
JSS Journal of Statistical Software
March 2025, Volume 112, Issue 3. doi: 10.18637/jss.v112.i03

RESI: An R Package for Robust Effect Sizes

Megan Jones
Vanderbilt University

Kaidi Kang
Vanderbilt University

Simon Vandekar
Vanderbilt University

Abstract

Effect size indices are useful parameters that quantify the strength of association
and are unaffected by sample size. There are many available effect size parameters and
estimators, but it is difficult to compare effect sizes across studies as most are defined
for a specific type of population parameter. We recently introduced a new robust effect
size index (RESI) and confidence interval, which is advantageous because it is not model-
specific. Here we present the RESI R package, which makes it easy to report the RESI and
its confidence interval for many different model classes, with a consistent interpretation
across parameters and model types. The package produces coefficient, ANOVA tables,
and overall Wald tests for model inputs, appending the RESI estimate and confidence
interval to each. The package also includes functions for visualization and conversions
to and from other effect size measures. For illustration, we analyze and interpret three
datasets using different model types.

Keywords: R, effect size, confidence intervals, CRAN, bootstrap.

1. Introduction

Standardized effect sizes are unitless indices used to describe the magnitude of an association.
While unstandardized effect sizes can be informative in a given scientific context, standardized
measures have the benefit of allowing communication of associations for outcomes measured
without an interpretable scale and facilitating comparison across settings where outcomes are
measured using different instruments. Unlike p values, which are often used to evaluate sta-
tistical significance, effect sizes do not depend on sample size (Betensky 2019). A well known
criticism of p values and significance testing is that for large sample sizes, very small effects will
be found as significant, even though these effects may be negligible in real-world application,
as noted in Principle 5 of the American Statistical Association (ASA) statement on statistical
significance and p values (Wasserstein and Lazar 2016). In contrast, effect sizes communicate
the strength of the effect rather than the existence of an effect of arbitrary size, which may be

https://doi.org/10.18637/jss.v112.i03
https://orcid.org/0000-0001-7999-7031
https://orcid.org/0000-0003-0922-5727
https://orcid.org/0000-0002-7457-9073

2 RESI: Robust Effect Sizes in R

more meaningful in practice (Sullivan and Feinn 2012). Although increased sample size helps
improve the precision of the estimate of an effect size, the effect size is a parameter that is not
dependent on sample size (Kang, Jones, Armstrong, Avery, McHugo, Heckers, and Vandekar
2023). Standardized effect sizes are also important statistical parameters for power analysis,
as power is a function of the effect size, sample size, and degrees of freedom of the statistical
test. Journals and statistical guidelines are increasingly encouraging authors to report effect
sizes, either unstandardized or standardized, and their confidence intervals (CIs) alongside or
in place of p values (Wasserstein and Lazar 2016; Wilkinson 1999; American Psychological
Association 1994, 2001, 2010, 2020; Althouse, Below, Claggett, Cox, de Lemos, Deo, Duval,
Hachamovitch, Kaul, Keith, Secemsky, Teixeira-Pinto, and Roger 2021). However, they are
still not commonly reported (Fritz, Morris, and Richler 2012; Amaral and Line 2021) and
when reported, they often do not include confidence intervals (Fritz et al. 2012).
There are four challenges to reporting effect sizes that limit their widespread use. First, there
are many different effect size measures available (Cohen 1988; Hedges and Olkin 1985; Rosen-
thal 1994; Zhang and Schoeps 1997; Serdar, Cihan, Yücel, and Serdar 2021), but they are
typically defined in the context of a specific population parameter, which makes comparing
effects across a wide range of models difficult (Vandekar, Tao, and Blume 2020). Second,
many available effect size measures do not allow for nuisance parameters or covariates (Van-
dekar et al. 2020). Third, many effect size measures do not have accurate confidence interval
procedures, which precludes quantification of the uncertainty around the effect size estimate
(Kang et al. 2023). Finally, many default model summary functions available in statistical
software automatically output p values, but few also report effect sizes with confidence inter-
vals. The RESI package (Jones, Kang, and Vandekar 2025) for R (R Core Team 2024) was
designed to address these challenges by implementing a recently proposed effect size measure.
Methods for many common effect sizes are available in most major statistical software. In the
SAS® software (SAS Institute Inc. 2020), the GLM procedure allows the user to compute three
effect size measures with confidence intervals for linear models: the noncentrality parameter
of the F statistic, the squared semipartial correlation, and the squared full partial correlation.
There is also a macro (effect_size) for SAS software available for calculating Cohen’s d from
survey data following one of three designs (Kadel and Kip 2012). SPSS includes functionality
to compute Cohen’s d with confidence intervals for t tests, Pearson correlation, partial η2,
ω2, and R2 (IBM Corporation 2011). In Stata (StataCorp 2023), estimates and confidence
intervals for effect size measures such as Cohen’s d, Hedges’s g, Glass’s ∆ and point-biserial
correlation can be obtained using the esize function on raw data or the esizei function on
summary statistics. The estat esize command can be used following an ANOVA model
or linear regression model to compute η2 for model variables. Confidence intervals for effect
sizes based on bootstrapping are also available in Stata.
There are several R packages available for effect size calculation. For example, packages such
as MOTE (Buchanan, Gillenwaters, Scofield, and Valentine 2019), MBESS (Kelley 2007,
2023), effsize (Torchiano 2020), esvis (Anderson 2020), lsr (Navarro 2021), esc (Lüdecke
2019), and rcompanion (Mangiafico 2024) include functionality that allows the user to man-
ually input data or the relevant test statistics for conversion to a variety of desired effect size
measures. Packages MOTE, effsize and esc compute confidence intervals for effect sizes using
noncentral or central distributions. Package rcompanion utilizes bootstrapping for effect size
confidence intervals, and MBESS implements both noncentral and bootstrapped confidence
intervals. The effectsize package implements many effect size measures and conversions be-

Journal of Statistical Software 3

tween some of them (Ben-Shachar, Lüdecke, and Makowski 2020). Package effectsize allows
users to input test statistics, but also conveniently accepts fitted models directly to compute
the desired effect size. This package computes confidence intervals in a variety of methods
depending on the effect size measure, but several functions use a noncentral distribution and
a few use bootstrapping. The emmeans package also allows post-model-fitting effect size
(Cohen’s d) estimation for contrasts of estimated marginal means in emmGrid objects and
computes parametric confidence intervals (Lenth 2016, 2024). Another package, bootES, fo-
cuses specifically on providing bootstrapped confidence intervals for unstandardized effect
sizes, Cohen’s d, Pearson correlation, and Hedges’s g (Gerlanc and Kirby 2023). Each of
these tools can be helpful for computing effect sizes in a given data context; however, they
do not fully address the general challenges to reporting and comparing effect sizes mentioned
above. In particular, many confidence interval methods for effect sizes rely on chi-square, F ,
or t statistic implementations, which have below nominal coverage rate (Kang et al. 2023).
There is a need for an effect size index that can be broadly applied and compared across
model types and user-friendly software tools that implement such a measure to promote easy
reporting of effect sizes.

The recently proposed robust effect size index (RESI) (Vandekar et al. 2020; Kang et al. 2023)
addresses many of these challenges because it is broadly applicable across all common model
types, it accommodates nuisance parameters, and there is an effective confidence interval
procedure available (Kang et al. 2023). The RESI can be estimated from chi-square, F , Z,
and t statistics. It is also possible to convert RESI estimates to and from other common effect
size measures, such as Cohen’s d, Cohen’s f2, and R2 (Vandekar et al. 2020).

The RESI R package builds on existing infrastructure for robust standard error estimation
(Zeileis 2006) and bootstrapping (Canty and Ripley 2024) allowing easy estimation, reporting,
and visualization and is available from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/package=RESI. Similarly to the effectsize package, RESI is
designed to work on model inputs, so that effect size estimates can be easily obtained in
tandem with common model summaries. These model-based functions also allow for a large
amount of customization in the estimation and reporting process. Directly inputting test
statistics and the relevant degrees of freedom and sample size is an option as well, helpful
for model types that have not yet been implemented via dedicated methods in the package.
The package also aims to work with other effect size measures, providing functions to convert
to and from a few common effect size indices. Plotting functions are provided to allow for
quick visualization of the effect size estimates present in models. With these tools, we hope
to make obtaining the highly generalizable RESI simple and accessible, in order to increase
ease of reporting effect sizes in research.

