R has little support for physical measurement units. The exception is formed by time differences: time differences objects of class difftime have a units attribute that can be modified:
t1 = Sys.time()
t2 = t1 + 3600
d = t2 - t1
class(d)
## [1] "difftime"
units(d)
## [1] "hours"
d
## Time difference of 1 hours
units(d) = "secs"
d
## Time difference of 3600 secsWe see here that the units method is used to retrieve and modify the unit of time differences.
The units package generalizes this idea to other physical units, building upon the udunits2 C library. The udunits2 library provides the following operations:
m/s is a valid physical unitm/s and km/h are convertibleThe units R package uses the udunits2 C library to extend R with functionality for manipulating numeric vectors that have physical measurement units associated with them, in a similar way as difftime objects behave.
We can set units to numerical values by set_units:
library(units)
(a <- set_units(runif(10), m/s))
## Units: [m/s]
## [1] 0.8952217 0.5174261 0.1532732 0.6343891 0.1214279 0.9735305 0.9129069
## [8] 0.5624314 0.1946815 0.1837322the result, e.g.
set_units(10, m/s)
## 10 [m/s]literally means “10 times 1 m divided by 1 s”. In writing, the “1” values are omitted, and the multiplication is implicit.
When conversion is meaningful, such as hours to seconds or meters to kilometers, conversion can be done explicitly by setting the units of a vector
b = a
units(b) <- make_units(km/h)
b
## Units: [km/h]
## [1] 3.2227982 1.8627339 0.5517834 2.2838008 0.4371403 3.5047100 3.2864648
## [8] 2.0247532 0.7008533 0.6614361Arithmetic operations verify units, and create new ones
a + a
## Units: [m/s]
## [1] 1.7904434 1.0348522 0.3065463 1.2687782 0.2428557 1.9470611 1.8258138
## [8] 1.1248629 0.3893629 0.3674645
a * a
## Units: [m^2/s^2]
## [1] 0.80142191 0.26772975 0.02349266 0.40244955 0.01474473 0.94776172
## [7] 0.83339899 0.31632913 0.03790088 0.03375754
a ^ 2
## Units: [m^2/s^2]
## [1] 0.80142191 0.26772975 0.02349266 0.40244955 0.01474473 0.94776172
## [7] 0.83339899 0.31632913 0.03790088 0.03375754
a ** -2
## Units: [s^2/m^2]
## [1] 1.247782 3.735110 42.566484 2.484783 67.820853 1.055118 1.199905
## [8] 3.161264 26.384615 29.623014and convert to the units of the first argument if necessary:
a + b # m/s + km/h -> m/s
## Units: [m/s]
## [1] 1.7904434 1.0348522 0.3065463 1.2687782 0.2428557 1.9470611 1.8258138
## [8] 1.1248629 0.3893629 0.3674645Currently, powers are only supported for integer powers, so using a ** 2.5 would result in an error.
There are some basic simplification of units:
t <- make_units(s)
a * t
## Units: [m]
## [1] 0.8952217 0.5174261 0.1532732 0.6343891 0.1214279 0.9735305 0.9129069
## [8] 0.5624314 0.1946815 0.1837322which also work when units need to be converted before they can be simplified:
t <- make_units(min)
a * t
## Units: [m]
## [1] 53.713303 31.045565 9.196390 38.063347 7.285672 58.411833 54.774413
## [8] 33.745887 11.680888 11.023935Simplification to unit-less values gives the “1” as unit:
m <- make_units(m)
a * t / m
## Units: [1]
## [1] 53.713303 31.045565 9.196390 38.063347 7.285672 58.411833 54.774413
## [8] 33.745887 11.680888 11.023935Allowed operations that require convertible units are +, -, ==, !=, <, >, <=, >=. Operations that lead to new units are *, /, and the power operations ** and ^.
Mathematical operations allowed are: abs, sign, floor, ceiling, trunc, round, signif, log, cumsum, cummax, cummin.
signif(a ** 2 / 3, 3)
## Units: [m^2/s^2]
## [1] 0.26700 0.08920 0.00783 0.13400 0.00491 0.31600 0.27800 0.10500 0.01260
## [10] 0.01130
cumsum(a)
## Units: [m/s]
## [1] 0.8952217 1.4126478 1.5659210 2.2003101 2.3217379 3.2952685 4.2081754
## [8] 4.7706068 4.9652883 5.1490205
log(a) # base defaults to exp(1)
## Units: [(ln(re 1 m.s-1))]
## [1] -0.11068387 -0.65888860 -1.87553359 -0.45509277 -2.10843486 -0.02682608
## [7] -0.09112139 -0.57548602 -1.63639053 -1.69427578
log(a, base = 10)
## Units: [(lg(re 1 m.s-1))]
## [1] -0.04806939 -0.28615168 -0.81453389 -0.19764428 -0.91568162 -0.01165042
## [7] -0.03957352 -0.24993040 -0.71067538 -0.73581462
log(a, base = 2)
## Units: [(lb(re 1 m.s-1))]
## [1] -0.15968307 -0.95057531 -2.70582301 -0.65656008 -3.04182851 -0.03870185
## [7] -0.13146037 -0.83025083 -2.36081250 -2.44432327Summary functions sum, min, max, and range are allowed:
sum(a)
## 5.149021 [m/s]
min(a)
## 0.1214279 [m/s]
max(a)
## 0.9735305 [m/s]
range(a)
## Units: [m/s]
## [1] 0.1214279 0.9735305
make_units(min(m/s, km/h)) # converts to first unit:
