
Package ‘factorH’
September 11, 2025

Type Package

Title Multifactor Nonparametric Rank-Based ANOVA with Post Hoc Tests

Version 0.4.0

Description Multifactor nonparametric analysis of variance based on ranks.
Builds on the Kruskal-Wallis H test and its 2x2 Scheirer-Ray-Hare
extension to handle any factorial designs. Provides effect sizes,
Dunn-Bonferroni pairwise-comparison matrices, and simple-effects
analyses. Tailored for psychology and the social sciences, with
beginner-friendly R syntax and outputs that can be dropped into
journal reports. Includes helpers to export tab-separated results and
compact tables of descriptive statistics (to APA-style reports).

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.2

Depends R (>= 4.1)

Imports rcompanion, FSA, car, dplyr, stats, utils, rlang

Suggests testthat (>= 3.0.0), knitr, rmarkdown, haven

Config/testthat/edition 3

VignetteBuilder knitr

Contact tomasz.rak@upjp2.edu.pl

LazyData true

NeedsCompilation no

Author Tomasz Rak [aut, cre],
Szymon Wrzesniowski [aut]

Maintainer Tomasz Rak <tomasz.rak@upjp2.edu.pl>

Repository CRAN

Date/Publication 2025-09-11 06:50:02 UTC

1



2 factorH

Contents
factorH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
factorH_dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
factorH_reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
factorH_syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
mimicry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
nonpar.datatable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
srh.effsize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
srh.kway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
srh.kway.full . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
srh.posthoc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
srh.posthocs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
srh.simple.posthoc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
srh.simple.posthocs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
write.srh.kway.full.tsv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Index 23

factorH factorH: Multifactor rank-based ANOVA utilities

Description

Multifactor nonparametric analysis of variance based on ranks. Builds on the Kruskal-Wallis H
test and its 2x2 Scheirer-Ray-Hare extension to handle any factorial designs. Provides effect sizes,
Dunn-Bonferroni pairwise-comparison matrices, and simple-effects analyses. Tailored for psychol-
ogy and the social sciences, with beginner-friendly R syntax and outputs that can be dropped into
journal reports. Includes helpers to export tab-separated results and compact tables of descriptive
statistics (to APA-style reports).

Details

What this package does (and why):
factorH provides a simple, single-call workflow for multifactor nonparametric, rank-based
ANOVA and publication-ready outputs:

• ANOVA-like table based on ranks (rooted in Kruskal-Wallis H and the 2x2 Scheirer-Ray-
Hare extension),

• effect sizes computed directly from H
• Dunn–Bonferroni post hoc comparison matrices
• simple-effects post hocs (pairwise comparisons within levels of conditioning factors),
• compact descriptive tables and a TSV writer for quick formatting in Excel or a manuscript.

Why? Popular GUI stats tools do not offer a ready-made, user-friendly multifactor rank-based
pipeline that mirrors standard H / SRH analyses in a way that is easy for beginners. factorH aims
to fill that gap with clear, R-like formula syntax and a one-command report function.
The package is intentionally small: most users will only ever need:



factorH 3

• srh.kway.full(. . . ) to compute everything
• write.srh.kway.full.tsv(. . . ) to export the results into a single tab-separated file.

Formula syntax at a glance:
All high-level functions use standard R model formulas:

response ~ factorA + factorB + factorC

lists main effects - Interactions are handled internally. You do not need to write A:B or A*B.
The response (left of ~) must be numeric (e.g., a Likert score coded as 1..5 stored as numeric).
Examples below use the included dataset mimicry.

library(factorH)
data(mimicry, package = "factorH")
str(mimicry)

Predictors should be factors. If not, functions will coerce them.
What is allowed?

# One factor (KW-style):
liking ~ condition

# Two factors (SRH-style):
liking ~ gender + condition

# Three or more factors (k-way):
liking ~ gender + condition + age_cat

You do not need to write gender:condition or gender*condition. The package will build all needed
interactions internally when relevant.

Numeric response (Likert note):
The response must be numeric. For Likert-type items (e.g., 1 = strongly disagree . . . 5 = strongly
agree), keep them numeric; rank-based tests are robust for such ordinal-like data.
If your Likert is accidentally a factor or character, coerce safely:

# if stored as character "1","2",...:
mimicry$liking <- as.numeric(mimicry$liking)
# if stored as factor with labels "1","2",...:
mimicry$liking <- as.numeric(as.character(mimicry$liking))

The one-call pipeline:
The main function srh.kway.full() runs:

1. ANOVA-like table on ranks
2. descriptive summary
3. post hoc matrices (Dunn–Bonferroni; P.adj)
4. simple-effects post hocs (within-family Bonferroni).