In this paper, we outline the theory underlying the RESI, its estimators, and confidence
interval procedure in Section 2. We then discuss the RESI package, its structure, function
arguments, and dependencies in Section 3. Finally, Section 4 provides three in-depth examples
using the RESI package to perform analysis of effect sizes, from model creation to post-
estimation visualization while Section 5 concludes the paper.

https://CRAN.R-project.org/package=RESI

4 RESI: Robust Effect Sizes in R

2. Statistical methods

2.1. RESI definition

The RESI is defined from the noncentrality parameter of a test statistic in the context of
M-estimation, so it is broadly applicable across statistical models and parameters. A full
introduction to the RESI can be found in our previous work (Vandekar et al. 2020; Kang
et al. 2023).
Briefly, consider a dataset of independent observations W = {W1, . . . , Wn} with probability
distribution P and let θ = (α, β) ∈ Rm be a vector of parameters with α ∈ Rm0 nuisance
parameters and β ∈ Rm1 the target parameters of interest. The RESI is constructed using the
test statistic for the null hypothesis H0 : β = β0 ∈ Rm1 , where β0 is a reference value, usually
zero (Vandekar and Stephens 2021). Assuming known variance, the usual Wald-style test
statistic, centered at the reference value, T 2 = n(β̂ − β0)⊤Σ−1

β (θ̂)(β̂ − β0) follows a chi-square
distribution with m1 degrees of freedom and noncentrality parameter n(β −β0)⊤Σ−1

β (β −β0).
The RESI, Sβ, is the square root of the component of the noncentrality parameter that does
not depend on the sample size

Sβ =
√

(β − β0)⊤Σ−1
β (β − β0).

2.2. RESI estimators

The RESI is very general, because its estimator can be computed for chi-square, F , Z, and
t statistics (Vandekar et al. 2020; Kang et al. 2023). In this section, we review these estimators
and introduce new estimators for a modified RESI using Z and t statistics, which have the
advantage that the proposed modification shows the direction of the effect for univariate
parameters. We also describe the use of robust covariance in the estimation of the test
statistics.
The original estimator for Sβ was developed using an estimator for noncentrality parameters
of chi-square statistics (Vandekar et al. 2020)

Ŝβ =
{

max
[
0,

T 2 − m1
n

]} 1
2
. (1)

Because Sβ is nonnegative, the max operator ensures that the estimator is also nonnegative
in finite samples.
Under normality, the finite sample distribution of the asymptotic chi-square statistic divided
by its degrees of freedom is an F distribution (Mantel 1963). When this is true, a better
small sample estimator can be computed using method of moments with the F distribution

Ŝβ =
{

max
[
0,

F × (n − m − 2) − m1 × (n − m)
n × (n − m)

]} 1
2
. (2)

The RESI is called robust because its estimator is consistent under misspecification of the
variance model when estimated with a robust test statistic (Vandekar et al. 2020; MacKinnon
and White 1985), which uses a heteroskedastic consistent sandwich estimator for Σβ (White

Journal of Statistical Software 5

1980; MacKinnon and White 1985; Long and Ervin 2000). The RESI estimator is a consistent
estimator of the true effect size in contexts where the robust variance estimator yields con-
sistent results under aspects of model misspecification, such as unknown heteroskedasticity
between measurements in general linear models or a misspecified correlation structure in GEE
models. When the mean model is misspecified, the RESI is a consistent estimator of the best
approximation of the true model within the class of models considered (Boos and Stefanski
2013).
With Equation 1 and Equation 2, we can compute RESI estimates for chi-square and F
statistics, which are easily obtained from many statistical models. However, these estimates
have the feature of being nonnegative, so they do not describe the direction of an effect.
While this makes them generally applicable across univariate (can be negative and positive)
and multivariate (can only be positive) parameters, for univariate parameters it is also useful
to be able to obtain a signed effect size estimate, showing the directionality of the effect. With
this in mind, we introduce RESI estimators for Z and t statistics. We use two approaches to
develop these estimators, leading to two estimators with different properties and advantages.
The first approach is the same as the development of the RESI estimators for chi-square and
F statistic. We use the method of moments for the Z or t statistics to find estimators for
Sβ. Consider a Z statistic, whose expected value is EZ =

√
nsgn(β)Sβ, where sgn is the sign

function, which leads to the signed RESI estimator

Ŝβ = Z√
n

(3)

For a t statistic with degrees of freedom n − m and noncentrality parameter
√

nSβ, when
n−m > 1, the expected value is Et =

√
n(n−m)

2
Γ((n−m−1)/2)

Γ((n−m)/2) Sβ. This gives the RESI estimator

Ŝβ = t
√

2Γ((n − m)/2)√
n(n − m)Γ((n − m − 1)/2)

(4)

The advantage of estimators in Equation 3 and Equation 4 is that both are unbiased for S.
The second approach leverages the relationship between Z and chi-square statistics and t and
F statistics. Squaring a Z or t statistic gives a chi-square or F statistic, respectively. We
then use Equation 1 and Equation 2 as RESI estimators for Z and t statistics by multiplying
them with the sign of the test statistic. For example,

Ŝβ = sgn(Z)×
{

max
[
0,

Z2 − 1
n

]} 1
2
, (5)

and similarly for the t estimator. These estimators are biased, but consistent and have smaller
mean squared error than the estimators in Equation 3 and Equation 4. These estimators
are advantageous because their estimates are equal in absolute value to the unsigned RESI
estimates, whereas the estimators in Equation 3 and Equation 4 are not.
Note that the RESI estimators are based on the Wald test statistics, which are dependent on
the specific modeling decisions made when fitting the data. The RESI is linear on the scale
of the linear predictor (e.g., the RESI for a logistic model is linear on the log-odds scale).

6 RESI: Robust Effect Sizes in R

Cohen’s d RESI “Rule of thumb” interpretation
[0, 0.2] [0, 0.1] No effect – small
(0.2, 0.5] (0.1, 0.25] Small – medium
(0.5, 0.8] (0.25, 0.4] Medium – large
> 0.8 > 0.4 Large

Table 1: Guidelines for interpreting size of (absolute) RESI estimates based on analogous
suggestions from (Cohen 1988). Note these ranges are a rule of thumb and effect sizes should
always be interpreted within the scientific context.

2.3. Bootstrapping procedure for confidence intervals

In recent work, we showed that chi-square and F confidence intervals are not accurate for
computing effect size confidence intervals in general. In particular, when the test statistic is es-
timated using a robust covariance estimator, or when the study design is observational, using a
chi-square or F distribution for the RESI estimate underestimates the variance and will there-
fore produce confidence intervals that provide less than nominal coverage level (Kang et al.
2023). These chi-square and F confidence intervals with below nominal coverage are those
that are implemented in most other software packages (SAS Institute Inc. 2016; Buchanan
et al. 2019; Torchiano 2020; Lüdecke 2019; Ben-Shachar et al. 2020; Kelley 2023). As an
alternative, we proposed a nonparametric bootstrap for the RESI confidence interval because
it produces confidence intervals with nominal coverage most consistently (Kang et al. 2023).
This is the procedure implemented in the RESI package. For linear models and nonlinear
least squares models, a Bayesian bootstrap is also available as an option (Rubin 1981).

2.4. Meaningful RESI ranges

When interpreting the RESI estimates, it is useful to have an idea of what constitutes a
“large” or “small” effect. While a meaningful effect size (standardized or unstandardized)
ultimately depends on the scientific context, ranges can be posited based on recommended
effect size ranges for Cohen’s d assuming equal sample proportions of the two groups and
equal variance (Cohen 1988, Table 1). These are guidelines based on a difference in means in
behavioral sciences and the size of a meaningful effect varies by field; effort should be made
to interpret estimates within the given scientific context.

3. The RESI package
RESI is available to the public on CRAN under the GPL-3 license. To download, one can
use the following code:

R> install.packages("RESI")

The development version is available on GitHub at https://github.com/statimagcoll/
RESI. This can be downloaded using the devtools package (Wickham, Hester, Chang, and
Bryan 2022) with the following command:

R> devtools::install_github("statimagcoll/RESI")

https://github.com/statimagcoll/RESI
https://github.com/statimagcoll/RESI

Journal of Statistical Software 7

Inputs Analysis/
Computation Summaries Visualization

Fitted
model
object

Z, t, chi-
square, or
F statistic

Other
effect size
measure

(R2, f2, d)

RESI (S)
estimate

resi
resi_pe

z2S
t2S

chisq2S
f2S

Rsq2S
fsq2S
d2S

S2Rsq
S2fsq
S2d

summary.resi
Anova.resi
anova.resi

omnibus.resi

plot.resi
plot.summary_resi
plot.anova_resi

ggplot.resi
ggplot.summary_resi
ggplot.anova_resi

print.resi
print.summary_resi
print.omnibus_resi

Figure 1: RESI package structure and logo. Inputs to package functions can be models of
supported types, test statistics with relevant degrees of freedom and sample size, or effect
size measures. The analysis functions compute RESI estimates with or without confidence
intervals, or convert to and from other effect size indices. Summary functions provide relevant
information extracted from a ‘resi’ object. Post-estimation visualization functions include
plotting and printing.

3.1. Operation

Users should have R version 2.10 or higher to use RESI. The RESI package is designed
to easily add RESI estimates and confidence intervals to common model outputs, such as
coefficient summaries and ANOVA tables. The functions in the package are split into three
categories: model-based functions, conversion functions, and additional methods to other
functions (Figure 1). There are also two datasets provided.

