
SISL
The SINTEF Spline Library

Reference Manual

(version 4.7)

SINTEF Digital, Mathematics and Cybernetics
Mars 16, 2021

Contents

1 Preface 1
1.1 The structure of this document 1
1.2 The structure of the software package 2
1.3 Licensing information . 2

2 General Introduction 3
2.1 C Syntax Used in Manual . 4
2.2 Dynamic Allocation in SISL . 4
2.3 Creating the library . 6
2.4 An Example Program . 7
2.5 B-spline Curves . 10

2.5.1 B-splines . 11
2.5.2 The Control Polygon . 13
2.5.3 The Knot Vector . 13
2.5.4 NURBS Curves . 14

2.6 B-spline Surfaces . 15
2.6.1 The Basis Functions . 16
2.6.2 NURBS Surfaces . 17

3 Curve Definition 18
3.1 Interpolation . 18

3.1.1 Compute a curve interpolating a straight line between two
points. 18

3.1.2 Compute a curve interpolating a set of points, automatic
parameterization. 20

3.1.3 Compute a curve interpolating a set of points, parameter-
ization as input. 22

3.1.4 Compute a curve by Hermite interpolation, automatic
parameterization. 25

3.1.5 Compute a curve by Hermite interpolation, parameter-
ization as input. 27

3.1.6 Compute a fillet curve based on parameter value. 29
3.1.7 Compute a fillet curve based on points. 31
3.1.8 Compute a fillet curve based on radius. 33
3.1.9 Compute a circular fillet between a 2D curve and a circle. 36
3.1.10 Compute a circular fillet between two 2D curves. 38
3.1.11 Compute a circular fillet between a 2D curve and a 2D line. 40
3.1.12 Compute a blending curve between two curves. 42

i

CONTENTS ii

3.2 Approximation . 44
3.2.1 Approximate a circular arc with a curve. 44
3.2.2 Approximate a conic arc with a curve. 46
3.2.3 Compute a curve using the input points as controlling

vertices, automatic parameterization. 48
3.2.4 Approximate the offset of a curve with a curve. 50
3.2.5 Approximate a curve with a sequence of straight lines. . . 52

3.3 Mirror a Curve . 53
3.4 Conversion . 54

3.4.1 Convert a curve of order up to four, to a sequence of cubic
polynomials. 54

3.4.2 Convert a curve to a sequence of Bezier curves. 55
3.4.3 Pick out the next Bezier curve from a curve. 56
3.4.4 Express a curve using a higher order basis. 58
3.4.5 Express the “i”-th derivative of an open curve as a curve. 59
3.4.6 Express a 2D or 3D ellipse as a curve. 60
3.4.7 Express a conic arc as a curve. 62
3.4.8 Express a truncated helix as a curve. 64

4 Curve Interrogation 66
4.1 Intersections . 66

4.1.1 Intersection between a curve and a point. 66
4.1.2 Intersection between a spline curve and a straight line or

a plane. 68
4.1.3 Convert a curve/line intersection into a two-dimensional

curve/origo intersection 70
4.1.4 Intersection between a spline curve and a 2D circle or a

sphere. 71
4.1.5 Intersection between a curve and a quadric curve. 73
4.1.6 Intersection between two curves. 75

4.2 Compute the Length of a Curve 77
4.3 Check if a Curve is Closed . 78
4.4 Check if a Curve is Degenerated. 79
4.5 Pick the Parameter Range of a Curve 80
4.6 Closest Points . 81

4.6.1 Find the closest point between a curve and a point. . . . 81
4.6.2 Find the closest point between a curve and a point. Simple

version. 83
4.6.3 Local iteration to closest point between point and curve. . 85
4.6.4 Find the closest points between two curves. 87
4.6.5 Find a point on a 2D curve along a given direction. 89

4.7 Find the Absolute Extremals of a Curve. 90
4.8 Area between Curve and Point 92

4.8.1 Calculate the area between a 2D curve and a 2D point. . 92
4.8.2 Calculate the weight point and rotational momentum of

an area between a 2D curve and a 2D point. 93
4.9 Bounding Box . 95

4.9.1 Bounding box object. 95
4.9.2 Create and initialize a curve/surface bounding box instance. 96
4.9.3 Find the bounding box of a curve. 97

CONTENTS iii

4.10 Normal Cone . 98
4.10.1 Normal cone object. 98
4.10.2 Create and initialize a curve/surface direction instance. . 99
4.10.3 Find the direction cone of a curve. 100

5 Curve Analysis 101
5.1 Curvature Evaluation . 101

5.1.1 Evaluate the curvature of a curve at given parameter values.101
5.1.2 Evaluate the torsion of a curve at given parameter values. 103
5.1.3 Evaluate the Variation of Curvature (VoC) of a curve at

given parameter values. 104
5.1.4 Evaluate the Frenet Frame (t,n,b) of a curve at given pa-

rameter values. 105
5.1.5 Evaluate geometric properties at given parameter values. 106

6 Curve Utilities 108
6.1 Curve Object . 108

6.1.1 Create new curve object. 110
6.1.2 Make a copy of a curve. 112
6.1.3 Delete a curve object. 113

6.2 Evaluation . 114
6.2.1 Compute the position and the left-hand derivatives of a

curve at a given parameter value. 114
6.2.2 Compute the position and the right-hand derivatives of a

curve at a given parameter value. 116
6.2.3 Evaluate position, first derivative, curvature and radius of

curvature of a curve at a given parameter value, from the
left hand side. 118

6.2.4 Evaluate position, first derivative, curvature and radius of
curvature of a curve at a given parameter value, from the
right hand side. 120