For 2 factors:



4 factorH

res2 <- srh.kway.full(liking ~ gender + condition, data = mimicry)
names(res2)
res2$anova
head(res2$summary)
names(res2$posthoc_cells)
names(res2$posthoc_simple)[1:4]

For 3 factors:

res3 <- srh.kway.full(liking ~ gender + condition + age_cat, data =
mimicry)
res3$anova

Export to a tab-separated file

f <- tempfile(fileext = ".tsv")
write.srh.kway.full.tsv(res3, file = f, dec = ".") # decimal dot
file.exists(f)

If you need comma as decimal mark:

f2 <- tempfile(fileext = ".tsv")
write.srh.kway.full.tsv(res3, file = f2, dec = ",") # decimal comma
file.exists(f2)

The TSV contains clearly separated sections: ## SRH: EFFECTS TABLE, ## SUMMARY STATS,
## POSTHOC CELLS, ## SIMPLE EFFECTS, ## META.

What is in the example dataset?:
mimicry is a real study on the chameleon effect (Trzmielewska, Duras, Juchacz & Rak, 2025):
how mimicry vs other movement conditions affect liking of an interlocutor. Potential modera-
tors include gender and age (with dichotomized age_cat, and a 3-level age_cat2). This makes it
a natural playground for multifactor rank-based analyses.

table(mimicry\$condition)
table(mimicry\$gender)
table(mimicry\$age_cat)

What the functions compute (high level):
• srh.kway(): rank-based k-way ANOVA table using Type II SS on ranks; p-values are tie-

corrected; H is reported with and without the correction factor; effect sizes from unadjusted
H.

• srh.effsize(): 2-way SRH table with effect sizes (eta2H, eps2H) computed from H.
• nonpar.datatable(): compact descriptive tables with global ranks (means of ranks per cell),

medians, quartiles, IQR, etc., for all main effects and interactions.
• srh.posthocs(): Dunn–Bonferroni pairwise matrices (P.adj) for all effects (main and inter-

actions).
• srh.simple.posthoc() / srh.simple.posthocs(): simple-effects pairwise comparisons within

levels of conditioning factors (SPSS-like “within” scope by default).
• srh.kway.full(): orchestrates all of the above.
• write.srh.kway.full.tsv(): exports everything into one TSV (with dot or comma decimal

mark).
That is it. For most users, the intro ends here: use srh.kway.full() and export with write.srh.kway.full.tsv().



factorH_dataset 5

Author(s)

Maintainer: Tomasz Rak <tomasz.rak@upjp2.edu.pl>

Authors:

• Szymon Wrzesniowski <szymon.wrzesniowski@upjp2.edu.pl>

factorH_dataset Datasets in factorH

Description

Datasets in factorH

Details

What is in the example dataset?:
mimicry is a real study on the chameleon effect by Trzmielewska et al. (2025) doi:10.18290/
rpsych2024.0019 about how mimicry vs other movement conditions affect liking of an inter-
locutor. Potential moderators include gender and age (with dichotomized age_cat, and a 3-level
age_cat2). This makes it a natural playground for multifactor rank-based analyses.

table(mimicry$condition)
table(mimicry$gender)
table(mimicry$age_cat)

factorH_reference factorH functions reference

Description

factorH functions reference

Details

Function reference:
This document collects call patterns and options for each public function. All formulas follow
response ~ A + B (+ C . . . ) with numeric response and factor predictors.
srh.kway.full()
Purpose: one-call pipeline: ANOVA on ranks + descriptives + post hocs + simple effects. Syn-
tax: srh.kway.full(y ~ A + B (+ C . . . ), data, max_levels = 30)

• Automatically chooses the ANOVA engine:
– 1 factor: srh.kway()
– 2 factors: srh.effsize()
– 3+ factors: srh.kway()

https://doi.org/10.18290/rpsych2024.0019
https://doi.org/10.18290/rpsych2024.0019


6 factorH_reference

• Returns a list: anova, summary, posthoc_cells, posthoc_simple, meta.
• Placeholders:

– not applicable when a component does not apply (e.g., simple effects with 1 factor),
– failed. . . when a sub-step errors out (keeps the pipeline alive).