3.2. Model-based functions

The main model-based RESI estimation functions of the RESI package are resi_pe(), to
obtain point estimates, and resi() for point estimates with confidence or credible intervals.
resi_pe() uses standard summary and ANOVA outputs to compute the RESI point estimate.
Function resi() uses resi_pe() and performs bootstrapping via the boot package (Canty

8 RESI: Robust Effect Sizes in R

and Ripley 2024) to produce confidence intervals for the RESI. These functions take supported
fitted models as input and return a list that contains three main components: a coefficients
summary table with a row for each non-reference level of each variable, an ANOVA table
containing a row for each variable, and an overall RESI estimate. Details regarding functions
used for table construction for the supported model types are given in Table 2. For model
classes without dedicated methods, resi()/resi_pe() attempts to implement the default
method and return informative messages in the case of failure.
While the user can simply run resi() on a supported model type and obtain a full output,
there are several arguments that can be used to tailor the process. Details for all function
arguments are available in the documentation, but we briefly cover important arguments here.
resi() and resi_pe() both contain the following arguments. The model.full argument is
the model to perform RESI estimation on. The model.reduced argument, NULL by default,
specifies a reduced model which is used to compute an effect size estimate in comparison to the
full model for a specific subset of variables that the user wishes to compare (see Section 4.3).
If left as NULL, resi_pe() will compute a reduced model of the same type as the full model,
but including only the intercept term. data is a blank argument referring to the data used
to generate the model. If left blank, resi() pulls the data from the model. For some model
types (‘survreg’, ‘coxph’, ‘nls’), the data is required as an input because these models objects
do not store the original data frame used to fit the model. Additionally, when using some
formula functions such as splines or factoring, the data needs to be input so that the spline
arguments can be recomputed as they were in the original data.
The vcovfunc argument can be used to specify a different variance-covariance function and
is important because it affects whether the effect size is robust to model misspecification (see
Section 2.2). By default, RESI will use a robust covariance estimator. Additional arguments
to the given vcovfunc function can be specified in list form with the vcov.args argument.
Similarly, additional arguments to the Anova() function (from package car Fox and Weisberg
2019) can be specified with the Anova.args argument. The unbiased argument is logical
(default TRUE) and corresponds to a choice of conversion formulas for the Z and t statistics
(see Section 2.2 for details).
Function resi() contains additional arguments related to the bootstrap procedure. The
confidence level (default 0.05) for the confidence or credible intervals can be specified with
alpha. Multiple confidence levels can be specified using a numeric vector. For ‘lm’ and ‘nls’
models, there is a boot.method argument that can be specified as nonparametric (default) or
Bayesian (see Section 2.3). Bootstrapping is implemented via the boot() function from the
boot package (Canty and Ripley 2024), so resi() accepts additional arguments corresponding
to that function such as parallel and ncpus to allow for increased efficiency. Finally, the
store.boot argument (default FALSE) determines whether to store the complete ‘boot’ object
as an element of the output. The store.boot option must be set to TRUE if the user wants to
be able to obtain confidence intervals with different confidence levels without rerunning the
bootstrap procedure.
The output of resi() is a list of class ‘resi’ that contains the three main tables (coefficients,
ANOVA, and overall) with confidence intervals and several other elements to track how the
functions were called. Function resi_pe() produces a list with these tables (without confi-
dence intervals) and other elements about the model. Each of these elements is optionally
computed and can be suppressed with an argument to resi()/resi_pe() (e.g., anova =
FALSE).

Journal of Statistical Software 9

The overall element of the output is a table reporting a Wald test comparing the full model
to the reduced model. The test statistic is typically converted from a chi-square statistic
to a RESI estimate internally using the chisq2S() function, which takes the number of
observations from the data and degrees of freedom from the Wald test. In the case of a linear
model, the RESI estimate is computed using the f2S() function.
The coefficients table is available for every model type supported by the package. This
provides a RESI estimate for each model coefficient and appends it to a table resulting from
one of the “Coefficients” functions in Table 2. The Z or t statistic from this function is con-
verted to the signed RESI via z2S()/t2S(), with the logical unbiased argument determining
if the unbiased estimator in Equation 3 and Equation 4 or the alternate version in Equation 5
is used.
The anova table is computed via Anova() from car (Fox and Weisberg 2019) where available
(for ‘geeglm’ models, anova is used). The anova argument (default = TRUE) in resi()/
resi_pe() determines whether to compute this table. For ‘lm’ models, an F -test is used. For
the others, a Wald test is specified assuming chi-square statistics. Other options can be passed
to Anova() function via Anova.args. Note that the test.statistic argument is fixed in
the resi_pe() function, so supplying a different value for this argument will result in an
error. Additionally, if the user wishes to use a different vcov. argument in Anova() function,
this should be done by providing the function to the vcovfunc argument in resi() (see
Section 4.1). Specifying this argument in Anova.args will result in an error. The resulting
chi-square or F statistics are converted to RESI estimates using chisq2S() or f2S().
The RESI for longitudinal models is still in development. Currently, the package provides
point estimate and confidence interval methods for ‘gee’ (from gee package Carey 2024) and
‘geeglm’ (from geepack Halekoh, Højsgaard, and Yan 2006) models. For these models, both
a longitudinal RESI and a per-measurement cross-sectional RESI estimate are computed for
each factor in the coefficients table (for ‘gee’ and ‘geeglm’) and for each variable in the
anova table (for ‘geeglm’). The longitudinal RESI is the estimated effect conditional on the
sampling design, whereas the cross-sectional estimator is the effect if the data were collected
cross-sectionally. This allows investigators to quantify the benefit conferred by considering
a longitudinal design. For linear mixed effects models fit via lme() from package nlme
(Pinheiro, Bates, and R Core Team 2024) and lmerMod() from lme4 (Bates, Mächler, Bolker,
and Walker 2015), longitudinal RESI point estimation is available in both a coefficients
and anova table. The confidence interval procedure is still being evaluated for these models, so
running resi() on a model of this type will provide point estimates only with a corresponding
message.

3.3. Other package elements

The package includes print(), plot(), ggplot() summary(), anova(), and car::Anova()
methods for ‘resi’ objects. The summary() and anova()/Anova() methods are intended to
isolate the corresponding elements of the ‘resi’ object and allow the user to specify a different
confidence level without having to rerun the bootstrapping process, if the store.boot option
was set to TRUE when running resi(). Running summary() on a ‘resi’ object returns the
coefficients table as an object of class ‘summary_resi’, with its own plot()/ggplot() and
print() methods. Running anova() or car::Anova() on a ‘resi’ object returns the anova
table as an object of class ‘anova_resi’ and inherited classes from anova()/car::Anova().

10 RESI: Robust Effect Sizes in R

Model Package Covariance Coefficients Anova Overall
‘lm’ stats sandwich::vcovHC coeftest car::Anova waldtest
‘glm’ stats sandwich::vcovHC coeftest car::Anova waldtest
‘nls’ stats regtools::nlshc coeftest N/A wald.test
‘survreg’ survival vcov coeftest car::Anova waldtest
‘coxph’ survival vcov coeftest car::Anova wald.test
‘hurdle’ pscl sandwich::sandwich coeftest N/A waldtest
‘zeroinfl’ pscl sandwich::sandwich coeftest N/A waldtest
‘gee’ gee summary summary N/A N/A
‘geeglm’ geepack vcov coeftest anova anova
‘lme’ nlme clubSandwich::vcovCR summary car::Anova N/A
‘lmerMod’ lme4 clubSandwich::vcovCR summary car::Anova N/A

Table 2: Supported model types and related functions. coeftest and waldtest are from
package lmtest (Zeileis and Hothorn 2002). wald.test is from aod (Lesnoff and Lancelot
2023).

There are also plot()/ggplot() (Wickham 2016) methods for ‘anova_resi’.
The package also contains a few conversion functions from RESI to and from other common
effect size measures. These are Cohen’s d, Cohen’s f2, and R2. Formulas for these conversions
are found in Vandekar et al. (2020).
Lastly, the RESI package contains two datasets. The insurance dataset is adapted from
the open-source repository Kaggle US Health Insurance Dataset (https://www.kaggle.com/
datasets/teertha/ushealthinsurancedataset/discussion) and the depression dataset
is adapted from a data analysis textbook (Agresti 2002). Full details on the datasets are
provided in the RESI package documentation.

3.4. Important dependencies

The RESI package currently has dedicated methods for 11 model types (Table 2). The
software function used to compute the covariance matrix varies by model type. It is possible
to pass additional arguments to these covariance functions in resi() by using the vcov.args
argument. Any other valid covariance function can be specified as well. Although robust
covariance estimators are used as the default for most model types, the survival models
(‘survreg’ and ‘coxph’) have the option for a robust covariance estimate in model setup
and, when using the standard vcov from stats, they compute robust covariance matrices if
the argument robust = TRUE. For ‘geeglm’ models, the robust covariance is taken from the
model directly (Zeileis 2006).
Several other common analysis functions are used to obtain test statistics for RESI compu-
tation for the coefficients, ANOVA, and overall table. The functions used for different model
types are found in Table 2.