## 0.2777778 [m/s]Following difftime, printing behaves differently for length-one vectors:
a
## Units: [m/s]
## [1] 0.8952217 0.5174261 0.1532732 0.6343891 0.1214279 0.9735305 0.9129069
## [8] 0.5624314 0.1946815 0.1837322
a[1]
## 0.8952217 [m/s]The usual subsetting rules work:
a[2:5]
## Units: [m/s]
## [1] 0.5174261 0.1532732 0.6343891 0.1214279
a[-(1:9)]
## 0.1837322 [m/s]c(a,a)
## Units: [m/s]
## [1] 0.8952217 0.5174261 0.1532732 0.6343891 0.1214279 0.9735305 0.9129069
## [8] 0.5624314 0.1946815 0.1837322 0.8952217 0.5174261 0.1532732 0.6343891
## [15] 0.1214279 0.9735305 0.9129069 0.5624314 0.1946815 0.1837322concatenation converts to the units of the first argument, if necessary:
c(a,b) # m/s, km/h -> m/s
## Units: [m/s]
## [1] 0.8952217 0.5174261 0.1532732 0.6343891 0.1214279 0.9735305 0.9129069
## [8] 0.5624314 0.1946815 0.1837322 0.8952217 0.5174261 0.1532732 0.6343891
## [15] 0.1214279 0.9735305 0.9129069 0.5624314 0.1946815 0.1837322
c(b,a) # km/h, m/s -> km/h
## Units: [km/h]
## [1] 3.2227982 1.8627339 0.5517834 2.2838008 0.4371403 3.5047100 3.2864648
## [8] 2.0247532 0.7008533 0.6614361 3.2227982 1.8627339 0.5517834 2.2838008
## [15] 0.4371403 3.5047100 3.2864648 2.0247532 0.7008533 0.6614361difftimeFrom difftime to units:
t1 = Sys.time()
t2 = t1 + 3600
d = t2 - t1
(du = as_units(d))
## 1 [h]vice versa:
(dt = as_difftime(du))
## Time difference of 1 hours
class(dt)
## [1] "difftime"matrix objectsset_units(matrix(1:4,2,2), m/s)
## Units: [m/s]
## [,1] [,2]
## [1,] 1 3
## [2,] 2 4
set_units(matrix(1:4,2,2), m/s * m/s)
## Units: [m^2/s^2]
## [,1] [,2]
## [1,] 1 3
## [2,] 2 4but
set_units(matrix(1:4,2,2), m/s) %*% set_units(4:3, m/s)
## [,1]
## [1,] 13
## [2,] 20strips units.
data.framesunits in data.frame objects are printed, but do not appear in summary:.
set.seed(131)
d <- data.frame(x = runif(4),
y = set_units(runif(4), s),
z = set_units(1:4, m/s))
d
## x y z
## 1 0.2064370 0.8463468 [s] 1 [m/s]
## 2 0.1249422 0.5292048 [s] 2 [m/s]
## 3 0.2932732 0.5186254 [s] 3 [m/s]
## 4 0.3757797 0.2378545 [s] 4 [m/s]
summary(d)
## x y z
## Min. :0.1249 Min. :0.2379 Min. :1.00
## 1st Qu.:0.1861 1st Qu.:0.4484 1st Qu.:1.75
## Median :0.2499 Median :0.5239 Median :2.50
## Mean :0.2501 Mean :0.5330 Mean :2.50
## 3rd Qu.:0.3139 3rd Qu.:0.6085 3rd Qu.:3.25
## Max. :0.3758 Max. :0.8463 Max. :4.00
d$yz = with(d, y * z)
d
## x y z yz
## 1 0.2064370 0.8463468 [s] 1 [m/s] 0.8463468 [m]
## 2 0.1249422 0.5292048 [s] 2 [m/s] 1.0584095 [m]
## 3 0.2932732 0.5186254 [s] 3 [m/s] 1.5558761 [m]
## 4 0.3757797 0.2378545 [s] 4 [m/s] 0.9514180 [m]
d[1, "yz"]
## 0.8463468 [m]Units are often written in the form m2 s-1, for square meter per second. This can be defined as unit, and also parsed by as_units:
(x = 1:10 * as_units("m2 s-1"))
## Units: [m^2/s]
## [1] 1 2 3 4 5 6 7 8 9 10udunits understands such string, and can convert them
y = 1:10 * make_units(m^2/s)
x + y
## Units: [m^2/s]
## [1] 2 4 6 8 10 12 14 16 18 20Printing units in this form is done by
deparse_unit(x)
## [1] "m2 s-1"Base scatter plots and histograms support automatic unit placement in axis labels. In the following example we first convert to SI units. (Unit in needs a bit special treatment, because in is a reserved word in R.)
mar = par("mar") + c(0, .3, 0, 0)
displacement = mtcars$disp * as_units("in")^3
units(displacement) = make_units(cm^3)
weight = mtcars$wt * 1000 * make_units(lb)
units(weight) = make_units(kg)
par(mar = mar)
plot(weight, displacement)We can change grouping symbols from [ ] into ( ):
units_options(group = c("(", ")") ) # parenthesis instead of square brackets
par(mar = mar)
plot(weight, displacement)We can also remove grouping symbols, increase space between variable name and unit by:
units_options(sep = c("~~~", "~"), group = c("", "")) # no brackets; extra space
par(mar = mar)
plot(weight, displacement)More complex units can be plotted either with negative powers, or as divisions, by modifying one of units’s global options using units_options:
gallon = as_units("gallon")
consumption = mtcars$mpg * make_units(mi/gallon)
units(consumption) = make_units(km/l)
par(mar = mar)
plot(displacement, consumption) # division in consumptionunits_options(negative_power = TRUE) # division becomes ^-1
plot(displacement, consumption) # division in consumptionAs usual, units modify automatically in expressions:
units_options(negative_power = TRUE) # division becomes ^-1
par(mar = mar)
plot(displacement, consumption)plot(1/displacement, 1/consumption)