Package 'colocboost'

May 2, 2025

Type Package

Date 2025-04-22

Title Multi-Context Colocalization Analysis for QTL and GWAS Studies

Version 1.0.4

Maintainer Xuewei Cao <xc2270@cumc.columbia.edu>

Description A multi-task learning approach to variable selection regression with highly correlated predictors and sparse effects,

based on frequentist statistical inference. It provides statistical evidence to identify which subsets of predictors have non-zero

effects on which subsets of response variables, motivated and designed for colocalization analysis across genome-wide association studies (GWAS)

and quantitative trait loci (QTL) studies.

The ColocBoost model is described in Cao et. al. (2025) <doi:10.1101/2025.04.17.25326042>.

Encoding UTF-8

LazyDataCompression xz

LazyData true

RoxygenNote 7.3.2

URL https://github.com/StatFunGen/colocboost

BugReports https://github.com/StatFunGen/colocboost/issues

Depends R (>= 4.0.0)

Imports Rfast, matrixStats

Suggests testthat (>= 3.0.0), knitr, rmarkdown, ashr, MASS, susieR

VignetteBuilder knitr

Config/testthat/edition 3

License MIT + file LICENSE

NeedsCompilation no

Author Xuewei Cao [cre, aut, cph], Haochen Sun [aut, cph], Ru Feng [aut, cph], Daniel Nachun [aut, cph], Kushal Dey [aut, cph], Gao Wang [aut, cph]

Repository CRAN

Date/Publication 2025-05-02 09:20:07 UTC

Contents

	Ambiguous_Colocalization	2
	colocboost	3
	colocboost_plot	9
	get_ambiguous_colocalization	11
	get_colocboost_summary	13
	get_cormat	15
	get_cos	16
	get_cos_purity	17
	get_cos_summary	19
	get_hierarchical_clusters	20
	get_robust_colocalization	22
	get_ucos_summary	23
	Heterogeneous_Effect	26
	Ind_5traits	26
	Non_Causal_Strongest_Marginal	27
	Sumstat_5traits	28
	Weaker_GWAS_Effect	29
Index		30

Ambiguous_Colocalization

A real data example includes an ambiguous colocalization between eQTL and GWAS

Description

An example result from one of our real data applications, which shows an ambiguous colocalization between eQTL and GWAS.

Usage

Ambiguous_Colocalization

Format

```
Ambiguous_Colocalization:
A list with 2 elements

ColocBoost_Results A colocboost output object

SuSiE_Results Two susie output object for eQTL and GWAS

COLOC_V5_Results A coloc output object
```

Source

The Ambiguous_Colocalization dataset contains a real data example from one of our real data applications, which shows an ambiguous colocalization between eQTL and GWAS. The dataset is specifically designed for evaluating and demonstrating the capabilities of ColocBoost in real data applications. See details in tutorial vignette https://statfungen.github.io/colocboost/articles/index.html.

See Also

Other colocboost_data: Heterogeneous_Effect, Ind_5traits, Non_Causal_Strongest_Marginal, Sumstat_5traits, Weaker_GWAS_Effect

colocboost

ColocBoost: A gradient boosting informed multi-omics xQTL colocalization method

Description

colocboost implements a proximity adaptive smoothing gradient boosting approach for multi-trait colocalization at gene loci, accommodating multiple causal variants. This method, introduced by Cao etc. (2025), is particularly suited for scaling to large datasets involving numerous molecular quantitative traits and disease traits. In brief, this function fits a multiple linear regression model Y = XB + E in matrix form. ColocBoost can be generally used in multi-task variable selection regression problem.

Usage

```
colocboost(
  X = NULL,
  Y = NULL,
  sumstat = NULL,
  LD = NULL,
  dict_YX = NULL,
  dict_sumstatLD = NULL,
  outcome_names = NULL,
  focal_outcome_idx = NULL,
  focal_outcome_variables = TRUE,
  overlap_variables = FALSE,
```

```
intercept = TRUE,
  standardize = TRUE,
  effect_est = NULL,
  effect_se = NULL,
  effect_n = NULL,
 M = 500,
  stop\_thresh = 1e-06,
  tau = 0.01,
  learning_rate_init = 0.01,
  learning_rate_decay = 1,
  dynamic_learning_rate = TRUE,
  prioritize_jkstar = TRUE,
  func_compare = "min_max",
  jk_{equiv_{corr}} = 0.8,
  jk_{equiv_{log}} = 1,
  coloc_{thresh} = 0.1,
  lambda = 0.5,
  lambda_focal_outcome = 1,
  func_simplex = "LD_z2z",
  func_multi_test = "lfdr",
  stop_null = 1,
 multi_test_max = 1,
 multi_test_thresh = 1,
  ash_prior = "normal",
  p.adjust.methods = "fdr",
  residual_correlation = NULL,
  coverage = 0.95,
 min_cluster_corr = 0.8,
  dedup = TRUE,
  overlap = TRUE,
  n_{purity} = 100,
 min_abs_corr = 0.5,
 median_abs_corr = NULL,
 median_cos_abs_corr = 0.8,
  tol = 1e-09,
 merge_cos = TRUE,
  sec_coverage_thresh = 0.8,
 weight_fudge_factor = 1.5,
  check_null = 0.1,
  check_null_method = "profile",
  check_null_max = 0.025,
 weaker_effect = TRUE,
 LD_free = FALSE,
 output_level = 1
)
```

Arguments

Υ

LD

sumstat

dict_YX

A list of genotype matrices for different outcomes, or a single matrix if all outcomes share the same genotypes. Each matrix should have column names, if sample sizes and variables possibly differing across matrices.

A list of vectors of outcomes or an N by L matrix if it is considered for the same X and multiple outcomes.

A list of data.frames of summary statistics. The columns of data.frame should include either z or beta/sebeta. n is the sample size for the summary statistics, it is highly recommendation to provide. variant is required if sumstat for different outcomes do not have the same number of variables. var_y is the variance of phenotype (default is 1 meaning that the Y is in the "standardized" scale).

