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Abstract. The Healing Brush is a tool first introduced in Photoshop,
that achieves seamless removal of defects in images. A similar image pro-
cessing algorithm, called Poisson Editing, was later proposed in [§]. Our
paper presents the theoretical ideas on which Healing is based, as well
as some implementational details. Healing is performed by constructing
iterative solutions to a fourth order partial differential equation. Its so-
lutions follow the spatial variations between pixels in a sampled area,
while at the same time are continuous and have continuous derivatives
at the boundary. Poisson Editing is only continuous at the boundary.
Also, our exact equation describes cloning of features from one image
to another with greater fidelity. Our mathematical understanding of the
process is based on viewing the image as a section in a fibred manifold,
and minimizing certain natural expression for the energy written in terms
of connections. In this we are, in a way, following the line of thought in
Gauge Theories in Physics.

1 Introduction

Photographers often need to replace a damaged part of an image by a more
"healthy’ looking patch, such as removing dust, scratches, wrinkles. For this pur-
pose there is the Clone Tool in Photoshop and similar tools in other applications.
The problem is that as a rule there is no area in the image with exactly the same
texture and lighting so that replacement is seamless and natural. Doing this type
of work was a difficult job, considered an art by photographers, and sophisti-
cated techniques have been developed [1]. Photoshop 7 introduced the Healing
Brush tool [2] as a solution to those problems. But algorithms for seamless "fill
in’ had been independently addressed in the literature in different ways, which
we will describe next.

1.1 Inpainting

A method called Inpainting [3] is using a combination of second and third order
partial differential equation (PDE) for solving it.

This approach has two limitations. First, the reconstructed area is too smooth,
which follows from the nature of the PDEs used. More recent methods [4] extract
a texture component of the image and use it to fill in the texture component



of the selected area, while reconstructing the image component based on PDEs.
Second, for a low order PDE the reconstructed image in the selected area may
not have smooth behavior at the boundary. In the simple case of second order
PDE with Dirichlet boundary condition, there is discontinuity in the slope of
the reconstructed function.

1.2 Texture Synthesis

This approach synthesizes texture in the selected area, based on some sort of
‘surrounding’ texture. The new image is created using appropriately selected
individual pixels or an arrangement of many small patches directly taken from
the sampled area [5], [6], [7].

Texture synthesis may not be the best approach for relatively smooth images
with substantial change in color. There may not be a good area to get texture
from — in the sense that it may be hard to achieve continuity if we rely only on
fixed sampled pixel values. Also, it takes away human control of what’s going
on in reconstruction. A more interactive tool might give better chance to copy
exactly the feature needed in the damaged area.

1.3 Poisson Editing

A recent paper [8] is much closer to the approach we defined with the Healing
Brush in Photoshop 7 [2]. The authors achieve seamless cloning by solving a
Poisson equation to fill in the selected area. The right hand side ’source’ term in
the equation is Laplacian of the sampled image. Dirichlet boundary conditions
make the solution continuous at the boundary.

In our experiments with similar techniques we have discovered that continuity
at the boundary is not always sufficient. Seamless fill in requires continuity of
derivatives, if we insist on quality. One solution of the problem is a fourth order
PDE, used for the Healing Brush.

2 Harmonic and Biharmonic Reconstructions

Everywhere in this paper A will denote the Laplacian.

Our first approach to Healing was to reconstruct the image in the defective
area as a harmonic function, i.e. solution of the Laplace equation, with Dirichlet
boundary conditions.

Af=0 (1)

As mentioned above, this solution, even if continuous, has discontinuity in
the derivatives at the boundary. Also, harmonic functions appear 'too stiff,” not
flexible enough to follow gracefully variations in brightness/color.

We decided to fix this problem by using solutions of the Bilaplace equation
with appropriate boundary conditions, known as biharmonic functions.



A?f=0 (2)

Any harmonic function is at the same time biharmonic, so we are picking
a solution from a proper superset of the previous (harmonic) set of functions,
which provides us with the greater flexibility.

A simple way to solve Laplace equation in a given area with Dirichlet bound-
ary conditions is to iterate with the following kernel (divided by 4):
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We need to write only in the selected area, while sampling from outside the
boundary is permitted when part of the kernel covers outside pixels. See [9] for
faster numerical methods.

The Biharmonic equation can be easily solved by similar iterative methods.
For example, the following kernel can be used (divided by 32):
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Just as with the Laplace equation, this kernel follows from a finite difference
representation for the differential operator (in this case - the Bilaplacian). Con-
ceptually, the idea is to let a diffusion type evolution take place until a stationary
state is reached. When doing this we need to take care that the time derivative
term comes with appropriate coefficient so that instabilities are avoided. Again,
we write only in the selected area, while if needed (i.e. if the kernel is placed
close to the boundary) we sample from outside.

