Package 'VAR.spec'

June 11, 2024

Type Package

Title Allows Specifying a Bivariate VAR (Vector Autoregression) with Desired Spectral Characteristics

Version 1.0

Date 2024-06-7
Description The spectral characteristics of a bivariate series (Marginal Spectra, Coherencyand Phase-Spectrum) determine whether there is a strong presence of short-, medium-, or longterm fluctuations (components of certain frequencies in the spectral representation of the series) in each one of them. These are induced by strong peaks of the marginal spectra of each series at the corresponding frequencies. The spectral characteristics also determine how strongly these short-, medium-, or long-term fluctuations of the two series are correlated between the two series. Information on this is provided by the Coherency spectrum at the corresponding frequencies. Finally, certain fluctuations of the two series may be lagged to each other. Information on this is provided by the Phase spectrum at the corresponding frequencies. The idea in this package is to define a VAR (Vector autoregression) model with desired spectral characteristics by specifying a number of polynomials, required to define the VAR. See Ioannidis(2007) doi:10.1016/j.jspi.2005.12.013. These are specified via their roots, instead of via their coefficients. This is an idea borrowed from the Time Series Library of R. Dahlhaus, where it is used for defining ARMA models for univariate time series. This way, one may e.g. specify a VAR inducing a strong presence of long-term fluctuations in series 1 and in series 2 , which are weakly correlated, but lagged by a number of time units to each other, while short-term fluctuations in series 1 and in series 2 , are strongly present only in one of the two series, while they are strongly correlated to each other between the two series. Simulation from such models allows studying the behavior of data-analysis tools, such as estimation of the spectra, under different circumstances, as e.g. peaks in the spectra, generating bias, induced by leakage.
License GPL-2
LazyData true
NeedsCompilation no
Author Evangelos Ioannidis [cre, aut, cph],
Panagiotis Papastamoulis [aut, cph]
Maintainer Evangelos Ioannidis eioannid@aueb.gr
Depends R (>= 3.5.0)

Repository CRAN

Date/Publication 2024-06-11 11:30:05 UTC

Contents

VAR.spec-package 2
calc.VAR.spec.from.coefs 5
calculate.VAR 6
Init.var 11
plot_VAR.Phase.details 14
plot_VAR.spectra 15
simulate.VAR 16
VAR.inv.roots.from.det.cross 17
VAR.inv.roots.from.eta.ksi.zeta 18
Index 19
VAR.spec-package Allows Specifying a Bivariate VAR (Vector Autoregression) with De-
sired Spectral Characteristics

Description

The spectral characteristics of a bivariate series (Marginal Spectra, Coherency- and Phase-Spectrum) determine whether there is a strong presence of short-, medium-, or long-term fluctuations (components of certain frequencies in the spectral representation of the series) in each one of them. These are induced by strong peaks of the marginal spectra of each series at the corresponding frequencies. The spectral characteristics also determine how strongly these short-, medium-, or long-term fluctuations of the two series are correlated between the two series. Information on this is provided by the Coherency spectrum at the corresponding frequencies. Finally, certain fluctuations of the two series may be lagged to each other. Information on this is provided by the Phase spectrum at the corresponding frequencies. The idea in this package is to define a VAR (Vector autoregression) model with desired spectral characteristics by specifying a number of polynomials, required to define the VAR. See Ioannidis(2007) doi:10.1016/j.jspi.2005.12.013. These are specified via their roots, instead of via their coefficients. This is an idea borrowed from the Time Series Library of R. Dahlhaus, where it is used for defining ARMA models for univariate time series. This way, one may e.g. specify a VAR inducing a strong presence of long-term fluctuations in series 1 and in series 2 , which are weakly correlated, but lagged by a number of time units to each other, while short-term fluctuations in series 1 and in series 2 , are strongly present only in one of the two series, while they are strongly correlated to each other between the two series. Simulation from such models allows studying the behavior of data-analysis tools, such as estimation of the spectra, under different circumstances, as e.g. peaks in the spectra, generating bias, induced by leakage.

Details

The DESCRIPTION file:

Package:	VAR.spec
Type:	Package
Title:	Allows Specifying a Bivariate VAR (Vector Autoregression) with Desired Spectral Characteristics
Version:	1.0
Date:	$2024-06-7$
Authors@R:	c(person("Evangelos", "Ioannidis", email = "eioannid@aueb.gr", role = c("cre", "aut", "cph")), person("Panas
Description:	The spectral characteristics of a bivariate series (Marginal Spectra, Coherency- and Phase-Spectrum) determin
License:	GPL-2
LazyData:	true
Author:	Evangelos Ioannidis [cre, aut, cph], Panagiotis Papastamoulis [aut, cph]
Maintainer:	Evangelos Ioannidis eioannid@aueb.gr

Index of help topics:

```
Init.var Initializes an object of class 'var'
VAR.inv.roots.from.det.cross
    An example 'data.frame' defining a VAR (Vector
    autoregression) model.
VAR.inv.roots.from.eta.ksi.zeta
    An example 'data.frame' defining a VAR model.
VAR.spec-package Allows Specifying a Bivariate VAR (Vector
    Autoregression) with Desired Spectral
    Characteristics
calc.VAR.spec.from.coefs
    Calculates the spectral matrix of a
    multivariate VAR (Vector autoregression) model.
calculate.VAR Attempts to define a bivariate VAR (Vector
    autoregression) model.
plot_VAR.Phase.details
    Plots details related to the Phase spectrum of
    a bivariate VAR (Vector autoregression) model.
plot_VAR.spectra Plots spectra of a bivariate VAR (Vector
    autoregression) model.
simulate.VAR Simulates a bivariate series from a bivariate
    VAR (Vector autoregression) model.
```