6.2.5 Evaluate the curve over a grid of m points. Only positions
are evaluated. 122

6.3 Subdivision . 122
6.3.1 Subdivide a curve at a given parameter value. 122
6.3.2 Insert a given knot into the description of a curve. 125
6.3.3 Insert a given set of knots into the description of a curve. 126
6.3.4 Split a curve into two new curves. 127
6.3.5 Pick a part of a curve. 128
6.3.6 Pick a part of a closed curve. 129

6.4 Joining . 130
6.4.1 Join two curves at specified ends. 130
6.4.2 Join two curves at closest ends. 132

6.5 Reverse the Orientation of a Curve. 133
6.6 Extend a B-spline Curve. 134

7 Surface Definition 136
7.1 Interpolation . 136

7.1.1 Compute a surface interpolating a set of points, automatic
parameterization. 136

CONTENTS iv

7.1.2 Compute a surface interpolating a set of points, parame-
terization as input. 139

7.1.3 Compute a surface interpolating a set of points, deriva-
tives as input. 142

7.1.4 Compute a surface interpolating a set of points, deriva-
tives and parameterization as input. 145

7.1.5 Compute a surface by Hermite interpolation, automatic
parameterization. 148

7.1.6 Compute a surface by Hermite interpolation, parameter-
ization as input. 150

7.1.7 Create a lofted surface from a set of B-spline input curves. 152
7.1.8 Create a lofted surface from a set of B-spline input curves

and parametrization. 154
7.1.9 Create a rational lofted surface from a set of rational

input-curves . 156
7.1.10 Compute a rectangular blending surface from a set of

B-spline input curves. 157
7.1.11 Compute a first derivative continuous blending surface

set, over a 3-, 4-, 5- or 6-sided region in space, from a
set of B-spline input curves. 159

7.1.12 Compute a surface, representing a Gordon patch, from a
set of B-spline input curves. 161

7.2 Approximation . 163
7.2.1 Compute a surface using the input points as control ver-

tices, automatic parameterization. 163
7.2.2 Compute a linear swept surface. 165
7.2.3 Compute a rotational swept surface. 166
7.2.4 Compute a surface approximating the offset of a surface. . 168

7.3 Mirror a Surface . 170
7.4 Conversion . 171

7.4.1 Convert a surface of order up to four to a mesh of Coons
patches. 171

7.4.2 Convert a surface to a mesh of Bezier surfaces. 173
7.4.3 Pick the next Bezier surface from a surface. 174
7.4.4 Express a surface using a higher order basis. 176
7.4.5 Express the “i,j”-th derivative of an open surface as a

surface. 177
7.4.6 Express the octants of a sphere as a surface. 178
7.4.7 Express a truncated cylinder as a surface. 180
7.4.8 Express the octants of a torus as a surface. 181
7.4.9 Express a truncated cone as a surface. 183

8 Surface Interrogation 185
8.1 Intersection Curves . 185

8.1.1 Intersection curve object. 185
8.1.2 Create a new intersection curve object. 187
8.1.3 Delete an intersection curve object. 189
8.1.4 Free a list of intersection curves. 190

8.2 Find the Intersections . 191

CONTENTS v

8.2.1 Intersection between a spline curve and a straight line or
a plane. 191

8.2.2 Intersection between a spline curve and a 2D circle or a
sphere. 193

8.2.3 Intersection between a spline curve and a cylinder. 195
8.2.4 Intersection between a spline curve and a cone. 197
8.2.5 Intersection between a spline curve and an elliptic cone. . 199
8.2.6 Intersection between a curve and a torus. 201
8.2.7 Intersection between a surface and a point. 203
8.2.8 Intersection between a spline surface and a straight line. . 205
8.2.9 Newton iteration on the intersection between a 3D NURBS

surface and a line. 207
8.2.10 Convert a surface/line intersection into a two-dimensional

surface/origo intersection 209
8.2.11 Intersection between a spline surface and a circle. 210
8.2.12 Intersection between a surface and a curve. 212

8.3 Find the Topology of the Intersection 214
8.3.1 Find the topology for the intersections between a spline

surface and a plane. 214
8.3.2 Find the topology for the intersection between a spline

surface and a sphere. 216
8.3.3 Find the topology for the intersections between a spline

surface and a cylinder. 218
8.3.4 Find the topology for the intersections between a spline

surface and a cone. 220
8.3.5 Find the topology for the intersections between a spline

surface and an elliptic cone. 222
8.3.6 Find the topology for the intersections between a spline

surface and a torus. 224
8.3.7 Find the topology for the intersection between two spline

surfaces. 226
8.4 Find the Topology of a Silhouette 228

8.4.1 Find the topology of the silhouette curves of a spline sur-
face, using parallel projection. 228

8.4.2 Find the topology of the silhouette curves of a spline sur-
face, using perspective projection. 230

8.4.3 Find the topology of the circular silhouette curves of a
spline surface. 232

8.5 Marching . 234
8.5.1 March an intersection curve between a spline surface and

a plane. 234
8.5.2 March an intersection curve between a spline surface and

a sphere. 236
8.5.3 March an intersection curve between a spline surface and

a cylinder. 238
8.5.4 March an intersection curve between a spline surface and

a cone. 240
8.5.5 March an intersection curve between a surface and an

elliptic cone. 242

CONTENTS vi

8.5.6 March an intersection curve between a spline surface and
a torus. 245

8.5.7 March an intersection curve between two spline surfaces. . 248
8.6 Marching of Silhouettes . 250

8.6.1 March a silhouette curve of a surface, using parallel projection.250
8.6.2 March a silhouette curve of a surface, using perspective

projection. 253
8.6.3 March a circular silhouette curve of a surface. 255

8.7 Check if a Surface is Closed or has Degenerate Edges. 257
8.8 Pick the Parameter Ranges of a Surface 259
8.9 Closest Points . 260

8.9.1 Find the closest point between a surface and a point. . . . 260
8.9.2 Find the closest point between a surface and a point. Sim-

ple version. 262
8.9.3 Local iteration to closest point bewteen point and surface. 264