3.5. Support

Users encountering problems with the package can reach out for help using the GitHub Issues
page (https://github.com/statimagcoll/RESI/issues). The Discussions page (https:

https://www.kaggle.com/datasets/teertha/ushealthinsurancedataset/discussion
https://www.kaggle.com/datasets/teertha/ushealthinsurancedataset/discussion
https://github.com/statimagcoll/RESI/issues
https://github.com/statimagcoll/RESI/discussions

Journal of Statistical Software 11

//github.com/statimagcoll/RESI/discussions) can be used to seek additional support
or suggest new features to be added to the package. Planned features are listed in the
“Coming Soon” section of our pkgdown (Wickham, Hesselberth, and Salmon 2024) website
at https://statimagcoll.github.io/RESI/. We ask those wishing to contribute to our
software to create a new branch on our GitHub and submit a pull request describing the
contribution.

4. Illustrations
To demonstrate the flexibility of the RESI package, we analyze a few example datasets for
several different model types using different covariance estimator functions and bootstrapping
options.

4.1. RESI on linear model

We first look at a linear model fit using lm(). After installing the package from CRAN or
GitHub, we load the RESI library.

R> library("RESI")

We will use the insurance dataset in the package to fit our model. The dataset contains
information on insurance charges, age, sex, body mass index (BMI), number of children,
smoking status, and geographical region for 1338 individuals in the United States. We fit a
linear regression of charges against region, age, BMI, and sex, with an interaction term on
region and age and return the standard coefficients table using the summary() function.

R> data("insurance", package = "RESI")
R> mod_lm <- lm(charges ~ region * age + sex + bmi, data = insurance)
R> summary(mod_lm)

Call:
lm(formula = charges ~ region * age + sex + bmi, data = insurance)

Residuals:
Min 1Q Median 3Q Max

-14871 -7062 -4885 6235 46347

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -5359.44 2369.09 -2.262 0.0238 *
regionnorthwest -2339.44 2647.85 -0.884 0.3771
regionsoutheast -3230.85 2583.12 -1.251 0.2112
regionsouthwest -232.48 2662.84 -0.087 0.9304
age 220.33 45.08 4.888 1.14e-06 ***
sexmale 1328.02 622.07 2.135 0.0330 *
bmi 323.77 53.72 6.027 2.17e-09 ***
regionnorthwest:age 34.90 63.55 0.549 0.5829

https://github.com/statimagcoll/RESI/discussions
https://github.com/statimagcoll/RESI/discussions
https://github.com/statimagcoll/RESI/discussions
https://statimagcoll.github.io/RESI/

12 RESI: Robust Effect Sizes in R

regionsoutheast:age 83.64 61.65 1.357 0.1751
regionsouthwest:age -33.63 63.74 -0.528 0.5979

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 11360 on 1328 degrees of freedom
Multiple R-squared: 0.126, Adjusted R-squared: 0.1201
F-statistic: 21.27 on 9 and 1328 DF, p-value: < 2.2e-16

The p values in the standard model summary indicate that age, sex, and BMI are significantly
associated with insurance charges. However, just by looking at the p values, it is hard to
discern the strength of the the association. We would like to be able to see, in addition to
significance, a measure of the effect size. To accomplish this, we can run resi() on the model
object. We run it using all the default options first. This will use the vcovHC() function from
the sandwich package (with default arguments) to compute robust standard error estimates
(Zeileis, Köll, and Graham 2020). Since we are using the resi() function rather than the
resi_pe() function, we will obtain bootstrapped confidence intervals in addition to RESI
point estimates. We set the seed to ensure the results are reproducible. This function can
take several seconds to run. Printing the full ‘resi’ object will print several tables and notes,
so to begin we just print the summary.

R> set.seed(0827)
R> resi_obj_lm <- resi(mod_lm)
R> summary(resi_obj_lm)

Analysis of effect sizes based on RESI:
Confidence level = 0.05
Call: lm(formula = charges ~ region * age + sex + bmi, data = insurance)

Coefficient Table
Estimate Std. Error t value Pr(>|t|) RESI 2.5%

(Intercept) -5359.44 2175.94 -2.463 0.014 -0.067 -0.119
regionnorthwest -2339.44 2395.15 -0.977 0.329 -0.027 -0.084
regionsoutheast -3230.85 2643.11 -1.222 0.222 -0.033 -0.087
regionsouthwest -232.48 2574.28 -0.090 0.928 -0.003 -0.060
age 220.33 40.21 5.480 0.000 0.150 0.094
sexmale 1328.02 621.74 2.136 0.033 0.058 0.004
bmi 323.77 58.08 5.574 0.000 0.152 0.105
regionnorthwest:age 34.90 57.24 0.610 0.542 0.017 -0.037
regionsoutheast:age 83.64 63.33 1.321 0.187 0.036 -0.016
regionsouthwest:age -33.63 61.41 -0.548 0.584 -0.015 -0.070

97.5%
(Intercept) -0.014
regionnorthwest 0.031
regionsoutheast 0.020
regionsouthwest 0.054
age 0.210

Journal of Statistical Software 13

sexmale 0.108
bmi 0.199
regionnorthwest:age 0.072
regionsoutheast:age 0.090
regionsouthwest:age 0.037

This output shows the coefficients element of the ‘resi’ object, as well as the model call
and the confidence level (α, by default = 0.05). The coefficient table looks very similar to the
standard model summary output. The estimates will remain unchanged, but the standard
errors differ because summary() uses the model-based (naive) standard error, whereas resi()
defaults to use a robust estimate. These standard error estimates will remain valid under
heteroskedasticity. Accordingly, the t values and p values are different, but our qualitative
conclusions about statistical significance are unchanged in this example. The three rightmost
columns are new and represent the RESI estimates and (1 − α)% confidence intervals. Note
that a RESI estimate further from 0 indicates a larger effect. The sign of the RESI estimate
indicates the direction of the effect. From the table we can see that BMI is estimated to have
a small to moderate effect (0.152 (CI: 0.105, 0.199)) based on the ranges given in Section 2.4.
Sex is estimated to have a small effect (0.058 (CI: 0.004, 0.108)). The effect size estimates
are conditional on the other terms in the model. Because our model includes an interaction
on age and region, the RESI estimate for age in the coefficient table is interpreted as the
estimated effect size of age for those in the northeast (the reference region). This is estimated
to be 0.150 (CI: 0.094, 0.210), a small to moderate effect. For these results, if the p value is
less than 0.05, then the CI for the RESI does not contain 0. This will not always be the case
because the RESI CI is estimated for the distribution of the effect size estimator under the
alternative.
Because region is a factor variable, the test for region and its interaction with age corresponds
to multiple parameters in the model. To obtain an effect size estimate for multiple parameters
that correspond to a single variable, we can report the ANOVA table. We can obtain this with
either the standard anova() function or the car::Anova() function on the ‘resi’ object.

R> anova(resi_obj_lm)

Analysis of Deviance Table (Type II tests)

Response: charges
Df F Pr(>F) RESI 2.5% 97.5%

region 3 1.60 0.189 0.0365 0.000 0.120
age 1 117.70 0.000 0.2951 0.240 0.360
sex 1 4.56 0.033 0.0515 0.000 0.105
bmi 1 31.07 0.000 0.1498 0.101 0.197
region:age 3 1.12 0.341 0.0161 0.000 0.101

By default, resi() uses a Type II sum of squares, but this can be changed in the arguments
(Papachristodoulou and Prajna 2005). This output is the same as running car::Anova() on
the model using sandwich::vcovHC as the .vcov argument, but with the three rightmost
columns added for the RESI estimates and confidence intervals. The interpretation of the

14 RESI: Robust Effect Sizes in R

RESI is the same as the coefficient table, but we note that in the ANOVA table, the RESI
estimates are all nonnegative because they are estimated from F statistics. The estimates in
the ANOVA table differ for two reasons: (1) Type II sum of squares first tests main effects
without their interactions in the model; for example, the RESI estimate for age is interpreted
as the effect of age compared to a model that does not include age or the interaction term for
age and region. (2) For variables that are tested on 1 degree of freedom, the ANOVA table
estimates the absolute effect size, whereas the coefficient table uses the unbiased signed effect
size by default (see Section 2.2). For example, with sex and BMI, we notice that the estimates
are close in the ANOVA and coefficients tables, but not exactly equal in absolute value. This
is due to using the default unbiased = TRUE argument, which uses the t to S estimator from
Equation 4 rather than the one based on the F to S formula.
An overall Wald test is also reported in the model.

R> omnibus(resi_obj_lm)

Analysis of effect sizes based on RESI:
Confidence level = 0.05
Wald test

Model 1: charges ~ 1
Model 2: charges ~ region * age + sex + bmi

Res.Df Df F Pr(>F) RESI 2.5% 97.5%
1 1337
2 1328 9 20.249 0 0.360 0.326 0.421

By default, this compares the model to a reduced model that has only the intercept. The
RESI estimate represents the overall absolute effect size of the model. In this model, this is
estimated to be 0.360 (CI: 0.326, 0.421). This is interpreted as a moderate to large effect.
We can also visualize the results using the plot() or ggplot() function (Figure 2). Running
these functions on the ‘resi’ object will plot the coefficient table. Margins will be automat-
ically adjusted to accommodate long variable names, or this feature can be turned off with
the argument automar = FALSE. Alternatively, the user can extract the estimates and CIs
from the tables and plot using their preferred visualization tool.

