Package ‘bifrost’

January 21, 2026

Title Branch-Level Inference Framework for Recognizing Optimal Shifts
in Traits

Version 0.1.3

Description Methods for detecting and visualizing cladogenic shifts in multivariate trait data on phy-
logenies. Implements penalized-likelihood multivariate generalized least squares models, en-
abling analyses of high-dimensional trait datasets and large trees via searchOptimalConfigura-
tion(). Includes a greedy step-wise shift-search algorithm following approaches devel-
oped in Smith et al. (2023) <doi:10.1111/nph.19099> and Berv et al. (2024) <doi:10.1126/sciadv.adp0114>
ods build on multivariate GLS approaches de-
scribed in Clavel et al. (2019) <doi:10.1093/sysbio/syy045> and imple-
mented in the mvgls() function from the 'mvMORPH' package. Documentation and vi-
gnettes are available at <https://jakeberv.com/bifrost/>, including the introductory vi-
gnette at <https://jakeberv.com/bifrost/articles/jaw-shape-vignette.html>.

License GPL (>=2)
Encoding UTF-8
RoxygenNote 7.3.3

URL https://jakeberv.com/bifrost/, https://github.com/jakeberv/bifrost

BugReports https://github.com/jakeberv/bifrost/issues
Depends R (>=4.1)

Imports ape, future, future.apply, phytools, grDevices, stats,
mvMORPH, viridis, txtplot

Suggests HDInterval, RColorBrewer, boot, classInt, evd, fitdistrplus,
knitr, palaeoverse, parallel, patchwork, pbmcapply, phylolm,
readxl, rmarkdown, scales, testthat (>= 3.0.0), univariateML,
spelling, htmltools

VignetteBuilder knitr
Config/testthat/edition 3
Config/testthat/parallel false
Language en-US

NeedsCompilation no

. Meth-

https://doi.org/10.1111/nph.19099
https://doi.org/10.1126/sciadv.adp0114
https://doi.org/10.1093/sysbio/syy045
https://jakeberv.com/bifrost/
https://jakeberv.com/bifrost/articles/jaw-shape-vignette.html
https://jakeberv.com/bifrost/
https://github.com/jakeberv/bifrost
https://github.com/jakeberv/bifrost/issues

2 generate ViridisColorScale

Author Jacob S. Berv [aut, cre, cph, fnd] (ORCID:

<https://orcid.org/0000-0002-5962-0621>),

Nathan Fox [aut] (ORCID: <https://orcid.org/0000-0002-2816-9751>),

Matthew J. Thorstensen [aut] (ORCID:
<https://orcid.org/0000-0002-7870-3369>),

Henry Lloyd-Laney [aut] (ORCID:
<https://orcid.org/0000-0003-4650-8937>),

Emily M. Troyer [aut] (ORCID: <https://orcid.org/0000-0001-7478-2306>),

Stephen A. Smith [aut, fnd] (ORCID:
<https://orcid.org/0000-0003-2035-9531>),

Matt Friedman [aut, fnd] (ORCID:
<https://orcid.org/0000-0002-0114-7384>),

David F. Fouhey [aut, fnd] (ORCID:
<https://orcid.org/0000-0001-5028-5161>),

Brian C. Weeks [aut, fnd] (ORCID:
<https://orcid.org/0000-0003-2967-2970>)

Maintainer Jacob S. Berv <jacob.berv@gmail.com>
Repository CRAN
Date/Publication 2026-01-21 19:10:19 UTC

Contents
generateViridisColorScale L 2
plot_ic_acceptance_matriXo it et e e e e e e e 3
print.bifrost_search 5
searchOptimalConfiguration 6
Index 12

generateViridisColorScale
Generate Scaled Viridis Color Palette for Rate Parameters

Description

Creates a named color mapping for a set of numeric parameters (e.g., evolutionary rates) using the
viridis color palette. Parameters are first sorted in ascending order and normalized to the range [0,
1], then mapped to evenly spaced viridis colors for intuitive visualization.

