Abstract
The package contains functions to fit higher (possibly) multivariate order Markov chains. The functions are shown as well as simple exmaples
Continuous time Markov chains are discussed in the CTMC vignette which is a part of the package.
An experimental fitHigherOrder
function has been written
in order to fit a higher order Markov chain (Ching, Ng, and Fung (2008)).
fitHigherOrder
takes two inputs
The output will be a list
which consists of
Its quadratic programming problem is solved using solnp
function of the Rsolnp package (Ghalanos and
Theussl 2014).
if (requireNamespace("Rsolnp", quietly = TRUE)) {
library(Rsolnp)
data(rain)
fitHigherOrder(rain$rain, 2)
fitHigherOrder(rain$rain, 3)
}
#> $lambda
#> [1] 0.3333333 0.3333333 0.3333333
#>
#> $Q
#> $Q[[1]]
#> 0 1-5 6+
#> 0 0.6605839 0.4625850 0.1976285
#> 1-5 0.2299270 0.3061224 0.3122530
#> 6+ 0.1094891 0.2312925 0.4901186
#>
#> $Q[[2]]
#> 0 1-5 6+
#> 0 0.6021898 0.4489796 0.3412698
#> 1-5 0.2445255 0.2687075 0.3214286
#> 6+ 0.1532847 0.2823129 0.3373016
#>
#> $Q[[3]]
#> 0 1-5 6+
#> 0 0.5693431 0.4455782 0.4183267
#> 1-5 0.2536496 0.2891156 0.2749004
#> 6+ 0.1770073 0.2653061 0.3067729
#>
#>
#> $X
#> 0 1-5 6+
#> 0.5000000 0.2691606 0.2308394
HOMMC model is used for modeling behaviour of multiple categorical sequences generated by similar sources. The main reference is (Ching, Ng, and Fung 2008). Assume that there are s categorical sequences and each has possible states in M. In nth order MMC the state probability distribution of the jth sequence at time \(t = r + 1\) depend on the state probability distribution of all the sequences (including itself) at times \(t = r, r - 1, ..., r - n + 1\).
\[ x_{r+1}^{(j)} = \sum_{k=1}^{s}\sum_{h=1}^{n}\lambda_{jk}^{(h)}P_{h}^{(jk)}x_{r-h+1}^{(k)}, j = 1, 2, ..., s, r = n-1, n, ... \]
with initial distribution \(x_{0}^{(k)}, x_{1}^{(k)}, ... , x_{n-1}^{(k)} (k = 1, 2, ... , s)\). Here
\[ \lambda _{jk}^{(h)} \geq 0, 1\leq j, k\leq s, 1\leq h\leq n \enspace and \enspace \sum_{k=1}^{s}\sum_{h=1}^{n} \lambda_{jk}^{(h)} = 1, j = 1, 2, 3, ... , s. \]
Now we will see the simpler representation of the model which will
help us understand the result of fitHighOrderMultivarMC
method.