8.10 Find the Absolute Extremals of a Surface. 266
8.11 Bounding Box . 268

8.11.1 Find the bounding box of a surface. 268
8.12 Normal Cone . 269

8.12.1 Find the direction cone of a surface. 269

9 Surface Analysis 272
9.1 Curvature Evaluation . 272

9.1.1 Gaussian curvature of a spline surface. 272
9.1.2 Mean curvature of a spline surface. 275
9.1.3 Absolute curvature of a spline surface. 277
9.1.4 Total curvature of a spline surface. 279
9.1.5 Second order Mehlum curvature of a spline surface. 281
9.1.6 Third order Mehlum curvature of a spline surface. 283
9.1.7 Gaussian curvature of a B-spline or NURBS surface as a

NURBS surface. 285
9.1.8 Mehlum curvature of a B-spline or NURBS surface as a

NURBS surface. 287
9.1.9 Curvature on a uniform grid of a NURBS surface. 289
9.1.10 Principal curvatures of a spline surface. 291
9.1.11 Normal curvature of a spline surface. 293
9.1.12 Focal values on a uniform grid of a NURBS surface. . . . 295

10 Surface Utilities 297
10.1 Surface Object . 297

10.1.1 Create a new surface object. 299
10.1.2 Make a copy of a surface object. 302
10.1.3 Delete a surface object. 303

10.2 Evaluation . 304
10.2.1 Compute the position, the derivatives and the normal of

a surface at a given parameter value pair. 304
10.2.2 Compute the position and derivatives of a surface at a

given parameter value pair. 306
10.2.3 Compute the position and the left- or right-hand deriva-

tives of a surface at a given parameter value pair. 308

CONTENTS vii

10.2.4 Compute the position and the derivatives of a surface at
a given parameter value pair. 311

10.2.5 Evaluate the surface pointed at by ps1 over an m1 * m2
grid of points (x[i],y[j]). Compute ider derivatives and
normals if suitable. 315

10.3 Subdivision . 317
10.3.1 Subdivide a surface along a given parameter line. 317
10.3.2 Insert a given set of knots, in each parameter direction,

into the description of a surface. 318
10.4 Picking Curves from a Surface . 320

10.4.1 Pick a curve along a constant parameter line in a surface. 320
10.4.2 Pick the curve lying in a surface, described by a curve in

the parameter plane of the surface. 321
10.5 Pick a Part of a Surface. 323
10.6 Turn the Direction of the Surface Normal Vector. 324

11 Data Reduction 325
11.1 Curves . 325

11.1.1 Data reduction: B-spline curve as input. 325
11.1.2 Data reduction: Point data as input. 328
11.1.3 Data reduction: Points and tangents as input. 331
11.1.4 Degree reduction: B-spline curve as input. 333

11.2 Surfaces . 335
11.2.1 Data reduction: B-spline surface as input. 335
11.2.2 Data reduction: Point data as input. 338
11.2.3 Data reduction: Points and tangents as input. 341
11.2.4 Degree reduction: B-spline surface as input. 344

12 Tutorial programs 346
12.1 Compiling the programs . 346
12.2 Description and commentaries on the sample programs 346

12.2.1 example01.C . 347
12.2.2 example02.C . 347
12.2.3 example03.C . 347
12.2.4 example04.C . 348
12.2.5 example05.C . 348
12.2.6 example06.C . 349
12.2.7 example07.C . 349
12.2.8 example08.C . 350
12.2.9 example09.C . 350
12.2.10 example10.C . 351
12.2.11 example11.C . 351
12.2.12 example12.C . 351
12.2.13 example13.C . 352
12.2.14 example14.C . 352
12.2.15 example15.C . 353

CONTENTS viii

13 The object viewer program 355
13.1 General . 355
13.2 Compiling the viewer . 355
13.3 Command line arguments . 356
13.4 User controls . 356

13.4.1 Mouse commands . 356
13.4.2 Keyboard commands . 357

14 Appendix: Error Codes 358

A GNU AFFERO GENERAL PUBLIC LICENSE 363

Chapter 1

Preface

Welcome to the SISL 4.7 user’s manual. SISL stands for Sintef Spline Library,
and has been gradually developed and enhanced for more than three decades
by the geometry group at SINTEF in Oslo. Although it is very comprehen-
sive, its organisation is simple. There are but a few structures, and its nearly
four hundred main functions can usually be employed directly and individually.
This manual organises and explains the main routines. However, much of this
information can also be found directly in the code in the form of commentaries.

The complete software package you have in your hands should contain the
following:

• The SISL 4.7 distribution and reference guide (the document you are read-
ing now)

• Supplementary routines for writing SISL objects to streams (including file
streams) in a simple ASCII format called Go.

• A selection of sample programs, designed to demonstrate functionalities
and use of SISL.

• Source code for a simple viewer that can be used to view geometric objects
stored in the Go-format. This allows visual inspection of SISL-generated
curves and surfaces, as well as points.

1.1 The structure of this document

Chapter 2 is a general introduction to SISL and its programming style. A
simple example program including instructions in how to compile and link the
program and the expected output is provided. Since it is strongly recommended
that the user has some general knowledge of splines, this chapter also contains
a couple of sections introducing the subject of spline curves and surfaces.

Chapter 3 to 11 presents the main SISL routines.

Chapter 12 goes through the provided sample programs and explain what
these do, and what the user can expect to learn from them. There are a total
of 15 sample programs, ranging from very basic to intermediate complexity.

1

CHAPTER 1. PREFACE 2

The goal of Chapter 13 is to explain the use of the viewer program, which
is a small but handy tool for visually inspecting results from SISL routines.

Chapter 14 is an appendix presenting an explanation of the error codes used
in SISL.

Finally there is an annex, citing the text of the General Public License.

