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.categorical_only_algorithms
Categorical-Only Algorithms

Description

Internal function returning algorithm identifiers that support only categorical features.

Usage

.categorical_only_algorithms()
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Value

A character vector of categorical-only algorithm names.

.numerical_only_algorithms
Numerical-Only Algorithms

Description

Internal function returning algorithm identifiers that support only numerical features.

Usage

.numerical_only_algorithms()

Value

A character vector of numerical-only algorithm names.

.universal_algorithms Universal Algorithms

Description

Internal function returning algorithm identifiers that support both numerical and categorical fea-
tures.

Usage

.universal_algorithms()

Value

A character vector of universal algorithm names.
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.valid_algorithms Valid Binning Algorithms

Description

Internal function returning the vector of all valid algorithm identifiers supported by the Optimal-
BinningWoE package. Used for validation and parameter definition.

Usage

.valid_algorithms()

Value

A character vector of valid algorithm names including "auto".

bake.step_obwoe Apply the Optimal Binning Transformation

Description

Applies the learned binning and WoE transformation to new data. This method is called by bake
and should not be invoked directly.

Usage
## S3 method for class 'step_obwoe'
bake(object, new_data, ...)

Arguments
object A trained step_obwoe object.
new_data A tibble or data frame to transform.

Additional arguments (currently unused).

Value

A tibble with transformed columns according to the output parameter.
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control.obwoe

Control Parameters for Optimal Binning Algorithms

Description

Constructs a validated list of control parameters for the obwoe master interface. These parameters
govern the behavior of all supported binning algorithms, including convergence criteria, minimum
bin sizes, and optimization limits.

Usage

control . obwoe(

bin_cutoff = 0.05,

max_n_prebins =

20,

convergence_threshold = 1e-06,
max_iterations = 1000,
bin_separator = "%;%",
verbose = FALSE,

Arguments

bin_cutoff

max_n_prebins

Numeric value in (0, 1) specifying the minimum proportion of total observations
that a bin must contain. Bins with fewer observations are merged with adjacent
bins. Serves as a regularization mechanism to prevent overfitting and ensure sta-
tistical stability of WoE estimates. Recommended range: 0.02 to 0.10. Default
is 0.05 (5%).

Integer specifying the maximum number of initial bins created before optimiza-
tion. For high-cardinality categorical features, categories with similar event rates
are pre-merged until this limit is reached. Higher values preserve more granu-
larity but increase computational cost. Typical range: 10 to 50. Default is 20.

convergence_threshold

max_iterations

bin_separator

Numeric value specifying the tolerance for algorithm convergence. Iteration
stops when the absolute change in Information Value between successive itera-
tions falls below this threshold: |IV; — I'V;_1| < e. Smaller values yield more
precise solutions at higher computational cost. Typical range: 10~% to 1078,
Default is 1076,

Integer specifying the maximum number of optimization iterations. Prevents
infinite loops in degenerate cases. If the algorithm does not converge within this
limit, it returns the best solution found. Typical range: 100 to 10000. Default is
1000.

Character string used to concatenate category names when multiple categories
are merged into a single bin. Should be a string unlikely to appear in actual
category names. Default is "%;%".
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verbose Logical indicating whether to print progress messages during feature processing.
Useful for debugging or monitoring long-running jobs. Default is FALSE.

Additional named parameters reserved for algorithm-specific extensions. Cur-
rently unused but included for forward compatibility.

Details

Parameter Impact on Results:

bin_cutoff: Lower values allow smaller bins, which may capture subtle patterns but risk unstable
WOE estimates. The variance of WoE estimates increases as 1/n; where n; is the bin size. For
bins with fewer than ~30 observations, consider using Laplace or Bayesian smoothing (applied
automatically by most algorithms).

max_n_prebins: Critical for categorical features with many levels. If a feature has 100 categories,
setting max_n_prebins = 20 will pre-merge similar categories into 20 groups before optimization.

convergence_threshold: Trade-off between precision and speed. For exploratory analysis, 10~*
is sufficient. For production models requiring reproducibility, use 10~® or smaller.

Value

An S3 object of class "obwoe_control” containing all specified parameters. This object is validated
and can be passed directly to obwoe.

See Also

obwoe for the main binning interface.

Examples

# Default control parameters
ctrl_default <- control.obwoe()
print(ctrl_default)

# Conservative settings for production
ctrl_production <- control.obwoe(
bin_cutoff = 0.03,
max_n_prebins = 30,
convergence_threshold = 1e-8,
max_iterations = 5000

)

# Aggressive settings for exploration
ctrl_explore <- control.obwoe(
bin_cutoff = 0.01,
max_n_prebins = 50,
convergence_threshold = 1e-4,
max_iterations = 500



8 fit_logistic_regression

fit_logistic_regression
Fit Logistic Regression Model

Description

This function fits a logistic regression model to binary classification data. It supports both dense and
sparse matrix inputs for the predictor variables. The optimization is performed using the L-BFGS
algorithm.

Usage
fit_logistic_regression(X_r, y_r, maxit = 300L, eps_f = 1e-08, eps_g = 1e-05)

Arguments
X_r A numeric matrix or sparse matrix (dgCMatrix) of predictor variables. Rows
represent observations and columns represent features.
y_r A numeric vector of binary outcome values (0 or 1). Must have the same number
of observations as rows in X_r.
maxit Integer. Maximum number of iterations for the optimizer. Default is 300.
eps_f Numeric. Convergence tolerance for the function value. Default is 1e-8.
eps_g Numeric. Convergence tolerance for the gradient norm. Default is 1e-5.
Details

The logistic regression model estimates the probability of the binary outcome y; € {0,1} given

predictors z;:
1

P(yl = 1|xl) - 14+ e—(BotBrzirt+...+BpTip)

The function maximizes the log-likelihood:

n

0By = lyi - (87wi) — In(1 + 77

i=1

Standard errors are computed from the inverse of the Hessian matrix evaluated at the estimated

coefficients. Z-scores and p-values are derived under the assumption of asymptotic normality.
Value

A list containing the results of the logistic regression fit:

coefficients Numeric vector of estimated regression coefficients.
se Numeric vector of standard errors for the coefficients.

z_scores Numeric vector of z-statistics for testing coefficient significance.
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p_values Numeric vector of p-values associated with the z-statistics.
loglikelihood Scalar. The maximized log-likelihood value.
gradient Numeric vector. The gradient at the solution.

hessian Matrix. The Hessian matrix evaluated at the solution.
convergence Logical. Whether the algorithm converged successfully.
iterations Integer. Number of iterations performed.

message Character. Convergence message.

Note

* An intercept term is not automatically included. Users should add a column of ones to X_r if
an intercept is desired.

* If the Hessian matrix is singular (determinant is zero), standard errors, z-scores, and p-values
will be returned as NA.

* The function uses the L-BFGS quasi-Newton optimization method.

Examples

# Generate sample data

set.seed(123)

<- 100

<-3

<- matrix(rnorm(n * p), n, p)

Add intercept column

<- cbind(1, X)

colnames(X) <- c("(Intercept)”, "X1", "X2", "X3")

X ¥ X T S

# True coefficients
beta_true <- c(0.5, 1.2, -0.8, 0.3)

# Generate linear predictor
eta <- X %*% beta_true

# Generate binary outcome
prob <- 1 / (1 + exp(-eta))
y <= rbinom(n, 1, prob)

# Fit logistic regression
result <- fit_logistic_regression(X, y)

# View coefficients and statistics
print(data.frame(
Coefficient = result$coefficients,
Std_Error = result$se,
Z_score = result$z_scores,
P_value = result$p_values

)

# Check convergence
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cat("Converged:", result$convergence, "\n")
cat("Log-Likelihood:", result$loglikelihood, "\n")

obcorr Compute Multiple Robust Correlations Between Numeric Variables

Description

This function computes various correlation coefficients between all pairs of numeric variables in
a data frame. It implements several classical and robust correlation measures, including Pearson,
Spearman, Kendall, Hoeffding’s D, Distance Correlation, Biweight Midcorrelation, and Percentage
Bend correlation.

Usage

obcorr(df, method = "all", threads = QL)

Arguments
df A data frame containing numeric variables. Non-numeric columns will be auto-
matically excluded. At least two numeric variables are required.
method A character string specifying which correlation method(s) to compute. Possible
values are:
e "all": Compute all available correlation methods (default).
* "pearson”: Compute only Pearson correlation.
e "spearman”: Compute only Spearman correlation.
e "kendall”: Compute only Kendall correlation.
* "hoeffding": Compute only Hoeffding’s D.
» "distance”: Compute only distance correlation.
* "pbiweight": Compute only biweight midcorrelation.
* "pbend”: Compute only percentage bend correlation.
* "robust"”: Compute robust correlations (biweight and pbend).
* "alternative"”: Compute alternative correlations (hoeffding and distance).
threads An integer specifying the number of threads to use for parallel computation. If
0 (default), uses all available cores. Ignored if OpenMP is not available.
Details

The function supports multiple correlation methods simultaneously and utilizes OpenMP for paral-
lel computation when available.

Available correlation methods:

e Pearson: Standard linear correlation coefficient.

¢ Spearman: Rank-based correlation coefficient.
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Kendall: Kendall’s tau-b correlation coefficient.

* Hoeffding: Hoeffding’s D statistic (scaled by 30).
 Distance: Distance correlation (Székely et al., 2007).

» Biweight: Biweight midcorrelation (robust alternative).

* Pbend: Percentage bend correlation (robust alternative).

Value
A data frame with the following columns:

X, y Names of the variable pairs being correlated.
pearson Pearson correlation coefficient.
spearman Spearman rank correlation coefficient.
kendall Kendall’s tau-b correlation coefficient.
hoeffding Hoeffding’s D statistic (scaled).
distance Distance correlation coefficient.
biweight Biweight midcorrelation coefficient.

pbend Percentage bend correlation coefficient.

The exact columns returned depend on the method parameter.

Note

* Missing values (NA) are handled appropriately for each correlation method.

* For robust methods (biweight, pbend), fallback to Pearson correlation occurs when there are
insufficient data points or numerical instability.

* Hoeffding’s D requires at least 5 complete pairs.

* Distance correlation is computed without forming NxN distance matrices for memory effi-
ciency.

* When OpenMP is available, computations are automatically parallelized across variable pairs.

References

Székely, G.J., Rizzo, M.L., and Bakirov, N.K. (2007). Measuring and testing dependence by corre-
lation of distances. The Annals of Statistics, 35(6), 2769-2794.

Wilcox, R.R. (1994). The percentage bend correlation coefficient. Psychometrika, 59(4), 601-616.

Examples

# Create sample data
set.seed(123)
n <- 100
df <- data.frame(
x1 = rnorm(n),
x2 = rnorm(n),
x3 rt(n, df = 3), # Heavy-tailed distribution
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x4 = sample(c(@, 1), n, replace = TRUE), # Binary variable
category = sample(letters[1:3], n, replace = TRUE) # Non-numeric column

)

# Add some relationships
df$x2 <- df$x1 + rnorm(n, @, 0.5)
df$x3 <- df$x1*2 + rnorm(n, @, 0.5)

# Compute all correlations
result_all <- obcorr(df)
head(result_all)

# Compute only robust correlations
result_robust <- obcorr(df, method = "robust")

# Compute only Pearson correlation with 2 threads

result_pearson <- obcorr(df, method = "pearson”, threads = 2)
obwoe Unified Optimal Binning and Weight of Evidence Transformation
Description

Master interface for optimal discretization and Weight of Evidence (WoE) computation across nu-
merical and categorical predictors. This function serves as the primary entry point for the Optimal-
BinningWoE package, providing automatic feature type detection, intelligent algorithm selection,
and unified output structures for seamless integration into credit scoring and predictive modeling
workflows.

Usage

obwoe (
data,
target,
feature = NULL,
min_bins = 2,
max_bins = 7,
algorithm = "auto",
control = control.obwoe()

Arguments

data A data.frame containing the predictor variables (features) and the response
variable (target). All features to be binned must be present in this data frame.
The data frame should not contain list-columns.
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target

feature

min_bins

max_bins

algorithm

control

Details
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Character string specifying the column name of the response variable. Must be
a binary outcome encoded as integers @ (non-event) and 1 (event), or a multino-
mial outcome encoded as integers @, 1, 2, ..., K. Missing values in the target
are not permitted.

Optional character vector specifying which columns to process. If NULL (de-
fault), all columns except target are processed. Features containing only miss-
ing values are automatically skipped with a warning.

Integer specifying the minimum number of bins. Must satisfy 2 < min_bins
< max_bins. Algorithms may produce fewer bins if the data has insufficient
unique values. Default is 2.

Integer specifying the maximum number of bins. Controls the granularity of
discretization. Higher values capture more detail but risk overfitting. Typical
values range from 5 to 10 for credit scoring applications. Default is 7.

Character string specifying the binning algorithm. Use "auto” (default) for au-
tomatic selection based on target type: "jedi"” for binary targets, " jedi_mwoe"
for multinomial. See Details for the complete algorithm taxonomy.

A list of algorithm-specific control parameters created by control.obwoe. Pro-
vides fine-grained control over convergence thresholds, bin cutoffs, and other
optimization parameters.

Theoretical Foundation:

Weight of Evidence (WoE) transformation is a staple of credit scoring methodology, originating
from information theory and the concept of evidential support (Good, 1950; Kullback, 1959). For
a bin 7, the WOoE is defined as:

where:

Di Nil/Nl
E,=In[{— ) =In| ——-—
Wo n (n,) n (Ni,O/N0>

* N; 1 =number of events (target=1) in bin ¢

* N; o = number of non-events (target=0) in bin ¢

* N1, Ny = total events and non-events, respectively

.pz:
* n; =

N, 1/N; = proportion of events in bin i
N, 0/No = proportion of non-events in bin ¢

The Information Value (IV) quantifies the total predictive power of a binning:

1V = Z i — i) X WoE; = Z i — 1) xln(zz>
i=1 v

where k is the number of bins. IV is equivalent to the Kullback-Leibler divergence between the
event and non-event distributions.

Algorithm Taxonomy:

The package provides 28 algorithms organized by supported feature types:
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Universal Algorithms (both numerical and categorical):

ID
jedi
jedi_mwoe
cm
dp
dmiv
fetb
mob
sketch
udt

Full Name

Joint Entropy-Driven Information

JEDI Multinomial WoE
ChiMerge

Dynamic Programming
Decision Tree MIV

Fisher’s Exact Test
Monotonic Optimal Binning
Sketching

Unsupervised Decision Tree

Method

Heuristic + IV optimization
Extension for K>2 classes
Bottom-up chi-squared merging
Exact optimal IV partitioning
Recursive partitioning
Statistical significance-based
IV-optimal with monotonicity
Probabilistic data structures
Entropy-based without target

Numerical-Only Algorithms:

ID
bb
ewb
fast_mdlp
ir
kmb
1db
1pdb
mblp
mdlp
mrblp
oslp
ubsd

Categorical-Only Algorithms:

1D
gmb
ivb
mba
milp
sab
sblp
swb

Automatic Type Detection:

Description

Branch and Bound (exact search)
Equal Width Binning (unsupervised)

Fast MDLP with pruning
Isotonic Regression

K-Means Binning

Local Density Binning

Local Polynomial Density
Monotonic Binning LP
Minimum Description Length
Monotonic Regression LP
Optimal Supervised LP
Unsupervised Std-Dev Based

Description

Greedy Monotonic Binning
Information Value DP (exact)
Modified Binning Algorithm
Mixed Integer LP

Simulated Annealing
Similarity-Based LP

Sliding Window Binning

Feature types are detected as follows:

¢ Numerical: numeric or integer vectors not of class factor

» Categorical: character, factor, or logical vectors

When algorithm = "auto”, the function selects:

e "jedi” for binary targets (recommended for most use cases)

e "jedi_mwoe" for multinomial targets (K > 2 classes)
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IV Interpretation Guidelines:
Siddiqi (2006) provides the following IV thresholds for variable selection:

IV Range  Predictive Power

<0.02 Unpredictive

0.02-0.10 Weak

0.10-0.30 Medium

0.30-0.50 Strong

>0.50 Suspicious (likely overfitting)

Computational Considerations:
Time complexity varies by algorithm:
« JEDI, ChiMerge, MOB: O(n logn+ kzm) where n = observations, k = bins, m = iterations
* Dynamic Programming: O(n - k?) for exact solution
» Equal Width: O(n) (fastest, but unsupervised)
* MILP, SBLP: Potentially exponential (NP-hard problems)

For large datasets (n > 10), consider:

1. Using algorithm = "sketch” for approximate streaming
2. Reducing max_n_prebins via control. obwoe()
3. Sampling the data before binning

Value

An S3 object of class "obwoe"” containing:

results Named list where each element contains the binning result for a single feature, including:

bin Character vector of bin labels/intervals

woe Numeric vector of Weight of Evidence per bin

iv Numeric vector of Information Value contribution per bin
count Integer vector of observation counts per bin

count_pos Integer vector of positive (event) counts per bin
count_neg Integer vector of negative (non-event) counts per bin
cutpoints Numeric vector of bin boundaries (numerical only)
converged Logical indicating algorithm convergence
iterations Integer count of optimization iterations

summary Data frame with one row per feature containing: feature (name), type (numerical/categorical),
algorithm (used), n_bins (count), total_iv (sum), error (logical flag)

target Name of the target column
target_type Detected type: "binary” or "multinomial”
n_features Number of features processed

call The matched function call for reproducibility
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See Also

control.obwoe for algorithm-specific parameters, obwoe_algorithms to list all available algo-
rithms with capabilities, print. obwoe for display methods, ob_apply_woe_numand ob_apply_woe_cat
to apply WoE transformations to new data.

For individual algorithms with full parameter control: ob_numerical_jedi, ob_categorical_jedi,
ob_numerical_mdlp, ob_categorical_ivb.

Examples

#
# Example 1: Basic Usage with Mixed Feature Types
#
set.seed(42)
n <- 2000

# Simulate credit scoring data

df <- data.frame(
# Numerical features
age = pmax(18, pmin(8@, rnorm(n, 45, 15))),
income = exp(rnorm(n, 10, 0.8)),
debt_ratio = rbeta(n, 2, 5),
credit_history_months = rpois(n, 60),

# Categorical features

education = sample(c("High School”, "Bachelor", "Master”, "PhD"),
n’
replace = TRUE, prob = c(0.35, 0.40, 0.20, 0.05)

),

employment = sample(c("Employed”, "Self-Employed”, "Unemployed”, "Retired"),
n,
replace = TRUE, prob = c(0.60, 0.20, 0.10, 0.10)

)Y

# Binary target (default probability varies by features)
target = rbinom(n, 1, 0.15)
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# Process all features with automatic algorithm selection
result <- obwoe(df, target = "target"”)
print(result)

# View detailed summary
print(result$summary)

# Access results for a specific feature
age_bins <- result$results$age
print(data.frame(

bin = age_bins$bin,

woe = round(age_bins$woe, 3),

iv = round(age_bins$iv, 4),

count = age_bins$count

))

#

# Example 2: Using a Specific Algorithm

#

# Use MDLP for numerical features (entropy-based)
result_mdlp <- obwoe(df,

target = "target”,

feature = c("age", "income"),

algorithm = "mdlp”,

min_bins = 3,

max_bins = 6

cat(”"\nMDLP Results:\n")
print(result_mdlp$summary)

#

# Example 3: Custom Control Parameters

#

# Fine-tune algorithm behavior

ctrl <- control.obwoe(
bin_cutoff = 0.02, # Minimum 2% per bin
max_n_prebins = 30, # Allow more initial bins
convergence_threshold = 1e-8

)

result_custom <- obwoe(df,
target = "target”,
feature = "debt_ratio”,
algorithm = "jedi”,
control = ctrl

cat(”\nCustom JEDI Result:\n")
print(result_custom$results$debt_ratio$bin)
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#
# Example 4: Comparing Multiple Algorithms
#

algorithms <- c("jedi”, "mdlp"”, "ewb"”, "mob")
iv_comparison <- sapply(algorithms, function(algo) {
tryCatch(
{
res <- obwoe(df, target = "target", feature = "income”, algorithm = algo)
res$summary$total_iv
1,
error = function(e) NA_real_
)
»

cat("\nAlgorithm Comparison (IV for 'income'):\n")
print(sort(iv_comparison, decreasing = TRUE))

#
# Example 5: Feature Selection Based on IV
#

# Process all features and select those with IV > 0.02
result_all <- obwoe(df, target = "target")

strong_features <- result_all$summary[
result_all$summary$total_iv >= 0.02 & !result_all$summary$error,
c("feature”, "total_iv", "n_bins")

]

strong_features <- strong_features[order(-strong_features$total_iv), 1]

cat(”\nFeatures with IV >= 0.02 (predictive):\n")
print(strong_features)

#
# Example 6: Handling Algorithm Compatibility
#

# MDLP only works for numerical - will fail for categorical
result_mixed <- obwoe(df,

target = "target”,

algorithm = "mdlp”
)

# Check for errors
cat("\nCompatibility check:\n")
print(result_mixed$summary[, c("feature”, "type"”, "error")1)
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obwoe_algorithm Binning Algorithm Parameter

Description

A qualitative tuning parameter for selecting the optimal binning algorithm in step_obwoe.

Usage

obwoe_algorithm(values = NULL)

Arguments
values A character vector of algorithm names to include in the parameter space. If NULL
(default), includes all 29 algorithms (28 specific algorithms plus "auto”).
Details

The algorithms are organized into three groups:

Universal (support both numerical and categorical features): "auto”, "jedi”, " jedi_mwoe", "cm",
PP g J J
Ildpll Hdmivll Ilf‘e.tbll llmobll Hsketchll Hud.tll
b 9 9 9 9

Numerical only: "bb", "ewb”, "fast_mdlp”, "ir", "kmb", "1db", "1lpdb”, "mblp”, "mdlp",

non

"mrblp”, "oslp"”, "ubsd”

n o n n on

Categorical only: "gmb"”, "ivb", "mba”, "milp”, "sab", "sblp"”, "swb"

When tuning with mixed feature types, consider restricting values to universal algorithms only.

Value

A dials qualitative parameter object.

See Also

step_obwoe, obwoe

Examples

# Default: all algorithms
obwoe_algorithm()

# Restrict to universal algorithms for mixed data
obwoe_algorithm(values = c("jedi"”, "mob"”, "dp", "cm"))

# Numerical-only algorithms
obwoe_algorithm(values = c("mdlp”, "fast_mdlp”, "ewb”, "ir"))
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obwoe_algorithms List Available Algorithms

Description

Returns a data frame with all available binning algorithms.

Usage

obwoe_algorithms()

Value

A data frame with algorithm information.

Examples

obwoe_algorithms()

obwoe_apply Apply Weight of Evidence Transformations to New Data

Description

Applies the binning and Weight of Evidence (WoE) transformations learned by obwoe to new data.
This is the scoring function for deploying WoE-based models in production. For each feature, the
function assigns observations to bins and maps them to their corresponding WoE values.

Usage

obwoe_apply(
data,
obj,
suffix_bin "_bin",
suffix_woe "_woe",
keep_original = TRUE,
na_woe = @
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Arguments
data A data.frame containing the features to transform. Must include all features
present in the obj results. The target column is optional; if present, it will be
included in the output.
obj An object of class "obwoe" returned by obwoe.
suffix_bin Character string suffix for bin columns. Default is "_bin".
suffix_woe Character string suffix for WoE columns. Default is " _woe".

keep_original Logical. If TRUE (default), include the original feature columns in the output. If
FALSE, only bin and WoE columns are returned.

na_woe Numeric value to assign when an observation cannot be mapped to a bin (e.g.,
new categories not seen during training). Default is 0.

Details

Bin Assignment Logic:

Numerical Features: Observations are assigned to bins based on cutpoints stored in the obwoe
object. The cut() function is used with intervals (a;, a;41] where agp = —oco and a, = +00.

Categorical Features: Categories are matched directly to bin labels. Categories not seen during
training are assigned NA for bin and na_woe for WoE.

Production Deployment:
For production scoring, it is recommended to:

1. Train the binning model using obwoe () on the training set
2. Save the fitted object with saveRDS()
3. Load and apply using obwoe_apply () on new data

The WoE-transformed features can be used directly as inputs to logistic regression or other linear
models, enabling interpretable credit scorecards.
Value
A data. frame containing:

target The target column (if present in data)
<feature> Original feature values (if keep_original = TRUE)
<feature>_bin Assigned bin label for each observation

<feature>_woe Weight of Evidence value for the assigned bin

References
Siddiqi, N. (2006). Credit Risk Scorecards: Developing and Implementing Intelligent Credit Scor-
ing. John Wiley & Sons. doi:10.1002/9781119201731

See Also

obwoe for fitting the binning model, summary . obwoe for model diagnostics.


https://doi.org/10.1002/9781119201731
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Examples

#
# Example 1: Basic Usage - Train and Apply
#
set.seed(42)
n <- 1000

# Training data
train_df <- data.frame(
age = rnorm(n, 40, 15),
income = exp(rnorm(n, 10, 0.8)),
education = sample(c("HS", "BA", "MA", "PhD"), n, replace = TRUE),
target = rbinom(n, 1, 0.15)
)

# Fit binning model
model <- obwoe(train_df, target = "target")

# New data for scoring (could be validation/test set)
new_df <- data.frame(

age = c(25, 45, 65),

income = c(20000, 50000, 80000),

education = c("HS", "MA", "PhD")
)

# Apply transformations
scored <- obwoe_apply(new_df, model)
print(scored)

# Use WoE features for downstream modeling
woe_cols <- grep(”_woe$", names(scored), value = TRUE)
print(woe_cols)

#
# Example 2: Without Original Features
#

scored_compact <- obwoe_apply(new_df, model, keep_original = FALSE)
print(scored_compact)

obwoe_bin_cutoff Bin Cutoff Parameter

Description

A quantitative tuning parameter for the minimum bin support (proportion of observations per bin)
in step_obwoe.
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Usage

obwoe_bin_cutoff(range = c(0.01, 0.1), trans = NULL)

Arguments
range A two-element numeric vector specifying the minimum and maximum values
for the parameter. Default is c(0.01, 0.10).
trans A transformation object from the scales package, or NULL for no transforma-
tion. Default is NULL.
Details

The bin cutoff specifies the minimum proportion of observations that each bin must contain. Bins
with fewer observations are merged with adjacent bins. This serves as a regularization mechanism:

* Lower values (e.g., 0.01) allow smaller bins, capturing subtle patterns but risking unstable
WOoE estimates.

 Higher values (e.g., 0.10) enforce larger bins, producing more stable estimates but potentially
missing important patterns.

For credit scoring, values between 0.02 and 0.05 are typical. Regulatory guidelines often require
minimum bin sizes for model stability.

Value

A dials quantitative parameter object.

See Also

step_obwoe, control.obwoe

Examples

obwoe_bin_cutoff()
obwoe_bin_cutoff(range = c(0.02, 0.08))

obwoe_gains Gains Table Statistics for Credit Risk Scorecard Evaluation
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Description

Computes a comprehensive gains table (also known as a lift table or decile analysis) for evaluating
the discriminatory power of credit scoring models and optimal binning transformations. The gains
table is a fundamental tool in credit risk management for model validation, cutoff selection, and
regulatory reporting (Basel II/III, IFRS 9).

This function accepts three types of input:

1. An "obwoe" object from obwoe (uses stored binning)
2. A data.frame from obwoe_apply (uses bin/WoE columns)

3. Any data.frame with a grouping variable (e.g., score deciles)

Usage

obwoe_gains(
obj,
target = NULL,
feature = NULL,

use_column = c("auto”, "bin", "woe", "direct"),
sort_by = c("id", "woe", "event_rate”, "bin"),
n_groups = NULL
)
Arguments
obj Input object: an "obwoe"” object, a data.frame from obwoe_apply, or any
data. frame containing a grouping variable and target values.
target Integer vector of binary target values (0/1) or the name of the target column
in obj. Required for data.frame inputs. For "obwoe"” objects, the target is
extracted automatically.
feature Character string specifying the feature/variable to analyze. For "obwoe" objects:
defaults to the feature with highest IV. For data. frame objects: can be any col-
umn name representing groups (e.g., "age_bin", "age_woe", "score_decile").
use_column Character string specifying which column type to use when objis a data.frame
from obwoe_apply:
"bin" Use the <feature>_bin column (default)
"woe" Use the <feature>_woe column (groups by WoE values)
"auto” Automatically detect: use _bin if available
"direct” Use the feature column name directly (for any variable)
sort_by Character string specifying sort order for bins:
"woe" Descending WoE (highest risk first) - default
"event_rate” Descending event rate
"bin” Alphabetical/natural order
n_groups Integer. For continuous variables (e.g., scores), the number of groups (deciles)

to create. Default is NULL (use existing groups). Set to 10 for standard decile
analysis.
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Details
Gains Table Construction:
The gains table is constructed by:

1. Sorting observations by risk score or WoE (highest risk first)
2. Grouping into bins (pre-defined or created via quantiles)
3. Computing bin-level and cumulative statistics

The table enables assessment of model rank-ordering ability: a well-calibrated model should show
monotonically increasing event rates as risk score increases.

Bin-Level Statistics (18 metrics):

Column Formula Description

bin - Bin label or interval

count n; Total observations in bin
count_pct ni/N Proportion of total population
pos_count N1 Event count (Bad, target=1)
neg_count 4.0 Non-event count (Good, target=0)
pos_rate ni1/mn; Event rate (Bad rate) in bin
neg_rate ni0/Mi Non-event rate (Good rate)
pos_pct n;1/N1 Distribution of events

neg_pct n;,0/No Distribution of non-events
odds ni1/Mio Odds of event

log_odds In(odds) Log-odds (logit)

woe In(p;/q;) Weight of Evidence

iv (pi — qi) - WoE; Information Value contribution
cum_pos_pct > .., p; Cumulative events captured
cum_neg_pct ZJ; i 4 Cumulative non-events

ks |F1(i) — Fo(i)]  KS statistic at bin

lift pos_rate/p Lift over random
capture_rate cum_pos_pct Cumulative capture rate

Global Performance Metrics:

Kolmogorov-Smirnov (KS) Statistic: Maximum absolute difference between cumulative distri-
butions of events and non-events. Measures the model’s ability to separate populations.

KS = max |F1 (i) — Fo(i)]

KS Range Interpretation

<20% Poor discrimination

20-40% Acceptable

40-60% Good

60-75% Very good

>75% Excellent (verify for data leakage)

Gini Coefficient: Measure of inequality between event and non-event distributions. Equivalent
to 2*AUC - 1, representing the area between the Lorenz curve and the line of equality.
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Gini =2x AUC —1

Area Under ROC Curve (AUC): Probability that a randomly chosen event is ranked higher than
a randomly chosen non-event. Computed via the trapezoidal rule.

Total Information Value (IV): Sum of IV contributions across all bins. See obwoe for interpre-
tation guidelines.

Use Cases:
Model Validation: Verify rank-ordering (monotonic event rates) and acceptable KS/Gini.

Cutoff Selection: Identify the bin where the model provides optimal separation for business rules
(e.g., auto-approve above score X).

Population Stability: Compare gains tables over time to detect model drift.
Regulatory Reporting: Generate metrics required by Basel II/III and IFRS 9 frameworks.

Value
An S3 object of class "obwoe_gains” containing:

table Data frame with 18 statistics per bin (see Details)
metrics Named list of global performance metrics:

ks Kolmogorov-Smirnov statistic (%)
gini Gini coefficient (%)

auc Area Under ROC Curve

total_iv Total Information Value
ks_bin Bin where maximum KS occurs

feature Feature/variable name analyzed
n_bins Number of bins/groups
n_obs Total observations

event_rate Overall event rate

References

Siddiqi, N. (2006). Credit Risk Scorecards: Developing and Implementing Intelligent Credit Scor-
ing. John Wiley & Sons. doi:10.1002/9781119201731

Thomas, L. C., Edelman, D. B., & Crook, J. N. (2002). Credit Scoring and Its Applications. SIAM
Monographs on Mathematical Modeling and Computation. doi:10.1137/1.9780898718317

Anderson, R. (2007). The Credit Scoring Toolkit: Theory and Practice for Retail Credit Risk
Management. Oxford University Press.

Hand, D. J., & Henley, W. E. (1997). Statistical Classification Methods in Consumer Credit Scoring:
A Review. Journal of the Royal Statistical Society: Series A, 160(3), 523-541. doi:10.1111/j.1467-
985X.1997.00078.x

See Also

obwoe for optimal binning, obwoe_apply for scoring new data, plot.obwoe_gains for visualiza-
tion (cumulative gains, KS, lift).


https://doi.org/10.1002/9781119201731
https://doi.org/10.1137/1.9780898718317
https://doi.org/10.1111/j.1467-985X.1997.00078.x
https://doi.org/10.1111/j.1467-985X.1997.00078.x
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Examples

#

# Example 1: From obwoe Object (Standard Usage)

#

set.seed(42)

n <- 1000

df <- data.frame(
age = rnorm(n, 40, 15),
income = exp(rnorm(n, 10, 0.8)),
score = rnorm(n, 600, 100),
target = rbinom(n, 1, 0.15)

)

model <- obwoe(df, target = "target")

gains <- obwoe_gains(model, feature = "age")
print(gains)

# Access metrics
cat("KS:", gains$metrics$ks, "%\n")

cat("Gini:", gains$metrics$gini, "%\n")

#

# Example 2: From obwoe_apply Output - Using Bin Column
#

scored <- obwoe_apply(df, model)

# Default: uses age_bin column

gains_bin <- obwoe_gains(scored,
target = df$target, feature = "age”,
use_column = "bin"

#

# Example 3: From obwoe_apply Output - Using WoE Column

#

# Group by WoE values (continuous analysis)
gains_woe <- obwoe_gains(scored,
target = df$target, feature = "age",
use_column = "woe", n_groups = 5

#

# Example 4: Any Variable - Score Decile Analysis

#

# Create score deciles manually

df$score_decile <- cut(df$score,
breaks = quantile(df$score, probs = seq(@, 1, 0.1)),
include.lowest = TRUE, labels = 1:10

)

# Analyze score deciles directly
gains_score <- obwoe_gains(df,

27
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target = "target”, feature = "score_decile”,
use_column = "direct”

)

print(gains_score)

#

# Example 5: Automatic Decile Creation

#

# Use n_groups to automatically create quantile groups
gains_auto <- obwoe_gains(df,

target = "target”, feature = "score”,
use_column = "direct”, n_groups = 10
)
obwoe_max_bins Maximum Bins Parameter
Description

A quantitative tuning parameter for the maximum number of bins in step_obwoe.

Usage

obwoe_max_bins(range = c(5L, 20L), trans = NULL)

Arguments
range A two-element integer vector specifying the minimum and maximum values for
the parameter. Default is c(5L, 20L).
trans A transformation object from the scales package, or NULL for no transforma-
tion. Default is NULL.
Details

The maximum number of bins limits algorithm complexity and helps prevent overfitting. Higher
values allow more granular discretization but may capture noise rather than signal.

For credit scoring applications, max_bins is typically set between 5 and 10 to balance predictive
power with interpretability. Values above 15 are rarely necessary and may indicate overfitting.

Value

A dials quantitative parameter object.

See Also

step_obwoe, obwoe_min_bins
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Examples

obwoe_max_bins()
obwoe_max_bins(range = c(4L, 12L))

obwoe_min_bins Minimum Bins Parameter

Description

A quantitative tuning parameter for the minimum number of bins in step_obwoe.

Usage

obwoe_min_bins(range = c(2L, 5L), trans = NULL)

Arguments
range A two-element integer vector specifying the minimum and maximum values for
the parameter. Default is c(2L, 5L).
trans A transformation object from the scales package, or NULL for no transforma-
tion. Default is NULL.
Details

The minimum number of bins constrains the algorithm to create at least this many bins. Setting
min_bins = 2 allows maximum flexibility, while higher values ensure more granular discretization.

For credit scoring applications, min_bins is typically set between 2 and 4 to avoid forcing artificial
splits on weakly predictive variables.
Value

A dials quantitative parameter object.

See Also

step_obwoe, obwoe_max_bins

Examples

obwoe_min_bins()
obwoe_min_bins(range = c(3L, 7L))
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ob_apply_woe_cat Apply Optimal Weight of Evidence (WoE) to a Categorical Feature

Description

Transforms a categorical feature into its corresponding Weight of Evidence (WoE) values using
pre-computed binning results from an optimal binning algorithm (e.g., ob_categorical_cm).

Usage
ob_apply_woe_cat(
obresults,
feature,
bin_separator = "%;%",
missing_values = c("NA", "Missing”, "")
)
Arguments
obresults List output from an optimal binning function for categorical variables. Must
contain elements bin (character vector of bin labels) and woe (numeric vector
of WoE values). Bins may represent individual categories or merged groups
separated by bin_separator.
feature Character or factor vector of categorical values to be transformed. Automatically

coerced to character if provided as factor.

bin_separator Character string used to separate multiple categories within a single bin label
(default: "%;%"). For example, a bin "A%;%B%;%C" contains categories A, B,
and C.

missing_values Character vector specifying which values should be treated as missing (default:
c("NA", "Missing”, "")). These values are matched against a special bin la-
beled "NA" or "Missing” in obresults.
Details

This function is typically used in a two-step workflow:

1. Train binning on training data: bins <- ob_categorical_cm(feature_train, target_train)

2. Apply WoE to new data: woe_test <- ob_apply_woe_cat(bins, feature_test)

The function performs exact string matching between categories in feature and the bin labels
in obresults$bin. For merged bins (containing bin_separator), the string is split and each
component is matched individually.

Value

Numeric vector of WoE values with the same length as feature. Categories not found in obresults
will produce NA values with a warning.
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Examples

# Mock data

train_data <- data.frame(
category = c("A", "B", "A", "C", "B", "A"),
default = c(o, 1, 0, 1, @, 0)

)

test_data <- data.frame(
category = c("A", "C", "B")

)

# Train binning on training set

train_bins <- ob_categorical_cm(
feature = train_data$category,
target = train_data$default

)

# Apply to test set

test_woe <- ob_apply_woe_cat(
obresults = train_bins,
feature = test_data$category

)

# Handle custom missing indicators
test_woe <- ob_apply_woe_cat(
obresults = train_bins,
feature = test_data$category,

missing_values = c(”NA", "Unknown", "N/A", "")
)
ob_apply_woe_num Apply Optimal Weight of Evidence (WoE) to a Numerical Feature
Description

Transforms a numerical feature into its corresponding Weight of Evidence (WoE) values using pre-
computed binning results from an optimal binning algorithm (e.g., ob_numerical_mdlp, ob_numerical_mob).

Usage

ob_apply_woe_num(
obresults,
feature,
include_upper_bound = TRUE,
missing_values = c(-999)
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Arguments
obresults List output from an optimal binning function for numerical variables. Must con-
tain elements cutpoints (numeric vector of bin boundaries) and woe (numeric
vector of WoE values). The number of WoE values should equal length(cutpoints)
+1.
feature Numeric vector of values to be transformed. Automatically coerced to numeric

if provided in another type.
include_upper_bound
Logical flag controlling interval boundary behavior (default: TRUE):

* TRUE: Intervals are (lower, upper] (right-closed).
e FALSE: Intervals are [1lower, upper) (left-closed).

This must match the convention used during binning.

missing_values Numeric vector of values to be treated as missing (default: c(-999)). These
values are assigned the WoE of the special missing bin if it exists in obresults,
or NA otherwise.

Details

This function is typically used in a two-step workflow:

1. Train binning on training data: bins <- ob_numerical_mdlp(feature_train, target_train)

2. Apply WoE to new data: woe_test <- ob_apply_woe_num(bins, feature_test)
Bin Assignment Logic: For k cutpoints ¢; < ¢y < - -+ < ¢, values are assigned as:

e Bin 1: z < ¢; (if include_upper_bound = TRUE)
e Bini:¢;_1 <z <c¢ifori=2,...,k
e Bink+1: z > ¢

Handling of Edge Cases:

* Valuesinmissing_values are matched against a bin labeled "NA" or "Missing" in obresults$bin
(if available).

* Inf and -Inf are assigned to the last and first bins, respectively.

* Values exactly equal to cutpoints follow the include_upper_bound convention.