Let \(X_{r}^{(j)} = ((x_{r}^{(j)})^{T}, (x_{r-1}^{(j)})^{T}, ..., (x_{r-n+1}^{(j)})^{T})^{T} for \enspace j = 1, 2, 3, ... , s.\) Then
\[ \begin{pmatrix} X_{r+1}^{(1)}\\ X_{r+1}^{(2)}\\ .\\ .\\ .\\ X_{r+1}^{(s)} \end{pmatrix} = \begin{pmatrix} B^{11}& B^{12}& .& .& B^{1s}& \\ B^{21}& B^{22}& .& .& B^{2s}& \\ .& .& .& .& .& \\ .& .& .& .& .& \\ .& .& .& .& .& \\ B^{s1}& B^{s2}& .& .& B^{ss}& \\ \end{pmatrix} \begin{pmatrix} X_{r}^{(1)}\\ X_{r}^{(2)}\\ .\\ .\\ .\\ X_{r}^{(s)} \end{pmatrix} \textrm{where} \]
\[B^{ii} = \begin{pmatrix} \lambda _{ii}^{(1)}P_{1}^{(ii)}& \lambda _{ii}^{(2)}P_{2}^{(ii)}& .& .& \lambda _{ii}^{(n)}P_{n}^{(ii)}& \\ I& 0& .& .& 0& \\ 0& I& .& .& 0& \\ .& .& .& .& .& \\ .& .& .& .& .& \\ 0& .& .& I& 0& \end{pmatrix}_{mn*mn} \textrm{and} \]
\[ B^{ij} = \begin{pmatrix} \lambda _{ij}^{(1)}P_{1}^{(ij)}& \lambda _{ij}^{(2)}P_{2}^{(ij)}& .& .& \lambda _{ij}^{(n)}P_{n}^{(ij)}& \\ 0& 0& .& .& 0& \\ 0& 0& .& .& 0& \\ .& .& .& .& .& \\ .& .& .& .& .& \\ 0& .& .& 0& 0& \end{pmatrix}_{mn*mn} \textrm{when } i\neq j. \]
\(P_{h}^{(ij)}\) is represented as \(Ph(i,j)\) and \(\lambda _{ij}^{(h)}\) as Lambdah(i,j). For example: \(P_{2}^{(13)}\) as \(P2(1,3)\) and \(\lambda _{45}^{(3)}\) as Lambda3(4,5).
showClass("hommc")
#> Class "hommc" [package "markovchain"]
#>
#> Slots:
#>
#> Name: order states P Lambda byrow name
#> Class: numeric character array numeric logical character
Any element of hommc
class is comprised by following
slots:
states <- c('a', 'b')
P <- array(dim = c(2, 2, 4), dimnames = list(states, states))
P[ , , 1] <- matrix(c(1/3, 2/3, 1, 0), byrow = FALSE, nrow = 2, ncol = 2)
P[ , , 2] <- matrix(c(0, 1, 1, 0), byrow = FALSE, nrow = 2, ncol = 2)
P[ , , 3] <- matrix(c(2/3, 1/3, 0, 1), byrow = FALSE, nrow = 2, ncol = 2)
P[ , , 4] <- matrix(c(1/2, 1/2, 1/2, 1/2), byrow = FALSE, nrow = 2, ncol = 2)
Lambda <- c(.8, .2, .3, .7)
hob <- new("hommc", order = 1, Lambda = Lambda, P = P, states = states,
byrow = FALSE, name = "FOMMC")
hob
#> Order of multivariate markov chain = 1
#> states = a b
#>
#> List of Lambda's and the corresponding transition matrix (by cols) :
#> Lambda1(1,1) : 0.8
#> P1(1,1) :
#> a b
#> a 0.3333333 1
#> b 0.6666667 0
#>
#> Lambda1(1,2) : 0.2
#> P1(1,2) :
#> a b
#> a 0 1
#> b 1 0
#>
#> Lambda1(2,1) : 0.3
#> P1(2,1) :
#> a b
#> a 0.6666667 0
#> b 0.3333333 1
#>
#> Lambda1(2,2) : 0.7
#> P1(2,2) :
#> a b
#> a 0.5 0.5
#> b 0.5 0.5
fitHighOrderMultivarMC
method is available to fit HOMMC.
Below are the 3 parameters of this method.
We tried to replicate the example found in (Ching, Ng, and Fung 2008) for an application of
HOMMC. A soft-drink company in Hong Kong is facing an in-house problem
of production planning and inventory control. A pressing issue is the
storage space of its central warehouse, which often finds itself in the
state of overflow or near capacity. The company is thus in urgent needs
to study the interplay between the storage space requirement and the
overall growing sales demand. The product can be classified into six
possible states (1, 2, 3, 4, 5, 6) according to their sales volumes. All
products are labeled as 1 = no sales volume, 2 = very slow-moving (very
low sales volume), 3 = slow-moving, 4 = standard, 5 = fast-moving or 6 =
very fast-moving (very high sales volume). Such labels are useful from
both marketing and production planning points of view. The data is
cointaind in sales
object.
