Last updated on 2025-09-11 15:49:22 CEST.
Flavor | Version | Tinstall | Tcheck | Ttotal | Status | Flags |
---|---|---|---|---|---|---|
r-devel-linux-x86_64-debian-clang | 0.2.0 | 24.24 | 172.85 | 197.09 | OK | |
r-devel-linux-x86_64-debian-gcc | 0.2.0 | 16.44 | 115.21 | 131.65 | OK | |
r-devel-linux-x86_64-fedora-clang | 0.2.0 | 313.52 | ERROR | |||
r-devel-linux-x86_64-fedora-gcc | 0.2.0 | 296.32 | ERROR | |||
r-devel-windows-x86_64 | 0.2.0 | 22.00 | 162.00 | 184.00 | OK | |
r-patched-linux-x86_64 | 0.2.0 | 21.95 | 157.37 | 179.32 | OK | |
r-release-linux-x86_64 | 0.2.0 | 21.65 | 159.78 | 181.43 | OK | |
r-release-macos-arm64 | 0.2.0 | 75.00 | OK | |||
r-release-macos-x86_64 | 0.2.0 | 147.00 | OK | |||
r-release-windows-x86_64 | 0.2.0 | 24.00 | 163.00 | 187.00 | OK | |
r-oldrel-macos-arm64 | 0.2.0 | 84.00 | OK | |||
r-oldrel-macos-x86_64 | 0.2.0 | 159.00 | OK | |||
r-oldrel-windows-x86_64 | 0.2.0 | 31.00 | 215.00 | 246.00 | OK |
Version: 0.2.0
Check: examples
Result: ERROR
Running examples in ‘bartMan-Ex.R’ failed
The error most likely occurred in:
> ### Name: viviBartPlot
> ### Title: viviBartPlot
> ### Aliases: viviBartPlot
>
> ### ** Examples
>
> if(requireNamespace("dbarts", quietly = TRUE)){
+ # Load the dbarts package to access the bart function
+ library(dbarts)
+ # Get Data
+ df <- na.omit(airquality)
+ # Create Simple dbarts Model For Regression:
+ set.seed(1701)
+ dbartModel <- bart(df[2:6], df[, 1], ntree = 5, keeptrees = TRUE, nskip = 10, ndpost = 10)
+
+ # Tree Data
+ trees_data <- extractTreeData(model = dbartModel, data = df)
+
+ # VSUP Matrix
+ vsupMat <- viviBartMatrix(trees = trees_data,
+ type = 'vsup',
+ metric = 'propMean',
+ metricError = 'CV')
+ # Plot
+ viviBartPlot(vsupMat, label = 'CV')
+ }
Running BART with numeric y
number of trees: 5
number of chains: 1, default number of threads 1
tree thinning rate: 1
Prior:
k prior fixed to 2.000000
degrees of freedom in sigma prior: 3.000000
quantile in sigma prior: 0.900000
scale in sigma prior: 0.003039
power and base for tree prior: 2.000000 0.950000
use quantiles for rule cut points: false
proposal probabilities: birth/death 0.50, swap 0.10, change 0.40; birth 0.50
data:
number of training observations: 111
number of test observations: 0
number of explanatory variables: 5
init sigma: 20.858463, curr sigma: 20.858463
Cutoff rules c in x<=c vs x>c
Number of cutoffs: (var: number of possible c):
(1: 100) (2: 100) (3: 100) (4: 100) (5: 100)
Running mcmc loop:
total seconds in loop: 0.000704
Tree sizes, last iteration:
[1] 3 2 2 4 2
Variable Usage, last iteration (var:count):
(1: 1) (2: 1) (3: 4) (4: 0) (5: 2)
DONE BART
Generating Child/Parent Mappings:
|
| | 0%
|
| | 1%
|
|= | 1%
|
|= | 2%
|
|== | 3%
|
|== | 4%
|
|=== | 4%
|
|=== | 5%
|
|==== | 5%
|
|==== | 6%
|
|===== | 7%
|
|===== | 8%
|
|====== | 8%
|
|====== | 9%
|
|======= | 10%
|
|======= | 11%
|
|======== | 11%
|
|======== | 12%
|
|========= | 13%
|
|========== | 14%
|
|========== | 15%
|
|=========== | 15%
|
|=========== | 16%
|
|============ | 17%
|
|============ | 18%
|
|============= | 18%
|
|============= | 19%
|
|============== | 20%
|
|============== | 21%
|
|=============== | 21%
|
|=============== | 22%
|
|================ | 22%
|
|================ | 23%
|
|================= | 24%
|
|================= | 25%
|
|================== | 25%
|
|================== | 26%
|
|=================== | 27%
|
|=================== | 28%
|
|==================== | 28%
|
|==================== | 29%
|
|===================== | 29%
|
|===================== | 30%
|
|====================== | 31%
|
|====================== | 32%
|
|======================= | 32%
|
|======================= | 33%
|
|======================== | 34%
|
|======================== | 35%
|
|========================= | 35%
|
|========================= | 36%
|
|========================== | 37%
|
|=========================== | 38%
|
|=========================== | 39%
|
|============================ | 39%
|
|============================ | 40%
|
|============================= | 41%
|
|============================= | 42%
|
|============================== | 42%
|
|============================== | 43%
|
|=============================== | 44%
|
|=============================== | 45%
|
|================================ | 45%
|
|================================ | 46%
|
|================================= | 46%
|
|================================= | 47%
|
|================================== | 48%
|
|================================== | 49%
|
|=================================== | 49%
|
|=================================== | 50%
|
|=================================== | 51%
|
|==================================== | 51%
|
|==================================== | 52%
|
|===================================== | 53%
|
|===================================== | 54%
|
|====================================== | 54%
|
|====================================== | 55%
|
|======================================= | 55%
|
|======================================= | 56%
|
|======================================== | 57%
|
|======================================== | 58%
|
|========================================= | 58%
|
|========================================= | 59%
|
|========================================== | 60%
|
|========================================== | 61%
|
|=========================================== | 61%
|
|=========================================== | 62%
|
|============================================ | 63%
|
|============================================= | 64%
|
|============================================= | 65%
|
|============================================== | 65%
|
|============================================== | 66%
|
|=============================================== | 67%
|
