CRAN Package Check Results for Package dynConfiR

Last updated on 2025-09-11 15:49:25 CEST.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 1.0.0 25.81 115.50 141.31 OK
r-devel-linux-x86_64-debian-gcc 1.0.0 17.85 77.56 95.41 OK
r-devel-linux-x86_64-fedora-clang 1.0.0 192.69 ERROR
r-devel-linux-x86_64-fedora-gcc 1.0.0 227.17 OK
r-devel-windows-x86_64 1.0.0 30.00 140.00 170.00 OK
r-patched-linux-x86_64 1.0.0 26.60 105.99 132.59 OK
r-release-linux-x86_64 1.0.0 25.07 105.68 130.75 OK
r-release-macos-arm64 1.0.0 63.00 OK
r-release-macos-x86_64 1.0.0 122.00 OK
r-release-windows-x86_64 1.0.0 31.00 135.00 166.00 OK
r-oldrel-macos-arm64 1.0.0 68.00 OK
r-oldrel-macos-x86_64 1.0.0 123.00 OK
r-oldrel-windows-x86_64 1.0.0 37.00 177.00 214.00 OK

Check Details

Version: 1.0.0
Check: examples
Result: ERROR Running examples in ‘dynConfiR-Ex.R’ failed The error most likely occurred in: > ### Name: RaceModels > ### Title: Independent and partially anti-correlated Race Model for > ### Decision Confidence > ### Aliases: RaceModels dIRM dPCRM rRM dRM rIRM rPCRM racemodels dIRM2 > ### dIRM3 > > ### ** Examples > > # Plot rt distribution ignoring confidence > curve(dPCRM(x, 1, mu1=0.5, mu2=-0.5, a=1, b=1, th1=-Inf, th2=Inf, t0=0.1), xlim=c(0,2.5)) > curve(dPCRM(x, 2, mu1=0.5, mu2=-0.5, a=1, b=1, th1=-Inf, th2=Inf, t0=0.1), col="red", add=TRUE) > curve(dIRM(x, 1, mu1=0.5, mu2=-0.5, a=1, b=1, th1=-Inf, th2=Inf, t0=0.1), lty=2,add=TRUE) > curve(dIRM(x, 2, mu1=0.5, mu2=-0.5, a=1, b=1, th1=-Inf, th2=Inf, t0=0.1), + col="red", lty=2, add=TRUE) > # t0 indicates minimal response time possible > abline(v=0.1) > ## Following example may be equivalently used for the IRM model functions. > # Generate a random sample > df1 <- rPCRM(5000, mu1=0.2, mu2=-0.2, a=1, b=1, t0=0.1, + wx = 1) # Balance of Evidence > # Same RT and response distribution but different confidence distribution > df2 <- rPCRM(5000, mu1=0.2, mu2=-0.2, a=1, b=1, t0=0.1, + wint = 0.2, wrt=0.8) > head(df1) rt response xl conf 1 0.65 1 -0.1666653 1.1666653 2 11.59 1 -6.8019691 7.8019691 3 1.89 2 -0.3117717 1.3117717 4 0.85 2 0.5670769 0.4329231 5 0.77 2 0.2080419 0.7919581 6 0.32 1 -0.1913931 1.1913931 > > # Compute density with rt and response as separate arguments > dPCRM(seq(0, 2, by =0.4), response= 2, mu1=0.2, mu2=-0.2, a=1, b=1, th1=0.5, + th2=2, wx = 0.3, wint=0.4, wrt=0.1, t0=0.1) [1] 0.00000000 0.26919023 0.20371811 0.10962250 0.06320931 0.03928042 > # Compute density with rt and response in data.frame argument > df1 <- subset(df1, response !=0) # drop trials where no accumulation hit its boundary > dPCRM(df1[1:5,], mu1=0.2, mu2=-0.2, a=1, b=1, th1=0, th2=Inf, t0=0.1) [1] 0.449022313 0.001737302 0.051678757 0.215121579 0.244686625 > # s1 and s2 scale other decision relevant parameters > s <- 2 # common (equal) standard deviation > dPCRM(df1[1:5,], mu1=0.2*s, mu2=-0.2*s, a=1*s, b=1*s, th1=0, th2=Inf, t0=0.1, s1=s, s2=s) [1] 0.449022313 0.001737302 0.051678757 0.215121579 0.244686625 > s1 <- 2 # different standard deviations > s2 <- 1.5 > dPCRM(df1[1:5,], mu1=0.2*s1, mu2=-0.2*s2, a=1*s1, b=1*s2, th1=0, th2=Inf, t0=0.1, s1=s1, s2=s2) [1] 0.449022313 0.001737302 0.051678757 0.215121579 0.244686625 > > > # s1 and s2 scale also confidence parameters > df1[1:5,]$response <- 2 # set response to 2 > # for confidence it is important to scale confidence parameters with > # the right variation parameter (the one of the loosing accumulator) > dPCRM(df1[1:5,], mu1=0.2, mu2=-0.2, a=1, b=1, + th1=0.5, th2=2, wx = 0.3, wint=0.4, wrt=0.1, t0=0.1) [1] 0.253627090 0.000290214 0.044476406 0.188375881 0.213369269 > dPCRM(df1[1:5,], mu1=0.2*s1, mu2=-0.2*s2, a=1*s1, b=1*s2, + th1=0.5, th2=2, wx = 0.3/s1, wint = 0.4/s1, wrt = 0.1, t0=0.1, s1=s1, s2=s2) [1] 0.253627090 0.000290214 0.044476406 0.188375881 0.213369269 > dPCRM(df1[1:5,], mu1=0.2*s1, mu2=-0.2*s2, a=1*s1, b=1*s2, + th1=0.5*s1, th2=2*s1, wx = 0.3, wint = 0.4, wrt = 0.1*s1, t0=0.1, s1=s1, s2=s2) [1] 0.253627090 0.000290214 0.044476406 0.188375881 0.213369269 > > two_samples <- rbind(cbind(df1, ws="BoE"), + cbind(df2, ws="RT")) > # drop not finished decision processes > two_samples <- two_samples[two_samples$response!=0,] > # no difference in RT distributions > boxplot(rt~ws+response, data=two_samples) > # but different confidence distributions > boxplot(conf~ws+response, data=two_samples) > if (requireNamespace("ggplot2", quietly = TRUE)) { + require(ggplot2) + ggplot(two_samples, aes(x=rt, y=conf))+ + stat_density_2d(aes(fill = after_stat(density)), + geom = "raster", contour = FALSE, h=c(0.3, 0.7)) + + xlim(c(0.2, 1.3))+ ylim(c(0, 2.5))+ + facet_grid(cols=vars(ws), rows=vars(response), labeller = "label_both") + } Loading required package: ggplot2 Error in `stat_density_2d()`: ! Problem while computing stat. ℹ Error occurred in the 1st layer. Caused by error in `compute_layer()`: ! The package "MASS" is required for calculating 2D density. Backtrace: ▆ 1. ├─base (local) `<fn>`(x) 2. ├─ggplot2 (local) `print.ggplot2::ggplot`(x) 3. │ ├─ggplot2::ggplot_build(x) 4. │ └─ggplot2 (local) `ggplot_build.ggplot2::ggplot`(x) 5. │ └─ggplot2:::by_layer(...) 6. │ ├─rlang::try_fetch(...) 7. │ │ ├─base::tryCatch(...) 8. │ │ │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ │ │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ │ │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. │ │ └─base::withCallingHandlers(...) 12. │ └─ggplot2 (local) f(l = layers[[i]], d = data[[i]]) 13. │ └─l$compute_statistic(d, layout) 14. │ └─ggplot2 (local) compute_statistic(..., self = self) 15. │ └─self$stat$compute_layer(data, self$computed_stat_params, layout) 16. │ └─ggplot2 (local) compute_layer(..., self = self) 17. │ └─rlang::check_installed("MASS", reason = "for calculating 2D density.") 18. │ └─base::stop(cnd) 19. └─rlang (local) `<fn>`(`<rlb_r___>`) 20. └─handlers[[1L]](cnd) 21. └─cli::cli_abort(...) 22. └─rlang::abort(...) Execution halted Flavor: r-devel-linux-x86_64-fedora-clang