R> library("ggplot2")
R> plot(resi_obj_lm)
R> ggplot(anova(resi_obj_lm))

If we want to see a plot of the ANOVA table, we can run plot()/ggplot() either directly
on the anova element of the ‘resi’ object or on anova() or car::Anova() on the ‘resi’
object. These plots help us quickly visualize the RESI estimates and relative effect sizes of
the variables.
If we want to use different arguments for the covariance estimator function or the ANOVA
function, we can specify these using the vcov.args and Anova.args arguments, respectively,
in the resi() function. For example, we can use the sandwich::vcovHC() function with the
HC0 estimator instead of the default HC3 estimator (Long and Ervin 2000) and use Type III
sum of squares instead of Type II as follows.

Journal of Statistical Software 15

-0.10 0.00 0.10 0.20

Coefficient RESI Estimates and 95% CIs

RESI Estimate

regionsouthwest:age

regionsoutheast:age

regionnorthwest:age

bmi

sexmale

age

regionsouthwest

regionsoutheast

regionnorthwest

(Intercept)

region:age

bmi

sex

age

region

0.0 0.1 0.2 0.3

RESI Estimate

ANOVA RESI Estimates and 95% CIs

Figure 2: RESI estimates and 95% confidence intervals from linear model coefficients (left)
and ANOVA tables (right).

R> set.seed(0827)
R> resi_obj_lm2 <- resi(mod_lm, vcov.args = list(type = "HC0"),
+ Anova.args = list(type = 3))
R> resi_obj_lm2

Analysis of effect sizes based on RESI:
Confidence level = 0.05
Call: lm(formula = charges ~ region * age + sex + bmi, data = insurance)

Coefficient Table
Estimate Std. Error t value Pr(>|t|) RESI 2.5%

(Intercept) -5359.44 2155.75 -2.486 0.013 -0.068 -0.120
regionnorthwest -2339.44 2372.36 -0.986 0.324 -0.027 -0.085
regionsoutheast -3230.85 2618.64 -1.234 0.218 -0.034 -0.088
regionsouthwest -232.48 2549.50 -0.091 0.927 -0.003 -0.061
age 220.33 39.82 5.534 0.000 0.151 0.095
sexmale 1328.02 617.05 2.152 0.032 0.059 0.004
bmi 323.77 57.56 5.625 0.000 0.154 0.106
regionnorthwest:age 34.90 56.68 0.616 0.538 0.017 -0.037
regionsoutheast:age 83.64 62.72 1.333 0.183 0.036 -0.016
regionsouthwest:age -33.63 60.78 -0.553 0.580 -0.015 -0.070

97.5%
(Intercept) -0.014
regionnorthwest 0.031
regionsoutheast 0.020
regionsouthwest 0.055
age 0.212
sexmale 0.109
bmi 0.201
regionnorthwest:age 0.073
regionsoutheast:age 0.091

16 RESI: Robust Effect Sizes in R

regionsouthwest:age 0.037

Analysis of Deviance Table (Type III tests)

Response: charges
Df F Pr(>F) RESI 2.5% 97.5%

(Intercept) 1 6.18 0.013 0.062 0.000 0.117
region 3 0.73 0.537 0.000 0.000 0.096
age 1 30.62 0.000 0.149 0.091 0.210
sex 1 4.63 0.032 0.052 0.000 0.105
bmi 1 31.64 0.000 0.151 0.103 0.199
region:age 3 1.14 0.332 0.018 0.000 0.102

Overall RESI comparing model to intercept-only model:

Res.Df Df F Pr(>F) RESI 2.5% 97.5%
1 1328 9 20.634 0 0.363 0.330 0.426

Notes:
1. The RESI was calculated using a robust covariance estimator.
2. Confidence intervals (CIs) constructed using 1000 non-parametric
bootstraps.

Here, we print the full output of the ‘resi’ object. In addition to elements previously dis-
cussed, notes on the type of covariance estimator (robust or naive) and type and number of
bootstraps are found at the bottom. As expected, we can see that the results differ slightly
from our first ‘resi’ object output.

4.2. RESI on nonlinear least squares

In this example, we use resi() on a nonlinear least squares model using nls(), demon-
strating a helpful workaround to deal with model convergence issues in ‘nls’ models when
bootstrapping. For this analysis, we use the niering dataset in the sars package (Matthews,
Triantis, Whittaker, and Guilhaumon 2019). This dataset provides the area (in km2) and
number of plant species for 32 islands in the Kapingamarangi Atoll (Matthews et al. 2019).

R> data("niering", package = "sars")
R> head(niering)

a s
1 0.00012 5
2 0.00160 7
3 0.00240 8
4 0.00280 10
5 0.00360 9
6 0.00360 11

Journal of Statistical Software 17

The species-to-area relationship is commonly modeled using a power curve, where Species =
c·Areaz (Preston 1962). We can fit this model using nls() to estimate the c and z parameters.
It is well known that ‘nls’ models can be sensitive to the choice of starting values. For
example, the following naive guesses for the starting values produce an error due to failed
convergence.

R> mod_nls <- nls(s ~ c * a^z, data = niering, start = list(c = 2, z = 0.5))

Error in nls(s ~ c * a^z, data = niering, start = list(c = 2, z = 0.5)) :
singular gradient

If we use good starting values the model converges successfully.

R> mod_nls <- nls(s ~ c * a^z, data = niering, start = list(c = 3, z = 0.25))
R> summary(mod_nls)

Formula: s ~ c * a^z

Parameters:
Estimate Std. Error t value Pr(>|t|)

c 89.30789 10.11148 8.832 7.59e-10 ***
z 0.40206 0.03677 10.935 5.49e-12 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 5.819 on 30 degrees of freedom

Number of iterations to convergence: 12
Achieved convergence tolerance: 2.792e-06

With our ‘nls’ model, we can run resi(), making sure to provide the data argument. For
this example, we will demonstrate the Bayesian bootstrap option.

R> set.seed(0827)
R> resi_obj_nls <- resi(mod_nls, data = niering, boot.method = "bayes")
R> resi_obj_nls

Analysis of Effect sizes (ANOES) based on RESI:
Confidence level = 0.05
Call: nls(formula = s ~ c * a^z, data = niering, start = list(c = 3,

z = 0.25), algorithm = "default", control = list(maxiter = 50,
tol = 1e-05, minFactor = 0.0009765625, printEval = FALSE,
warnOnly = FALSE, scaleOffset = 0, nDcentral = FALSE), trace = FALSE)

Coefficient Table
Estimate Std. Error t value Pr(>|t|) RESI 2.5% 97.5%

c 89.3079 20.5866 4.3382 1e-04 0.7475 0.6241 1.5651
z 0.4021 0.0597 6.7325 0e+00 1.1601 0.9599 2.5043

18 RESI: Robust Effect Sizes in R

Overall RESI comparing model to intercept-only model:

chi2 df P RESI 2.5% 97.5%
Wald Test 142.1953 2 0 2.0931 1.2195 3.6873

Notes:
1. The RESI was calculated using a robust covariance estimator.
2. Credible intervals constructed using 1000 Bayesian bootstraps.
3. The bootstrap was successful in 744 out of 1000 attempts.

The resi() function runs without error, and we obtain a coefficients table and an overall Wald
test for the model with RESI estimates and 95% credible intervals. Although the original
model was able to be fit by nls() without issue, using this model for resi() does not have
optimal performance. We can see from Note 3 that the bootstrap was only successful in 744
of the replicates.
The unsuccessful replicates failed to converge when attempting to update the ‘nls’ model
with bootstrap data. We can improve the performance of resi() for this model by refitting
the ‘nls’ model with different start values before running resi(). We use the estimated
coefficients from the original model as the new start values.

R> mod_nls2 <- nls(s ~ c * a^z, data = niering,
+ start = list(c = coef(mod_nlsn)[1], z = coef(mod_nlsn)[2]))
R> set.seed(0827)
R> resi(mod_nls2, data = niering, boot.method = "bayes")

Analysis of effect sizes based on RESI:
Confidence level = 0.05
Call: nls(formula = s ~ c * a^z, data = niering,

start = list(c = coef(mod_nls)[1], z = coef(mod_nls)[2]),
algorithm = "default", control = list(maxiter = 50,
tol = 1e-05, minFactor = 0.0009765625, printEval = FALSE,
warnOnly = FALSE, scaleOffset = 0, nDcentral = FALSE), trace = FALSE)

Coefficient Table
Estimate Std. Error t value Pr(>|t|) RESI 2.5% 97.5%

c.c 89.308 20.59 4.338 0 0.748 0.619 1.941
z.z 0.402 0.06 6.732 0 1.160 0.950 2.506

Overall RESI comparing model to intercept-only model:

chi2 df P RESI 2.5% 97.5%
overall.tab 142.2 2 0 2.093 1.120 3.557

Notes:
1. The RESI was calculated using a robust covariance estimator.
2. Credible intervals constructed using 1000 Bayesian bootstraps.
3. The bootstrap was successful in 1000 out of 1000 attempts.