The specification of the VAR (Vector autoregression) model is based on the following fact (see Ioannidis (2007))
doi:10.1016/j.jspi.2005.12.013:
 p, satisfying
EQ (*) *

$$
|\operatorname{det}(z)|^{2}+|\operatorname{cross}(z)|^{2}=|\operatorname{chi.1}(z)|^{2} * \mid \operatorname{chi.2(z)|^{2}}
$$

on $|z|=1$, there exists a bivariate $\operatorname{VAR}(\mathrm{p})$ with marginal spectra

$$
f . i(w)=(1 / 2 \pi)|\operatorname{chi} i . i(z)|^{2} /|\operatorname{det}(z)|^{2}
$$

and cross-spectrum

$$
f \cdot 1.2(w)=(1 / 2 \pi) z^{(-p)} \operatorname{cross}(z) /|\operatorname{det}(z)|^{2}
$$

where $z=\exp (-i w)$. The squared Coherency is then given by

$$
|\operatorname{cross}(z)|^{2} /\left(|\operatorname{det}(z)|^{2}+|\operatorname{cross}(z)|^{2}\right) .
$$

The idea in this package is to define the necessary polynomials by specifying their roots, instead of their coefficients. This is an idea borrowed from the Time Series Library of R. Dahlhaus, where it is used for defining ARMA models for univariate time series.

Moreover, the package allows the user to specify only some of the roots of $\operatorname{det}(z), \operatorname{cross}(z)$ and chi.1(z), chi.2(z), while it attempts to find further non-specified roots in a way such that $\mathrm{EQ}\left(^{*}\right)$ is satisfied.

By specifying certain roots of $\operatorname{det}(z), \operatorname{cross}(z)$ and $\operatorname{chi} 1.1(z), \operatorname{chi} .2(z)$ one can induce desired features in the spectra and in the series. For example,

- if one wishes a strong presence of frequency w_{0} components in series 1 , there should be a root with modulus close to 1 and angle equal to w_{0}, the multiplicity of which for $\operatorname{det}(z)$ is higher than its multiplicity for $\operatorname{chi} 1(z)$, forcing the spectrum of series 1 to have a peak at w_{0}.
- If the frequency- w_{0}-components should be strongly correlated between series 1 and series 2, the multiplicity of this root for $\operatorname{det}(z)$ should be higher than its multiplicity for $\operatorname{cross}(z)$, forcing the Coherency at w_{0} close to 1 .

Required polynomials (see argument calc.method of function calculate.VAR and related Details) are first passed to function Init.var, via a data.frame or a text file, which contains the multiplicities of desired roots (rows) for each required polynomial (columns).
After calling Init.var, function calculate.VAR must be called, which attempts to find a VAR model which is compatible with the polynomials specified in its attribute inv.roots, by making necessary adjustments, calculates its spectra, coefficients and order, makes the necessary checks and plots it's spectra. Then, one can simulate from the specified model calling simulate. VAR.

Author(s)

Evangelos Ioannidis [cre, aut, cph], Panagiotis Papastamoulis [aut, cph]
Maintainer: Evangelos Ioannidis eioannid@aueb.gr

References

Ioannidis, E. E. (2007). Spectra of bivariate VAR(p) models. Journal of Statistical Planning and Inference 137(2), 554-566.
Ioannidis, E. E. and Chronis, G. A. (2005). Extreme spectra of VAR models and orders of nearcointegration. J. Time Ser. Anal. 26, 399-421.

See Also

```
Init.var, calculate.VAR, simulate.VAR,
plot_VAR.spectra, plot_VAR.Phase.details,
calc.VAR.spec.from.coefs
```


Examples

```
my.var <- Init.var(grid=501, order.max.init=10, inv.roots.def=NULL)
my.var$inv.roots[2,]<- c(0.98,0.017261,2,3,1,1,2, rep(0,8))
my.var$inv.roots[3,]<- c(0.92,0.897598,2,1,1,1,2, rep(0,8))
my.var$inv.roots[4,]<- c(0.98,1.795196,1,1,0,1,1, rep(0,8))
my.var <- calculate.VAR (a.var = my.var, calc.method="from.det.cross",
    plot.spectra=TRUE, suppr.spec.check.warn=TRUE)
print(my.var$validity.msg)
```

```
calc.VAR.spec.from.coefs
```

Calculates the spectral matrix of a multivariate VAR (Vector autoregression) model.

Description

Calculates the spectral matrix for all grid points for any (multivariate) VAR model, represented by an object of class var, with specified coefficients (in attribute ar.list).

Usage
 calc.VAR.spec.from.coefs(a.var)

Arguments

a.var an object of class var for which the spectral matrix will be calculated. Actually only the attributes grid, order and ar.list of a.var are needed.

Details

Is being called in calculate.VAR, so there is no need to call it again after calculate. VAR has been called. Can also be used to calculate the spectral matrix of a VAR model which has been fitted to data, e.g. using function ar. See Brockwell and Davis, 1990, Example 11.8.1, Hannan, 1970, Chapter II, Section 5.iv or Brillinger, 2001, Sections 2.8 and 2.9.