Example:

res <- srh.kway.full(liking ~ gender + condition + age_cat, data = mimicry)
names(res)
res$anova[1:3]
head(res$summary)
names(res$posthoc_cells)
names(res$posthoc_simple)[1:3]
res$meta

Notes:
• Predictors are coerced to factor internally; levels must be 2..max_levels.
• Missing values are removed pairwise on the variables in the formula.

write.srh.kway.full.tsv()
Purpose: export the srh.kway.full() result into a single TSV file for fast formatting. Syntax:
write.srh.kway.full.tsv(obj, file = “srh_kway_full.tsv”, sep = “, na =”“, dec =”.”)

• dec = “.” or “,” controls the decimal mark.
• Numeric fields are written without scientific notation.
• Pretty-printed character tables (e.g., from post hocs) are normalized so that dec=“,” also

affects numbers embedded in strings.

Example:

f <- tempfile(fileext = ".tsv")
write.srh.kway.full.tsv(res, file = f, dec = ",")
file.exists(f)

srh.kway()
Purpose: general k-way SRH-style ANOVA on ranks (Type II SS), tie-corrected p-values. Syn-
tax: srh.kway(y ~ A + B (+ C . . . ), data, clamp0 = TRUE, force_factors = TRUE, . . . )

• Reports: Effect, Df, Sum Sq, H, Hadj (tie correction), p.chisq, k, n, eta2H, eps2H.
• eta2H and eps2H are computed from unadjusted H (classical SRH practice).
• force_factors = TRUE coerces predictors to factor (recommended).

Example:

k3 <- srh.kway(liking ~ gender + condition + age_cat, data = mimicry)
k3

One-factor check (KW-like):

k1 <- srh.kway(liking ~ condition, data = mimicry)
k1

srh.effsize()
Purpose: 2-way SRH table with effect sizes from H. Syntax: srh.effsize(y ~ A + B, data, clamp0
= TRUE, . . . )



factorH_reference 7

• Same columns as above but tailored to 2-way SRH.
• clamp0 = TRUE clamps small negatives to 0 for effect sizes.

Example:

e2 <- srh.effsize(liking ~ gender + condition, data = mimicry)
e2

nonpar.datatable()
Purpose: compact descriptive tables (APA-style), with global rank means, medians, quartiles,
IQR. Syntax: nonpar.datatable(y ~ A + B (+ C . . . ), data, force_factors = TRUE)

• Returns rows for all main effects and all interaction cells (constructed internally).
• Rank means are computed on global ranks (all observations ranked together), which matches

how rank-based ANOVA effects are formed.

Example:

dt <- nonpar.datatable(liking ~ gender + condition, data = mimicry)
head(dt)

srh.posthoc()
Purpose: Dunn–Bonferroni pairwise comparison matrix for a specified effect. Syntax: srh.posthoc(y
~ A (+ B + . . . ), data, method = “bonferroni”, digits = 3, triangular = c(“lower”,“upper”,“full”),
numeric = FALSE, force_factors = TRUE, sep = “.”)

• Builds a single grouping variable (cells) from the RHS factors and runs FSA::dunnTest.
• Returns a list of three matrices (as data.frames): Z, P.unadj, P.adj.
• triangular = “lower” (default) shows only the lower triangle; diagonal and upper triangle are

blank.
• numeric = FALSE returns pretty-printed character tables; set TRUE to get numeric.

Example:

ph <- srh.posthoc(liking ~ condition, data = mimicry)

srh.posthocs()
Purpose: Dunn–Bonferroni pairwise matrices for all effects (main and interactions). Syntax:
srh.posthocs(y ~ A + B (+ C . . . ), data, . . . )

• Iterates srh.posthoc over: A, B, C, A:B, A:C, B:C, A:B:C, . . .
• Returns a named list: names are “A”, “B”, “A:B”, etc.; each value is a P.adj matrix.

Example:

phs <- srh.posthocs(liking ~ gender + condition + age_cat, data = mimicry)
names(phs)
phs[["gender:condition"]][1:5, 1:5]

srh.simple.posthoc()
Purpose: Simple-effects post hocs (pairwise comparisons within levels of conditioning factors).
Syntax: srh.simple.posthoc(y ~ A + B (+ C . . . ), data, compare = NULL, scope = c(“within”,“global”),
digits = 3)

• compare selects the target factor for pairwise comparisons (default: first RHS factor).



8 factorH_reference

• Scope:

– “within” (default): Bonferroni within each by-table (SPSS-like).

– “global”: one Bonferroni across all tests from all by-tables combined.

• Returns a data.frame with conditioning columns (BY), Comparison, Z, P.unadj, P.adj, m.tests,
adj.note. An “adjustment” attribute describes the correction.

