Changes in v0.5.0
- Add the
model
argument to
textmodel_word2vec()
to update existing models.
- The
normalize
argument is moved from
textmodel_word2vec()
to as.matrix()
. The
original argument is deprecated and set to FALSE
by
default.
- Remove
weights()
.
- Improve the structure of C++ code.
Changes in v0.4.0
- Add the
tolower
argument and set to TRUE
to lower-case tokens.
- Allow
x
to be quanteda’s tokens_xptr object to enhance
efficiency.
Changes in v0.3.0
- Save docvars in the
textmodel_doc2vec
objects.
- Set zero for empty documents in the
textmodel_doc2vec
objects.
- Add
probability()
to compute probability of words.
Changes in v0.2.0
- Rename
word2vec()
, doc2vec()
and
lsa()
to textmodel_word2vec()
,
textmodel_doc2vec()
and textmodel_lsa()
respectively.
- Simplify the C++ code to make maintenance easier.
- Add
normalize
to word2vec
to disable or
enable word vector normalization.
- Add
weights()
to extract back-propagation weights.
- Make
analogy()
to convert a formula to named character
vector.
- Improve the stability of
word2vec()
when
verbose = TRUE
.
Changes in v0.1.0
- Fork https://github.com/bnosac/word2vec and change the package name
to wordvector.
- Replace a list of character with quanteda’s tokens
object as an input object.
- Recreate
word2vec()
with new argument names and object
structures.
- Create
lda()
to train word vectors using Latent
Semantic Analysis.
- Add
similarity()
and analogy()
functions
using proxyC.
- Add
data_corpus_news2014
that contain 20,000 news
summaries as package data.