Value

Returns the object of class var after having calculated and set the following attributes:
freq A one dimensional array of length grid, containing the grid-points at which spec has been calculated.
spec A three dimensional array (gridxkxk), where k is the number of series of the VAR model. Contains for each grid-point the spectral matrix, as calculated at the basis of ar.list. That is, $\operatorname{spec}[j, 1,1]$ is the spectrum of series 1 at gridpoint $j, \operatorname{spec}[j, 1,2]$ is the cross-spectrum between series 1 and 2 at grid-point j , etc.

References

Brillinger, D.R. (2001). Time Series: Data Analysis and Theory, second ed. Classics in Applied Mathematics, vol. 36. SIAM, Philadelphia.
Brockwell, P. J., Davis, R. A. (1990). Time Series: Theory and Methods, second ed. Springer, New York.
Hannan, E. J. (1970). Multiple Time Series. Wiley, New York.

See Also

VAR.spec-package,Init.var, calculate.VAR, simulate.VAR, plot_VAR.spectra, plot_VAR.Phase.details

Examples

```
my.var <- Init.var(grid=501, order.max.init=10, inv.roots.def=NULL)
my.var$inv.roots[2,]<- c(0.98,0.017261,2,3,1,1,2, rep(0,8))
my.var$inv.roots[3,]<- c(0.92,0.897598,2,1,1,1,2, rep(0,8))
my.var$inv.roots[4,]<- c(0.98,1.795196,1,1,0,1,1, rep(0,8))
my.var <- calculate.VAR(a.var=my.var,calc.method="from.det.cross",
    suppr.spec.check.warn=TRUE)
print(my.var$validity.msg)
my.sample <-simulate.VAR(a.var=my.var, sample.size=250, burn.in = 500)
est.var<-list()
est.var$ar.outp <- ar(x=my.sample, aic=FALSE, order.max=6, demean=FALSE, method="ols",
series=c("ser1","ser2"))
est.var$label <-"MY VAR(6)"
est.var$order<-dim(est.var$ar.outp$ar)[1]
est.var$ar.list$ar <- est.var$ar.outp$ar
est.var$ar.list$var.pred <- est.var$ar.outp$var.pred
est.var$grid <- 501
est.var <- calc.VAR.spec.from.coefs(est.var)
plot_VAR.spectra(a.var=est.var,both=FALSE)
```


Description

Attempts to find a VAR model which is compatible with the polynomials specified in its attribute inv. roots, makes necessary adjustments, calculates its spectra, coefficients and order, makes the necessary checks and plots the spectra. Finding a VAR model involves finding complex polynomials $\operatorname{det}(z), \operatorname{cross}(z), \operatorname{chi.1(z)}$ and chi.2(z), satisfying EQ(*):

$$
|\operatorname{det}(z)|^{2}+|\operatorname{cross}(z)|^{2}=|\operatorname{chi.1}(z)|^{2} \mid \operatorname{chi.2(z)|^{2}}
$$

on $z \mid=1$. If calculate.VAR is successful in finding such polynomials, there exists a bivariate VAR(p) model with marginal spectra

$$
f . i(w)=(1 / 2 \pi) *|c h i . i(z)|^{2} /|\operatorname{det}(z)|^{2},
$$

and cross-spectrum

$$
f \cdot 1.2(w)=(1 / 2 \pi) * z^{(-p)} * \operatorname{cross}(z) /|\operatorname{det}(z)|^{2}
$$

where $z=\exp (-i w)$. The squared Coherency is then given by

$$
|\operatorname{cross}(z)|^{2} /\left(|\operatorname{det}(z)|^{2}+|\operatorname{cross}(z)|^{2}\right)
$$

Usage

calculate. VAR(a.var, calc.method = "from.det.cross", M.fact = 1.1, plot.spectra $=$ TRUE, suppr.spec.check. warn=FALSE)

Arguments

a.var An object of class var, previously initialized by Init.var.
calc.method One of 'from.det.cross' or 'from.eta.ksi.zeta'. See details for further explanations.
M.fact \quad Numeric. A factor >1, by which the $\min \left(\mid k \operatorname{si} . c(z) /\left.[\operatorname{eta} .1(z)\right.$ eta.2(z)zeta $\left.(z)]\right|^{2}\right)$
 on $|z|=1$. Only relevant when calc.method $=$ 'from.eta.ksi.zeta'. Affects the range of values of the Coherency spectrum.
plot.spectra Logical. If TRUE, the marginal spectra, Coherency and Phase spectra will be plotted.
suppr.spec.check.warn
Logical. If TRUE, warnings on whether spectra obtained directly from cross, det, chi. 1 and chi. 2 (in spec. 1, spec. 2, Coher, Phase) differ by more than eps. for. spectra from the spectra (in spec) obtained from the coefficients of the VAR model (see Note, below) are suppressed.