Value

Numeric vector of WoE values with the same length as feature. Values outside the range of
cutpoints are assigned to the first or last bin. NA values in feature are propagated to the output
unless explicitly listed in missing_values.

See Also

ob_numerical_md1lp for MDLP binning, ob_numerical_mob for monotonic binning, ob_apply_woe_cat
for applying WOoE to categorical features.
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Examples

# Mock data

train_data <- data.frame(
income = c(50000, 75000, 30000, 45000, 80000, 60000),
default = c(o, 0, 1, 1, @, 0)

)

test_data <- data.frame(
income = c(55000, 35000, 90000)

)

# Train binning on training set
train_bins <- ob_numerical_mdlp(
feature = train_data$income,
target = train_data$default

)

# Apply to test set

test_woe <- ob_apply_woe_num(
obresults = train_bins,
feature = test_data$income

)

# Handle custom missing indicators (e.g., -999, -1)
test_woe <- ob_apply_woe_num(

obresults = train_bins,

feature = test_data$income,

missing_values = c(-999, -1, -9999)
)

# Use left-closed intervals (match scikit-learn convention)
test_woe <- ob_apply_woe_num(

obresults = train_bins,

feature = test_data$income,

include_upper_bound = FALSE

)
ob_categorical_cm Optimal Binning for Categorical Variables using Enhanced ChiMerge
Algorithm
Description

Performs supervised discretization of categorical variables using an enhanced implementation of
the ChiMerge algorithm (Kerber, 1992) with optional Chi2 extension (Liu & Setiono, 1995). This
method optimally groups categorical levels based on their relationship with a binary target variable
to maximize predictive power while maintaining statistical significance.
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Usage

ob_categorical_
feature,
target,
min_bins = 3,
max_bins = 5,
bin_cutoff =

max_n_prebins =

bin_separator
convergence_t
max_iteration
chi_merge_thr
use_chi2_algo

Arguments

feature

target

min_bins

max_bins

bin_cutoff

max_n_prebins

bin_separator

convergence_thr

max_iterations

chi_merge_thres

use_chi2_algori

Details

ob_categorical_cm

cm(
0.05,

20,
= "%: %",
hreshold = 1e-06,
s = 1000,
eshold = 0.05,

rithm = FALSE

A character vector or factor representing the categorical predictor variable to be
binned.

An integer vector of binary outcomes (0/1) corresponding to each observation
in feature

Integer. Minimum number of bins to produce. Must be >= 2. Defaults to 3.

Integer. Maximum number of bins to produce. Must be >= min_bins. Defaults
to 5.

Numeric. Threshold for treating categories as rare. Categories with frequency <
bin_cutoff will be merged with their most similar neighbors. Value must be in
(0, 1). Defaults to 0.05.

Integer. Maximum number of initial pre-bins before merging. Controls compu-
tational complexity. Must be >= 2. Defaults to 20.

String. Separator used when combining multiple categories into a single bin
label. Defaults to "%;%".

eshold

Numeric. Convergence tolerance for iterative merging process. Smaller values
require stricter convergence. Must be > 0. Defaults to 1e-6.

Integer. Maximum iterations for the merging algorithm. Prevents infinite loops.
Must be > 0. Defaults to 1000.

hold

Numeric. Statistical significance level (p-value) for chi-square tests during merg-
ing. Higher values create fewer bins. Value must be in (0, 1). Defaults to 0.05.
thm

Logical. If TRUE, uses the Chi2 variant which performs multi-pass merging
with decreasing significance thresholds. Defaults to FALSE.

The algorithm implements two main approaches:
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1. Standard ChiMerge: Iteratively merges adjacent bins with lowest chi-square statistics until all
remaining pairs are statistically distinguishable at the specified significance level.

2. Chi2 Algorithm (when use_chi2_algorithm = TRUE): Performs multiple passes with decreasing
significance thresholds (0.5 — 0.001), creating more robust binning structures particularly for noisy
data.

Key features include:

* Rare category handling through pre-merging

* Monotonicity enforcement of Weight of Evidence
* Numerical stability with underflow protection

* Efficient chi-square caching for performance

* Comprehensive input validation and error handling
Information Value interpretation:

* <0.02: Predictive power not useful

* 0.02-0.1: Weak predictive power

* 0.1-0.3: Medium predictive power

* 0.3-0.5: Strong predictive power

* > (.5: Suspiciously high (potential overfitting)

Value
A list containing binning results with the following components:

 id: Integer vector of bin identifiers (1:n_bins)

* bin: Character vector of bin labels (merged category names)
* woe: Numeric vector of Weight of Evidence for each bin

* iv: Numeric vector of Information Value contribution per bin
* count: Integer vector of total observations per bin

* count_pos: Integer vector of positive cases per bin

* count_neg: Integer vector of negative cases per bin

» converged: Logical indicating if algorithm converged

e iterations: Integer count of algorithm iterations performed
* algorithm: Character string identifying algorithm used

* warnings: Character vector of any warnings encountered

* metadata: List with additional diagnostic information:

— total_iv: Total Information Value of the binned variable

n_bins: Final number of bins produced

unique_categories: Number of unique input categories

total_obs: Total number of observations processed

execution_time_ms: Processing time in milliseconds

monotonic: Direction of WoE monotonicity ("increasing"/"decreasing")
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Author(s)

Developed as part of the OptimalBinningWoE package

References

Kerber, R. (1992). ChiMerge: Discretization of numeric attributes. In Proceedings of the Tenth
National Conference on Artificial Intelligence (pp. 123-128).

Liu, B., & Setiono, R. (1995). Chi2: Feature selection and discretization of numeric attributes. In
Proceedings of the Seventh IEEE International Conference on Tools with Artificial Intelligence (pp.
372-377).

Examples

# Example 1: Basic usage with synthetic data
set.seed(123)
n <- 1000
categories <- c("A", "B", "C", "D", "E", "F", "G", "H")
feature <- sample(categories, n, replace = TRUE, prob = c(
0.2, 0.1
0.1, 0.1, 0.1,
0.1, 0.1
))
# Create target with some association to categories
probs <- c(0.3, 0.4, 0.5, 0.6, 0.7, 0.75, 0.8, 0.85) # increasing probability
target <- sapply(seqg_along(feature), function(i) {
cat_idx <- which(categories == featurel[i])
rbinom(1, 1, probs[cat_idx])
»

result <- ob_categorical_cm(feature, target)
print(resultfc("bin”, "woe", "iv", "count”)])

# View metadata
print(paste("Total IV:", round(result$metadata$total_iv, 3)))
print(paste(”Algorithm converged:"”, result$converged))

# Example 2: Using Chi2 algorithm for more conservative binning
result_chi2 <- ob_categorical_cm(feature, target,
use_chi2_algorithm = TRUE,
max_bins = 6

)

# Compare number of bins
cat(”"Standard ChiMerge bins:", result$metadata$n_bins, "\n")
cat(”Chi2 algorithm bins:”, result_chi2$metadata$n_bins, "\n")
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ob_categorical_dmiv Optimal Binning for Categorical Variables using Divergence Mea-

sures

Description

Performs supervised discretization of categorical variables using a divergence-based hierarchical
merging algorithm. This implementation supports multiple information-theoretic and metric diver-

gence measures

as described by Zeng (2013), enabling flexible optimization of binning structures

for credit scoring and binary classification tasks.

Usage

ob_categorica
feature,
target,
min_bins =
max_bins =
bin_cutoff
max_n_prebi
bin_separat
convergence
max_iterati
bin_method
divergence_|

Arguments

feature

target

min_bins

max_bins

bin_cutoff

max_n_prebins

1_dmiv(

0.05,

ns = 20,

or = "%;%",
_threshold = 1e-06,
ons = 1000,

= "woel”,

method = "12"

A character vector or factor representing the categorical predictor variable to be
binned. Missing values are automatically converted to the category "NA".

An integer vector of binary outcomes (0/1) corresponding to each observation
in feature. Missing values are not permitted.

Integer. Minimum number of bins to produce. Must be >= 2. If the final number
of bins after merging falls below this threshold, the algorithm will attempt to
split bins. Defaults to 3.

Integer. Maximum number of bins to produce. Must be >= min_bins. The al-
gorithm performs hierarchical merging until this constraint is satisfied. Defaults
to 5.

Numeric. Frequency threshold for rare category handling. Categories with rel-
ative frequency below this value are candidates for pre-binning. Must be in (0,
1). Defaults to 0.05.

Integer. Maximum number of initial bins before the main merging phase. When
unique categories exceed this limit, rare categories are pre-merged into an "other"
bin. Must be >= 2. Defaults to 20.
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bin_separator Character string used to concatenate category names when multiple categories
are merged into a single bin. Defaults to "%;%".

convergence_threshold
Numeric. Convergence tolerance for the iterative merging process. Merging

stops when the change in minimum divergence between iterations falls below
this threshold. Must be > (. Defaults to 1e-6.

max_iterations Integer. Maximum number of merge operations allowed. Prevents infinite loops
in edge cases. Must be > 0. Defaults to 1000.

bin_method Character string specifying the Weight of Evidence calculation method. Must
be one of:

"woe” Traditional WoE: In ( P éf,)

n n . +0.5
woe1” Smoothed WoE (Zeng): In (ﬁ)

The smoothed variant provides numerical stability for sparse bins. Defaults to
"woel"”.
divergence_method

Character string specifying the divergence measure used for determining bin
similarity. Must be one of:

"he” Hellinger Distance: Y (y/p; — /ni)?

"k1" Symmetrized Kullback-Leibler Divergence
"k1j" Jeffreys J-Divergence: (p — n)In(p/n)

"tr"” Triangular Discrimination: (p — n)?/(p + n)
"sc” Symmetric Chi-Square: (p — n)%(p +n)/(pn)
"js" Jensen-Shannon Divergence

"11" L1 Metric (Manhattan Distance): |[p — n|

"12" L2 Metric (Euclidean Distance): 1/ (p — n)?

"1In" L-infinity Metric (Chebyshev Distance): max |[p — n|
Defaults to "12".

Details

The algorithm implements a hierarchical agglomerative approach where bins are iteratively merged
based on minimum pairwise divergence until the max_bins constraint is satisfied or convergence is
achieved.

Algorithm Workflow:

. Input validation and frequency computation

. Pre-binning of rare categories (if unique categories > max_n_prebins)
. Initialization of pairwise divergence matrix

Iterative merging of most similar bin pairs

Splitting of heterogeneous bins (if bins < min_bins)

e

Final metric computation and WoE-based sorting

Divergence Measure Selection: The choice of divergence measure affects the binning structure:
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* Information-theoretic measures ("k1"”, "js"”, "k1j"): Emphasize distributional differences;
sensitive to rare events

* Metric measures ("11", "12", "1n"): Provide geometric interpretation; robust to outliers

* Chi-square family ("sc”, "tr"): Balance between information content and robustness

 Hellinger distance ("he"): Bounded measure; suitable for probability distributions
Pre-binning Strategy: When the number of unique categories exceeds max_n_prebins, categories

with fewer than 5 observations are aggregated into a special "PREBIN_OTHER" bin to control
computational complexity.

Value

A list containing the binning results with the following components:

id Integer vector of bin identifiers (1-indexed)

bin Character vector of bin labels (merged category names)
woe Numeric vector of Weight of Evidence values per bin
divergence Numeric vector of divergence contribution per bin
count Integer vector of total observations per bin

count_pos Integer vector of positive cases (target=1) per bin
count_neg Integer vector of negative cases (target=0) per bin
converged Logical indicating algorithm convergence
iterations Integer count of merge operations performed
total_divergence Numeric total divergence of the binning solution
bin_method Character string of WoE method used

divergence_method Character string of divergence measure used

References

Zeng, G. (2013). Metric Divergence Measures and Information Value in Credit Scoring. Journal of
Mathematics, 2013, Article ID 848271. doi:10.1155/2013/848271

Kullback, S., & Leibler, R. A. (1951). On Information and Sufficiency. The Annals of Mathematical
Statistics, 22(1), 79-86.

Lin, J. (1991). Divergence Measures Based on the Shannon Entropy. IEEE Transactions on Infor-
mation Theory, 37(1), 145-151.

See Also

ob_categorical_cm for ChiMerge-based categorical binning
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Examples

# Example 1: Basic usage with synthetic credit data
set.seed(42)
n <- 1000

# Simulate occupation categories with varying default rates
occupations <- c(
"Engineer”, "Doctor"”, "Teacher”, "Sales",
"Manager"”, "Clerk”, "Other"
)
default_probs <- c(0.05, 0.03, 0.08, 0.15, 0.07, 0.12, 0.20)

feature <- sample(occupations, n,
replace = TRUE,
prob = c(0.15, 0.10, 0.20, .18, 0.12, 0.15, 0.10)
)
target <- sapply(feature, function(x) {
rbinom(1, 1, default_probs[which(occupations == x)1])

b

# Apply optimal binning with L2 divergence
result <- ob_categorical_dmiv(feature, target,
min_bins = 2,
max_bins = 4,
divergence_method = "12"

)

# Examine binning results
print(data.frame(
bin = result$bin,
woe = round(result$woe, 3),
count = result$count,
event_rate = round(result$count_pos / result$count, 3)

)

# Example 2: Comparing divergence methods
result_js <- ob_categorical_dmiv(feature, target,

divergence_method = "js",
max_bins = 4
)
result_kl <- ob_categorical_dmiv(feature, target,
divergence_method = "k1",
max_bins = 4
)

cat("Jensen-Shannon bins:", length(result_js$bin), "\n")
cat("Kullback-Leibler bins:", length(result_kl$bin), "\n")

# Example 3: High cardinality feature with pre-binning
set.seed(123)

postal_codes <- paste@("ZIP_", sprintf("%03d", 1:50))
feature_high_card <- sample(postal_codes, 2000, replace = TRUE)

ob_categorical_dmiv
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target_high_card <- rbinom(2000, 1, 0.1)

result_prebin <- ob_categorical_dmiv(
feature_high_card,
target_high_card,
max_n_prebins = 15,
max_bins = 5

)
cat("Final bins after pre-binning:”, length(result_prebin$bin), "\n")
cat("Algorithm converged:"”, result_prebin$converged, "\n")
ob_categorical_dp Optimal Binning for Categorical Variables using Dynamic Program-
ming
Description

Performs supervised discretization of categorical variables using a dynamic programming algo-
rithm with optional monotonicity constraints. This method maximizes the total Information Value
(IV) while ensuring optimal bin formation that respects user-defined constraints on bin count and
frequency. The algorithm guarantees global optimality through dynamic programming.

Usage

ob_categorical_dp(

feature,
target,
min_bins =
max_bins =
bin_cutoff

max_n_prebins = 20,
convergence_threshold = 1e-06,
max_iterations = 1000,
bin_separator = "%;%",
monotonic_trend = "auto”

Arguments

feature

target

A character vector or factor representing the categorical predictor variable to be
binned. Missing values are automatically converted to the category "NA".

An integer vector of binary outcomes (0/1) corresponding to each observation
in feature. Missing values are not permitted.
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min_bins Integer. Minimum number of bins to produce. Must be >= 2. The algorithm
searches for solutions within [min_bins, max_bins] that maximize total IV. De-
faults to 3.

max_bins Integer. Maximum number of bins to produce. Must be >=min_bins. Defines

the upper bound of the search space for the optimal solution. Defaults to 5.

bin_cutoff Numeric. Minimum proportion of total observations required for a category
to remain separate. Categories below this threshold are merged with similar
categories. Must be in (0, 1). Defaults to 0.05.

max_n_prebins Integer. Maximum number of initial bins before dynamic programming opti-
mization. Controls computational complexity. Must be >= 2. Defaults to 20.
convergence_threshold
Numeric. Convergence tolerance for the iterative dynamic programming up-

dates. Smaller values require stricter convergence. Must be > 0. Defaults to
le-6.

max_iterations Integer. Maximum number of dynamic programming iterations. Prevents exces-
sive computation in edge cases. Must be > 0. Defaults to 1000.

bin_separator Character string used to concatenate category names when multiple categories
are merged into a single bin. Defaults to "%;%".

monotonic_trend

Character string specifying monotonicity constraint for Weight of Evidence.
Must be one of:

"auto” Automatically determine trend direction (default)
"ascending” Enforce increasing WoE across bins
"descending” Enforce decreasing WoE across bins

"none” No monotonicity constraint

Monotonicity constraints are enforced during the DP optimization phase. De-
faults to "auto”.

Details

This implementation uses dynamic programming to find the globally optimal binning solution that
maximizes total Information Value subject to constraints.

Algorithm Workflow:

Input validation and data preprocessing

Rare category merging (frequencies below bin_cutoff)
Pre-binning limitation (if categories exceed max_n_prebins)
Category sorting by event rate

Dynamic programming table initialization

Iterative DP optimization with optional monotonicity constraints

Backtracking to construct optimal bins

® N kR

Final metric computation
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Dynamic Programming Formulation:

Let D PJi][k] represent the maximum total IV achievable using the first ¢ categories partitioned into
k bins. The recurrence relation is:

DPli|[k] = max{DP[j][k = 1] + IV (j + 1,i)}

1<t
where IV (j + 1,4) is the Information Value of a bin containing categories from j + 1 to i. Mono-
tonicity constraints are enforced by restricting transitions that violate WoE ordering.
Computational Complexity:

e Time: O(n2 - k - m) where n = categories, k = max_bins, m = iterations
* Space: O(n - k) for DP tables

Advantages over Heuristic Methods:

* Guarantees global optimality (within constraint space)
 Explicit monotonicity enforcement

* Deterministic and reproducible results

* Efficient caching mechanism for bin statistics

Value
A list containing the binning results with the following components:

id Integer vector of bin identifiers (1-indexed)

bin Character vector of bin labels (merged category names)
woe Numeric vector of Weight of Evidence values per bin

iv Numeric vector of Information Value contribution per bin
count Integer vector of total observations per bin

count_pos Integer vector of positive cases (target=1) per bin
count_neg Integer vector of negative cases (target=0) per bin
event_rate Numeric vector of event rates per bin

total_iv Numeric total Information Value of the binning solution
converged Logical indicating if the DP algorithm converged
iterations Integer count of DP iterations performed

execution_time_ms Numeric execution time in milliseconds

References
Navas-Palencia, G. (2022). Optimal Binning: Mathematical Programming Formulation. arXiv
preprint arXiv:2001.08025.

Bellman, R. (1954). The theory of dynamic programming. Bulletin of the American Mathematical
Society, 60(6), 503-515.

Siddiqi, N. (2017). Intelligent Credit Scoring: Building and Implementing Better Credit Risk Score-
cards (2nd ed.). Wiley.

Thomas, L. C., Edelman, D. B., & Crook, J. N. (2017). Credit Scoring and Its Applications (2nd
ed.). SIAM.



44 ob_categorical_dp

See Also

ob_categorical_cm for ChiMerge-based binning, ob_categorical_dmiv for divergence measure-
based binning

Examples

# Example 1: Basic usage with monotonic WoE enforcement
set.seed(123)
n_obs <- 1000

# Simulate education levels with increasing default risk
education <- c("High School”, "Associate”, "Bachelor"”, "Master"”, "PhD")
default_probs <- c(0.20, 0.15, 0.10, 0.06, 0.03)

cat_feature <- sample(education, n_obs,
replace = TRUE,
prob = c(0.30, 0.25, 0.25, 0.15, 0.05)
)
bin_target <- sapply(cat_feature, function(x) {
rbinom(1, 1, default_probs[which(education == x)1])
B

# Apply DP binning with ascending monotonicity
result_dp <- ob_categorical_dp(

cat_feature,

bin_target,

min_bins = 2,

max_bins = 4,

monotonic_trend = "ascending”

# Display results
print(data.frame(
Bin = result_dp$bin,
WoE = round(result_dp$woe, 3),
IV = round(result_dp$iv, 4),
Count = result_dp$count,
EventRate = round(result_dp$event_rate, 3)

)

cat("Total IV:", round(result_dp$total_iv, 4), "\n")
cat("Converged:", result_dp$converged, "\n")

# Example 2: Comparing monotonicity constraints
result_dp_asc <- ob_categorical_dp(
cat_feature, bin_target,
max_bins = 3,
monotonic_trend = "ascending”

)

result_dp_none <- ob_categorical_dp(
cat_feature, bin_target,
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max_bins = 3,
monotonic_trend = "none”

)

cat(”"\nWith monotonicity:\n")
cat(” Bins:”, length(result_dp_asc$bin), "\n")
cat(” Total IV:", round(result_dp_asc$total_iv, 4), "\n")

cat("\nWithout monotonicity:\n")
cat(” Bins:", length(result_dp_none$bin), "\n")
cat(" Total IV:", round(result_dp_none$total_iv, 4), "\n")

# Example 3: High cardinality with pre-binning
set.seed(456)
n_obs_large <- 5000

# Simulate customer segments (high cardinality)
segments <- paste@("Segment_", LETTERS[1:201])
segment_probs <- runif(20, .01, 0.20)

cat_feature_hc <- sample(segments, n_obs_large, replace = TRUE)
bin_target_hc <- rbinom(

n_obs_large, 1,

segment_probs[match(cat_feature_hc, segments)]

)

result_dp_hc <- ob_categorical_dp(
cat_feature_hc,

bin_target_hc,
min_bins = 3,
max_bins = 5,
bin_cutoff = 0.03,
max_n_prebins = 10
)
cat(”\nHigh cardinality example:\n")
cat(" Original categories:"”, length(unique(cat_feature_hc)), "\n")
cat(” Final bins:", length(result_dp_hc$bin), "\n")
cat(" Execution time:", result_dp_hc$execution_time_ms, "ms\n")

# Example 4: Handling missing values

set.seed(789)

cat_feature_na <- cat_feature

cat_feature_na[sample(n_obs, 50)] <- NA # Introduce 5% missing

result_dp_na <- ob_categorical_dp(
cat_feature_na,
bin_target,
min_bins = 2,
max_bins = 4

# Check if NA was treated as a category
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na_bin <- grep(”"NA", result_dp_na$bin, value = TRUE)
if (length(na_bin) > @) {

cat("\nNA handling:\n")

cat(" Bin containing NA:", na_bin, "\n")

}

ob_categorical_fetb Optimal Binning for Categorical Variables using Fisher’s Exact Test

Description

Performs supervised discretization of categorical variables using Fisher’s Exact Test as the simi-
larity criterion for hierarchical bin merging. This method iteratively merges the most statistically
similar bins (highest p-value) while enforcing Weight of Evidence monotonicity, providing a statis-
tically rigorous approach to optimal binning.

Usage

ob_categorical_fetb(

feature,
target,

min_bins = 3,
max_bins = 5,
bin_cutoff = 0.05,
max_n_prebins = 20,

convergence_threshold = 1e-06,

max_iterations = 1000,

bin_separator = "%;%"
Arguments
feature A character vector or factor representing the categorical predictor variable to be

target

min_bins

max_bins

bin_cutoff

binned. Missing values are automatically converted to the category "NA".

An integer vector of binary outcomes (0/1) corresponding to each observation
in feature. Missing values are not permitted.

Integer. Minimum number of bins to produce. Must be >= 2. The algorithm will
not merge below this threshold. Defaults to 3.

Integer. Maximum number of bins to produce. Must be >= min_bins. The
algorithm merges bins until this constraint is satisfied. Defaults to 5.

Numeric. Minimum proportion of total observations required for a category to
avoid being classified as rare. Rare categories are pre-merged before the main
algorithm. Must be in (0, 1). Defaults to 0.05.
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max_n_prebins Integer. Maximum number of initial bins before the merging phase. Controls
computational complexity for high-cardinality features. Must be >= 2. Defaults
to 20.

convergence_threshold
Numeric. Convergence tolerance based on Information Value change between
iterations. Algorithm stops when |AIV| < convergence_threshold. Must be
> (. Defaults to le-6.

max_iterations Integer. Maximum number of merge operations allowed. Prevents excessive
computation. Must be > 0. Defaults to 1000.

bin_separator Character string used to concatenate category names when multiple categories
are merged into a single bin. Defaults to "%;%".

Details

This algorithm employs Fisher’s Exact Test to quantify statistical similarity between bins based
on their 2x2 contingency tables. Unlike chi-square based methods, Fisher’s test provides exact
p-values without relying on asymptotic approximations, making it particularly suitable for small
sample sizes.

Algorithm Workflow:

1. Data preprocessing and frequency computation

2. Rare category identification and pre-merging (frequencies < bin_cutoff)
3. Initial bin creation (one category per bin)

4. Iterative merging phase:

» Compute Fisher’s Exact Test p-values for all adjacent bin pairs
e Merge the pair with the highest p-value (most similar)

* Enforce WoE monotonicity after each merge

* Check convergence based on IV change

5. Final monotonicity enforcement

Fisher’s Exact Test:

For two bins with contingency table:

Binl Bin2
Positives a c
Negatives b d

The exact probability under the null hypothesis of independence is:

(a+bd)l(c+d)(a+ ) (b+d)!
nl-al-bl-cl-d!

where n = a + b+ ¢ + d. Higher p-values indicate greater similarity (less evidence against the null
hypothesis of identical distributions).

Key Features:
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» Exact inference: No asymptotic approximations required

* Small sample robustness: Valid for any sample size

* Automatic monotonicity: WoE ordering enforced after each merge
* Efficient caching: Log-factorial and p-value caching for speed

* Rare category handling: Pre-merging prevents sparse bins
Computational Complexity:

e Time: O(k? - m) where k = initial bins, m = iterations

* Space: O(k + Nypqz) for bins and factorial cache

Value

A list containing the binning results with the following components:

id Integer vector of bin identifiers (1-indexed)

bin Character vector of bin labels (merged category names)
woe Numeric vector of Weight of Evidence values per bin

iv Numeric vector of Information Value contribution per bin
count Integer vector of total observations per bin

count_pos Integer vector of positive cases (target=1) per bin
count_neg Integer vector of negative cases (target=0) per bin
converged Logical indicating algorithm convergence

iterations Integer count of merge operations performed

References

Fisher, R. A. (1922). On the interpretation of chi-squared from contingency tables, and the calcula-
tion of P. Journal of the Royal Statistical Society, 85(1), 87-94. doi:10.2307/2340521

Agresti, A. (2013). Categorical Data Analysis (3rd ed.). Wiley.

Mehta, C. R., & Patel, N. R. (1983). A network algorithm for performing Fisher’s exact test in rxc
contingency tables. Journal of the American Statistical Association, 78(382), 427-434.

Zeng, G. (2014). A necessary condition for a good binning algorithm in credit scoring. Applied
Mathematical Sciences, 8(65), 3229-3242.

See Also

ob_categorical_cm for ChiMerge-based binning, ob_categorical_dp for dynamic programming
approach, ob_categorical_dmiv for divergence measure-based binning
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Examples

# Example 1: Basic usage with Fisher's Exact Test
set.seed(42)
n_obs <- 800

# Simulate customer segments with different risk profiles
segments <- c("Premium”, "Standard”, "Basic”, "Budget"”, "Economy")
risk_rates <- c(0.05, 0.10, 0.15, 0.22, 0.30)

cat_feature <- sample(segments, n_obs,
replace = TRUE,
prob = c(0.15, 0.25, 0.30, 0.20, 0.10)

)

bin_target <- sapply(cat_feature, function(x) {
rbinom(1, 1, risk_rates[which(segments == x)])

»

# Apply Fisher's Exact Test binning
result_fetb <- ob_categorical_fetb(
cat_feature,
bin_target,
min_bins =

2!
max_bins = 4

# Display results
print(data.frame(

Bin = result_fetb$bin,

WoE = round(result_fetb$woe, 3),

IV = round(result_fetb$iv, 4),

Count = result_fetb$count,

EventRate = round(result_fetb$count_pos / result_fetb$count, 3)
)

cat("\nAlgorithm converged:", result_fetb$converged, "\n")
cat("Iterations performed:”, result_fetb$iterations, "\n")

# Example 2: Comparing with ChiMerge method
result_cm <- ob_categorical_cm(
cat_feature,
bin_target,
min_bins = 2,
max_bins = 4

)

cat(”"\nFisher's Exact Test:\n")
cat(” Final bins:”, length(result_fetb$bin), "\n")
cat("” Total IV:", round(sum(result_fetb$iv), 4), "\n")

cat("\nChiMerge:\n")
cat(” Final bins:”, length(result_cm$bin), "\n")
cat(” Total IV:", round(sum(result_cm$iv), 4), "\n")

49
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# Example 3: Small sample size (Fisher's advantage)
set.seed(123)
n_obs_small <- 150

# Small sample with sparse categories
occupation <- c(
"Doctor”, "Lawyer"”, "Teacher"”, "Engineer",
"Sales”, "Manager"”

)

cat_feature_small <- sample(occupation, n_obs_small,
replace = TRUE,
prob = c(0.10, 0.10, 0.20, 0.25, 0.20, 0.15)

)

bin_target_small <- rbinom(n_obs_small, 1, 0.12)

result_fetb_small <- ob_categorical_fetb(
cat_feature_small,
bin_target_small,
min_bins = 2,

max_bins = 3,
bin_cutoff = 0.03 # Allow smaller bins for small sample
)
cat("\nSmall sample binning:\n")
cat(" Observations:”, n_obs_small, "\n")
cat(” Original categories:”, length(unique(cat_feature_small)), "\n")
cat(” Final bins:", length(result_fetb_small$bin), "\n")
cat(" Converged:", result_fetb_small$converged, "\n")

# Example 4: High cardinality with rare categories
set.seed(789)
n_obs_hc <- 2000

# Simulate product codes (high cardinality)
product_codes <- paste@("PROD_", sprintf("%03d", 1:30))

cat_feature_hc <- sample(product_codes, n_obs_hc,
replace = TRUE,
prob = c(
rep(0.05, 10), rep(0.02, 190),
rep(0.01, 10)
)

)
bin_target_hc <- rbinom(n_obs_hc, 1, 0.08)

result_fetb_hc <- ob_categorical_fetb(
cat_feature_hc,
bin_target_hc,
min_bins = 3,
max_bins = 6,

bin_cutoff = 0.02,

ob_categorical_fetb
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max_n_prebins = 15

)

cat("\nHigh cardinality example:\n")

cat(" Original categories:"”, length(unique(cat_feature_hc)), "\n")
cat(” Final bins:”, length(result_fetb_hc$bin), "\n")

cat(" Iterations:"”, result_fetb_hc$iterations, "\n")

# Check for rare category merging
for (i in seq_along(result_fetb_hc$bin)) {
n_merged <- length(strsplit(result_fetb_hc$bin[i], "%;%")LL[11]1)
if (n_merged > 1) {
cat(" Bin", i, "contains"”, n_merged, "merged categories\n")
}
3

# Example 5: Missing value handling
set.seed(456)

cat_feature_na <- cat_feature

na_indices <- sample(n_obs, 40) # 5% missing
cat_feature_na[na_indices] <- NA

result_fetb_na <- ob_categorical_fetb(
cat_feature_na,
bin_target,
min_bins = 2,
max_bins = 4

# Check NA treatment
na_bin_idx <- grep(”"NA", result_fetb_na$hin)
if (length(na_bin_idx) > @) {
cat("\nMissing value handling:\n")
cat(” NA bin:", result_fetb_na$hin[na_bin_idx], "\n")
cat(” NA count:”, result_fetb_na$count[na_bin_idx], "\n")
cat(” NA WoE:", round(result_fetb_na$woel[na_bin_idx], 3), "\n")

ob_categorical_gmb Optimal Binning for Categorical Variables using Greedy Merge Algo-
rithm

Description

Performs supervised discretization of categorical variables using a greedy bottom-up merging strat-
egy that iteratively combines bins to maximize total Information Value (IV). This approach uses
Bayesian smoothing for numerical stability and employs adaptive monotonicity constraints, provid-
ing a fast approximation to optimal binning suitable for high-cardinality features.



52

Usage

ob_categorical_gmb

ob_categorical_gmb(

feature,
target,
min_bins =
max_bins =
bin_cutoff

0.05

max_n_prebins = 20,
bin_separator = "%;%",
convergence_threshold = 1e-06,
max_iterations = 1000

Arguments

feature

target

min_bins

max_bins

bin_cutoff

max_n_prebins

bin_separator

A character vector or factor representing the categorical predictor variable to be
binned. Missing values are automatically converted to the category "NA".

An integer vector of binary outcomes (0/1) corresponding to each observation
in feature. Missing values are not permitted.

Integer. Minimum number of bins to produce. Must be >= 2. Merging stops
when this threshold is reached. Defaults to 3.

Integer. Maximum number of bins to produce. Must be >= min_bins. The
algorithm terminates when bins are reduced to this number. Defaults to 5.

Numeric. Minimum proportion of total observations required for a category to
remain separate during initialization. Categories below this threshold are pre-
merged. Must be in (0, 1). Defaults to 0.05.

Integer. Maximum number of initial bins before the greedy merging phase. Con-
trols computational complexity. Must be >= min_bins. Defaults to 20.

Character string used to concatenate category names when multiple categories
are merged into a single bin. Defaults to "%;%".

convergence_threshold

Numeric. Convergence tolerance for IV change between iterations. Algorithm
stops when |AIV| < convergence_threshold. Must be > 0. Defaults to 1e-6.

max_iterations Integer. Maximum number of merge operations allowed. Prevents excessive

Details

computation. Must be > 0. Defaults to 1000.

The Greedy Merge Binning (GMB) algorithm employs a bottom-up approach where bins are it-
eratively merged based on maximum IV improvement. Unlike exact optimization methods (e.g.,
dynamic programming), GMB provides approximate solutions with significantly reduced computa-

tional cost.

Algorithm Workflow:

1. Input validation and preprocessing

2. Initial bin creation (one category per bin)
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3. Rare category merging (frequencies < bin_cutoff)
4. Pre-bin limitation (if bins > max_n_prebins)
5. Greedy merging phase:

» Evaluate IV for all possible adjacent bin merges
 Select merge that maximizes total IV

* Apply tie-breaking rules for similar merges

» Update IV cache incrementally

¢ Check convergence criteria

6. Adaptive monotonicity enforcement

7. Final metric computation

Bayesian Smoothing:

To prevent numerical instability with sparse bins, WoE is calculated using Bayesian smoothing:

WoE; = In (W>

n; + oy
where o, and o, are prior pseudocounts proportional to the overall event rate. This regularization
ensures stable WoE estimates even for bins with zero events.
Greedy Selection Criterion:

At each iteration, the algorithm evaluates the IV gain for merging adjacent bins ¢ and j:

AI‘/’i,j = Ivmerged(ivj) - (IVZ + IVJ)
The pair with maximum AV is merged. Early stopping occurs if AIV > 0.05 - IVyrrent (3%
improvement threshold).
Tie Handling:

When multiple merges yield similar IV gains (within 10x convergence threshold), the algorithm
prefers merges that produce more balanced bins, breaking ties based on size difference:

balance_score = |count; — count;|

Computational Complexity:
e Time: O(k? - m) where k = bins, m = iterations
* Space: O(k?) for IV cache (optional)
* Typical runtime: 10-100x faster than exact methods for & > 20

Advantages:

* Fast execution for high-cardinality features
* Incremental IV caching for efficiency
* Bayesian smoothing prevents overfitting

* Adaptive monotonicity with gradient relaxation
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* Handles imbalanced datasets robustly
Limitations:

* Approximate solution (not guaranteed global optimum)
* Greedy nature may miss better non-adjacent merges

¢ Sensitive to initialization order

Value
A list containing the binning results with the following components:

id Integer vector of bin identifiers (1-indexed)

bin Character vector of bin labels (merged category names)

woe Numeric vector of Weight of Evidence values per bin

iv Numeric vector of Information Value contribution per bin
count Integer vector of total observations per bin

count_pos Integer vector of positive cases (target=1) per bin
count_neg Integer vector of negative cases (target=0) per bin
total_iv Numeric total Information Value of the binning solution
converged Logical indicating algorithm convergence

iterations Integer count of merge operations performed

References
Navas-Palencia, G. (2020). Optimal binning: mathematical programming formulation and solution
approach. Expert Systems with Applications, 158, 113508. doi:10.1016/j.eswa.2020.113508

Good, I. J. (1965). The Estimation of Probabilities: An Essay on Modern Bayesian Methods. MIT
Press.

Zeng, G. (2014). A necessary condition for a good binning algorithm in credit scoring. Applied
Mathematical Sciences, 8(65), 3229-3242.

Mironchyk, P., & Tchistiakov, V. (2017). Monotone optimal binning algorithm for credit risk mod-
eling. SSRN Electronic Journal. doi:10.2139/ssrn.2978774

See Also
ob_categorical_dp for exact optimization via dynamic programming, ob_categorical_cm for
ChiMerge-based binning, ob_categorical_fetb for Fisher’s Exact Test binning

Examples

# Example 1: Basic greedy merge binning
set.seed(123)
n_obs <- 1500

# Simulate customer types with varying risk
customer_types <- c(
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"Premium”, "Gold"”, "Silver"”, "Bronze",
"Basic"”, "Trial”
)
risk_probs <- c(0.02, 0.05, 9.10, 0.15, 0.22, 0.35)

cat_feature <- sample(customer_types, n_obs,
replace = TRUE,
prob = c(0.10, 0.15, 0.25, 0.25, ©.15, 0.10)

)

bin_target <- sapply(cat_feature, function(x) {
rbinom(1, 1, risk_probs[which(customer_types == x)1)

»

# Apply greedy merge binning
result_gmb <- ob_categorical_gmb(
cat_feature,
bin_target,
min_bins = 3,
max_bins = 4

)

# Display results
print(data.frame(
Bin = result_gmb$bin,
WoE = round(result_gmb$woe, 3),
IV = round(result_gmb$iv, 4),
Count = result_gmb$count,
EventRate = round(result_gmb$count_pos / result_gmb$count, 3)

)

cat("\nTotal IV:"”, round(result_gmb$total_iv, 4), "\n")
cat("Converged:", result_gmb$converged, "\n")
cat("Iterations:"”, result_gmb$iterations, "\n")

# Example 2: Comparing speed with exact methods
set.seed(456)
n_obs <- 3000

# High cardinality feature

regions <- paste@("Region_", sprintf("%02d", 1:25))
cat_feature_hc <- sample(regions, n_obs, replace = TRUE)
bin_target_hc <- rbinom(n_obs, 1, 0.12)

# Greedy approach (fast)
time_gmb <- system.time({
result_gmb_hc <- ob_categorical_gmb(
cat_feature_hc,
bin_target_hc,
min_bins = 3,
max_bins = 6,
max_n_prebins = 20

b
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# Dynamic programming (exact but slower)
time_dp <- system.time({
result_dp_hc <- ob_categorical_dp(
cat_feature_hc,
bin_target_hc,
min_bins = 3,
max_bins = 6,
max_n_prebins = 20
)
»

cat("\nPerformance comparison (high cardinality):\n")

cat(" GMB time:", round(time_gmb[3], 3), "seconds\n")

cat(” DP time:", round(time_dp[3], 3), "seconds\n")

cat(” Speedup:"”, round(time_dp[3] / time_gmb[3]1, 1), "x\n")
cat("\n GMB IV:", round(result_gmb_hc$total_iv, 4), "\n")
cat(” DP IV:", round(result_dp_hc$total_iv, 4), "\n")

# Example 3: Convergence behavior
set.seed(789)

n_obs_conv <- 1000

# Feature with natural groupings

ob_categorical_gmb

education <- c("PhD", "Master”, "Bachelor”, "HighSchool”, "NoHighSchool")

cat_feature_conv <- sample(education, n_obs_conv,
replace = TRUE,
prob = c(0.05, 0.15, 9.35, 0.30, 0.15)
)
bin_target_conv <- sapply(cat_feature_conv, function(x) {
probs <- c(0.02, 0.05, 0.08, 9.15, 0.25)
rbinom(1, 1, probs[which(education == x)1])

b

# Test different convergence thresholds
thresholds <- c(1e-3, 1e-6, 1e-9)

for (thresh in thresholds) {
result_conv <- ob_categorical_gmb(
cat_feature_conv,
bin_target_conv,
min_bins = 2,
max_bins = 4,
convergence_threshold = thresh

)
cat(sprintf(
"\nThreshold %.0e: %d iterations, converged=%s\n",
thresh, result_conv$iterations, result_conv$converged
D)
3

# Example 4: Handling rare categories
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set.seed(321)
n_obs_rare <- 2000

# Simulate with many rare categories
products <- c(paste@(”"Common_", 1:5), paste@("Rare_", 1:15))
product_probs <- c(rep(@.15, 5), rep(0.01, 15))

cat_feature_rare <- sample(products, n_obs_rare,
replace = TRUE,
prob = product_probs

)

bin_target_rare <- rbinom(n_obs_rare, 1, 0.10)

result_gmb_rare <- ob_categorical_gmb(
cat_feature_rare,
bin_target_rare,
min_bins = 3,
max_bins = 5,
bin_cutoff =
)

0.03 # Aggressive rare category merging

cat(”"\nRare category handling:\n")
cat(” Original categories:"”, length(unique(cat_feature_rare)), "\n")
cat(” Final bins:"”, length(result_gmb_rare$bin), "\n")

# Count merged rare categories
for (i in seqg_along(result_gmb_rare$bin)) {
n_merged <- length(strsplit(result_gmb_rare$bin[i], "%;%")L[1]1])
if (n_merged > 1) {
cat(sprintf(” Bin %d: %d categories merged\n”, i, n_merged))
}
3

# Example 5: Imbalanced dataset robustness
set.seed(555)
n_obs_imb <- 1200

# Highly imbalanced target (2% event rate)
cat_feature_imb <- sample(c("A", "B", "C", "D", "E"),
n_obs_imb,
replace = TRUE

)
bin_target_imb <- rbinom(n_obs_imb, 1, 0.02)

result_gmb_imb <- ob_categorical_gmb(
cat_feature_imb,
bin_target_imb,
min_bins = 2,
max_bins = 3

)

cat(”"\nImbalanced dataset:\n")
cat(" Event rate:"”, round(mean(bin_target_imb), 4), "\n")
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cat(” Total events:", sum(bin_target_imb), "\n")
cat(" Bins created:"”, length(result_gmb_imb$bin), "\n")
cat(” WoE range:", sprintf(

"[%.2f, %.2f1\n",

min(result_gmb_imb$woe),

max (result_gmb_imb$woe)

))
ob_categorical_ivb Optimal Binning for Categorical Variables using Information Value
Dynamic Programming
Description

Performs supervised discretization of categorical variables using a dynamic programming algo-
rithm specifically designed to maximize total Information Value (IV). This implementation employs
Bayesian smoothing for numerical stability, maintains monotonic Weight of Evidence constraints,
and uses efficient caching strategies for optimal performance with high-cardinality features.