Example:

simp <- srh.simple.posthoc(liking ~ gender + condition + age_cat, data = mimicry, compare = "gender", scope = "within")
head(simp)

srh.simple.posthocs()
Purpose: enumerate all simple-effect configurations for a given design. Syntax: srh.simple.posthocs(y
~ A + B (+ C . . . ), data)

• For each target factor and each non-empty combination of the remaining factors as BY, runs
srh.simple.posthoc(. . . , scope = “within”).

• Returns a named list, names like COMPARE(gender) | BY(condition x age_cat).

Example:

sps <- srh.simple.posthocs(liking ~ gender + condition + age_cat, data = mimicry)
head(names(sps), 6)

Formula tips and pitfalls

• Do not write A:B or A*B. Use A + B (+ C . . . ); the package computes all necessary interac-
tion structures internally.

• Response must be numeric. For Likert data, keep it numeric 1..k.

• Predictors should be factors. If they are not, they will be coerced.

• Coerce predictors to factor explicitly if needed

Example:

#coercing
mimicry$gender <- factor(mimicry$gender)
mimicry$condition <- factor(mimicry$condition)

Performance and reproducibility

• Functions use ranks and Type II sums of squares (via car::Anova under the hood) and Dunn
tests (FSA::dunnTest).

• P-values apply a standard tie correction factor for ranks; effect sizes are derived from unad-
justed H (classical SRH practice).

• All outputs are plain data.frames and lists, easy to save and post-process.



factorH_syntax 9

factorH_syntax Syntax and formula patterns

Description

Syntax and formula patterns

Details

Formula syntax at a glance:
All high-level functions use standard R model formulas: response ~ factorA + factorB + factorC

• + lists main effects - Interactions are handled internally. You do not need to write A:B or
A*B.

• The response (left of ~) must be numeric (e.g., a Likert score coded as 1..5 stored as nu-
meric).

Examples below use the included dataset mimicry.

library(factorH)
data(mimicry, package = "factorH")
str(mimicry)

Predictors should be factors. If not, functions will coerce them.
What is allowed?

# One factor (KW-style):
liking ~ condition

# Two factors (SRH-style):
liking ~ gender + condition

# Three or more factors (k-way):
liking ~ gender + condition + age_cat

You do not need to write gender:condition or gender*condition. The package will build all needed
interactions internally when relevant.

Numeric response (Likert note):
The response must be numeric. For Likert-type items (e.g., 1 = strongly disagree . . . 5 = strongly
agree), keep them numeric; rank-based tests are robust for such ordinal-like data.
If your Likert is accidentally a factor or character, coerce safely:

# if stored as character "1","2",...:
mimicry$liking <- as.numeric(mimicry$liking)
# if stored as factor with labels "1","2",...:
mimicry$liking <- as.numeric(as.character(mimicry$liking))



10 mimicry

mimicry Mimicry dataset

Description

A dataset used to demonstrate rank-based (nonparametric) multifactor ANOVA.

Usage

data(mimicry)

Format

A data frame with 533 rows and 7 variables:

condition factor; 5 levels

gender factor; 2 levels

age numeric

age_cat factor; 2 levels

age_cat2 factor; 3 levels

field factor; 2 levels

liking numeric; dependent variable

Details

Factor encodings follow the original SPSS labels converted to R factors.

Source

Converted from an SPSS file as part of the factorH package examples.

References

Trzmielewska, W., Duras, J., Juchacz, A., & Rak, T. (2025). Examining the impact of control
condition design in mimicry–liking link research: how motor behavior may impact liking. Annals
of Psychology, 4, 351–378. doi:10.18290/rpsych2024.0019

https://doi.org/10.18290/rpsych2024.0019


nonpar.datatable 11

nonpar.datatable Compact descriptive tables (APA-style) with global rank means

Description

Produces descriptive statistics for all main effects and interaction cells implied by the RHS of
formula. Ranks are computed globally (across all observations) and cell-wise mean ranks are
reported (recommended for interpreting rank-based factorial effects).

Usage

nonpar.datatable(formula, data, force_factors = TRUE)

Arguments

formula A formula of the form y ~ A (+ B + ...).

data A data.frame containing y and the grouping factors.

force_factors Logical; coerce grouping variables to factor (default TRUE).

Details

The function first subsets to complete cases on y and all RHS factors, then computes global ranks
of y (ties.method = "average"). For each effect (every non-empty combination of factors up
to full order), it returns a row per cell with: count, mean, sd, median, quartiles (q1, q3), IQR,
and mean_rank. The column Effect identifies the effect (e.g., "A", "B", "A:B"). Missing factor
columns for a given effect are added with NA values but retain the proper factor levels for easy
binding.

