLING FOR MODEL 'Sarima' NOW (CHAIN 4).
#> Chain 4:
#> Chain 4: Gradient evaluation took 0 seconds
#> Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
#> Chain 4: Adjust your expectations accordingly!
#> Chain 4:
#> Chain 4:
#> Chain 4: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 4: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 4: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 4: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 4: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 4: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 4: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 4: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 4: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 4: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 4: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 4: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 4:
#> Chain 4: Elapsed Time: 1.115 seconds (Warm-up)
#> Chain 4: 0.375 seconds (Sampling)
#> Chain 4: 1.49 seconds (Total)
#> Chain 4:
refit_tbl %>%
modeltime_forecast(h = "3 years", actual_data = m750) %>%
plot_modeltime_forecast(
.legend_max_width = 25, # For mobile screens
.interactive = interactive
)