A quick tour of ppgmmga

Alessio Serafini, Luca Scrucca

09 Sep 2025

Introduction

An R package implementing a Projection Pursuit algorithm based on finite Gaussian Mixtures Models for density estimation using Genetic Algorithms (PPGMMGA) to maximise a Negentropy index. The PPGMMGA algorithm provides a method to visualise high-dimensional data in a lower-dimensional space, with special reference to reveal clustering structures.

library(ppgmmga)
##    ___  ___  ___ ___ _  __ _  ___ ____ _
##   / _ \/ _ \/ _ `/  ' \/  ' \/ _ `/ _ `/
##  / .__/ .__/\_, /_/_/_/_/_/_/\_, /\_,_/ 
## /_/  /_/   /___/            /___/       version 1.3.1

Banknote data

library(mclust)
data("banknote")
X <- banknote[,-1]
Class <- banknote$Status
table(Class)
## Class
## counterfeit     genuine 
##         100         100
clPairs(X, classification = Class, 
        symbols = ppgmmga.options("classPlotSymbols"),
        colors = ppgmmga.options("classPlotColors"))

1-dimensional PPGMMGA

PP1D <- ppgmmga(data = X, d = 1, seed = 1)
PP1D
## Call:
## ppgmmga(data = X, d = 1, seed = 1)
## 
## 'ppgmmga' object containing: 
## [1] "data"       "d"          "approx"     "GMM"        "GA"        
## [6] "Negentropy" "basis"      "Z"
summary(PP1D)
## ── ppgmmga ───────────────────────────── 
## 
## Data dimensions               = 200 x 6 
## Data transformation           = center & scale 
## Projection subspace dimension = 1 
## GMM density estimate          = (VEE,4)
## Negentropy approximation      = UT 
## GA optimal negentropy         = 0.6345935 
## GA encoded basis solution: 
##            x1       x2       x3       x4       x5
## [1,] 3.268902 2.373044 1.051365 0.313128 0.531718
## 
## Estimated projection basis: 
##                 PP1
## Length   -0.0119653
## Left     -0.0934775
## Right     0.1602105
## Bottom    0.5740698
## Top       0.3450346
## Diagonal -0.7189203
## 
## Monte Carlo Negentropy approximation check: 
##                            UT
## Approx Negentropy 0.634593544
## MC Negentropy     0.633614256
## MC se             0.002249545
## Relative accuracy 1.001545559
plot(PP1D)

plot(PP1D, class = Class)

2-dimensional PPGMMGA

PP2D <- ppgmmga(data = X, d = 2, seed = 1)
summary(PP2D)
## ── ppgmmga ───────────────────────────── 
## 
## Data dimensions               = 200 x 6 
## Data transformation           = center & scale 
## Projection subspace dimension = 2 
## GMM density estimate          = (VEE,4)
## Negentropy approximation      = UT 
## GA optimal negentropy         = 1.13624 
## GA encoded basis solution: 
##            x1       x2       x3       x4      x5      x6      x7      x8
## [1,] 2.268667 2.929821 1.061407 1.084929 0.30443 3.85462 0.98329 1.11377
##            x9      x10
## [1,] 0.167174 1.668403
## 
## Estimated projection basis: 
##                 PP1        PP2
## Length   -0.0372687 -0.0718319
## Left      0.0312555 -0.1198116
## Right    -0.1548079  0.0630092
## Bottom   -0.0856931  0.8639049
## Top      -0.1024990  0.4603727
## Diagonal  0.9776601  0.1350576
## 
## Monte Carlo Negentropy approximation check: 
##                            UT
## Approx Negentropy 1.136240194
## MC Negentropy     1.137260367
## MC se             0.003527379
## Relative accuracy 0.999102956
summary(PP2D$GMM)
## ------------------------------------------------------- 
## Density estimation via Gaussian finite mixture modeling 
## ------------------------------------------------------- 
## 
## Mclust VEE (ellipsoidal, equal shape and orientation) model with 4 components: 
## 
##  log-likelihood   n df       BIC       ICL
##       -1191.595 200 51 -2653.405 -2666.898
plot(PP2D$GA)

plot(PP2D)

plot(PP2D, class = Class, drawAxis = FALSE)