Usage

ob_categorical_ivb(
feature,
target,
min_bins = 3
max_bins = 5,
bin_cutoff = 0.05,
max_n_prebins = 20,
bin_separator = "%;%",
convergence_threshold = 1e-06,
max_iterations = 1000

)
Arguments

feature A character vector or factor representing the categorical predictor variable to be
binned. Missing values are automatically converted to the category "NA".

target An integer vector of binary outcomes (0/1) corresponding to each observation
in feature. Missing values are not permitted.

min_bins Integer. Minimum number of bins to produce. Must be >= 2. The algorithm
searches for solutions within [min_bins, max_bins] that maximize total I'V. De-
faults to 3.

max_bins Integer. Maximum number of bins to produce. Must be >= min_bins. Defines

the upper bound of the search space. Defaults to 5.
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bin_cutoff Numeric. Minimum proportion of total observations required for a category
to remain separate. Categories below this threshold are pre-merged before the
optimization phase. Must be in (0, 1). Defaults to 0.05.

max_n_prebins Integer. Maximum number of initial bins before dynamic programming op-
timization. Controls computational complexity for high-cardinality features.
Must be >= 2. Defaults to 20.

bin_separator Character string used to concatenate category names when multiple categories
are merged into a single bin. Defaults to "%;%".

convergence_threshold
Numeric. Convergence tolerance for the iterative optimization process based on
IV change. Algorithm stops when |[ATV| < convergence_threshold. Must
be > 0. Defaults to le-6.

max_iterations Integer. Maximum number of optimization iterations. Prevents excessive com-
putation. Must be > 0. Defaults to 1000.

Details

The Information Value Binning (IVB) algorithm uses dynamic programming to find the globally
optimal binning solution that maximizes total IV subject to constraints on bin count and mono-
tonicity.

Algorithm Workflow:

. Input validation and preprocessing
. Single-pass category counting and statistics computation

. Rare category pre-merging (frequencies < bin_cutoff)

1
2
3
4. Pre-bin limitation (if categories > max_n_prebins)
5. Category sorting by event rate

6. Cumulative statistics cache initialization

7. Dynamic programming table computation:

* State: DPJi|[k] = max IV using first i categories in & bins
e Transition: DP[i][k] = max;{DP[jlk — 1]+ IV (j + 1,4)}
* Banded optimization to skip infeasible splits

8. Backtracking to reconstruct optimal bins

9. Adaptive monotonicity enforcement

10. Final metric computation with Bayesian smoothing

Dynamic Programming Formulation:

Let D P[i][k] represent the maximum total IV achievable using the first i categories (sorted by event
rate) partitioned into k bins.

Recurrence relation:

DPi][k] = max {DP[jllk—1]+1IV(j+14)}
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Base case:

DP[i|[l] =1V (1,i) Vi
where IV (j + 1,4) is the Information Value of a bin containing categories from j + 1 to i.
Bayesian Smoothing:

To prevent numerical instability and overfitting with sparse bins, WoE and IV are calculated using
Bayesian smoothing with pseudocounts:

I i pos + Qyp
Pi= Npos + Qtotal
n; _ N meg + an
Nneg + Qtotal
where «y, and «, are prior pseudocounts proportional to the overall event rate, and cvotq; = 1.0
(prior strength).

/
WoE; = In <pi>
n

IV, = (p; —n}) x WoE;
Adaptive Monotonicity Enforcement:

After finding the optimal bins, the algorithm enforces WoE monotonicity by:

1. Computing average WoE gap: A = 1 S WoE, — WoE|
. Setting adaptive threshold: 7 = min(e, 0.01A)
. Identifying worst violation: ¢* = arg max;{WoE; — WoF,,1}

. Evaluating forward and backward merges by IV retention

D A W N

. Selecting merge direction that maximizes total IV
Computational Complexity:

* Time: O(k? - n) where k = max_bins, n = categories
* Space: O(k - n) for DP tables and cumulative caches

* IV calculations are O(1) due to cumulative statistics caching
Advantages over Alternative Methods:

* Global optimality: Guaranteed maximum IV (within constraint space)
* Bayesian regularization: Robust to sparse bins and class imbalance

* Efficient caching: Cumulative stats and IV memoization

* Banded optimization: Reduced search space via feasibility pruning

¢ Adaptive monotonicity: Context-aware threshold for enforcement
Comparison with Related Methods:

* vs DP (general): IVB specifically optimizes IV; general DP more flexible
* vs GMB: IVB guarantees optimality; GMB is faster but approximate
* vs ChiMerge: IVB uses IV criterion; ChiMerge uses chi-square
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Value
A list containing the binning results with the following components:

id Integer vector of bin identifiers (1-indexed)

bin Character vector of bin labels (merged category names)

woe Numeric vector of Weight of Evidence values per bin

iv Numeric vector of Information Value contribution per bin
count Integer vector of total observations per bin

count_pos Integer vector of positive cases (target=1) per bin
count_neg Integer vector of negative cases (target=0) per bin
total_iv Numeric total Information Value of the binning solution
converged Logical indicating algorithm convergence

iterations Integer count of optimization iterations performed

References
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See Also

ob_categorical_dp for general dynamic programming binning, ob_categorical_gmb for greedy
merge approximation, ob_categorical_cm for ChiMerge-based binning

Examples

# Example 1: Basic IV optimization with Bayesian smoothing
set.seed(42)
n_obs <- 1200

# Simulate industry sectors with varying default risk
industries <- c(
"Technology”, "Healthcare”, "Finance”, "Manufacturing”,
"Retail”, "Energy"
)
default_rates <- c(0.03, 0.05, 0.08, 0.12, 0.18, 0.25)

cat_feature <- sample(industries, n_obs,
replace = TRUE,
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prob = c(0.20, 0.18, 0.22, 0.18, .12, 0.10)

)

bin_target <- sapply(cat_feature, function(x) {
rbinom(1, 1, default_rates[which(industries == x)])

»

# Apply IVB optimization
result_ivb <- ob_categorical_ivb(
cat_feature,
bin_target,
min_bins = 3,
max_bins = 4

# Display results
print(data.frame(
Bin = result_ivb$bin,
WoE = round(result_ivb$woe, 3),
IV = round(result_ivb$iv, 4),
Count = result_ivb$count,
EventRate = round(result_ivb$count_pos / result_ivb$count, 3)

))

cat("\nTotal IV (maximized):", round(result_ivb$total_iv, 4), "\n")
cat("Converged:", result_ivb$converged, "\n")
cat("Iterations:"”, result_ivb$iterations, "\n")

# Example 2: Comparing IV optimization with other methods
set.seed(123)
n_obs_comp <- 1500

regions <- c("North"”, "South”, "East", "West", "Central”)
cat_feature_comp <- sample(regions, n_obs_comp, replace = TRUE)
bin_target_comp <- rbinom(n_obs_comp, 1, 0.15)

# IVB (IV-optimized)

result_ivb_comp <- ob_categorical_ivb(
cat_feature_comp, bin_target_comp,
min_bins = 2, max_bins = 3

# GMB (greedy approximation)
result_gmb_comp <- ob_categorical_gmb(
cat_feature_comp, bin_target_comp,

min_bins = 2, max_bins = 3

# DP (general optimization)

result_dp_comp <- ob_categorical_dp(
cat_feature_comp, bin_target_comp,
min_bins = 2, max_bins = 3

)

ob_categorical_ivb
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cat("\nMethod comparison:\n")

cat(” 1IVB total IV:", round(result_ivb_comp$total_iv, 4), "\n")

cat(” GMB total IV:", round(result_gmb_comp$total_iv, 4), "\n")

cat("” DP total IV:", round(result_dp_comp$total_iv, 4), "\n")
cat("\nIVB typically achieves highest IV due to explicit optimization\n")

ob_categorical_jedi Optimal Binning for Categorical Variables using JEDI Algorithm

Description

Performs supervised discretization of categorical variables using the Joint Entropy-Driven Infor-
mation Maximization (JEDI) algorithm. This advanced method combines information-theoretic
optimization with intelligent bin merging strategies, employing Bayesian smoothing for numerical
stability and adaptive monotonicity enforcement to produce robust, interpretable binning solutions.

Usage

ob_categorical_jedi(
feature,
target,
min_bins = 3,
max_bins = 5,
bin_cutoff = 0.05,
max_n_prebins = 20,
bin_separator = "%;%",
convergence_threshold = 1e-06,
max_iterations = 1000

)
Arguments

feature A character vector or factor representing the categorical predictor variable to be
binned. Missing values are automatically converted to the category "NA".

target An integer vector of binary outcomes (0/1) corresponding to each observation
in feature. Missing values are not permitted.

min_bins Integer. Minimum number of bins to produce. Must be >= 2. The algorithm will
not merge below this threshold. Defaults to 3.

max_bins Integer. Maximum number of bins to produce. Must be >= min_bins. The
algorithm iteratively merges until this constraint is satisfied. Defaults to 5.

bin_cutoff Numeric. Minimum proportion of total observations required for a category to

remain separate during initialization. Categories below this threshold are pre-
merged into an "Others" bin. Must be in (0, 1). Defaults to 0.05.
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max_n_prebins Integer. Maximum number of initial bins before the main optimization phase.
Controls computational complexity for high-cardinality features. Must be >=
min_bins. Defaults to 20.

bin_separator Character string used to concatenate category names when multiple categories
are merged into a single bin. Defaults to "%;%".

convergence_threshold
Numeric. Convergence tolerance based on Information Value change between
iterations. Algorithm stops when |ATV| < convergence_threshold. Must be
> 0. Defaults to 1e-6.

max_iterations Integer. Maximum number of optimization iterations. Prevents infinite loops in
edge cases. Must be > (. Defaults to 1000.

Details

The JEDI (Joint Entropy-Driven Information Maximization) algorithm represents a sophisticated
approach to categorical binning that jointly optimizes Information Value while maintaining mono-
tonic Weight of Evidence constraints through intelligent violation detection and repair strategies.

Algorithm Workflow:

. Input validation and preprocessing

. Initial bin creation (one category per bin)

. Rare category merging (frequencies < bin_cutoff)
. WoE-based monotonic sorting

. Pre-bin limitation via minimal IV-loss merging

AN L AW N =

. Main optimization loop:
* Monotonicity violation detection (peaks and valleys)
* Violation severity quantification
¢ Intelligent merge selection (minimize IV loss)
» Convergence monitoring
* Best solution tracking

7. Final constraint satisfaction (max_bins enforcement)

8. Bayesian-smoothed metric computation

Joint Entropy-Driven Optimization:

Unlike greedy algorithms that optimize locally, JEDI considers the global impact of each merge on
total Information Value:

k
P
Ivo al = i — Ng) X 1 -
total ;(P n;) x In <nz)
For each potential merge of bins j and j + 1, JEDI evaluates:
AI‘/j,j-‘rl = I‘/current - IVmeT'ged(jaj + 1)

The pair with minimum AV (least information loss) is selected.
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Violation Detection and Repair:

JEDI identifies two types of monotonicity violations:

e Peaks: WoFE; > WoFE;_1 and WoFE; > WOElpH
e Valleys: WoFE; < WoFE; 1 and WoFE; < WOEH_l

For each violation, severity is quantified as:

severityi = Hl&X{lWOEi — WOEi_l‘7 ‘WOEi — WOE,’+1|}
The algorithm prioritizes fixing the most severe violation first, evaluating both forward merge (¢, 7+
1) and backward merge (i — 1, 7) to select the option that minimizes information loss.
Bayesian Smoothing:

To ensure numerical stability with sparse bins, JEDI applies Bayesian smoothing:

P, = N pos T Qlp
=P P
Npos + Qtotal

Ni meg + an

/
n. =
Nneg + Qtotal

7

where prior pseudocounts are proportional to overall prevalence:

Npos
Npos + Nneg

Qp = Qtotal — Qp

Qp = Qtotal X

with aotq; = 1.0 as the prior strength parameter.
Adaptive Monotonicity Threshold:
Rather than using a fixed threshold, JEDI computes a context-aware tolerance:

1 k—1
Z |WOEi+1 - WOEl‘
i=1

T k—14
7 = min(e, 0.01A)
This adaptive approach prevents over-merging when natural WoE gaps are small.

Computational Complexity:
e Time: O(k? - m) where k = bins, m = iterations
* Space: O(k?) for IV cache
* Cache hit rate typically > 70% for k > 10

Key Innovations:

* Joint optimization: Global IV consideration (vs. local greedy)

* Smart violation repair: Severity-based prioritization



66 ob_categorical_jedi

* Bidirectional merge evaluation: Forward vs. backward analysis
* Best solution tracking: Retains optimal intermediate states

» Adaptive thresholds: Context-aware monotonicity tolerance

Comparison with Related Methods:

Method Optimization Monotonicity Speed

JEDI Joint/Global Adaptive Medium
IVB DP (Exact) Enforced Slow
GMB Greedy/Local  Enforced Fast
ChiMerge Statistical Optional Fast

Value

A list containing the binning results with the following components:

id Integer vector of bin identifiers (1-indexed)

bin Character vector of bin labels (merged category names)

woe Numeric vector of Weight of Evidence values per bin

iv Numeric vector of Information Value contribution per bin
count Integer vector of total observations per bin

count_pos Integer vector of positive cases (target=1) per bin
count_neg Integer vector of negative cases (target=0) per bin
total_iv Numeric total Information Value of the binning solution
converged Logical indicating algorithm convergence

iterations Integer count of optimization iterations performed
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See Also

ob_categorical_ivb for Information Value DP optimization, ob_categorical_gmb for greedy
merge binning, ob_categorical_dp for general dynamic programming, ob_categorical_cm for
ChiMerge-based binning
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Examples

# Example 1: Basic JEDI optimization
set.seed(42)
n_obs <- 1500

# Simulate employment types with risk gradient
employment <- c(
"Permanent”, "Contract”, "Temporary"”, "SelfEmployed”,
"Unemployed”, "Student”, "Retired”
)
risk_rates <- c(0.03, 0.08, 9.15, 0.12, 0.35, 0.25, 0.10)

cat_feature <- sample(employment, n_obs,
replace = TRUE,
prob = c(@.35, 0.20, 0.15, 0.12, 0.08, 0.06, 0.04)

)

bin_target <- sapply(cat_feature, function(x) {
rbinom(1, 1, risk_rates[which(employment == x)])

»

# Apply JEDI algorithm
result_jedi <- ob_categorical_jedi(
cat_feature,
bin_target,
min_bins = 3,
max_bins = 5

# Display results
print(data.frame(
Bin = result_jedi$bin,
WoE = round(result_jedi$woe, 3),
IV = round(result_jedi$iv, 4),
Count = result_jedi$count,
EventRate = round(result_jedi$count_pos / result_jedi$count, 3)

)

cat("\nTotal IV (jointly optimized):", round(result_jedi$total_iv, 4), "\n")
cat("Converged:", result_jedi$converged, "\n")
cat("Iterations:”, result_jedi$iterations, "\n")

# Example 2: Method comparison (JEDI vs alternatives)
set.seed(123)
n_obs_comp <- 2000

departments <- c(
"Sales”, "IT", "HR", "Finance", "Operations”,
"Marketing"”, "Legal”, "R&D"
)
cat_feature_comp <- sample(departments, n_obs_comp, replace = TRUE)
bin_target_comp <- rbinom(n_obs_comp, 1, 0.12)
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# JEDI (joint optimization)

result_jedi_comp <- ob_categorical_jedi(
cat_feature_comp, bin_target_comp,
min_bins = 3, max_bins = 4

)

# IVB (exact DP)

result_ivb_comp <- ob_categorical_ivb(
cat_feature_comp, bin_target_comp,
min_bins = 3, max_bins = 4

)

# GMB (greedy)

result_gmb_comp <- ob_categorical_gmb(
cat_feature_comp, bin_target_comp,
min_bins = 3, max_bins = 4

)
cat("\nMethod comparison (Total IV):\n")
cat(
" JEDI:", round(result_jedi_comp$total_iv, 4),
"~ converged:", result_jedi_comp$converged, "\n"
)
cat(
" IVB:", round(result_ivb_comp$total_iv, 4),
"~ converged:", result_ivb_comp$converged, "\n"
)
cat(
" GMB:", round(result_gmb_comp$total_iv, 4),
"~ converged:", result_gmb_comp$converged, "\n"
)

# Example 3: Bayesian smoothing with sparse data
set.seed(789)
n_obs_sparse <- 400

# Small sample with rare events
categories <- c(”A”, "B", "C", "D", "E", "F", "G")
cat_probs <- c(0.25, 0.20, 0.18, .15, 0.12, 0.07, 0.03)

cat_feature_sparse <- sample(categories, n_obs_sparse,
replace = TRUE,
prob = cat_probs

)

bin_target_sparse <- rbinom(n_obs_sparse, 1, 0.05) # 5% event rate

result_jedi_sparse <- ob_categorical_jedi(
cat_feature_sparse,
bin_target_sparse,
min_bins = 2,
max_bins = 4,

bin_cutoff = 0.02

ob_categorical_jedi
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cat("\nBayesian smoothing (sparse data):\n")

cat(" Sample size:", n_obs_sparse, "\n")
cat(" Total events:", sum(bin_target_sparse), "\n")
cat(" Event rate:"”, round(mean(bin_target_sparse), 4), "\n")

cat(” Bins created:"”, length(result_jedi_sparse$bin), "\n\n")

# Show how smoothing prevents extreme WoE values
for (i in seq_along(result_jedi_sparse$bin)) {
cat(sprintf(
" Bin %d: events=%d/%d, WoE=%.3f (smoothed)\n",
i,
result_jedi_sparse$count_pos[i],
result_jedi_sparse$count[i],
result_jedi_sparse$woe[i]

)

# Example 4: Violation detection and repair
set.seed(456)
n_obs_viol <- 1200

# Create feature with non-monotonic risk pattern

risk_categories <- c(
"VeryLow", "Low", "MediumHigh"”, "Medium”, # Intentional non-monotonic
"High", "VeryHigh"

)

actual_risks <- c(0.02, .05, 0.20, 0.12, 0.25, 0.40) # MediumHigh > Medium

cat_feature_viol <- sample(risk_categories, n_obs_viol, replace = TRUE)
bin_target_viol <- sapply(cat_feature_viol, function(x) {
rbinom(1, 1, actual_risks[which(risk_categories == x)J])

b

result_jedi_viol <- ob_categorical_jedi(
cat_feature_viol,
bin_target_viol,
min_bins = 3,
max_bins = 5,
max_iterations = 50

)

cat("\nViolation detection and repair:\n")

cat(” Original categories:”, length(unique(cat_feature_viol)), "\n")
cat(” Final bins:"”, length(result_jedi_viol$bin), "\n")

cat(” Iterations to convergence:", result_jedi_viol$iterations, "\n")
cat(” Monotonicity achieved:”, result_jedi_viol$converged, "\n\n")

# Check final WoE monotonicity
woe_diffs <- diff(result_jedi_viol$woe)
cat(

WoE differences between bins:",
paste(round(woe_diffs, 3), collapse = ", "), "\n"
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)
cat("” All positive (monotonic):", all(woe_diffs >= -1e-6), "\n")

# Example 5: High cardinality performance
set.seed(321)
n_obs_hc <- 3000

# Simulate product categories (high cardinality)
products <- paste@("Product_", sprintf("%03d", 1:50))

cat_feature_hc <- sample(products, n_obs_hc, replace = TRUE)
bin_target_hc <- rbinom(n_obs_hc, 1, 0.08)

# Measure JEDI performance
time_jedi_hc <- system.time({
result_jedi_hc <- ob_categorical_jedi(
cat_feature_hc,
bin_target_hc,
min_bins = 4,
max_bins = 7,
max_n_prebins = 20,
bin_cutoff = 0.02
)
»

cat("\nHigh cardinality performance:\n")
cat(” Original categories:”, length(unique(cat_feature_hc)), "\n")
cat(" Final bins:"”, length(result_jedi_hc$bin), "\n")

cat(" Execution time:", round(time_jedi_hc[3], 3), "seconds\n")
cat(” Total IV:", round(result_jedi_hc$total_iv, 4), "\n")
cat(" Converged:", result_jedi_hc$converged, "\n")

# Show merged categories
for (i in seqg_along(result_jedi_hc$bin)) {
n_merged <- length(strsplit(result_jedi_hc$bin[i], "%;%")LL[11]1)
if (n_merged > 1) {
cat(sprintf(” Bin %d: %d categories merged\n", i, n_merged))
}
3

# Example 6: Convergence behavior
set.seed(555)
n_obs_conv <- 1000

education_levels <- ¢(
"Elementary”, "HighSchool”, "Vocational”,
"Bachelor”, "Master", "PhD"

)

cat_feature_conv <- sample(education_levels, n_obs_conv,
replace = TRUE,
prob = c(0.10, 0.30, 0.20, 0.25, 0.12, 0.03)

)

ob_categorical_jedi
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bin_target_conv <- rbinom(n_obs_conv, 1, 0.15)

# Test different convergence thresholds
thresholds <- c(1e-3, 1e-6, 1e-9)

for (thresh in thresholds) {
result_conv <- ob_categorical_jedi(

cat_feature_conv,
bin_target_conv,
min_bins = 2,
max_bins = 4,
convergence_threshold = thresh,
max_iterations = 100

)

cat(sprintf("\nThreshold %.0e:\n", thresh))

cat(” Final bins:"”, length(result_conv$bin), "\n")
cat(” Total IV:"”, round(result_conv$total_iv, 4), "\n")
cat("” Converged:", result_conv$converged, "\n")

cat(” Iterations:”, result_conv$iterations, "\n")

3

# Example 7: Missing value handling
set.seed(999)

cat_feature_na <- cat_feature

na_indices <- sample(n_obs, 75) # 5% missing
cat_feature_na[na_indices] <- NA

result_jedi_na <- ob_categorical_jedi(
cat_feature_na,
bin_target,
min_bins = 3,
max_bins = 5

# Locate NA bin
na_bin_idx <- grep(”"NA", result_jedi_na$bin)
if (length(na_bin_idx) > @) {
cat("\nMissing value treatment:\n")
cat(” NA bin:", result_jedi_na$bin[na_bin_idx], "\n")
cat(” NA count:”, result_jedi_na$count[na_bin_idx], "\n")
cat(
" NA event rate:”,
round(result_jedi_na$count_pos[na_bin_idx] /
result_jedi_na$count[na_bin_idx], 3), "\n"
)
cat(” NA WoE:", round(result_jedi_na$woe[na_bin_idx], 3), "\n")
cat(” NA IV contribution:"”, round(result_jedi_na$iv[na_bin_idx], 4), "\n")
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Optimal Binning for Categorical Variables with Multinomial Target
using JEDI-MWoE

Description

Performs supervised discretization of categorical variables for multinomial classification problems
using the Joint Entropy-Driven Information Maximization with Multinomial Weight of Evidence
(JEDI-MWOoE) algorithm. This advanced method extends traditional binning to handle multi-class
targets through specialized information-theoretic measures and intelligent optimization strategies.

Usage

ob_categorical_jedi_mwoe(

feature,
target,
min_bins =
max_bins =
bin_cutoff

max_n_prebins = 20,
bin_separator = "%;%",
convergence_threshold = 1e-06,
max_iterations = 1000

Arguments

feature

target

min_bins

max_bins

bin_cutoff

max_n_prebins

A character vector or factor representing the categorical predictor variable to
be binned. Missing values are automatically converted to the special category
"N/A".

An integer vector representing the multinomial outcome variable with consec-
utive integer classes starting from 0 (e.g., 0, 1, 2, ...). Missing values are not
permitted. Must contain at least 2 distinct classes.

Integer. Minimum number of bins to produce. Must be >= 1. The algorithm will
not merge below this threshold. Defaults to 3.

Integer. Maximum number of bins to produce. Must be >= min_bins. The
algorithm iteratively merges until this constraint is satisfied. Defaults to 5.

Numeric. Minimum proportion of total observations required for a category to
remain separate during initialization. Categories below this threshold are pre-
merged. Must be in (0, 1). Defaults to 0.05.

Integer. Maximum number of initial bins before the main optimization phase.
Controls computational complexity for high-cardinality features. Must be >=
min_bins. Defaults to 20.
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bin_separator Character string used to concatenate category names when multiple categories

are merged into a single bin. Defaults to "%;%".

convergence_threshold

Numeric. Convergence tolerance based on Information Value change between
iterations. Algorithm stops when max. |AIV,| < convergence_threshold
across all classes. Must be > 0. Defaults to 1e-6.

max_iterations Integer. Maximum number of optimization iterations. Prevents infinite loops in

Details

edge cases. Must be > 0. Defaults to 1000.

The JEDI-MWOoE (Joint Entropy-Driven Information Maximization with Multinomial Weight of
Evidence) algorithm extends traditional optimal binning to handle multinomial classification prob-
lems by computing class-specific information measures and optimizing joint information content

across all target classes.
Algorithm Workflow:

. Input validation and preprocessing (multinomial target verification)
. Initial bin creation (one category per bin)
. Rare category merging (frequencies < bin_cutoff)

. Pre-bin limitation via statistical similarity merging

wm A W NN =

. Main optimization loop with alternating strategies:

 Jensen-Shannon divergence minimization for similar bin detection
* Adjacent bin merging with minimal information loss
 Class-wise monotonicity violation detection and repair

* Convergence monitoring across all classes

6. Final constraint satisfaction (max_bins enforcement)

7. Laplace-smoothed metric computation

Multinomial Weight of Evidence (M-WoE):

For a bin B and class ¢, the Multinomial Weight of Evidence is:

P(c|B
M-WoEp,. = ln( (clB) + )

P(—¢|B) + «

where:

e P(c|B) = “2= is the class probability in bin B

np
* P(—¢|B) = % is the combined probability of all other classes in bin B
kste Tk
* a = 0.5 is the Laplace smoothing parameter
Information Value Extension:

The Information Value for class ¢ in bin B is:

IVg.. = (P(¢|B) — P(=c|B)) x M-WoEp..
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Total IV for class ¢ across all bins:
IV, =Y |IVg,|
B

Statistical Similarity Measure:

JEDI-MWOoE uses Jensen-Shannon divergence to identify similar bins for merging:

_ 15 1 £l B) el B 1 £LEB)
JS(Pg, Pp/) = Z_;{ Ve + P(¢|B")1

l\.’)\»—l

where M (c) = $[P(c|B) + P(c|B’)] is the average distribution.
Class-wise Monotonicity Enforcement:
For each class c, the algorithm enforces WoE monotonicity by detecting violations (peaks and
valleys) and repairing them through strategic bin merges:
* Peak: M-WoFE;_1 . < M-WoE; . > M-WoFE; .
* Valley: M-WoE; 1> M-WoE;. < M-WoE;;1 .

Violation severity is measured as:

severity; . = max{|M-WoFE; . — M-WoE,;_1 ¢|,|M-WoE; . — M-WoE;{1.|}

Alternating Optimization Strategies:
The algorithm alternates between two merging strategies to balance global similarity and local
information preservation:

1. Divergence-based: Merge bins with minimum JS divergence

2. IV-preserving: Merge adjacent bins with minimum information loss

Laplace Smoothing:

To ensure numerical stability and prevent undefined logarithms, all probability estimates are smoothed
with a Laplace prior:

N+«

Psnooth (C‘ B) = m

where C is the number of classes and o« = 0.5.

Computational Complexity:

e Time: O(k? - C' - m) where k = bins, C = classes, m = iterations
* Space: O(k? - C') for M-WoE cache
¢ Cache hit rate typically > 60% for k > 10

Key Innovations:

* Multinomial extension: Generalizes WoE/IV to multi-class problems
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* Joint optimization: Simultaneously optimizes across all classes
* Alternating strategies: Balances global similarity and local preservation
* Class-wise monotonicity: Enforces meaningful ordering for each class

* Statistical similarity: Uses Jensen-Shannon divergence for merging

Comparison with Binary Methods:

Aspect Binary Multinomial Extension

Target Classes 2 C>=2 One-vs-rest

WOE Definition In(p/n) In(P(c)/P(—c)) Class-specific

IV Aggregation Sum Per-class Vector-valued
Similarity Chi-square  Jensen-Shannon  Distribution-based
Monotonicity Global Per-class Multi-constraint

Value

A list containing the multinomial binning results with the following components:

id Integer vector of bin identifiers (1-indexed)

bin Character vector of bin labels (merged category names)

woe Numeric matrix of Multinomial Weight of Evidence values with dimensions (bins X classes)
iv Numeric matrix of Information Value contributions with dimensions (bins x classes)

count Integer vector of total observations per bin

class_counts Integer matrix of observations per class per bin with dimensions (bins x classes)
class_rates Numeric matrix of class proportions per bin with dimensions (bins x classes)
converged Logical indicating algorithm convergence

iterations Integer count of optimization iterations performed

n_classes Integer number of target classes

total_iv Numeric vector of total Information Value per class
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See Also

ob_categorical_jedi for binary target JEDI algorithm, ob_categorical_ivb for binary Infor-
mation Value DP optimization, ob_categorical_dp for general dynamic programming binning

Examples

# Example 1: Basic multinomial JEDI-MWoOE optimization
set.seed(42)
n_obs <- 1500

# Simulate customer segments with 3 risk categories
segments <- c("Premium”, "Standard”, "Basic"”, "Economy")
# Class probabilities: @=LowRisk, 1=MediumRisk, 2=HighRisk
risk_probs <- list(

Premium = c(0.80, 0.15, 0.05), # Mostly LowRisk

Standard = c(0.40, 0.40, 0.20), # Balanced

Basic = c(0.15, 0.35, 0.50), # Mostly HighRisk

Economy = c(0.05, 0.20, 0.75) # Almost all HighRisk
)

cat_feature <- sample(segments, n_obs,
replace = TRUE,
prob = c(0.25, .35, 0.25, 0.15)

)

# Generate multinomial target (classes 0, 1, 2)
multinom_target <- sapply(cat_feature, function(segment) {
probs <- risk_probs[[segment]]
sample(@:2, 1, prob = probs)
»

# Apply JEDI-MWoE algorithm
result_mwoe <- ob_categorical_jedi_mwoe(
cat_feature,
multinom_target,
min_bins = 2,
max_bins = 3

)

# Display results

cat(”"Number of classes:”, result_mwoe$n_classes, "\n")
cat("Number of bins:", length(result_mwoe$bin), "\n")
cat("Converged:", result_mwoe$converged, "\n")
cat("Iterations:"”, result_mwoe$iterations, "\n\n")

# Show bin details
for (i in seq_along(result_mwoe$bin)) {
cat(sprintf(”"Bin %d (%s):\n", i, result_mwoe$bin[i]))
cat(” Total count:”, result_mwoe$count[i], "\n")
cat(” Class counts:"”, result_mwoe$class_counts[i, 1, "\n")
cat(” Class rates:"”, round(result_mwoe$class_rates[i, 1, 3), "\n")
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# Show WoE and IV for each class
for (class in @:(result_mwoe$n_classes - 1)) {
cat(sprintf(
" Class %d: WoE=%.3f, IV=%.4f\n",
class,
result_mwoe$woe[i, class + 1], # R is 1-indexed
result_mwoe$iv[i, class + 1]
)
}
cat("\n")
3

# Show total IV per class
cat("Total IV per class:\n")
for (class in @:(result_mwoe$n_classes - 1)) {
cat(sprintf (" Class %d: %.4f\n", class, result_mwoe$total_iv[class + 1]))

}

# Example 2: High-cardinality multinomial problem
set.seed(123)
n_obs_hc <- 2000

# Simulate product categories with 4 classes
products <- paste@("Product_", LETTERS[1:15])
cat_feature_hc <- sample(products, n_obs_hc, replace = TRUE)

# Generate 4-class target
multinom_target_hc <- sample(@:3, n_obs_hc,
replace = TRUE,
prob = c(0.3, 0.25, 0.25, 0.2)
)

result_mwoe_hc <- ob_categorical_jedi_mwoe(
cat_feature_hc,
multinom_target_hc,
min_bins = 3,
max_bins = 6,
max_n_prebins = 15,
bin_cutoff = 0.03

cat(”"\nHigh-cardinality example:\n")

cat("Original categories:"”, length(unique(cat_feature_hc)), "\n")
cat("Final bins:"”, length(result_mwoe_hc$bin), "\n")
cat("Classes:"”, result_mwoe_hc$n_classes, "\n")

cat("Converged:", result_mwoe_hc$converged, "\n\n")

# Show merged categories
for (i in seqg_along(result_mwoe_hc$bin)) {
n_merged <- length(strsplit(result_mwoe_hc$bin[i], "%;%")L[11]1)
if (n_merged > 1) {
cat(sprintf("Bin %d: %d categories merged\n"”, i, n_merged))

3
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# Example 3: Laplace smoothing demonstration
set.seed(789)
n_obs_smooth <- 500

# Small sample with sparse categories
categories <- c("A", "B", "C", "D", "E")
cat_feature_smooth <- sample(categories, n_obs_smooth,
replace = TRUE,
prob = c(0.3, 0.25, 0.2, .15, 0.1)
)

# Generate 3-class target with class imbalance
multinom_target_smooth <- sample(@:2, n_obs_smooth,
replace = TRUE,
prob = c(0.6, 0.3, 0.1)
) # Class @ dominant

result_mwoe_smooth <- ob_categorical_jedi_mwoe(
cat_feature_smooth,
multinom_target_smooth,
min_bins = 2,
max_bins = 4,

bin_cutoff = 0.02

cat("\nLaplace smoothing demonstration:\n")

cat("Sample size:"”, n_obs_smooth, "\n")

cat("Classes:"”, result_mwoe_smooth$n_classes, "\n")

cat("Event distribution:”, table(multinom_target_smooth), "\n\n")

# Show how smoothing prevents extreme values

for (i in seq_along(result_mwoe_smooth$bin)) {
cat(sprintf("Bin %d (%s):\n", i, result_mwoe_smooth$bin[i]))
cat(” Counts per class:"”, result_mwoe_smooth$class_counts[i, 1, "\n")
cat(” WoE values:", round(result_mwoe_smooth$woel[i, 1, 3), "\n")
cat(” Note: Extreme WoE values prevented by Laplace smoothing\n\n")

# Example 4: Class-wise monotonicity
set.seed(456)
n_obs_mono <- 1200

# Feature with predictable class patterns

education <- c("PhD", "Master”, "Bachelor”, "College", "HighSchool")

# Each education level has a preferred class

preferred_classes <- c(2, 1, 0, 1, 2) # PhD-High(2), Bachelor-Low(@), etc.

cat_feature_mono <- sample(education, n_obs_mono, replace = TRUE)

# Generate target with preferred class bias
multinom_target_mono <- sapply(cat_feature_mono, function(edu) {
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pref_class <- preferred_classes[which(education == edu)]
# Create probability vector with preference
probs <- rep(0.1, 3) # Base probability
probs[pref_class + 1] <- 0.8 # Preferred class gets high probability
sample(@:2, 1, prob = probs / sum(probs))
»

result_mwoe_mono <- ob_categorical_jedi_mwoe(
cat_feature_mono,
multinom_target_mono,
min_bins = 3,
max_bins = 5

cat(”"Class-wise monotonicity example:\n")
cat("Education levels:"”, length(education), "\n")
cat("Final bins:"”, length(result_mwoe_mono$bin), "\n")
cat("Iterations:"”, result_mwoe_mono$iterations, "\n\n")

# Check monotonicity for each class
for (class in @:(result_mwoe_mono$n_classes - 1)) {
woe_series <- result_mwoe_mono$woe[, class + 1]
diffs <- diff(woe_series)
is_mono <- all(diffs >= -1e-6) || all(diffs <= 1e-6)
cat(sprintf(”Class %d WoE monotonic: %s\n”, class, is_mono))
cat(sprintf (" WoE series: %s\n”, paste(round(woe_series, 3), collapse =", ")))

# Example 5: Missing value handling
set.seed(321)

cat_feature_na <- cat_feature

na_indices <- sample(n_obs, 75) # 5% missing
cat_feature_na[na_indices] <- NA

result_mwoe_na <- ob_categorical_jedi_mwoe(
cat_feature_na,
multinom_target,
min_bins = 2,
max_bins = 3

# Locate missing value bin
missing_bin_idx <- grep(”"N/A", result_mwoe_na$bhin)
if (length(missing_bin_idx) > @) {

cat("\nMissing value handling:\n")

cat("Missing value bin:", result_mwoe_na$hin[missing_bin_idx], "\n")
cat("Missing value count:"”, result_mwoe_na$count[missing_bin_idx], "\n")
cat(

"Class distribution in missing bin:",
result_mwoe_na$class_counts[missing_bin_idx, 1, "\n"

)

# Show class rates for missing bin
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for (class in @:(result_mwoe_na$n_classes - 1)) {
cat(sprintf(
" Class %d rate: %.3f\n", class,
result_mwoe_na$class_rates[missing_bin_idx, class + 1]
))
}
3

# Example 6: Convergence behavior
set.seed(555)
n_obs_conv <- 1000

departments <- c("Sales”, "IT", "HR", "Finance"”, "Operations")
cat_feature_conv <- sample(departments, n_obs_conv, replace = TRUE)
multinom_target_conv <- sample(@:2, n_obs_conv, replace = TRUE)

# Test different convergence thresholds
thresholds <- c(1e-3, 1e-6, 1e-9)

for (thresh in thresholds) {
result_conv <- ob_categorical_jedi_mwoe(

cat_feature_conv,
multinom_target_conv,
min_bins = 2,
max_bins = 4,
convergence_threshold = thresh,
max_iterations = 100

)

cat(sprintf("\nThreshold %.0e:\n", thresh))

cat(" Final bins:"”, length(result_conv$bin), "\n")
cat(" Converged:", result_conv$converged, "\n")
cat(" Iterations:”, result_conv$iterations, "\n")

# Show total IV for each class

cat(” Total IV per class:")

for (class in @:(result_conv$n_classes - 1)) {
cat(sprintf (" %.4f", result_conv$total_iv[class + 11))

}
cat("\n")

ob_categorical_mba Optimal Binning for Categorical Variables using Monotonic Binning
Algorithm
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Description
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Performs supervised discretization of categorical variables using the Monotonic Binning Algorithm
(MBA), which enforces strict Weight of Evidence monotonicity while optimizing Information Value
through intelligent bin merging strategies. This implementation includes Bayesian smoothing for
numerical stability and adaptive thresholding for robust monotonicity enforcement.