Journal of Statistical Software 19

We see that running resi() on this model gives us the same RESI estimates and similar
credible intervals, but the performance of the bootstrap is much better. In this case all 1000
bootstrap replicates are successful, and we obtain credible intervals based on the desired
number of bootstrap replicates. When using resi() on an ‘nls’ model, consider using this
strategy if the model fails to converge in many of the bootstrap samples.

4.3. RESI on survival model
As a final example, we consider a parametric survival model using the survival package.
Following an example in the survival package documentation, we fit a Weibull model using
the lung dataset in the survival package (Therneau 2023). The outcome is survival time (in
days). The regressors are age, sex, and Karnofsky score.
It is important to note that for survival models (using coxph() or survreg()), the option to
use a robust covariance is included in the model fitting function. The resi() function ignores
the vcovfunc argument for these model types and assumes the user has specified the desired
covariance method when fitting the model.
In this example we also demonstrate how the user can obtain confidence intervals for different
levels of α both during and after running the resi() function. The alpha arguments allows
the user to specify a vector of α levels, and the results corresponding to these levels will be
output with the ‘resi’ object. In the case that the user wants to produce different level
confidence intervals after running the resi() function without rerunning the bootstrapping
process the user can set store.boot = TRUE. This will store a ‘boot’ object in the ‘resi’
object called boot.results that includes all of the RESI estimates for each bootstrap repli-
cate. Confidence intervals of a specific α level can then be obtained via the boot package,
manually, or by using the summary() or anova()/car::Anova() functions.
For this example we will use the unbiased = FALSE option to demonstrate the alternate Z to
S estimator described in Equation 5. We also specify a reduced model to compute a RESI for
a subset of the model parameters, rather than using an intercept-only model. Our reduced
model uses Karnofsky score as the only predictor and we use 1500 bootstrap replicates to
construct CIs.

R> library("survival")
R> set.seed(0827)
R> mod_surv <- survreg(Surv(time, status) ~ age + sex + ph.karno,
+ data = survival::lung, dist="weibull", robust = TRUE)
R> mod_surv_reduced <- survreg(Surv(time, status) ~ ph.karno,
+ data = survival::lung, dist="weibull",
+ robust = TRUE)
R> resi_obj_surv <- resi(mod_surv, mod_surv_reduced, data = survival::lung,
+ unbiased = FALSE, store.boot = TRUE, alpha = c(0.05, 0.1), nboot = 1500)
R> resi_obj_surv

Analysis of effect sizes based on RESI:
Confidence level = 0.05 0.1
Full Model:survreg(formula = Surv(time, status) ~ age + sex + ph.karno,

data = survival::lung, dist = "weibull", robust = TRUE)
Reduced Model:survreg(formula = Surv(time, status) ~ ph.karno,

20 RESI: Robust Effect Sizes in R

data = survival::lung, dist = "weibull", robust = TRUE)

Coefficient Table
Estimate Std. Error z value Pr(>|z|) RESI 2.5% 5% 95%

(Intercept) 5.326 0.685 7.771 0.000 0.512 0.338 0.360 0.669
age -0.009 0.007 -1.217 0.223 -0.046 -0.205 -0.184 0.000
sex 0.370 0.123 3.022 0.003 0.189 0.032 0.071 0.299
ph.karno 0.009 0.006 1.587 0.112 0.082 0.000 0.000 0.268
Log(scale) -0.281 0.067 -4.164 0.000 -0.268 -0.443 -0.422 -0.171

97.5%
(Intercept) 0.700
age 0.000
sex 0.318
ph.karno 0.306
Log(scale) -0.152

Analysis of Deviance Table (Type II tests)

Response: Surv(time, status)
Df Chisq Pr(>Chisq) RESI 2.5% 5% 95% 97.5%

age 1 1.48 0.224 0.046 0.000 0.000 0.184 0.205
sex 1 9.13 0.003 0.189 0.032 0.071 0.299 0.318
ph.karno 1 2.52 0.112 0.082 0.000 0.000 0.268 0.306

Overall RESI comparing full model to reduced model:

Res.Df Df Chisq Pr(>Chisq) RESI 2.5% 5% 95% 97.5%
1 222 2 10.23 0.006 0.190 0.039 0.078 0.315 0.339

Notes:
1. The RESI was calculated using a robust covariance estimator.
2. Confidence intervals (CIs) constructed using 1500 non-parametric
bootstraps.

The printed output reflects the modifications we made to the resi() arguments. The re-
duced model formula is displayed, which is relevant only for the overall RESI estimate. For
comparison, we can look at the overall element of running resi() with an intercept-only
reduced model.

R> set.seed(0827)
R> omnibus(resi(mod_surv, data = survival::lung,
+ unbiased = FALSE, alpha = c(0.05, 0.1), nboot = 1500))

Analysis of effect sizes based on RESI:
Confidence level = 0.05 0.1
Wald test

Journal of Statistical Software 21

Model 1: Surv(time, status) ~ 1
Model 2: Surv(time, status) ~ age + sex + ph.karno

Res.Df Df Chisq Pr(>Chisq) RESI 2.5% 5% 95% 97.5%
1 225
2 222 3 11.5 0.009 0.194 0.062 0.098 0.381 0.408

The overall RESI estimate is slightly higher when comparing to an intercept-only model than
the model that adjusts for Karnofsky score.
The coefficient table and ANOVA table are computed only for the full model. Because we
chose the unbiased option, the RESI estimates are equal in absolute value for the coefficient
and ANOVA tables. The RESI estimates for age and Karnofsky (−0.046 (95% CI: −0.205,
0) and 0.082 (95% CI: 0, 0.306) respectively) are interpreted as small effects, while the RESI
estimate for sex (0.189 (95% CI: 0.032, 0.318)) is interpreted as a small to moderate effect.
We see from the output that there are now four columns for the RESI confidence intervals
– a lower and upper bound for each of the α levels specified. If we now want to obtain an
interval with a different confidence level, we can run summary() and anova() using the alpha
argument and specify a vector of values.

R> summary(resi_obj_surv, alpha = c(0.001, 0.01))

Analysis of effect sizes based on RESI:
Confidence level = 0.001 0.01
Call: survreg(formula = Surv(time, status) ~ age + sex + ph.karno,

data = survival::lung, dist = "weibull", robust = TRUE)

Coefficient Table
Estimate Std. Error z value Pr(>|z|) RESI 0.05% 0.5% 99.5%

(Intercept) 5.326 0.685 7.771 0.000 0.512 0.231 0.293 0.758
age -0.009 0.007 -1.217 0.223 -0.046 -0.293 -0.247 0.055
sex 0.370 0.123 3.022 0.003 0.189 0.000 0.000 0.361
ph.karno 0.009 0.006 1.587 0.112 0.082 -0.072 0.000 0.383
Log(scale) -0.281 0.067 -4.164 0.000 -0.268 -0.561 -0.517 -0.087

99.95%
(Intercept) 0.807
age 0.105
sex 0.425
ph.karno 0.445
Log(scale) 0.000

R> anova(resi_obj_surv, alpha = c(0.001, 0.01))

Df Chisq Pr(>Chisq) RESI 0.05% 0.5% 97.5% 99.95%
age 1 1.48 0.2235 0.0461 0 0 0.247 0.293
sex 1 9.13 0.0025 0.1892 0 0 0.361 0.425
ph.karno 1 2.52 0.1124 0.0818 0 0 0.383 0.445

22 RESI: Robust Effect Sizes in R

Note that if we try to specify different α levels with these functions on a ‘resi’ object that
did not use the store.boot = TRUE option, an error will occur with a message informing the
user that this option was not used. A larger number of bootstrap samples are necessary to
obtain adequate precision for smaller alpha levels.

5. Conclusion
The RESI R package aims to provide estimates and confidence intervals for the recently
introduced index in a way that intuitively complements common data analysis workflow in
R. Similarly to running summary() after fitting a model, a user can simply run resi() on
many models and obtain several useful model summaries that include original model estimates
and p values as well as RESI estimates with confidence intervals. Reporting model parameter
estimates with confidence intervals is useful for communicating estimated effects within a given
context. Adding RESI estimates and their confidence intervals provides the extra benefit of
communicating how strong or meaningful these effects may be in a way that can be compared
across many model settings.
The package provides dedicated methods for several common model types currently, with
more in process. Methods for both cross-sectional and longitudinal models are available, with
longitudinal methods providing both a longitudinal and a per-measurement cross-sectional
RESI estimate. For models that are not currently implemented, users can manually provide
the relevant information to functions within RESI to obtain estimates directly. The package
also makes it easy to visualize RESI estimates and convert to and from other effect size indices.
The RESI is a widely applicable effect size index with several advantages, including the ability
to accommodate nuisance parameters and incorporate robust covariance estimates. With
increasing emphasis being placed on reporting of effect sizes in research, the RESI package is
a user-friendly tool to easily report effect sizes and confidence intervals in publications.

