library(parallelPlot)factor type)parallelPlot(iris)‘species’ column is of factor type and has box representation for its categories.
refColumnDim argument (referenced column is
categorical)parallelPlot(iris, refColumnDim = "Species")Each trace has a color depending of its ‘species’ value.
categoricalCS argumentparallelPlot(iris, refColumnDim = "Species", categoricalCS = "Set1")Colors used for categories are not the same as previously (supported values: Category10, Accent, Dark2, Paired, Set1).
refColumnDim argument (referenced column is
continuous)parallelPlot(iris, refColumnDim = "Sepal.Length")Each trace has a color depending of its ‘Sepal.Length’ value.
continuousCS argumentparallelPlot(iris, refColumnDim = "Sepal.Length", continuousCS = "YlOrRd")Colors used for traces are not the same as previously (supported values: Blues, RdBu, YlGnBu, YlOrRd, Reds).
factor type)parallelPlot(mtcars)Several columns are of numerical type but should be of factor type (for example ‘cyl’).
categorical argumentcategorical <- list(NULL, c(4, 6, 8), NULL, NULL, NULL, NULL, NULL, c(0, 1), c(0, 1), 3:5, 1:8)
parallelPlot(mtcars, categorical = categorical, refColumnDim = "cyl")‘cyl’ and four last columns have a box representation for its categories.
inputColumns argumentcategorical <- list(NULL, c(4, 6, 8), NULL, NULL, NULL, NULL, NULL, c(0, 1), c(0, 1), 3:5, 1:8)
inputColumns <- c(FALSE, TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, TRUE, TRUE, TRUE, TRUE)
parallelPlot(mtcars, categorical = categorical, inputColumns = inputColumns, refColumnDim = "cyl")The column name is blue for outputs and green for inputs (in shiny mode, inputs can be edited).
histoVisibility argumenthistoVisibility <- rep(TRUE, ncol(iris))
parallelPlot(iris, histoVisibility = histoVisibility)An histogram is displayed for each column.
invertedAxes argumentinvertedAxes <- rep(FALSE, ncol(iris))
invertedAxes[2] <- TRUE
parallelPlot(iris, invertedAxes = invertedAxes)Axe of second column is inverted.
cutoffs argumenthistoVisibility <- rep(TRUE, ncol(iris))
cutoffs <- list(list(c(6, 7)), NULL, NULL, NULL, c("virginica", "setosa"))
parallelPlot(iris, histoVisibility = histoVisibility, cutoffs = cutoffs)Traces which are not kept by cutoffs are greyed; an histogram is displayed considering only kept traces.
refRowIndex argumentparallelPlot(iris, refRowIndex = 1)Axes are shifted vertically in such a way that first trace of the dataset looks horizontal.
rotateTitle argumentparallelPlot(iris, refColumnDim = "Species", rotateTitle = TRUE)Column names are rotated (can be useful for long column names).
columnLabels argumentcolumnLabels <- gsub("\\.", "<br>", colnames(iris))
parallelPlot(iris, refColumnDim = "Species", columnLabels = columnLabels)Given names are displayed in place of column names found in dataset;
<br> is used to insert line breaks.
cssRules argumentparallelPlot(iris, cssRules = list(
"svg" = "background: white", # Set background of plot to white
".tick text" = c("fill: red", "font-size: 1.8em") # Set text of axes ticks red and greater
))Apply CSS to the plot. CSS is a simple way to describe how elements on a web page should be displayed (position, colour, size, etc.). You can learn the basics at W3Schools. You can learn how to examine and edit css at MDN Web Docs for Firexox or Chrome devtools for Chrome.
sliderPosition argumentparallelPlot(iris, sliderPosition = list(
dimCount = 3, # Number of columns to show
startingDimIndex = 2 # Index of first shown column
))Set initial position of slider, specifying which columns interval is visible.
controlWidgets argumentparallelPlot(iris, refColumnDim = "Species", controlWidgets = TRUE)Some widgets are available to control the plot.