easyViz: Easy Visualization of Conditional Effects from Regression Models
Offers a flexible and user-friendly interface for visualizing conditional
effects from a broad range of regression models, including mixed-effects and generalized
additive (mixed) models. Compatible model types include lm(), rlm(), glm(), glm.nb(),
betareg(), and gam() (from 'mgcv'); nonlinear models via nls(); generalized least
squares via gls(); and survival models via coxph() (from 'survival').
Mixed-effects models with random intercepts and/or slopes can be fitted using lmer(),
glmer(), glmer.nb(), glmmTMB(), or gam() (from 'mgcv', via smooth terms).
Plots are rendered using base R graphics with extensive customization options.
Approximate confidence intervals for nls() and betareg() models are computed using
the delta method. Robust standard errors for rlm() are computed using the sandwich
estimator (Zeileis 2004) <doi:10.18637/jss.v011.i10>. For beta regression using
'betareg', see Cribari-Neto and Zeileis (2010) <doi:10.18637/jss.v034.i02>. For
mixed-effects models with 'lme4', see Bates et al. (2015) <doi:10.18637/jss.v067.i01>.
For models using 'glmmTMB', see Brooks et al. (2017) <doi:10.32614/RJ-2017-066>.
Methods for generalized additive models using 'mgcv' follow Wood (2017)
<doi:10.1201/9781315370279>.
| Version: |
2.0.0 |
| Imports: |
stats, utils, graphics, grDevices |
| Suggests: |
MASS, sandwich, nlme, numDeriv, betareg, statmod, survival, lme4, glmmTMB, mgcv |
| Published: |
2026-01-08 |
| DOI: |
10.32614/CRAN.package.easyViz |
| Author: |
Luca Corlatti [aut, cre] |
| Maintainer: |
Luca Corlatti <lucac1980 at yahoo.it> |
| License: |
GPL-3 |
| NeedsCompilation: |
no |
| Materials: |
NEWS |
| CRAN checks: |
easyViz results |
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=easyViz
to link to this page.