|=============================================== | 68%
|
|================================================ | 68%
|
|================================================ | 69%
|
|================================================= | 70%
|
|================================================= | 71%
|
|================================================== | 71%
|
|================================================== | 72%
|
|=================================================== | 72%
|
|=================================================== | 73%
|
|==================================================== | 74%
|
|==================================================== | 75%
|
|===================================================== | 75%
|
|===================================================== | 76%
|
|====================================================== | 77%
|
|====================================================== | 78%
|
|======================================================= | 78%
|
|======================================================= | 79%
|
|======================================================== | 79%
|
|======================================================== | 80%
|
|========================================================= | 81%
|
|========================================================= | 82%
|
|========================================================== | 82%
|
|========================================================== | 83%
|
|=========================================================== | 84%
|
|=========================================================== | 85%
|
|============================================================ | 85%
|
|============================================================ | 86%
|
|============================================================= | 87%
|
|============================================================== | 88%
|
|============================================================== | 89%
|
|=============================================================== | 89%
|
|=============================================================== | 90%
|
|================================================================ | 91%
|
|================================================================ | 92%
|
|================================================================= | 92%
|
|================================================================= | 93%
|
|================================================================== | 94%
|
|================================================================== | 95%
|
|=================================================================== | 95%
|
|=================================================================== | 96%
|
|==================================================================== | 96%
|
|==================================================================== | 97%
|
|===================================================================== | 98%
|
|===================================================================== | 99%
|
|======================================================================| 99%
|
|======================================================================| 100%
Extracting Observation Data...
Error in width_cm(theme$legend.key.width * 5) : Unknown input
Calls: <Anonymous> ... guide_gengrob -> guide_gengrob.colourfan -> width_cm
Execution halted
Flavor: r-devel-linux-x86_64-fedora-clang
Version: 0.2.0
Check: examples
Result: ERROR
Running examples in ‘bartMan-Ex.R’ failed
The error most likely occurred in:
> ### Name: viviBartPlot
> ### Title: viviBartPlot
> ### Aliases: viviBartPlot
>
> ### ** Examples
>
> if(requireNamespace("dbarts", quietly = TRUE)){
+ # Load the dbarts package to access the bart function
+ library(dbarts)
+ # Get Data
+ df <- na.omit(airquality)
+ # Create Simple dbarts Model For Regression:
+ set.seed(1701)
+ dbartModel <- bart(df[2:6], df[, 1], ntree = 5, keeptrees = TRUE, nskip = 10, ndpost = 10)
+
+ # Tree Data
+ trees_data <- extractTreeData(model = dbartModel, data = df)
+
+ # VSUP Matrix
+ vsupMat <- viviBartMatrix(trees = trees_data,
+ type = 'vsup',
+ metric = 'propMean',
+ metricError = 'CV')
+ # Plot
+ viviBartPlot(vsupMat, label = 'CV')
+ }
Running BART with numeric y
number of trees: 5
number of chains: 1, default number of threads 1
tree thinning rate: 1
Prior:
k prior fixed to 2.000000
degrees of freedom in sigma prior: 3.000000
quantile in sigma prior: 0.900000
scale in sigma prior: 0.003039
power and base for tree prior: 2.000000 0.950000
use quantiles for rule cut points: false
proposal probabilities: birth/death 0.50, swap 0.10, change 0.40; birth 0.50
data:
number of training observations: 111
number of test observations: 0
number of explanatory variables: 5
init sigma: 20.858463, curr sigma: 20.858463
Cutoff rules c in x<=c vs x>c
Number of cutoffs: (var: number of possible c):
(1: 100) (2: 100) (3: 100) (4: 100) (5: 100)
Running mcmc loop:
total seconds in loop: 0.000618
Tree sizes, last iteration:
[1] 3 2 2 4 2
Variable Usage, last iteration (var:count):
(1: 1) (2: 1) (3: 4) (4: 0) (5: 2)
DONE BART
Generating Child/Parent Mappings:
|
| | 0%
|
| | 1%
|
|= | 1%
|
|= | 2%
|
|== | 3%
|
|== | 4%
|
|=== | 4%
|
|=== | 5%
|
|==== | 5%
|
|==== | 6%
|
|===== | 7%
|
|===== | 8%
|
|====== | 8%
|
|====== | 9%
|
|======= | 10%
|
|======= | 11%
|
|======== | 11%
|
|======== | 12%
|
|========= | 13%
|
|========== | 14%
|
|========== | 15%
|
|=========== | 15%
|
|=========== | 16%
|
|============ | 17%
|
|============ | 18%
|
|============= | 18%
|
|============= | 19%
|
|============== | 20%
|
|============== | 21%
|
|=============== | 21%
|
|=============== | 22%
|
|================ | 22%
|
|================ | 23%
|
|================= | 24%
|
|================= | 25%
|
|================== | 25%
|
|================== | 26%
|