data(sales)
head(sales)
#> A B C D E
#> [1,] "6" "1" "6" "6" "6"
#> [2,] "6" "6" "6" "2" "2"
#> [3,] "6" "6" "6" "2" "2"
#> [4,] "6" "1" "6" "2" "2"
#> [5,] "2" "6" "6" "2" "2"
#> [6,] "6" "1" "6" "3" "3"
The company would also like to predict sales demand for an important customer in order to minimize its inventory build-up. More importantly, the company can understand the sales pattern of this customer and then develop a marketing strategy to deal with this customer. Customer’s sales demand sequences of five important products of the company for a year. We expect sales demand sequences generated by the same customer to be correlated to each other. Therefore by exploring these relationships, one can obtain a better higher-order multivariate Markov model for such demand sequences, hence obtain better prediction rules.
In (Ching, Ng, and Fung 2008) application, they choose the order arbitrarily to be eight, i.e., n = 8. We first estimate all the transition probability matrices \(P_{h}^{ij}\) and we also have the estimates of the stationary probability distributions of the five products:.
\(\widehat{\boldsymbol{x}}^{(1)} = \begin{pmatrix} 0.0818& 0.4052& 0.0483& 0.0335& 0.0037& 0.4275 \end{pmatrix}^{\boldsymbol{T}}\)
\(\widehat{\boldsymbol{x}}^{(2)} = \begin{pmatrix} 0.3680& 0.1970& 0.0335& 0.0000& 0.0037& 0.3978 \end{pmatrix}^{\boldsymbol{T}}\)
\(\widehat{\boldsymbol{x}}^{(3)} = \begin{pmatrix} 0.1450& 0.2045& 0.0186& 0.0000& 0.0037& 0.6283 \end{pmatrix}^{\boldsymbol{T}}\)
\(\widehat{\boldsymbol{x}}^{(4)} = \begin{pmatrix} 0.0000& 0.3569& 0.1338& 0.1896& 0.0632& 0.2565 \end{pmatrix}^{\boldsymbol{T}}\)
\(\widehat{\boldsymbol{x}}^{(5)} = \begin{pmatrix} 0.0000& 0.3569& 0.1227& 0.2268& 0.0520& 0.2416 \end{pmatrix}^{\boldsymbol{T}}\)
By solving the corresponding linear programming problems, we obtain the following higher-order multivariate Markov chain model:
\(\boldsymbol{x}_{r+1}^{(1)} = \boldsymbol{P}_{1}^{(12)}\boldsymbol{x}_{r}^{(2)}\)
\(\boldsymbol{x}_{r+1}^{(2)} = 0.6364\boldsymbol{P}_{1}^{(22)}\boldsymbol{x}_{r}^{(2)} + 0.3636\boldsymbol{P}_{3}^{(22)}\boldsymbol{x}_{r}^{(2)}\)
\(\boldsymbol{x}_{r+1}^{(3)} = \boldsymbol{P}_{1}^{(35)}\boldsymbol{x}_{r}^{(5)}\)
\(\boldsymbol{x}_{r+1}^{(4)} = 0.2994\boldsymbol{P}_{8}^{(42)}\boldsymbol{x}_{r}^{(2)} + 0.4324\boldsymbol{P}_{1}^{(45)}\boldsymbol{x}_{r}^{(5)} + 0.2681\boldsymbol{P}_{2}^{(45)}\boldsymbol{x}_{r}^{(5)}\)
\(\boldsymbol{x}_{r+1}^{(5)} = 0.2718\boldsymbol{P}_{8}^{(52)}\boldsymbol{x}_{r}^{(2)} + 0.6738\boldsymbol{P}_{1}^{(54)}\boldsymbol{x}_{r}^{(4)} + 0.0544\boldsymbol{P}_{2}^{(55)}\boldsymbol{x}_{r}^{(5)}\)
According to the constructed 8th order multivariate Markov model, Products A and B are closely related. In particular, the sales demand of Product A depends strongly on Product B. The main reason is that the chemical nature of Products A and B is the same, but they have different packaging for marketing purposes. Moreover, Products B, C, D and E are closely related. Similarly, products C and E have the same product flavor, but different packaging. In this model, it is interesting to note that both Product D and E quite depend on Product B at order of 8, this relationship is hardly to be obtained in conventional Markov model owing to huge amount of parameters. The results show that higher-order multivariate Markov model is quite significant to analyze the relationship of sales demand.