A list of correlation matrix indicating the LD matrix for each genotype. It also could be a single matrix if all sumstats were obtained from the same genotypes.

A L by 2 matrix of dictionary for X and Y if there exist subsets of outcomes corresponding to the same X matrix. The first column should be 1:L for L outcomes. The second column should be the index of X corresponding to the outcome. The innovation: do not provide the same matrix in X to reduce the computational burden.

dict_sumstatLD A L by 2 matrix of dictionary for sumstat and LD if there exist subsets of outcomes corresponding to the same sumstat. The first column should be 1:L for L sumstat The second column should be the index of LD corresponding to the sumstat. The innovation: do not provide the same matrix in LD to reduce the computational burden.

The

The index of the focal outcome if perform GWAS-xQTL ColocBoost

focal_outcome_variables

If focal_outcome_variables = TRUE, only consider the variables exist in the focal outcome.

overlap_variables

If overlap_variables = TRUE, only perform colocalization in the overlapped region.

intercept If intercept = TRUE, the intercept is fitted. Setting intercept = FALSE is generally not recommended.

standardize If standardize = TRUE, standardize the columns of genotype and outcomes to unit variance.

effect_est Matrix of variable regression coefficients (i.e. regression beta values) in the genomic region

effect_se Matrix of standard errors associated with the beta values

effect_n A scalar or a vector of sample sizes for estimating regression coefficients. Highly

recommended!

M The maximum number of gradient boosting rounds for each outcome (default is

500).

stop_thresh The stop criterion for overall profile loglikelihood function.

tau The smooth parameter for proximity adaptive smoothing weights for the best update jk-star.

learning_rate_init

The minimum learning rate for updating in each iteration.

learning_rate_decay

The decayrate for learning rate. If the objective function is large at the early iterations, we need to have the higher learning rate to improve the computational efficiency.

dynamic_learning_rate

If dynamic_learning_rate = TRUE, the dynamic learning rate based on learning_rate_init and learning_rate_decay will be used in SEC.

prioritize_jkstar

When prioritize_jkstar = TRUE, the selected outcomes will prioritize best update i_k^s tar in SEC.

func_compare The criterion when we update jk-star in SEC (default is "min_max").

jk_equiv_corr The LD cutoff between overall best update jk-star and marginal best update jk-l for lth outcome

jk_equiv_loglik

The change of loglikelihood cutoff between overall best update jk-star and marginal best update jk-l for lth outcome

coloc_thresh The cutoff of checking if the best update jk-star is the potential causal variable for outcome l if jk-l is not similar to jk-star (used in Delayed SEC).

lambda The ratio [0,1] for z^2 and z in fun_prior simplex, default is 0.5

lambda_focal_outcome

The ratio for z^2 and z in fun_prior simplex for the focal outcome, default is 1

func_simplex The data-driven local association simplex δ for smoothing the weights. Default is "LD z2z" is the elastic net for z-score and also weighted by LD.

func_multi_test

The alternative method to check the stop criteria. When func_multi_test = "lfdr", boosting iterations will be stopped if the local FDR for all variables are greater than lfsr_max.

stop_null The cutoff of nominal p-value when func_multi_test = "Z".

multi_test_thresh

The cutoff of the smallest FDR for pre-filtering the outcomes when func_multi_test = "lfdr" or func_multi_test = "lfsr".

ash_prior The prior distribution for calculating lfsr when func_multi_test = "lfsr".
p.adjust.methods

The adjusted pvalue method in stats:p.adj when func_multi_test = "fdr" residual_correlation

The residual correlation based on the sample overlap, it is diagonal if it is NULL.

coverage A number between 0 and 1 specifying the "coverage" of the estimated colocalization confidence sets (CoS) (default is 0.95).

min_cluster_corr

The small correlation for the weights distributions across different iterations to

be decided having only one cluster.

dedup If dedup = TRUE, the duplicate confidence sets will be removed in the post-

processing.

overlap If overlap = TRUE, the overlapped confidence sets will be removed in the post-

processing.

n_purity The maximum number of confidence set (CS) variables used in calculating the

correlation ("purity") statistics. When the number of variables included in the CS is greater than this number, the CS variables are randomly subsampled.

min_abs_corr Minimum absolute correlation allowed in a confidence set. The default is 0.5

corresponding to a squared correlation of 0.25, which is a commonly used thresh-

old for genotype data in genetic studies.

median_abs_corr

An alternative "purity" threshold for the CS. Median correlation between pairs of variables in a CS less than this threshold will be filtered out and not reported. When both min_abs_corr and median_abs_corr are set, a CS will only be removed if it fails both filters. Default set to NULL but it is recommended to set

it to 0.8 in practice.

median_cos_abs_corr

Median absolute correlation between variants allowed to merge multiple colocalized sets. The default is 0.8 corresponding to a stringent threshold to merge

colocalized sets, which may resulting in a huge set.

tol A small, non-negative number specifying the convergence tolerance for check-

ing the overlap of the variables in different sets.

merge_cos When merge_cos = TRUE, the sets for only one outcome will be merged if passed

the median_cos_abs_corr.

sec_coverage_thresh

A number between 0 and 1 specifying the weight in each SEC (default is 0.8).

weight_fudge_factor

The strength to integrate weight from different outcomes, default is 1.5

check_null The cut off value for change conditional objective function. Default is 0.1.

check_null_method

The metric to check the null sets. Default is "profile"

check_null_max The smallest value of change of profile loglikelihood for each outcome.

weaker_effect If weaker_effect = TRUE, consider the weaker single effect due to coupling

effects

LD_free = FALSE, objective function doesn't include LD information.

output_level When output_level = 1, return basic cos details for colocalization results When

output_level = 2, return the ucos details for the single specific effects. When output_level = 3, return the entire Colocboost model to diagnostic results (more

space).