1.2 The structure of the software package

There are seven directories:

• include/ - the inlude files related to the 4.7 release of SISL.

• src/ - the source code of the 4.7 release of SISL.

• doc/ - the basis for this document.

• streaming/ - source code for the routines that can read and write SISL
objects to a stream.

• examples/ - sample programs making use of the SISL 4.7 source code.

• viewer/ - source code for a viewer that can be used to view SISL objects
saved in the Go-format.

• app/ - the expected directory for test programs and applications. A couple
of applications are provided including the example program described in
Chapter 2.

Furthermore is the file CMakeLists.txt provided to facilitate building the library.

1.3 Licensing information

SISL is distributed under the GNU Affero General Public License (aGPL).
The license text is given in its entirety as an annex to this document. Com-
mercial licenses are also available from SINTEF. You can contact Tor Dokken
(tor.dokken@sintef.no) for more information.

Chapter 2

General Introduction

SISL is a geometric toolkit to model with curves and surfaces. It is a library
of C functions to perform operations such as the definition, intersection and
evaluation of NURBS (Non-Uniform Rational B-spline) geometries. Since many
applications use implicit geometric representation such as planes, cylinders, tori
etc., SISL can also handle the interaction between such geometries and NURBS.

Throughout this manual, a distinction is made between NURBS (the default)
and B-splines. The term B-splines is used for non-uniform non-rational (or
polynomial) B-splines. B-splines are used only where it does not make sense to
employ NURBS (such as the approximation of a circle by a B-spline) or in cases
where the research community has yet to develop stable technology for treating
NURBS. A NURBS require more memory space than a B-spline, even when the
extra degrees of freedom in a NURBS are not used. Therefore the routines are
specified to give B-spline output whenever the extra degrees of freedom are not
required.

Transferring a B-spline into NURBS format is done by constructing a new
coefficient vector using the original B-spline coefficients and setting all the ratio-
nal weights equal to one (1). This new coefficient vector is then given as input
to the routine for creating a new curve/surface object while specifying that the
object to be created should be of the NURBS (rational B-spline) type.

To approximate a NURBS by a B-spline, use the offset calculation routines
with an offset of zero.

The routines in SISL are designed to function on curves and surfaces which
are at least continuously differentiable. However many routines will also handle
continuous curves and surfaces, including piecewise linear ones.

All arrays in SISL are 1-dimensional. In an array with points or vertices
are the points stored consecutively. In a raster are points or vertices stored
consecutively while points in the first parameter direction have the shortest
stride (stored right after each other). There is a special rule for vertices given
as input to a rational curve or surface, see the Sections 6.1.1 and 10.1.1.

The three important data structures used by SISL are SISLCurve, SISLSurf,
and SISLIntcurve. These are defined in the Curve Utilities, Surface Utilities, and
Surface Interrogation modules respectively. Other structures are SISLBox and
SISLCone, which represents a bounding box and a normal cone, respectively.
It is important to remember to always free these structures and also to free

3

CHAPTER 2. GENERAL INTRODUCTION 4

internally allocated structures and arrays used to pass results to the application,
otherwise strange errors might result.

In the construction of NURBS curves and surfaces is information on the
order of the curve or surface frequently required. The order is equal to the
polynomial degree plus one.

The various functions are equipped with a status variable, typically placed
as the last entity in the parameter list. It returns information about whether
or not the function succeeded in its purpose. A negative value means failure,
the result zero means success while a positive number is a warning. Section 14
provides a list over possible error messages where most occurances are explained.

SISL is divided into seven modules, partly in order to provide a logical
structure, but also to enable users with a specific application to use subsets of
SISL. There are three modules dealing with curves, three with surfaces, and
one module to perform data reduction on curves and surfaces. The modules for
curves and surfaces focus on functions for creation and definition, intersection
and interrogation, and general utilities.

The chapters 3 to 11 in this manual contain information concerning the
top level functions of each module. Lower level functions not usually required
by an application are not included. Each top level function is documented by
describing the purpose, the input and output arguments and an example of use.
Input parameters specified in the examples are suggestions, the actual values
must be set dependent on context. The geometric tolerance tells when two points
are regarded as equal. This implies that a large tolerance leads to higher data
size in approximaation type functionality such as s1360, offset curve. In surface-
surface intersections, on the other hand, will a large tolerance imply that there
is a large area around an intersection curve where the two surfaces are closer
than the tolerance, which may lead to unstability in tangential situations. In the
examples is the suggested tolerance stricter for intersection functionality than
in other cases. However, the intersection tolerance must reflect the accuracy in
which the associated geometry entities are constructed. To get you started, this
chapter contains an Example Program.

2.1 C Syntax Used in Manual

This manual uses the K&R style C syntax for historic reasons, but both the
ISO/ANSI and the K&R C standards are supported by the library and the
include files.

2.2 Dynamic Allocation in SISL

In the description of all the functions in this manual, a convention exists on when
to declare or allocate arrays/objects outside a function and when an array is
allocated internally. NB! When memory for output arrays/objects are allocated
inside a function you must remember to free the allocated memory when it is
not in use any more.

The convention is the following:

• If [] is used in the synopsis and in the example it means that the array
has to be declared or allocated outside the function.

CHAPTER 2. GENERAL INTRODUCTION 5

• If ∗ is used it means that the function requires a pointer and that the
allocation will be done outside the function if necessary.

• When either an array or an array of pointers or an object is to be allocated
in a function, two or three stars are used in the synopsis. To use the
function you declare the parameter with one star less and use & in the
argument list.

• For all output variables except arrays or objects that are declared or allo-
cated outside the function you have to use & in the argument list.

CHAPTER 2. GENERAL INTRODUCTION 6

2.3 Creating the library

In order to access SISL from your program you need one library inclusion,
namely the header file sisl.h. The statement

#include "sisl.h"

must be written at the top of your main program. In this header file all types are
defined. It also contains all the SISL top level function declarations. Memory
management and input/output require two more includes to avoid compiler
warnings, see Section 2.4.