Usage

ob_categorical_mba(

feature,
target,

min_bins
max_bins =
bin_cutoff

’

.05,

max_n_prebins = 20,
bin_separator = "%;%",
convergence_threshold = 1e-06,
max_iterations = 1000

Arguments

feature

target

min_bins

max_bins

bin_cutoff

max_n_prebins

bin_separator

A character vector or factor representing the categorical predictor variable to be
binned. Missing values are automatically converted to the category "NA".

An integer vector of binary outcomes (0/1) corresponding to each observation
in feature. Missing values are not permitted.

Integer. Minimum number of bins to produce. Must be >= 2. The algorithm will
not merge below this threshold. Defaults to 3.

Integer. Maximum number of bins to produce. Must be >= min_bins. The
algorithm reduces bins until this constraint is met. Defaults to 5.

Numeric. Minimum proportion of total observations required for a category to
remain separate. Categories below this threshold are pre-merged with similar
categories. Must be in (0, 1). Defaults to 0.05.

Integer. Maximum number of initial bins before the main optimization phase.
Controls computational complexity. Must be >= max_bins. Defaults to 20.

Character string used to concatenate category names when multiple categories
are merged into a single bin. Defaults to "%;%".

convergence_threshold

Numeric. Convergence tolerance based on Information Value change between
iterations. Algorithm stops when |ATV| < convergence_threshold. Must be
> 0. Defaults to 1e-6.

max_iterations Integer. Maximum number of optimization iterations. Prevents infinite loops.

Must be > 0. Defaults to 1000.
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Details

The Monotonic Binning Algorithm (MBA) implements a sophisticated approach to categorical bin-
ning that guarantees strict Weight of Evidence monotonicity through intelligent violation detection
and repair mechanisms.

Algorithm Workflow:

1. Input validation and preprocessing

. Initial bin creation (one category per bin)

. Pre-binning limitation to max_n_prebins

. Rare category merging (frequencies < bin_cutoff)

. Bayesian-smoothed WoE calculation

. Strict monotonicity enforcement with adaptive thresholds

. IV-optimized bin merging to meet max_bins constraint

[c BN B e S N )

. Final consistency verification

Monotonicity Enforcement:

MBA enforces strict monotonicity through an iterative repair process:

. Sort bins by current WoE values

. Calculate adaptive threshold: 7 = min(e, 0.01A)

. Identify violations: sign(WoE; — WoFE;_1) # sign(WoE; 11 — WoE;)

. Rank violations by severity: s; = [WoE; — WoE;_1| + |WoFE;11 — WoE;|

. Repair most severe violations by merging adjacent bins

AN LN AW N =

. Repeat until no violations remain or min_bins reached

Bayesian Smoothing:

To ensure numerical stability and prevent overfitting, MBA applies Bayesian smoothing to WoE
and IV calculations:

o= Mi,pos + Qp
P =
Npos + Qtotal
1 +
’ i,ne n
nf=_—"20%9 "

P =
Nneg + Qtotal

where priors are proportional to overall prevalence:

Npos
Npos + Nneg

Qp = Qtotal — Qp

Qp = Qiotal X

with aotq; = 1.0 as the prior strength parameter.
Intelligent Bin Merging:

When reducing bins to meet the max_bins constraint, MBA employs an IV-loss minimization strat-
egy:
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AIVi,j = I‘/'L + Ivj - Ivmerged(iaj)

The pair with minimum A7V is merged to preserve maximum predictive information.

Computational Complexity:

e Time: O(k? - m) where k = bins, m = iterations
* Space: O(k?) for IV loss cache
* Cache hit rate typically > 75% for k > 10

Key Features:

* Guaranteed monotonicity: Strict enforcement with adaptive thresholds
* Bayesian regularization: Robust to sparse bins and class imbalance

¢ Intelligent merging: Preserves maximum information during reduction

Adaptive thresholds: Context-aware violation detection

* Consistency verification: Final integrity checks

Value

A list containing the binning results with the following components:

id Integer vector of bin identifiers (1-indexed)

bin Character vector of bin labels (merged category names)

woe Numeric vector of Weight of Evidence values per bin

iv Numeric vector of Information Value contribution per bin
count Integer vector of total observations per bin

count_pos Integer vector of positive cases (target=1) per bin
count_neg Integer vector of negative cases (target=0) per bin
total_iv Numeric total Information Value of the binning solution
converged Logical indicating algorithm convergence

iterations Integer count of optimization iterations performed
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See Also

ob_categorical_jedi for joint entropy-driven optimization, ob_categorical_dp for dynamic
programming approach, ob_categorical_cm for ChiMerge-based binning

Examples

# Example 1: Basic monotonic binning with guaranteed WoE ordering
set.seed(42)
n_obs <- 1500

# Simulate risk ratings with natural monotonic relationship
ratings <_ C(IIAAAII’ HAAIV’ IIAII, VIBBBII’ IlBBIl, IIBII’ "CCC“)
default_probs <- c(0.01, 0.02, 9.05, 0.10, 0.20, 0.35, 0.50)

cat_feature <- sample(ratings, n_obs,
replace = TRUE,
prob = c(0.05, 0.10, 0.20, 0.25, 0.20, 0.15, 0.05)
)
bin_target <- sapply(cat_feature, function(x) {
rbinom(1, 1, default_probs[which(ratings == x)])
B

# Apply MBA algorithm
result_mba <- ob_categorical_mba(
cat_feature,
bin_target,
min_bins = 3,
max_bins = 5

)

# Display results with guaranteed monotonic WoE
print(data.frame(

Bin = result_mba$bin,

WoE = round(result_mba$woe, 3),

IV = round(result_mba$iv, 4),

Count = result_mba$count,

EventRate = round(result_mba$count_pos / result_mba$count, 3)

)

cat("\nMonotonicity check (WoE differences):\n")

woe_diffs <- diff(result_mba$woe)

cat(” Differences:"”, paste(round(woe_diffs, 4), collapse = ", "), "\n")
cat(” All positive (increasing):", all(woe_diffs >= -1e-1@), "\n")
cat(” Total IV:", round(result_mba$total_iv, 4), "\n")

cat(” Converged:", result_mba$converged, "\n")

# Example 2: Comparison with non-monotonic methods
set.seed(123)
n_obs_comp <- 2000

sectors <- c("Tech”, "Health"”, "Finance”, "Manufacturing”, "Retail")
cat_feature_comp <- sample(sectors, n_obs_comp, replace = TRUE)
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bin_target_comp <- rbinom(n_obs_comp, 1, 0.15)

# MBA (strictly monotonic)
result_mba_comp <- ob_categorical_mba(
cat_feature_comp, bin_target_comp,

min_bins = 3, max_bins = 4

)

# Standard binning (may not be monotonic)

result_std_comp <- ob_categorical_cm(
cat_feature_comp, bin_target_comp,
min_bins = 3, max_bins = 4

cat(”"\nMonotonicity comparison:\n")
cat(
" MBA WoE differences:",

paste(round(diff(result_mba_comp$woe), 4), collapse = ", "), "\n"
)
cat(” MBA monotonic:"”, all(diff(result_mba_comp$woe) >= -1e-10), "\n")
cat(

" Std WoE differences:”,

paste(round(diff(result_std_comp$woe), 4), collapse = ", "), "\n"

)
cat(” Std monotonic:”, all(diff(result_std_comp$woe) >= -1e-10), "\n")

# Example 3: Bayesian smoothing with sparse data
set.seed(789)
n_obs_sparse <- 400

# Small sample with rare categories
categories <- c(”A”, "B", "C", "D", "E", "F")
cat_probs <- c(0.30, 0.25, 0.20, 0.15, 0.07, 0.03)

cat_feature_sparse <- sample(categories, n_obs_sparse,
replace = TRUE,
prob = cat_probs

)

bin_target_sparse <- rbinom(n_obs_sparse, 1, 0.08) # 8% event rate

result_mba_sparse <- ob_categorical_mba(
cat_feature_sparse,
bin_target_sparse,
min_bins = 2,

max_bins = 4,

bin_cutoff = 0.02
)
cat("\nBayesian smoothing (sparse data):\n")
cat(" Sample size:", n_obs_sparse, "\n")
cat(” Events:"”, sum(bin_target_sparse), "\n")

cat("” Final bins:"”, length(result_mba_sparse$bin), "\n\n")
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# Show how smoothing prevents extreme WoE values
for (i in seg_along(result_mba_sparse$bin)) {
cat(sprintf(
" Bin %d: events=%d/%d, WoE=%.3f (smoothed)\n",
1,
result_mba_sparse$count_pos[i],
result_mba_sparse$count[i],
result_mba_sparse$woe[i]
D)
}

# Example 4: High cardinality with pre-binning
set.seed(456)
n_obs_hc <- 3000

# Simulate ZIP codes (high cardinality)
zips <- paste@("ZIP_", sprintf("%04d", 1:50))

cat_feature_hc <- sample(zips, n_obs_hc, replace = TRUE)
bin_target_hc <- rbinom(n_obs_hc, 1, 0.12)

result_mba_hc <- ob_categorical_mba(
cat_feature_hc,
bin_target_hc,
min_bins = 4,
max_bins = 6,
max_n_prebins = 20,
bin_cutoff = 0.01

)

cat("\nHigh cardinality performance:\n")

cat(" Original categories:"”, length(unique(cat_feature_hc)), "\n")
cat(” Final bins:"”, length(result_mba_hc$bin), "\n")

cat(

n

Largest merged bin contains:”,
max (sapply(strsplit(result_mba_hc$bin, "%;%"), length)), "categories\n”
)

# Verify monotonicity in high-cardinality case
woe_monotonic <- all(diff(result_mba_hc$woe) >= -1e-10)
cat(” WoE monotonic:", woe_monotonic, "\n")

# Example 5: Convergence behavior
set.seed(321)
n_obs_conv <- 1000

business_sizes <- c("Micro”, "Small”, "Medium”, "Large", "Enterprise”)
cat_feature_conv <- sample(business_sizes, n_obs_conv, replace = TRUE)
bin_target_conv <- rbinom(n_obs_conv, 1, 0.18)

# Test different convergence thresholds
thresholds <- c(1e-3, 1e-6, 1e-9)
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for (thresh in thresholds) {
result_conv <- ob_categorical_mba(

cat_feature_conv,
bin_target_conv,
min_bins = 2,
max_bins = 4,
convergence_threshold = thresh,
max_iterations = 50

cat(sprintf("\nThreshold %.0e:\n", thresh))

cat(” Final bins:"”, length(result_conv$bin), "\n")
cat(” Total IV:", round(result_conv$total_iv, 4), "\n")
cat(" Converged:", result_conv$converged, "\n")

cat(" Iterations:”, result_conv$iterations, "\n")

# Check monotonicity preservation
monotonic <- all(diff(result_conv$woe) >= -1e-10)
cat(” Monotonic:"”, monotonic, "\n")

# Example 6: Missing value handling
set.seed(555)

cat_feature_na <- cat_feature

na_indices <- sample(n_obs, 75) # 5% missing
cat_feature_nal[na_indices] <- NA

result_mba_na <- ob_categorical_mba(
cat_feature_na,
bin_target,
min_bins = 3,
max_bins = 5

# Locate NA bin
na_bin_idx <- grep(”"NA", result_mba_na$bin)
if (length(na_bin_idx) > @) {
cat("\nMissing value treatment:\n")
cat(”" NA bin:", result_mba_na$bin[na_bin_idx], "\n")
cat(” NA count:"”, result_mba_na$count[na_bin_idx], "\n")
cat(
" NA event rate:",
round(result_mba_na$count_pos[na_bin_idx] /
result_mba_na$count[na_bin_idx], 3), "\n"
)
cat(” NA WoE:", round(result_mba_na$woe[na_bin_idx], 3), "\n")
cat(
" Monotonicity preserved:"”,
all(diff(result_mba_na$woe) >= -1e-10), "\n"
)
3
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ob_categorical_milp Optimal Binning for Categorical Variables using Heuristic Algorithm

Description

This function performs optimal binning for categorical variables using a heuristic merging approach
to maximize Information Value (IV) while maintaining monotonic Weight of Evidence (WoE). De-
spite its name containing "MILP", it does NOT use Mixed Integer Linear Programming but rather a
greedy optimization algorithm.

Usage

ob_categorical_milp(

feature,
target,
min_bins =
max_bins =
bin_cutoff

max_n_prebins
bin_separator

3L,
5L,

0.05,
= 20L,
= H%;%”’

convergence_threshold = 1e-06,
max_iterations = 1000L

Arguments

feature

target

min_bins

max_bins

bin_cutoff

max_n_prebins

bin_separator

A character vector or factor representing the categorical predictor variable. Miss-
ing values (NA) will be converted to the string "NA" and treated as a separate
category.

An integer vector containing binary outcome values (0 or 1). Must be the same
length as feature. Cannot contain missing values.

Integer. Minimum number of bins to create. Must be at least 2. Default is 3.

Integer. Maximum number of bins to create. Must be greater than or equal to
min_bins. Defaultis 5.

Numeric. Minimum relative frequency threshold for individual categories. Cat-
egories with frequency below this proportion will be merged with others. Value
must be between 0 and 1. Default is 0.05 (5%).

Integer. Maximum number of initial bins before optimization. Used to control
computational complexity when dealing with high-cardinality categorical vari-
ables. Default is 20.

Character string used to separate category names when multiple categories are
merged into a single bin. Default is "%;%".

convergence_threshold

Numeric. Threshold for determining algorithm convergence based on changes
in total Information Value. Must be positive. Default is 1e-6.
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max_iterations Integer. Maximum number of iterations for the optimization process. Must be
positive. Default is 1000.

Details
The algorithm follows these steps:

1. Pre-binning: Each unique category becomes an initial bin

2. Rare category handling: Categories below bin_cutoff frequency are merged with similar
ones

3. Bin reduction: Greedily merge bins to satisfy min_bins and max_bins constraints
4. Monotonicity enforcement: Ensures WoE is either consistently increasing or decreasing across
bins
5. Optimization: Iteratively improves Information Value
Key features include:

* Bayesian smoothing to stabilize WoE estimates for sparse categories
* Automatic handling of missing values (converted to "NA" category)
* Monotonicity constraint enforcement

* Configurable minimum and maximum bin counts

* Rare category pooling based on relative frequency thresholds

pY
WoFE; =1n | =
(0)
p;
(0)

where pgl) and p, ’ are the proportions of positive and negative cases in bin ¢, respectively, adjusted
using Bayesian smoothing.

Mathematical definitions:

v =3 " = p{") x WoE,
i=1

Value
A list containing the results of the optimal binning procedure:

id Integer vector of bin identifiers (1 to n_bins)

bin Character vector of bin labels, which are combinations of original categories separated by
bin_separator

woe Numeric vector of Weight of Evidence values for each bin

iv Numeric vector of Information Values for each bin

count Integer vector of total observations in each bin

count_pos Integer vector of positive outcomes in each bin

count_neg Integer vector of negative outcomes in each bin

total_iv Numeric scalar. Total Information Value across all bins

converged Logical. Whether the algorithm converged within the specified tolerance
iterations Integer. Number of iterations performed
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Note
 Target variable must contain both 0 and 1 values.
* Empty strings in the feature vector are not allowed and will cause an error.
* For datasets with very few observations in either class (<5), warnings will be issued as results
may be unstable.
* The algorithm uses a greedy heuristic approach, not true MILP optimization. For exact solu-
tions, external solvers like Gurobi or CPLEX would be required.
Examples
# Generate sample data
set.seed(123)
n <- 1000
feature <- sample(letters[1:8], n, replace = TRUE)
target <- rbinom(n, 1, prob = ifelse(feature %in% c("a", "b"), 0.7, 0.3))
# Perform optimal binning
result <- ob_categorical_milp(feature, target)
print(resultfc("bin”, "woe", "iv", "count”)])
# With custom parameters
result2 <- ob_categorical_milp(
feature = feature,
target = target,
min_bins = 2,
max_bins = 4,
bin_cutoff = 0.03
)
# Handling missing values
feature_with_na <- feature
feature_with_nal[sample(length(feature_with_na), 50)] <- NA
result3 <- ob_categorical_milp(feature_with_na, target)
ob_categorical_mob Optimal Binning for Categorical Variables using Monotonic Optimal
Binning (MOB)
Description

This function performs optimal binning for categorical variables using the Monotonic Optimal Bin-
ning (MOB) algorithm. It creates bins that maintain monotonic Weight of Evidence (WoE) trends

while maximizing Information Value.
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Usage
ob_categorical_mob(
feature,
target,
min_bins = 3L,

max_bins = 5L,

bin_cutoff = 0.05,
max_n_prebins = 20L,
bin_separator = "%;%",
convergence_threshold = 1e-06,
max_iterations = 1000L

)
Arguments

feature A character vector or factor representing the categorical predictor variable. Miss-
ing values (NA) will be converted to the string "NA" and treated as a separate
category.

target An integer vector containing binary outcome values (0 or 1). Must be the same
length as feature. Cannot contain missing values.

min_bins Integer. Minimum number of bins to create. Must be at least 1. Default is 3.

max_bins Integer. Maximum number of bins to create. Must be greater than or equal to
min_bins. Defaultis 5.

bin_cutoff Numeric. Minimum relative frequency threshold for individual categories. Cat-

egories with frequency below this proportion will be merged with others. Value
must be between 0 and 1. Default is 0.05 (5%).

max_n_prebins Integer. Maximum number of initial bins before optimization. Used to control
computational complexity when dealing with high-cardinality categorical vari-
ables. Default is 20.

bin_separator Character string used to separate category names when multiple categories are
merged into a single bin. Default is "%;%".

convergence_threshold
Numeric. Threshold for determining algorithm convergence based on changes
in total Information Value. Must be positive. Default is 1e-6.

max_iterations Integer. Maximum number of iterations for the optimization process. Must be
positive. Default is 1000.

Details

The MOB algorithm follows these steps:

1. Initial sorting: Categories are ordered by their individual WoE values

2. Rare category handling: Categories below bin_cutoff frequency are merged with similar
ones

3. Pre-binning limitation: Reduces initial bins to max_n_prebins using similarity-based merging
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4. Monotonicity enforcement: Ensures WoE is either consistently increasing or decreasing across
bins
5. Bin count optimization: Adjusts to meet min_bins/max_bins constraints

Key features include:

* Automatic sorting of categories by WoE for initial structure

* Bayesian smoothing to stabilize WoE estimates for sparse categories
* Guaranteed monotonic WoE trend across final bins

* Configurable minimum and maximum bin counts

* Similarity-based merging for optimal bin combinations

p”
WoE; =1n | =
(0)
p;
(1) (0)

where p; ’ and p, ’ are the proportions of positive and negative cases in bin 4, respectively, adjusted
using Bayesian smoothing.

Mathematical definitions:

1V = Z(pl(l) - pgo)) x WokE;
i=1

Value
A list containing the results of the optimal binning procedure:

id Numeric vector of bin identifiers (1 to n_bins)

bin Character vector of bin labels, which are combinations of original categories separated by
bin_separator

woe Numeric vector of Weight of Evidence values for each bin

iv Numeric vector of Information Values for each bin

count Integer vector of total observations in each bin

count_pos Integer vector of positive outcomes in each bin

count_neg Integer vector of negative outcomes in each bin

total_iv Numeric scalar. Total Information Value across all bins

converged Logical. Whether the algorithm converged within the specified tolerance

iterations Integer. Number of iterations performed

Note

 Target variable must contain both 0 and 1 values.
* Empty strings in the feature vector are not allowed and will cause an error.

» For datasets with very few observations in either class (<5), warnings will be issued as results
may be unstable.

* The algorithm guarantees monotonic WoE across bins.

* When the number of unique categories is less than max_bins, each category will form its own
bin.
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Examples

# Generate sample data

set.seed(123)

n <- 1000

feature <- sample(letters[1:8], n, replace = TRUE)

target <- rbinom(n, 1, prob = ifelse(feature %in% c("a", "b"), 0.7, 0.3))

# Perform optimal binning
result <- ob_categorical_mob(feature, target)
print(result[c("bin", "woe", "iv", "count")])

# With custom parameters
result2 <- ob_categorical_mob(
feature = feature,
target = target,
min_bins = 2,
max_bins = 4,
bin_cutoff =
)

0.03

# Handling missing values

feature_with_na <- feature
feature_with_na[sample(length(feature_with_na), 50)] <- NA
result3 <- ob_categorical_mob(feature_with_na, target)
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ob_categorical_sab Optimal Binning for Categorical Variables using Simulated Annealing

Description

This function performs optimal binning for categorical variables using a Simulated Annealing (SA)
optimization algorithm. It maximizes Information Value (IV) while maintaining monotonic Weight

of Evidence (WoE) trends.

Usage

ob_categorical_sab(
feature,
target,
min_bins = 3L,
max_bins = 5L,
bin_cutoff = 0.05,
max_n_prebins = 20L,
bin_separator = "%;%",
initial_temperature = 1,
cooling_rate = 0.995,
max_iterations = 1000L,
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convergence_threshold = 1e-06,
adaptive_cooling = TRUE

)

Arguments

feature

target

min_bins

max_bins

bin_cutoff

max_n_prebins

bin_separator

A character vector or factor representing the categorical predictor variable. Miss-
ing values (NA) will be converted to the string "NA" and treated as a separate
category.

An integer vector containing binary outcome values (0 or 1). Must be the same
length as feature. Cannot contain missing values.
Integer. Minimum number of bins to create. Must be at least 2. Default is 3.

Integer. Maximum number of bins to create. Must be greater than or equal to
min_bins. Defaultis 5.

Numeric. Minimum relative frequency threshold for individual bins. Bins with
frequency below this proportion will be penalized. Value must be between 0 and
1. Default is 0.05 (5%).

Integer. Maximum number of initial categories before optimization (not directly
used in current implementation). Must be greater than or equal to max_bins.
Default is 20.

Character string used to separate category names when multiple categories are
merged into a single bin. Default is "%;%".

initial_temperature

cooling_rate

max_iterations

Numeric. Starting temperature for the simulated annealing algorithm. Higher
values allow more exploration. Must be positive. Default is 1.0.

Numeric. Rate at which temperature decreases during optimization. Value must
be between 0 and 1. Lower values lead to faster cooling. Default is 0.995.

Integer. Maximum number of iterations for the optimization process. Must be
positive. Default is 1000.

convergence_threshold

Numeric. Threshold for determining algorithm convergence based on changes
in Information Value. Must be positive. Default is 1e-6.

adaptive_cooling

Details

Logical. Whether to use adaptive cooling that modifies the cooling rate based
on search progress. Default is TRUE.

The SAB (Simulated Annealing Binning) algorithm follows these steps:

1. Initialization: Categories are initially assigned to bins using a k-means-like strategy based on

event rates

2. Optimization: Simulated annealing explores different bin assignments to maximize IV

3. Neighborhood generation: Multiple strategies are employed to generate neighboring solutions
(swaps, reassignments, event-rate based moves)
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4. Acceptance criteria: New solutions are accepted based on the Metropolis criterion with adap-
tive temperature control

5. Monotonicity enforcement: Final solutions are adjusted to ensure monotonic WoE trends
Key features include:

* Global optimization approach using simulated annealing

* Adaptive cooling schedule to balance exploration and exploitation

* Multiple neighborhood generation strategies for better search

* Bayesian smoothing to stabilize WoE estimates for sparse categories
* Guaranteed monotonic WoE trend across final bins

* Configurable optimization parameters for fine-tuning

pY
WoE; =In | =
(0)
b;
(0)

where pgl) and p, ’ are the proportions of positive and negative cases in bin %, respectively, adjusted
using Bayesian smoothing.

Mathematical definitions:

v =" — pi”) x WoE;
i=1

The acceptance probability in simulated annealing is:

IVnew - Ich'M'ent
T

P(accept) = exp (
where 7' is the current temperature.

Value
A list containing the results of the optimal binning procedure:

id Numeric vector of bin identifiers (1 to n_bins)

bin Character vector of bin labels, which are combinations of original categories separated by
bin_separator

woe Numeric vector of Weight of Evidence values for each bin

iv Numeric vector of Information Values for each bin

count Integer vector of total observations in each bin

count_pos Integer vector of positive outcomes in each bin

count_neg Integer vector of negative outcomes in each bin

total_iv Numeric scalar. Total Information Value across all bins

converged Logical. Whether the algorithm converged within the specified tolerance

iterations Integer. Number of iterations performed
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Note

 Target variable must contain both 0 and 1 values.
* Empty strings in the feature vector are not allowed and will cause an error.

* For datasets with very few observations in either class (<5), warnings will be issued as results
may be unstable.

* The algorithm uses global optimization which may require more computational time compared
to heuristic approaches.

* When the number of unique categories is less than max_bins, each category will form its own
bin.

Examples

# Generate sample data

set.seed(123)

n <- 1000

feature <- sample(letters[1:8], n, replace = TRUE)

target <- rbinom(n, 1, prob = ifelse(feature %in% c("a", "b"), 0.7, 0.3))

# Perform optimal binning
result <- ob_categorical_sab(feature, target)
print(result[c("bin", "woe", "iv", "count")])

# With custom parameters
result2 <- ob_categorical_sab(
feature = feature,
target = target,
min_bins = 2,
max_bins = 4,
initial_temperature = 2.0,
cooling_rate = 0.99

)

# Handling missing values

feature_with_na <- feature
feature_with_na[sample(length(feature_with_na), 50)] <- NA
result3 <- ob_categorical_sab(feature_with_na, target)

ob_categorical_sblp Optimal Binning for Categorical Variables using SBLP

Description

This function performs optimal binning for categorical variables using the Similarity-Based Logistic
Partitioning (SBLP) algorithm. This approach combines logistic properties (sorting categories by
event rate) with dynamic programming to find the optimal partition that maximizes Information
Value (IV).
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Usage

ob_categorical _
feature,
target,
min_bins = 3L
max_bins = 5L
bin_cutoff =
max_n_prebins
convergence_t
max_iteration
bin_separator
alpha = 0.5

Arguments

feature

target

min_bins

max_bins

bin_cutoff

max_n_prebins

convergence_thr

max_iterations

bin_separator

alpha

Details
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’

0.05,

= 20L,

hreshold = 1e-06,
s = 1000L,

= %%

A character vector or factor representing the categorical predictor variable. Miss-
ing values (NA) will be converted to the string "NA" and treated as a separate
category.

An integer vector containing binary outcome values (0 or 1). Must be the same
length as feature. Cannot contain missing values.

Integer. Minimum number of bins to create. Must be at least 2. Default is 3.

Integer. Maximum number of bins to create. Must be greater than or equal to
min_bins. Default is 5.

Numeric. Minimum relative frequency threshold for individual categories. Cat-
egories with frequency below this proportion will be merged with similar cate-
gories before the main optimization. Value must be between 0 and 1. Default is
0.05 (5%).

Integer. Maximum number of initial bins/groups allowed before the dynamic
programming optimization. If the number of unique categories exceeds this,
similar adjacent categories are pre-merged. Default is 20.

eshold

Numeric. Threshold for determining algorithm convergence based on changes
in total Information Value. Default is 1e-6.

Integer. Maximum number of iterations for the optimization process. Default is
1000.

Character string used to separate category names when multiple categories are
merged into a single bin. Default is "%;%".

Numeric. Laplace smoothing parameter added to counts to avoid division by
zero and stabilize WoE calculations for sparse data. Must be non-negative. De-
fault is 0.5.

The SBLP algorithm follows these steps:
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1. Preprocessing: Handling of missing values and calculation of initial statistics.

2. Rare Category Consolidation: Categories with frequency below bin_cutoff are merged
with statistically similar categories based on their target rates.

3. Sorting: Unique categories (or merged groups) are sorted by their empirical event rate (prob-
ability of target=1).

4. Dynamic Programming: An optimal partitioning algorithm (similar to Jenks Natural Breaks
but optimizing IV) is applied to the sorted sequence to determine the cutpoints that maximize
the total IV.

5. Refinement: Post-processing ensures constraints like monotonicity and minimum bin size are
met.
A key feature of this implementation is the use of Laplace Smoothing (controlled by the alpha
parameter) to prevent infinite WoE values and stabilize estimates for categories with small counts.
Mathematical definitions with smoothing:
The smoothed event rate p; for a bin is calculated as:

Npos + Q
Niotal + 200

The Weight of Evidence (WoE) is computed using smoothed proportions:

o
WoE; =n | =

p;

(0)

1
i i

where p( ) and p; ’ are the smoothed distributions of positive and negative classes across bins.

Value

A list containing the results of the optimal binning procedure:

id Numeric vector of bin identifiers (1 to n_bins)

bin Character vector of bin labels, which are combinations of original categories separated by
bin_separator

woe Numeric vector of Weight of Evidence values for each bin

iv Numeric vector of Information Values for each bin

count Integer vector of total observations in each bin

count_pos Integer vector of positive outcomes in each bin
count_neg Integer vector of negative outcomes in each bin

rate Numeric vector of the observed event rate in each bin
total_iv Numeric scalar. Total Information Value across all bins
converged Logical. Whether the algorithm converged

iterations Integer. Number of iterations performed
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Note

* Target variable must contain both 0 and 1 values.

* Unlike heuristic methods, this algorithm uses Dynamic Programming which guarantees an
optimal partition given the sorted order of categories.

* Monotonicity is generally enforced by the sorting step, but strictly checked and corrected in
the final output.

Examples

# Generate sample data

set.seed(123)

n <- 1000

feature <- sample(letters[1:8], n, replace = TRUE)

# Create a relationship where 'a' and 'b' have high probability

target <- rbinom(n, 1, prob = ifelse(feature %in% c("a", "b"), 0.8, 0.2))

# Perform optimal binning
result <- ob_categorical_sblp(feature, target)
print(result[c("bin", "woe", "iv", "count")])

# Using a higher smoothing parameter (alpha)
result_smooth <- ob_categorical_sblp(
feature = feature,
target = target,
alpha = 1.0
)

# Handling missing values

feature_with_na <- feature
feature_with_na[sample(length(feature_with_na), 50)] <- NA
result_na <- ob_categorical_sblp(feature_with_na, target)

ob_categorical_sketch Optimal Binning for Categorical Variables using Sketch-based Algo-
rithm

Description

This function performs optimal binning for categorical variables using a Sketch-based algorithm de-
signed for large-scale data processing. It employs probabilistic data structures (Count-Min Sketch)
to efficiently estimate category frequencies and event rates, enabling near real-time binning on mas-
sive datasets.

Usage

ob_categorical_sketch(
feature,
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target,

min_bins = 3L
max_bins = 5L
bin_cutoff =
max_n_prebins
bin_separator

ob_categorical_sketch

’

’

.05,

= 20L,
- u%;%n,

convergence_threshold = 1e-06,
max_iterations = 1000L,
sketch_width = 2000L,

sketch_depth

Arguments

feature

target

min_bins

max_bins

bin_cutoff

max_n_prebins

bin_separator

5L

A character vector or factor representing the categorical predictor variable. Miss-
ing values (NA) will be converted to the string "N/A" and treated as a separate
category.

An integer vector containing binary outcome values (0 or 1). Must be the same
length as feature. Cannot contain missing values.
Integer. Minimum number of bins to create. Must be at least 2. Default is 3.

Integer. Maximum number of bins to create. Must be greater than or equal to
min_bins. Default is 5.

Numeric. Minimum relative frequency threshold for categories to be consid-
ered "heavy hitters". Categories below this proportion will be grouped together.
Value must be between 0 and 1. Default is 0.05 (5%).

Integer. Maximum number of initial bins created during pre-binning phase.
Controls early-stage complexity. Default is 20.

Character string used to separate category names when multiple categories are
merged into a single bin. Default is "%;%".

convergence_threshold

max_iterations

sketch_width

sketch_depth

Details

Numeric. Threshold for determining algorithm convergence based on changes
in total Information Value. Default is le-6.

Integer. Maximum number of iterations for the optimization process. Default is
1000.

Integer. Width of the Count-Min Sketch (number of counters per hash function).
Larger values reduce estimation error but increase memory usage. Must be >=
100. Default is 2000.

Integer. Depth of the Count-Min Sketch (number of hash functions). Larger
values reduce collision probability but increase computational overhead. Must
be >= 3. Default is 5.

The Sketch-based algorithm follows these steps:

1. Frequency Estimation: Uses Count-Min Sketch to approximate the frequency of each cate-
gory in a single data pass.
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2. Heavy Hitter Detection: Identifies frequently occurring categories (above a threshold defined
by bin_cutoff) using sketch estimates.

3. Pre-binning: Creates initial bins from detected heavy categories, grouping rare categories
separately.

4. Optimization: Applies iterative merging based on statistical divergence measures to optimize
Information Value (IV) while respecting bin count constraints (min_bins, max_bins).

5. Monotonicity Enforcement: Ensures the final binning has monotonic Weight of Evidence
(WoE).
Key advantages of this approach:

* Memory Efficiency: Uses sub-linear space complexity, independent of dataset size.
* Speed: Single-pass algorithm with constant-time updates.
* Scalability: Suitable for streaming data or datasets too large to fit in memory.

* Approximation: Trades perfect accuracy for significant gains in speed and memory usage.

Mathematical concepts:

The Count-Min Sketch uses multiple hash functions to map items to counters:
CMS[i[hi(z)]+=1 Vie{l,...,d}

where d is the sketch depth and w is the sketch width.

Frequency estimates are obtained by taking the minimum across all counters:

f(x) = min CMS[i] [hi ()]
Statistical divergence between bins is measured using Jensen-Shannon divergence:
1
JSD(P||Q) = 5 [KL(P||M) + KL(Q||M)]

where M = 1(P + Q) and K L is the Kullback-Leibler divergence.
Laplace smoothing is applied to WoE and IV calculations:

count + o

Psmoothed = m

Value
A list containing the results of the optimal binning procedure:

id Numeric vector of bin identifiers (1 to n_bins)

bin Character vector of bin labels, which are combinations of original categories separated by
bin_separator

woe Numeric vector of Weight of Evidence values for each bin
iv Numeric vector of Information Values for each bin

count Integer vector of total observations in each bin
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count_pos Integer vector of positive outcomes in each bin
count_neg Integer vector of negative outcomes in each bin
event_rate Numeric vector of the observed event rate in each bin
total_iv Numeric scalar. Total Information Value across all bins
converged Logical. Whether the algorithm converged

iterations Integer. Number of iterations performed

Note

* Target variable must contain both 0 and 1 values.

* Due to the probabilistic nature of sketches, results may vary slightly between runs. For deter-
ministic results, consider setting fixed random seeds in the underlying C++ code.

» Accuracy of frequency estimates depends on sketch_width and sketch_depth. Increase
these parameters for higher precision at the cost of memory/computation.

* This algorithm is particularly beneficial when dealing with high-cardinality categorical fea-
tures or streaming data scenarios.

* For small to medium datasets, deterministic algorithms like SBLP or MOB may provide more
accurate results.

References

Cormode, G., & Muthukrishnan, S. (2005). An improved data stream summary: the count-min
sketch and its applications. Journal of Algorithms, 55(1), 58-75.

Lin, J., & Keogh, E., Wei, L., & Lonardi, S. (2007). Experiencing SAX: a novel symbolic repre-
sentation of time series. Data Mining and Knowledge Discovery, 15(2), 107-144.

Examples

# Generate sample data

set.seed(123)

n <- 10000

feature <- sample(letters, n, replace = TRUE, prob = c(rep(0.04, 13), rep(0.02, 13)))
# Create a relationship where early letters have higher probability

target_probs <- ifelse(as.numeric(factor(feature)) <= 10, 0.7, 0.3)

target <- rbinom(n, 1, prob = target_probs)

# Perform sketch-based optimal binning
result <- ob_categorical_sketch(feature, target)
print(result[c("bin", "woe", "iv", "count")])

# With custom sketch parameters for higher accuracy
result_high_acc <- ob_categorical_sketch(
feature = feature,
target = target,
min_bins = 3,
max_bins = 7,
sketch_width
sketch_depth

4000,
7
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)

# Handling missing values
feature_with_na <- feature
feature_with_nal[sample(length(feature_with_na), 200)] <- NA
result_na <- ob_categorical_sketch(feature_with_na, target)

ob_categorical_swb Optimal Binning for Categorical Variables using Sliding Window Bin-
ning (SWB)

Description

This function performs optimal binning for categorical variables using the Sliding Window Binning
(SWB) algorithm. This approach combines initial grouping based on frequency thresholds with iter-
ative optimization to achieve monotonic Weight of Evidence (WoE) while maximizing Information
Value (IV).

Usage
ob_categorical_swb(
feature,
target,
min_bins = 3L,

max_bins = 5L,

bin_cutoff = 0.05,
max_n_prebins = 20L,
bin_separator = "%;%",
convergence_threshold = 1e-06,
max_iterations = 1000L

)
Arguments

feature A character vector or factor representing the categorical predictor variable. Miss-
ing values (NA) will be converted to the string "NA" and treated as a separate
category.

target An integer vector containing binary outcome values (0 or 1). Must be the same
length as feature. Cannot contain missing values.

min_bins Integer. Minimum number of bins to create. Must be at least 1. Default is 3.

max_bins Integer. Maximum number of bins to create. Must be greater than or equal to
min_bins. Default is 5.

bin_cutoff Numeric. Minimum relative frequency threshold for individual categories. Cat-

egories with frequency below this proportion will be grouped together into a
single "rare" bin. Value must be between 0 and 1. Default is 0.05 (5%).
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max_n_prebins Integer. Maximum number of initial bins created after the frequency-based
grouping step. Used to control early-stage complexity. Default is 20.

bin_separator Character string used to separate category names when multiple categories are
merged into a single bin. Default is "%;%".

convergence_threshold
Numeric. Threshold for determining algorithm convergence based on changes
in total Information Value between iterations. Default is 1e-6.

max_iterations Integer. Maximum number of iterations for the optimization process. Default is
1000.

Details
The SWB algorithm follows these steps:

1. Initialization: Categories are initially grouped based on frequency thresholds (bin_cutoff),
separating frequent categories from rare ones.

2. Preprocessing: Initial bins are sorted by their WoE values to establish a baseline ordering.

3. Sliding Window Optimization: An iterative process evaluates adjacent bin pairs and merges
those that contribute least to the overall Information Value or violate monotonicity constraints.

4. Constraint Enforcement: The final binning respects the specified min_bins and max_bins
limits while maintaining WoE monotonicity.

Key features of this implementation:

* Frequency-based Pre-grouping: Automatically identifies and groups rare categories to re-
duce dimensionality.

* Statistical Similarity Measures: Utilizes Jensen-Shannon divergence to determine optimal
merge candidates.

* Monotonicity Preservation: Ensures final bins exhibit consistent WoE trends (either increas-
ing or decreasing).

» Laplace Smoothing: Employs additive smoothing to prevent numerical instabilities in WoE/IV
calculations.
Mathematical concepts:
Weight of Evidence (WoE) with Laplace smoothing:

(ppos + a)/(Npos + 2a) )
(Preg + @)/ (Nneg + 20)

WoE =In <

Information Value (IV):

Ppos +a Preg +«
v = _ X WoE
<Npos 120 Npeg + 2a> ©

where pp,s and pye, are bin-level counts, N,,, and N,., are dataset-level totals, and « is the
smoothing parameter (default 0.5).