Usage

generateViridisColorScale(params)

Arguments

params A named numeric vector of parameter values (e.g., rates). The names will be
preserved and used to label the resulting color mapping.

https://orcid.org/0000-0002-5962-0621
https://orcid.org/0000-0002-2816-9751
https://orcid.org/0000-0002-7870-3369
https://orcid.org/0000-0003-4650-8937
https://orcid.org/0000-0001-7478-2306
https://orcid.org/0000-0003-2035-9531
https://orcid.org/0000-0002-0114-7384
https://orcid.org/0000-0001-5028-5161
https://orcid.org/0000-0003-2967-2970

plot_ic_acceptance_matrix 3

Details

This function is useful for plotting results where parameters should be visually distinguished based
on their magnitude (e.g., rate shifts across a phylogeny). By using the perceptually uniform viridis
palette, it avoids misleading color interpretations common with rainbow scales.

Value

A named list with two elements:

NamedColors A named character vector of hex color codes, with names corresponding to the input
parameter names, ordered by increasing parameter value.

ParamColorMapping A named numeric vector of the sorted parameter values, maintaining the
same order and names as NamedColors.

See Also

viridis::viridis() for details on the color palette.

Examples

if (requireNamespace("viridis"”, quietly = TRUE)) {
library(viridis)
set.seed(1)
rates <- c(A = 0.1, B=20.5, C =0.9)
color_scale <- generateViridisColorScale(rates)

View the color assignments
color_scale$NamedColors

Plot with colors
barplot(color_scale$ParamColorMapping,

col = color_scale$NamedColors,

main = "Rates with Viridis Colors")

plot_ic_acceptance_matrix
Plot IC Acceptance Matrix with Optional Rate-of-Improvement Over-
lay

Description

Create a two-layer base R plot that visualizes information criterion (IC) scores across a sequence of
sub-model evaluations, highlighting which steps were accepted vs rejected. Optionally, a secondary
y-axis overlays the rate of improvement (first difference of IC scores) as a line with markers.

4 plot_ic_acceptance_matrix

Usage

plot_ic_acceptance_matrix(
matrix_data,
plot_title = "IC Acceptance Matrix Scatter Plot”,
plot_rate_of_improvement = TRUE,

rate_limits = c(-400, 150),
baseline_ic = NULL

)
Arguments
matrix_data A two-column matrix or data.frame. Column 1 must be numeric IC scores
in evaluation order; Column 2 must be a logical or numeric flag (0/1) indicating
whether the step was accepted.
plot_title character(1). Title to draw above the plot.

plot_rate_of_improvement
logical(1). If TRUE, overlay the first differences of the IC series on a secondary
(right) y-axis along with a horizontal reference line at zero.

rate_limits numeric(2). Y-axis limits for the rate-of-improvement overlay (i.e., dif f (IC)),
used only when plot_rate_of_improvement = TRUE. Defaults to c(-400, 150).

baseline_ic Optional numeric(1). If provided, this value is used as the baseline IC score
(step 1) inplace of matrix_datal1, 1] for plotting and for computing diff (IC).
Default is NULL (use matrix_datal1, 1]).

Details
The function expects a two-column object where:

e Column 1 contains the IC score at each step (numeric; lower is better).

* Column 2 contains an indicator for acceptance (0 = rejected, 1 = accepted).

The first IC value is treated as the baseline and is plotted as a larger black point with a numeric label.
If baseline_ic is supplied, it is used as the baseline IC score (step 1) in place of matrix_datal1,
1] for both the baseline annotation and the rate-of-improvement series (diff (IC)). This is useful
because matrix_data begins with the first evaluated shift model (rather than the true no-shift base-
line). To achieve this behavior, pass the true baseline via baseline_ic to avoid labeling the first
evaluated model as the baseline.

Accepted steps are drawn as blue filled points connected by a thin line; rejected steps are drawn as
small red crosses. When plot_rate_of_improvement = TRUE, the function overlays a secondary
y-axis on the right that shows diff (IC) values (the per-step change in IC; more negative implies
improvement).

The function uses only base graphics. It sets plot margins and mgp via par (), and (when overlaying)
uses par (new = TRUE) to layer the IC plot over the rate-of-improvement axes. Initial user par is reset
on exit.

Axes and scaling. Tick marks for the primary (IC) x/y axes are computed with pretty() to give
clean bounds. The secondary axis for the rate of improvement uses rate_limits (default c(-400,
150)); adjust via the argument if your expected diff (IC) range differs substantially.

print.bifrost_search 5

Value

Invisibly returns NULL. Called for its plotting side effects.