Details

The function colocboost implements the proximity smoothed gradient boosting method from Cao etc (2025). There is an additional step to help merge the confidence sets with small between_putiry (default is 0.8) but within the same locus. This step addresses potential instabilities in linkage disequilibrium (LD) estimation that may arise from small sample sizes or discrepancies in minor allele frequencies (MAF) across different confidence sets.

Value

A "colocboost" object with some or all of the following elements:

```
cos_summary A summary table for colocalization events.

vcp The variable colocalized probability for each variable.

cos_details A object with all information for colocalization results.

data_info A object with detailed information from input data

model_info A object with detailed information for colocboost model

ucos_details A object with all information for trait-specific effects when output_level = 2.

diagnositci_details

A object with diagnostic details for ColocBoost model when output_level = 3.
```

Source

See detailed instructions in our tutorial portal: https://statfungen.github.io/colocboost/index.html

```
# colocboost example
set.seed(1)
N <- 1000
P <- 100
# Generate X with LD structure
sigma <- 0.9^abs(outer(1:P, 1:P, "-"))</pre>
X <- MASS::mvrnorm(N, rep(0, P), sigma)</pre>
colnames(X) <- paste0("SNP", 1:P)</pre>
L <- 3
true_beta <- matrix(0, P, L)</pre>
true_beta[10, 1] <- 0.5 # SNP10 affects trait 1</pre>
true_beta[10, 2] <- 0.4 # SNP10 also affects trait 2 (colocalized)</pre>
true_beta[50, 2] <- 0.3 # SNP50 only affects trait 2</pre>
true_beta[80, 3] <- 0.6 # SNP80 only affects trait 3</pre>
Y <- matrix(0, N, L)
for (1 in 1:L) {
  Y[, 1] <- X %*% true_beta[, 1] + rnorm(N, 0, 1)
}
res <- colocboost(X = X, Y = Y)
res$cos_details$cos$cos_index
```

colocboost_plot 9

colocboost_plot

Plot visualization plot from a ColocBoost output.

Description

colocboost_plot generates visualization plots for colocalization events from a ColocBoost analysis.

Usage

```
colocboost_plot(
  cb_output,
  y = "log10p",
  grange = NULL,
  plot_cos_idx = NULL,
  outcome_idx = NULL,
  plot_all_outcome = FALSE,
  plot_focal_only = FALSE,
  plot_focal_cos_outcome_only = FALSE,
  points_color = "grey80",
  cos_color = NULL,
  add_vertical = FALSE,
  add_vertical_idx = NULL,
  outcome_names = NULL,
  plot_cols = 2,
  variant_coord = FALSE,
  show_top_variables = FALSE,
  show_cos_to_uncoloc = FALSE,
  show_cos_to_uncoloc_idx = NULL,
  show_cos_to_uncoloc_outcome = NULL,
  plot_ucos = FALSE,
  plot_ucos_idx = NULL,
  title_specific = NULL,
  ylim_each = TRUE,
  outcome_legend_pos = "top",
  outcome_legend_size = 1.8,
  cos_{legend_pos} = c(0.05, 0.4),
  show_variable = FALSE,
  lab_style = c(2, 1),
  axis_style = c(2, 1),
  title_style = c(2.5, 2),
)
```

Arguments

cb_output

Output object from colocboost analysis

10 colocboost_plot

Specifies the y-axis values, default is "log10p" for -log10 transformed marginal

association p-values. Optional plotting range of x-axis to zoom in to a specific region. grange Optional indices of CoS to plot plot_cos_idx outcome_idx Optional indices of outcomes to include in the plot. outcome_idx=NULL to plot only the outcomes having colocalization. plot_all_outcome Optional to plot all outcome in the same figure. plot_focal_only Logical, if TRUE only plots colocalization with focal outcome, default is FALSE. plot_focal_cos_outcome_only Logical, if TRUE only plots colocalization including at least on colocalized outcome with focal outcome, default is FALSE. Background color for non-colocalized variables, default is "grey80". points_color

cos_color Optional custom colors for CoS.

add_vertical Logical, if TRUE adds vertical lines at specified positions, default is FALSE add_vertical_idx

Optional indices for vertical lines.

outcome_names Optional vector of outcomes names for the subtitle of each figure. outcome_names=NULL for the outcome name shown in data_info.

plot_cols Number of columns in the plot grid, default is 2. If you have many colocaliza-

tion. please consider increasing this.

variant_coord Logical, if TRUE uses variant coordinates on x-axis, default is FALSE. This is required the variable names including position information.

show_top_variables

У

Logical, if TRUE shows top variables for each CoS, default is FALSE

show_cos_to_uncoloc

Logical, if TRUE shows colocalization to uncolocalized outcomes to diagnose, default is FALSE

show_cos_to_uncoloc_idx

Optional indices for showing CoS to all uncolocalized outcomes

show_cos_to_uncoloc_outcome

Optional outcomes for showing CoS to uncolocalized outcomes

plot_ucos Logical, if TRUE plots also trait-specific (uncolocalized) sets, default is FALSE plot_ucos_idx Optional indices of trait-specific (uncolocalized) sets to plot when included title_specific Optional specific title to display in plot title

ylim_each Logical, if TRUE uses separate y-axis limits for each plot, default is TRUE outcome_legend_pos

Position for outcome legend, default is "top"

outcome_legend_size

Size for outcome legend text, default is 1.2

cos_legend_pos Proportion of the legend from (left edge, bottom edge), default as (0.05, 0.4) at the left - median position

```
show_variable Logical, if TRUE displays variant IDs, default is FALSE

lab_style Vector of two numbers for label style (size, boldness), default is c(2, 1)

vector of two numbers for axis style (size, boldness), default is c(2, 1)

vector of two numbers for title style (size, boldness), default is c(2, 1)

Vector of two numbers for title style (size, boldness), default is c(2, 5, 2)

Additional parameters passed to plot functions
```

Value

Visualization plot for each colocalization event.