# fit 8th order multivariate markov chain
if (requireNamespace("Rsolnp", quietly = TRUE)) {
object <- fitHighOrderMultivarMC(sales, order = 8, Norm = 2)
}
We choose to show only results shown in the paper. We see that \(\lambda\) values are quite close, but not equal, to those shown in the original paper.
#> Order of multivariate markov chain = 8
#> states = 1 2 3 4 5 6
#>
#> List of Lambda's and the corresponding transition matrix (by cols) :
#> Lambda1(1,2) : 0.9999989
#> P1(1,2) :
#> 1 2 3 4 5 6
#> 1 0.06060606 0.1509434 0.0000000 0.1666667 0 0.07547170
#> 2 0.44444444 0.4716981 0.4444444 0.1666667 1 0.33018868
#> 3 0.01010101 0.1320755 0.2222222 0.1666667 0 0.02830189
#> 4 0.01010101 0.0754717 0.2222222 0.1666667 0 0.01886792
#> 5 0.01010101 0.0000000 0.0000000 0.1666667 0 0.00000000
#> 6 0.46464646 0.1698113 0.1111111 0.1666667 0 0.54716981
#>
#> Lambda1(2,2) : 0.4771666
#> P1(2,2) :
#> 1 2 3 4 5 6
#> 1 0.40404040 0.20754717 0.0000000 0.1666667 1 0.433962264
#> 2 0.11111111 0.47169811 0.3333333 0.1666667 0 0.132075472
#> 3 0.02020202 0.05660377 0.3333333 0.1666667 0 0.009433962
#> 4 0.00000000 0.00000000 0.0000000 0.1666667 0 0.000000000
#> 5 0.00000000 0.00000000 0.1111111 0.1666667 0 0.000000000
#> 6 0.46464646 0.26415094 0.2222222 0.1666667 0 0.424528302
#>
#> Lambda3(2,2) : 0.3882533
#> P3(2,2) :
#> 1 2 3 4 5 6
#> 1 0.40404040 0.16981132 0.3333333 0.1666667 0 0.44230769
#> 2 0.18181818 0.33962264 0.2222222 0.1666667 0 0.14423077
#> 3 0.03030303 0.05660377 0.0000000 0.1666667 0 0.02884615
#> 4 0.00000000 0.00000000 0.0000000 0.1666667 0 0.00000000
#> 5 0.00000000 0.00000000 0.1111111 0.1666667 0 0.00000000
#> 6 0.38383838 0.43396226 0.3333333 0.1666667 1 0.38461538
#>
#> Lambda1(3,5) : 0.672876
#> P1(3,5) :
#> 1 2 3 4 5 6
#> 1 0.1666667 0.09473684 0.1515152 0.1639344 0.07142857 0.21538462
#> 2 0.1666667 0.18947368 0.2727273 0.2295082 0.14285714 0.18461538
#> 3 0.1666667 0.04210526 0.0000000 0.0000000 0.00000000 0.01538462
#> 4 0.1666667 0.00000000 0.0000000 0.0000000 0.00000000 0.00000000
#> 5 0.1666667 0.01052632 0.0000000 0.0000000 0.00000000 0.00000000
#> 6 0.1666667 0.66315789 0.5757576 0.6065574 0.78571429 0.58461538
#>
#> Lambda8(4,2) : 0.2745626
#> P8(4,2) :
#> 1 2 3 4 5 6
#> 1 0.00000000 0.00000000 0.0000000 0.1666667 0 0.00000000
#> 2 0.34343434 0.18867925 0.6666667 0.1666667 0 0.42424242
#> 3 0.10101010 0.16981132 0.0000000 0.1666667 1 0.14141414
#> 4 0.20202020 0.22641509 0.1111111 0.1666667 0 0.17171717