Details

In order to define a VAR model, one seeks to define $\operatorname{det}(z), \operatorname{cross}(z)$ and $\operatorname{chi} .1(z), \operatorname{chi} .2(z)$, such that $\mathrm{EQ}\left({ }^{*}\right)$ holds. There are two ways implemented for doing so, which are specified by argument calc.method:

- calc . method = 'from.det.cross'. (See Ioannidis (2007), Proposition 2). One must first specify the roots for $\operatorname{det}(z)$ and $\operatorname{cross}(z)$. They fix these two polynomials, which will not be modified during the calculation. One may also specify some roots for chi.1(z) and chi.2(z). If these two latter are compatible with $\mathrm{EQ}\left({ }^{*}\right)$ they will be kept. If not, they may be modified during the calculation. Further roots may be added by compute. VAR during the calculation to chi.2 to ensure that $\mathrm{EQ}{ }^{(*)}$ holds. All changes are recorded in attribute inv.roots. If the user wishes some of the roots of chi. 2 to be rather added to chi.1, he may do so by editing attribute inv. roots after running the function once, by increasing the multiplicity of the root for chi. 1 and decreasing it by the same amount for chi.2, and then, re-running the function. With the option calc.method $=$ 'from.det.cross' one has more direct control over peaks for the
marginal spectra (via chi.i and det) and the Coherency being close to 0 or 1 (via det and cross), as well as the Phase spectrum, i.e., the lag-/lead- structure between the two series (via cross).
- calc.method = 'from.eta.ksi.zeta'. (See Ioannidis (2007), Proposition 1). One must specify the roots of eta.1, eta.2, ksi.1, ksi. 2 and zeta. These fix

$$
\operatorname{chi.i}(z)=M * \operatorname{eta} . i(z) z e t a(z) k s i . j(z) / k s i . c(z))
$$

and

$$
\operatorname{det}(z)=M * z e t a(z) k \operatorname{si} .1(z) k s i .2(z) / k s i . c(z)
$$

where M equals M.fact* $\min \left(\mid k \operatorname{si} . c(z) /\left.[\right.$ eta.1 (z) eta. $2(z)$ zeta $\left.(z)]\right|^{2}\right)$ and $k s i . c$ is the maximal common divisor of $k s i .1(z)$ and $k s i .2(z)$. Then, $\operatorname{cross}(z)$ is automatically determined so as that $\mathrm{EQ}\left({ }^{*}\right)$ is satisfied. The result is that marginal spectra are given by

$$
f . i(w)=\mid \text { eta } .\left.i(z)\right|^{2} /|k s i . i(z)|^{2}
$$

and the squared Coherency is given by

$$
1-|k \operatorname{si.c}(z)|^{2} / \mid M * \text { eta. } 1(z) \text { eta. }\left.2(z) z e t a(z)\right|^{2} .
$$

With the option calc.method $=$ 'from.eta.ksi.zeta' one has more direct control over peaks (via $k s i$) and zeroes (via eta) of the marginal spectra and, partially, over the Coherency (via ksi.c, eta and zeta), but not of the Phase spectrum. However, for certain aspects of the Coherency, a more direct control over the relation of cross and det would be required, which is not available with this option. For example, with this option, it is not possible to set the multiplicity of a root to be higher for cross than for det.

Value

An object of class var, basically a list including elements:
grid The number of equidistant gridpoints in $[0, \pi]$, used for plotting and numerical approximations.
p.max.init An initial limitation on the order of the VAR model.
inv.roots A data.frame containing the roots of certain polynomials, used to specify the VAR model.
niter An integer specifying the maximal number of iterations for the Innovations algorithm.
eps.max.for.UIA
Numeric close to 0 . Specifies the threshold for the relative increase in precision achieved at a step of the Innovations algorithm, for accepting that the algorithm has converged.
eps.for. roots Numeric close to 0 . A threshold for considering two roots as identical, if a) the inverses of their radii and b) their angles (in their polar representation) differ by less than this threshold.
eps.for.spectra
Numeric close to 0 . A threshold for checking the validity of the calculation of the VAR model. It's spectra are calculated on the basis of the polynomials used to specify the VAR model in inv. roots. def should coincide with the spectra calculated on the basis of the VAR model's coefficients. If they differ by more than a.eps.for.spectra warning messages will be written out to the console.
validity.msg A message containing more precise information on a) the convergence of the Innovations Algorithm and b) on the maximal difference between the spectra of the VAR model as calculated on the basis of the polynomials used to specify it and the spectra obtained on the basis of the VAR model's coefficients. The message should be printed after each call to calculate. var.
order (Integer) The final order of the VAR model.
ar.list A list with entries (calculated solving the Yule-Walker equations):

- order (Integer) The final order of the VAR model.
- ar A three dimensional array (orderx2x2), containing the coefficients of the VAR model.
- var.pred A 2×2 matrix containing the covariance matrix of the innovations.
cov.1, cov.2, cov.cross, cov.cross.neg
Three one dimensional arrays of length order +1 containing the auto- and the cross- covariances (for lags and leads respectively) of the two series for lags $=0, \ldots$, order. They are being calculated as Dirichlet-approximations to the Fourier transforms of the spectra, which have been calculated from det, cross, chi. 1 and chi.2.
freq A one dimensional array of length grid. It contains the grid-points at which spectra are being calculated.
spec A three dimensional array (gridx2x2). Contains for each grid-point the spectral matrix, as calculated at the basis of the VAR model's coefficients, given in attribute ar. list. That is, spec $[\mathrm{j}, 1,1]$ is the spectrum of series 1 at grid-point j, $\operatorname{spec}[j, 1,2]$ is the cross-spectrum between the series 1 and 2 at grid-point j, etc.
spec.1, spec. 2 Two one dimensional arrays of length grid containing the \log of the values of the spectra of series 1 and 2 , respectively, as calculated from chi, det, i.e. spec. $1[j]=\log \left[(1 / 2 \pi)|\operatorname{chi} . i(z)|^{2} /|\operatorname{det}(z)|^{2}\right]$, where $z=\exp (-i j \pi /(\operatorname{grid}-$ 1)).

