Package 'ELmethodVar'

November 17, 2025

Version 0.1

Date 2025-11-12

Title Empirical Likelihood Inference of Variance Components in Linear Mixed-Effects Models
Author Jingru Zhang [aut, cre]
Maintainer Jingru Zhang <pre><jrzhang001@gmail.com></jrzhang001@gmail.com></pre>
Depends R (>= 3.5.0)
Description Provides empirical likelihood-based methods for the inference of variance components in linear mixed-effects models.
License GPL (>= 2)
<pre>URL https://github.com/jingru-zhang/ELmethod</pre>
NeedsCompilation no
Repository CRAN
Date/Publication 2025-11-17 09:00:15 UTC
Contents
beta.all
ELmethodVar
ELvar
GELvar
multiELvar
Philist
thetastar
X
Y.all
Index

2 ELvar

beta.all A Matrix Representing Fixed Effects
--

Description

This is a p by T matrix. Each column is the fixed effects at time t.

ELmethodVar	Empirical Likelihood Inference of Variance Components in Linear
	Mixed-Effects Models

Description

This package provides empirical likelihood-based methods for the inference of variance components in linear mixed-effects models.

Author(s)

Jingru Zhang, Haochang Shou, Hongzhe Li

Maintainer: Jingru Zhang (jrzhang001@gmail.com)

References

Zhang J., Guo W., Carpenter J.S., Leroux A., Merikangas K.R., Martin N.G., Hickie I.B., Shou H., and Li H. (2022). Empirical likelihood tests for variance components in linear mixed-effects models.

See Also

ELvar GELvar

ELvar Empirical Likelihood Inference of a Local Variance Component

Description

This function provides an empirical likelihood method for the inference of a local variance component in linear mixed-effects models.

Usage

ELvar(X,Y,Philist,theta0=0,beta=NA,other=FALSE)

ELvar 3

Arguments

X design matrix for all observations, in which each row represents a p-dimentional

covariates.

Y response vector.

Philist list of design matrices of variance components. Its i-th element is an ni by ni*d

matrix that combines design matrices of variance components by columns for

the i-th subject.

theta0 value of the first variance component under the null. Its default value is 0.

beta fixed effects. Its default value is NA (unknown fixed effects).

other logical; if TRUE, the function gives auxiliary terms. Its default value is FALSE.

Value

stat value of the test statistic.

pvalue approximated p-value based on asymptotic theory.

Zi, Di, Mi, nv1sq auxiliary terms if other=TRUE.

References

Zhang J., Guo W., Carpenter J.S., Leroux A., Merikangas K.R., Martin N.G., Hickie I.B., Shou H., and Li H. (2022). Empirical likelihood tests for variance components in linear mixed-effects models.

See Also

GELvar

Examples

```
# Datasets "exampleNE0" and "exampleNE1" contain normal distributed longitudinal data.
```

Datasets "exampleTE0" and "exampleTE1" contain t distributed longitudinal data.

The fist variance components in the datasets "exampleNEO" and "exampleTEO" are zero.

The fist variance components in the datasets "exampleNE1" and "exampleTE1" are

nonzero at the 24, 25, 26, 27 time points.

```
# X is an N by p matrix with N being the number of all observations and p being
```

the dimension of covariates.

 $\mbox{\tt\#}\mbox{\tt Y.all}$ is an N by T matrix with T being the number of time points.

Philist is an n list of design matrices of variance components with n being the

number of subjects. Its ith element Philist[[i]] is an n_i by n_i matrix

that combines design matrices of variance components by columns for the \$i\$th

subject, where \$n_i\$ is the number of repeated measures for the \$i\$th subject

and \$d\$ is the number of variance components.

beta.all is a p by T matrix. Each column is the fixed effects at time t.

thetastar is a d by T matrix. Each column is the variance components at time t.

${\tt data(exampleNE0)}$

t = 1 # consider the local problem at time t

4 GELvar

```
re = ELvar(X,Y.all[,t],Philist,theta0=0) # with unknown fixed effects
re = ELvar(X,Y.all[,t],Philist,theta0=0,beta=beta.all[,t]) # with known fixed effects
```

GELvar Empirical Likelihood Inference of Variance Components over an Interval	GELvar	Empirical Likelihood Inference of Variance Components over an Interval
---	--------	--

Description

This function provides an empirical likelihood method for the inference of variance components over an interval in linear mixed-effects models.

Usage

```
GELvar(X,Y.all,Philist,theta0=0,beta.all=NA,permnum=1e3)
```

Arguments

X	design matrix for all observations, in which each row represents a p-dimentional covariates.
Y.all	response matrix, in which each column is the response vector at time t.
Philist	list of design matrices of variance components. Its i-th element is an ni by $d*ni$ matrix that combines design matrices of variance components by columns for the i-th subject, where ni is the number of repeated measures for the i-th subject and d is the number of variance components.
theta0	value of the first variance component under the null. Its default value is 0.
beta.all	fixed effects. Each column is the fixed effects at time t . Its default value is NA (unknown fixed effects).
permnum	number of perturbation. Its default value is 1000.