#> 5 0.08080808 0.09433962 0.1111111 0.1666667 0 0.03030303
#> 6 0.27272727 0.32075472 0.1111111 0.1666667 0 0.23232323
#>
#> Lambda1(4,5) : 0.2310635
#> P1(4,5) :
#> 1 2 3 4 5 6
#> 1 0.1666667 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
#> 2 0.1666667 0.47368421 0.21212121 0.03278689 0.00000000 0.64615385
#> 3 0.1666667 0.10526316 0.21212121 0.19672131 0.07142857 0.09230769
#> 4 0.1666667 0.00000000 0.24242424 0.54098361 0.57142857 0.03076923
#> 5 0.1666667 0.01052632 0.03030303 0.18032787 0.28571429 0.00000000
#> 6 0.1666667 0.41052632 0.30303030 0.04918033 0.07142857 0.23076923
#>
#> Lambda2(4,5) : 0.298032
#> P2(4,5) :
#> 1 2 3 4 5 6
#> 1 0.1666667 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
#> 2 0.1666667 0.55319149 0.36363636 0.06557377 0.00000000 0.41538462
#> 3 0.1666667 0.13829787 0.09090909 0.21311475 0.28571429 0.04615385
#> 4 0.1666667 0.05319149 0.24242424 0.40983607 0.64285714 0.06153846
#> 5 0.1666667 0.02127660 0.06060606 0.16393443 0.07142857 0.03076923
#> 6 0.1666667 0.23404255 0.24242424 0.14754098 0.00000000 0.44615385
#>
#> Lambda8(5,2) : 0.2303975
#> P8(5,2) :
#> 1 2 3 4 5 6
#> 1 0.00000000 0.00000000 0.0000000 0.1666667 0 0.00000000
#> 2 0.35353535 0.20754717 0.6666667 0.1666667 1 0.39393939
#> 3 0.10101010 0.15094340 0.0000000 0.1666667 0 0.13131313
#> 4 0.22222222 0.30188679 0.2222222 0.1666667 0 0.20202020
#> 5 0.09090909 0.03773585 0.0000000 0.1666667 0 0.03030303
#> 6 0.23232323 0.30188679 0.1111111 0.1666667 0 0.24242424
#>
#> Lambda1(5,4) : 0.2263456
#> P1(5,4) :
#> 1 2 3 4 5 6
#> 1 0.1666667 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
#> 2 0.1666667 0.48421053 0.16666667 0.01960784 0.05882353 0.60869565
#> 3 0.1666667 0.10526316 0.16666667 0.15686275 0.05882353 0.11594203
#> 4 0.1666667 0.00000000 0.44444444 0.62745098 0.64705882 0.02898551
#> 5 0.1666667 0.01052632 0.02777778 0.15686275 0.23529412 0.00000000
#> 6 0.1666667 0.40000000 0.19444444 0.03921569 0.00000000 0.24637681
#>
#> Lambda2(5,5) : 0.5369816
#> P2(5,5) :
#> 1 2 3 4 5 6
#> 1 0.1666667 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
#> 2 0.1666667 0.52127660 0.42424242 0.04918033 0.07142857 0.43076923
#> 3 0.1666667 0.12765957 0.03030303 0.19672131 0.21428571 0.07692308
#> 4 0.1666667 0.05319149 0.33333333 0.54098361 0.50000000 0.07692308
#> 5 0.1666667 0.02127660 0.03030303 0.11475410 0.21428571 0.01538462
#> 6 0.1666667 0.27659574 0.18181818 0.09836066 0.00000000 0.40000000