Coher A one dimensional array of length grid containing the values of the log of the squared Coherency spectrum between series 1 and 2 , as calculated from cross, det, i.e. $\operatorname{Coher}[j]=\log \left(|\operatorname{cross}(z)|^{2} /\left(|\operatorname{det}(z)|^{2}+|\operatorname{cross}(z)|^{2}\right]\right), z=$ $\exp (-i j \pi /($ grid -1$))$.
Phase A one dimensional array of length grid containing the values of the Phase spectrum between series 1 and 2 , as calculated from cross, i.e., Phase $(w)=$ $\arg \left[z^{(-p)} * \operatorname{cross}(z)\right]$, where $z=\exp (-i j \pi /(\operatorname{grid}-1))$.
Phase.div.freq, group.delay
Two one dimensional arrays of length grid containing the values of Phase $(\mathrm{w}) / \mathrm{w}$, which gives the lead/lag in units of time, and the derivative of Phase(w) with respect to w, respectively.
det, cross, chi.1, chi.2, ksi.1, ksi.2, eta.1, eta.2, zeta
Contain detailed information on the respective polynomials (the last five only if calc.method = 'from.eta.ksi.zeta' was used), as modified during the calculation, each one with attributes:

- const the constant of the polynomial;
- inv. roots the modulus and angle for the inverses of the roots of the polynomial (for conjugate pairs only the one with angle in $[0, \pi]$);
- inv.roots.number, the number of the roots of the polynomial (pairs of complex roots are counted only once);
- order, the degree of the polynomial;
- coefs, an array of length 2 (inv. roots. number +1) containing the coefficients of the polynomial;
- fourier.coefs, an array of length 2 pmax. init +1 containing the Fourier transform of the \mid polynomial $\left.(z)\right|^{2}$ on $|z|=1$;
- values $\$$ spec, an array of length grid, containing the values of the squared modulus of the polynomial, i.e. $|\operatorname{polynomial}(z)|^{2}$ on $|z|=1$;
- Inv.values\$spec, an array of length grid, containing the log of the inverses of the values of the squared modulus of the polynomial, i.e. $-\log \left[|\operatorname{polynomial}(z)|^{2}\right]$ on $|z|=1$.

Note

calculate.VAR performs a check on the validity of the output and stores relevant information in attribute validity.msg. There are certain reasons for which the output may not be valid: First, the calculation involves numerical approximations; the relevant algorithms may have not achieved convergence to the desired precision. Second, there may be features in the spectra, which cannot be well represented by a VAR model, resulting in polynomials cross, det, chi. 1 and chi.2 not satisfying $\mathrm{EQ}(*)$. Thus, it is imperative to check a) the validity of $\mathrm{EQ}(*)$. It is also important to check b) that the spectra obtained directly from cross, det, chi.1 and chi. 2 (in spec.1, spec.2, Coher, Phase) coincide with the spectra (in spec) obtained from the coefficients of the VAR model (in ar.list). The checks performed by calculate.VAR concern exactly the checks under a) and b): the maximum absolute difference between the relevant quantities (in log scale, where appropriate) is passed in validity.msg. Moreover, warnings are written out to the console if the Innovations algorithm did not converge or if any of the quantities in 'b' exceeds eps.for. spectra, provided that suppr.spec.check. warn=FALSE. The same check is conducted visually if plot.spectra=TRUE: each spectrum is calculated and plotted according to both methods. The two should coincide.
The option method='from.det.cross' seems generally numerically more stable than the option method='from.eta.ksi.zeta'.

Suggestions on how to obtain desired spectral characteristics:

Let $z_{0}:=r_{0}^{-1} \exp \left(i w_{0}\right)$, with r_{0} close to 1 . For a polynomial $p(z)$ denote by $\left[p\left(z_{0}\right)\right]$ the multiplicity of z_{0} as root of $p(z)$.
To obtain

- a peak in $f .1\left(w_{0}\right)$
- with method='from.det.cross': choose $\left[\operatorname{det}\left(z_{0}\right)\right]>\left[\operatorname{chi.1}\left(z_{0}\right)\right]$.
- with method='from.eta.ksi.zeta': choose $\left[k s i .1\left(z_{0}\right)\right]>\left[\right.$ eta. $\left.1\left(z_{0}\right)\right]$.
- a trough in $f .1\left(w_{0}\right)$
- with method='from.eta.ksi.zeta': choose $\left[k s i .1\left(z_{0}\right)\right]<\left[\right.$ eta. $\left.1\left(z_{0}\right)\right]$.
- a $\operatorname{Coh}\left(w_{0}\right)$ close to 1
- with method='from.det.cross': choose $\left[\operatorname{det}\left(z_{0}\right)\right]>\left[\operatorname{cross}\left(z_{0}\right)\right]$.
- with method='from.eta.ksi.zeta': choose $\min \left(\left[k s i .1\left(z_{0}\right)\right],\left[k s i .2\left(z_{0}\right)\right]\right)>\left[\right.$ eta.1 $\left.\left(z_{0}\right)\right]+$ $\left[\operatorname{eta} .2\left(z_{0}\right)\right]+\left[z e t a\left(z_{0}\right)\right]$.
- a $\operatorname{Coh}\left(w_{0}\right)$ close to 0
- with method='from.det.cross': choose $\left[\operatorname{det}\left(z_{0}\right)\right]<\left[\operatorname{cross}\left(z_{0}\right)\right]$.
- with method='from.eta.ksi.zeta': choose $\min \left(\left[k s i .1\left(z_{0}\right)\right],\left[k s i .2\left(z_{0}\right)\right]\right)<\left[\right.$ eta.1 $\left.\left(z_{0}\right)\right]+$ $\left[\operatorname{eta} .2\left(z_{0}\right)\right]+\left[z e t a\left(z_{0}\right)\right]$.