Value

A base data.frame with columns:

• Effect (character),

• factor columns for all RHS factors (factors, possibly NA in some rows),

• count, mean, sd, median, q1, q3, IQR, mean_rank.

The original call is attached as attribute "call".

Examples

data(mimicry, package = "factorH")

# One factor
nonpar.datatable(liking ~ condition, data = mimicry)

# Two factors: rows for gender, for condition, and for gender:condition
nonpar.datatable(liking ~ gender + condition, data = mimicry)



12 srh.effsize

# Three factors: all mains + 2-way and 3-way cells
nonpar.datatable(liking ~ gender + condition + age_cat, data = mimicry)

srh.effsize SRH with effect sizes for two-factor designs

Description

Extends rcompanion::scheirerRayHare() by adding popular rank-based effect sizes for each
SRH term: eta^2_H and epsilon^2_H, and stores the original function call.

Usage

srh.effsize(formula, data, clamp0 = TRUE, ...)

Arguments

formula A formula of the form y ~ A + B.

data A data.frame containing all variables in formula.

clamp0 Logical; if TRUE (default), negative eta^2_H is truncated to 0 and epsilon^2_H
truncated to the interval [0, 1].

... Passed to rcompanion::scheirerRayHare().

Details

Let H be the SRH H-statistic for a given term, n the sample size used by SRH (complete cases on
y and factors), and k the number of groups compared by that term (for interactions, the number of
observed combinations).

Effect sizes computed:

• Eta^2_H: (H − k + 1)/(n− k).

• Epsilon^2_H (KW-like): H ∗ (n+ 1)/(n2 − 1).

The original call is stored as an attribute and can be retrieved with getCall().

Value

A data.frame (classed as c("srh_with_call","anova","data.frame")) with the SRH table
extended by columns: k, n, eta2H, eps2H.

Examples

data(mimicry, package = "factorH")
res <- srh.effsize(liking ~ gender + condition, data = mimicry)
res
getCall(res)



srh.kway 13

srh.kway K-way SRH on ranks with tie-corrected p-values and rank-based effect
sizes

Description

Generalizes the Scheirer–Ray–Hare (SRH) approach to k-factor designs by using Type II sums of
squares from a linear model on ranks, with a standard tie correction D applied to p-values. The
function returns H, tie-corrected H (Hadj), p-values and rank-based effect sizes (eta2H, eps2H) for
each main effect and interaction up to the full order (i.e., (A + B + ...)^k).

Usage

srh.kway(formula, data, clamp0 = TRUE, force_factors = TRUE, ...)

Arguments

formula A formula of the form y ~ A + B (+ C ...).

data A data.frame with the variables in formula.

clamp0 Logical; if TRUE (default), negative eta2H is truncated to 0 and eps2H truncated
to the interval [0, 1].

force_factors Logical; coerce grouping variables to factor (default TRUE).

... Passed to stats::lm() if applicable.

Details

Ranks are computed globally on y (ties.method = "average"). Type II sums of squares are ob-
tained from car::Anova(fit, type = 2) on the rank model R ~ (A + B + ...)^k. The tie correction
is

D = 1−
∑

(t3 − t)

n3 − n
,

where t are tie block sizes and n is the number of complete cases. We report Hadj = H / D and
p = P (χ2

df ≥ Hadj).

Rank-based effect sizes are computed from the uncorrected H (classical SRH convention):

• eta2H = (H - k + 1) / (n - k), where k is the number of groups compared by the term (for
interactions, the number of observed combinations),

• eps2H = H * (n + 1) / (n^2 - 1) (KW-like epsilon squared).

Value

A data.frame with class c("srh_kway","anova","data.frame") containing columns: Effect,
Df, Sum Sq, H, Hadj, p.chisq, k, n, eta2H, eps2H. The original call is attached as an attribute and
can be retrieved with getCall().



14 srh.kway.full

Examples

data(mimicry, package = "factorH")
# One factor (KW-style check)
srh.kway(liking ~ condition, data = mimicry)

# Two factors
srh.kway(liking ~ gender + condition, data = mimicry)

# Three factors
srh.kway(liking ~ gender + condition + age_cat, data = mimicry)

srh.kway.full Full pipeline: rank-based k-way ANOVA + descriptives + post hocs

Description

Runs a complete nonparametric, rank-based workflow for factorial designs: (1) SRH-style ANOVA
table, (2) compact descriptive stats with global ranks, (3) Dunn-Bonferroni post hoc matrices for all
effects, and (4) simple-effects post hocs (Bonferroni within each by-table).

