gkwreg: Generalized Kumaraswamy Regression Models for Bounded Data

CRAN status R-CMD-check Downloads License: MIT

Overview

The gkwreg package provides a comprehensive and computationally efficient framework for regression modeling of data restricted to the standard unit interval (0, 1), including proportions, rates, fractions, percentages, and bounded indices. While Beta regression is the traditional approach for such data, gkwreg focuses on the Generalized Kumaraswamy (GKw) distribution family, offering exceptional flexibility by encompassing seven important bounded distributions—including Beta and Kumaraswamy—as special or limiting cases.

The package enables full distributional regression, where all relevant parameters can be modeled as functions of covariates through flexible link functions. Maximum Likelihood estimation is performed efficiently via the Template Model Builder (TMB) framework, leveraging Automatic Differentiation (AD) for superior computational speed, numerical accuracy, and optimization stability.


Key Features

Flexible Distribution Hierarchy

Model bounded data using the 5-parameter Generalized Kumaraswamy (GKw) distribution and its seven nested subfamilies:

Distribution Code Parameters Modeled Fixed Parameters # Params
Generalized Kumaraswamy gkw α, β, γ, δ, λ None 5
Beta-Kumaraswamy bkw α, β, γ, δ λ = 1 4
Kumaraswamy-Kumaraswamy kkw α, β, δ, λ γ = 1 4
Exponentiated Kumaraswamy ekw α, β, λ γ = 1, δ = 0 3
McDonald (Beta Power) mc γ, δ, λ α = 1, β = 1 3
Kumaraswamy kw α, β γ = 1, δ = 0, λ = 1 2
Beta beta γ, δ α = 1, β = 1, λ = 1 2

Each family offers distinct flexibility-parsimony tradeoffs. Start simple (kw or beta) and compare nested models using likelihood ratio tests or information criteria.

Advanced Regression Modeling

Computational Efficiency

Comprehensive Inference Tools

Standard R Methods (familiar workflow): - summary(), print(), coef(), vcov(), confint() - logLik(), AIC(), BIC(), nobs() - fitted(), residuals(), predict() - anova() for nested model comparisons

Advanced Prediction (predict.gkwreg): - Multiple prediction types: - "response": Expected mean E(Y|X) - "parameter": All parameter values (α, β, γ, δ, λ) - "link": Linear predictors (before inverse link) - "variance": Predicted variance Var(Y|X) - "density", "probability", "quantile": Distribution functions at specified values - Element-wise or vectorized evaluation - Predictions under alternative distributional assumptions

Model Comparison: - Likelihood ratio tests: anova(), lrtest() - Information criteria: AIC(), BIC() with multi-model comparison - Automated nesting detection and proper test statistics

Sophisticated Diagnostics

6 Diagnostic Plot Types (plot.gkwreg): 1. Residuals vs Observation Indices: Detect autocorrelation, temporal patterns 2. Cook’s Distance: Identify influential observations (threshold: 4/n) 3. Leverage vs Fitted Values: Flag high-leverage points (threshold: 2p/n) 4. Residuals vs Linear Predictor: Check linearity, heteroscedasticity 5. Half-Normal Plot with Simulated Envelope: Assess distributional adequacy 6. Predicted vs Observed: Overall goodness-of-fit

Advanced Features: - Dual graphics systems: Base R (fast) or ggplot2 (publication-quality) - Multiple residual types: Quantile (default), Pearson, Deviance - Customizable: Named-list interface for titles, themes, arrangement - Performance: Automatic sampling for large datasets, adjustable envelope simulations - Programmatic access: save_diagnostics = TRUE returns computed measures

Ecosystem Integration


Installation

# Install from CRAN (stable release):
install.packages("gkwreg")

# Install companion distribution package:
install.packages("gkwdist")

# Or install development versions from GitHub:
# install.packages("devtools")
devtools::install_github("evandeilton/gkwdist")
devtools::install_github("evandeilton/gkwreg")

Quick Start

Basic Regression

library(gkwreg)
library(gkwdist)

# Simulate data
set.seed(123)
n <- 500
x1 <- runif(n, -2, 2)
x2 <- rnorm(n)

# True parameters (log link)
alpha_true <- exp(0.8 + 0.3 * x1)
beta_true <- exp(1.2 - 0.2 * x2)

# Generate response from Kumaraswamy distribution
y <- rkw(n, alpha = alpha_true, beta = beta_true)
y <- pmax(pmin(y, 1 - 1e-7), 1e-7) # Ensure strict bounds
df <- data.frame(y = y, x1 = x1, x2 = x2)

# Fit Kumaraswamy regression
# Formula: alpha ~ x1, beta ~ x2 (intercept-only models also supported)
fit_kw <- gkwreg(y ~ x1 | x2, data = df, family = "kw")