References

Ioannidis, E. E. (2007). Spectra of bivariate VAR(p) models. Journal of Statistical Planning and Inference 137(2), 554-566.

Ioannidis, E. E. and Chronis, G. A. (2005). Extreme spectra of VAR models and orders of nearcointegration. J. Time Ser. Anal. 26, 399-421.

See Also

```
VAR.spec-package,Init.var, simulate.VAR,
```

plot_VAR.spectra, plot_VAR.Phase.details,
calc.VAR.spec.from.coefs

Examples

```
my.var <- Init.var(grid=501, order.max.init=10, inv.roots.def=NULL)
my.var$inv.roots[2,]<- c(0.98,0.017261,2,3,1,1,2, rep(0,8))
my.var$inv.roots[3,]<- c(0.92,0.897598,2,1,1,1,2, rep(0,8))
my.var$inv.roots[4,]<- c(0.98,1.795196,1,1,0,1,1, rep(0,8))
my.var <- calculate.VAR (a.var = my.var, calc.method="from.det.cross",
    plot.spectra=TRUE,suppr.spec.check.warn=TRUE)
print(my.var$validity.msg)
```


Description

Initializes an object of class var, representing a VAR (Vector autoregression) model, sets some of its parameters and reads the specification of certain polynomials which determine the VAR model from a data.frame or from a tab-delimited text file (, which is converted to a data.frame). In this data. frame each polynomial is specified via it's (complex) roots and constant. If no such text file or data. frame is specified, an appropriate default data.frame is created, which can then be modified by the user.

Usage

```
Init.var(grid = 1001, order.max.init = 10, inv.roots.def = NULL,
    a.niter \(=5000\), a.eps.max.for.UIA \(=1 \mathrm{e}-10\),
    a.eps.for.roots \(=1 \mathrm{e}-05\),a.eps.for.spectra=1E-4)
```


Arguments

grid An integer specifying the number of equidistant gridpoints in $[0, \pi]$ used for plotting and numerical approximations. They are given by $j \pi /((\operatorname{grid}-1)), j=$ $0, \ldots$, grid.
order.max.init An integer providing an initial limitation on the order of the VAR model. The degrees of the polynomials specified in the inv.roots.def should not exceed 2*order.max.init and the lines of the inv. roots. def should be at least equal to 6*order.max. init+2 (if this not the case, appropriate lines will be automatically added).
inv. roots.def Either NULL or a data.frame or a tab-delimited text file (, which is converted to a data.frame). This data.frame contains the roots (rows) of the polynomials (columns) used to specify the VAR model. See Details for the specific structure of the text file. If set to NULL, a data.frame of the appropriate structure will be created, which contains no roots, and corresponds, thus, to a bivariate white noise series. The data.frame in any of the above cases may be modified after the call of init.var, via e.g. var. name\$inv. roots <edit(var.name\$inv.roots).
a.niter An integer specifying the maximal number of iterations for the Innovations algorithm.
a.eps.max. for.UIA

Numeric close to 0 . Specifies the threshold for the relative increase in precision achieved at a step of the Innovations algorithm, for accepting that the algorithm has converged.
a.eps.for.roots

Numeric close to 0 . A threshold for considering two roots as identical, if a) the inverses of their radii and b) their angles (in their polar representation) differ by less than this threshold.
a.eps.for.spectra

Numeric close to 0 . A threshold for checking the validity of the calculation of the VAR model. It's spectra are calculated on the basis of the polynomials used to specify the VAR model in inv. roots. def should coincide with the spectra calculated on the basis of the VAR model's coefficients. If they differ by more than a.eps.for.spectra warning messages will be written out to the console.

Details

The text file [/ data. frame] passed in argument inv. roots. def should have a specific structure:

- The first row of the file (headers) [/ names of columns of the data.frame] should be 'radius angle det cross chi. 1 chi. 2 chi. 1. prod .2 ma. 1 ma. 2 eta. 1 eta. 2 ksi. 1 ksi .2 ksi.c zeta'.
- The second row of the file [/ first row-'observation' in the data.frame] contains the constants of the polynomials, usually set initially to 1 , while the first two entries, corresponding to columns radius and angle, are set to '\#NA' [/ 'NA'].
- Subsequent rows, containing each one the specification of a root and the multiplicity of this root for each relevant polynomial, should have the following entries: The first entry is the inverse of its modulus (radius). For all polynomials, except for cross, this should be in $[0,1)$. The second entry is it's argument (angle). This should be a figure in $[0, \pi]$. Complex conjugates for each non-real root will be automatically added, in order to ensure real coefficients of the polynomials. Subsequent entries in the row are non-negative integers determining the multiplicity of the given root for the polynomial corresponding to the column of the entry. Not all polynomials need to be specified (see parameter calc.method in function calculate.VAR). Non relevant polynomials should have ' 0 ' as entry for their multiplicity of the root.
- Subsequent rows containing no specified roots should have the following structure: the first two entries, corresponding to radius and angle, should equal '\#NA' [/ 'NA']. The rest of the row should be filled with ' 0 '. The total number of rows should be at least 6 *order.max.init+2 for the file (, including headers) [/ or 6*order.max.init+1 for the data.frame].