Source

See detailed instructions in our tutorial portal: https://statfungen.github.io/colocboost/articles/Visualization_ColocBoost_Output.html

Examples

```
# colocboost example
set.seed(1)
N <- 1000
P <- 100
# Generate X with LD structure
sigma <- 0.9^abs(outer(1:P, 1:P, "-"))
X <- MASS::mvrnorm(N, rep(0, P), sigma)</pre>
colnames(X) <- paste0("SNP", 1:P)</pre>
L <- 3
true_beta <- matrix(0, P, L)</pre>
true_beta[10, 1] <- 0.5 # SNP10 affects trait 1</pre>
true_beta[10, 2] <- 0.4 # SNP10 also affects trait 2 (colocalized)</pre>
true_beta[50, 2] <- 0.3 # SNP50 only affects trait 2</pre>
true_beta[80, 3] <- 0.6 # SNP80 only affects trait 3
Y \leftarrow matrix(0, N, L)
for (1 in 1:L) {
  Y[, 1] <- X %*% true_beta[, 1] + rnorm(N, 0, 1)
res <- colocboost(X = X, Y = Y)
colocboost_plot(res, plot_cols = 1)
colocboost_plot(res, plot_cols = 1, outcome_idx = 1:3)
```

get_ambiguous_colocalization

Get ambiguous colocalization events from trait-specific (uncolocalized) effects.

Description

get_ambiguous_colocalization get the colocalization by discarding the weaker colocalization events or colocalized outcomes

Usage

```
get_ambiguous_colocalization(
  cb_output,
  min_abs_corr_between_ucos = 0.5,
  median_abs_corr_between_ucos = 0.8,
  tol = 1e-09
)
```

Arguments

cb_output Output object from colocboost analysis

min_abs_corr_between_ucos

Minimum absolute correlation for variants across two trait-specific (uncolocalized) effects to be considered colocalized. The default is 0.5.

median_abs_corr_between_ucos

Median absolute correlation for variants across two trait-specific (uncolocalized)

effects to be considered colocalized. The default is 0.8.

A small, non-negative number specifying the convergence tolerance for checking the overlap of the variables in different sets.

Value

A "colocboost" object of colocboost output with additional elements:

ambiguous_cos If exists, a list of ambiguous trait-specific (uncolocalized) effects.

Source

See detailed instructions in our tutorial portal: https://statfungen.github.io/colocboost/articles/Interpret_ColocBoost_Output.html

See Also

Other colocboost_inference: get_colocboost_summary(), get_robust_colocalization()

```
data(Ambiguous_Colocalization)
test_colocboost_results <- Ambiguous_Colocalization$ColocBoost_Results
res <- get_ambiguous_colocalization(test_colocboost_results)
names(res$ambiguous_cos)</pre>
```

```
get_colocboost_summary
```

Get summary tables from a ColocBoost output.

Description

get_colocboost_summary get colocalization and trait-specific summary table with or without the
outcomes of interest.

Usage

```
get_colocboost_summary(
  cb_output,
  summary_level = 1,
  outcome_names = NULL,
  interest_outcome = NULL,
  region_name = NULL,
  min_abs_corr_between_ucos = 0.5,
  median_abs_corr_between_ucos = 0.8
)
```

Arguments

cb_output Output object from colocboost analysis

summary_level When summary_level = 1, return basic summary table for colocalization re-

sults. See details in get_ucos_summary function when summary_level = 2.

outcome_names Optional vector of names of outcomes, which has the same order as Y in the

original analysis.

interest_outcome

Optional vector specifying a subset of outcomes from outcome_names to focus on. When provided, only colocalization events that include at least one of these

outcomes will be returned.

region_name Optional character string. When provided, adds a column with this gene name

to the output table for easier filtering in downstream analyses.

min_abs_corr_between_ucos

Minimum absolute correlation for variants across two trait-specific (uncolocalized) effects to be considered colocalized. The default is 0.5.

median_abs_corr_between_ucos

Median absolute correlation for variants across two trait-specific (uncolocalized) effects to be considered colocalized. The default is 0.8.

Details

When summary_level = 1, additional details and examples are introduced in get_cos_summary. When summary_level = 2 or summary_level = 3, additional details for trait-specific effects and ambiguous colocalization events are included. See get_ucos_summary for details on these tables.

Value

A list containing results from the ColocBoost analysis:

- When summary_level = 1 (default):
 - cos_summary: A summary table for colocalization events with the following columns:
 - * focal_outcome: The focal outcome being analyzed if exists. Otherwise, it is FALSE.
 - * colocalized_outcomes: Colocalized outcomes for colocalization confidence set (CoS)
 - * cos_id: Unique identifier for colocalization confidence set (CoS)
 - * purity: Minimum absolute correlation of variables within colocalization confidence set (CoS)
 - * top_variable: The variable with highest variant colocalization probability (VCP)
 - * top_variable_vcp: Variant colocalization probability for the top variable
 - * cos_npc: Normalized probability of colocalization
 - * min_npc_outcome: Minimum normalized probability of colocalized traits
 - * n_variables: Number of variables in colocalization confidence set (CoS)
 - * colocalized_index: Indices of colocalized variables
 - * colocalized_variables: List of colocalized variables
 - * colocalized_variables_vcp: Variant colocalization probabilities for all colocalized variables
- When summary_level = 2:
 - cos_summary: As described above
 - ucos_summary: A summary table for trait-specific (uncolocalized) effects
- When summary_level = 3:
 - cos_summary: As described above
 - ucos_summary: A summary table for trait-specific (uncolocalized) effects
 - ambiguous_cos_summary: A summary table for ambiguous colocalization events from trait-specific effects

Source

See detailed instructions in our tutorial portal: https://statfungen.github.io/colocboost/articles/Interpret_ColocBoost_Output.html