Jensen-Shannon Divergence between two bins:
1
JSD(P||Q) = 5 [KL(P||M) + KL(Q||M)]

where M = %(P + Q) and K L represents Kullback-Leibler divergence.
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Value
A list containing the results of the optimal binning procedure:

id Numeric vector of bin identifiers (1 to n_bins)

bin Character vector of bin labels, which are combinations of original categories separated by
bin_separator

woe Numeric vector of Weight of Evidence values for each bin

iv Numeric vector of Information Values for each bin

count Integer vector of total observations in each bin

count_pos Integer vector of positive outcomes in each bin

count_neg Integer vector of negative outcomes in each bin

event_rate Numeric vector of the observed event rate in each bin

total_iv Numeric scalar. Total Information Value across all bins

converged Logical. Whether the algorithm converged within specified tolerances

iterations Integer. Number of iterations performed

Note

* Target variable must contain both 0 and 1 values.

* The algorithm prioritizes monotonicity over strict adherence to bin count limits when conflicts
arise.

* For datasets with very few unique categories (< 3), each category forms its own bin without
optimization.

» Rare category grouping helps stabilize WoE estimates for infrequent values.

Examples

# Generate sample data with varying category frequencies

set.seed(456)

n <- 5000

# Create categories with power-law frequency distribution

categories <- c(
rep("A", 1500), rep("B", 1000), rep("C", 800),
rep(”"D", 500), rep("E", 300), rep("F", 200),
sample(letters[7:26], 700, replace = TRUE)

)

feature <- sample(categories, n, replace = TRUE)

# Create target with dependency on top categories

target_probs <- ifelse(feature %in% c("A", "B"), 0.7,
ifelse(feature %in% c("C", "D"), 0.5, 0.3)

)

target <- rbinom(n, 1, prob = target_probs)

# Perform sliding window binning
result <- ob_categorical_swb(feature, target)
print(result[c("bin", "

n n

woe”, "iv", "count")1)



106 ob_categorical_udt

# With stricter bin limits
result_strict <- ob_categorical_swb(
feature = feature,
target = target,
min_bins = 4,
max_bins = 6

)

# Handling missing values

feature_with_na <- feature
feature_with_nal[sample(length(feature_with_na), 100)] <- NA
result_na <- ob_categorical_swb(feature_with_na, target)

ob_categorical_udt Optimal Binning for Categorical Variables using a User-Defined Tech-
nique (UDT)

Description

This function performs optimal binning for categorical variables using a User-Defined Technique
(UDT) that combines frequency-based grouping with statistical similarity measures to create mean-
ingful bins for predictive modeling.

Usage
ob_categorical_udt(
feature,
target,
min_bins = 3L,

max_bins = 5L,

bin_cutoff = 0.05,
max_n_prebins = 20L,
bin_separator = "%;%",
convergence_threshold = 1e-06,
max_iterations = 1000L

)
Arguments
feature A character vector or factor representing the categorical predictor variable. Miss-
ing values (NA) will be converted to the string "NA" and treated as a separate
category.
target An integer vector containing binary outcome values (0 or 1). Must be the same

length as feature. Cannot contain missing values.

min_bins Integer. Minimum number of bins to create. Must be at least 1. Default is 3.
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max_bins Integer. Maximum number of bins to create. Must be greater than or equal to
min_bins. Default is 5.

bin_cutoff Numeric. Minimum relative frequency threshold for individual categories. Cat-
egories with frequency below this proportion will be merged into a collective
"rare" bin before optimization. Value must be between 0 and 1. Default is 0.05
(5%).

max_n_prebins Integer. Upper limit on initial bins after frequency filtering. Controls computa-
tional complexity in early stages. Default is 20.

bin_separator Character string used to separate category names when multiple categories are
combined into a single bin. Default is "%;%".
convergence_threshold

Numeric. Threshold for determining algorithm convergence based on relative
changes in total Information Value. Default is le-6.

max_iterations Integer. Maximum number of iterations permitted for the optimization routine.
Default is 1000.

Details
The UDT algorithm follows these steps:

1. Initialization: Each unique category is initially placed in its own bin.

2. Frequency Filtering: Categories below the bin_cutoff frequency threshold are grouped into
a single "rare" bin.

3. Iterative Optimization: Bins are progressively merged based on statistical similarity (mea-
sured by Jensen-Shannon divergence) until the desired number of bins (max_bins) is achieved.

4. Monotonicity Enforcement: Final bins are sorted by Weight of Evidence to ensure consistent
trends.
Key characteristics of this implementation:
* Flexible Framework: Designed as a customizable foundation for categorical binning ap-
proaches.
* Statistical Rigor: Uses information-theoretic measures to guide bin combination decisions.

* Robust Estimation: Implements Laplace smoothing to ensure stable WoE/IV calculations
even with sparse data.

« Efficiency Focus: Employs targeted merging strategies to minimize computational overhead.

Mathematical foundations:

Laplace-smoothed probability estimates:

count + «

Psmoothed = m

Weight of Evidence calculation:

WoE = In (ppos,smoothed )

Pneg,smoothed
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Information Value computation:
IV = (ppos,smooth,ed - pneg,smoothed) x WoE

Jensen-Shannon divergence between bins:
1
JSD(P||Q) = 5 [KL(P||M) + KL(Q||M)]
where M = (P + Q) and K L denotes Kullback-Leibler divergence.

Value
A list containing the results of the optimal binning procedure:

id Numeric vector of bin identifiers (1 to n_bins)

bin Character vector of bin labels, which are combinations of original categories separated by
bin_separator

woe Numeric vector of Weight of Evidence values for each bin

iv Numeric vector of Information Values for each bin

count Integer vector of total observations in each bin

count_pos Integer vector of positive outcomes in each bin
count_neg Integer vector of negative outcomes in each bin
event_rate Numeric vector of the observed event rate in each bin
total_iv Numeric scalar. Total Information Value across all bins
converged Logical. Whether the algorithm converged

iterations Integer. Number of iterations executed

Note

 Target variable must contain both 0 and 1 values.

* For datasets with 1 or 2 unique categories, no optimization occurs beyond basic WoE/[V
calculation.

* The algorithm does not perform bin splitting; it only merges existing bins to respect max_bins.

* Rare category pooling improves stability of WoE estimates for infrequent values.

Examples

# Generate sample data with skewed category distribution

set.seed(789)

n <- 3000

# Power-law distributed categories

categories <- c(
rep("X1", 1200), rep("X2", 800), rep("X3", 400),
sample(LETTERS[4:20], 600, replace = TRUE)

)

feature <- sample(categories, n, replace = TRUE)
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# Target probabilities based on category importance

probs <- ifelse(grepl("X", feature), 0.7,
ifelse(grepl("[A-C]", feature), 0.5, 0.3)

)

target <- rbinom(n, 1, prob = probs)

# Perform user-defined technique binning
result <- ob_categorical_udt(feature, target)
print(result[c("bin", "woe", "iv", "count")])

# Adjust parameters for finer control
result_custom <- ob_categorical_udt(
feature = feature,
target = target,
min_bins = 2,
max_bins = 7,
bin_cutoff =
)

0.03

# Handling missing values

feature_with_na <- feature
feature_with_na[sample(length(feature_with_na), 150)] <- NA
result_na <- ob_categorical_udt(feature_with_na, target)

ob_cutpoints_cat Binning Categorical Variables using Custom Cutpoints

Description

This function applies user-defined binning to a categorical variable by grouping specified categories
into bins and calculating Weight of Evidence (WoE) and Information Value (IV) for each bin.

Usage

ob_cutpoints_cat(feature, target, cutpoints)

Arguments
feature A character vector or factor representing the categorical predictor variable.
target An integer vector containing binary outcome values (0 or 1). Must be the same
length as feature.
cutpoints A character vector where each element defines a bin by concatenating the origi-

nal category names with "+" as separator.
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Details

The function takes a character vector defining how categories should be grouped. Each element
in the cutpoints vector defines one bin by listing the original categories that should be merged,
separated by "+" signs.

For example, if you want to create two bins from categories "A", "B", "C", "D":

* Bin 1: "A+B"
* Bin 2: "C+D"

Value
A list containing:

woefeature Numeric vector of WoE values corresponding to each observation in the input feature
woebin Data frame with one row per bin containing:

* bin: The bin definition (original categories joined by "+")

* count: Total number of observations in the bin

* count_pos: Number of positive outcomes (target=1) in the bin

* count_neg: Number of negative outcomes (target=0) in the bin

* woe: Weight of Evidence for the bin

¢ iv: Information Value contribution of the bin

Note
 Target variable must contain only O and 1 values.
» Every unique category in feature must be included in exactly one bin definition in cutpoints.
 Categories not mentioned in cutpoints will be assigned to bin 0 (which may lead to unex-
pected results).
Examples

# Sample data
feature <- c("A", "B", "C", "D", "A", "B", "C"., "D")
target <- c(1, o, 1, 0, 1, 1, 0, @)

# Define custom bins: (A,B) and (C,D)
cutpoints <- c("A+B", "C+D")

# Apply binning
result <- ob_cutpoints_cat(feature, target, cutpoints)

# View bin statistics
print(result$woebin)

# View WoE-transformed feature
print(result$woefeature)
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ob_cutpoints_num Binning Numerical Variables using Custom Cutpoints

Description

This function applies user-defined binning to a numerical variable by using specified cutpoints to
create intervals and calculates Weight of Evidence (WoE) and Information Value (IV) for each
interval bin.

Usage

ob_cutpoints_num(feature, target, cutpoints)

Arguments
feature A numeric vector representing the continuous predictor variable.
target An integer vector containing binary outcome values (0 or 1). Must be the same
length as feature.
cutpoints A numeric vector of cutpoints that define bin boundaries. These will be auto-
matically sorted in ascending order.
Details

The function takes a numeric vector of cutpoints that define the boundaries between bins. For n
cutpoints, n+1 bins are created:

* Bin 1: (—o0, cutpointy)

* Bin 2: [cutpointy, cutpoints)

* Bin n+1: [cutpoint,,, +00)

Value
A list containing:

woefeature Numeric vector of WoE values corresponding to each observation in the input feature
woebin Data frame with one row per bin containing:

* bin: The bin interval notation (e.g., "[10.00;20.00)")

e count: Total number of observations in the bin

* count_pos: Number of positive outcomes (target=1) in the bin

e count_neg: Number of negative outcomes (target=0) in the bin

* woe: Weight of Evidence for the bin

¢ iv: Information Value contribution of the bin
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Note
* Target variable must contain only 0 and 1 values.
* Cutpoints are sorted automatically in ascending order.
« Interval notation uses "[" for inclusive and ")" for exclusive bounds.
* Infinite values in feature are handled appropriately.
Examples

# Sample data
feature <- c(5, 15, 25, 35, 45, 55, 65, 75)
target <- c(o, o, 1, 1, 1, 1, 0, 0)

# Define custom cutpoints
cutpoints <- c(30, 60)

# Apply binning
result <- ob_cutpoints_num(feature, target, cutpoints)

# View bin statistics
print(result$woebin)

# View WoE-transformed feature
print(result$woefeature)

ob_gains_table Compute Comprehensive Gains Table from Binning Results

Description

This function serves as a high-performance engine (implemented in C++) to calculate a compre-
hensive set of credit scoring and classification metrics based on pre-aggregated binning results. It
takes a list of bin counts and computes metrics such as Information Value (IV), Weight of Evidence
(WoE), Kolmogorov-Smirnov (KS), Gini, Lift, and various entropy-based divergence measures.

Usage

ob_gains_table(binning_result)

Arguments

binning_result A named list ordata.frame containing the following atomic vectors (all must
have the same length):
id Numeric vector of bin identifiers. Determines the sort order for cumulative
metrics (e.g., KS, Recall).
bin Character vector of bin labels/intervals.
count Numeric vector of total observations per bin (O;).
count_pos Numeric vector of positive (event) counts per bin (E;).
count_neg Numeric vector of negative (non-event) counts per bin (IV E;).
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Details

Mathematical Definitions:

Let E; and N FE; be the number of events and non-events in bin ¢, and Fyotq1, N Eiotqr be the
population totals.
Weight of Evidence (WoE) & Information Value (IV):

Ei/Etotal )
WoE;,=In| —————
(NEi /NEtotal

E; NE;
1V, = — X WoFE;
(Etotal NEtotal )

Kolmogorov-Smirnov (KS):

L o ‘. NE,
KS;, = ] J
7‘2::1 Etotul 32::1 NEtotal

Lift:
E;/(E;+ NE;)

Etotal/(Etotal + NEtotal)

Kullback-Leibler Divergence (Bernoulli): Measures the divergence between the bin’s event rate
p; and the global event rate pgjopqi:

KLipiln( bi )+(1pi)ln(1pi>

Pglobal 1- Pglobal

Lift; =

Value
A data. frame with the following columns (metrics calculated per bin):

Identifiers id, bin

Counts & Rates count, pos, neg, pos_rate (m;), neg_rate (1 — 7;), count_perc (O;/O¢otar)
Distributions (Shares) pos_perc (D1 (7): Share of Bad), neg_perc (Dy(i): Share of Good)

Cumulative Statistics cum_pos, cum_neg, cum_pos_perc (CDFy), cum_neg_perc (CDFy), cum_count_perc
Credit Scoring Metrics woe, iv, total_iv, ks, 1ift, odds_pos, odds_ratio

Advanced Metrics gini_contribution, log_likelihood, kl_divergence, js_divergence

Classification Metrics precision, recall, f1_score

Examples

# Manually constructed binning result
bin_res <- list(
id = 1:3,
bin = c("Low", "Medium", "High"),
count = c(100, 200, 50),
count_pos = c(5, 30, 20),
count_neg = c(95, 170, 30)
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)

gt <- ob_gains_table(bin_res)
prlnt(gt[, C(”bin”, "Woe”, “iV“, uksu)])

ob_gains_table_feature
Compute Gains Table for a Binned Feature Vector

Description

Calculates a full gains table by aggregating a raw binned dataframe against a binary target. Unlike
ob_gains_table which expects pre-aggregated counts, this function takes observation-level data,
aggregates it by the specified group variable (bin, WoE, or ID), and then computes all statistical
metrics.

Usage

ob_gains_table_feature(binned_df, target, group_var = "bin")

Arguments

binned_df A data. frame resulting from a binning transformation (e.g., via obwoe_apply),
containing at least the following columns:
feature Original feature values (optional, for reference).
bin Character vector of bin labels.
woe Numeric vector of Weight of Evidence values.
idbin Numeric vector of bin IDs (required for correct sorting).
target A numeric vector of binary outcomes (0 for non-event, 1 for event). Must have
the same length as binned_df. Missing values are not allowed.
group_var Character string specifying the aggregation key. Options:
* "bin": Group by bin label (default).
* "woe": Group by WoE value.
e "idbin": Group by bin ID.

Details

Aggregation and Sorting: The function first aggregates the binary target by the specified
group_var. Crucially, it uses the idbin column to sort the resulting groups. This ensures that
cumulative metrics (like KS and Gini) are calculated based on the logical order of the bins (e.g.,
low score to high score), not alphabetical order.

Advanced Metrics: In addition to standard credit scoring metrics, this function computes:
* Jensen-Shannon Divergence: A symmetrized and smoothed version of KL divergence, use-
ful for measuring stability between the bin distribution and the population distribution.
* F1-Score, Precision, Recall: Treating each bin as a potential classification threshold.
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Value

A data.frame containing the same extensive set of metrics as ob_gains_table, aggregated by
group_var and sorted by idbin.

References

Siddiqi, N. (2006). Credit Risk Scorecards: Developing and Implementing Intelligent Credit Scor-
ing. Wiley.

Kullback, S., & Leibler, R. A. (1951). On Information and Sufficiency. The Annals of Mathematical
Statistics.

Examples

# Mock data representing a binned feature
df_binned <- data.frame(
feature = c(10, 20, 30, 10, 20, 50),
bin = c("Low”, "Mid", "High"”, "Low", "Mid", "High"),
woe = c(-0.5, 0.2, 1.1, -0.5, 0.2, 1.1),
idbin = c(1, 2, 3, 1, 2, 3)
)
target <- c(@, o, 1, 1, 0, 1)

# Calculate gains table grouped by bin ID
gt <- ob_gains_table_feature(df_binned, target, group_var = "idbin")

# Inspect key metrics
print(gtl, c("id", "count”, "pos_rate”, "lift", "js_divergence")])

ob_numerical_bb Optimal Binning for Numerical Variables using Branch and Bound
Algorithm

Description

Performs supervised discretization of continuous numerical variables using a Branch and Bound-
style approach. This algorithm optimally creates bins based on the relationship with a binary target
variable, maximizing Information Value (IV) while optionally enforcing monotonicity in Weight of
Evidence (WoE).

Usage
ob_numerical_bb(
feature,
target,
min_bins = 3,
max_bins = 5,
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bin_cutoff = 0.05,

max_n_prebins =
is_monotonic

20,

= TRUE,

convergence_threshold = 1e-06,
max_iterations = 1000

Arguments

feature

target

min_bins

max_bins

bin_cutoff

max_n_prebins

is_monotonic

A numeric vector representing the continuous predictor variable to be binned.
NA values are handled by exclusion during the pre-binning phase.

An integer vector of binary outcomes (0/1) corresponding to each observation
in feature. Must have the same length as feature.

Integer. The minimum number of bins to produce. Must be > 2. Defaults to 3.

Integer. The maximum number of bins to produce. Must be > min_bins. De-
faults to 5.

Numeric. The minimum fraction of total observations required for a bin to be
considered valid. Bins with frequency < bin_cutoff will be merged with neigh-
bors. Value must be in (0, 1). Defaults to 0.05.

Integer. The number of initial quantiles to generate during the pre-binning phase.
Higher values provide more granular starting points but increase computation
time. Must be > min_bins. Defaults to 20.

Logical. If TRUE, the algorithm enforces a strict monotonic relationship (increas-
ing or decreasing) between the bin indices and their WoE values. This makes
the variable more interpretable for linear models. Defaults to TRUE.

convergence_threshold

Numeric. The threshold for the change in total IV to determine convergence
during the iterative merging process. Defaults to 1e-6.

max_iterations Integer. Safety limit for the maximum number of merging iterations. Defaults

Details

to 1000.

The algorithm proceeds in several distinct phases to ensure stability and optimality:

1. Pre-binning: The numerical feature is initially discretized into max_n_prebins using quan-
tiles. This handles outliers and provides a granular starting point.

2. Rare Bin Management: Bins containing fewer observations than the threshold defined by
bin_cutoff are iteratively merged with their nearest neighbors to ensure statistical robustness.

3. Monotonicity Enforcement (Optional): If is_monotonic = TRUE, the algorithm checks if
the WoE trend is strictly increasing or decreasing. If not, it simulates merges in both directions
to find the path that preserves the maximum possible Information Value while satisfying the
monotonicity constraint.

4. Optimization Phase: The algorithm iteratively merges adjacent bins that have the lowest
contribution to the total Information Value (IV). This process continues until the number of
bins is reduced to max_bins or the change in IV falls below convergence_threshold.
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Information Value (IV) Interpretation:

* < (0.02: Not predictive

0.02 to 0.1: Weak predictive power

0.1 to 0.3: Medium predictive power

0.3 to 0.5: Strong predictive power
* > 0.5: Suspiciously high (check for leakage)

Value
A list containing the binning results:

* id: Integer vector of bin identifiers (1 to k).

* bin: Character vector of bin labels in interval notation (e.g., " (0.5;1.21").
* woe: Numeric vector of Weight of Evidence for each bin.

* iv: Numeric vector of Information Value contribution per bin.

* count: Integer vector of total observations per bin.

* count_pos: Integer vector of positive cases (target=1) per bin.

* count_neg: Integer vector of negative cases (target=0) per bin.

* cutpoints: Numeric vector of upper boundaries for the bins (excluding Inf).
» converged: Logical indicating if the algorithm converged properly.

* iterations: Integer count of iterations performed.

e total_iv: The total Information Value of the binned variable.

Examples

# Example: Binning a variable with a sigmoid relationship to target
set.seed(123)

n <- 1000

# Generate feature

feature <- rnorm(n)

# Generate target based on logistic probability
prob <= 1 / (1 + exp(-2 x feature))
target <- rbinom(n, 1, prob)

# Perform Optimal Binning

result <- ob_numerical_bb(feature, target,
min_bins = 3,
max_bins = 5,
is_monotonic = TRUE

)

# Check results
print(data.frame(
Bin = result$bin,
Count = result$count,
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WoE = round(result$woe, 4),
IV = round(result$iv, 4)
))

cat("Total IV:", result$total_iv, "\n")

ob_numerical_cm Optimal Binning for Numerical Variables using Enhanced ChiMerge
Algorithm

Description

Performs supervised discretization of continuous numerical variables using the ChiMerge algorithm
(Kerber, 1992) or the Chi2 algorithm (Liu & Setiono, 1995). This function merges adjacent bins
based on Chi-square statistics to maximize the discrimination of the binary target variable while
ensuring monotonicity and statistical robustness.

Usage

ob_numerical_cm(
feature,
target,
min_bins
max_bins = 5,
bin_cutoff = 0.05,
max_n_prebins = 20,
convergence_threshold = 1e-06,
max_iterations = 1000,
init_method = "equal_frequency”,
chi_merge_threshold = 0.05,
use_chi2_algorithm = FALSE

I o w

’

)
Arguments

feature A numeric vector representing the continuous predictor variable. Missing values
(NA) are not supported and should be handled before binning.

target An integer vector of binary outcomes (0/1) corresponding to each observation
in feature. Must have the same length as feature.

min_bins Integer. The minimum number of bins to produce. Must be > 2. Defaults to 3.

max_bins Integer. The maximum number of bins to produce. Must be > min_bins. De-
faults to 5.

bin_cutoff Numeric. The minimum fraction of total observations required for a bin to be

considered valid. Bins with frequency < bin_cutoff will be merged. Value
must be in (0, 1). Defaults to 0.05.
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max_n_prebins Integer. The number of initial bins created during the pre-binning phase be-
fore the merging process begins. Higher values provide more granular starting
points. Must be > max_bins. Defaults to 20.

convergence_threshold
Numeric. The threshold for the change in total IV to determine convergence
during the iterative merging process. Defaults to 1e-6.

max_iterations Integer. Safety limit for the maximum number of merging iterations. Defaults
to 1000.

init_method Character string specifying the initialization method. Options are "equal_frequency”
(quantile-based) or "equal_width". Defaults to "equal_frequency”.

chi_merge_threshold
Numeric. The significance level («) for the Chi-square test. Pairs of bins with a
p-value > chi_merge_threshold are candidates for merging. Defaults to 0.05.

use_chi2_algorithm
Logical. If TRUE, uses the Chi2 algorithm variant which performs multi-phase
merging with decreasing significance levels (0.5, 0.1, 0.05, 0.01, ...). This is
often more robust for noisy data. Defaults to FALSE.

Details

The function implements two major discretization strategies:

1. Standard ChiMerge:

¢ Initializes bins using init_method.
» Iteratively merges adjacent bins with the lowest y? statistic.

* Merging continues until all adjacent pairs have a p-value less than chi_merge_threshold
or the number of bins reaches max_bins.

2. Chi2 Algorithm:

¢ Activated when use_chi2_algorithm = TRUE.

* Performs multiple passes with decreasing significance levels (0.5 — 0.001) to automati-
cally select the optimal significance threshold.

» Checks for inconsistency rates in the data during the process.

Both methods include post-processing steps to enforce:

* Minimum Bin Size: Merging rare bins smaller than bin_cutoff.
* Monotonicity: Ensuring WoE trend is strictly increasing or decreasing to improve model
interpretability.
Value
A list containing the binning results:
* id: Integer vector of bin identifiers (1 to k).

¢ bin: Character vector of bin labels in interval notation.

* woe: Numeric vector of Weight of Evidence for each bin.
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 iv: Numeric vector of Information Value contribution per bin.

* count: Integer vector of total observations per bin.

* count_pos: Integer vector of positive cases (target=1).

* count_neg: Integer vector of negative cases (target=0).

e cutpoints: Numeric vector of upper boundaries (excluding Inf).

* converged: Logical indicating if the algorithm converged.

* iterations: Integer count of iterations performed.

* total_iv: The total Information Value of the binned variable.

e algorithm: String identifying the algorithm used ("ChiMerge" or "Chi2").

* monotonic: Logical indicating if the final WoE trend is monotonic.

References

Kerber, R. (1992). ChiMerge: Discretization of numeric attributes. Proceedings of the Tenth Na-
tional Conference on Artificial Intelligence, 123-128.

Liu, H., & Setiono, R. (1995). Chi2: Feature selection and discretization of numeric attributes.
Tools with Artificial Intelligence, 388-391.

Examples

# Example 1: Standard ChiMerge

set.seed(123)

feature <- rnorm(1000)

# Create a target with a relationship to the feature
target <- rbinom(1000, 1, plogis(2 * feature))

res_cm <- ob_numerical_cm(feature, target,
min_bins = 3,
max_bins = 6,
init_method = "equal_frequency”

)

print(res_cm$bin)
print(res_cm$iv)

# Example 2: Using the Chi2 Algorithm variant
res_chi2 <- ob_numerical_cm(feature, target,
min_bins = 3,
max_bins = 6,
use_chi2_algorithm = TRUE
)

cat("Total IV (ChiMerge):", res_cm$total_iv, "\n")
cat("Total IV (Chi2):", res_chi2$total_iv, "\n")
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Optimal Binning using Metric Divergence Measures (Zeng, 2013)

Description

Performs supervised discretization of continuous numerical variables using the theoretical frame-
work proposed by Zeng (2013). This method creates bins that maximize a specified divergence
measure (e.g., Kullback-Leibler, Hellinger) between the distributions of positive and negative cases,
effectively maximizing the Information Value (IV) or other discriminatory statistics.

Usage

ob_numerical_dmiv(

feature,
target,
min_bins =
max_bins =
bin_cutoff

I o w

0.05,

max_n_prebins = 20,

is_monotonic = TRUE,

convergence_threshold = 1e-06,

max_iterations = 1000,

bin_method = c("woel”, "woe"),

divergence_method = c("12", "he", "k1", "tr", "k1j", "sc", "js", "11", "1n")

Arguments

feature

target

min_bins

max_bins

bin_cutoff

max_n_prebins

is_monotonic

A numeric vector representing the continuous predictor variable. Missing values
(NA) are excluded during the pre-binning phase.

An integer vector of binary outcomes (0/1) corresponding to each observation
in feature. Must have the same length as feature.

Integer. The minimum number of bins to produce. Must be > 2. Defaults to 3.
Integer. The maximum number of bins to produce. Must be > min_bins. De-
faults to 5.

Numeric. The minimum fraction of total observations required for a bin to be

considered valid. Bins with frequency < bin_cutoff will be merged. Value
must be in (0, 1). Defaults to 0.05.

Integer. The number of initial quantiles to generate during the pre-binning phase.
Defaults to 20.

Logical. If TRUE, the algorithm enforces a strict monotonic relationship (in-
creasing or decreasing) between the bin indices and their WoE values. Defaults
to TRUE.

convergence_threshold

Numeric. The threshold for the change in total divergence to determine conver-
gence during the iterative merging process. Defaults to 1e-6.
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max_iterations Integer. Safety limit for the maximum number of merging iterations. Defaults
to 1000.
bin_method Character string specifying the formula for Weight of Evidence calculation:
* "woe": Standard definition In((p;/P)/(n;/N)).
* "woel": Zeng’s definition In(p; /n;) (direct log odds).
Defaults to "woe1".
divergence_method
Character string specifying the divergence measure to maximize. Available op-
tions:
e "iv": Information Value (conceptually similar to KL).
* "he": Hellinger Distance.
e "kl1": Kullback-Leibler Divergence.
e "tr": Triangular Discrimination.
e "k1j": Jeftrey’s Divergence (Symmetric KL).

n

e "sc": Symmetric Chi-Square Divergence.

e "js": Jensen-Shannon Divergence.

e "11": Manhattan Distance (L1 Norm).

e "12": Euclidean Distance (L2 Norm).

e "1n": Chebyshev Distance (L-infinity Norm).
Defaults to "12".

Details

This algorithm implements the "Metric Divergence Measures" framework. Unlike standard ChiMerge
which uses statistical significance, this method uses a branch-and-bound approach to minimize the
loss of a specific divergence metric when merging bins.

The Process:

1. Pre-binning: Generates granular bins based on quantiles.
2. Rare Merging: Merges bins smaller than bin_cutoff.

3. Monotonicity: If is_monotonic = TRUE, forces the WoE trend to be monotonic by merging
"violating" bins in the direction that maximizes the total divergence.

4. Optimization: Iteratively merges the pair of adjacent bins that results in the smallest loss of
total divergence, until max_bins is reached.

Value
A list containing the binning results:

* id: Integer vector of bin identifiers.

* bin: Character vector of bin labels in interval notation.

* woe: Numeric vector of Weight of Evidence for each bin.

» divergence: Numeric vector of the chosen divergence contribution per bin.

* count: Integer vector of total observations per bin.
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e count_pos: Integer vector of positive cases.

* count_neg: Integer vector of negative cases.

* cutpoints: Numeric vector of upper boundaries (excluding Inf).

* total_divergence: The sum of the divergence measure across all bins.
* bin_method: The WoE calculation method used.

* divergence_method: The divergence measure used.

References

Zeng, G. (2013). Metric Divergence Measures and Information Value in Credit Scoring. Journal of
the Operational Research Society, 64(5), 712-731.

Examples

# Example using the "he" (Hellinger) distance
set.seed(123)

feature <- rnorm(1000)

target <- rbinom(1000, 1, plogis(feature))

result <- ob_numerical_dmiv(feature, target,
min_bins = 3,
max_bins = 5,
divergence_method = "he",
bin_method = "woe"

)

print(result$bin)
print(result$divergence)
print(paste("Total Hellinger Distance:", round(result$total_divergence, 4)))

ob_numerical_dp Optimal Binning for Numerical Variables using Dynamic Program-
ming

Description

Performs supervised discretization of continuous numerical variables using a greedy heuristic ap-
proach that resembles Dynamic Programming. This method is particularly effective at strictly en-
forcing monotonic trends (ascending or descending) in the Weight of Evidence (WoE), which is
critical for the interpretability of logistic regression models in credit scoring.
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Usage

ob_numerical_dp

ob_numerical_dp(

feature,
target,
min_bins =
max_bins =
bin_cutoff

max_n_prebins = 20,
convergence_threshold = 1e-06,
max_iterations = 1000,

monotonic_trend = c("auto”, "ascending”, "descending”, "none")
)
Arguments

feature A numeric vector representing the continuous predictor variable. Missing val-
ues (NA) should be handled prior to binning, as they are not supported by this
algorithm.

target An integer vector of binary outcomes (0/1) corresponding to each observation
in feature. Must have the same length as feature.

min_bins Integer. The minimum number of bins to produce. Must be > 2. Defaults to 3.

max_bins Integer. The maximum number of bins to produce. Must be > min_bins. De-
faults to 5.

bin_cutoff Numeric. The minimum fraction of total observations required for a bin to be

max_n_prebins

considered valid. Bins with frequency < bin_cutoff will be merged. Value
must be in (0, 1). Defaults to 0.05.

Integer. The number of initial quantiles to generate during the pre-binning phase.
Defaults to 20.

convergence_threshold

Numeric. The threshold for the change in metrics to determine convergence
during the iterative merging process. Defaults to 1e-6.

max_iterations Integer. Safety limit for the maximum number of merging iterations. Defaults

monotonic_trend

to 1000.

Character string specifying the desired direction of the Weight of Evidence
(WoE) trend.

* "auto”: Automatically determines the most likely trend (ascending or de-
scending) based on the correlation between the feature and the target.

e "ascending": Forces the WoE to increase as the feature value increases.

* "descending”: Forces the WoE to decrease as the feature value increases.

* "none”: Does not enforce any monotonic constraint (allows peaks and val-
leys).

Defaults to "auto”.
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Details

Although named "DP" (Dynamic Programming) in some contexts, this implementation primarily
uses a greedy heuristic to optimize the Information Value (IV) while satisfying constraints.

Algorithm Steps:

This method is often preferred when strict business logic dictates a specific relationship direction
(e.g.,

Value

. Pre-binning: Generates initial granular bins based on quantiles.

. Trend Determination: If monotonic_trend = "auto”, calculates the Pearson correlation be-
tween the feature and target to decide if the WoE should increase or decrease.

. Monotonicity Enforcement: Iteratively merges adjacent bins that violate the determined or

requested trend.

. Constraint Satisfaction: Merges rare bins (below bin_cutoff) and ensures the number of

bins is within [min_bins, max_bins].

. Optimization: Greedily merges similar bins (based on WoE difference) to reduce complexity

while attempting to preserve information.

"higher income must imply lower risk").

A list containing the binning results:

See Also

id: Integer vector of bin identifiers.

bin: Character vector of bin labels in interval notation.

woe: Numeric vector of Weight of Evidence for each bin.

iv: Numeric vector of Information Value contribution per bin.
count: Integer vector of total observations per bin.

count_pos: Integer vector of positive cases.

count_neg: Integer vector of negative cases.

event_rate: Numeric vector of the target event rate in each bin.
cutpoints: Numeric vector of upper boundaries (excluding Inf).

total_iv: The total Information Value of the binned variable.

non

monotonic_trend: The actual trend enforced ("ascending", "descending", or "none").

execution_time_ms: Execution time in milliseconds.

ob_numerical_cm, ob_numerical_bb
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Examples

# Example: forcing a descending trend

set.seed(123)

feature <- runif (1000, 0, 100)

# Target has a complex relationship, but we want to force a linear view
target <- rbinom(1000, 1, 0.5 + 0.003 x feature) # slightly positive trend

# Force "descending” (even if data suggests ascending) to see enforcement
result <- ob_numerical_dp(feature, target,

min_bins = 3,

max_bins = 5,

monotonic_trend = "descending”

)

print(result$bin)
print(result$woe) # Should be strictly decreasing

ob_numerical_ewb Hybrid Optimal Binning using Equal-Width Initialization and 1V Op-
timization

Description

Performs supervised discretization of continuous numerical variables using a hybrid approach. The
algorithm initializes with an Equal-Width Binning (EWB) strategy to capture the scale of the vari-
able, followed by an iterative, supervised optimization phase that merges bins to maximize Infor-
mation Value (IV) and enforce monotonicity.

Usage

ob_numerical_ewb(
feature,
target,
min_bins = 3
max_bins = 5,
bin_cutoff =
max_n_prebins = 20,
is_monotonic = TRUE,
convergence_threshold = 1e-06,
max_iterations = 1000

Arguments

feature A numeric vector representing the continuous predictor variable. Missing values
(NA) are excluded during the pre-binning phase but should ideally be handled
prior to binning.
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target An integer vector of binary outcomes (0/1) corresponding to each observation
in feature. Must have the same length as feature.

min_bins Integer. The minimum number of bins to produce. Must be > 2. Defaults to 3.

max_bins Integer. The maximum number of bins to produce. Must be > min_bins. De-
faults to 5.

bin_cutoff Numeric. The minimum fraction of total observations required for a bin to be

considered valid. Bins with frequency < bin_cutoff are merged with their most
similar neighbor (based on event rate). Value must be in (0, 1). Defaults to 0.05.

max_n_prebins Integer. The number of initial equal-width intervals to generate during the pre-
binning phase. This parameter defines the initial granularity/search space. De-
faults to 20.

is_monotonic  Logical. If TRUE, the algorithm enforces a strict monotonic relationship (increas-
ing or decreasing) between the bin indices and their Weight of Evidence (WoE).
Defaults to TRUE.

convergence_threshold
Numeric. The threshold for determining convergence during the iterative merg-
ing process. Defaults to 1e-6.

max_iterations Integer. Safety limit for the maximum number of merging iterations. Defaults
to 1000.

Details

Unlike standard Equal-Width binning which is purely unsupervised, this function implements a
Hybrid Discretization Pipeline:

1. Phase 1: Unsupervised Initialization (Scale Preservation) The range of the feature [min(z), maz(x)]
is divided into max_n_prebins intervals of equal width w = (max(z) — min(x))/N. This
step preserves the cardinal magnitude of the data but is sensitive to outliers.

2. Phase 2: Statistical Stabilization Bins falling below the bin_cutoff threshold are merged.
Unlike naive approaches, this implementation merges rare bins with the neighbor that has
the most similar class distribution (event rate), minimizing the distortion of the predictive
relationship.

3. Phase 3: Monotonicity Enforcement If is_monotonic = TRUE, the algorithm checks for non-
monotonic trends in the Weight of Evidence (WoE). Violating adjacent bins are iteratively
merged to ensure a strictly increasing or decreasing relationship, which is a key requirement
for interpretable Logistic Regression scorecards.

4. Phase 4: 1V-Based Optimization If the number of bins exceeds max_bins, the algorithm
applies a hierarchical bottom-up merging strategy. It calculates the Information Value Loss for
every possible pair of adjacent bins:

ATV = (IV; + IVi41) — IVierged

The pair minimizing this loss is merged, ensuring that the final coarse classes retain the max-
imum possible predictive power of the original variable.

Technical Note on Outliers: Because the initialization is based on the range, extreme outliers
can compress the majority of the data into a single initial bin. If your data is highly skewed or
contains outliers, consider using ob_numerical_cm (Quantile/ChiMerge) or winsorizing the data
before using this function.
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Value
A list containing the binning results:

* id: Integer vector of bin identifiers.

* bin: Character vector of bin labels in interval notation.

* woe: Numeric vector of Weight of Evidence for each bin.

* iv: Numeric vector of Information Value contribution per bin.

* count: Integer vector of total observations per bin.

* count_pos: Integer vector of positive cases.

* count_neg: Integer vector of negative cases.

e cutpoints: Numeric vector of upper boundaries (excluding Inf).
* total_iv: The total Information Value of the binned variable.

» converged: Logical indicating if the algorithm converged.

References

Dougherty, J., Kohavi, R., & Sahami, M. (1995). Supervised and unsupervised discretization of
continuous features. Machine Learning Proceedings, 194-202.

Siddiqi, N. (2012). Credit Risk Scorecards: Developing and Implementing Intelligent Credit Scor-
ing. John Wiley & Sons.

Catlett, J. (1991). On changing continuous attributes into ordered discrete attributes. Proceedings
of the European Working Session on Learning on Machine Learning, 164-178.

See Also

ob_numerical_cm for Quantile/Chi-Square binning, ob_numerical_dp for Dynamic Programming
approaches.

Examples

# Example 1: Uniform distribution (Ideal for Equal-Width)
set.seed(123)

feature <- runif (1000, 0, 100)

target <- rbinom(1000, 1, plogis(0.05 x feature - 2))

res_ewb <- ob_numerical_ewb(feature, target, max_bins = 5)
print(res_ewb$bin)
print(paste(”"Total IV:"”, round(res_ewb$total_iv, 4)))

# Example 2: Effect of Outliers (The weakness of Equal-Width)
feature_outlier <- c(feature, 10000) # One extreme outlier
target_outlier <- c(target, 0)

# Note: The algorithm tries to recover, but the initial split is distorted
res_outlier <- ob_numerical_ewb(feature_outlier, target_outlier, max_bins = 5)
print(res_outlier$bin)
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ob_numerical_fast_mdlp

Optimal Binning using MDLP with Monotonicity Constraints

Description

Performs supervised discretization of continuous numerical variables using the Minimum Descrip-
tion Length Principle (MDLP) algorithm, enhanced with optional monotonicity constraints on the
Weight of Evidence (WoE). This method is particularly suitable for creating interpretable bins for
logistic regression models in domains like credit scoring.

Usage

ob_numerical_fast_mdlp(

feature,
target,
min_bins =
max_bins =
bin_cutoff

max_n_prebins

2L,
5L,

0.05,
= 1eoL,

convergence_threshold = 1e-06,
max_iterations = 1000L,
force_monotonicity = TRUE

Arguments

feature

target

min_bins

max_bins

bin_cutoff

max_n_prebins

A numeric vector representing the continuous predictor variable. Missing values
(NA) are excluded during the binning process.

An integer vector of binary outcomes (0/1) corresponding to each observation
in feature. Must have the same length as feature.

Integer. The minimum number of bins to produce. Must be > 2. Defaults to 2.

Integer. The maximum number of bins to produce. Must be > min_bins. De-
faults to 5.

Numeric. Currently unused in this implementation (reserved for future ver-
sions). Defaults to 0.05.