Usage

srh.kway.full(formula, data, max_levels = 30)

Arguments

formula A formula y ~ A (+ B + ...).

data A data.frame with variables present in formula.

max_levels Safety cap for number of levels per factor (default 30).

Details

Choice of the ANOVA engine:

• 1 factor: srh.kway() (KW-like),

• 2 factors: srh.effsize() (SRH 2-way + effect sizes),

• 3+ factors: srh.kway() (general k-way on ranks).

Value

A list with elements:

• anova – ANOVA-like table,

• summary – descriptive stats data.frame,

• posthoc_cells – list of p.adj matrices for all effects (from srh.posthocs), or a string when
failed,



srh.posthoc 15

• posthoc_simple – list of simple-effect tables (from srh.simple.posthocs); for 1 factor:
"[not applicable]",

• meta – list with call, n, factor levels, and empty-cell info (if 2+ factors).

Components that cannot be computed for the given design are returned as the string "[not applicable]";
failures are reported as "[failed] <message>".

Examples

data(mimicry, package = "factorH")
# 1 factor
f1 <- srh.kway.full(liking ~ condition, data = mimicry)
# 2 factors
f2 <- srh.kway.full(liking ~ gender + condition, data = mimicry)
# 3 factors
f3 <- srh.kway.full(liking ~ gender + condition + age_cat, data = mimicry)

srh.posthoc Dunn post hoc in a symmetric matrix form (one specified effect)

Description

Computes Dunn’s rank-based pairwise comparisons for the effect implied by formula and returns
symmetric matrices for Z, unadjusted p-values, and adjusted p-values. Cells on one triangle (or
both) can be blanked for compact reporting. For multi-factor RHS, factors are combined into a
single grouping via interaction() (e.g., "A:B" cells).

Usage

srh.posthoc(
formula,
data,
method = "bonferroni",
digits = 3,
triangular = c("lower", "upper", "full"),
numeric = FALSE,
force_factors = TRUE,
sep = "."

)

Arguments

formula A formula of the form y ~ factor or y ~ A + B (the latter is treated as one com-
bined grouping via interaction).

data A data.frame containing variables in formula.

method P-value adjustment method passed to FSA::dunnTest(). Default "bonferroni".
See p.adjust.methods for options.



16 srh.posthoc

digits Number of digits for rounding in the returned matrices when numeric = FALSE.
Default 3.

triangular Which triangle to show ("lower", "upper", or "full"). Default "lower".

numeric Logical; if TRUE, return numeric matrices/data frames with NA on the masked
triangle/diagonal. If FALSE (default), return character data frames with masked
cells as empty strings.

force_factors Logical; coerce grouping variables to factor (default TRUE).

sep Separator used in interaction() when combining factors. Default ".".

Details

The function subsets to complete cases on y and RHS factors, optionally coerces factors, builds
a single grouping variable (._grp) and calls FSA::dunnTest(y ~ ._grp, data = ..., method =
...). The pairwise results are placed into symmetric matrices Z, P.unadj, and P.adj. By default
only the lower triangle (excluding diagonal) is shown for compactness.

Value

A list with three data.frames:

• Z – Z statistics,

• P.unadj – unadjusted p-values,

• P.adj – adjusted p-values (per method).

The original call is attached as attribute "call".

Examples

data(mimicry, package = "factorH")

# One factor
ph1 <- srh.posthoc(liking ~ condition, data = mimicry)
ph1$`P.adj` # gotowa macierz p po korekcji

# Two factors combined (all A:B cells vs all A:B cells)
ph2 <- srh.posthoc(liking ~ gender + condition, data = mimicry)
ph2$`P.adj`

# Upper triangle, numeric frames
ph3 <- srh.posthoc(liking ~ condition, data = mimicry,

triangular = "upper", numeric = TRUE)
ph3$Z



srh.posthocs 17

srh.posthocs Dunn post hoc tables (p.adj only) for all effects in a factorial design

Description

For a given y ~ A (+ B + ...) formula, runs srh.posthoc for every main effect and interaction
implied by the RHS (all non-empty combinations of factors) and returns a named list of adjusted
p-value matrices (P.adj) for each effect.

Usage

srh.posthocs(
formula,
data,
method = "bonferroni",
digits = 3,
triangular = c("lower", "upper", "full"),
numeric = FALSE,
force_factors = TRUE,
sep = "."