See Also

Other colocboost_inference: get_ambiguous_colocalization(), get_robust_colocalization()

```
# colocboost example
set.seed(1)
N <- 1000
P <- 100
# Generate X with LD structure
sigma <- 0.9^abs(outer(1:P, 1:P, "-"))</pre>
```

get_cormat 15

```
X <- MASS::mvrnorm(N, rep(0, P), sigma)
colnames(X) <- paste0("SNP", 1:P)
L <- 3
true_beta <- matrix(0, P, L)
true_beta[10, 1] <- 0.5 # SNP10 affects trait 1
true_beta[10, 2] <- 0.4 # SNP10 also affects trait 2 (colocalized)
true_beta[50, 2] <- 0.3 # SNP50 only affects trait 2
true_beta[80, 3] <- 0.6 # SNP80 only affects trait 3
Y <- matrix(0, N, L)
for (1 in 1:L) {
    Y[, 1] <- X %*% true_beta[, 1] + rnorm(N, 0, 1)
}
res <- colocboost(X = X, Y = Y)
get_colocboost_summary(res)</pre>
```

get_cormat

A fast function to calculate correlation matrix (LD matrix) from individual level data

Description

This function calculates the correlation matrix (LD matrix) from individual level data.

Usage

```
get_cormat(X, intercepte = TRUE)
```

Arguments

X A matrix of individual level data.

intercepte A logical value indicating whether to include an intercept in the model. Default

is FALSE.

Value

A correlation matrix (LD matrix).

See Also

```
Other colocboost_utilities: get_cos(), get_cos_purity(), get_cos_summary(), get_hierarchical_clusters(), get_ucos_summary()
```

16 get_cos

Examples

```
# colocboost example
set.seed(1)
N <- 1000
P <- 100
# Generate X with LD structure
sigma <- 0.9^abs(outer(1:P, 1:P, "-"))
X <- MASS::mvrnorm(N, rep(0, P), sigma)
cormat <- get_cormat(X)</pre>
```

get_cos

Extract CoS at different coverage

Description

get_cos extracts colocalization confidence sets (CoS) at different coverage levels from ColocBoost results. When genotype data (X) or correlation matrix (Xcorr) is provided, it can also calculate and filter CoS based on purity statistics, ensuring that variants within each CoS are sufficiently correlated.

Usage

```
get_cos(
  cb_output,
  coverage = 0.95,
  X = NULL,
  Xcorr = NULL,
  n_purity = 100,
  min_abs_corr = 0.5,
  median_abs_corr = NULL
)
```

Arguments

cb_output	Output object from colocboost analysis
coverage	A number between 0 and 1 specifying the "coverage" of the estimated colocalization confidence sets (CoS) (default is 0.95).
X	Genotype matrix of values of the p variables. Used to compute correlations if Xcorr is not provided.
Xcorr	Correlation matrix of correlations between variables. Alternative to X.
n_purity	The maximum number of CoS variables used in calculating the correlation ("purity") statistics.
min_abs_corr	The minimum absolute correlation value of variants in a CoS to be considered pass ("purity") statistics.

get_cos_purity 17

```
median_abs_corr
```

The median absolute correlation value of variants in a CoS to be considered pass ("purity") statistics. When the number of variables included in the CoS is greater than this number, the CoS variables are randomly subsampled.

Value

A list of indices of variables in each CoS.

See Also

```
Other colocboost_utilities: get_cormat(), get_cos_purity(), get_cos_summary(), get_hierarchical_clusters(), get_ucos_summary()
```

Examples

```
# colocboost example
set.seed(1)
N <- 1000
P <- 100
# Generate X with LD structure
sigma <- 0.9^abs(outer(1:P, 1:P, "-"))</pre>
X <- MASS::mvrnorm(N, rep(0, P), sigma)</pre>
colnames(X) <- paste0("SNP", 1:P)</pre>
L <- 3
true_beta <- matrix(0, P, L)</pre>
true_beta[10, 1] <- 0.5 # SNP10 affects trait 1</pre>
true_beta[10, 2] <- 0.4 # SNP10 also affects trait 2 (colocalized)</pre>
true_beta[50, 2] <- 0.3 # SNP50 only affects trait 2</pre>
true_beta[80, 3] <- 0.6 # SNP80 only affects trait 3</pre>
Y <- matrix(0, N, L)
for (l in 1:L) {
  Y[, 1] <- X %*% true_beta[, 1] + rnorm(N, 0, 1)
res <- colocboost(X = X, Y = Y)
get_cos(res, coverage = 0.99, X = X)
get_cos(res, coverage = 0.99, X = X, min_abs_corr = 0.95)
```

get_cos_purity

Calculate purity within and in-between CoS

Description

Calculate purity statistics between all pairs of colocalization confidence sets (CoS)

Usage

```
get_cos_purity(cos, X = NULL, Xcorr = NULL, n_purity = 100)
```

18 get_cos_purity

Arguments

cos	List of variables in CoS
X	Genotype matrix of values of the p variables. Used to compute correlations if X corr is not provided.
Xcorr	Correlation matrix of correlations between variables. Alternative to X.
n_purity	The maximum number of CoS variables used in calculating the correlation ("purity") statistics. When the number of variables included in the CoS is greater than this number, the CoS variables are randomly subsampled.

Value

A list containing three matrices (min_abs_cor, max_abs_cor, median_abs_cor) with purity statistics for all pairs of CoS. Diagonal elements represent within-CoS purity.

See Also

```
Other colocboost_utilities: get_cormat(), get_cos(), get_cos_summary(), get_hierarchical_clusters(), get_ucos_summary()
```

```
# colocboost example
set.seed(1)
N <- 1000
P <- 100
# Generate X with LD structure
sigma <- 0.9^abs(outer(1:P, 1:P, "-"))</pre>
X <- MASS::mvrnorm(N, rep(0, P), sigma)</pre>
colnames(X) <- paste0("SNP", 1:P)</pre>
L <- 3
true_beta <- matrix(0, P, L)</pre>
true_beta[10, 1] <- 0.5</pre>
true_beta[10, 2] <- 0.4</pre>
true_beta[50, 2] <- 0.3
true_beta[80, 3] <- 0.6
Y <- matrix(0, N, L)
for (1 in 1:L) {
  Y[, 1] <- X %*% true_beta[, 1] + rnorm(N, 0, 1)
res <- colocboost(X = X, Y = Y)
cos_res <- get_cos(res, coverage = 0.8)</pre>
get_cos_purity(cos_res$cos, X = X)
```

get_cos_summary 19

get_cos_summary

Get colocalization summary table from a ColocBoost output.