Two example text files of the appropriate structure, VAR.inv.roots.from.det.cross.txt and VAR.inv. roots.from.eta.ksi.zeta.txt may be found in the extdata folder of the package. A path to them may be obtained via
fpath<-system.file("extdata", "text.file", package="VAR.spec").
The corresponding example data.frames are also directly accessible to the user as
VAR.inv.roots.from.det.cross and VAR.inv.roots.from.eta.ksi.zeta.

Value

An object of class var, basically a list including elements:
grid The integer contained in argument grid. The number of equidistant gridpoints in $[0, \pi]$, used for plotting and numerical approximations.
p.max.init The integer contained in argument order.max.init. An initial limitation on the order of the VAR model.
inv.roots A data.frame containing the roots of certain polynomials, required to specify the VAR model.
niter The integer contained in argument a.niter. An integer specifying the maximal number of iterations for the Innovations algorithm.
eps.max.for.UIA
Numeric close to 0 . Specifies the threshold for the relative increase in precision achieved at a step of the Innovations algorithm, for accepting that the algorithm has converged.
eps.for. roots Numeric close to 0 . A threshold for considering two roots as identical, if a) the inverses of their radii and b) their angles (in their polar representation) differ by less than this threshold.
eps.for.spectra
Numeric close to 0 . A threshold for checking the validity of the calculation of the VAR model. It's spectra are calculated on the basis of the polynomials used
to specify the VAR model in inv. roots. def should coincide with the spectra calculated on the basis of the VAR model's coefficients. If they differ by more than a.eps.for.spectra warning messages will be written out to the console.

See Also

```
VAR.spec-package, calculate.VAR, simulate.VAR,
plot_VAR.spectra, plot_VAR.Phase.details,
calc.VAR.spec.from.coefs
```


Examples

```
my.var <- Init.var(grid=201, order.max.init=10, inv.roots.def=NULL)
```

my.var\$inv.roots[2,]<- c(0.98,0.017261,2,3,1,1,2, rep(0,8))
my.var\$inv. roots[3,]<- c(0.92,0.897598,2,1,1,1,2, $\operatorname{rep}(0,8))$
my.var\$inv.roots[4,]<- c(0.98,1.795196,1,1,0,1,1, $\operatorname{rep}(0,8))$
my.var\$inv.roots

```
plot_VAR.Phase.details
```

Plots details related to the Phase spectrum of a bivariate VAR (Vector autoregression) model.

Description

Plots in a 2×2 layout the Phase spectrum of a VAR model for a bivariate series, represented by an object of class var, the Phase spectrum divided by frequency -which gives the lag-/lead-structure between the two series in units of time - , the derivative of the Phase spectrum with respect to frequency -also known as the group-delay-, and the Coherency spectrum of the VAR model.

Usage

plot_VAR.Phase.details(a.var)

Arguments

a.var An object of class var obtained from calculate. VAR for which details of the Phase spectrum are to be plotted.

Value

No return value, called for side effects.

See Also

```
VAR.spec-package,Init.var, calculate.VAR,
simulate.VAR, plot_VAR.spectra,
calc.VAR.spec.from.coefs
```


Examples

```
my.var <- Init.var(grid=501, order.max.init=10, inv.roots.def=NULL)
my.var$inv.roots[2,]<- c(0.98,0.017261,2,3,1,1,2, rep(0,8))
my.var$inv.roots[3,]<- c(0.92,0.897598,2,1,1,1,2, rep(0,8))
my.var$inv.roots[4,]<- c(0.98,1.795196,1,1,0,1,1, rep(0,8))
my.var <- calculate.VAR(a.var=my.var,calc.method="from.det.cross",
    suppr.spec.check.warn=TRUE)
print(my.var$validity.msg)
plot_VAR.Phase.details (a.var=my.var)
```

plot_VAR.spectra Plots spectra of a bivariate VAR (Vector autoregression) model.

Description

Plots in a 2×2 layout the marginal spectra, the squared Coherency spectrum and the Phase spectrum of a VAR model, represented by an object of class var. If both=TRUE, each one is calculated (and plotted) in two ways: once directly from det, cross, chi.1, chi.2, and once from the coefficients in ar.list. For each quantity the values from the two ways of calculation should coincide, if the calculation of the VAR model undertaken in calculate. VAR was correct. If both=FALSE, only the calculation based on the coefficients in attribute ar. list is plotted.

Usage

plot_VAR.spectra(a.var, both = TRUE)

Arguments

a. var An object of class var for which spectra are to be plotted.
both Logical. If TRUE, each quantity will be plotted calculated in two ways: once directly from det, cross, chi.1, chi. 2 and once from the coefficients in ar. list. If FALSE, each quantity will be plotted calculated from the coefficients in ar. list only.