# View results
summary(fit_kw)

Advanced Prediction

# Create prediction grid
newdata <- data.frame(
  x1 = seq(-2, 2, length.out = 100),
  x2 = 0
)

# Predict different quantities
pred_mean <- predict(fit_kw, newdata, type = "response") # E(Y|X)
pred_var <- predict(fit_kw, newdata, type = "variance") # Var(Y|X)
pred_alpha <- predict(fit_kw, newdata, type = "alpha") # α parameter
pred_params <- predict(fit_kw, newdata, type = "parameter") # All parameters

# Evaluate density at y = 0.5 for each observation
dens_values <- predict(fit_kw, newdata, type = "density", at = 0.5)

# Compute quantiles (10th, 50th, 90th percentiles)
quantiles <- predict(fit_kw, newdata,
  type = "quantile",
  at = c(0.1, 0.5, 0.9), elementwise = FALSE
)

Model Comparison

# Fit nested models
fit0 <- gkwreg(y ~ 1, data = df, family = "kw") # Null model
fit1 <- gkwreg(y ~ x1, data = df, family = "kw") # + x1
fit2 <- gkwreg(y ~ x1 | x2, data = df, family = "kw") # + x2 on beta

# Information criteria comparison
AIC(fit0, fit1, fit2)

# Likelihood ratio tests
anova(fit0, fit1, fit2, test = "Chisq")

Diagnostic Plots

# All diagnostic plots (base R graphics)
par(mfrow = c(3, 2))
plot(fit_kw, ask = FALSE)

# Select specific plots with customization
plot(fit_kw,
  which = c(2, 5, 6), # Cook's distance, Half-normal, Pred vs Obs
  type = "quantile", # Quantile residuals (recommended)
  caption = list(
    "2" = "Influential Points",
    "5" = "Distributional Check"
  ),
  nsim = 200, # More accurate envelope
  level = 0.95
) # 95% confidence

# Modern ggplot2 version with grid arrangement
plot(fit_kw,
  use_ggplot = TRUE,
  arrange_plots = TRUE,
  theme_fn = ggplot2::theme_bw
)

# Extract diagnostic data for custom analysis
diag <- plot(fit_kw, save_diagnostics = TRUE)
head(diag$data) # Access Cook's distance, leverage, residuals, etc.

Real Data Example

# Food Expenditure Data (proportion spent on food)
data("FoodExpenditure")
food <- FoodExpenditure
food$prop <- food$food / food$income

# Fit different distributional families
fit_beta <- gkwreg(prop ~ income + persons, data = food, family = "beta")
fit_kw <- gkwreg(prop ~ income + persons, data = food, family = "kw")
fit_ekw <- gkwreg(prop ~ income + persons, data = food, family = "ekw")

# Compare families
comparison <- data.frame(
  Family = c("Beta", "Kumaraswamy", "Exp. Kumaraswamy"),
  LogLik = c(logLik(fit_beta), logLik(fit_kw), logLik(fit_ekw)),
  AIC = c(AIC(fit_beta), AIC(fit_kw), AIC(fit_ekw)),
  BIC = c(BIC(fit_beta), BIC(fit_kw), BIC(fit_ekw))
)
print(comparison)

# Visualize best fit
best_fit <- fit_kw
plot(food$income, food$prop,
  xlab = "Income", ylab = "Food Proportion",
  main = "Food Expenditure Pattern", pch = 16, col = "gray40"
)
income_seq <- seq(min(food$income), max(food$income), length = 100)
pred_df <- data.frame(income = income_seq, persons = median(food$persons))
lines(income_seq, predict(best_fit, pred_df), col = "red", lwd = 2)

Advanced Features

Custom Optimization Control

library(gkwreg)
library(gkwdist)

# Simulate data
set.seed(123)
n <- 500
x <- runif(n, 1, 5)
x1 <- runif(n, -2, 2)
x2 <- rnorm(n)
x3 <- rnorm(n, 1, 4)

# True parameters (log link)
alpha_true <- exp(0.8 + 0.3 * x1)
beta_true <- exp(1.2 - 0.2 * x2)

# Generate response from Kumaraswamy distribution
y <- rkw(n, alpha = alpha_true, beta = beta_true)
y <- pmax(pmin(y, 1 - 1e-7), 1e-7) # Ensure strict bounds
df <- data.frame(y = y, x = x, x1 = x1, x2 = x2, x3 = x3)

# Default control (used automatically)
fit <- gkwreg(y ~ x1, data = df, family = "kw")

# Increase iterations for difficult problems
fit_robust <- gkwreg(y ~ x1,
  data = df, family = "kw",
  control = gkw_control(maxit = 1000, trace = 1)
)

# Try alternative optimizer
fit_bfgs <- gkwreg(y ~ x1,
  data = df, family = "kw",
  control = gkw_control(method = "BFGS")
)

# Fast fitting without standard errors (exploratory analysis)
fit_fast <- gkwreg(y ~ x1,
  data = df, family = "kw",
  control = gkw_control(hessian = FALSE)
)

# Custom starting values
fit_custom <- gkwreg(y ~ x1 + x2 | x3,
  data = df, family = "kw",
  control = gkw_control(
    start = list(
      alpha = c(0.5, 0.2, -0.1), # Intercept + 2 slopes
      beta  = c(1.0, 0.3) # Intercept + 1 slope
    )
  )
)
# Default: log link for all parameters
fit_default <- gkwreg(y ~ x | x, data = df, family = "kw")