Description

get_cos_summary get the colocalization summary table with or without the outcomes of interest.

Usage

```
get_cos_summary(
  cb_output,
  outcome_names = NULL,
  interest_outcome = NULL,
  region_name = NULL
)
```

Arguments

cb_output Output object from colocboost analysis

outcome_names Optional vector of names of outcomes, which has the same order as Y in the

original analysis.

interest_outcome

Optional vector specifying a subset of outcomes from outcome_names to focus on. When provided, only colocalization events that include at least one of these

outcomes will be returned.

region_name Optional character string. When provided, adds a column with this gene name

to the output table for easier filtering in downstream analyses.

Value

A summary table for colocalization events with the following columns:

colocalized_outcomes

Colocalized outcomes for colocalization confidence set (CoS)

cos_id Unique identifier for colocalization confidence set (CoS)

purity Minimum absolute correlation of variables with in colocalization confidence set

(CoS)

top_variable The variable with highest variant colocalization probability (VCP)

top_variable_vcp

Variant colocalization probability for the top variable

cos_npc Normalized probability of colocalization

min_npc_outcome

Minimum normalized probability of colocalized traits

Source

See detailed instructions in our tutorial portal: https://statfungen.github.io/colocboost/articles/Interpret_ColocBoost_Output.html

See Also

```
Other colocboost_utilities: get_cormat(), get_cos(), get_cos_purity(), get_hierarchical_clusters(), get_ucos_summary()
```

Examples

```
# colocboost example
set.seed(1)
N <- 1000
P <- 100
# Generate X with LD structure
sigma <- 0.9^abs(outer(1:P, 1:P, "-"))</pre>
X <- MASS::mvrnorm(N, rep(0, P), sigma)</pre>
colnames(X) <- paste0("SNP", 1:P)</pre>
L <- 3
true_beta <- matrix(0, P, L)</pre>
true_beta[10, 1] <- 0.5 # SNP10 affects trait 1</pre>
true_beta[10, 2] <- 0.4 # SNP10 also affects trait 2 (colocalized)</pre>
true_beta[50, 2] <- 0.3 # SNP50 only affects trait 2</pre>
true_beta[80, 3] <- 0.6 # SNP80 only affects trait 3</pre>
Y \leftarrow matrix(0, N, L)
for (l in 1:L) {
  Y[, 1] <- X %*% true_beta[, 1] + rnorm(N, 0, 1)
res <- colocboost(X = X, Y = Y)
get_cos_summary(res)
```

get_hierarchical_clusters

Perform modularity-based hierarchical clustering for a correlation matrix

Description

This function performs a modularity-based hierarchical clustering approach to identify clusters from a correlation matrix.

Usage

```
get_hierarchical_clusters(cormat, min_cluster_corr = 0.8)
```

Arguments

```
cormat A correlation matrix. min_cluster_corr
```

The small correlation for the weights distributions across different iterations to be decided having only one cluster. Default is 0.8.

Value

A list containing:

cluster A binary matrix indicating the cluster membership of each variable.

Q_modularity The modularity values for the identified clusters.

See Also

```
Other colocboost_utilities: get_cormat(), get_cos(), get_cos_purity(), get_cos_summary(), get_ucos_summary()
```

```
# Example usage
set.seed(1)
N <- 100
P <- 4
sigma <- matrix(0.2, nrow = P, ncol = P)
diag(sigma) <- 1
sigma[1:2, 1:2] <- 0.9
sigma[3:4, 3:4] <- 0.9
X <- MASS::mvrnorm(N, rep(0, P), sigma)
cormat <- get_cormat(X)
clusters <- get_hierarchical_clusters(cormat)
clusters$Q_modularity</pre>
```

```
get_robust_colocalization
```

Recalibrate and summarize robust colocalization events.

Description

get_robust_colocalization get the colocalization by discarding the weaker colocalization events
or colocalized outcomes

Usage

```
get_robust_colocalization(
  cb_output,
  cos_npc_cutoff = 0.5,
  npc_outcome_cutoff = 0.2,
  pvalue_cutoff = NULL,
  weight_fudge_factor = 1.5,
  coverage = 0.95
)
```

Arguments

ization confidence sets (CoS) (default is 0.95).

Value

A "colocboost" object with some or all of the following elements:

cos_summary A summary table for colocalization events.

vcp The variable colocalized probability for each variable.

cos_details A object with all information for colocalization results.

data_info A object with detailed information from input data

model_info A object with detailed information for colocboost model

ucos_from_cos A object with information for trait-specific effects if exists after removing weaker signals.

get_ucos_summary 23

Source

See detailed instructions in our tutorial portal: https://statfungen.github.io/colocboost/articles/Interpret_ColocBoost_Output.html

See Also

Other colocboost_inference: get_ambiguous_colocalization(), get_colocboost_summary()

Examples

```
# colocboost example
set.seed(1)
N <- 1000
P <- 100
# Generate X with LD structure
sigma <- 0.9^abs(outer(1:P, 1:P, "-"))</pre>
X <- MASS::mvrnorm(N, rep(0, P), sigma)</pre>
colnames(X) <- paste0("SNP", 1:P)</pre>
L <- 3
true_beta <- matrix(0, P, L)</pre>
true_beta[10, 1] <- 0.5 # SNP10 affects trait 1</pre>
true_beta[10, 2] <- 0.4 # SNP10 also affects trait 2 (colocalized)</pre>
true_beta[50, 2] <- 0.3 # SNP50 only affects trait 2</pre>
true_beta[80, 3] <- 0.6 # SNP80 only affects trait 3</pre>
Y \leftarrow matrix(0, N, L)
for (1 in 1:L) {
  Y[, 1] <- X %*% true_beta[, 1] + rnorm(N, 0, 1)
res <- colocboost(X = X, Y = Y)
res$cos_details$cos$cos_index
filter_res <- get_robust_colocalization(res, cos_npc_cutoff = 0.5, npc_outcome_cutoff = 0.2)
filter_res$cos_details$cos$cos_index
```

get_ucos_summary

Get trait-specific summary table from a ColocBoost output.

