library(meteospain)
library(ggplot2)
library(ggforce)
library(units)
#> udunits database from /usr/share/udunits/udunits2.xml
library(sf)
#> Linking to GEOS 3.13.1, GDAL 3.11.3, PROJ 9.6.0; sf_use_s2() is TRUE
library(keyring)
AEMET is the Spanish
national meteorologic service, and is the national meteorology authority
providing quality data for public and research use, as well as
prediction products and disaster warning system. meteospain
only access to the automatic meteorological stations network data.
meteospain
offers access to the AEMET API at different
temporal resolutions:
In “daily”, a start_date
(and optionally an
end_date
) arguments must be provided, indicating the period
from which retrieve the data.
In “monthly” and “yearly”, only the years in start_date
and
end_date
are used, returning all year monthly or yearly
values (i.e start_date = as.Date("2020-12-01")
is
the same as start_date = as.Date("2020-01-01")
as both will
return all 2020 measures).
meteospain
access the data in the AEMET API collecting
all stations. If a character vector of stations codes is supplied in the
stations
argument, a filter step is done before returning
the data to maintain only the stations supplied.
The exception for this are “monthly” and “yearly” temporal resolutions. AEMET API only allows for one station to be retrieved.
AEMET API only allow access to the data with a personal API Key. This
token must be included in the api_key
argument of
aemet_options
function.
To obtain the API Key, please visit https://opendata.aemet.es/centrodedescargas/inicio and
follow the instructions at “Obtencion de API Key”.
It is not advisable to use the keys directly in any script shared or publicly available (github…), neither store them in plain text files. One option is using the keyring package for managing and accessing keys:
# current day, all stations
api_options <- aemet_options(
resolution = 'current_day',
api_key = key_get('aemet')
)
api_options
#> $resolution
#> [1] "current_day"
#>
#> $start_date
#> [1] "2025-10-01"
#>
#> $end_date
#> [1] "2025-10-01"
#>
#> $stations
#> NULL
#>
#> $api_key
#> [1] "my_api_key"
# daily, all stations
api_options <- aemet_options(
resolution = 'daily',
start_date = as.Date('2020-04-25'), end_date = as.Date('2020-05-08'),
api_key = key_get('aemet')
)
api_options
#> $resolution
#> [1] "daily"
#>
#> $start_date
#> [1] "2020-04-25"
#>
#> $end_date
#> [1] "2020-05-08"
#>
#> $stations
#> NULL
#>
#> $api_key
#> [1] "my_api_key"
# monthly, only one station because AEMET API limitations
api_options <- aemet_options(
resolution = 'monthly',
start_date = as.Date('2020-04-25'), end_date = as.Date('2020-05-25'),
station = "0149X",
api_key = key_get('aemet')
)
api_options
#> $resolution
#> [1] "monthly"
#>
#> $start_date
#> [1] "2020-01-01"
#>
#> $end_date
#> [1] "2020-12-31"
#>
#> $stations
#> [1] "0149X"
#>
#> $api_key
#> [1] "my_api_key"
Accessing station metadata for AEMET is simple:
get_stations_info_from('aemet', api_options)
#> Simple feature collection with 947 features and 5 fields
#> Geometry type: POINT
#> Dimension: XY
#> Bounding box: xmin: -18.115 ymin: 27.66528 xmax: 4.323889 ymax: 43.78611
#> Geodetic CRS: WGS 84
#> # A tibble: 947 × 6
#> service station_id station_name station_province altitude
#> * <chr> <chr> <chr> <chr> [m]
#> 1 aemet B051A SÓLLER, PUERTO ILLES BALEARS 5
#> 2 aemet B087X BANYALBUFAR ILLES BALEARS 60
#> 3 aemet B013X ESCORCA, LLUC ILLES BALEARS 490
#> 4 aemet B103B ANDRATX - SANT ELM ILLES BALEARS 52
#> 5 aemet B158X CALVIÀ, ES CAPDELLÀ ILLES BALEARS 50
#> 6 aemet B275E SON BONET, AEROPUERTO BALEARES 47
#> 7 aemet B236C PALMA, UNIVERSITAT ILLES BALEARS 95
#> 8 aemet B228 PALMA, PUERTO ILLES BALEARS 3
#> 9 aemet B248 SIERRA DE ALFABIA, BUNYOLA ILLES BALEARS 1030
#> 10 aemet B334X LLUCMAJOR ILLES BALEARS 140
#> # ℹ 937 more rows
#> # ℹ 1 more variable: geometry <POINT [°]>
api_options <- aemet_options(
resolution = 'daily',
start_date = as.Date('2020-04-25'),
api_key = key_get('aemet')
)
spain_20200425 <- get_meteo_from('aemet', options = api_options)
#> ℹ © AEMET. Autorizado el uso de la información y su reproducción citando a
#> AEMET como autora de la misma.
#> https://www.aemet.es/es/nota_legal
spain_20200425
#> Simple feature collection with 769 features and 19 fields
#> Geometry type: POINT
#> Dimension: XY
#> Bounding box: xmin: -18.115 ymin: 27.71889 xmax: 4.323889 ymax: 43.78611
#> Geodetic CRS: WGS 84
#> # A tibble: 769 × 20
#> timestamp service station_id station_name station_province altitude
#> * <dttm> <chr> <chr> <chr> <chr> [m]
#> 1 2020-04-25 00:00:00 aemet 0009X ALFORJA TARRAGONA 406
#> 2 2020-04-25 00:00:00 aemet 0016A REUS AEROPU… TARRAGONA 71
#> 3 2020-04-25 00:00:00 aemet 0016B REUS (CENTR… TARRAGONA 118
#> 4 2020-04-25 00:00:00 aemet 0034X VALLS TARRAGONA 233
#> 5 2020-04-25 00:00:00 aemet 0061X PONTONS BARCELONA 632
#> 6 2020-04-25 00:00:00 aemet 0073X SITGES BARCELONA 58
#> 7 2020-04-25 00:00:00 aemet 0076 BARCELONA A… BARCELONA 4
#> 8 2020-04-25 00:00:00 aemet 0092X BERGA BARCELONA 682
#> 9 2020-04-25 00:00:00 aemet 0106X BALSARENY BARCELONA 361
#> 10 2020-04-25 00:00:00 aemet 0114X PRATS DE LL… BARCELONA 700
#> # ℹ 759 more rows
#> # ℹ 14 more variables: mean_temperature [°C], min_temperature [°C],
#> # max_temperature [°C], mean_relative_humidity [%],
#> # min_relative_humidity [%], max_relative_humidity [%],
#> # precipitation [L/m^2], wind_direction [°], mean_wind_speed [m/s],
#> # max_wind_speed [m/s], insolation [h], max_atmospheric_pressure [hPa],
#> # min_atmospheric_pressure [hPa], geometry <POINT [°]>
Visually:
spain_20200425 |>
units::drop_units() |>
ggplot() +
geom_sf(aes(colour = mean_temperature)) +
scale_colour_viridis_c()
spain_20200425 |>
ggplot() +
geom_histogram(aes(x = precipitation))
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
#> Warning: Removed 32 rows containing non-finite outside the scale range
#> (`stat_bin()`).