SISL is prepared for makefile generation with CMake and equipped with a
CMakeLists.txt file. For information on using CMake, see www.cmake.org. The
building procedure depends on whether your platform is Linux or Windows.

LINUX
Start by creating a build directory:

$ cd <path_to_source_code>

$ mkdir build

$ cd build

Run the cmake program to setup the build process, selecting Debug or Re-
lease as build type, optionally selecting a local install folder:

$ cmake .. -DCMAKE_BUILD_TYPE=Release (-DCMAKE_INSTALL_PREFIX=$HOME/install)

For a gui-like cmake interface use ccmake (from cmake-ncurses-gui) or cmake-
gui (from cmake.org).

Build the library:

$ make

This will install the library in the build folder. Compilation and build of one
particular example program is done by a specific make statement:

$ make example01

This option requires compilation of examples to be set in the Makefile.
Install the library to a local folder (requires the use of -DCMAKE INSTALL PREFIX

with a local folder in the previous step):

$ make install

If the -DCMAKE INSTALL PREFIX in the cmake step was omitted or was
set to a system folder (like /usr/local) the user needs elevated privileges to
install the library:

$ sudo make install

Windows
Add a new build folder somewhere. Start the CMake executable and fill

in the paths to the source and build folders. When you run CMake, a Visual
Studio project solution file will be generated in the build folder.

CHAPTER 2. GENERAL INTRODUCTION 7

2.4 An Example Program

To clarify the previous section here is an example program designed to test
the SISL algorithm for intersecting a cone with a B-spline curve. The program
calls the SISL routines newCurve() documented in Section 6.1.1, freeCurve()
documented in 6.1.3, s1373() found in Section 8.2.4 and freeIntcrvlist() in 8.1.4.

#include "sisl.h"

#include <stdlib.h>

#include <stdio.h>

int main()

{

SISLCurve *pc=0; /* Pointer to spline curve */

double aepsco,aepsge; /* Tolerances */

double top[3],axispt[3],conept[3]; /* Representating the cone */

double st[100],scoef[100]; /* Knot vector and coefficients of spline curve */

double *spar; /* Parameter values of intersection points */

int kstat; /* Return status from function calls */

int cone_exists=0;

int kk,kn,kdim; /* Order (polynomial degree+1), number of

coefficients and spatial dimension */

int ki; /* Counter */

int kpt,kcrv; /* Number of intersection points and curves */

SISLIntcurve **qrcrv; /* Array of pointer to intersection curves */

char ksvar[100];

kdim=3;

aepsge=0.001; /* Geometric tolerance */

aepsco=0.000001; /* Computational tolerance. This parameter is included from

historical reasons and no longer used */

ksvar[0] = ’0’; /* Arbitrary character */

while (ksvar[0] != ’q’)

{

printf("\n cu - define a new B-spline curve");

printf("\n co - define a new cone");

printf("\n i - intersect the B-spline curve with the cone");

printf("\n q - quit");

printf("\n> ");

scanf("%s",ksvar);

if (ksvar[0] == ’c’ && ksvar[1] == ’u’)

{

/* Define spline curve */

printf("\n Give number of vertices, order of curve: ");

scanf("%d %d", &kn, &kk);

printf("Give knots values in ascending order: \n");

for (ki=0; ki<kn+kk; ki++)

{

scanf("%lf",&st[ki]);

CHAPTER 2. GENERAL INTRODUCTION 8

}

printf("Give vertices \n");

for (ki=0; ki<kn*kdim; ki++)

{

scanf("%lf",&scoef[ki]);

}

if(pc) freeCurve(pc);

/* Create curve */

pc = newCurve(kn,kk,st,scoef,1,kdim,1);

}

else if (ksvar[0] == ’c’ && ksvar[1] == ’o’)

{

printf("\n Give top point: ");

scanf("%lf %lf %lf",&top[0],&top[1],&top[2]);

printf("\n Give a point on the axis: ");

scanf("%lf %lf %lf",&axispt[0],&axispt[1],&axispt[2]);

printf("\n Give a point on the cone surface: ");

scanf("%lf %lf %lf",&conept[0],&conept[1],&conept[2]);

cone_exists=1;

}

else if (ksvar[0] == ’i’ && cone_exists && pc)

{

/* Intersect spline curve with cone */

s1373(pc,top,axispt,conept,kdim,aepsco,aepsge,

&kpt,&spar,&kcrv,&qrcrv,&kstat);

printf("\n kstat %d",kstat);

printf("\n kpt %d",kpt);

printf("\n kcrv %d",kcrv);

for (ki=0;ki<kpt;ki++)

{

printf("\nIntersection point %lf",spar[ki]);

}

if (spar)

{

/* The array containing parameter values of the intersection points between

the curve and the cone is allocated inside s1373 and must be freed */

free (spar);

spar=0;

}

if (qrcrv)

{

/* The array containing pointers to intersection points curves between

the curve and the cone is allocated inside s1373 and must be freed.

This is done in a special function taking care of the intersection

curves themselves */

freeIntcrvlist(qrcrv,kcrv);

qrcrv=0;

}

}

CHAPTER 2. GENERAL INTRODUCTION 9

}

return 0;

}

Note that sisl.h is included. stdlib.h is included to declare free, which releases
memory allocated in the function s1373. stdio.h declares printf and scanf.

The program was compiled and built using the command:

$ make prog1

Note that the program must be placed in the app folder and sisl COMPILE APPS
must be set to true.