Description

get_ucos_summary produces a trait-specific summary table for uncolocalized (single-trait) associations from ColocBoost results. This is particularly useful for examining trait-specific signals or for summarizing results from single-trait FineBoost analyses.

Usage

```
get_ucos_summary(
  cb_output,
  outcome_names = NULL,
  region_name = NULL,
```

24 get_ucos_summary

```
ambiguous_cos = FALSE,
min_abs_corr_between_ucos = 0.5,
median_abs_corr_between_ucos = 0.8
)
```

Arguments

cb_output Output object from colocboost analysis

outcome_names Optional vector of names of outcomes, which has the same order as Y in the

original analysis.

region_name Optional character string. When provided, adds a column with this gene name

to the output table for easier filtering in downstream analyses.

ambiguous_cos Logical indicating whether to include ambiguous colocalization events. The

default is FALSE.

min_abs_corr_between_ucos

Minimum absolute correlation for variants across two trait-specific (uncolocal-

ized) effects to be considered colocalized. The default is 0.5.

median_abs_corr_between_ucos

Median absolute correlation for variants across two trait-specific (uncolocalized)

effects to be considered colocalized. The default is 0.8.

Value

A list containing:

- ucos_summary: A summary table for trait-specific, uncolocalized associations with the following columns:
 - outcomes: Outcome being analyzed
 - ucos_id: Unique identifier for trait-specific confidence sets
 - purity: Minimum absolute correlation of variables within trait-specific confidence sets
 - top_variable: The variable with highest variant-level probability of association (VPA)
 - top_variable_vpa: Variant-level probability of association (VPA) for the top variable
 - ucos_npc: Normalized probability of causal association for the trait-specific confidence set
 - n_variables: Number of variables in trait-specific confidence set
 - ucos_index: Indices of variables in the trait-specific confidence set
 - ucos_variables: List of variables in the trait-specific confidence set
 - ucos_variables_vpa: Variant-level probability of association (VPA) for all variables in the confidence set
 - region_name: Region name if provided through the region_name parameter
- ambiguous_cos_summary: A summary table for ambiguous colocalization events with the following columns:
 - outcomes: Outcome in the ambiguous colocalization event
 - ucos_id: Unique identifiers for the ambiguous event
 - min_between_purity: Minimum absolute correlation between variables across traitspecific sets in the ambiguous event

get_ucos_summary 25

 median_between_purity: Median absolute correlation between variables across traitspecific sets in the ambiguous event

- overlap_idx: Indices of variables that overlap between ambiguous trait-specific sets
- overlap_variables: Names of variables that overlap between ambiguous trait-specific sets
- n_recalibrated_variables: Number of variables in the recalibrated colocalization set from an ambiguous event
- recalibrated_index: Indices of variables in the recalibrated colocalization set from an ambiguous event
- recalibrated_variables: Names of variables in the recalibrated colocalization set from an ambiguous event
- recalibrated_variables_vcp: Variant colocalization probabilities for recalibrated variables from an ambiguous event
- region_name: Region name if provided through the region_name parameter

Source

See detailed instructions in our tutorial portal: https://statfungen.github.io/colocboost/articles/Interpret_ColocBoost_Output.html

See Also

```
Other colocboost_utilities: get_cormat(), get_cos(), get_cos_purity(), get_cos_summary(), get_hierarchical_clusters()
```

```
# colocboost example with single trait analysis
set.seed(1)
N <- 1000
P <- 100
# Generate X with LD structure
sigma <- 0.9^abs(outer(1:P, 1:P, "-"))
X <- MASS::mvrnorm(N, rep(0, P), sigma)</pre>
colnames(X) <- paste0("SNP", 1:P)</pre>
L <- 1 # Only one trait for single-trait analysis
true_beta <- matrix(0, P, L)</pre>
true_beta[10, 1] <- 0.5 # SNP10 affects the trait</pre>
true_beta[80, 1] <- 0.2 # SNP11 also affects the trait but with lower effect
Y \leftarrow X \% \%  true_beta + rnorm(N, 0, 1)
res <- colocboost(X = X, Y = Y, output_level = 2)</pre>
# Get the trait-specifc effect summary
get_ucos_summary(res)
```

26 Ind_5traits

Description

An example dataset with simulated genotypes and traits for 2 traits and 2 common causal variants with heterogeneous effects

Usage

Heterogeneous_Effect

Format

Heterogeneous_Effect:

A list with 3 elements

X List of genotype matrices

Y List of traits

variant indices of two causal variants

Source

The Heterogeneous_Effect dataset contains 2 simulated phenotypes alongside corresponding genotype matrices. There are two causal variants, both of which have heterogeneous effects on two traits. Due to the file size limitation of CRAN release, this is a subset of simulated data to generate Figure 2b in Cao etc. 2025. See full dataset in colocboost paper repo https://github.com/StatFunGen/colocboost-paper.