|=================== | 27%
|
|=================== | 28%
|
|==================== | 28%
|
|==================== | 29%
|
|===================== | 29%
|
|===================== | 30%
|
|====================== | 31%
|
|====================== | 32%
|
|======================= | 32%
|
|======================= | 33%
|
|======================== | 34%
|
|======================== | 35%
|
|========================= | 35%
|
|========================= | 36%
|
|========================== | 37%
|
|=========================== | 38%
|
|=========================== | 39%
|
|============================ | 39%
|
|============================ | 40%
|
|============================= | 41%
|
|============================= | 42%
|
|============================== | 42%
|
|============================== | 43%
|
|=============================== | 44%
|
|=============================== | 45%
|
|================================ | 45%
|
|================================ | 46%
|
|================================= | 46%
|
|================================= | 47%
|
|================================== | 48%
|
|================================== | 49%
|
|=================================== | 49%
|
|=================================== | 50%
|
|=================================== | 51%
|
|==================================== | 51%
|
|==================================== | 52%
|
|===================================== | 53%
|
|===================================== | 54%
|
|====================================== | 54%
|
|====================================== | 55%
|
|======================================= | 55%
|
|======================================= | 56%
|
|======================================== | 57%
|
|======================================== | 58%
|
|========================================= | 58%
|
|========================================= | 59%
|
|========================================== | 60%
|
|========================================== | 61%
|
|=========================================== | 61%
|
|=========================================== | 62%
|
|============================================ | 63%
|
|============================================= | 64%
|
|============================================= | 65%
|
|============================================== | 65%
|
|============================================== | 66%
|
|=============================================== | 67%
|
|=============================================== | 68%
|
|================================================ | 68%
|
|================================================ | 69%
|
|================================================= | 70%
|
|================================================= | 71%
|
|================================================== | 71%
|
|================================================== | 72%
|
|=================================================== | 72%
|
|=================================================== | 73%
|
|==================================================== | 74%
|
|==================================================== | 75%
|
|===================================================== | 75%
|
|===================================================== | 76%
|
|====================================================== | 77%
|
|====================================================== | 78%
|
|======================================================= | 78%
|
|======================================================= | 79%
|
|======================================================== | 79%
|
|======================================================== | 80%
|
|========================================================= | 81%
|
|========================================================= | 82%
|
|========================================================== | 82%
|
|========================================================== | 83%
|
|=========================================================== | 84%
|
|=========================================================== | 85%
|
|============================================================ | 85%
|
|============================================================ | 86%
|
|============================================================= | 87%
|
|============================================================== | 88%
|
|============================================================== | 89%
|
|=============================================================== | 89%
|
|=============================================================== | 90%
|
|================================================================ | 91%
|
|================================================================ | 92%
|
|================================================================= | 92%
|
|================================================================= | 93%
|
|================================================================== | 94%
|
|================================================================== | 95%
|
|=================================================================== | 95%
|
|=================================================================== | 96%
|
|==================================================================== | 96%
|
|==================================================================== | 97%
|
|===================================================================== | 98%
|
|===================================================================== | 99%
|
|======================================================================| 99%
|
|======================================================================| 100%
Extracting Observation Data...
Error in width_cm(theme$legend.key.width * 5) : Unknown input
Calls: <Anonymous> ... guide_gengrob -> guide_gengrob.colourfan -> width_cm
Execution halted
Flavor: r-devel-linux-x86_64-fedora-gcc