ConSciR
is an R package specifically designed to assist
conservators, scientists, and engineers by providing a toolkit for
performing calculations and streamlining common tasks in cultural
heritage conservation.
You can install the development version of the package from GitHub
using either the pak
or devtools
package:
-or-
Visit the package GitHub page for updates and source code: ConSciR Github
Load the necessary packages:
mutate
Enrich your dataset with environmental metrics computed by ConSciR functions:
filepath <- data_file_path("mydata.xlsx")
mydata <- readxl::read_excel(filepath, sheet = "mydata")
mydata <- mydata |> filter(Sensor == "Room 1")
# Add calculated values using mutate
head(mydata) |>
mutate(
Absolute_Humidity = calcAH(Temp, RH),
Dew_Point = calcDP(Temp, RH),
Mixing_Ratio = calcMR(Temp, RH),
Humidity_Ratio = calcHR(Temp, RH),
Enthalpy = calcEnthalpy(Temp, RH),
Saturation_Vapour_Pressure = calcPws(Temp),
Actual_Vapour_Pressure = calcPw(Temp, RH),
Air_Density = calcAD(Temp, RH),
Temp_calc = calcTemp(RH, Dew_Point),
RH_AH_calc = calcRH_AH(Temp, Absolute_Humidity),
RH_DP_calc = calcRH_DP(Temp, Dew_Point)
) |>
glimpse()
#> Rows: 6
#> Columns: 16
#> $ Site <chr> "London", "London", "London", "London", "Lo…
#> $ Sensor <chr> "Room 1", "Room 1", "Room 1", "Room 1", "Ro…
#> $ Date <dttm> 2024-01-01 00:00:00, 2024-01-01 00:15:00, …
#> $ Temp <dbl> 21.8, 21.8, 21.8, 21.7, 21.7, 21.7
#> $ RH <dbl> 36.8, 36.7, 36.6, 36.6, 36.5, 36.2
#> $ Absolute_Humidity <dbl> 7.052415, 7.033251, 7.014087, 6.973723, 6.9…
#> $ Dew_Point <dbl> 6.383970, 6.344456, 6.304848, 6.216205, 6.1…
#> $ Mixing_Ratio <dbl> 5.957278, 5.940935, 5.924593, 5.888156, 5.8…
#> $ Humidity_Ratio <dbl> 5.957278, 5.940935, 5.924593, 5.888156, 5.8…
#> $ Enthalpy <dbl> 37.15665, 37.11512, 37.07359, 36.87888, 36.…
#> $ Saturation_Vapour_Pressure <dbl> 26.12119, 26.12119, 26.12119, 25.96205, 25.…
#> $ Actual_Vapour_Pressure <dbl> 9.612598, 9.586477, 9.560356, 9.502110, 9.4…
#> $ Air_Density <dbl> 1.192445, 1.192457, 1.192469, 1.192899, 1.1…
#> $ Temp_calc <dbl> 21.8, 21.8, 21.8, 21.7, 21.7, 21.7
#> $ RH_AH_calc <dbl> 36.8, 36.7, 36.6, 36.6, 36.5, 36.2
#> $ RH_DP_calc <dbl> 36.8, 36.7, 36.6, 36.6, 36.5, 36.2
Combine calculations and plotting to explore patterns visually:
mydata |>
# Calculate Absolute Humidity and Dew Point
mutate(
AbsHum = calcAH(Temp, RH),
DewPoint = calcDP(Temp, RH)
) |>
# Create base plot using graph_TRH function
graph_TRH() +
# Add Absolute Humidity line
geom_line(aes(Date, AbsHum), color = "green") +
# Add Dew Point line
geom_line(aes(Date, DewPoint), color = "purple") +
# Apply a theme
theme_bw()
calcMould_VTT()
and visualise it alongside
humidity data.mydata |>
mutate(Mould = calcMould_VTT(Temp, RH)) |>
ggplot() +
geom_area(aes(Date, Mould), fill = "darkgreen", alpha = 0.5) +
labs(title = "Mould Growth Index",
y = "Mould Index") +
theme_classic()
Visualise the first 100 rows of the dataset with a psychrometric chart:
Create tailored psychrometric charts by adjusting parameters such as temperature and humidity ranges, visual transparency, or y-axis metrics:
head(mydata, 100) |>
graph_psychrometric(
LowT = 10,
HighT = 28,
LowRH = 20,
HighRH = 80,
data_alpha = 0.3,
y_func = calcAH
) +
theme_classic()
This vignette provides a practical introduction to the package’s core
functionalities. For full details on all functions, see the package
Reference manual or use ?function_name
within R.