A sample run of prog1 went as follows:

$ prog1

cu - define a new B-spline curve

co - define a new cone

i - intersect the B-spline curve with the cone

q - quit

> cu

Give number of vertices, order of curve: 2 2

Give knots values in ascending order:

0 0 1 1

Give vertices

1 0 0.5

-1 0 0.5

cu - define a new B-spline curve

co - define a new cone

i - intersect the B-spline curve with the cone

q - quit

> co

Give top point: 0 0 1

Give a point on the axis: 0 0 0

Give a point on the cone surface: 1 0 0

cu - define a new B-spline curve

co - define a new cone

i - intersect the B-spline curve with the cone

q - quit

> i

kstat 0

kpt 2

CHAPTER 2. GENERAL INTRODUCTION 10

kcrv 0

Intersection point 0.250000

Intersection point 0.750000

cu - define a new B-spline curve

co - define a new cone

i - intersect the B-spline curve with the cone

q - quit

> q

$

SISL found two intersection points given by the parameters 0.25 and 0.75. These
parameters correspond to the 3D points (−0.5, 0, 0.5) and (0.5, 0, 0.5) (which
could be found by calling the evaluation routine s1221()). They lie on both the
B-spline curve and the cone — as expected!

2.5 B-spline Curves

This section is optional reading for those who want to become acquainted with
some of the mathematics of B-splines curves. For a description of the data
structure for B-spline curves in SISL, see section 6.1.

A B-spline curve is defined by the formula

c(t) =

n∑
i=1

piBi,k,t(t).

The dimension of the curve c is equal to that of its control points pi. For
example, if the dimension of the control points is one, the curve is a function,
if the dimension is two, the curve is planar, and if the dimension is three, the
curve is spatial. SISL also allows higher dimensions.

Thus, a B-spline curve is a linear combination of a sequence of B-splines
Bi,k,t (called a B-basis) uniquely determined by a knot vector t and the order
k. Order is equivalent to polynomial degree plus one. For example, if the order
is two, the degree is one and the B-splines and the curve c they generate are
(piecewise) linear. If the order is three, the degree is two and the B-splines and
the curve are quadratic. Cubic B-splines and curves have order 4 and degree 3,
etc.

The parameter range of a B-spline curve c is the interval

[tk, tn+1],

and so mathematically, the curve is a mapping c : [tk, tn+1] → IRd, where d is
the Euclidean space dimension of its control points.

The complete representation of a B-spline curve consists of

dim : The dimension of the underlying Euclidean space, 1, 2, 3,

n : The number of vertices (also the number of B-splines)

k : The order (degree plus one) of the B-splines.

t : The knot vector of the B-splines. t = (t1, t2, . . . , tn+k).

CHAPTER 2. GENERAL INTRODUCTION 11

q q q

6

0.0

1.0

,
,
,
,
,
,
,ZZ

Z
Z
Z
Z
Z
Z

Figure 2.1: A linear B-spline (order 2) defined by three knots.

p : The control points of the B-spline curve. pd,i , d = 1, . . . , dim , i =
1, . . . , n. e.g. when dim = 3, we have p = (x1, y1, z1, x2, y2, z2, . . . , xn, yn, zn).

We note that arrays in c start at index 0 which means, for example, that if
the array t holds the knot vector, then t[0] = t1, . . . , t[n + k − 1] = tn+k and
the parameter interval goes from t[k − 1] to t[n]. Similar considerations apply
to the other arrays.

The data in the representation must satisfy certain conditions:

• The knot vector must be non-decreasing: ti ≤ ti+1. Moreover, two knots
ti and ti+k must be distinct: ti < ti+k.

• The number of vertices should be greater than or equal to the order of the
curve: n ≥ k.

• There should be k equal knots at the beginning and at the end of the knot
vector; that is the knot vector t must satisfy the conditions t1 = t2 =
. . . = tk and tn+1 = tn+2 = . . . = tn+k.

To understand the representation better, we will look at three parts of the
representation: the B-splines (the basis functions), the knot vector and the
control polygon.

2.5.1 B-splines

A set of B-splines is determined by the order k and the knots. For example, to
define a single B-spline of degree one, we need three knots. In figure 2.1 the three
knots are marked as dots. Knots can also be equal as shown in figure 2.2. By
taking a linear combination of the three types of B-splines shown in figures 2.1
and 2.2 we can generate a linear spline function as shown in figure 2.3.

A quadratic B-spline is a linear combination of two linear B-splines. Shown
in figure 2.4 is a quadratic B-spline defined by four knots. A quadratic B-spline
is the sum of two products, the first product between the linear B-spline on the
left and a corresponding line from 0 to 1, the second product between the linear
B-spline on the right and a corresponding line from 1 to 0; see figure 2.4. For
higher degree B-splines there is a similar definition. A B-spline of order k is the
sum of two B-splines of order k − 1, each weighted with weights in the interval
[0,1]. In fact we define B-splines of order 1 explicitly as box functions,

Bi,1(t) =

{
1 if ti ≤ t < ti+1;
0 otherwise,

CHAPTER 2. GENERAL INTRODUCTION 12

q qq qq q

6

0.0

1.0 6

0.0

1.0

Z
Z
Z

Z
Z
Z

Z
Z

�
�
�
�
�
�
�
�

Figure 2.2: Linear B-splines of with multiple knots at one end.

qq q q q q qq,
,
,
,
,

Q
Q

Q
Q

Q

(((
((
l

l
l

l
l

�
�
�
XX

X
�
�
�
�
�
�

XX
XX

XX

�
�
�
�
�

SS

SS

SS

SS

SS

(((
(((Q

Q
Q
Q
Q
Q��

���
�
�
�
�
�
�
�PPPPPP

Figure 2.3: A B-spline curve of dimension 1 as a linear combination of a sequence
of B-splines. Each B-spline (dashed) is scaled by a coefficient.

and then the complete definition of a k-th order B-spline is

Bi,k(t) =
t− ti

ti+k−1 − ti
Bi,k−1(t) +

ti+k − t
ti+k − ti+1

Bi−1,k−1(t).