Further extensions of this approach to higher order PDEs are possible and we
have experimented with up to A*f = 0. In general, higher order PDEs produce
better reconstruction in terms of blending into the surroundings. Intuitively,
higher order derivatives are matched at the boundary, together with the pixel
value. This can be viewed as almost bringing in of texture from the outside, if
you consider Taylor Series expansion of the function about a boundary point - to
the inside, and assuming we match the outside derivatives up to certain order.

Another point of view on this effect is that higher order 'poliharmonic’ func-
tions are supersets of lower order, so that we have more freedom to choose and
we can achieve better interpolation if we match boundary conditions.

For practical purposes, however, going to very high order PDEs is not reason-
able because the iterative method gets very slow to converge. Even if results get
better, they get much more expensive. That’s why we decided to limit ourselves
to Biharmonic functions for Photoshop.



3 Fibred Space Approach to Image Processing

As mentioned above, biharmonic and other reconstructions of defective areas
in images are too smooth. We need to find appropriate PDEs that have non-
smooth, rugged-looking solutions that resemble the fine scale structure of the
image. To explain the general idea of the approach we have taken to this, we
need to go to fundamentals of human vision.

It is a well known fact that our visual system does change the physical
contents (the pixels) of the perceived image. Some of the effects of adaptation
to color and lightness are well understood in the general framework of Land’s
Retinex theory [10]. The influence of the observer on the image (as perceived)
probably can not be fully captured in one single theory. But it is clear that what
we see in a picture is not simply pixel values. We see those values as transformed
by interpretation. As J. Koenderink says in a recent paper [11], we should do
image processing 'right’ in terms of how images are perceived, taking into ac-
count the invariance of the image we see under a group of transformation of the
physical image.

Image space (grayscale images) is obviously R3, because we are dealing with
pixels (with coordinates x,y) in the image plane, taking values in z. At this
point, most people assume that different pixels can be compared by the value
of z. As a general rule, this is wrong. Pixels with higher z do not always appear
brighter. Brightness, or 'lightness’ [10] depends on the surroundings and other
vision-related factors, including higher level human understanding. Change of
brightness is not simply change in pixel value. Comparison of pixels and the
very concept of derivative needs to be redefined.

The traditional model of image space is Cartesian Product of the image plane
and the positive real line of pixel values. This structure gives us two natural
projections: For any point in image space we can immediately say which pixel
it is, and what the pixel value is — according to the two components of the
Cartesian product.

Above we argued that the second projection does not exist apriori. We do
not compare pixels by pixel values. We need a model of image space in which
changes (derivatives) can be defined independent of pixel values. We propose
doing this by replacing the Cartesian product structure of image space with a
Fibred Space structure (see also [11]).

3.1 Fibred Space

By definition, Fibred Space (E, m, B) consists of two spaces F and B, and
a mapping m, called projection, of the first onto the second (which has lower
dimension) [12]. See Figure 2. For each point p € B there is the so called fibre
F, in E, consisting of points that are sent to p by 7 (definition of fibre F},). We
can not compare two points from different fibres. This is related to the fact that
7 has no inverse. There is no distinguished mapping of B into E.

A section in a Fibred Space is a mapping f that sends points in B to E,
and has the property 7 (f(p)) = p for any p € B. A grayscale image is a section



Fig. 1. Fibred space (E, 7, B).

in a fibred image space (R®, 7, R?). We see that apriori there is no projection
onto z, no comparison between different pixels, no derivative. As a result, change
and derivative at a point in image space is defined not by a vector in the image
plane (z,y), as it is with functions, but by a vector in the total space (z,y, z).
The direction of that vector is considered as direction of no change and called
"horizontal’.

3.2 Connections

In fibred spaces changes in the section are measured by a connection (instead
of derivative). As the name says, connections show how we compare, or transfer
pixel values from one fibre to another, in other words - how fibres are 'connected.’
In Gauge theories [13], the simplest example of such a field is the Electromagnetic
field. Connection V; replaces the gradient 0; according to the simple expression

V=0, — A (3)

Any section g can be considered constant (horizontal) relative to appropri-
ately chosen connection A; such that (9;—A;)g = 0. The solution of this equation
is:

For a simple example of the compensating role of connections, assume the
zero connection on an image, V; = 0;f. If we introduce some shadow, or a
change of lighting g, the image becomes g f. At the same time the visual system
can potentially adapt to the shadow by using compensating field (4), so that
(0i — Ai)gf = goif.

We see that now gradients change in the same way as the image itself under
relighting. As a result, the equations in image processing using derivatives should
be invariant under relighting. This is in line with [11] where a certain group of
changes is proposed.