)

Arguments

formula A formula of the form y ~ A (+ B + ...).

data A data.frame containing variables in formula.

method P-value adjustment method passed to FSA::dunnTest() via srh.posthoc. De-
fault "bonferroni".

digits Rounding used inside srh.posthoc when numeric = FALSE. Default 3.

triangular Which triangle to show in each matrix ("lower", "upper", "full"). Default
"lower".

numeric Logical; if TRUE, return numeric data frames with NAs on the masked trian-
gle/diagonal; if FALSE (default), return character data frames with masked cells
as empty strings.

force_factors Logical; coerce grouping variables to factor before analysis (default TRUE).

sep Separator for combined factor labels when needed (passed through to srh.posthoc).
Default ".".

Details

The function enumerates all non-empty subsets of RHS factors (mains, 2-way, ..., k-way) and calls
srh.posthoc on each corresponding sub-formula. If a subset has fewer than 2 observed levels (e.g.,
due to missing data after subsetting to complete cases), that effect is skipped.



18 srh.simple.posthoc

Value

A named list where each element is a data.frame of adjusted p-values (P.adj) for an effect.
Names use "A", "B", "A:B", ..., matching the effect structure. The original call is attached as
attribute "call".

Examples

data(mimicry, package = "factorH")

# Two-factor design: p.adj for 'gender', 'condition', and 'gender:condition'
L2 <- srh.posthocs(liking ~ gender + condition, data = mimicry)
names(L2)
L2$gender
L2$condition
L2$`gender:condition`

# Three-factor design: includes mains, all 2-ways, and the 3-way effect
L3 <- srh.posthocs(liking ~ gender + condition + age_cat, data = mimicry)
names(L3)

srh.simple.posthoc Simple-effects post hoc (Dunn) with Bonferroni adjustment

Description

Computes Dunn’s pairwise comparisons for simple effects of one target factor (compare) within
levels of the remaining conditioning factors (by). Adjustment can be done within each conditioning
table (SPSS-like) or globally across all tests.

Usage

srh.simple.posthoc(
formula,
data,
compare = NULL,
scope = c("within", "global"),
digits = 3

)

Arguments

formula A formula of the form y ~ A + B (+ C ...); requires at least two RHS factors to
define a simple effect.

data A data.frame containing variables in formula.

compare Character; the factor to compare pairwise. By default, the first factor on the RHS
of formula.



srh.simple.posthoc 19

scope "within" (default) applies Bonferroni adjustment within each by-table; "global"
applies one Bonferroni across all pairwise tests produced for all by-tables com-
bined.

digits Number of digits for rounding numeric columns (Z, P.unadj, P.adj). Default
3.

Details

The data are subset to complete cases on y and all RHS factors. All RHS variables are coerced
to factor. The table is split by all factors except compare and Dunn’s test (FSA::dunnTest) is
run per split. With scope = "within", the Bonferroni correction is applied separately in each split
(with m.tests = choose(k,2) for that split). With scope = "global", P.adj is re-computed once
with stats::p.adjust(..., method = "bonferroni") across all pairwise tests from all splits
(and m.tests is set to the total number of tests).

Value

A data.frame with columns:

• conditioning factor columns (one value repeated per split),

• Comparison, Z, P.unadj, P.adj,

• m.tests (number of tests used for Bonferroni),

• adj.note (human-readable note).

Attributes: "adjustment" (one-line description) and "call".

Examples

data(mimicry, package = "factorH")

# Two factors: pairwise comparisons for 'gender' within levels of 'condition'.
# By default, compare = first RHS factor ('gender' here).
# p.adj uses Bonferroni within each by-table (scope = "within").
tab1 <- srh.simple.posthoc(liking ~ gender + condition, data = mimicry)
head(tab1); attr(tab1, "adjustment")

# One global family of tests (global Bonferroni across all subgroup tests):
tab2 <- srh.simple.posthoc(liking ~ gender + condition, data = mimicry,

scope = "global")
head(tab2); attr(tab2, "adjustment")

# Three factors: compare 'gender' within each condition × age_cat cell.
tab3 <- srh.simple.posthoc(liking ~ gender + condition + age_cat, data = mimicry)
head(tab3)

# Choose a different target factor to compare: here 'condition'
# (within each gender × age_cat cell).
tabA <- srh.simple.posthoc(liking ~ gender + condition + age_cat, data = mimicry,

compare = "condition")
head(tabA)



20 srh.simple.posthocs

# Global Bonferroni variants (less common, but sometimes requested):
tabG <- srh.simple.posthoc(liking ~ gender + condition + age_cat, data = mimicry,

scope = "global")
tabG2 <- srh.simple.posthoc(liking ~ condition + gender, data = mimicry)
tabG3 <- srh.simple.posthoc(liking ~ condition + gender, data = mimicry,

scope = "global")
head(tabG); head(tabG2); head(tabG3)

srh.simple.posthocs Simple-effects post hoc tables for all possible effects (within-scope)

Description

For a formula y ~ A + B (+ C ...), enumerates all simple-effect setups of the form COMPARE(target)
| BY(other factors) and runs srh.simple.posthoc with scope = "within" for each. Returns a
named list of data frames (one per simple-effect configuration).