See Also

par, plot, axis, lines, points, legend, mtext, title

Examples

ic <- c(-1000, -1012, -1008, -1025, -1020, -1030)

accepted <- c(1, @, 1, 0, 1) # steps 2..6 relative to baseline

mat <- cbind(ic, c(1, accepted)) # mark baseline as accepted for plotting
plot_ic_acceptance_matrix(mat, plot_title = "IC Path")

Avoid non-ASCII glyphs in titles on CRAN/CI:
plot_ic_acceptance_matrix(mat, plot_rate_of_improvement = TRUE)

Override baseline IC:

plot_ic_acceptance_matrix(mat, baseline_ic = -995)

print.bifrost_search Print method for bifrost search results

Description

Prints a compact summary of a completed Bifrost search, including the baseline and optimal in-
formation criterion (IC) values, the inferred shift node set, key search settings, and (when present)
optional diagnostics such as IC-history and IC-weight support.

Usage
S3 method for class 'bifrost_search'
print(x, ...)
Arguments
X A bifrost_search object returned by searchOptimalConfiguration().
Unused (S3 compatibility).
Value

Invisibly returns x. Called for its printing side effects.

6 searchOptimalConfiguration

searchOptimalConfiguration
Search for an Optimal Multi-Regime (Shift) Configuration on a Phy-
logeny

Description

Greedy, stepwise search for evolutionary regime shifts on a SIMMAP-style phylogeny using multi-
variate mvgls fits from mvMORPH. The routine:

1. builds one-shift candidate trees for all internal nodes meeting a tip-size threshold (via generatePaintedTrees),

2. fits each candidate in parallel and ranks them by improvement in the chosen information cri-
terion (IC; GIC or BIC),

3. iteratively adds shifts that pass a user-defined acceptance threshold,
4. optionally revisits accepted shifts to prune overfitting using a small IC tolerance window,

5. optionally computes per-shift IC weights by refitting the model with each shift removed.

Models are fitted directly in multivariate trait space (no PCA), assuming a multi-rate Brownian
Motion with proportional VCV scaling across regimes. Extra arguments in ... are forwarded to
mvgls (e.g., method = "LL" or method = "PL-LOOCV", penalty, error = TRUE, etc.).

Usage

searchOptimalConfiguration(
baseline_tree,
trait_data,
formula = "trait_data ~ 1",
min_descendant_tips,
num_cores = 2,
ic_uncertainty_threshold = 1,
shift_acceptance_threshold =
uncertaintyweights = FALSE,
uncertaintyweights_par = FALSE,
plot = FALSE,
IC = "GIC",
store_model_fit_history = TRUE,
verbose = FALSE,

T,

Arguments

baseline_tree A rooted SIMMAP/phylo object representing the baseline (single-regime) tree.
If not SIMMAP-initialized, it should already be painted to a single baseline state
and have tip order matching trait_data.

searchOptimalConfiguration 7

trait_data A matrix or data.frame of continuous trait values with row names matching
baseline_tree$tip.label (same order). For the default formula = "trait_data
~1", trait_data is typically supplied as a numeric matrix so that the multi-
variate response is interpreted correctly by mvgls(). When using more general
formulas (e.g., pGLS-style models), a data. frame with named columns can be
used instead.

formula Character formula passed to mvgls. Defaults to "trait_data ~ 1", which fits
an intercept-only model treating the supplied multivariate trait matrix as the
response. This is the appropriate choice for most morphometric data where
there are no predictor variables. For more general models, formula can ref-
erence subsets of trait_data explicitly, for example "trait_datal, 1:5] ~
1" to treat columns 1-5 as a multivariate response, or "trait_datal, 1:5] ~
trait_datal, 61" to fit a multivariate pGLS with column 6 as a predictor.

min_descendant_tips
Integer (>1). Minimum number of tips required for an internal node to be con-
sidered as a candidate shift (forwarded to generatePaintedTrees). Larger val-
ues reduce the number of candidate shifts by excluding very small clades. For
empirical datasets, values around 10 are a reasonable starting choice and can be
tuned in sensitivity analyses.

num_cores Integer. Number of workers for parallel candidate scoring. Uses future: :plan(multicore)
on Unix outside RStudio; otherwise uses future: :plan(multisession). Dur-
ing the parallel candidate-scoring blocks, BLAS/OpenMP threads are capped to
1 (per worker) to avoid CPU oversubscription.

ic_uncertainty_threshold
Numeric (>0). Reserved for future development in post-search pruning and
uncertainty analysis; currently not used by searchOptimalConfiguration().