Value

stat.global	value of the test statistic over an interval.
pvalue.global	approximated p-value over an interval based on the perturbation.

References

Zhang J., Guo W., Carpenter J.S., Leroux A., Merikangas K.R., Martin N.G., Hickie I.B., Shou H., and Li H. (2022). Empirical likelihood tests for variance components in linear mixed-effects models.

See Also

ELvar

multiELvar 5

Examples

```
# Datasets "exampleNE0" and "exampleNE1" contain normal distributed longitudinal data.
# Datasets "exampleTE0" and "exampleTE1" contain t distributed longitudinal data.
# The fist variance components in the datasets "exampleNEO" and "exampleTEO" are zero.
# The fist variance components in the datasets "exampleNE1" and "exampleTE1" are
# nonzero at the 24, 25, 26, 27 time points.
# X is an N by p matrix with N being the number of all observations and p being
# the dimension of covariates.
# Y.all is an N by T matrix with T being the number of time points.
# Philist is an n list of design matrices of variance components with n being the
# number of subjects. Its $i$th element Philist[[i]] is an $n_i$ by $n_id$ matrix
# that combines design matrices of variance components by columns for the $i$th
# subject, where $n_i$ is the number of repeated measures for the $i$th subject
# and $d$ is the number of variance components.
# beta.all is a p by T matrix. Each column is the fixed effects at time t.
# thetastar is a d by T matrix. Each column is the variance components at time t.
   data(exampleNE0)
    re = GELvar(X,Y.all,Philist,theta0=0)
```

multiELvar	Empirical Likelihood Inference of Variance Components at multiple
	time points

Description

This function provides an empirical likelihood method for the inference of variance components at multiple time points in linear mixed-effects models.

Usage

```
multiELvar(X,Y.all,Philist,theta0=0,beta.all=NA,other=FALSE)
```

Arguments

X	design matrix for all observations, in which each row represents a p-dimentional covariates.
Y.all	response matrix, in which each column is the response vector at time t.
Philist	list of design matrices of variance components. Its i-th element is an ni by $d*ni$ matrix that combines design matrices of variance components by columns for the i-th subject, where ni is the number of repeated measures for the i-th subject and d is the number of variance components.
theta0	value of the first variance component under the null. Its default value is 0.
beta.all	fixed effects. Each column is the fixed effects at time t . Its default value is NA (unknown fixed effects).
other	logical; if TRUE, the function gives auxiliary terms. Its default value is FALSE.

6 Philist

Value

```
stat.all vector of test statistics at multiple time points.

pvalue.all vector of approximated p-value at multiple time points based on asymptotic theory.

Z.all, D.all, M.all, nv1sq.all auxiliary terms if other=TRUE.
```

References

Zhang J., Guo W., Carpenter J.S., Leroux A., Merikangas K.R., Martin N.G., Hickie I.B., Shou H., and Li H. (2022). Empirical likelihood tests for variance components in linear mixed-effects models.

See Also

GELvar

Examples

```
# Datasets "exampleNE0" and "exampleNE1" contain normal distributed longitudinal data.
# Datasets "exampleTE0" and "exampleTE1" contain t distributed longitudinal data.
# The fist variance components in the datasets "exampleNE0" and "exampleTE0" are zero.
# The fist variance components in the datasets "exampleNE1" and "exampleTE1" are
# nonzero at the 24, 25, 26, 27 time points.
# X is an N by p matrix with N being the number of all observations and p being
# the dimension of covariates.
# Y.all is an N by T matrix with T being the number of time points.
# Philist is an n list of design matrices of variance components with n being the
# number of subjects. Its $i$th element Philist[[i]] is an $n_i$ by $n_id$ matrix
# that combines design matrices of variance components by columns for the $i$th
# subject, where $n_i$ is the number of repeated measures for the $i$th subject
# and $d$ is the number of variance components.
# beta.all is a p by T matrix. Each column is the fixed effects at time t.
# thetastar is a d by T matrix. Each column is the variance components at time t.
    data(exampleNE0)
    re = multiELvar(X,Y.all,Philist,theta0=0)
```

Philist

Design Matrices of Variance Components

Description

This is a list of design matrices of variance components. Its i-th element is an ni by d*ni matrix that combines design matrices of variance components by columns for the i-th subject, where ni is the number of repeated measures for the i-th subject and d is the number of variance components.

thetastar 7

thetastar	A Matrix Representing True Variance Components	

Description

This is a d by T matrix, where d is the number of variance components and T is the number of time points. Each column is the true variance components at time t.

X Design matrix for all observations

Description

This is an N by p matrix with N being the number of all observations and p being the dimension of covariates. Each row represents a p-dimensional covariates.

Y.all Response matrix

Description

This is an N by T matrix with N being the number of all observations and T being the number of time points. Each column is the response vector at time t.

Index

```
beta.all, 2

ELmethodVar, 2
ELvar, 2, 2, 4

GELvar, 2, 3, 4, 6

multiELvar, 5

Philist, 6

thetastar, 7

X, 7

Y.all, 7
```