Integer. Currently unused in this implementation (reserved for future versions).
Defaults to 100.

convergence_threshold

Numeric. The threshold for determining convergence during the iterative mono-
tonicity enforcement process. Defaults to le-6.

max_iterations Integer. Safety limit for the maximum number of iterations in the monotonicity

enforcement phase. Defaults to 1000.
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force_monotonicity
Logical. If TRUE, the algorithm enforces a strict monotonic relationship (increas-
ing or decreasing) between the bin indices and their Weight of Evidence (WoE)
values. Defaults to TRUE.

Details

This function implements a sophisticated hybrid approach combining the classic MDLP algorithm
with modern monotonicity constraints.

Algorithm Pipeline:

1. Data Preparation: Removes NA values and sorts the data by feature value.
2. MDLP Discretization (Fayyad & Irani, 1993):

» Recursively evaluates all possible binary splits of the sorted data.

» For each potential split, calculates the Information Gain (IG).

* Applies the MDLP stopping criterion:

logo(N — 1)+ A
N

1G >

where N is the total number of samples and A = log,(3¥ — 2) — k - E(S) (for binary
classification, k = 2).

* Only accepts splits that significantly reduce entropy beyond what would be expected by
chance, balancing model fit with complexity.

3. Constraint Enforcement:

e Min/Max Bins: Adjusts the number of bins to meet [min_bins, max_bins] require-
ments through intelligent splitting or merging.

* Monotonicity (if enabled): Iteratively merges adjacent bins with the most similar WoE
values until a strictly increasing or decreasing trend is achieved across all bins.

Technical Notes:
* The algorithm uses Laplace smoothing (a« = 0.5) when calculating WoE to prevent log(0)
errors for bins with pure class distributions.
* When all feature values are identical, the algorithm creates artificial bins.

* The monotonicity enforcement phase is iterative and uses the convergence_threshold to
determine when changes in WoE become negligible.

Value
A list containing the binning results:

* id: Integer vector of bin identifiers.

* bin: Character vector of bin labels in interval notation.

* woe: Numeric vector of Weight of Evidence for each bin.

* iv: Numeric vector of Information Value contribution per bin.

* count: Integer vector of total observations per bin.
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e count_pos: Integer vector of positive cases.

» count_neg: Integer vector of negative cases.

* cutpoints: Numeric vector of upper boundaries (excluding Inf).

* converged: Logical indicating if the monotonicity enforcement converged.

* iterations: Integer count of iterations in monotonicity phase.

References

Fayyad, U. M., & Irani, K. B. (1993). Multi-interval discretization of continuous-valued attributes
for classification learning. Proceedings of the 13th International Joint Conference on Artificial
Intelligence, 1022-1029.

Kurgan, L. A., & Musilek, P. (2006). A survey of techniques. IEEE Transactions on Knowledge
and Data Engineering, 18(5), 673-689.

Garcia, S., Luengo, J., & Herrera, F. (2013). Data preprocessing in data mining. Springer Science
& Business Media.

See Also

ob_numerical_cm for ChiMerge-based approaches, ob_numerical_dp for dynamic programming
methods.

Examples

# Example: Standard usage with monotonicity

set.seed(123)

feature <- rnorm(1000)

target <- rbinom(1000, 1, plogis(2 * feature)) # Positive relationship

result <- ob_numerical_fast_mdlp(feature, target,
min_bins = 3,
max_bins = 6,
force_monotonicity = TRUE

)

print(result$bin)
print(result$woe) # Should show a monotonic trend

# Example: Disabling monotonicity for exploratory analysis
result_no_mono <- ob_numerical_fast_mdlp(feature, target,
min_bins = 3,
max_bins = 6,
force_monotonicity = FALSE

)

print(result_no_mono$woe) # May show non-monotonic patterns
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ob_numerical_fetb Optimal Binning using Fisher’s Exact Test

Description

Performs supervised discretization of continuous numerical variables using Fisher’s Exact Test.
This method iteratively merges adjacent bins that are statistically similar (highest p-value) while
strictly enforcing a monotonic Weight of Evidence (WoE) trend.

Usage

ob_numerical_fetb(
feature,
target,
min_bins = 3,
max_bins = 5,
max_n_prebins = 20,
convergence_threshold = 1e-06,
max_iterations = 1000

)
Arguments

feature A numeric vector representing the continuous predictor variable. Missing values
(NA) should be handled prior to binning.

target An integer vector of binary outcomes (0/1) corresponding to each observation
in feature. Must have the same length as feature.

min_bins Integer. The minimum number of bins to produce. Must be > 2. Defaults to 3.

max_bins Integer. The maximum number of bins to produce. Must be > min_bins. De-

faults to 5.

max_n_prebins Integer. The number of initial quantiles to generate during the pre-binning phase.
Defaults to 20.

convergence_threshold
Numeric. The threshold for the change in Information Value (IV) to determine
convergence during the iterative merging process. Defaults to 1e-6.

max_iterations Integer. Safety limit for the maximum number of merging iterations. Defaults
to 1000.

Details

The Fisher’s Exact Test Binning (FETB) algorithm provides a robust statistical alternative to
ChiMerge.

Key Differences from ChiMerge:
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* Exact Probability: Instead of relying on the Chi-Square asymptotic approximation (which
can be unreliable for small bin counts), FETB calculates the exact hypergeometric probability
of independence between the bin index and the target.

e Merge Criterion: In each step, the algorithm identifies the pair of adjacent bins with the
highest p-value (indicating they are the most statistically indistinguishable) and merges them.

* Monotonicity: The algorithm incorporates a check after every merge to ensure the WoE trend
remains monotonic, merging strictly violating bins immediately.

This method is particularly recommended when working with smaller datasets or highly imbalanced
target classes, where the assumptions of the Chi-Square test might be violated.

Value
A list containing the binning results:

* id: Integer vector of bin identifiers.

* bin: Character vector of bin labels in interval notation.

» woe: Numeric vector of Weight of Evidence for each bin.

* iv: Numeric vector of Information Value contribution per bin.

* count: Integer vector of total observations per bin.

* count_pos: Integer vector of positive cases.

» count_neg: Integer vector of negative cases.

e cutpoints: Numeric vector of upper boundaries (excluding Inf).
* converged: Logical indicating if the algorithm converged.

* iterations: Integer count of iterations performed.

See Also

ob_numerical_cm

Examples

# Example: Binning a small dataset where Fisher's Exact Test excels
set.seed(123)

feature <- rnorm(100)

target <- rbinom(100, 1, 0.2)

result <- ob_numerical_fetb(feature, target,
min_bins = 2,
max_bins = 4,
max_n_prebins = 10

)

print(result$bin)
print(result$woe)
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ob_numerical_ir Optimal Binning using Isotonic Regression (PAVA)

Description

Performs supervised discretization of continuous numerical variables using Isotonic Regression
(specifically the Pool Adjacent Violators Algorithm - PAVA). This method ensures a strictly mono-
tonic relationship between bin indices and the empirical event rate, making it ideal for applications
requiring shape constraints like credit scoring.

Usage

ob_numerical_ir(
feature,
target,
min_bins = 3,
max_bins = 5,
bin_cutoff = 0.05,
max_n_prebins = 20,
auto_monotonicity = TRUE,
convergence_threshold = 1e-06,
max_iterations = 1000

)
Arguments

feature A numeric vector representing the continuous predictor variable. Missing values
(NA) are excluded from the binning process.

target An integer vector of binary outcomes (0/1) corresponding to each observation
in feature. Must have the same length as feature.

min_bins Integer. The minimum number of bins to produce. Must be > 2. Defaults to 3.

max_bins Integer. The maximum number of bins to produce. Must be > min_bins. De-
faults to 5.

bin_cutoff Numeric. The minimum fraction of total observations required for a bin to be

considered valid. Bins with frequency < bin_cutoff will be merged with neigh-
bors. Value must be in (0, 1). Defaults to 0.05.

max_n_prebins Integer. The number of initial quantiles to generate during the pre-binning phase.
Defaults to 20.

auto_monotonicity
Logical. If TRUE, the algorithm automatically determines the optimal mono-
tonicity direction (increasing or decreasing) based on the Pearson correlation
between feature values and target. If FALSE, defaults to increasing monotonic-
ity. Defaults to TRUE.

convergence_threshold
Numeric. Reserved for future use. Currently not actively used by the PAVA
algorithm, which has guaranteed convergence. Defaults to 1e-6.
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max_iterations Integer. Safety limit for iterative merging operations during pre-processing steps

Details

(e.g., rare bin merging). Defaults to 1000.

This function implements a shape-constrained binning approach using Isotonic Regression. Un-
like heuristic merging strategies (ChiMerge, DP), this method finds the optimal monotonic fit in a
single pass.
Core Algorithm (PAVA): The Pool Adjacent Violators Algorithm (Best & Chakravarti, 1990) is
used to transform the empirical event rates of initial bins into a sequence that is either monotonically
increasing or decreasing. It works by scanning the sequence and merging ("pooling") any adjacent
pairs that violate the desired trend until a perfect fit is achieved. This guarantees an optimal solution
in O(n) time.

Process Flow:

1. Pre-binning: Creates initial bins using quantiles.

5.

Stabilization: Merges bins below bin_cutoff.

. Trend Detection: If auto_monotonicity = TRUE, calculates the correlation between feature

midpoints and bin event rates to determine if the relationship should be increasing or decreas-

ing.

Shape Enforcement: Applies PAVA to the sequence of bin event rates, producing a new set

of rates that conform exactly to the monotonic constraint.

Metric Calculation: Derives WoE and IV from the adjusted rates.

Advantages:

Global Optimality: PAVA finds the best fit under the monotonicity constraint.

* No Hyperparameters: Unlike ChiMerge’s p-value threshold, PAVA requires no significance

* Robustness: Less sensitive to arbitrary thresholds compared to greedy merging.

Value

level tuning for the core regression step.

A list containing the binning results:

id: Integer vector of bin identifiers.

bin: Character vector of bin labels in interval notation.

woe: Numeric vector of Weight of Evidence for each bin.

iv: Numeric vector of Information Value contribution per bin.
count: Integer vector of total observations per bin.

count_pos: Integer vector of positive cases.

count_neg: Integer vector of negative cases.

cutpoints: Numeric vector of upper boundaries (excluding Inf).

total_iv: The total Information Value of the binned variable.

monotone_increasing: Logical indicating if the final WoE trend is increasing.

converged: Logical indicating successful completion.
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References
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Best, M. J., & Chakravarti, N. (1990). Active set algorithms for isotonic regression; A unifying
framework. Mathematical Programming, 47(1-3), 425-439.

See Also

ob_numerical_dp for greedy dynamic programming approaches.

Examples

# Example: Forcing a monotonic WoE trend

set.seed(123)

feature <- rnorm(500)

# Create a slightly noisy but generally increasing relationship
prob <- plogis(@.5 * feature + rnorm(500, 0, 0.3))

target <- rbinom(500, 1, prob)

result <- ob_numerical_ir(feature, target,
min_bins = 4,
max_bins = 6,
auto_monotonicity = TRUE

)
print(result$bin)
print(round(result$woe, 3))
print(paste(”Monotonic Increasing:"”, result$monotone_increasing))
ob_numerical_jedi Optimal Binning using Joint Entropy-Driven Interval Discretization
(JEDI)
Description

Performs supervised discretization of continuous numerical variables using a holistic approach that
balances entropy reduction (information gain) with statistical stability. The JEDI algorithm com-
bines quantile-based initialization with an iterative optimization process that enforces monotonicity
and minimizes Information Value (IV) loss.

Usage
ob_numerical_jedi(
feature,
target,
min_bins = 3,
max_bins = 5,
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bin_cutoff = 0.05,
max_n_prebins = 20,
convergence_threshold = 1e-06,
max_iterations = 1000

)
Arguments

feature A numeric vector representing the continuous predictor variable. Missing values
(NA) should be handled prior to binning.

target An integer vector of binary outcomes (0/1) corresponding to each observation
in feature. Must have the same length as feature.

min_bins Integer. The minimum number of bins to produce. Must be > 2. Defaults to 3.

max_bins Integer. The maximum number of bins to produce. Must be > min_bins. De-
faults to 5.

bin_cutoff Numeric. The minimum fraction of total observations required for a bin to be

considered valid. Bins smaller than this threshold are merged. Value must be in
(0, 1). Defaults to 0.05.

max_n_prebins Integer. The number of initial quantiles to generate during the initialization
phase. Defaults to 20.

convergence_threshold
Numeric. The threshold for the change in total IV to determine convergence
during the iterative optimization. Defaults to 1e-6.

max_iterations Integer. Safety limit for the maximum number of iterations. Defaults to 1000.

Details

The JEDI algorithm is designed to be a robust "all-rounder" for credit scoring and risk modeling.
Its methodology proceeds in four distinct stages:

1. Initialization (Quantile Pre-binning): The feature space is divided into max_n_prebins
segments containing approximately equal numbers of observations. This ensures the algorithm
starts with a statistically balanced view of the data.

2. Stabilization (Rare Bin Merging): Adjacent bins with frequencies below bin_cutoff are
merged. The merge direction is chosen to minimize the distortion of the event rate (similar to
ChiMerge).

3. Monotonicity Enforcement: The algorithm heuristically determines the dominant trend (in-
creasing or decreasing) of the Weight of Evidence (WoE) and iteratively merges adjacent bins
that violate this trend. This step effectively reduces the conditional entropy of the binning
sequence with respect to the target.

4. IV Optimization: If the number of bins exceeds max_bins, the algorithm merges the pair
of adjacent bins that results in the smallest decrease in total Information Value. This greedy
approach ensures that the final discretization retains the maximum possible predictive power
given the constraints.

This joint approach (Entropy/IV + Stability constraints) makes JEDI particularly effective for datasets
with noise or non-monotonic initial distributions that require smoothing.
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Value

A list containing the binning results:

* id: Integer vector of bin identifiers.

ob_numerical_jedi_mwoe

¢ bin: Character vector of bin labels in interval notation.

* woe: Numeric vector of Weight of Evidence for each bin.

* iv: Numeric vector of Information Value contribution per bin.

* count: Integer vector of total observations per bin.

* count_pos: Integer vector of positive cases.

* count_neg: Integer vector of negative cases.

e cutpoints: Numeric vector of upper boundaries (excluding Inf).

* converged: Logical indicating if the algorithm converged.

e iterations: Integer count of iterations performed.

See Also

ob_numerical_cm, ob_numerical_ir

Examples

# Example: Binning a variable with a
set.seed(123)

feature <- rnorm(1000)

# Target probability has a quadratic
# JEDI will try to force a monotonic
target <- rbinom(1000, 1, plogis(0.5

result <- ob_numerical_jedi(feature,
min_bins = 3,
max_bins = 6,
max_n_prebins =

)

20

print(result$bin)

complex relationship

component (non-monotonic)
approximation that maximizes IV
* feature + 0.1 * feature”2))

target,

ob_numerical_jedi_mwoe

Optimal Binning for Multiclass Targets using JEDI M-WOE

Description

Performs supervised discretization of continuous numerical variables for multiclass target variables
(e.g., 0, 1, 2). It extends the Joint Entropy-Driven Interval (JEDI) discretization framework to cal-
culate and optimize the Multinomial Weight of Evidence (M-WOE) for each class simultaneously.
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Usage

ob_numerical_jedi_mwoe(
feature,
target,
min_bins = 3,
max_bins = 5,
bin_cutoff = 0.05,
max_n_prebins = 20,
convergence_threshold = 1e-06,
max_iterations = 1000

)
Arguments

feature A numeric vector representing the continuous predictor variable. Missing values
(NA) should be excluded prior to execution.

target An integer vector of multiclass outcomes (0, 1, ..., K-1) corresponding to each
observation in feature. Must have at least 2 distinct classes.

min_bins Integer. The minimum number of bins to produce. Must be > 2. Defaults to 3.

max_bins Integer. The maximum number of bins to produce. Must be > min_bins. De-
faults to 5.

bin_cutoff Numeric. The minimum fraction of total observations required for a bin to be

considered valid. Bins smaller than this threshold are merged. Defaults to 0.05.

max_n_prebins Integer. The number of initial quantiles to generate during the pre-binning phase.
Defaults to 20.

convergence_threshold
Numeric. The threshold for the change in total Multinomial IV to determine
convergence. Defaults to 1e-6.

max_iterations Integer. Safety limit for the maximum number of iterations. Defaults to 1000.

Details

Multinomial Weight of Evidence (M-WOE): For a target with K classes, the WoE for class k in
bin ¢ is defined using a "One-vs-Rest" approach:

W@&$:m(ﬂXemMY:M)

P(X € bini|Y # k)

Algorithm Workflow:

1. Multiclass Initialization: The algorithm starts with quantile-based bins and computes the
initial event rates for all K classes.

2. Joint Monotonicity: The algorithm attempts to enforce monotonicity for all classes. If bin
1 violates the trend for Class 1 OR Class 2, it may be merged. This ensures the variable is
predictive across the entire spectrum of outcomes.
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3. Global IV Optimization: When reducing the number of bins to max_bins, the algorithm
merges the pair of bins that minimizes the loss of the Sum of IVs across all classes:

K-1
Loss = Z ATV,

k=0
This method is ideal for use cases like:

* predicting loan status (Current, Late, Default)
* customer churn levels (Active, Dormant, Churned)

* ordinal survey responses.

Value
A list containing the binning results:

* id: Integer vector of bin identifiers.

* bin: Character vector of bin labels in interval notation.

* woe: A numeric matrix where each column represents the WoE for a specific class (One-vs-
Rest).

e iv: A numeric matrix where each column represents the IV contribution for a specific class.

* count: Integer vector of total observations per bin.

* class_counts: A matrix of observation counts per class per bin.

e cutpoints: Numeric vector of upper boundaries (excluding Inf).

* n_classes: The number of distinct target classes found.

See Also

ob_numerical_jedi for the binary version.

Examples

# Example: Multiclass target (0, 1, 2)
set.seed(123)
feature <- rnorm(1000)
# Class 0: low feature, Class 1: medium, Class 2: high
target <- cut(feature + rnorm(1000, @, 0.5),
breaks = c(-Inf, -0.5, 0.5, Inf),
labels = FALSE
) -1

result <- ob_numerical_jedi_mwoe(feature, target,
min_bins = 3,
max_bins = 5

)

# Check WoE for Class 2 (High values)
print(result$woel[, 3]) # Column 3 corresponds to Class 2
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ob_numerical_kmb

Optimal Binning using K-means Inspired Initialization (KMB)

Description

Performs supervised discretization of continuous numerical variables using a K-means inspired bin-
ning strategy. Initial bin boundaries are determined by placing centroids uniformly across the fea-
ture range and defining cuts at midpoints. The algorithm then optimizes these bins using statistical

constraints.

Usage

ob_numerical_kmb(

feature,
target,

min_bins
max_bins =
bin_cutoff

max_n_prebins = 20,
enforce_monotonic = TRUE,
convergence_threshold = 1e-06,
max_iterations = 1000

Arguments

feature

target

min_bins

max_bins

bin_cutoff

max_n_prebins

A numeric vector representing the continuous predictor variable. Missing values
(NA) should be handled prior to binning.

An integer vector of binary outcomes (0/1) corresponding to each observation
in feature. Must have the same length as feature.

Integer. The minimum number of bins to produce. Must be > 2. Defaults to 3.

Integer. The maximum number of bins to produce. Must be > min_bins. De-
faults to 5.

Numeric. The minimum fraction of total observations required for a bin to be
considered valid. Bins smaller than this threshold are merged. Value must be in
(0, 1). Defaults to 0.05.

Integer. The number of initial centroids/bins to generate during the initialization
phase. Defaults to 20.

enforce_monotonic

Logical. If TRUE, the algorithm enforces a monotonic relationship in the Weight
of Evidence (WoE) across bins. Defaults to TRUE.

convergence_threshold

Numeric. The threshold for determining convergence during the iterative opti-
mization process. Defaults to 1e-6.

max_iterations Integer. Safety limit for the maximum number of iterations. Defaults to 1000.
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Details

ob_numerical_kmb

The KMB algorithm offers a unique initialization strategy compared to standard binning methods:

1. Initialization (K-means Style): Instead of using quantiles, max_n_prebins centroids are
placed uniformly across the range [min(x), max(z)]. Bin boundaries are then defined as the
midpoints between adjacent centroids. This can lead to more evenly distributed initial bin

2.

widths in terms of the feature’s scale.

Optimization: The initialized bins undergo standard post-processing:

* Rare Bin Merging: Bins below bin_cutoff are merged with their most similar neighbor

(by event rate).

* Monotonicity: If enforce_monotonic = TRUE, adjacent bins violating the dominant WoE

trend are merged.

* Bin Count Adjustment: If the number of bins exceeds max_bins, the algorithm greedily
merges adjacent bins with the smallest absolute difference in Information Value.

This method can be advantageous when the underlying distribution of the feature is relatively uni-
form, as it avoids creating overly granular bins in dense regions from the start.

Value

A list containing the binning results:

See Also

id: Integer vector of bin identifiers.

bin: Character vector of bin labels in interval notation.

woe: Numeric vector of Weight of Evidence for each bin.

iv: Numeric vector of Information Value contribution per bin.
count: Integer vector of total observations per bin.
count_pos: Integer vector of positive cases.

count_neg: Integer vector of negative cases.

centroids: Numeric vector of bin centroids (mean feature value per bin).

cutpoints: Numeric vector of upper boundaries (excluding Inf).
total_iv: The total Information Value of the binned variable.

converged: Logical indicating if the algorithm converged.

ob_numerical_ewb, ob_numerical_cm

Examples

# Example: Comparing KMB with EWB on uniform data
set.seed(123)

feature <- runif (1000, 0, 100)

target <- rbinom(1000, 1, plogis(0.02 x feature))

result_kmb <- ob_numerical_kmb(feature, target, max_bins = 5)
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print(result_kmb$bin)
print(paste("KMB Total IV:"”, round(result_kmb$total_iv, 4)))

ob_numerical_ldb

Optimal Binning for Numerical Variables using Local Density Binning

Description

Implements supervised discretization via Local Density Binning (LDB), a method that leverages
kernel density estimation to identify natural transition regions in the feature space while optimizing
the Weight of Evidence (WoE) monotonicity and Information Value (IV) for binary classification

tasks.

Usage

ob_numerical_1ldb(

feature,
target,

min_bins
max_bins =
bin_cutoff

0.05,

max_n_prebins = 20,
enforce_monotonic = TRUE,
convergence_threshold = 1e-06,
max_iterations = 1000

Arguments

feature

target

min_bins

max_bins

bin_cutoff

max_n_prebins

Numeric vector of feature values to be binned. Missing values (NA) and infinite
values are automatically filtered out during preprocessing.

Integer vector of binary target values (must contain only O and 1). Must have
the same length as feature.

Minimum number of bins to generate (default: 3). Must be at least 2.

Maximum number of bins to generate (default: 5). Must be greater than or equal
tomin_bins.

Minimum fraction of total observations in each bin (default: 0.05). Bins with
frequency below this threshold are merged with adjacent bins. Must be in the
range [0, 1].

Maximum number of pre-bins before optimization (default: 20). Controls gran-
ularity of initial density-based discretization.

enforce_monotonic

Logical flag to enforce monotonicity in WoE values across bins (default: TRUE).
When enabled, bins violating monotonicity are iteratively merged until global
monotonicity is achieved.



144 ob_numerical Idb

convergence_threshold
Convergence threshold for iterative optimization (default: 1e-6). Currently used
for future extensions.

max_iterations Maximum number of iterations for merging operations (default: 1000). Prevents
infinite loops in edge cases.

Details

Algorithm Overview
The Local Density Binning (LDB) algorithm operates in four sequential phases:
Phase 1: Density-Based Pre-binning

The algorithm employs kernel density estimation (KDE) with a Gaussian kernel to identify the local
density structure of the feature:

. 1 - (x — a:l)z}
x) = exp | —————
fn=m o[-
where h is the bandwidth computed via Silverman’s rule of thumb:

h = 0.9 x min(6,IQR/1.34) x n~1/°

Bin boundaries are placed at local minima of f (z), which correspond to natural transition regions
where density is lowest (analogous to valleys in the density landscape). This strategy ensures bins
capture homogeneous subpopulations.

Phase 2: Weight of Evidence Computation

For each bin ¢, the WoE quantifies the log-ratio of positive to negative class distributions, adjusted
with Laplace smoothing (o = 0.5) to prevent division by zero:

DistGood;
WOE; =In | —————
© " ( DistBad; )
where:
DistGood n +o DistBad n to
1 = T, 1 = —
nt 4+ Ka n~ 4+ Ka

and K is the total number of bins. The Information Value for bin 7 is:

IV; = (DistGood; — DistBad;) x WoE;

Total IV aggregates discriminatory power: IV, = Zfil 1v,;.

Phase 3: Monotonicity Enforcement

When enforce_monotonic = TRUE, the algorithm ensures WoE values are monotonic with respect
to bin order. The direction (increasing/decreasing) is determined via Pearson correlation between
bin indices and WoE values. Bins violating monotonicity are iteratively merged using the merge
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strategy described in Phase 4, continuing until global monotonicity is achieved or min_bins is
reached.

This approach is rooted in isotonic regression principles (Robertson et al., 1988), ensuring the
scorecard maintains a consistent logical relationship between feature values and credit risk.

Phase 4: Adaptive Bin Merging

Two merging criteria are applied sequentially:

1. Frequency-based merging: Bins with total count below bin_cutoff xn are merged with
the adjacent bin having the most similar event rate (minimizing heterogeneity). If event rates
are equivalent, the merge that preserves higher IV is preferred.

2. Cardinality reduction: If the number of bins exceeds max_bins, the pair of adjacent bins
minimizing IV loss when merged is identified via:

AIV; i1 =1V + Vit — IVinerged
This greedy optimization continues until X < max_bins.
Theoretical Foundations
* Kernel Density Estimation: The bandwidth selection follows Silverman (1986, Chapter 3),

balancing bias-variance tradeoff for univariate density estimation.

* Weight of Evidence: Siddiqi (2006) formalizes WoE/IV as measures of predictive strength in
credit scoring, with IV thresholds: < 0.02 (unpredictive), 0.02-0.1 (weak), 0.1-0.3 (medium),
0.3-0.5 (strong), > 0.5 (suspect overfitting).

* Supervised Discretization: Garcia et al. (2013) categorize LDB within "static" supervised
methods that do not require iterative feedback from the model, unlike dynamic methods (e.g.,
ChiMerge).

Computational Complexity
» KDE computation: O(n?) for naive implementation (each of n points evaluates n kernel
terms).

* Binary search for bin assignment: O(n log K) where K is the number of bins.

¢ Merge iterations: O(K? x max_iterations) in worst case.

For large datasets (n > 10%), the KDE phase dominates runtime.

Value
A list containing:

id Integer vector of bin identifiers (1-based indexing).

bin Character vector of bin intervals in the format " (Lower ;upper]”.
woe Numeric vector of Weight of Evidence values for each bin.

iv Numeric vector of Information Value contributions for each bin.
count Integer vector of total observations in each bin.

count_pos Integer vector of positive class (target = 1) counts per bin.
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count_neg Integer vector of negative class (target = 0) counts per bin.

event_rate Numeric vector of event rates (proportion of positives) per bin.

cutpoints Numeric vector of cutpoints defining bin boundaries (excluding -Inf and +Inf).
converged Logical flag indicating whether the algorithm converged within max_iterations.
iterations Integer count of iterations performed during optimization.

total_iv Numeric scalar representing the total Information Value (sum of all bin I'Vs).

n on

monotonicity Character string indicating monotonicity status: "increasing”, "decreasing”, or
n n
none".

Author(s)

Lopes, J. E. (implemented algorithm)

References

e Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis. Chapman and
Hall/CRC.

* Siddiqi, N. (2006). Credit Risk Scorecards: Developing and Implementing Intelligent Credit
Scoring. Wiley.

* Dougherty, J., Kohavi, R., & Sahami, M. (1995). "Supervised and Unsupervised Discretiza-
tion of Continuous Features". Proceedings of the 12th International Conference on Machine
Learning, pp. 194-202.

* Robertson, T., Wright, F. T., & Dykstra, R. L. (1988). Order Restricted Statistical Inference.
Wiley.

* Garcia, S., Luengo, J., Séez, J. A, Lopez, V., & Herrera, F. (2013). "A Survey of Discretiza-
tion Techniques: Taxonomy and Empirical Analysis in Supervised Learning". IEEE Transac-
tions on Knowledge and Data Engineering, 25(4), 734-750.

See Also

ob_numerical_mdlp for Minimum Description Length Principle binning, ob_numerical_mob for
monotonic binning with similar constraints.

Examples

# Simulate credit scoring data

set.seed(42)

n <- 10000

feature <- c(
rnorm(3000, mean = 600, sd
rnorm(4000, mean = 700, sd
rnorm(3000, mean = 750, sd

)

target <- c(
rbinom(3000, 1, 0.15), # 15% default rate
rbinom(4000, 1, 0.08), # 8% default rate
rbinom(3000, 1, 0.03) # 3% default rate

50), # Low-risk segment
40), # Medium-risk segment
30) # High-risk segment
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)

# Apply LDB with monotonicity enforcement

result <- ob_numerical_ldb(
feature = feature,
target = target,
min_bins = 3,
max_bins = 5,
bin_cutoff = 0.05,
max_n_prebins = 20,
enforce_monotonic = TRUE

)

# Inspect binning quality

print(result$total_iv) # Should be > 0.1 for
print(result$monotonicity) # Should indicate direction

# Visualize WoE pattern

plot(result$woe,
type = "b", xlab = "Bin”, ylab = "WoE",
main = "Monotonic WoE Trend”

)

# Generate scorecard transformation
bin_mapping <- data.frame(
bin = result$bin,
woe = result$woe,
iv = result$iv
)
print(bin_mapping)

predictive features
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ob_numerical_lpdb Optimal Binning using Local Polynomial Density Binning (LPDB)

Description

Performs supervised discretization of continuous numerical variables using a novel approach that
combines non-parametric density estimation with information-theoretic optimization. The algo-
rithm first identifies natural clusters and boundaries in the feature distribution using local polyno-

mial density estimation, then refines the bins to maximize predictive power.

Usage
ob_numerical_lpdb(
feature,
target,
min_bins = 3,
max_bins = 5,



148 ob_numerical_Ipdb

bin_cutoff = 0.05,
max_n_prebins = 20,
polynomial_degree = 3,
enforce_monotonic = TRUE,
convergence_threshold = 1e-06,
max_iterations = 1000

)
Arguments

feature A numeric vector representing the continuous predictor variable. Missing values
(NA) should be handled prior to binning.

target An integer vector of binary outcomes (0/1) corresponding to each observation
in feature. Must have the same length as feature.

min_bins Integer. The minimum number of bins to produce. Must be > 2. Defaults to 3.

max_bins Integer. The maximum number of bins to produce. Must be > min_bins. De-
faults to 5.

bin_cutoff Numeric. The minimum fraction of total observations required for a bin to be

considered valid. Bins smaller than this threshold are merged. Value must be in
(0, 1). Defaults to 0.05.

max_n_prebins Integer. The maximum number of initial candidate cut points to generate during
the density estimation phase. Defaults to 20.

polynomial_degree
Integer. The degree of the local polynomial used for density estimation (note:
currently approximated via KDE). Defaults to 3.

enforce_monotonic
Logical. If TRUE, the algorithm forces the Weight of Evidence (WoE) trend to
be strictly monotonic. Defaults to TRUE.

convergence_threshold
Numeric. The threshold for determining convergence during the iterative merg-
ing process. Defaults to 1e-6.

max_iterations Integer. Safety limit for the maximum number of merging iterations. Defaults
to 1000.

Details

The Local Polynomial Density Binning (LPDB) algorithm is a two-stage process:

1. Density-Based Initialization:
* Estimates the probability density function f(z) of the feature using Kernel Density
Estimation (KDE), which approximates local polynomial regression.

* Identifies critical points on the density curve, such as local minima and inflection points.
These points often correspond to natural boundaries between clusters or modes in the
data.

» Uses these critical points as initial candidate cut points to form pre-bins.

2. Supervised Refinement:
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Calculates WoE and IV for each pre-bin.
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* Enforces monotonicity by merging bins that violate the trend (determined by the correla-

tion between bin centroids and WoE values).
* Merges bins with frequencies below bin_cutoff.

* Jteratively merges bins to meet the max_bins constraint, choosing merges that minimize

the loss of total Information Value.

This method is particularly powerful for complex, multi-modal distributions where standard quan-

tile or equal-width binning might obscure important structural breaks.

Value
A list containing the binning results:

* id: Integer vector of bin identifiers.

* bin: Character vector of bin labels in interval notation.

* woe: Numeric vector of Weight of Evidence for each bin.

* iv: Numeric vector of Information Value contribution per bin.

* count: Integer vector of total observations per bin.

* count_pos: Integer vector of positive cases.

* count_neg: Integer vector of negative cases.

* event_rate: Numeric vector of the target event rate in each bin.
* centroids: Numeric vector of the geometric centroids of the final bins.
e cutpoints: Numeric vector of upper boundaries (excluding Inf).
* total_iv: The total Information Value of the binned variable.

non

* monotonicity: Character string indicating the final WoE trend ("increasing", "decreasing",

or "none").

See Also

ob_numerical_kmb, ob_numerical_jedi

Examples

# Example: Binning a tri-modal distribution

set.seed(123)

# Feature with three distinct clusters

feature <- c(rnorm(300, mean = -3), rnorm(400, mean = @), rnorm(300, mean = 3))
# Target depends on these clusters

target <- rbinom(1000, 1, plogis(feature))

result <- ob_numerical_lpdb(feature, target,
min_bins = 3,
max_bins = 5

)

print(result$bin) # Should ideally find cuts near -1.5 and 1.5
print(result$monotonicity)
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ob_numerical_mblp Optimal Binning for Numerical Features Using Monotonic Binning
via Linear Programming
Description

Implements a greedy optimization algorithm for supervised discretization of numerical features
with **guaranteed monotonicity** in Weight of Evidence (WoE). Despite the "Linear Program-
ming" designation, this method employs an iterative heuristic based on quantile pre-binning, Infor-
mation Value (IV) optimization, and monotonicity enforcement through adaptive bin merging.

Important Note: This algorithm does not use formal Linear Programming solvers (e.g., simplex
method). The name reflects the conceptual formulation of binning as a constrained optimization
problem, but the implementation uses a deterministic greedy heuristic for computational efficiency.

Usage

ob_numerical_mblp(

feature,
target,
min_bins =
max_bins =
bin_cutoff

3,
5,

0.05,

max_n_prebins = 20,
force_monotonic_direction = 0,
convergence_threshold = 1e-06,
max_iterations = 1000

Arguments

feature

target

min_bins

max_bins

bin_cutoff

max_n_prebins

Numeric vector of feature values to be binned. Missing values (NA) and infinite
values are automatically removed during preprocessing.

Integer vector of binary target values (must contain only 0 and 1). Must have
the same length as feature.

Minimum number of bins to generate (default: 3). Must be at least 2.

Maximum number of bins to generate (default: 5). Must be greater than or equal
tomin_bins.

Minimum fraction of total observations in each bin (default: 0.05). Bins with
frequency below this threshold are merged with adjacent bins. Must be in the
range (0, 1).

Maximum number of pre-bins before optimization (default: 20). Controls gran-
ularity of initial quantile-based discretization.

force_monotonic_direction

Integer flag to force a specific monotonicity direction (default: 0). Valid values:
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* 9: Automatically determine direction via correlation between bin indices
and WoE values.

* 1: Force increasing monotonicity (WoE increases with feature value).
* -1: Force decreasing monotonicity (WoE decreases with feature value).
convergence_threshold
Convergence threshold for iterative optimization (default: 1e-6). Iteration stops

when the absolute change in total IV between consecutive iterations falls below
this value.

max_iterations Maximum number of iterations for the optimization loop (default: 1000). Pre-
vents infinite loops in pathological cases.

Details

Algorithm Overview

The Monotonic Binning via Linear Programming (MBLP) algorithm operates in four sequential
phases designed to balance predictive power (IV maximization) and interpretability (monotonic
WoE):

Phase 1: Quantile-Based Pre-binning

Initial bin boundaries are determined using empirical quantiles of the feature distribution. For &
pre-bins, cutpoints are computed as:

1 ;
qi = T([p;x(N-1)])» pZ:E7 Z:]~727"‘7k_1

where ;) denotes the j-th order statistic. This approach ensures equal-frequency bins under the
assumption of continuous data, though ties may cause deviations in practice. The first and last
boundaries are set to —oo and 400, respectively.

Phase 2: Frequency-Based Bin Merging

Bins with total count below bin_cutoff x IV are iteratively merged with adjacent bins to ensure
statistical reliability. The merge strategy selects the neighbor with the smallest count (greedy heuris-
tic), continuing until all bins meet the frequency threshold or min_bins is reached.

Phase 3: Monotonicity Direction Determination

If force_monotonic_direction = @, the algorithm computes the Pearson correlation between bin
indices and WoE values:

po i (i~ )(WoE, — WoE)
VI (i = )2 S (WoE, — WoE)?

The monotonicity direction is set as:

S0 ‘
direction = { © {f p = 0 (increasing)
—1 if p < 0 (decreasing)

If force_monotonic_direction is explicitly set to 1 or -1, that value overrides the correlation-
based determination.
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Phase 4: Iterative Optimization Loop
The core optimization alternates between two enforcement steps until convergence:

1. Cardinality Constraint: If the number of bins £ exceeds max_bins, the algorithm identifies
the pair of adjacent bins (7,4 4 1) that minimizes the IV loss when merged:

AlV; i1 =1V +IVip1 — IVinerged
where IV yergeq is recalculated using combined counts. The merge is performed only if it
preserves monotonicity (checked via WoE comparison with neighboring bins).
2. Monotonicity Enforcement: For each pair of consecutive bins, violations are detected as:
¢ Increasing: WoE; < WoE,; | — ¢
¢ Decreasing: WoE; > WoE; 1 + ¢
where ¢ = 10719 (numerical tolerance). Violating bins are immediately merged.

3. Convergence Test: After each iteration, the total IV is compared to the previous iteration. If
|IV(t) — IV(t’1)| < convergence_threshold or monotonicity is achieved, the loop terminates.

Weight of Evidence Computation

WoE for bin ¢ uses Laplace smoothing (o« = 0.5) to handle zero counts:

DistGood;
WOE; =In | ————
o = ( DistBad, )
where: . )
DistGood; = w, DistBad; = M ta
nt + ka n— + ko

and k is the current number of bins. The Information Value contribution is:

IV, = (DistGood; — DistBad;) x WoE;
Theoretical Foundations

* Monotonicity Requirement: Zeng (2014) proves that monotonic WoE is a necessary condi-
tion for stable scorecards under data drift. Non-monotonic patterns often indicate overfitting
to noise.

e Greedy Optimization: Unlike global optimizers (MILP), greedy heuristics provide no op-
timality guarantees but achieve O(k?) complexity per iteration versus exponential for exact
methods.

* Quantile Binning: Ensures initial bins have approximately equal sample sizes, reducing vari-
ance in WoE estimates (especially critical for minority classes).
Comparison with True Linear Programming

Formal LP formulations for binning (Belotti et al., 2016) express the problem as:

k

max » IV,(b)
=b
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subject to:
WoE; < WoE;;1 Vi (monotonicity)

N
Zzij =1 Vj (assignment)

j=1
Zij € {0, 1}, b; eR
where z;; indicates if observation j is in bin 4, and b; are bin boundaries. Such formulations re-

quire MILP solvers (CPLEX, Gurobi) and scale poorly beyond N > 10*. MBLP sacrifices global
optimality for scalability and determinism.

Computational Complexity

Initial sorting: O(N log N)
* Quantile computation: O(k)

* Per-iteration operations: O(k?) (pairwise comparisons for merging)

Total: O(N log N + k? x max_iterations)

For typical credit scoring datasets (N ~ 10°, k ~ 5), runtime is dominated by sorting. Pathological
cases (highly non-monotonic data) may require many iterations to enforce monotonicity.