shift_acceptance_threshold
Numeric (>0). Minimum IC improvement (baseline - new) required to accept a
candidate shift during the forward search. Larger values yield more conservative
models. For analyses based on the Generalized Information Criterion ("GIC"),
a threshold on the order of 20 units is a conservative choice that tends to admit
only strongly supported shifts. Simulation studies (Berv et al., in preparation)
suggest that this choice yields good balanced accuracy between detecting true
shifts and avoiding false positives, but users should explore alternative thresh-
olds in sensitivity analyses for their own datasets.

uncertaintyweights
Logical. If TRUE, compute per-shift IC weights serially by refitting the optimized
model with each shift removed in turn. Exactly one of uncertaintyweights
or uncertaintyweights_par must be TRUE to trigger IC-weight calculations;
setting both to TRUE will result in an error. When enabled, the per-shift weights
are returned in the $ic_weights component of the result.

uncertaintyweights_par
Logical. As above, but compute per-shift IC weights in parallel using future.apply.
Exactly one of uncertaintyweights or uncertaintyweights_par must be
TRUE to trigger IC-weight calculations.

plot Logical. If TRUE, draw/update a SIMMAP plot as the search proceeds (requires
phytools).

8 searchOptimalConfiguration

IC Character. Which information criterion to use, one of "GIC" or "BIC" (case-
sensitive).

store_model_fit_history
Logical. If TRUE, store a per-iteration record of fitted models, acceptance deci-
sions, and IC values. To keep memory usage low during the search, per-iteration
results are written to a temporary directory (tempdir()) and read back into
memory at the end of the run.

verbose Logical. If TRUE, report progress during candidate generation and model fit-
ting. By default, progress is emitted via message(). When plot = TRUE in
an interactive RStudio session, progress is written via cat() so it remains
visible while plots are updating. Set to FALSE to run quietly (default). Use
suppressMessages() (and capture.output() if needed) to silence or capture
output.
Additional arguments passed to mvgls (e.g., method, penalty, target, error,
etc.).

Details
Input requirements.
» Tree: baseline_tree should be a rooted phylo (or SIMMAP-style) tree with branch lengths
interpreted in units of time. An ultrametric tree is not required.

* Trait data alignment: rownames(trait_data) must match baseline_tree$tip.label in
both names and order; any tips without data should be pruned beforehand.

* Data type: trait_data is typically a numeric matrix of continuous traits; high-dimensional
settings (p > n) are supported via penalized-likelihood mvgls() fits.

Search outline.

1. Baseline: Fit mvgls on the baseline tree (single regime) to obtain the baseline IC.

2. Candidates: Build one-shift trees for eligible internal nodes (generatePaintedTrees); fit
each with fitMvglsAndExtractGIC. formula or fitMvglsAndExtractBIC.formula (inter-
nal helpers; not exported) and rank by AIC.

3. Greedy add: Add the top candidate, refit, and accept if AIC > shift_acceptance_threshold;
continue down the ranked list.

4. Optional IC weights: If uncertaintyweights (or uncertaintyweights_par) is TRUE, com-

pute an IC weight for each accepted shift by refitting the final model with that shift removed
and comparing the two ICs via aicw.

Parallelization. Candidate sub-model fits are distributed with future + future.apply. On Unix,
multicore is used; on Windows, multisession. A sequential plan is restored afterward.
Plotting. If plot = TRUE, trees are rendered with plotSimmap(); shift IDs are labeled with nodelabels().

Regime VCVs. The returned $VCVs are extracted from the fitted multi-regime model via extractRegimeVCVs
and reflect regime-specific covariance estimates (when mvgls is fitted under a PL/ML method).

For high-dimensional trait datasets (p > n), penalized-likelihood settings in mvgls() are often re-
quired for stable estimation. In practice, methods such as method = "LL" or method = "H&L" com-
bined with appropriate penalties (e.g., ridge-type penalties) have proven effective for intercept-only

searchOptimalConfiguration 9

multivariate Brownian motion models, as illustrated in the package vignettes. Users should con-
sult the mvMORPH documentation for details on available methods and penalties and tune these
choices to the structure of their data.

Value

A named list with (at minimum):

* user_input: captured call (as a list) for reproducibility.

* tree_no_uncertainty_transformed: SIMMAP tree from the optimal (no-uncertainty) model
on the transformed scale used internally by mvgls.

* tree_no_uncertainty_untransformed: same topology with original edge lengths restored.
* model_no_uncertainty: the final mvgls model object.