3-dimensional PPGMMGA

PP3D <- ppgmmga(data = X, d = 3, 
                center = TRUE, scale = FALSE, 
                gatype = "gaisl", 
                options = ppgmmga.options(numIslands = 2),
                seed = 1)
summary(PP3D)
## ── ppgmmga ───────────────────────────── 
## 
## Data dimensions               = 200 x 6 
## Data transformation           = center 
## Projection subspace dimension = 3 
## GMM density estimate          = (VVE,3)
## Negentropy approximation      = UT 
## GA optimal negentropy         = 1.16915 
## GA encoded basis solution: 
##           x1       x2       x3       x4       x5       x6       x7       x8
## [1,] 4.33834 2.529314 1.092368 1.076958 0.831503 4.978463 2.007285 2.077611
##            x9      x10  ...       x14      x15
## [1,] 1.993972 2.210092       1.572042 2.527132
## 
## Estimated projection basis: 
##                 PP1        PP2        PP3
## Length   -0.3090123  0.5132540 -0.5707432
## Left     -0.1212963 -0.1763598 -0.3272027
## Right     0.3026850  0.4914905 -0.3874791
## Bottom    0.2418408  0.3733881  0.4167023
## Top       0.2645985  0.4937292  0.3429073
## Diagonal -0.8183404  0.2841082  0.3547172
## 
## Monte Carlo Negentropy approximation check: 
##                            UT
## Approx Negentropy 1.169149622
## MC Negentropy     1.174923134
## MC se             0.004308954
## Relative accuracy 0.995086051
plot(PP3D$GA)

plot(PP3D)

plot(PP3D, class = Class)

plot(PP3D, dim = c(1,2))

plot(PP3D, dim = c(1,3), class = Class)

# A rotating 3D plot can be obtained using
if(!require("msir")) install.packages("msir")
msir::spinplot(PP3D$Z, markby = Class, 
               pch.points = c(20,17),
               col.points = ppgmmga.options("classPlotColors")[1:2])


References

Scrucca L, Serafini A (2019). “Projection pursuit based on Gaussian mixtures and evolutionary algorithms.” Journal of Computational and Graphical Statistics, 28(4), 847–860. https://doi.org/10.1080/10618600.2019.1598871.


sessionInfo()
## R version 4.5.0 (2025-04-11)
## Platform: aarch64-apple-darwin20
## Running under: macOS Sequoia 15.5
## 
## Matrix products: default
## BLAS:   /Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/lib/libRblas.0.dylib 
## LAPACK: /Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/lib/libRlapack.dylib;  LAPACK version 3.12.1
## 
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
## 
## time zone: Europe/Rome
## tzcode source: internal
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
## [1] mclust_6.1.2  ppgmmga_1.3.1 knitr_1.50   
## 
## loaded via a namespace (and not attached):
##  [1] gtable_0.3.6       jsonlite_2.0.0     dplyr_1.1.4        compiler_4.5.0    
##  [5] crayon_1.5.3       tidyselect_1.2.1   Rcpp_1.1.0         GA_3.2.4          
##  [9] jquerylib_0.1.4    scales_1.4.0       yaml_2.3.10        fastmap_1.2.0     
## [13] ggplot2_3.5.2      R6_2.6.1           labeling_0.4.3     generics_0.1.4    
## [17] iterators_1.0.14   tibble_3.2.1       bslib_0.9.0        pillar_1.10.2     
## [21] RColorBrewer_1.1-3 rlang_1.1.6        cachem_1.1.0       xfun_0.52         
## [25] sass_0.4.10        cli_3.6.5          withr_3.0.2        magrittr_2.0.3    
## [29] digest_0.6.37      foreach_1.5.2      grid_4.5.0         rstudioapi_0.17.1 
## [33] lifecycle_1.0.4    vctrs_0.6.5        evaluate_1.0.3     glue_1.8.0        
## [37] farver_2.1.2       codetools_0.2-20   rmarkdown_2.29     tools_4.5.0       
## [41] pkgconfig_2.0.3    htmltools_0.5.8.1