B-splines satisfy some important properties for curve and surface design.
Each B-spline is non-negative and it can be shown that they sum to one,

n∑
i=1

Bi,k,t(t) = 1.

These properties combined mean that B-spline curves satisfy the convex hull
property: the curve lies in the convex hull of its control points. Furthermore,
the support of the B-spline Bi,k,t is the interval [ti, ti+k] which means that B-
spline curves has local control: moving one control point only alters the curve
locally.

6

0.0

1.0

q q q q�
�
�
�
�
�
�

H
H

H
H

H
H

H

�
�
�
�
�
�

�
�
�
�
�
�

@
@
@

@
@
@

@
@

@
@

@
@

Figure 2.4: A quadratic B-spline, the two linear B-splines and the corresponding
lines (dashed) in the quadratic B-spline definition.

CHAPTER 2. GENERAL INTRODUCTION 13

��
��

�
��

�@
@
@
@
@
@
@
@�
�
�
�
�
�
�
�

Figure 2.5: Linear, quadratic, and cubic B-spline curves sharing the same control
polygon. The control polygon is equal to the linear B-spline curve. The curves
are planar, i.e. the space dimension is two.

��
�
� H

HHH
HH((((

((�
�
�
�

Figure 2.6: The cubic B-spline curve with a redefined knot vector.

Due to the demand of k multiple knots at the ends of the knot vector, B-
spline curves in SISL also have the endpoint property: the start point of the
B-spline curve equals the first control point and the end point equals the last
control point, in other words

c(tk) = p1 and c(tn+1) = pn.

2.5.2 The Control Polygon

The control points pi define the vertices The control polygon of a B-spline curve
is the polygonal arc formed by its control points, p0,p1, . . . ,pn. This means
that the control polygon, regarded as a parametric curve, is itself piecewise
linear B-spline curve (order two). If we increase the order, the distance between
the control polygon and the curve increases (see figure 2.5). A higher order
B-spline curve tends to smooth the control polygon and at the same time mimic
its shape. For example, if the control polygon is convex, so is the B-spline curve.

Another property of the control polygon is that it will get closer to the curve
if it is redefined by inserting knots into the curve and thereby increasing the
number of vertices; see figure 2.6. If the refinement is infinite then the control
polygon converges to the curve.

2.5.3 The Knot Vector

The knots of a B-spline curve describe the following properties of the curve:

• The parameterization of the B-spline curve

CHAPTER 2. GENERAL INTRODUCTION 14

qqq qqqq

qqqq qqq

��
��

�
��

�@
@
@
@
@
@
@
@�

�
�
�
�
�
�
�

��
�
��

�
��@

@
@
@
@
@
@
@�
�
�
�
�
�
�
�

Figure 2.7: Two quadratic B-spline curves with the same control polygon but
different knot vectors. The curves and the control polygons are two-dimensional.

• The continuity at the joins between the adjacent polynomial segments of
the B-spline curve.

In figure 2.7 we have two curves with the same control polygon and order but
with different parameterization.

This example is not meant as an encouragement to use parameterization
for modelling, rather to make users aware of the effect of parameterization.
Something close to curve length parameterization is in most cases preferable.
For interpolation, chord-length parameterization is used in most cases.

The number of equal knots determines the degree of continuity. If k con-
secutive internal knots are equal, the curve is discontinuous. Similarly if k − 1
consecutive internal knots are equal, the curve is continuous but not in general
differentiable. A continuously differentiable curve with a discontinuity in the
second derivative can be modelled using k − 2 equal knots etc. (see figure 2.8).
Normally, B-spline curves in SISL are expected to be continuous. For intersec-
tion algorithms, curves are usually expected to be continuously differentiable
(C1).

2.5.4 NURBS Curves

A NURBS (Non-Uniform Rational B-Spline) curve is a generalization of a B-
spline curve,

c(t) =

∑n
i=1 wipiBi,k,t(t)∑n
i=1 wiBi,k,t(t)

.

CHAPTER 2. GENERAL INTRODUCTION 15

qqq qq qqq
Figure 2.8: A quadratic B-spline curve with two equal internal knots.

In addition to the data of a B-spline curve, the NURBS curve c has a sequence
of weights w1, . . . , wn. One of the advantages of NURBS curves over B-spline
curves is that they can be used to represent conic sections exactly (taking the
order k to be three). A disadvantage is that NURBS curves depend nonlinearly
on their weights, making some calculations, like the evaluation of derivatives,
more complicated and less efficient than with B-spline curves.

The representation of a NURBS curve is the same as for a B-spline except
that it also includes

w : A sequence of weights w = (w1, w2, . . . , wn).

In SISL we make the assumption that

• The weights are (strictly) positive: wi > 0.

Under this condition, a NURBS curve, like its B-spline cousin, enjoys the
convex hull property. Due to k-fold knots at the ends of the knot vector, NURBS
curves in SISL alos have the endpoint

2.6 B-spline Surfaces

This section is optional reading for those who want to become acquainted with
some of the mathematics of tensor-product B-splines surfaces. For a description
of the data structure for B-spline surfaces in SISL, see section 10.1.

A tensor product B-spline surface is defined as

s(u, v) =

n1∑
i=1

n2∑
j=1

pi,jBi,k1,u(u)Bj,k2,v(v)

with control points pi,j and two variables (or parameters) u and v. The for-
mula shows that a basis function of a B-spline surface is a product of two basis
functions of B-spline curves (B-splines). This is why a B-spline surface is called
a tensor-product surface. The following is a list of the components of the rep-
resentation:

dim : The dimension of the underlying Euclidean space.

n1 : The number of vertices with respect to the first parameter.

n1 : The number of vertices with respect to the second parameter.