Value

A list containing:

id Integer vector of bin identifiers (1-based indexing).

bin Character vector of bin intervals in the format " (lower ; upper]”.

woe Numeric vector of Weight of Evidence values for each bin.

iv. Numeric vector of Information Value contributions for each bin.

count Integer vector of total observations in each bin.

count_pos Integer vector of positive class (target = 1) counts per bin.

count_neg Integer vector of negative class (target = 0) counts per bin.

event_rate Numeric vector of event rates (proportion of positives) per bin.

cutpoints Numeric vector of cutpoints defining bin boundaries (excluding -Inf and +Inf).
converged Logical flag indicating whether the algorithm converged within max_iterations.
iterations Integer count of iterations performed during optimization.

total_iv Numeric scalar representing the total Information Value (sum of all bin IVs).

n o n

monotonicity Character string indicating monotonicity status: "increasing”, "decreasing”, or
n n
none"”.

Author(s)

Lopes, J. E. (implemented algorithm based on Mironchyk & Tchistiakov, 2017)
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ob_numerical_1db for density-based binning, ob_numerical_mdlp for entropy-based discretiza-
tion with MDLP criterion.

Examples

# Simulate non-monotonic credit scoring data
set.seed(123)

n <- 8000

feature <- c(

rnorm(2000, mean = 550, sd
rnorm(3000, mean = 680, sd
rnorm(2000, mean = 720, sd
rnorm(1000, mean = 620, sd

60), # High-risk segment (low scores)

50), # Medium-risk segment

40), # Low-risk segment

55) # Mixed segment (creates non-monotonicity)

)
target <- c(

rbinom(2000, 1, 0.25), # 25% default rate

rbinom(3000, 1, 0.10), # 10% default rate

rbinom(2000, 1, 0.03), # 3% default rate

rbinom(1000, 1, 0.15) # 15% default rate (violates monotonicity)
)

# Apply MBLP with automatic monotonicity detection
result_auto <- ob_numerical_mblp(

feature = feature,
target = target,
min_bins = 3,
max_bins = 5,
bin_cutoff =
max_n_prebins = 20,
force_monotonic_direction = @ # Auto-detect

0.05,
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print(result_auto$monotonicity) # Check detected direction
print(result_auto$total_iv) # Should be > 0.1 for predictive features

# Force decreasing monotonicity (higher score = lower WoE = lower risk)
result_forced <- ob_numerical_mblp(

feature = feature,

target = target,

min_bins = 4,

max_bins = 6,

force_monotonic_direction = -1 # Force decreasing

)

# Verify monotonicity enforcement
stopifnot(all(diff(result_forced$woe) <= 1e-9)) # Should be non-increasing

# Compare convergence

cat(sprintf(
"Auto mode: %d iterations, IV = %.4f\n",
result_auto$iterations, result_auto$total_iv

))

cat(sprintf(
"Forced mode: %d iterations, IV = %.4f\n",
result_forced$iterations, result_forced$total_iv

))

# Visualize binning quality
oldpar <- par(mfrow = c(1, 2))
plot(result_auto$woe,
type = "b", col = "blue”, pch = 19,
xlab = "Bin", ylab = "WoE"”, main = "Auto-Detected Monotonicity”
)
plot(result_forced$woe,
type = "b", col = "red”, pch = 19,

xlab = "Bin", ylab = "WoE"”, main = "Forced Decreasing”
)
par(oldpar)
ob_numerical_mdlp Optimal Binning for Numerical Features using Minimum Description
Length Principle
Description

Implements the Minimum Description Length Principle (MDLP) for supervised discretization of
numerical features. MDLP balances model complexity (number of bins) and data fit (information
gain) through a rigorous information-theoretic framework, automatically determining the optimal
number of bins without arbitrary thresholds.
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Unlike heuristic methods, MDLP provides a theoretically grounded stopping criterion based on
the trade-off between encoding the binning structure and encoding the data given that structure.
This makes it particularly robust against overfitting in noisy datasets.

Usage

ob_numerical_mdlp(

feature,
target,
min_bins =
max_bins =
bin_cutoff

I o w

0.05,

max_n_prebins = 20,
convergence_threshold = 1e-06,
max_iterations = 1000,
laplace_smoothing = 0.5

Arguments

feature

target

min_bins

max_bins

bin_cutoff

max_n_prebins

Numeric vector of feature values to be binned. Missing values (NA) are auto-
matically removed during preprocessing. Infinite values trigger a warning but
are handled internally.

Integer vector of binary target values (must contain only 0 and 1). Must have
the same length as feature.

Minimum number of bins to generate (default: 3). Must be at least 1. If the
number of unique feature values is less than min_bins, the algorithm adjusts
automatically.

Maximum number of bins to generate (default: 5). Must be greater than or equal
to min_bins. Acts as a hard constraint after MDLP optimization.

Minimum fraction of total observations required in each bin (default: 0.05).
Bins with frequency below this threshold are merged with adjacent bins to en-
sure statistical reliability. Must be in the range (0, 1).

Maximum number of pre-bins before MDLP optimization (default: 20). Higher
values allow finer granularity but increase computational cost. Must be at least
2

convergence_threshold

Convergence threshold for iterative optimization (default: 1e-6). Currently used
internally for future extensions; MDLP convergence is primarily determined by
the MDL cost function.

max_iterations Maximum number of iterations for bin merging operations (default: 1000). Pre-

vents infinite loops in pathological cases. A warning is issued if this limit is
reached.

laplace_smoothing

Laplace smoothing parameter for WoE calculation (default: 0.5). Prevents divi-
sion by zero and stabilizes WoE estimates in bins with zero counts for one class.
Must be non-negative. Higher values increase regularization but may dilute sig-
nal in small bins.
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Details

Algorithm Overview
The MDLP algorithm executes in five sequential phases:
Phase 1: Data Preparation and Validation

Input data is validated for:

* Binary target (only 0 and 1 values)

* Parameter consistency (min_bins <= max_bins, valid ranges)

* Missing value detection (NaN/Inf are filtered out with a warning)
Feature-target pairs are sorted by feature value in ascending order, enabling efficient bin assignment
via linear scan.
Phase 2: Equal-Frequency Pre-binning

Initial bins are created by dividing the sorted data into approximately equal-sized groups:

N
Nrecords/bin — Max 1; i
max_n_prebins

This ensures each pre-bin has sufficient observations for stable entropy estimation. Bin boundaries
are set to feature values at split points, with first and last boundaries at —oo and +oc0.

For each bin ¢, Shannon entropy is computed:

H(S;) = —pilogy(pi) — ¢ilogy(a:)
where p; = nj /n; (proportion of positives) and ¢; = 1 — p;. Pure bins (p; = 0 or p; = 1) have
H(S;) =0.

Performance Note: Entropy calculation uses a precomputed lookup table for bin counts 0-100,
achieving 30-50% speedup compared to runtime computation.

Phase 3: MDL-Based Greedy Merging

The core optimization minimizes the Minimum Description Length, defined as:

MDL(k) = Lmodel(k) + Ldata(k)
where:

* Model Cost: Lyoqe1 (k) = logy(k — 1)

Encodes the number of bins. Increases logarithmically with bin count, penalizing complex
models.

» Data Cost: Ly (k) = N - H(Swota) — Zf:l n; - H(S;)
Measures unexplained uncertainty after binning. Lower values indicate better class separation.

The algorithm iteratively evaluates all £ — 1 adjacent bin pairs, computing MDL(k — 1) for each
potential merge. The pair minimizing MDL cost is merged, continuing until:

1. £ = min_bins, or
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2. No merge reduces MDL cost (local optimum), or

3. max_iterations is reached

Theoretical Guarantee (Fayyad & Irani, 1993): The MDL criterion provides a **consistent esti-
mator** of the true discretization complexity under mild regularity conditions, unlike ad-hoc stop-
ping rules.

Phase 4: Rare Bin Handling

Bins with frequency n;/N < bin_cutoff are merged with adjacent bins. The merge direction (left
or right) is chosen by minimizing post-merge entropy:

direction = ar min  H(S;US;
gde{leﬂ,right} (iU Siva)

This preserves class homogeneity while ensuring statistical reliability.
Phase 5: Monotonicity Enforcement (Optional)
If WoE values violate monotonicity (WoE; < WoE;_1), bins are iteratively merged until:

WoE; < WoE; < --- < WoE,

Merge decisions prioritize preserving Information Value:

ALV = IVl' + IVi+1 - IVmerged

Merges proceed only if IVierged > 0.5 x (IV; +1V41).
Weight of Evidence Computation

WoE for bin 7 includes Laplace smoothing to handle zero counts:

+ —
n, + o n, + o
WoE; =1 . L
© . <n++ka/n—+ka)

where o« = laplace_smoothing and & is the number of bins.

Edge cases:

s Ifnf +a=n; +a=0:WoE; =0
o If nj” + a = 0: WoE; = —20 (capped)
e If n; + a = 0: WoE; = +20 (capped)

Information Value is computed as:
+ —
IV, = ("i - ”) x WoE;
nt n-
Comparison with Other Methods

Method Stopping Criterion Optimality
MDLP Information-theoretic (MDL cost)  Local optimum with theoretical guarantees



ob_numerical_mdIp 159

LDB Heuristic (density minima) No formal optimality
MBLP Heuristic (IV loss threshold) Greedy approximation
ChiMerge Statistical (x? test) Dependent on significance level

Computational Complexity

* Sorting: O(N log N)

* Pre-binning: O(N)

« MDL optimization: O(k® x I) where I is the number of merge iterations (typically I ~ k)
e Total: O(Nlog N + k3 x I)

For typical credit scoring datasets (N ~ 10, k ~ 5), runtime is dominated by sorting.

Value
A list containing:

id Integer vector of bin identifiers (1-based indexing).

bin Character vector of bin intervals in the format "[lower ;upper)". The first bin starts with -Inf
and the last bin ends with +Inf.

woe Numeric vector of Weight of Evidence values for each bin, computed with Laplace smoothing.
iv. Numeric vector of Information Value contributions for each bin.

count Integer vector of total observations in each bin.

count_pos Integer vector of positive class (target = 1) counts per bin.

count_neg Integer vector of negative class (target = 0) counts per bin.

cutpoints Numeric vector of cutpoints defining bin boundaries (excluding -Inf and +Inf). These
are the upper bounds of bins 1 to k-1.

total_iv Numeric scalar representing the total Information Value (sum of all bin I'Vs).

converged Logical flag indicating whether the algorithm converged. Set to FALSE if max_iterations
was reached during any merging phase.

iterations Integer count of iterations performed across all optimization phases (MDL merging, rare
bin merging, monotonicity enforcement).

Author(s)

Lopes, J. E. (algorithm implementation based on Fayyad & Irani, 1993)

References

* Fayyad, U. M., & Irani, K. B. (1993). "Multi-Interval Discretization of Continuous-Valued At-
tributes for Classification Learning". Proceedings of the 13th International Joint Conference
on Artificial Intelligence (IJCAI), pp. 1022-1027.

* Rissanen, J. (1978). "Modeling by shortest data description". Automatica, 14(5), 465-471.
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* Dougherty, J., Kohavi, R., & Sahami, M. (1995). "Supervised and Unsupervised Discretiza-
tion of Continuous Features". Proceedings of the 12th International Conference on Machine

e Witten, I. H., Frank, E., & Hall, M. A. (2011). Data Mining: Practical Machine Learning

* Cerqueira, V., & Torgo, L. (2019). "Automatic Feature Engineering for Predictive Modeling
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Learning (ICML), pp. 194-202.
Tools and Techniques (3rd ed.). Morgan Kaufmann.
of Multivariate Time Series". arXiv:1910.01344.
See Also
binning.
Examples

# Simulate overdispersed credit scoring data with noise
set.seed(2024)

n

<- 10000

# Create feature with multiple
feature <- c¢(

rnorm(3000, mean = 580, sd =
rnorm(4000, mean = 680, sd =
rnorm(2000, mean = 740, sd =
runif (1000, min = 500, max =
)
target <- c(
rbinom(3000, 1, 0.30), # 30%
rbinom(4000, 1, @
rbinom(2000, 1, @
rbinom(1000, 1, @

)

regimes and noise

70),
50),
40),
800)

# High-risk cluster

# Low-risk cluster

default rate

.12), # 12% default rate
.04), # 4% default rate
.15) # Noisy segment

# Apply MDLP with default parameters

result <- ob_numerical_mdlp(

)

feature = feature,
target = target,

min_bins = 3,
max_bins = 5,
bin_cutoff = 0.05,
max_n_prebins = 20

# Inspect results
print(result$bin)
print(data.frame(

Bin =
WoE =

result$bin,

round(result$woe, 4),

ob_numerical_mdIp

# Medium-risk cluster

# Noise (uniform distribution)
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IV = round(result$iv, 4),
Count = result$count

)

cat(sprintf("\nTotal IV: %.4f\n", result$total_iv))
cat(sprintf("Converged: %s\n"”, result$converged))
cat(sprintf("Iterations: %d\n", result$iterations))

# Verify monotonicity
is_monotonic <- all(diff(result$woe) >= -1e-10)
cat(sprintf("WoE Monotonic: %s\n”, is_monotonic))

# Compare with different Laplace smoothing
result_nosmooth <- ob_numerical_mdlp(
feature = feature,
target = target,
laplace_smoothing = 0.0 # No smoothing (risky for rare bins)

)

result_highsmooth <- ob_numerical_mdlp(
feature = feature,
target = target,
laplace_smoothing = 2.0 # Higher regularization

)

# Compare WoE stability
data.frame(
Bin = seg_along(result$woe),
WoE_default = result$woe,
WoE_no_smooth = result_nosmooth$woe,
WoE_high_smooth = result_highsmooth$woe
)

# Visualize binning structure
oldpar <- par(mfrow = c(1, 2))

# WoE plot

plot(result$woe,
type = "b", col = "blue”, pch = 19,
xlab = "Bin", ylab = "WoE",
main = "Weight of Evidence by Bin”

)
grid()
# IV contribution plot
barplot(result$iv,
names.arg = seq_along(result$iv),
col = "steelblue”, border = "white”,

xlab = "Bin", ylab = "IV Contribution”,

main = sprintf("Total IV = %.4f", result$total_iv)
)
grid()
par (oldpar)
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ob_numerical_mob Optimal Binning for Numerical Features using Monotonic Optimal
Binning

Description

Implements Monotonic Optimal Binning (MOB), a supervised discretization algorithm that en-
forces strict monotonicity in Weight of Evidence (WoE) values. MOB is designed for credit scoring
and risk modeling applications where monotonicity is a regulatory requirement or essential for
model interpretability and stakeholder acceptance.

Unlike heuristic methods that treat monotonicity as a post-processing step, MOB integrates mono-
tonicity constraints into the core optimization loop, ensuring that the final binning satisfies: WoE; <
WoE; < --- < WoEy (or the reverse for decreasing patterns).

Usage

ob_numerical_mob(
feature,
target,
min_bins = 3,
max_bins = 5,
bin_cutoff = 0.05,
max_n_prebins = 20,
convergence_threshold = 1e-06,
max_iterations = 1000,
laplace_smoothing = 0.5

)
Arguments

feature Numeric vector of feature values to be binned. Missing values (NA) are auto-
matically removed during preprocessing. Infinite values trigger a warning but
are handled internally.

target Integer vector of binary target values (must contain only 0 and 1). Must have
the same length as feature.

min_bins Minimum number of bins to generate (default: 3). Must be at least 2. Acts as a
hard constraint during monotonicity enforcement; the algorithm will not merge
below this threshold even if violations persist.

max_bins Maximum number of bins to generate (default: 5). Must be greater than or equal

to min_bins. The algorithm reduces bins via greedy merging if the initial count
exceeds this limit.
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bin_cutoff Minimum fraction of total observations required in each bin (default: 0.05).
Bins with frequency below this threshold are merged with adjacent bins. Must
be in the range (0, 1).

max_n_prebins Maximum number of pre-bins before optimization (default: 20). Controls gran-
ularity of initial equal-frequency discretization. Must be at least equal tomin_bins.

convergence_threshold

Convergence threshold for iterative optimization (default: 1e-6). Reserved for
future extensions; current implementation uses max_iterations as the primary
stopping criterion.

max_iterations Maximum number of iterations for bin merging and monotonicity enforcement
(default: 1000). Prevents infinite loops in pathological cases. A warning is
issued if this limit is reached without achieving convergence.

laplace_smoothing

Laplace smoothing parameter for WoE calculation (default: 0.5). Prevents divi-
sion by zero and stabilizes WoE estimates in bins with zero counts for one class.
Must be non-negative. Standard values: 0.5 (Laplace), 1.0 (Jeffreys prior).

Details

Algorithm Overview

The MOB algorithm executes in five sequential phases with strict monotonicity enforcement inte-
grated throughout:

Phase 1: Equal-Frequency Pre-binning

Initial bins are created by dividing sorted data into approximately equal-sized groups:

N
Npin = . .
min(max_n_prebins, 7ynique )
Bin boundaries are set to feature values at split points, ensuring no gaps between consecutive bins.
First and last boundaries are set to —oo and +o0.

This approach balances statistical stability (sufficient observations per bin) with granularity (ability
to detect local patterns).

Phase 2: Rare Bin Merging

Bins with total count below bin_cutoff x N are iteratively merged. The merge direction (left or
right) is chosen to minimize Information Value loss:

direction = arg  min  (IVpefore — IV after merge )
de{left,right}

where:
IVbefore == IV1 + IVi+d

IVafier = (DistGoodmerged — DistBadmerged) X WOEmerged

Merging continues until all bins meet the frequency threshold or min_bins is reached.
Phase 3: Initial WoE/I'V Calculation
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Weight of Evidence for each bin ¢ is computed with Laplace smoothing:

+ -
n' 4+« n. +«
WOE; =1 L C
© n(n*+ka/n+ka>

where oo = laplace_smoothing and k is the current number of bins. Information Value is:

Il_(nj'—&—oz n; +a
;=

- x WoE;
nt + ka n+ka> !

Edge case handling:

* If both distributions approach zero: WoE; = 0
* If only positive distribution is zero: WoE; = —20 (capped)
* If only negative distribution is zero: WoE; = +20 (capped)

Phase 4: Monotonicity Enforcement

The algorithm first determines the desired monotonicity direction by examining the relationship
between the first two bins:

TRUE if WoE; > WoE,

should_increase = .
FALSE otherwise

For each bin ¢ from 1 to k — 1, violations are detected as:

WOoE,; < WoE,;_; if should_increase

violation = ) ]
{WOEi > WOoE,;_; if —should_increase

When a violation is found at index ¢, the algorithm attempts two merge strategies:

1. Merge with previous bin: Combine bins ¢ — 1 and i, then verify the merged bin’s WoE is
compatible with neighbors:

WOE;_2 < WoEerged < WOE;41  (if should_increase)

2. Merge with next bin: If strategy 1 fails, merge bins ¢ and ¢ + 1.

Merging continues iteratively until either:

* All WoE values satisfy monotonicity constraints
* The number of bins reaches min_bins

* max_iterations is exceeded (triggers warning)

After each merge, WoE and IV are recalculated for all bins to reflect updated distributions.
Phase 5: Bin Count Reduction

If the number of bins exceeds max_bins after monotonicity enforcement, additional merges are
performed. The algorithm identifies the pair of adjacent bins that minimizes IV loss when merged:
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k—2
merge_idx = arg Hllél (IV; +IVit1 — IVinerged)

This greedy approach continues until £ < max_bins.

Theoretical Foundations

* Monotonicity as Stability Criterion: Zeng (2014) proves that non-monotonic WoE patterns
are unstable under population drift, leading to unreliable predictions when the data distribution
shifts.

* Regulatory Compliance: Basel II/III validation requirements (BCBS, 2005) explicitly re-
quire monotonic relationships between risk drivers and probability of default for IRB models.

* Information Preservation: While enforcing monotonicity reduces model flexibility, Mironchyk
& Tchistiakov (2017) demonstrate that the IV loss is typically < 5% compared to uncon-
strained binning for real credit portfolios.

Comparison with Related Methods

Method Monotonicity Enforcement Use Case

MOB Guaranteed During optimization ~ Regulatory scorecards
MBLP  Target Iterative post-process  General credit models
MDLP  Optional Post-hoc merging Exploratory analysis
LDB Optional Post-hoc merging Research/prototyping

Computational Complexity

* Sorting: O(N log N)
* Pre-binning: O(N)
* Rare bin merging: O(k2 X Itare) where Iy is the number of rare bins

* Monotonicity enforcement: O(k:2 X Imono) Where Iiono is the number of violations (worst
case: O(k))

* Bin reduction: O(k X (kinijal — max_bins))
e Total: O(N log N + k? x max_iterations)

For typical credit scoring datasets (N ~ 10°, k ~ 5), runtime is dominated by sorting. Pathological
cases (e.g., perfectly alternating WoE values) may require O(k?) merges.

Value
A list containing:

id Integer vector of bin identifiers (1-based indexing).

bin Character vector of bin intervals in the format " [ lower ;upper)". The first bin starts with -Inf
and the last bin ends with +Inf.

woe Numeric vector of Weight of Evidence values for each bin. Guaranteed to be monotonic (either
non-decreasing or non-increasing).
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iv Numeric vector of Information Value contributions for each bin.

count Integer vector of total observations in each bin.

count_pos Integer vector of positive class (target = 1) counts per bin.
count_neg Integer vector of negative class (target = 0) counts per bin.
event_rate Numeric vector of event rates (proportion of positives) per bin.

cutpoints Numeric vector of cutpoints defining bin boundaries (excluding -Inf and +Inf). These
are the upper bounds of bins 1 to k-1.

total_iv Numeric scalar representing the total Information Value (sum of all bin I'Vs).

converged Logical flag indicating whether the algorithm converged within max_iterations. FALSE
indicates the iteration limit was reached during rare bin merging or monotonicity enforcement.

iterations Integer count of iterations performed across all optimization phases (rare bin merging +
monotonicity enforcement + bin reduction).

Author(s)

Lopes, J. E. (algorithm implementation based on Mironchyk & Tchistiakov, 2017)

References
* Mironchyk, P., & Tchistiakov, V. (2017). "Monotone optimal binning algorithm for credit risk
modeling". Frontiers in Applied Mathematics and Statistics, 3, 2.

e Zeng, G. (2014). "A Necessary Condition for a Good Binning Algorithm in Credit Scoring".
Applied Mathematical Sciences, 8(65), 3229-3242.

e Thomas, L. C., Edelman, D. B., & Crook, J. N. (2002). Credit Scoring and Its Applications.
SIAM.

 Siddiqi, N. (2006). Credit Risk Scorecards: Developing and Implementing Intelligent Credit
Scoring. Wiley.

* Basel Committee on Banking Supervision (2005). "Studies on the Validation of Internal Rat-
ing Systems". Bank for International Settlements Working Paper No. 14.

* Naeem, B., Huda, N., & Aziz, A. (2013). "Developing Scorecards with Constrained Logistic
Regression". Proceedings of the International Workshop on Data Mining Applications.

See Also

ob_numerical_mblp for monotonicity-targeted binning with correlation-based direction detection,
ob_numerical_mdlp for information-theoretic binning without monotonicity constraints.

Examples

# Simulate non-monotonic credit scoring data
set.seed(42)
n <- 12000

# Create feature with inherent monotonic relationship + noise
feature <- c(
rnorm(4000, mean = 600, sd = 50), # Low scores (high risk)
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rnorm(5000, mean = 680, sd = 45), # Medium scores
rnorm(3000, mean = 740, sd = 35) # High scores (low risk)

)

target <- c(
rbinom(4000, 1, 0.25), # 25% default
rbinom(5000, 1, 0.10), # 10% default
rbinom(3000, 1, 0.03) # 3% default

)

# Apply MOB

result <- ob_numerical_mob(
feature = feature,
target = target,
min_bins = 2,
max_bins = 5,
bin_cutoff = 0.05,
max_n_prebins = 20

# Verify monotonicity
print(result$woe)
stopifnot(all(diff(result$woe) <= 1e-10)) # Non-increasing WoE

# Inspect binning quality
binning_table <- data.frame(
Bin = result$bin,
WoE = round(result$woe, 4),
IV = round(result$iv, 4),
Count = result$count,
EventRate = round(result$event_rate, 4)
)
print(binning_table)

cat(sprintf("\nTotal IV: %.4f\n", result$total_iv))
cat(sprintf(
"Converged: %s (iterations: %d)\n",
result$converged, result$iterations

)

# Visualize monotonic pattern
oldpar <- par(mfrow = c(1, 2))

# WoE monotonicity

plot(result$woe,
type = "b", col = "darkgreen”, pch = 19, lwd = 2,
xlab = "Bin", ylab = "WoE",
main = "Guaranteed Monotonic WoE"

)

grid()

# Event rate vs WoE relationship
plot(result$event_rate, result$woe,
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pch = 19, col = "steelblue”,

xlab = "Event Rate”, ylab = "WoE",
main = "WoE vs Event Rate”
)
abline(Im(result$woe ~ result$event_rate), col = "red”, lwd = 2)
grid()
par(oldpar)

ob_numerical_mrblp

Optimal Binning for Numerical Features using Monotonic Risk Bin-
ning with Likelihood Ratio Pre-binning

Description

Implements a greedy binning algorithm with monotonicity enforcement and majority-vote di-
rection detection. Important Note: Despite the "Likelihood Ratio Pre-binning" designation in
the name, the current implementation uses equal-frequency pre-binning without likelihood ratio
statistics. The algorithm is functionally a variant of Monotonic Optimal Binning (MOB) with minor
differences in merge strategies.

This method is suitable for credit scoring applications requiring monotonic WoE patterns, but users
should be aware that it does not employ the statistical rigor implied by "Likelihood Ratio" in the

name.

Usage

ob_numerical_mrblp(

feature,
target,
min_bins = 3
max_bins = 5,
bin_cutoff =

max_n_prebins = 20,

convergence_threshold = 1e-06,

max_iterations =

1000,

laplace_smoothing = 0.5

)
Arguments
feature Numeric vector of feature values to be binned. Missing values (NA) and infinite
values are not permitted and will trigger an error (unlike other binning methods
that issue warnings).
target Integer vector of binary target values (must contain only O and 1). Must have

the same length as feature.
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min_bins Minimum number of bins to generate (default: 3). Must be at least 1. Acts as a
hard constraint during monotonicity enforcement.

max_bins Maximum number of bins to generate (default: 5). Must be greater than or equal
tomin_bins.

bin_cutoff Minimum fraction of total observations required in each bin (default: 0.05).
Bins with frequency below this threshold are merged. Must be in the range (0,
1).

max_n_prebins Maximum number of pre-bins before optimization (default: 20). Must be at
least equal to min_bins.

convergence_threshold

Convergence threshold (default: 1e-6). Currently used to check if WoE range is
below threshold; primary stopping criterion is max_iterations.

max_iterations Maximum number of iterations for bin merging and monotonicity enforcement
(default: 1000). Prevents infinite loops.

laplace_smoothing

Laplace smoothing parameter for WoE calculation (default: 0.5). Must be non-
negative.

Details

Algorithm Overview
The MRBLP algorithm executes in five phases:
Phase 1: Equal-Frequency Pre-binning

Initial bins are created by dividing sorted data into approximately equal-sized groups:

( { ¥ J )
Npin =max (1, | ———
max_n_prebins

Note: Despite "Likelihood Ratio Pre-binning" in the name, no likelihood ratio statistics are com-
puted. A true likelihood ratio approach would compute:

pr‘y_ Xprly

x<c l"y T>c .’L'|y

and select cutpoints ¢ that maximize |log LR(c)|. This is not implemented in the current version.
Phase 2: Rare Bin Merging

Bins with total count below bin_cutoff x /N are merged. The merge direction (left or right) is
chosen to minimize IV loss:

di ti = i IV7' IVi - IVmer e
irection = arg de{g%tl,Irlight} (IV; +1V,4q sed)

Phase 3: Initial WoE/IV Calculation
Weight of Evidence for bin ¢:
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where o = laplace_smoothing and % is the number of bins.
Phase 4: Monotonicity Enforcement

The algorithm determines the desired monotonicity direction via majority vote:

TRUE  if #{WOoE; > WoE,_,} > #{WoE; < WoE,_}

increasing =
g {FALSE otherwise

This differs from:

* MOB: Uses first two bins only (WoE[1] >= WoE[@])

e MBLP: Uses Pearson correlation between bin indices and WoE
Violations are detected as:

WoE; < WoE;_; if increasing

violation = . .
WoE,; > WoE;_; if decreasing

Violating bins are merged iteratively until monotonicity is achieved or min_bins is reached.
Phase 5: Bin Count Reduction

If the number of bins exceeds max_bins, the algorithm merges bins with the smallest absolute IV
difference:

k—2
merge_idx = arg mi(r)l [TV, — IV,14]
1=

Critique: This criterion assumes bins with similar IVs are redundant, which is not theoretically
justified. A more rigorous approach (used in MBLP) minimizes IV loss after merge:

AIV =1V; +1Vit1 — IVinerged
Theoretical Foundations

* Monotonicity Enforcement: Based on Zeng (2014), ensuring stability under data distribution
shifts.

* Likelihood Ratio (Theoretical): Neyman-Pearson lemma establishes likelihood ratio as the
optimal test statistic for hypothesis testing. For binning, cutpoints maximizing LR would
theoretically yield optimal class separation. However, this is not implemented.

* Practical Equivalence: The algorithm is functionally equivalent to MOB with minor differ-
ences in direction detection and merge strategies.
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Comparison with Related Methods

Method Pre-binning Direction Detection Merge Criterion
MRBLP Equal-frequency Majority vote Min IV difference
MOB Equal-frequency First two bins Min IV loss
MBLP Quantile-based Pearson correlation ~ Min IV loss
MDLP Equal-frequency N/A (optional) MDL cost

Computational Complexity
Identical to MOB: O(N log N + k? x max_iterations)
When to Use MRBLP vs Alternatives

Use MRBLP: If you specifically need majority-vote direction detection and can tolerate the
non-standard merge criterion.

Use MOB: For simplicity and slightly faster direction detection.

Use MBLP: For more robust direction detection via correlation.

Use MDLP: For information-theoretic optimality without mandatory monotonicity.

Value

A list containing:

id Integer vector of bin identifiers (1-based indexing).

bin Character vector of bin intervals in the format "[lower ;upper)".
woe Numeric vector of Weight of Evidence values. Guaranteed to be monotonic.
iv Numeric vector of Information Value contributions per bin.

count Integer vector of total observations per bin.

count_pos Integer vector of positive class counts per bin.

count_neg Integer vector of negative class counts per bin.

event_rate Numeric vector of event rates per bin.

cutpoints Numeric vector of bin boundaries (excluding -Inf and +Inf).
total_iv Total Information Value (sum of bin I'Vs).

converged Logical flag indicating convergence within max_iterations.

iterations Integer count of iterations performed.

Author(s)

Lopes, J. E.
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References

See Also

Neyman, J., & Pearson, E. S. (1933). "On the Problem of the Most Efficient Tests of Statistical
Hypotheses". Philosophical Transactions of the Royal Society A, 231(694-706), 289-337.
[Theoretical foundation for likelihood ratio, not implemented in code]

Mironchyk, P., & Tchistiakov, V. (2017). "Monotone optimal binning algorithm for credit risk
modeling". Frontiers in Applied Mathematics and Statistics, 3, 2.

Zeng, G. (2014). "A Necessary Condition for a Good Binning Algorithm in Credit Scoring".
Applied Mathematical Sciences, 8(65), 3229-3242.

Siddiqi, N. (2006). Credit Risk Scorecards: Developing and Implementing Intelligent Credit
Scoring. Wiley.

Anderson, R. (2007). The Credit Scoring Toolkit: Theory and Practice for Retail Credit Risk
Management and Decision Automation. Oxford University Press.

Hosmer, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). Applied Logistic Regression (3rd
ed.). Wiley.

ob_numerical_mob for the base monotonic binning algorithm, ob_numerical_mblp for correlation-
based direction detection, ob_numerical_mdlp for information-theoretic binning.

Examples

# Simulate credit scoring data
set.seed(2024)

n <-

10000

feature <- c(

rnorm(4000, mean = 620, sd = 50),
rnorm(4000, mean = 690, sd = 45),
rnorm(2000, mean = 740, sd = 35)

)

target <- c(
rbinom(4000, 1, 0.20),
rbinom(4000, 1, 0.10),
rbinom(2000, 1, 0.04)

)

# Apply MRBLP
result <- ob_numerical_mrblp(
feature = feature,
target = target,
min_bins = 3,
max_bins = 5

)

# Compare with MOB (should be very similar)
result_mob <- ob_numerical_mob(

feature = feature,

target = target,

min_bins = 3,
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max_bins = 5

)

# Compare results

data.frame(
Method = c("MRBLP", "MOB"),
N_Bins = c(length(result$woe), length(result_mob$woe)),
Total_IV = c(result$total_iv, result_mob$total_iv),
Iterations = c(result$iterations, result_mob$iterations)

)
ob_numerical_oslp Optimal Binning for Numerical Variables using Optimal Supervised
Learning Partitioning
Description

Implements a greedy binning algorithm with quantile-based pre-binning and monotonicity enforce-
ment. Important Note: Despite "Optimal Supervised Learning Partitioning" and "LP" in the name,
the algorithm uses greedy heuristics without formal Linear Programming or convex optimiza-
tion. The method is functionally equivalent to ob_numerical_mrblp with minor differences in
pre-binning strategy and bin reduction criteria.

Users seeking true optimization-based binning should consider Mixed-Integer Programming (MIP)
implementations (e.g., via ompr or 1pSolve packages), though these scale poorly beyond N >
10,000 observations.

Usage

ob_numerical_oslp(
feature,
target,
min_bins = 3
max_bins = 5,
bin_cutoff =
max_n_prebins = 20,
convergence_threshold = 1e-06,
max_iterations = 1000,
laplace_smoothing = 0.5

Arguments

feature Numeric vector of feature values. Missing values (NA) and infinite values are
not permitted and will trigger an error.
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target Integer or numeric vector of binary target values (must contain only O and 1).
Must have the same length as feature. Unlike other binning methods, OSLP
internally uses double for target, allowing implicit conversion from integer.

min_bins Minimum number of bins (default: 3). Must be at least 2.

max_bins Maximum number of bins (default: 5). Must be greater than or equal to min_bins.

bin_cutoff Minimum fraction of total observations per bin (default: 0.05). Must be in (0,
1).

max_n_prebins Maximum number of pre-bins (default: 20). Must be at least equal to min_bins.
convergence_threshold
Convergence threshold for IV change (default: le-6).

max_iterations Maximum iterations (default: 1000).
laplace_smoothing
Laplace smoothing parameter (default: 0.5). Must be non-negative.

Details

Algorithm Overview
OSLP executes in five phases:
Phase 1: Quantile-Based Pre-binning

Unlike equal-frequency methods that ensure balanced bin sizes, OSLP places cutpoints at quantiles
of unique feature values:

edge, = unique_vals [[p; X (Nynique — 1)]]

where p; = i/max_n_prebins.

Critique: If unique values are clustered (e.g., many observations at specific values), bins may have
vastly different sizes, violating the equal-frequency principle that ensures statistical stability.

Phase 2: Rare Bin Merging

Bins with n; /N < bin_cutoff are merged. The merge direction minimizes IV loss:

AIV =1V; + IVita — IVmerged

where d € {—1,+1} (left or right neighbor).
Phase 3: Initial WoE/IV Calculation
Standard WoE with Laplace smoothing:

Phase 4: Monotonicity Enforcement

Direction determined via majority vote (identical to MRBLP):

TRUE  if D, W wok, >WoE, 1} = D # {WoE, <WoE,_1}

increasing =
g {FALSE otherwise
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Violations are merged iteratively.
Phase 5: Bin Count Reduction
If £ > max_bins, merge bins with the smallest combined I'V:

k—2
merge_idx = arg mi(r)l (IV; +1V,41)
i=

Rationale: Assumes bins with low total IV contribute least to predictive power. However, this
ignores the interaction between bins; a low-IV bin may be essential for monotonicity or preventing

gaps.
Theoretical Foundations

Despite the name "Optimal Supervised Learning Partitioning", the algorithm lacks:

* Global optimality guarantees: Greedy merging is myopic
* Formal loss function: No explicit objective being minimized

e LP formulation: No constraint matrix, simplex solver, or dual variables

A true optimal partitioning approach would formulate the problem as:

k
min {— ;IVi(b) + /\k‘}

subject to:

M=

Zijzl VZE{L,N}
j=1

WOEj S WOEjJrl VJ

Zij € {0, 1}, bj eR
where z;; indicates observation ¢ assigned to bin j, and X is a complexity penalty. This requires
MILP solvers (CPLEX, Gurobi) and is intractable for N > 10%.
Comparison with Related Methods

Method Pre-binning Direction Merge (max_bins) Target Type
OSLP Quantile (unique vals) Majority vote  Min (IV(i) + IV(i+1)) double
MRBLP Equal-frequency Majority vote  Min IV(@) - IVG+1)l  int
MOB Equal-frequency First two bins  Min IV loss int
MBLP Quantile (data) Correlation Min IV loss int

When to Use OSLP

* Use OSLP: Never. Use MBLP or MOB instead for better pre-binning and merge strategies.
* Use MBLP: For robust direction detection via correlation.
» Use MDLP: For information-theoretic stopping criteria.

» Use True LP: For small datasets (N < 1000) where global optimality is critical and computa-
tional cost is acceptable.
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Value
A list containing:

id Integer bin identifiers (1-based).

bin Character bin intervals "[lower ;upper)”.
woe Numeric WoE values (guaranteed monotonic).
iv Numeric IV contributions per bin.

count Integer total observations per bin.
count_pos Integer positive class counts.
count_neg Integer negative class counts.
event_rate Numeric event rates.

cutpoints Numeric bin boundaries (excluding +Inf).
total_iv Total Information Value.

converged Logical convergence flag.

iterations Integer iteration count.

Author(s)
Lopes, J. E.

References

* Mironchyk, P., & Tchistiakov, V. (2017). "Monotone optimal binning algorithm for credit risk
modeling". Frontiers in Applied Mathematics and Statistics, 3, 2.

e Zeng, G. (2014). "A Necessary Condition for a Good Binning Algorithm in Credit Scoring".
Applied Mathematical Sciences, 8(65), 3229-3242.

* Fayyad, U. M., & Irani, K. B. (1993). "Multi-Interval Discretization of Continuous-Valued
Attributes". IJCAI pp. 1022-1027.

¢ Good, I. J. (1952). "Rational Decisions". Journal of the Royal Statistical Society B, 14(1),
107-114.

 Siddiqi, N. (2006). Credit Risk Scorecards. Wiley.

See Also

ob_numerical_mrblp for nearly identical algorithm with better pre-binning, ob_numerical_mblp
for correlation-based direction detection, ob_numerical_mdlp for information-theoretic optimality.

Examples

set.seed(123)

n <- 5000

feature <- c(
rnorm(2000, 600, 50),
rnorm(2000, 680, 40),
rnorm(1000, 740, 30)
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)

target <- c(
rbinom(2000, 1, 0.25),
rbinom(2000, 1, 0.10),
rbinom(1000, 1, 0.03)

)

result <- ob_numerical_oslp(
feature = feature,
target = target,
min_bins = 3,
max_bins = 5

)

print(result$woe)
print(result$total_iv)

# Compare with MRBLP (should be nearly identical)
result_mrblp <- ob_numerical_mrblp(

feature = feature,

target = target,

min_bins = 3,

max_bins = 5

)

data.frame(
Method = c(”OSLP”, "MRBLP"),
Total_IV = c(result$total_iv, result_mrblp$total_iv),
N_Bins = c(length(result$woe), length(result_mrblp$woe))

)

ob_numerical_sketch Optimal Binning for Numerical Variables using Sketch-based Algo-
rithm

Description

Implements optimal binning using the **KLL Sketch** (Karnin, Lang, Liberty, 2016), a proba-
bilistic data structure for quantile approximation in data streams. This is the only method in the
package that uses a fundamentally different algorithmic approach (streaming algorithms) compared
to batch processing methods (MOB, MDLP, etc.).

