This vignette introduces the usage of MMGFM for the analysis of high-dimensional multi-study multi-modality data with additional covariates, by comparison with other methods.
The package can be loaded with the command:
Next, we load some functions for subsequent use.
First, we generate the simulated data from three data sources and three modalities, with each modality consisting of count variables.
N <- 100
q <- 3
qsvec <- rep(2,3)
sigma_eps <- 1
datlist <- gendata_mmgfm(seed = 1, nvec = c(300, 200, 100),
pveclist = list('poisson'=c(50, 150, 200)),
q = q, d= 3,qs = qsvec, rho = 2, rho_z=0.5,
sigmavec=1, sigma_eps=sigma_eps)
XList <- datlist$XList
max(unlist(XList))
print(str(XList))
ZList <- datlist$ZList # covariates
print(head(ZList[[1]]))
tauList <- datlist$tauList # offset term
numvarmat <- datlist$numvarmat
Fit the MMGFM model using the function MMGFM()
in the R
package MMGFM
. Users can use ?MMGFM
to see the
details about this function
system.time({
tic <- proc.time()
reslist <- MMGFM(XList, ZList=ZList, numvarmat, q=q, qsvec = qsvec, init='MSFRVI')
toc <- proc.time()
time_MMGFM <- toc[3] - tic[3]
})
Check the increased property of the envidence lower bound function.
library(ggplot2)
library(scales)
dat_iter <- data.frame(iter=1:length(reslist$ELBO_seq), ELBO=reslist$ELBO_seq)
ggplot(data=dat_iter, aes(x=iter, y=ELBO)) + geom_line() + geom_point() + theme_bw(base_size = 20) +
scale_y_continuous(labels = label_scientific(digits = 8))
We calculate the metrics to measure the estimation accuracy, where
the mean trace statistic is used to measure the estimation accuracy of
loading matrix and prediction accuracy of factor matrix, which is
evaluated by the function measurefun()
in the R package
GFM
, and the root of mean absolute error is adopted to
measure the estimation error of beta.
methodNames <- c("MMGFM", "GFM", "MRRR", "MSFR", "MultiCOAP")
n_methods <- length(methodNames)
metricList <- list(F_tr = rep(NA, n_methods),
H_tr = rep(NA, n_methods),
V_tr = rep(NA, n_methods),
A_tr = rep(NA, n_methods),
B_tr = rep(NA, n_methods),
beta_norm=rep(NA, n_methods),
time = rep(NA, n_methods))
for(ii in seq_along(metricList)) names(metricList[[ii]]) <- methodNames
metricList$F_tr[1] <- meanTr(reslist$hF, datlist$F0List)
metricList$H_tr[1] <-meanTr(reslist$hH, datlist$H0List)
metricList$V_tr[1] <-meanTr(lapply(reslist$hv, function(x) Reduce(cbind,x) ), datlist$VList)
metricList$A_tr[1] <-metric_mean(AList=reslist$hA, datlist$A0List, align='unaligned', numvarmat = numvarmat)
metricList$B_tr[1] <- mean(ms_metric_mean(reslist$hB, datlist$B0List, align='unaligned', numvarmat = numvarmat))
metricList$beta_norm[1] <-normvec(Reduce(cbind, reslist$hbeta)- Reduce(cbind,datlist$betaList))
metricList$time[1] <- reslist$time.use
We compare MMGFM
with various prominent methods in the
literature. They are (1) Generalized factor model (Liu et al. 2023)
implemented in the R package GFM
; (2) Multi-response
reduced-rank Poisson regression model (MMMR, Luo et al. 2018)
implemented in rrpack
R package; and (3) the multi-study
covariate-augmented overdispersed Poisson factor (MultiCOAP) model.
