
The futurize package makes it extremely simple to
parallelize your existing map-reduce calls, but also a growing set of
domain-specific calls. All you need to know is that there is a single
function called futurize() that will take care of
everything, e.g.
y <- lapply(x, fcn) |> futurize()
y <- map(x, fcn) |> futurize()
b <- boot(city, ratio, R = 999) |> futurize()The futurize() function parallelizes via futureverse, meaning
your code can take advantage of any supported future
backends, whether it be parallelization on your local
computer, across multiple computers, in the cloud, or on a
high-performance compute (HPC) cluster. The futurize
package has only one hard dependency - the future package. All
other dependencies are optional “buy-in” dependencies as shown in the
below tables.
The futurize package supports transpilation of functions from multiple packages. The tables below summarize the supported map-reduce and domain-specific functions, respectively. To programmatically see which packages are currently supported, use:
futurize_supported_packages()To see which functions are supported for a specific package, use:
futurize_supported_functions("caret")| Package | Functions | Requires |
|---|---|---|
| base | lapply(), sapply(), tapply(),
vapply(), mapply(), .mapply(),
Map(), eapply(), apply(),
by(), replicate(), Filter() |
future.apply |
| stats | kernapply() |
future.apply |
| purrr | map() and variants, map2() and variants,
pmap() and variants, imap() and variants,
modify(), modify_if(),
modify_at(), map_if(), map_at(),
invoke_map() |
furrr |
| crossmap | xmap() and variants, xwalk(),
map_vec(), map2_vec(),
pmap_vec(), imap_vec() |
(itself) |
| foreach | %do%, e.g. foreach() %do% { },
times() %do% { } |
doFuture |
| plyr | aaply() and variants, ddply() and
variants, llply() and variants, mlply() and
variants |
doFuture |
| BiocParallel | bplapply(), bpmapply(),
bpvec(), bpiterate(),
bpaggregate() |
doFuture |
Table: Map-reduce functions currently supported by
futurize() for parallel transpilation.
Here are some examples:
library(futurize)
plan(multisession)
xs <- 1:10
ys <- lapply(xs, sqrt) |> futurize()
xs <- 1:10
ys <- purrr::map(xs, sqrt) |> futurize()
xs <- 1:10
ys <- crossmap::xmap_dbl(xs, ~ .y * .x) |> futurize()
library(foreach)
xs <- 1:10
ys <- foreach(x = xs) %do% { sqrt(x) } |> futurize()
xs <- 1:10
ys <- plyr::llply(xs, sqrt) |> futurize()
xs <- 1:10
ys <- BiocParallel::bplapply(xs, sqrt) |> futurize()and
ys <- replicate(3, rnorm(1)) |> futurize()
y <- by(warpbreaks, warpbreaks[,"tension"],
function(x) lm(breaks ~ wool, data = x)) |> futurize()
xs <- EuStockMarkets[, 1:2]
k <- kernel("daniell", 50)
xs_smooth <- stats::kernapply(xs, k = k) |> futurize()You can also futurize calls from a growing set of domain-specific packages (e.g. boot, caret, glmnet, lme4, mgcv, and tm) that have optional built-in support for parallelization.
| Package | Functions | Requires |
|---|---|---|
| boot | boot(), censboot(),
tsboot() |
future |
| caret | bag(), gafs(), nearZeroVar(),
rfe(), safs(), sbf(),
train() |
doFuture |
| glmnet | cv.glmnet() |
doFuture |
| lme4 | allFit(), bootMer() |
future |
| mgcv | bam(), predict.bam() |
future |
| tm | TermDocumentMatrix(), tm_index(),
tm_map() |
future |
Table: Domain-specific functions currently supported by
futurize() for parallel transpilation.
Here are some examples:
ctrl <- caret::trainControl(method = "cv", number = 10)
model <- caret::train(Species ~ ., data = iris, method = "rf", trControl = ctrl) |> futurize()
ratio <- function(d, w) sum(d$x * w)/sum(d$u * w)
b <- boot::boot(boot::city, ratio, R = 999) |> futurize()
cv <- glmnet::cv.glmnet(x, y) |> futurize()
m <- lme4::allFit(models) |> futurize()
b <- mgcv::bam(y ~ s(x0, bs = bs) + s(x1, bs = bs), data = dat) |> futurize()
m <- tm::tm_map(crude, content_transformer(tolower)) |> futurize()