6. Computational details
All examples were coded using R version 4.4.1 and RESI version 1.3.0. The versions of relevant
packages for the examples include sandwich 3.1-0 (Zeileis 2006), sars 1.3.6 (Matthews et al.
2019), survival 3.7.0 (Therneau 2023), boot 1.3-30 (Canty and Ripley 2024), and ggplot2 3.5.1
(Wickham 2016).

7. Acknowledgements
This research is funded by R01MH123563.

References

Agresti A (2002). Categorical Data Analysis. Wiley Series in Probability and Statistics. John
Wiley & Sons, Hoboken. doi:10.1002/0471249688.

Althouse AD, Below JE, Claggett BL, Cox NJ, de Lemos JA, Deo RC, Duval S, Hachamovitch

https://doi.org/10.1002/0471249688

Journal of Statistical Software 23

R, Kaul S, Keith SW, Secemsky E, Teixeira-Pinto A, Roger VL (2021). “Recommendations
for Statistical Reporting in Cardiovascular Medicine: A Special Report From the American
Heart Association.” Circulation, 144(4), e70–e91. doi:10.1161/CIRCULATIONAHA.121.
055393.

Amaral EdOS, Line SRP (2021). “Current Use of Effect Size or Confidence Interval Analyses
in Clinical and Biomedical Research.” Scientometrics, 126(11), 9133–9145. doi:10.1007/
s11192-021-04150-3.

American Psychological Association (1994). Publication Manual of the American Psycholog-
ical Association. 4th edition. American Psychological Association, Washington, DC.

American Psychological Association (2001). Publication Manual of the American Psycholog-
ical Association. 5th edition. American Psychological Association, Washington, DC.

American Psychological Association (2010). Publication Manual of the American Psycholog-
ical Association. 6th edition. American Psychological Association, Washington, DC.

American Psychological Association (2020). Publication Manual of the American Psycholog-
ical Association. 7th edition. American Psychological Association, Washington, DC.

Anderson D (2020). esvis: Visualization and Estimation of Effect Sizes. doi:10.32614/
CRAN.package.esvis. R package version 0.3.1.

Bates D, Mächler M, Bolker B, Walker S (2015). “Fitting Linear Mixed-Effects Models Using
lme4.” Journal of Statistical Software, 67(1), 1–48. doi:10.18637/jss.v067.i01.

Ben-Shachar MS, Lüdecke D, Makowski D (2020). “effectsize: Estimation of Effect Size
Indices and Standardized Parameters.” Journal of Open Source Software, 5(56), 2815.
doi:10.21105/joss.02815.

Betensky RA (2019). “The p Value Requires Context, Not a Threshold.” The American
Statistician, 73(sup1), 115–117. doi:10.1080/00031305.2018.1529624.

Boos DD, Stefanski LA (2013). Essential Statistical Inference: Theory and Methods. Springer
Texts in Statistics. Springer-Verlag, New York. doi:10.1007/978-1-4614-4818-1.

Buchanan EM, Gillenwaters A, Scofield JE, Valentine K (2019). MOTE: Measure of the Effect
– Package to Assist in Effect Size Calculations and Their Confidence Intervals. R package
version 1.0.2, URL http://github.com/doomlab/MOTE.

Canty A, Ripley BD (2024). boot: Bootstrap R (S-PLUS) Functions. doi:10.32614/CRAN.
package.boot. R package version 1.3-30.

Carey VJ (2024). gee: Generalized Estimation Equation Solver. doi:10.32614/CRAN.
package.gee. R package version 4.13-27.

Cohen J (1988). Statistical Power Analysis for the Behavioral Sciences. Erlbaum Associates,
Hillsdale. doi:10.4324/9780203771587.

Fox J, Weisberg S (2019). An R Companion to Applied Regression. 3rd edition. Sage Pub-
lications, Thousand Oaks. URL https://socialsciences.mcmaster.ca/jfox/Books/
Companion/.

https://doi.org/10.1161/CIRCULATIONAHA.121.055393
https://doi.org/10.1161/CIRCULATIONAHA.121.055393
https://doi.org/10.1007/s11192-021-04150-3
https://doi.org/10.1007/s11192-021-04150-3
https://doi.org/10.32614/CRAN.package.esvis
https://doi.org/10.32614/CRAN.package.esvis
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.21105/joss.02815
https://doi.org/10.1080/00031305.2018.1529624
https://doi.org/10.1007/978-1-4614-4818-1
http://github.com/doomlab/MOTE
https://doi.org/10.32614/CRAN.package.boot
https://doi.org/10.32614/CRAN.package.boot
https://doi.org/10.32614/CRAN.package.gee
https://doi.org/10.32614/CRAN.package.gee
https://doi.org/10.4324/9780203771587
https://socialsciences.mcmaster.ca/jfox/Books/Companion/
https://socialsciences.mcmaster.ca/jfox/Books/Companion/

24 RESI: Robust Effect Sizes in R

Fritz CO, Morris PE, Richler JJ (2012). “Effect Size Estimates: Current Use, Calculations,
and Interpretation.” Journal of Experimental Psychology: General, 141(1), 2–18. doi:
10.1037/a0024338.

Gerlanc D, Kirby K (2023). bootES: Bootstrap Confidence Intervals on Effect Sizes. doi:
10.32614/CRAN.package.bootES. R package version 1.3.0.

Halekoh U, Højsgaard S, Yan J (2006). “The R Package geepack for Generalized Estimating
Equations.” Journal of Statistical Software, 15/2, 1–11. doi:10.18637/jss.v015.i02.

Hedges LV, Olkin I (1985). Statistical Methods for Meta-Analysis. Elsevier, London. doi:
10.1016/C2009-0-03396-0.

IBM Corporation (2011). IBM SPSS Statistics 20. IBM Corporation, Armonk, NY. URL
http://www-01.ibm.com/software/analytics/spss/.

Jones M, Kang K, Vandekar S (2025). RESI: Robust Effect Size Index (RESI) Estimation.
doi:10.32614/CRAN.package.RESI. R package version 1.3.0.

Kadel RP, Kip KE (2012). “A SAS Macro to Compute Effect Size (Cohen’s d) and its
Confidence Interval from Raw Survey Data.”

Kang K, Jones MT, Armstrong K, Avery S, McHugo M, Heckers S, Vandekar S (2023).
“Accurate Confidence and Bayesian Interval Estimation for Non-Centrality Parameters and
Effect Size Indices.” Psychometrika, 88(1), 253–273. doi:10.1007/s11336-022-09899-x.

Kelley K (2007). “Confidence Intervals for Standardized Effect Sizes: Theory, Application,
and Implementation.” Journal of Statistical Software, 20(8), 1–24. doi:10.18637/jss.
v020.i08.

Kelley K (2023). MBESS: The MBESS R Package. doi:10.32614/CRAN.package.MBESS.
R package version 4.9.3.

Lenth RV (2016). “Least-Squares Means: The R Package lsmeans.” Journal of Statistical
Software, 69(1), 1–33. doi:10.18637/jss.v069.i01.

Lenth RV (2024). emmeans: Estimated Marginal Means, aka Least-Squares Means. doi:
10.32614/CRAN.package.emmeans. R package version 1.10.4.

Lesnoff M, Lancelot R (2023). aod: Analysis of Overdispersed Data. doi:10.32614/CRAN.
package.aod. R package version 1.3.3.

Long JS, Ervin LH (2000). “Using Heteroscedasticity Consistent Standard Errors in the Linear
Regression Model.” The American Statistician, 54(3), 217–224. doi:10.2307/2685594.

Lüdecke D (2019). esc: Effect Size Computation for Meta Analysis (Version 0.5.1). doi:
10.32614/CRAN.package.esc. R package version 0.5.1.

MacKinnon JG, White H (1985). “Some Heteroskedasticity-Consistent Covariance Matrix
Estimators with Improved Finite Sample Properties.” Journal of Econometrics, 29(3),
305–325. doi:10.1016/0304-4076(85)90158-7.

https://doi.org/10.1037/a0024338
https://doi.org/10.1037/a0024338
https://doi.org/10.32614/CRAN.package.bootES
https://doi.org/10.32614/CRAN.package.bootES
https://doi.org/10.18637/jss.v015.i02
https://doi.org/10.1016/C2009-0-03396-0
https://doi.org/10.1016/C2009-0-03396-0
http://www-01.ibm.com/software/analytics/spss/
https://doi.org/10.32614/CRAN.package.RESI
https://doi.org/10.1007/s11336-022-09899-x
https://doi.org/10.18637/jss.v020.i08
https://doi.org/10.18637/jss.v020.i08
https://doi.org/10.32614/CRAN.package.MBESS
https://doi.org/10.18637/jss.v069.i01
https://doi.org/10.32614/CRAN.package.emmeans
https://doi.org/10.32614/CRAN.package.emmeans
https://doi.org/10.32614/CRAN.package.aod
https://doi.org/10.32614/CRAN.package.aod
https://doi.org/10.2307/2685594
https://doi.org/10.32614/CRAN.package.esc
https://doi.org/10.32614/CRAN.package.esc
https://doi.org/10.1016/0304-4076(85)90158-7

Journal of Statistical Software 25

Mangiafico SS (2024). rcompanion: Functions to Support Extension Education Program Eval-
uation. Rutgers Cooperative Extension, New Brunswick, New Jersey. doi:10.32614/CRAN.
package.rcompanion/. R package version 2.4.36.