4 Healing

We refer to Healing as a method of reconstructing damaged areas by seamless
cloning. To define Healing mathematically, let’s first consider the energy expres-
sion for the Laplace equation:

/ (0:F)(0:f)dady (5)

Minimizing this energy in the area of reconstruction with additional Dirichlet
condition for the function at the boundary gives us the Laplace equation (1).
In other words, Laplace equation is the Euler-Lagrange equation of an energy
expression that is gradient squared of the image f. It answers the question:
Which is the surface attached to the boundary, that has minimum sum of the
rate of change squared?

4.1 Deriving the Equation

We know that rate of change in a fibred space needs to be defined in terms of
a connection A;. This suggests a new energy expression that should be used in
the case of fibred spaces:

/ (0 — A)J(0: — Ay)fdedy (6)

The Euler-Lagrange equation for this energy is:

Af=Af+ 0 A f. (7)

Using the expression (horizontality condition) for the connection (4) that
makes given area of the image constant, we get:

Af=flg/yg. (8)

Assuming variations in the images are ’small’ relative to the image itself,
we can approximate f/g by a smooth function, or even a constant. We simply
multiply the right hand side of Poisson equation by a constant which scales
variations appropriately to achieve better fidelity. Also, our theoretical approach
reveals the deeper meaning of the ’guidance’ field in [8], which is related to the
connection.

In this section we have derived the Laplace-Beltrami equation related to a
connection extracted from another area of the image. The idea of using con-
nections (covariant derivatives) with the appropriate energy expression can be
extended to any PDE, second order or higher.



4.2 Healing Brush Algorithm

For the sake of speed and simplicity, we would ignore the details of the rigorous
result, and define an easy Healing algorithm:

(1) Use as input the difference function h;, = f — g.

(2) Reconstruct h;y, (solving PDE) using difference boundary conditions. Re-
sult of reconstruction is hg.

(3) Define healed image h as h = ho + g.

The result h of this algorithm is a solution of Ah = Ag with appropriate
boundary conditions.

This algorithm is simpler and faster by solving Laplace instead of Poisson
equation. Also, it can immediately be converted into similar Biharmonic or
higher order algorithm by using Bilaplace (or other PDE) solver at step (2).
As discussed above, it has better smoothness properties at the boundary.

We have implemented this Biharmonic algorithm for the Healing Brush in
Photoshop.

4.3 Some Implementational Details

Since solving Bilaplace (and higher order) equation is much slower, we use a
Laplace solver to build Harmonic solution as our first approximation. Then we
iterate with our Biharmonic kernel starting from that solution, trying to modify
it into a true Biharmonic function. Those iterations converge fast for pixels close
to the boundary, but are still slow for the inside. The trick is that the inside is
already constructed to our reasonable satisfaction, and we don’t really need to
change it much. The true reason why we had to go Biharmonic was - matching
derivatives at the boundary. We can stop short of achieving true Biharmonic
solution for the inside of big areas, as long as we are smooth at boundary and
at least Harmonic inside.

By direct iterations, as described above, we build a solution of the Bilaplace
equation that is smooth at the boundary. It matches pixel values of the inside
to the outside, and is in a way similar to solving with Dirichlet boundary con-
ditions, only extended to derivatives. This approach has problems when there is
a very different color somewhere at the boundary. This color contaminates the
reconstruction inside, and in most cases it is not the right thing to do.

This problem is solved by effectively dropping the Dirichlet continuity at the
boundary, based on a new boundary condition similar to Neumann boundary
condition. Here is a description in relation to the user interface.

This algorithm is active only when there is a selection in the image. Selection
mask is used in Photoshop to define the area that needs to be modified. By def-
inition all brushes write only inside the selection. With the Healing Brush there
is something more than that. The user applies it close to the selection boundary
and at least partly inside. Pixels inside the selection close to the boundary are
treated differently from pixels deep inside:



There are two masks — the selection mask and the mask of the brush. These
masks partly overlap. The central pixel for the kernel is covered by both masks.
We use the Harmonic and Biharmonic kernel coefficients when reading pixels that
are covered by the selection mask. When that non-central pixel is not covered by
the selection mask, we do not read it. Instead, we use the pixel value of the central
(for the kernel) pixel. The effect is similar to Neumann boundary condition: the
reconstructed surface at the boundary is independent of the outside pixel values,
and approaches a state of zero derivative normal to the boundary. This avoids
contamination.

Masks have values between 0 and 1. Anything that is not 0 is considered
selected by the Healing algorithm. In the end the result is interpolated with the
old pixel value according to the mask. There are more details on how this is
done, but these will be discussed elsewhere.

5 Conclusion and Future Work

The success of our approach in the case of the Healing Brush suggest the following
theoretical idea. In certain cases of image processing, treating the image as a
section in a fibred space is justified. Then we can use expressions for the energy
based on connections (covariant derivatives) in relation to any PDE or other
image processing algorithm, and this defines a wide area of research.
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