Usage

srh.simple.posthocs(formula, data)

Arguments

formula A formula y ~ A + B (+ C ...) with at least two RHS factors.

data A data.frame containing the variables in formula.

Details

For each choice of the comparison factor target from the RHS, all non-empty combinations of
the remaining factors are treated as conditioning sets BY. For each pair (target, BY) we call
srh.simple.posthoc() with compare = target and scope = "within". Effects where the condi-
tioning subset has < 2 levels of target are skipped; messages are collected in attribute "skipped".

Labels use ASCII: "COMPARE(A) | BY(B x C)" (plain " x ").

Value

A named list of data.frames. Each element contains the columns produced by srh.simple.posthoc
(e.g., Comparison, Z, P.unadj, P.adj, m.tests, adj.note). Attributes: "call" and (optionally)
"skipped" with messages.

Examples

data(mimicry, package = "factorH")

# All simple-effect tables for a 2-factor design
tabs2 <- srh.simple.posthocs(liking ~ gender + condition, data = mimicry)
names(tabs2)
# e.g., tabs2[["COMPARE(gender) | BY(condition)"]]



write.srh.kway.full.tsv 21

# Three factors: all COMPARE(target) | BY(conditioning) combinations
tabs3 <- srh.simple.posthocs(liking ~ gender + condition + age_cat, data = mimicry)
names(tabs3)
attr(tabs3, "skipped") # any skipped combos with reasons

write.srh.kway.full.tsv

Write full SRH pipeline result to a TSV file

Description

Exports the result of srh.kway.full into a single, tab-separated text file, in the order: ANOVA >
SUMMARY > POSTHOC CELLS > SIMPLE EFFECTS > META. Supports choosing the decimal
mark for numeric values.

Usage

write.srh.kway.full.tsv(
obj,
file = "srh_kway_full.tsv",
sep = "\t",
na = "",
dec = "."

)

Arguments

obj A list produced by srh.kway.full.

file Path to the output TSV file. Default "srh_kway_full.tsv".

sep Field separator (default tab "\t").

na String to use for missing values (default empty string).

dec Decimal mark for numbers: dot "." (default) or comma ",".

Details

Each section is preceded by a header line (e.g., ## SRH: EFFECTS TABLE). For post hoc sections,
each effect/table is prefixed with a subheader (e.g., ### posthoc_cells: gender:condition). For
simple-effect tables, the attribute "adjustment" (if present) is written as a comment line beginning
with "# ".

Components that are not applicable (e.g., simple effects in 1-factor designs) or failed computations
are written as literal one-line messages.

Value

(Invisibly) the normalized path to file.



22 write.srh.kway.full.tsv

Examples

data(mimicry, package = "factorH")
res <- srh.kway.full(liking ~ gender + condition, data = mimicry)

# Write to a temporary file (CRAN-safe)
f <- tempfile(fileext = ".tsv")
write.srh.kway.full.tsv(res, file = f, dec = ".")
file.exists(f)



Index

∗ datasets
mimicry, 10

∗ package
factorH, 2

dataset.factorH (factorH_dataset), 5

factorH, 2
factorH-dataset (factorH_dataset), 5
factorH-package (factorH), 2
factorH-reference (factorH_reference), 5
factorH-syntax (factorH_syntax), 9
factorH_dataset, 5
factorH_reference, 5
factorH_syntax, 9

mimicry, 10

nonpar.datatable, 11

reference.factorH (factorH_reference), 5

srh.effsize, 12
srh.kway, 13
srh.kway.full, 14, 21
srh.posthoc, 15, 17
srh.posthocs, 17
srh.simple.posthoc, 18, 20
srh.simple.posthocs, 20
syntax.factorH (factorH_syntax), 9

write.srh.kway.full.tsv, 21

23


	factorH
	factorH_dataset
	factorH_reference
	factorH_syntax
	mimicry
	nonpar.datatable
	srh.effsize
	srh.kway
	srh.kway.full
	srh.posthoc
	srh.posthocs
	srh.simple.posthoc
	srh.simple.posthocs
	write.srh.kway.full.tsv
	Index