# Custom link functions per parameter
fit_links <- gkwreg(y ~ x | x,
  data = df, family = "kw",
  link = list(alpha = "sqrt", beta = "log")
)

# Link scaling (control transformation intensity)
# Larger scale = gentler transformation, smaller = steeper
fit_scaled <- gkwreg(y ~ x | x,
  data = df, family = "kw",
  link_scale = list(alpha = 5, beta = 15)
)

Working with Large Datasets

# Large dataset example
set.seed(456)
n_large <- 100000
x_large <- rnorm(n_large)
y_large <- rkw(n_large, alpha = exp(0.5 + 0.2 * x_large), beta = exp(1.0))
df_large <- data.frame(y = y_large, x = x_large)

# Fast fitting
fit_large <- gkwreg(y ~ x,
  data = df_large, family = "kw",
  control = gkw_control(hessian = FALSE)
)

# Diagnostic plots with sampling (much faster)
plot(fit_large,
  which = c(1, 2, 4, 6), # Skip computationally intensive plot 5
  sample_size = 5000
) # Use random sample of 5000 obs

Mathematical Background

The Generalized Kumaraswamy Distribution

The GKw distribution is a five-parameter family for variables on (0, 1) with cumulative distribution function:

\[F(x; \alpha, \beta, \gamma, \delta, \lambda) = I_{[1-(1-x^{\alpha})^{\beta}]^{\lambda}}(\gamma, \delta)\]

where \(I_z(a,b)\) is the regularized incomplete beta function. The probability density function is:

\[f(x; \alpha, \beta, \gamma, \delta, \lambda) = \frac{\lambda \alpha \beta x^{\alpha-1}}{B(\gamma, \delta)} (1-x^{\alpha})^{\beta-1} \left[1-(1-x^{\alpha})^{\beta}\right]^{\gamma\lambda-1} \left\{1-\left[1-(1-x^{\alpha})^{\beta}\right]^{\lambda} \right \}^{\delta-1}\]

Parameter Roles: - α, β: Control basic shape (inherited from Kumaraswamy) - γ, δ: Govern tail behavior and concentration - λ: Additional flexibility for skewness and peaks

This parameterization captures diverse shapes: symmetric, skewed, unimodal, bimodal, J-shaped, U-shaped, bathtub-shaped.

Regression Framework

For response \(y_i \in (0,1)\) following a GKw family distribution, each parameter \(\theta_{ip} \in \{\alpha_i, \beta_i, \gamma_i, \delta_i, \lambda_i\}\) depends on covariates via link functions:

\[g_p(\theta_{ip}) = \eta_{ip} = \mathbf{x}_{ip}^\top \boldsymbol{\beta}_p\]

Maximum likelihood estimation maximizes:

\[\ell(\Theta; \mathbf{y}, \mathbf{X}) = \sum_{i=1}^{n} \log f(y_i; \theta_i(\Theta))\]

TMB computes exact gradients \(\nabla \ell\) and Hessian \(\mathbf{H}\) via automatic differentiation, enabling fast and stable optimization.


Computational Engine: TMB

Template Model Builder (TMB) translates statistical models into optimized C++ code with automatic differentiation:

Advantages:

Under the Hood:

R Formula → TMB C++ Template → Automatic Differentiation → 
Compiled Object → Fast Optimization (nlminb/optim) → 
Standard Errors (Hessian inversion)

Comparison with Other Packages

Feature gkwreg betareg gamlss brms
Distribution Family GKw hierarchy (7) Beta 100+ 50+
Estimation MLE (TMB/AD) MLE GAMLSS Bayesian MCMC
Parameter Modeling All parameters Mean, precision All parameters All parameters
Speed (n=10k) Fast (~1s) Fast (~1s) Moderate (~5s) Slow (~5min)
Link Functions 9 options + scaling Fixed Many Many
Optimization Control gkw_control() (detailed) Basic Moderate Extensive
Diagnostic Plots 6 types, dual graphics 4 types Extensive Via bayesplot
Prediction Flexibility 9 types, elementwise 3 types Good Excellent
Model Comparison LRT, AIC, BIC LRT GAIC LOO, WAIC
Random Effects No No Yes Yes
Learning Curve Moderate Easy Steep Steep
Dependencies gkwdist, TMB, Formula Minimal Many Stan, many

When to use gkwreg:

When to consider alternatives:


Documentation and Support


References

Primary References:

TMB Framework:

Related Distributions:

Beta Regression:


Contributing

Contributions are welcome! Ways to contribute:

Citation

If you use gkwreg in your research, please cite:

citation("gkwreg")

License

This package is licensed under the MIT License. See the LICENSE file for details.


Author and Maintainer

Lopes, J. E.
evandeilton@gmail.com
LEG - Laboratório de Estatística e Geoinformação
UFPR - Universidade Federal do Paraná, Brazil
GitHub | ORCID