The sketch-based approach enables:

* Sublinear space complexity: O(k log N) vs O(N) for batch methods
* Single-pass processing: Suitable for streaming data

* Provable approximation guarantees: Quantile error ¢ ~ O(1/k)
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The method combines KLL Sketch for candidate generation with either Dynamic Programming
(for small N <= 50) or greedy IV-based selection (for larger datasets), followed by monotonicity
enforcement via the Pool Adjacent Violators Algorithm (PAVA).

Usage

ob_numerical_sketch(

feature,
target,
min_bins =
max_bins =
bin_cutoff

3,
5,

0.05,

max_n_prebins = 20,

monotonic = TRUE,
convergence_threshold = 1e-06,
max_iterations = 1000,
sketch_k = 200

Arguments

feature

target

min_bins
max_bins

bin_cutoff

max_n_prebins

monotonic

Numeric vector of feature values. Missing values (NA) are not permitted and
will trigger an error. Infinite values (Inf, -Inf) and NaN are also not allowed.

Integer vector of binary target values (must contain only 0 and 1). Must have
the same length as feature. Missing values are not permitted.

Minimum number of bins (default: 3). Must be at least 2.
Maximum number of bins (default: 5). Must be >=min_bins.

Minimum fraction of total observations per bin (default: 0.05). Must be in (0,
1). Bins with fewer observations will be merged with neighbors.

Maximum number of pre-bins to generate from quantiles (default: 20). This
parameter controls the initial granularity of binning candidates. Higher values
provide more flexibility but increase computational cost.

Logical flag to enforce WoE monotonicity (default: TRUE). Uses PAVA (Pool
Adjacent Violators Algorithm) for enforcement. Direction (increasing/ decreas-
ing) is automatically detected from the data.

convergence_threshold

max_iterations

sketch_k

Convergence threshold for IV change (default: 1e-6). Optimization stops when
the change in total IV between iterations falls below this value.

Maximum iterations for bin optimization (default: 1000). Prevents infinite loops
in the optimization process.

Integer parameter controlling sketch accuracy (default: 200). Larger values im-
prove quantile precision but increase memory usage. Approximation error:
e ~ 1/k (200 — 0.5% error). Valid range: [10, 1000]. Typical values: 50
(fast), 200 (balanced), 500 (precise).
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Details

Algorithm Overview
The sketch-based binning algorithm executes in four phases:
Phase 1: KLL Sketch Construction

The KLL Sketch maintains a compressed, multi-level representation of the data distribution:

Sketch = {Compactor,,, Compactor, . . ., Compactor; }
where each Compactor, stores items with weight 2¢. When a compactor exceeds capacity k (con-
trolled by sketch_k), it is compacted.
Theoretical Guarantees (Karnin et al., 2016):

For a quantile ¢ with estimated value §:

[rank(§) —¢- N| <e-N

where € ~ O(1/k) and space complexity is O(k log(N/k)).
Phase 2: Candidate Extraction

Approximately 40 quantiles are extracted from the sketch using a non-uniform grid with higher
resolution in distribution tails.

Phase 3: Optimal Cutpoint Selection

For small datasets (N <= 50), Dynamic Programming maximizes total IV. For larger datasets, a
greedy IV-based selection is used.

Phase 4: Bin Refinement

Bins are refined through frequency constraint enforcement, monotonicity enforcement (if requested),
and bin count optimization to minimize IV loss.

Computational Complexity
 Time: O(Nlogk + N x C + k? x I)
* Space: O(klog N) for large N

When to Use Sketch-based Binning

» Use: Large datasets (N > 1076) with memory constraints or streaming data

* Avoid: Small datasets (N < 1000) where approximation error may dominate

Value
A list of class c("OptimalBinningSketch”, "OptimalBinning") containing:
id Numeric vector of bin identifiers (1-based indexing).
bin_lower Numeric vector of lower bin boundaries (inclusive).

bin_upper Numeric vector of upper bin boundaries (inclusive for last bin, exclusive for others).

woe Numeric vector of Weight of Evidence values. Monotonic if monotonic = TRUE.
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iv Numeric vector of Information Value contributions per bin.

count Integer vector of total observations per bin.

count_pos Integer vector of positive class (target = 1) counts per bin.
count_neg Integer vector of negative class (target = 0) counts per bin.

cutpoints Numeric vector of bin split points (length = number of bins - 1). These are the internal
boundaries between bins.

converged Logical flag indicating whether optimization converged.

iterations Integer number of optimization iterations performed.

Author(s)
Lopes, J. E.

References

* Karnin, Z., Lang, K., & Liberty, E. (2016). "Optimal Quantile Approximation in Streams".
Proceedings of the 57th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
71-78. doi:10.1109/FOCS.2016.20

* Greenwald, M., & Khanna, S. (2001). "Space-efficient online computation of quantile sum-
maries". ACM SIGMOD Record, 30(2), 58-66. doi:10.1145/376284.375670

* Barlow, R. E., Bartholomew, D. J., Bremner, J. M., & Brunk, H. D. (1972). Statistical Infer-
ence Under Order Restrictions. Wiley.

* Siddiqi, N. (2006). Credit Risk Scorecards: Developing and Implementing Intelligent Credit
Scoring. Wiley. doi:10.1002/9781119201731

See Also

ob_numerical_mdlp, ob_numerical_mblp

Examples

# Example 1: Basic usage with simulated data

set.seed(123)

feature <- rnorm(500, mean = 100, sd = 20)

target <- rbinom(500, 1, prob = plogis((feature - 100) / 20))

result <- ob_numerical_sketch(
feature = feature,
target = target,
min_bins = 3,
max_bins = 5

)

# Display results
print(data.frame(

Bin = result$id,

Count = result$count,

WoE = round(result$woe, 4),


https://doi.org/10.1109/FOCS.2016.20
https://doi.org/10.1145/376284.375670
https://doi.org/10.1002/9781119201731
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IV = round(result$iv, 4)
)

# Example 2: Comparing different sketch_k values
set.seed(456)

X <= rnorm(1000, 50, 15)

y <= rbinom(1000, 1, prob = 0.3)

result_k50 <- ob_numerical_sketch(x, y, sketch_k = 50)
result_k200 <- ob_numerical_sketch(x, y, sketch_k = 200)

cat("K=50 IV:", sum(result_k50%iv), "\n")
cat("K=200 IV:", sum(result_k200$iv), "\n")

ob_numerical_ubsd Optimal Binning for Numerical Variables using Unsupervised Binning
with Standard Deviation

Description

Implements a hybrid binning algorithm that initializes bins using unsupervised statistical prop-
erties (mean and standard deviation of the feature) and refines them through supervised optimiza-
tion using Weight of Evidence (WoE) and Information Value (IV).

Important Clarification: Despite "Unsupervised” in the name, this method is predominantly
supervised. The unsupervised component is limited to the initial bin creation step (~1% of the
algorithm). All subsequent refinement (merge, monotonicity enforcement, bin count adjustment)
uses the target variable extensively.

The statistical initialization via u + ko provides a data-driven starting point that may be advanta-
geous for approximately normal distributions, but offers no guarantees for skewed or multimodal
data.

Usage

ob_numerical_ubsd(
feature,
target,
min_bins = 3,
max_bins = 5,
bin_cutoff = 0.05,
max_n_prebins = 20,
convergence_threshold = 1e-06,
max_iterations = 1000,
laplace_smoothing = 0.5
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Arguments

feature Numeric vector of feature values. Missing values (NA) and infinite values are
not permitted and will trigger an error.

target Integer or numeric vector of binary target values (must contain only 0 and 1).
Must have the same length as feature.

min_bins Minimum number of bins (default: 3). Must be at least 2.

max_bins Maximum number of bins (default: 5). Must be > min_bins.

bin_cutoff Minimum fraction of total observations per bin (default: 0.05). Must be in (0,

1).
max_n_prebins Maximum number of pre-bins before optimization (default: 20). Must be at
least equal to min_bins.

convergence_threshold
Convergence threshold for IV change (default: 1e-6).

max_iterations Maximum iterations for optimization (default: 1000).
laplace_smoothing
Laplace smoothing parameter (default: 0.5). Must be non-negative.

Details

Algorithm Overview
UBSD executes in six phases:
Phase 1: Statistical Initialization (UNSUPERVISED)

Initial bin edges are created by combining two approaches:

1. Standard deviation-based cutpoints:

{n—20,p—0,p,p+o,p+20}
where p is the sample mean and o is the sample standard deviation (with Bessel correction:
N — 1 divisor).
2. Equal-width cutpoints:

Tmax — Lmin

max_n_prebins—1
max_n_prebins }

{Jﬁmin +17 X

i=1
The union of these two sets is taken, sorted, and limited to max_n_prebins edges (plus —oco and
400 boundaries).

Rationale: For approximately normal distributions, ;o & ko cutpoints align with natural quantiles:

* 1 — 20 to i + 20 captures ~95% of data (68-95-99.7 rule)

* Equal-width ensures coverage of entire range

Limitation: For skewed distributions (e.g., log-normal), 4 — 20 may fall outside the data range,
creating empty bins.

Special Case: If o < € (feature is nearly constant), fallback to pure equal-width binning.
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Phase 2: Observation Assignment

Each observation is assigned to a bin via linear search:

bin(z;) = min{j : x; > lower; A z; < upper; }

Counts are accumulated: count, count_pos, count_neg.
Phase 3: Rare Bin Merging (SUPERVISED)

Bins with count < bin_cutoff x N are merged with adjacent bins. Merge direction is chosen to
minimize I'V loss:

direction = a i v, + 1V;
8 gy Vit Vi)

This is a supervised step (uses IV computed from target).
Phase 4: WoE/IV Calculation (SUPERVISED)
Weight of Evidence with Laplace smoothing:

nt +a n, +a«
WoE; =1 L L
© n<n++ka/n—+ka)

v, — nj—kain;—{—a
nt+ka n +ka

Information Value:

> X WOoE;

Phase 5: Monotonicity Enforcement (SUPERVISED)

Direction is auto-detected via majority vote:

TRUE  if ), ¥ wok, >WoE, 1} = D H [WoE: <WoE,_1}

increasing =
g {FALSE otherwise

Violations are resolved via PAVA (Pool Adjacent Violators Algorithm).
Phase 6: Bin Count Adjustment (SUPERVISED)

If £ > max_bins, bins are merged to minimize IV loss:
k—2
merge_idx = arg mi(r)l (IV; +1V,41)
i—

Convergence Criterion:

\IV(t) — IV(t_1)| < convergence_threshold

total total
Comparison with Related Methods

Method Initialization Truly Unsupervised? Best For
UBSD u =+ ko + equal-width  No (1 pct unsup) Normal distributions
MOB/MRBLP Equal-frequency No (0 pct unsup) General use
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MDLP Equal-frequency No (0 pct unsup) Information theory
Sketch KLL Sketch quantiles  No (0 pct unsup) Streaming data
When to Use UBSD

» Use UBSD: If you have prior knowledge that the feature is approximately normally distributed
and want bins aligned with standard deviations (e.g., for interpretability: "2 standard devia-
tions below mean").

¢ Avoid UBSD: For skewed distributions (use MDLP or MOB), for multimodal distributions
(use LDB), or when you need provable optimality (use Sketch for quantile guarantees).

* Alternative: For true unsupervised binning (no target), use cut () with breaks = "Sturges”
or "FD" (Freedman-Diaconis).

Computational Complexity
Identical to MOB/MRBLP: O(N + k? x max_iterations)

Value
A list containing:

id Integer bin identifiers (1-based).

bin Character bin intervals "[lower;upper)”.

woe Numeric WoE values (monotonic after enforcement).
iv Numeric IV contributions per bin.

count Integer total observations per bin.

count_pos Integer positive class counts.

count_neg Integer negative class counts.
event_rate Numeric event rates per bin.

cutpoints Numeric bin boundaries (excluding +00).
total_iv Total Information Value.

converged Logical convergence flag.

iterations Integer iteration count.

Author(s)
Lopes, J. E.

References
» Sturges, H. A. (1926). "The Choice of a Class Interval". Journal of the American Statistical
Association, 21(153), 65-66.
* Scott, D. W. (1979). "On optimal and data-based histograms". Biometrika, 66(3), 605-610.

* Freedman, D., & Diaconis, P. (1981). "On the histogram as a density estimator: L2 theory".
Zeitschrift fuer Wahrscheinlichkeitstheorie, 57(4), 453-476.



ob_numerical _udt 185

e Thomas, L. C. (2009). Consumer Credit Models: Pricing, Profit, and Portfolios. Oxford
University Press.

* Zeng, G. (2014). "A Necessary Condition for a Good Binning Algorithm in Credit Scoring".
Applied Mathematical Sciences, 8(65), 3229-3242.

 Siddiqi, N. (2006). Credit Risk Scorecards. Wiley.

See Also

ob_numerical_mdlp for information-theoretic binning, ob_numerical_mob for pure supervised
binning, cut for true unsupervised binning.

Examples

# Simulate normally distributed credit scores
set.seed(123)
n <- 5000

# Feature: Normally distributed FICO scores
feature <- rnorm(n, mean = 680, sd = 60)

# Target: Logistic relationship with score
prob_default <- 1 / (1 + exp((feature - 680) / 30))
target <- rbinom(n, 1, prob_default)

# Apply UBSD
result <- ob_numerical_ubsd(
feature = feature,
target = target,
min_bins = 3,
max_bins = 5

)

# Compare with MDLP (should be similar for normal data)
result_mdlp <- ob_numerical_mdlp(feature, target)

data.frame(
Method = c("UBSD", "MDLP"),
N_Bins = c(length(result$woe), length(result_mdlp$woe)),
Total_IV = c(result$total_iv, result_mdlp$total_iv)

)

ob_numerical_udt Optimal Binning for Numerical Variables using Entropy-Based Parti-
tioning
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Description

ob_numerical udt

Implements a supervised binning algorithm that uses Information Gain (Entropy) to identify the
most informative initial split points, followed by a bottom-up merging process to satisfy constraints
(minimum frequency, monotonicity, max bins).

Although historically referred to as "Unsupervised Decision Trees" in some contexts, this method is
strictly **supervised** (uses target variable) and operates **bottom-up** after an initial entropy-
based selection of cutpoints. It is particularly effective when the relationship between feature and
target is non-linear but highly informative in specific regions.

Usage

ob_numerical_udt(

feature,
target,
min_bins =
max_bins =
bin_cutoff

0.05,

max_n_prebins = 20,
laplace_smoothing = 0.5,
monotonicity_direction = "none”,
convergence_threshold = 1e-06,
max_iterations = 1000

Arguments

feature

target

min_bins
max_bins
bin_cutoff

max_n_prebins

Numeric vector of feature values. Missing values (NA) are handled by placing
them in a separate bin. Infinite values are treated as valid numeric extremes or
placed in the missing bin if they represent errors.

Integer vector of binary target values (must contain only 0 and 1). Must have
the same length as feature.

Minimum number of bins (default: 3). Must be at least 2.

Maximum number of bins (default: 5). Must be greater than or equal tomin_bins.

Minimum fraction of total observations per bin (default: 0.05). Bins below this
threshold are merged based on Event Rate similarity.

Maximum number of pre-bins (default: 20). The algorithm will select the top
max_n_prebins cutpoints with highest Information Gain. Performance Note:
High values (>50) may significantly slow down processing for large datasets due
to the O(N/2) nature of cutpoint selection.

laplace_smoothing

Laplace smoothing parameter (default: 0.5) for WoE calculation.

monotonicity_direction

String specifying monotonicity constraint:
* "none” (default): No monotonicity enforcement.
e "increasing”: WoE must be non-decreasing.
* "decreasing”: WoE must be non-increasing.



ob_numerical _udt 187

e "auto"”: Automatically determined by Pearson correlation.
convergence_threshold
Convergence threshold for IV optimization (default: 1e-6).

max_iterations Maximum iterations for optimization loop (default: 1000).

Details

Algorithm Overview

The UDT algorithm executes in four phases:
Phase 1: Entropy-Based Pre-binning

The algorithm evaluates every possible cutpoint ¢ (midpoints between sorted unique values) using
Information Gain (IG):

|SL
sl

H(SL) + |SRH(SR)>

1mg@—m@-< 5

The top max_n_prebins cutpoints with the highest IG are selected to form the initial bins. This
ensures that the starting bins capture the most discriminative regions of the feature space.

Phase 2: Rare Bin Merging

Bins with frequency < bin_cutoff are merged. The merge partner is chosen to minimize the differ-
ence in Event Rates:

merge_idx = ar min FR; — ER;
g6~ gje{i—l,i+1}| il

This differs from I'V-based methods and aims to preserve local risk probability smoothness.
Phase 3: Monotonicity Enforcement

If requested, monotonicity is enforced by iteratively merging bins that violate the specified direc-

tion ("increasing”, "decreasing”, or "auto”). Auto-direction is determined by the sign of the
Pearson correlation between feature and target.

Phase 4: Constraint Satisfaction

If £ > max_bins, bins are merged minimizing IV loss until the constraint is met.

Warning on Complexity

The pre-binning phase evaluates Information Gain for all unique values. For continuous features
with many unique values (e.g., N > 10, 000), this step can be computationally intensive (O(N?)).
Consider rounding or using ob_numerical_sketch for very large datasets.

Value

A list containing:

id Integer bin identifiers (1-based).

bin Character bin intervals " (Lower ;upper]”.
woe Numeric WoE values.

iv Numeric IV contributions.

event_rate Numeric event rates.
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count Integer total observations.

count_pos Integer positive class counts.

count_neg Integer negative class counts.

cutpoints Numeric bin boundaries.

total_iv Total Information Value.

gini Gini index (2*AUC - 1) calculated on the binned data.

ks Kolmogorov-Smirnov statistic calculated on the binned data.
converged Logical convergence flag.

iterations Integer iteration count.

Author(s)
Lopes, J. E.

References

* Quinlan, J. R. (1986). "Induction of Decision Trees". Machine Learning, 1(1), 81-106.

* Fayyad, U. M., & Irani, K. B. (1992). "On the Handling of Continuous-Valued Attributes in
Decision Tree Generation". Machine Learning, 8, 87-102.

e Liu, H, et al. (2002). "Discretization: An Enabling Technique". Data Mining and Knowledge
Discovery, 6(4), 393-423.
See Also

ob_numerical_mdlp for a pure MDL-based approach, ob_numerical_sketch for fast approxima-
tion on large data.

ob_preprocess Data Preprocessor for Optimal Binning

Description

Prepares features for optimal binning by handling missing values and optionally detecting/treating
outliers. Supports both numerical and categorical variables with configurable preprocessing strate-

gies.
Usage
ob_preprocess(
feature,
target,
num_miss_value = -999,
char_miss_value = "N/A",

n

outlier_method = "iqr",
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outlier_process = FALSE,
preprocess = "both"”,
igr_k = 1.5,
zscore_threshold = 3,
grubbs_alpha = 0.05

)
Arguments
feature Vector (numeric, character, or factor) to be preprocessed. Type is automatically
detected.
target Numeric or integer vector of binary target values (0/1). Must have the same

length as feature. Used for validation but not directly in preprocessing.
num_miss_value Numeric value to replace missing (NA) values in numerical features (default:
-999.0). Choose a value outside the expected range of the feature.
char_miss_value
Character string to replace missing (NA) values in categorical features (default:
"N/A").
outlier_method Character string specifying the outlier detection method for numerical features
(default: "igr"). Options:
* "igr": Interquartile Range method. Outliers are values < 1 — k X IQR
or > Q3+ k xIQR.
* "zscore": Z-score method. Outliers are values with |z| > threshold where
z=(x—p)/o.
e "grubbs"”: Grubbs’ test for outliers (iterative). Removes the most extreme
value if it exceeds the critical G-statistic at significance level grubbs_alpha.

outlier_process
Logical flag to enable outlier detection and treatment (default: FALSE). Only
applies to numerical features.

preprocess Character vector specifying output components (default: "both"):

e "feature": Return preprocessed feature data only.
* "report”: Return preprocessing report only (summary statistics, counts).
* "pboth"”: Return both preprocessed data and report.
igr_k Multiplier for the IQR method (default: 1.5). Larger values are more conserva-
tive (fewer outliers). Common values: 1.5 (standard), 3.0 (extreme).
zscore_threshold

Z-score threshold for outlier detection (default: 3.0). Values with |z| > threshold
are considered outliers.

grubbs_alpha Significance level for Grubbs’ test (default: 0.05). Lower values are more con-
servative (fewer outliers detected).

Details

Preprocessing Pipeline:

1. Type Detection: Automatically classifies feature as numeric or categorical based on R type.
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2. Missing Value Handling: Replaces NA with num_miss_value (numeric) or char_miss_value
(categorical).

3. Outlier Detection (if outlier_process = TRUE for numeric):

* IQR Method: Caps outliers at boundaries [@Q1 — k X IQR, Q3 + k x IQR].
¢ Z-score Method: Caps outliers at [x —t X o, u +t X 0.

¢ Grubbs’ Test: Iteratively removes the most extreme value if G = W > Gritical

4. Summary Calculation: Computes statistics before and after preprocessing for validation.

Outlier Treatment Strategies:

* IQR and Z-score: Winsorization (capping at boundaries).
* Grubbs: Removal (replaced with num_miss_value).
Use Cases:
* Before binning: Stabilize binning algorithms by removing extreme values that could create
singleton bins.
» Data quality audit: Identify features with excessive missingness or outliers.

* Model deployment: Ensure test data undergoes identical preprocessing as training data.

Value

A list with up to two elements (depending on preprocess):

preprocess Data frame with columns:

e feature: Original feature values.
» feature_preprocessed: Preprocessed feature values (NAs replaced, outliers capped or
removed).

report Data frame with one row containing:

e variable_type: "numeric” or "categorical”.
* missing_count: Number of NA values replaced.
e outlier_count: Number of outliers detected (numeric only, NA for categorical).

* original_stats: String representation of summary statistics before preprocessing (min,
Q1, median, mean, Q3, max for numeric).

* preprocessed_stats: Summary statistics after preprocessing.

References

* Grubbs, F. E. (1950). "Sample Criteria for Testing Outlying Observations". Annals of Mathe-
matical Statistics, 21(1), 27-58.

» Tukey, J. W. (1977). Exploratory Data Analysis. Addison-Wesley. [IQR method]
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Examples

# Numerical feature with outliers

set.seed(123)

feature_num <- c(rnorm(95, 50, 10), NA, NA, 200, -100, 250)
target <- sample(@:1, 100, replace = TRUE)

# Preprocess with IQR outlier detection
result_iqr <- ob_preprocess(

feature = feature_num,

target = target,

outlier_process = TRUE,

outlier_method = "iqr”,
igr_k = 1.5

print(result_iqr$report)
# Shows: missing_count = 2, outlier_count = 3

# Categorical feature
feature_cat <- c(rep("A", 30), rep("B", 40), rep("C", 28), NA, NA)
target_cat <- sample(@:1, 100, replace = TRUE)

result_cat <- ob_preprocess(
feature = feature_cat,
target = target_cat,
char_miss_value = "Missing"

)

# Compare original vs preprocessed
head(result_cat$preprocess)
# Shows NA replaced with "Missing”

# Return only report (no data)
result_report <- ob_preprocess(
feature = feature_num,
target = target,
preprocess = "report”,
outlier_process = TRUE

)

# Grubbs' test (most conservative)
result_grubbs <- ob_preprocess(
feature = feature_num,
target = target,
outlier_process = TRUE,
outlier_method = "grubbs”,
grubbs_alpha = 0.01 # Very strict
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plot.obwoe

plot.obwoe

Plot Method for obwoe Objects

Description

Creates publication-quality visualizations of optimal binning results. Supports multiple plot types
including IV ranking charts, WoE profiles, and bin distribution plots. All plots follow credit scoring
visualization conventions.

Usage

## S3 method for class 'obwoe'

plot(
X’

type = c("iv",

n

woe"”, "bins"),

feature = NULL,

top_n = 15,

show_threshold = TRUE,

Arguments

X

type

feature

top_n

show_threshold

Details
Plot Types:

An object of class "obwoe".
Character string specifying the plot type:

"iv" Information Value ranking bar chart (default)
"woe"” Weight of Evidence profile for selected features
"bins" Bin distribution (count and event rate)

Character vector of feature names to plot (for "woe” and "bins” types). If NULL,
uses top 6 features by I'V.

Integer. For "iv" type, number of top features to display. Default is 15. Set to
NULL to display all.

Logical. For "iv" type, draw horizontal lines at [V thresholds (0.02, 0.10, 0.30)?
Default is TRUE.

Additional arguments passed to base plotting functions.

IV Ranking (type = "iv"): Horizontal bar chart showing features ranked by Information Value.
Colors indicate predictive power classification:

e Gray: IV <0.02 (Unpredictive)

e Yellow: 0.02 <=1V < 0.10 (Weak)

e Orange: 0.10 <=1V < 0.30 (Medium)
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e Green: 0.30 <=1V < 0.50 (Strong)
e Red: IV >= 0.50 (Suspicious)
WOoE Profile (type = "woe"): Bar chart showing Weight of Evidence values for each bin. Positive

WoE indicates higher-than-average event rate; negative WoE indicates lower-than-average event
rate. Monotonic WoE patterns are generally preferred for interpretability.

Bin Distribution (type = "bins”): Dual-axis plot showing observation counts (bars) and event
rates (line). Useful for diagnosing bin quality and class imbalance.

Value

Invisibly returns NULL. Called for side effect (plotting).

References

Thomas, L. C., Edelman, D. B., & Crook, J. N. (2002). Credit Scoring and Its Applications. SIAM
Monographs on Mathematical Modeling and Computation. doi:10.1137/1.9780898718317

See Also

obwoe, summary . obwoe.

Examples

set.seed(42)
df <- data.frame(
age = rnorm(500, 40, 15),
income = rgamma(500, 2, 0.0001),
score = rnorm(500, 600, 100),
target = rbinom(500, 1, 0.2)
)
result <- obwoe(df, target = "target"”)

# IV ranking chart
plot(result, type = "iv")

# WoE profile for specific feature
plot(result, type = "woe", feature = "age")

# Bin distribution
plot(result, type = "bins"”, feature = "income")


https://doi.org/10.1137/1.9780898718317
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plot.obwoe_gains Plot Gains Table

Description

Visualizes gains table metrics including cumulative capture curves, KS plot, and lift chart.

Usage
## S3 method for class 'obwoe_gains'
plot(x, type = c("cumulative”, "ks", "lift", "woe_iv"), ...)
Arguments
X An object of class "obwoe_gains”.
type Character string: "cumulative” (default), "ks", "1ift", or "woe_iv".

Additional arguments passed to plotting functions.

Value

Invisibly returns NULL.

prep.step_obwoe Prepare the Optimal Binning Step

Description

Fits the optimal binning models on training data. This method is called by prep and should not be
invoked directly.

Usage
## S3 method for class 'step_obwoe'
prep(x, training, info = NULL, ...)
Arguments
X A step_obwoe object.
training A tibble or data frame containing the training data.
info A tibble with column metadata from the recipe.

Additional arguments (currently unused).

Value

A trained step_obwoe object with binning_results populated.
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print.obwoe Print Method for obwoe Objects

Description

Displays a concise summary of optimal binning results, including the number of successfully pro-
cessed features and top predictors ranked by Information Value.

Usage
## S3 method for class 'obwoe'
print(x, ...)
Arguments
X An object of class "obwoe".
Additional arguments (currently ignored).
Value

Invisibly returns x.

See Also

summary . obwoe for detailed statistics, plot.obwoe for visualization.

print.step_obwoe Print Method for step_obwoe

Description

Prints a concise summary of the step_obwoe object.

Usage

## S3 method for class 'step_obwoe'

print(x, width = max(20L, options()$width - 30L), ...)
Arguments

X A step_obwoe object.

width Maximum width for printing term names.

Additional arguments (currently unused).

Value

Invisibly returns x.
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required_pkgs.step_obwoe
Required Packages for step_obwoe

Description

Lists the packages required to execute the step_obwoe transformation.

Usage
## S3 method for class 'step_obwoe'
required_pkgs(x, ...)

Arguments
X A step_obwoe object.

Additional arguments (currently unused).

Value

A character vector of package names.

step_obwoe Optimal Binning and WoE Transformation Step

Description

step_obwoe () creates a specification of a recipe step that discretizes predictor variables using one
of 28 state-of-the-art optimal binning algorithms and transforms them into Weight of Evidence
(WoE) values. This step fully integrates the OptimalBinningWoE package into the tidymodels
framework, supporting supervised discretization for both binary and multinomial classification tar-
gets with extensive hyperparameter tuning capabilities.

Usage
step_obwoe(
recipe,
role = "predictor”,

trained = FALSE,
outcome = NULL,
algorithm = "auto”,
min_bins = 2L,
max_bins = 10L,
bin_cutoff = 0.05,
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output = c("woe”, "bin", "both"),

suffix_woe = "_woe",
suffix_bin = "_bin",
na_woe = 0,

control = list(),
binning_results = NULL,

skip = FALSE,

id = recipes::rand_id("obwoe")

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

One or more selector functions to choose variables for this step. See selections

for available selectors. Common choices include all_predictors(), all_numeric_predictors(),
or all_nominal_predictors(). Ensure the selected variables are compatible

with the chosen algorithm (e.g., do not apply "md1p” to categorical data).

role For variables created by this step, what role should they have?
Default is "predictor”.

trained A logical indicating whether the step has been trained (fitted). This should not
be set manually.

outcome A character string specifying the name of the binary or multinomial response
variable. This argument is required as all binning algorithms are supervised.
The outcome must exist in the training data provided to prep(). The outcome
should be encoded as a factor (standard for tidymodels classification) or as inte-
gers 0/1 for binary, 0/1/2/... for multinomial.

algorithm Character string specifying the binning algorithm to use. Use "auto” (de-
fault) for automatic selection based on target type: "jedi"” for binary targets,
"jedi_mwoe" for multinomial.

Auvailable algorithms are organized by supported feature types:

Universal (numerical and categorical): "auto”, "jedi", "jedi_mwoe", "cm",
"dp”, "dmiv", "fetb"”, "mob", "sketch”, "udt”

Numerical only: "bb"”, "ewb"”, "fast_mdlp”, "ir", "kmb", "1db"”, "lpdb",
"mblp”, "md1lp”, "mrblp”, "oslp"”, "ubsd”

Categorical only: "gmb”, "ivb"”, "mba"”, "milp”, "sab", "sblp”, "swb"

This parameter is tunable with tune().

min_bins Integer specifying the minimum number of bins to create. Must be at least 2.
Default is 2. This parameter is tunable with tune().

max_bins Integer specifying the maximum number of bins to create. Must be greater than
or equal to min_bins. Default is 10. This parameter is tunable with tune().

bin_cutoff Numeric value between 0 and 1 (exclusive) specifying the minimum proportion
of total observations that each bin must contain. Bins with fewer observations
are merged with adjacent bins. This serves as a regularization mechanism to
prevent overfitting and ensure statistical stability of WoE estimates. Default is
0.05 (5%). This parameter is tunable with tune().
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output Character string specifying the transformation output format:

"woe" Replaces the original variable with WoE values (default). This is the
standard choice for logistic regression scorecards.

"bin” Replaces the original variable with bin labels (character). Useful for
tree-based models or exploratory analysis.

"both” Keeps the original column and adds two new columns with suffixes
_woe and _bin. Useful for model comparison or audit trails.

suffix_woe Character string suffix appended to create WoE column names when output =
"both". Default is " _woe".

suffix_bin Character string suffix appended to create bin column names when output =
"both". Default is "_bin".

na_woe Numeric value to assign to observations that cannot be mapped to a bin during
bake (). This includes missing values (NA) and unseen categories not present in
the training data. Default is 0, which represents neutral evidence (neither good
nor bad).

control A named list of additional control parameters passed to control.obwoe. These
provide fine-grained control over algorithm behavior such as convergence thresh-
olds and maximum pre-bins. Parameters specified directly in step_obwoe()
(e.g., bin_cutoff) take precedence over values in this list.

binning_results
Internal storage for fitted binning models after prep(). Do not set manually.

skip Logical. Should this step be skipped when bake () is called on new data? De-

fault is FALSE. Setting to TRUE is rarely needed for WoE transformations but may
be useful in specialized workflows.

id A unique character string to identify this step. If not provided, a random identi-
fier is generated.

Details

Weight of Evidence Transformation:

Weight of Evidence (WOE) is a supervised encoding technique that transforms categorical and
continuous variables into a scale that measures the predictive strength of each value or bin relative
to the target variable. For a bin ¢, the WoE is defined as:

WoE, — In ( Distribution of Events; )

Distribution of Non-Events;

Positive WoE values indicate the bin has a higher proportion of events (e.g., defaults) than the
overall population, while negative values indicate lower risk.

Algorithm Selection Strategy:
The algorithm parameter provides access to 28 binning algorithms:
e Usealgorithm= "auto" (default) for automatic selection: "jedi" for binary targets, " jedi_mwoe"
for multinomial.

* Use algorithm = "mob"” (Monotonic Optimal Binning) when monotonic WoE trends are re-
quired for regulatory compliance (Basel/IFRS 9).
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e Use algorithm="mdlp"” for entropy-based discretization of numerical variables (requires
all_numeric_predictors()).

e Use algorithm = "dp" (Dynamic Programming) for exact optimal solutions when computa-
tional cost is acceptable.

If an incompatible algorithm is applied to a variable (e.g., "md1lp"” on a factor), the step will issue
a warning during prep() and skip that variable, leaving it untransformed.

Handling New Data:
During bake (), observations are mapped to bins learned during prep():
* Numerical variables: Values are assigned to bins based on the learned cutpoints using inter-
val notation.

 Categorical variables: Categories are matched to their corresponding bins. Categories not
seen during training receive the na_woe value.

* Missing values: Always receive the na_woe value.

Tuning with tune:
This step is fully compatible with the tune package. The following parameters support tune():

e algorithm: See obwoe_algorithm.
e min_bins: See obwoe_min_bins.
e max_bins: See obwoe_max_bins.

¢ bin_cutoff: See obwoe_bin_cutoff.

Case Weights:

This step does not currently support case weights. All observations are treated with equal weight
during binning optimization.

Value

An updated recipe object with the new step appended.

References

Siddiqi, N. (2006). Credit Risk Scorecards: Developing and Implementing Intelligent Credit Scor-
ing. John Wiley & Sons. doi:10.1002/9781119201731

Thomas, L. C., Edelman, D. B., & Crook, J. N. (2002). Credit Scoring and Its Applications. SIAM
Monographs on Mathematical Modeling and Computation. doi:10.1137/1.9780898718317

Navas-Palencia, G. (2020). Optimal Binning: Mathematical Programming Formulation and Solu-
tion Approach. Expert Systems with Applications, 158, 113508. doi:10.1016/j.eswa.2020.113508

See Also

obwoe for the underlying binning engine, control . obwoe for advanced control parameters, obwoe_algorithm,
obwoe_min_bins, obwoe_max_bins, obwoe_bin_cutoff for tuning parameter definitions, recipe,
prep, bake for the tidymodels recipe framework.


https://doi.org/10.1002/9781119201731
https://doi.org/10.1137/1.9780898718317
https://doi.org/10.1016/j.eswa.2020.113508
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Examples

library(recipes)

# Simulated credit data
set.seed(123)
credit_data <- data.frame(
age = rnorm(500, 45, 12),
income = exp(rnorm(500, 10, 0.6)),
employment = sample(c("Employed”, "Self-Employed”, "Unemployed"),
500,
replace = TRUE, prob = c(0.7, 0.2, 0.1)
),
education = factor(c("HighSchool”, "Bachelor"”, "Master”, "PhD")[
sample(1:4, 500, replace = TRUE, prob = c(0.3, 0.4, 0.2, 0.1))
D,
default = factor(rbinom(500, 1, 0.15),
levels = c(0, 1),
labels = c(”"No", "Yes")

)
)
# Example 1: Basic usage with automatic algorithm selection
rec_basic <- recipe(default ~ ., data = credit_data) %>%
step_obwoe(all_predictors(), outcome = "default"”)

rec_prepped <- prep(rec_basic)
baked_data <- bake(rec_prepped, new_data = NULL)
head(baked_data)

# View binning details
tidy(rec_prepped, number = 1)

# Example 2: Numerical-only algorithm on numeric predictors
rec_mdlp <- recipe(default ~ age + income, data = credit_data) %>%
step_obwoe(all_numeric_predictors(),

outcome = "default”,
algorithm = "mdlp”,
min_bins = 3,
max_bins = 6

)

# Example 3: Output both bins and WoE
rec_both <- recipe(default ~ age, data = credit_data) %>%
step_obwoe (age,
outcome = "default”,
output = "both”
)

baked_both <- bake(prep(rec_both), new_data = NULL)
names (baked_both)
# Contains: default, age, age_woe, age_bin
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# Example 4: Custom control parameters
rec_custom <- recipe(default ~ ., data = credit_data) %>%
step_obwoe(all_predictors(),
outcome = "default”,
algorithm = "mob”,
bin_cutoff = 0.03,
control = list(
max_n_prebins = 30,
convergence_threshold = 1e-8

)

)
# Example 5: Tuning specification (for use with tune package)
# rec_tune <- recipe(default ~ ., data = credit_data) %>%
#  step_obwoe(all_predictors(),
# outcome = "default”,
# algorithm = tune(),
# min_bins = tune(),
# max_bins = tune())

summary . obwoe Summary Method for obwoe Objects

Description

Generates comprehensive summary statistics for optimal binning results, including predictive power
classification based on established IV thresholds (Siddiqi, 2006), aggregate metrics, and feature-
level diagnostics.

Usage
## S3 method for class 'obwoe'
summary (object, sort_by = "iv", decreasing = TRUE, ...)
Arguments
object An object of class "obwoe".
sort_by Character string specifying the column to sort by. Options: "iv" (default),
"n_bins”, "feature".
decreasing Logical. Sort in decreasing order? Default is TRUE for IV, FALSE for feature
names.

Additional arguments (currently ignored).
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Details
IV Classification Thresholds:
Following Siddiqi (2006), features are classified by predictive power:

Classification IV Range
Unpredictive < 0.02

Weak 0.02-0.10
Medium 0.10 - 0.30
Strong 0.30 - 0.50
Suspicious > 0.50

Features with IV > 0.50 should be examined for data leakage or overfitting, as such high values
are rarely observed in practice.

Value

An S3 object of class "summary .obwoe” containing:

feature_summary Data frame with per-feature statistics including IV classification (Unpredic-
tive/Weak/Medium/Strong/Suspicious)

aggregate Named list of aggregate statistics:

n_features Total features processed

n_successful Features without errors

n_errors Features with errors

total_iv_sum Sum of all feature IVs

mean_iv Mean IV across features

median_iv Median IV across features

mean_bins Mean number of bins

iv_range Min and max IV values
iv_distribution Table of IV classification counts

target Target column name

target_type Target type (binary/multinomial)

References

Siddiqi, N. (2006). Credit Risk Scorecards: Developing and Implementing Intelligent Credit Scor-
ing. John Wiley & Sons. doi:10.1002/9781119201731

See Also

obwoe for the main binning function, print.obwoe, plot.obwoe.


https://doi.org/10.1002/9781119201731
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Examples

set.seed(42)

df <- data.frame(
x1 = rnorm(500), x2 = rnorm(500), x3 = rnorm(500),
target = rbinom(500, 1, 0.2)

)
result <- obwoe(df, target = "target")
summary (result)
tidy.step_obwoe Tidy Method for step_obwoe
Description

Returns a tibble with information about the binning transformation. For trained steps, returns one
row per bin per feature, including bin labels, WoE values, and IV contributions. For untrained steps,
returns a placeholder tibble.

Usage
## S3 method for class 'step_obwoe'
tidy(x, ...)
Arguments
X A step_obwoe object.
Additional arguments (currently unused).
Value

A tibble with columns:

terms Character. Feature name.

bin Character. Bin label or interval.

woe Numeric. Weight of Evidence value for the bin.
iv Numeric. Information Value contribution of the bin.

id Character. Step identifier.
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tunable.step_obwoe Tunable Parameters for step_obwoe

Description

Returns information about which parameters of step_obwoe can be tuned using the tune package.

Usage
## S3 method for class 'step_obwoe'
tunable(x, ...)

Arguments
X A step_obwoe object.

Additional arguments (currently unused).

Value

A tibble describing tunable parameters.
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