The package cdgd implements the causal decompositions of group disparities in Yu and Elwert (2025).
The latest release of the package can be installed through CRAN.
install.packages("cdgd")
The current development version can be installed from source using devtools.
::install_github("ang-yu/cdgd") devtools
library(cdgd)
# load the simulated example data
data(exp_data)
head(exp_data)
#> outcome treatment confounder Q group_a
#> 748 1.4608165 1 0.26306864 0.6748330 0
#> 221 0.4777308 0 1.30296394 0.5920512 1
#> 24 0.8760129 1 -1.49971226 1.6294327 1
#> 497 0.4131192 1 -1.17219619 -0.8391873 1
#> 249 2.0483222 1 1.71790879 2.9546966 1
#> 547 0.1912013 0 -0.02438458 -0.3704544 0
<- cdgd0_pa(Y="outcome",D="treatment",G="group_a",X=c("confounder","Q"),data=exp_data,alpha=0.05)
results0
round(results0$results, 4)
#> point se p_value CI_lower CI_upper
#> total 0.2675 0.0390 0.0000 0.1911 0.3439
#> baseline 0.0421 0.0131 0.0013 0.0164 0.0678
#> prevalence 0.2579 0.0337 0.0000 0.1919 0.3240
#> effect -0.1372 0.0209 0.0000 -0.1781 -0.0963
#> selection 0.1047 0.0150 0.0000 0.0754 0.1340
<- cdgd1_pa(Y="outcome",D="treatment",G="group_a",X="confounder",Q="Q",data=exp_data,alpha=0.05)
results1
round(results1, 4)
#> point se p_value CI_lower CI_upper
#> total 0.2675 0.0390 0.0000 0.1911 0.3439
#> baseline 0.0421 0.0131 0.0013 0.0164 0.0678
#> conditional prevalence 0.2032 0.0371 0.0000 0.1305 0.2760
#> conditional effect -0.1644 0.0220 0.0000 -0.2076 -0.1212
#> conditional selection 0.0875 0.0143 0.0000 0.0595 0.1156
#> Q distribution 0.0990 0.0188 0.0000 0.0621 0.1359
#> conditional Jackson reduction 0.2362 0.0378 0.0000 0.1621 0.3103