decorrelate: Decorrelation Projection Scalable to High Dimensional Data

Data whitening is a widely used preprocessing step to remove correlation structure since statistical models often assume independence. Here we use a probabilistic model of the observed data to apply a whitening transformation. Our Gaussian Inverse Wishart Empirical Bayes model substantially reduces computational complexity, and regularizes the eigen-values of the sample covariance matrix to improve out-of-sample performance.

Version: 0.1.6.3
Depends: R (≥ 4.2.0), methods
Imports: Rfast, irlba, graphics, Rcpp, CholWishart, Matrix, utils, stats
LinkingTo: Rcpp, RcppArmadillo
Suggests: knitr, pander, whitening, CCA, yacca, mvtnorm, ggplot2, cowplot, colorRamps, RUnit, latex2exp, clusterGeneration, rmarkdown
Published: 2025-07-17
DOI: 10.32614/CRAN.package.decorrelate
Author: Gabriel Hoffman ORCID iD [aut, cre]
Maintainer: Gabriel Hoffman <gabriel.hoffman at mssm.edu>
BugReports: https://github.com/GabrielHoffman/decorrelate/issues
License: Artistic-2.0
URL: https://gabrielhoffman.github.io/decorrelate/
NeedsCompilation: yes
Materials: README, NEWS
CRAN checks: decorrelate results

Documentation:

Reference manual: decorrelate.html , decorrelate.pdf
Vignettes: Decorrelate (source, R code)

Downloads:

Package source: decorrelate_0.1.6.3.tar.gz
Windows binaries: r-devel: not available, r-release: not available, r-oldrel: not available
macOS binaries: r-release (arm64): not available, r-oldrel (arm64): not available, r-release (x86_64): not available, r-oldrel (x86_64): not available

Linking:

Please use the canonical form https://CRAN.R-project.org/package=decorrelate to link to this page.