Details

If both=TRUE the var should have been obtained from calculate. VAR. If both=FALSE only the attributes grid, freq and spec are required. Thus, it can also be used to plot spectra of a VAR model fitted to a bivariate series, e.g. using function ar, the spectra of which have previously been calculated by a call to calc. VAR. spec.from. coefs.

Value

No return value, called for side effects.

See Also

```
VAR.spec-package,Init.var, calculate.VAR,
```

simulate.VAR, plot_VAR.Phase.details,
calc.VAR.spec.from.coefs

Examples

```
my.var <- Init.var(grid=501, order.max.init=10, inv.roots.def=NULL)
my.var$inv.roots[2,]<- c(0.98,0.017261,2,3,1,1,2, rep(0,8))
my.var$inv.roots[3,]<- c(0.92,0.897598,2,1,1,1,2, rep(0,8))
my.var$inv.roots[4,]<- c(0.98,1.795196,1,1,0,1,1, rep(0,8))
my.var <- calculate.VAR(a.var=my.var,calc.method="from.det.cross",
    suppr.spec.check.warn=TRUE)
print(my.var$validity.msg)
my.var <- calc.VAR.spec.from.coefs(a.var=my.var)
plot_VAR.spectra(a.var=my.var)
```

simulate.VAR Simulates a bivariate series from a bivariate VAR (Vector autoregres-
sion) model.

Description

Simulates a Gaussian bivariate series from a VAR model, described by an object of class var.

Usage

simulate.VAR(a.var, sample.size, burn.in = 1000)

Arguments

a.var An object of class var, obtained from calculate. VAR. Actually only the attributes order and ar. list of a.var are needed.
sample.size Integer. The size of the bivariate sample to be generated.
burn.in Integer. The number of initial observations to be discarded. The bivariate series is simulated by iterating the VAR recursion, starting with white noise (with the covariance structure of the innovations, given in ar.list\$var.pred). This iteration converges to the correct distribution after a burn. in period, provided the roots of det are outside the unit circle, i.e. their inverses have a modulus less than 1 . The closer roots of det are to the unit circle, the longer the burn. in period should be chosen.

Value

A numeric array of dimensions sample.sizex2, the bivariate sample series simulated from the VAR model.

See Also

VAR.spec-package, Init.var, calculate.VAR, plot_VAR.spectra, plot_VAR.Phase.details, calc.VAR.spec.from.coefs

Examples

```
my.var <- Init.var(grid=501, order.max.init=10, inv.roots.def=NULL)
my.var$inv.roots[2,]<- c(0.98,0.017261,2,3,1,1,2, rep(0,8))
my.var$inv.roots[3,]<- c(0.92,0.897598,2,1,1,1,2, rep(0,8))
my.var$inv.roots[4,]<- c(0.98,1.795196,1,1,0,1,1, rep(0,8))
my.var <- calculate.VAR(a.var=my.var,calc.method="from.det.cross",
    suppr.spec.check.warn=TRUE)
print(my.var$validity.msg)
my.sample <-simulate.VAR(a.var=my.var, sample.size=250, burn.in = 500)
```

```
VAR.inv.roots.from.det.cross
    An example data.frame defining a VAR (Vector autoregression)
    model.
```


Description

An example data.frame to be used for argument inv. roots.def of function Init.var, when subsequently argument method of function calculate.VAR is set to "from.det.cross".

Usage

VAR.inv.roots.from.det.cross

Format

A data. frame containing 3 roots (rows) and their multiplicities for the polynomials $\operatorname{det}(z), \operatorname{cross}(z)$, chi.1 (z) and chi.2(z), as well as their constants in the first row.

See Also

Init.var, calculate.VAR

Examples

my.var <- Init.var(grid=501, order.max.init=10, inv.roots.def=VAR.inv.roots.from.det.cross) my.var <- calculate.VAR(a.var=my.var, calc.method="from.det.cross", suppr.spec.check.warn=TRUE)
print(my.var\$validity.msg)

VAR.inv.roots.from.eta.ksi.zeta
An example data.frame defining a VAR model.

Description

An example data.frame to be used for argument inv.roots.def of function Init.var, when subsequently argument method of function calculate.VAR is set to "from.eta.ksi.zeta".

Usage

VAR.inv.roots.from.eta.ksi.zeta

Format

A data. frame containing 3 roots (rows) and their multiplicities for the polynomials eta.1(z), eta.2(z), $k s i .1(z), k s i .2(z)$ and $z e t a(z)$, as well as their constants in the first row.

See Also

Init.var, calculate.VAR

Examples

```
my.var <- Init.var(grid=501, order.max.init=10,
    inv.roots.def=VAR.inv.roots.from.eta.ksi.zeta)
my.var <- calculate.VAR(a.var=my.var,calc.method="from.eta.ksi.zeta")
```


Index

* package

VAR.spec-package, 2
calc.VAR.spec.from. coefs, $4,5,11,14,16$, 17
calculate. VAR, $4,6,6,14,16,17$
Init.var, 4, 6, 11, 11, 14, 16, 17
plot_VAR.Phase.details, $4,6,11,14,14$, 16, 17
plot_VAR.spectra, $4,6,11,14,15,17$
simulate. VAR, 4, 6, 11, 14, 16, 16
VAR.inv.roots.from.det.cross, 17
VAR.inv.roots.from.eta.ksi.zeta, 18
VAR.spec (VAR.spec-package), 2
VAR.spec-package, 2