(1). First, we implemented the generalized factor model (GFM) and record the metrics that measure the estimation accuracy and computational cost.
res_gfm <- gfm_run(XList, numvarmat, q=q)
metricList$F_tr[2] <- meanTr(res_gfm$hF, datlist$F0List)
metricList$A_tr[2] <-metric_mean(AList=res_gfm$hA, datlist$A0List, align='unaligned', numvarmat = numvarmat)
metricList$time[2] <- res_gfm$time.use
(2). Then, we implemented Multi-response reduced-rank Poisson regression model (MMMR) and recorded the metrics. Here, we truncate values to ensure normal working of this function. Otherwise, it will produce error.
res_mrrr <- mrrr_run(XList, ZList, numvarmat, q, truncflag=TRUE, trunc=500)
metricList$F_tr[3] <- meanTr(res_mrrr$hF, datlist$F0List)
metricList$A_tr[3] <- metric_mean(AList=res_mrrr$hA, datlist$A0List, align='unaligned', numvarmat = numvarmat)
metricList$beta_norm[3] <-normvec(res_mrrr$hbeta - Reduce(cbind,datlist$betaList))
metricList$time[3] <- res_mrrr$time.use
source("https://raw.githubusercontent.com/feiyoung/MMGFM/refs/heads/main/simu_code/MSFR_main_R_MSFR_V1.R")
## To produce results in limited time, here we set maxIter=5. Even Set maxIter=1e4, the result is also not good.
res_msfr <- MSFR_run(XList, ZList, numvarmat, q, qs=qsvec, maxIter=5, load.source=TRUE, log.transform=TRUE)
metricList$F_tr[4] <- meanTr(res_msfr$hF, datlist$F0List)
metricList$H_tr[4] <- meanTr(res_msfr$hH, datlist$H0List)
metricList$A_tr[4] <- metric_mean(AList=res_msfr$hA, datlist$A0List, align='unaligned', numvarmat = numvarmat)
metricList$B_tr[4] <- mean(ms_metric_mean(res_msfr$hB, datlist$B0List, align='unaligned', numvarmat = numvarmat))
metricList$beta_norm[4] <- normvec(t(res_msfr$hbeta)- Reduce(cbind,datlist$betaList))
metricList$time[4] <- res_msfr$time.use
res_mcoap <- multicoap_run(XcList=XList, ZList,numvarmat, q, qsvec)
metricList$F_tr[5] <- meanTr(res_mcoap$hF, datlist$F0List)
metricList$H_tr[5] <-meanTr(res_mcoap$hH, datlist$H0List)
metricList$A_tr[5] <- metric_mean(AList=res_mcoap$hA, datlist$A0List, align='unaligned', numvarmat = numvarmat)
metricList$B_tr[5] <- mean(ms_metric_mean(res_mcoap$hB, datlist$B0List, align='unaligned', numvarmat = numvarmat))
metricList$beta_norm[5] <- normvec(t(res_mcoap$hbeta)- Reduce(cbind,datlist$betaList))
metricList$time[5] <- res_mcoap$time.use
Next, we summarized the metrics for MMGFM and other compared methods in a data.frame object. We observed that MMGFM achieved much better estimation accuracy for the quantities of interest.
mat.metric <- round(Reduce(rbind, metricList),3)
row.names(mat.metric) <- names(metricList)
dat_metric <- as.data.frame(mat.metric)
DT::datatable(dat_metric)
sessionInfo()
#> R version 4.4.1 (2024-06-14 ucrt)
#> Platform: x86_64-w64-mingw32/x64
#> Running under: Windows 11 x64 (build 26100)
#>
#> Matrix products: default
#>
#>
#> locale:
#> [1] LC_COLLATE=C
#> [2] LC_CTYPE=Chinese (Simplified)_China.utf8
#> [3] LC_MONETARY=Chinese (Simplified)_China.utf8
#> [4] LC_NUMERIC=C
#> [5] LC_TIME=Chinese (Simplified)_China.utf8
#>
#> time zone: Asia/Shanghai
#> tzcode source: internal
#>
#> attached base packages:
#> [1] stats graphics grDevices utils datasets methods base
#>
#> loaded via a namespace (and not attached):
#> [1] digest_0.6.37 R6_2.5.1 fastmap_1.2.0 xfun_0.47
#> [5] cachem_1.1.0 knitr_1.48 htmltools_0.5.8.1 rmarkdown_2.28
#> [9] lifecycle_1.0.4 cli_3.6.3 sass_0.4.9 jquerylib_0.1.4
#> [13] compiler_4.4.1 rstudioapi_0.16.0 tools_4.4.1 evaluate_1.0.0
#> [17] bslib_0.8.0 yaml_2.3.10 rlang_1.1.4 jsonlite_1.8.9