Mantel N (1963). “Chi-Square Tests with One Degree of Freedom; Extensions of the Mantel-
Haenszel Procedure.” Journal of the American Statistical Association, 58(303), 690–700.
doi:10.2307/2282717.

Matthews T, Triantis K, Whittaker R, Guilhaumon F (2019). “sars: An R Package for Fitting,
Evaluating and Comparing Species-Area Relationship Models.” Ecography, 42, 1446–1455.
doi:10.1111/ecog.04271.

Navarro D (2021). Learning Statistics with R: A Tutorial for Psychology Students and Other
Beginners. University of New South Wales, Sydney, Australia. doi:10.32614/CRAN.
package.lsr. R package version 0.5.2, URL https://learningstatisticswithr.com.

Papachristodoulou A, Prajna S (2005). “A Tutorial on Sum of Squares Techniques for Systems
Analysis.” In Proceedings of the 2005, American Control Conference, 2005., pp. 2686–2700.
IEEE. doi:10.1109/ACC.2005.1470374.

Pinheiro J, Bates D, R Core Team (2024). nlme: Linear and Nonlinear Mixed Effects Models.
doi:10.32614/CRAN.package.nlme. R package version 3.1-166.

Preston FW (1962). “The Canonical Distribution of Commonness and Rarity: Part I.” Ecol-
ogy, 43(2), 185. doi:10.2307/1931976.

R Core Team (2024). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Rosenthal R (1994). “Parametric Measures of Effect Size.” In The Handbook of Research
Synthesis, volume 621, pp. 231–244. Russell Sage Foundation, New York.

Rubin DB (1981). “The Bayesian Bootstrap.” The Annals of Statistics, 9(1), 130–134. doi:
10.1214/aos/1176345338.

SAS Institute Inc (2016). SAS/STAT 14.2 User’s Guide: High-Performance Procedures. SAS
Institute Inc., Cary. URL https://support.sas.com/documentation/onlinedoc/stat/
142/stathpug.pdf.

SAS Institute Inc (2020). The SAS System, Version 15.2. SAS Institute Inc., Cary. URL
https://www.sas.com/.

Serdar CC, Cihan M, Yücel D, Serdar MA (2021). “Sample Size, Power and Effect Size
Revisited: Simplified and Practical Approaches in Pre-Clinical, Clinical and Laboratory
Studies.” Biochemia Medica, 31(1), 010502. doi:10.11613/BM.2021.010502.

StataCorp (2023). Stata Statistical Software: Release 18. StataCorp LLC, College Station.
URL https://www.stata.com/.

Sullivan GM, Feinn R (2012). “Using Effect Size – or Why the p Value Is Not Enough.” Journal
of Graduate Medical Education, 4(3), 279–282. doi:10.4300/JGME-D-12-00156.1.

https://doi.org/10.32614/CRAN.package.rcompanion/
https://doi.org/10.32614/CRAN.package.rcompanion/
https://doi.org/10.2307/2282717
https://doi.org/10.1111/ecog.04271
https://doi.org/10.32614/CRAN.package.lsr
https://doi.org/10.32614/CRAN.package.lsr
https://learningstatisticswithr.com
https://doi.org/10.1109/ACC.2005.1470374
https://doi.org/10.32614/CRAN.package.nlme
https://doi.org/10.2307/1931976
https://www.R-project.org/
https://doi.org/10.1214/aos/1176345338
https://doi.org/10.1214/aos/1176345338
https://support.sas.com/documentation/onlinedoc/stat/142/stathpug.pdf
https://support.sas.com/documentation/onlinedoc/stat/142/stathpug.pdf
https://www.sas.com/
https://doi.org/10.11613/BM.2021.010502
https://www.stata.com/
https://doi.org/10.4300/JGME-D-12-00156.1

26 RESI: Robust Effect Sizes in R

Therneau TM (2023). A Package for Survival Analysis in R. doi:10.32614/CRAN.package.
survival. R package version 3.7-0.

Torchiano M (2020). effsize: Efficient Effect Size Computation. doi:10.32614/CRAN.
package.effsize. R package version 0.8.1.

Vandekar S, Tao R, Blume J (2020). “A Robust Effect Size Index.” Psychometrika, 85(1),
232. doi:10.1007/s11336-020-09698-2.

Vandekar SN, Stephens J (2021). “Improving the Replicability of Neuroimaging Findings by
Thresholding Effect Sizes Instead of p Values.” Human Brain Mapping, 42(8), 2393–2398.
doi:10.1002/hbm.25374.

Wasserstein RL, Lazar NA (2016). “The ASA’s Statement on p Values: Context, Process,
and Purpose.” The American Statistician, 70(2), 129–133. doi:10.1080/00031305.2016.
1154108.

White H (1980). “A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct
Test for Heteroskedasticity.” Econometrica: Journal of the Econometric Society, pp. 817–
838. doi:10.2307/1912934.

Wickham H (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag. URL
https://ggplot2.tidyverse.org/.

Wickham H, Hesselberth J, Salmon M (2024). pkgdown: Make Static HTML Documentation
for a Package. doi:10.32614/CRAN.package.pkgdown. R package version 2.1.1.

Wickham H, Hester J, Chang W, Bryan J (2022). devtools: Tools to Make Developing R
Packages Easier. doi:10.32614/CRAN.package.devtools. R package version 2.4.5.

Wilkinson L (1999). “Statistical Methods in Psychology Journals: Guidelines and Explana-
tions.” American Psychologist, 54, 594–604. doi:10.1037/0003-066X.54.8.594.

Zeileis A (2006). “Object-Oriented Computation of Sandwich Estimators.” Journal of Statis-
tical Software, 16, 1–16. doi:10.18637/jss.v016.i09.

Zeileis A, Hothorn T (2002). “Diagnostic Checking in Regression Relationships.” R News,
2(3), 7–10. URL https://CRAN.R-project.org/doc/Rnews/.

Zeileis A, Köll S, Graham N (2020). “Various Versatile Variances: An Object-Oriented Im-
plementation of Clustered Covariances in R.” Journal of Statistical Software, 95(1), 1–36.
doi:10.18637/jss.v095.i01.

Zhang Z, Schoeps N (1997). “On Robust Estimation of Effect Size Under Semiparametric
Models.” Psychometrika, 62(2), 201–214. doi:10.1007/BF02295275.

https://doi.org/10.32614/CRAN.package.survival
https://doi.org/10.32614/CRAN.package.survival
https://doi.org/10.32614/CRAN.package.effsize
https://doi.org/10.32614/CRAN.package.effsize
https://doi.org/10.1007/s11336-020-09698-2
https://doi.org/10.1002/hbm.25374
https://doi.org/10.1080/00031305.2016.1154108
https://doi.org/10.1080/00031305.2016.1154108
https://doi.org/10.2307/1912934
https://ggplot2.tidyverse.org/
https://doi.org/10.32614/CRAN.package.pkgdown
https://doi.org/10.32614/CRAN.package.devtools
https://doi.org/10.1037/0003-066X.54.8.594
https://doi.org/10.18637/jss.v016.i09
https://CRAN.R-project.org/doc/Rnews/
https://doi.org/10.18637/jss.v095.i01
https://doi.org/10.1007/BF02295275

Journal of Statistical Software 27

Affiliation:
Megan Jones
Vanderbilt University
Department of Biostatistics
2525 West End Ave., Suite 1136, Nashville
Tennessee 37203, United States of America
E-mail: megan.n.taylor@vanderbilt.edu

Journal of Statistical Software https://www.jstatsoft.org/
published by the Foundation for Open Access Statistics https://www.foastat.org/
March 2025, Volume 112, Issue 3 Submitted: 2023-06-12
doi:10.18637/jss.v112.i03 Accepted: 2024-05-06

mailto:megan.n.taylor@vanderbilt.edu
https://www.jstatsoft.org/
https://www.foastat.org/
https://doi.org/10.18637/jss.v112.i03

	Introduction
	Statistical methods
	RESI definition
	RESI estimators
	Bootstrapping procedure for confidence intervals
	Meaningful RESI ranges

	The RESI package
	Operation
	Model-based functions
	Other package elements
	Important dependencies
	Support

	Illustrations
	RESI on linear model
	RESI on nonlinear least squares
	RESI on survival model

	Conclusion
	Computational details
	Acknowledgements