See Also

 $Other colocboost_data: Ambiguous_Colocalization, Ind_5traits, Non_Causal_Strongest_Marginal, Sumstat_5traits, Weaker_GWAS_Effect$

Ind_5traits

Individual level data for 5 traits

Description

An example dataset with simulated genotypes and traits for 5 traits

Usage

Ind_5traits

Format

Ind_5traits:

A list with 3 elements

X List of genotype matrices

Y List of traits

true_effect_variants List of causal variants

Source

The Ind_Straits dataset contains 5 simulated phenotypes alongside corresponding genotype matrices. The dataset is specifically designed for evaluating and demonstrating the capabilities of ColocBoost in multi-trait colocalization analysis with individual-level data. See Cao etc. 2025 for details. Due to the file size limitation of CRAN release, this is a subset of simulated data. See full dataset in colocboost paper repo https://github.com/StatFunGen/colocboost-paper.

See Also

Other colocboost_data: Ambiguous_Colocalization, Heterogeneous_Effect, Non_Causal_Strongest_Marginal, Sumstat_5traits, Weaker_GWAS_Effect

Non_Causal_Strongest_Marginal

Individual level data for 2 traits and 2 causal variants, but the strongest marginal association is not causal

Description

An example dataset with simulated genotypes and traits for 2 traits and 2 common causal variants, but the strongest marginal association is not causal variant.

Usage

Non_Causal_Strongest_Marginal

Format

Non_Causal_Strongest_Marginal:

A list with 3 elements

X List of genotype matrices

Y List of traits

variant indices of two causal variants

28 Sumstat_5traits

Source

The Non_Causal_Strongest_Marginal dataset contains 2 simulated phenotypes alongside corresponding genotype matrices. There are two causal variants, but the strongest marginal association is not a causal variant. Due to the file size limitation of CRAN release, this is a subset of simulated data to generate Figure 2b in Cao etc. 2025. See full dataset in colocboost paper repo https://github.com/StatFunGen/colocboost-paper.

See Also

 $Other colocboost_data: Ambiguous_Colocalization, Heterogeneous_Effect, Ind_5traits, Sumstat_5traits, Weaker_GWAS_Effect$

Sumstat_5traits

Summary level data for 5 traits

Description

An example dataset with simulated statistics for 5 traits

Usage

Sumstat_5traits

Format

Sumstat_5traits:
A list with 2 elements
sumstat Summary statistics for 5 traits
true_effect_variants List of causal variants

Source

The Sumstat_5traits dataset contains 5 simulated summary statistics, where it is directly derived from the Ind_5traits dataset using marginal association. The dataset is specifically designed for evaluating and demonstrating the capabilities of ColocBoost in multi-trait colocalization analysis with summary association data. See Cao etc. 2025 for details. Due to the file size limitation of CRAN release, this is a subset of simulated data. See full dataset in colocboost paper repo https://github.com/StatFunGen/colocboost-paper.

See Also

Other colocboost_data: Ambiguous_Colocalization, Heterogeneous_Effect, Ind_5traits, Non_Causal_Strongest_Maker_GWAS_Effect

Weaker_GWAS_Effect	Individual level data for 2 traits and 2 causal variants with weaker effects for focal trait
--------------------	--

Description

An example dataset with simulated genotypes and traits for 2 traits and 2 common causal variants with heterogeneous effects

Usage

Weaker_GWAS_Effect

Format

Weaker_GWAS_Effect:

A list with 3 elements

X List of genotype matrices

Y List of traits

variant indices of two causal variants

Source

The Weaker_GWAS_Effect dataset contains 2 simulated phenotypes alongside corresponding genotype matrices. There are two causal variants, one of which has a weaker effect on the focal trait compared to the other trait. Due to the file size limitation of CRAN release, this is a subset of simulated data to generate Figure 2b in Cao etc. 2025. See full dataset in colocboost paper repohttps://github.com/StatFunGen/colocboost-paper.

See Also

 $Other colocboost_data: Ambiguous_Colocalization, Heterogeneous_Effect, Ind_5traits, Non_Causal_Strongest_Manustat_5traits$

Index

```
* cb_post_inference
                                                 get_ambiguous_colocalization, 11, 14, 23
    get_cormat, 15
                                                 get_colocboost_summary, 12, 13, 23
    get_hierarchical_clusters, 20
                                                 get_cormat, 15, 17, 18, 20, 21, 25
                                                 get_cos, 15, 16, 18, 20, 21, 25
* colocboost data
                                                 get_cos_purity, 15, 17, 17, 20, 21, 25
    Ambiguous_Colocalization, 2
                                                 get_cos_summary, 13, 15, 17, 18, 19, 21, 25
    Heterogeneous_Effect, 26
    Ind_5traits, 26
                                                 get_hierarchical_clusters, 15, 17, 18, 20,
                                                          20, 25
    Non_Causal_Strongest_Marginal, 27
                                                 get_robust_colocalization, 12, 14, 22
    Sumstat_5traits, 28
                                                 get_ucos_summary, 13, 15, 17, 18, 20, 21, 23
    Weaker_GWAS_Effect, 29
* colocboost_inference
                                                 Heterogeneous_Effect, 3, 26, 27–29
    get_ambiguous_colocalization, 11
    get_colocboost_summary, 13
                                                 Ind_5traits, 3, 26, 26, 28, 29
    get_cos_summary, 19
    get_robust_colocalization, 22
                                                 Non_Causal_Strongest_Marginal, 3, 26, 27,
    get_ucos_summary, 23
                                                          27, 28, 29
* colocboost_plot
    colocboost_plot, 9
                                                 Sumstat_5traits, 3, 26–28, 28, 29
* colocboost_utilities
                                                 Weaker_GWAS_Effect, 3, 26-28, 29
    get_cormat, 15
    get_cos, 16
    get_cos_purity, 17
    get_cos_summary, 19
    get_hierarchical_clusters, 20
    get_ucos_summary, 23
* colocboost
    colocboost, 3
* datasets
    Ambiguous_Colocalization, 2
    Heterogeneous_Effect, 26
    Ind_5traits, 26
    Non_Causal_Strongest_Marginal, 27
    Sumstat_5traits, 28
    Weaker_GWAS_Effect, 29
Ambiguous_Colocalization, 2, 26-29
colocboost, 3
colocboost_plot, 9
```