* shift_nodes_no_uncertainty: integer vector of accepted shift nodes.

e optimal_ic: final IC value; baseline_ic: baseline IC.

e IC_used: "GIC" or "BIC"; num_candidates: count of candidate one-shift models evaluated.

* model_fit_history: if store_model_fit_history = TRUE, alist of per-iteration fits (loaded
from temporary files written during the run) and an ic_acceptance_matrix (IC value and ac-
ceptance flag per step).

* VCVs: named list of regime-specific VCV matrices extracted from the final model (penalized-
likelihood estimates if PL was used).

Additional components appear conditionally:

e ic_weights: adata. frame of per-shift IC weights and evidence ratios when uncertaintyweights
or uncertaintyweights_par is TRUE.

* warnings: character vector of warnings/errors encountered during fitting (if any).

Convergence and robustness

The search is greedy and may converge to a local optimum. Use a stricter shift_acceptance_threshold
to reduce overfitting, and re-run the search with different min_descendant_tips and IC choices
("GIC" vs "BIC") to assess stability of the inferred shifts. For a given run, the optional IC-weight
calculations (uncertaintyweights or uncertaintyweights_par) can be used to quantify support

for individual shifts. It is often helpful to repeat the analysis under slightly different settings (e.g.,
thresholds or candidate-size constraints) and compare the resulting sets of inferred shifts.

Note

Internally, this routine coordinates multiple unexported helper functions: generatePaintedTrees,
fitMvglsAndExtractGIC. formula, fitMvglsAndExtractBIC.formula, addShiftToModel, removeShiftFromTree,
and extractRegimeVCVs. Through these, it may also invoke lower-level utilities such as paintSubTree_mod

and paintSubTree_removeShift. These helpers are internal implementation details and are not

part of the public APIL.

10 searchOptimalConfiguration

See Also

mvgls, GIC, BIC, plot_ic_acceptance_matrix for visualizing IC trajectories and shift acceptance
decisions, and generateViridisColorScale for mapping regime-specific rates or parameters to
a viridis color scale when plotting trees; packages: mvMORPH, future, future.apply, phytools,
ape.

Examples

library(ape)
library(phytools)
library(mvMORPH)
set.seed(1)

Simulate a tree
tr <- pbtree(n = 50, scale = 1)

Define two regimes: "@" (baseline) and "1" (high-rate) on a subset of tips
states <- setNames(rep(”0", Ntip(tr)), tr$tip.label)

high_clade_tips <- tr$tip.label[1:20]

states[high_clade_tips] <- "1"

Make a SIMMAP tree for the BMM simulation
simmap <- phytools::make.simmap(tr, states, model = "ER", nsim = 1)

Simulate traits under a BMM model with ~10x higher rate in regime "1"
sigma <- list(
"Q" = diag(0.1, 2),
"1" = diag(1.0, 2)
)
theta <- c(0@, 0)

sim <- mvMORPH: :mvSIM(

tree = simmap,
nsim =1,
model = "BMM",

param = list(
ntraits = 2,
sigma = sigma,
theta = theta

mvSIM returns either a matrix or a list of matrices depending on mvMORPH version
X <- if (is.list(sim)) sim[[1]] else sim
rownames(X) <- simmap$tip.label

Run the search on the unpainted tree (single baseline regime)
res <- searchOptimalConfiguration(

baseline_tree = as.phylo(simmap),
trait_data =X,
formula = "trait_data ~ 1",

min_descendant_tips =10,

searchOptimalConfiguration

num_cores =1, # keep it simple / CRAN-safe
shift_acceptance_threshold = 20, # conservative GIC threshold
IC = "GIC",
plot = FALSE,
store_model_fit_history = FALSE,
verbose = FALSE

res$shift_nodes_no_uncertainty
res$optimal_ic - res$baseline_ic
str(res$VCVs)

11

Index

aicw, 8
axis, 5

BIC, 10

generateViridisColorScale, 2, 10
GIC, 10

legend, 5
lines, 5

mtext, 5
mvgls, 6, 8, 10

nodelabels, 8

par, 5

plot, 5
plot_ic_acceptance_matrix, 3, 10
plotSimmap, 8

points, 5
print.bifrost_search, 5

searchOptimalConfiguration, 6
searchOptimalConfiguration(), 5

title, 5

viridis::viridis(), 3

12

	generateViridisColorScale
	plot_ic_acceptance_matrix
	print.bifrost_search
	searchOptimalConfiguration
	Index