CHAPTER 2. GENERAL INTRODUCTION 16

Figure 2.9: A B-spline surface and its control net. The surface is drawn using
isocurves. The dimension is 3.

k1 : The order of the B-splines in the first parameter.

k2 : The order of the B-splines in the second parameter.

u : The knot vector of the B-splines with respect to the first parameter, u =
(u1, u2, . . . , un1+k1).

v : The knot vector of the B-splines with respect to the second parameter,
v = (v1, v2, . . . , vn2+k2

).

p : The control points of the B-spline surface, cd,i,j , d = 1, . . . , dim, i =
1, . . . , n1, j = 1, . . . , n2. When dim = 3, we have p = (x1,1, y1,1, z1,1, x2,1, y2,1, z2,1, . . .,
xn1,1, yn1,1, zn1,1, . . ., xn1,n2 , yn1,n2 , zn1,n2).

The data of the B-spline surface must fulfill the following requirements:

• Both knot vectors must be non-decreasing.

• The number of vertices must be greater than or equal to the order with
respect to both parameters: n1 ≥ k1 and n2 ≥ k2.

• There should be k1 equal knots at the beginning and end of knot vector
u and k2 equal knots at the beginning and end of knot vector v.

The properties of the representation of a B-spline surface are similar to the
properties of the representation of a B-spline curve. The control points pi,j form
a control net as shown in figure 2.9. The control net has similar properties to
the control polygon of a B-spline curve, described in section 2.5.2. A B-spline
surface has two knot vectors, one for each parameter. In figure 2.9 we can see
isocurves, surface curves defined by fixing the value of one of the parameters.

2.6.1 The Basis Functions

A basis function of a B-spline surface is the product of two basis functions of
two B-spline curves,

Bi,k1,u(u)Bj,k2,v(v).

CHAPTER 2. GENERAL INTRODUCTION 17

6

0.0

1.0

q q q q
q

q
�
�
�
�
�

�

�

�

�
�
�
�
�
�
�
�
�
�

C
C
C
C
C
C
C
C
C
C

Q
Q

Q
Q

Q
Q
QQ

�

�

�

Figure 2.10: A basis function of degree one in both variables.

Its support is the rectangle [ui, ui+k1
]× [vj , vj+k2

]. If the basis functions in both
directions are of degree one and all knots have multiplicity one, then the surface
basis functions are pyramid-shaped (see figure 2.10). For higher degrees, the
surface basis functions are bell shaped.

2.6.2 NURBS Surfaces

A NURBS (Non-Uniform Rational B-Spline) surface is a generalization of a
B-spline surface,

s(u, v) =

∑n1

i=1

∑n2

j=1 wi,jpi,jBi,k1,u(u)Bj,k2,v(v)∑n1

i=1

∑n2

j=1 wi,jBi,k1,u(u)Bj,k2,v(v)
.

In addition to the data of a B-spline surface, the NURBS surface has a weights
wi,j . NURBS surfaces can be used to exactly represent several common ‘ana-
lytic’ surfaces such as spheres, cylinders, tori, and cones. A disadvantage is that
NURBS surfaces depend nonlinearly on their weights, making some calculations,
like with NURBS curves, less efficient.

The representation of a NURBS surface is the same as for a B-spline except
that it also includes

w : The weights of the NURBS surface, wi,j , i = 1, . . . , n1, j = 1, . . . , n2, so
w = (w1,1, w2,1, . . . , wn1,1, . . ., w1,2, . . . , wn1,n2

).

In SISL we make the assumption that

• The weights are (strictly) positive: wi,j > 0.

Chapter 3

Curve Definition

This chapter describes all functions in the Curve Definition module.

3.1 Interpolation

In this section we treat different kinds of interpolation of points or points and
derivatives (Hermite). In addition to the general functions there are functions
to find fillet curves (a curve between two other curves), and blending curves (a
curve between the end points of two other curves).

3.1.1 Compute a curve interpolating a straight line be-
tween two points.

NAME
s1602 - To make a straight line represented as a B-spline curve between two

points.

SYNOPSIS
void s1602(startpt, endpt, order, dim, startpar, endpar, curve, stat)

double startpt[];
double endpt[];
int order;
int dim;
double startpar;
double *endpar;
SISLCurve **curve;
int *stat;

18

CHAPTER 3. CURVE DEFINITION 19

ARGUMENTS
Input Arguments:

startpt - Start point of the straight line
endpt - End point of the straight line
order - The order of the curve to be made.
dim - The dimension of the geometric space
startpar - Start value of the parameterization of the curve

Output Arguments:
endpar - Parameter value used at the end of the curve
curve - Pointer to the B-spline curve
stat - Status messages

> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

double startpt[2];
double endpt[2];
int order=2; /* If a higher order is requested will a degree

one curve be constructed and degree raising
performed to reach the requested order */

int dim=2; /* Corresponds to the number of parameters
in startpt and endpt */

double startpar=0.0;
double endpar;
SISLCurve *curve=NULL;
int stat=0;
. . .
s1602(startpt, endpt, order, dim, startpar, &endpar, &curve, &stat);
. . .

}

CHAPTER 3. CURVE DEFINITION 20

3.1.2 Compute a curve interpolating a set of points, automatic
parameterization.

NAME
s1356 - Compute a curve interpolating a set of points. The points can be as-

signed a tangent (derivative). The parameterization of the curve will be
generated and the curve can be open, closed non-periodic or periodic. If
end-conditions are conflicting, the condition closed curve rules out other
end conditions. The output will be represented as a B-spline curve.

SYNOPSIS
void s1356(epoint, inbpnt, idim, nptyp, icnsta, icnend, iopen, ik, astpar, cendpar,

rc, gpar, jnbpar, jstat)
double epoint[];
int inbpnt;
int idim;
int nptyp[];
int icnsta;
int icnend;
int iopen;
int ik;
double astpar;
double *cendpar;
SISLCurve **rc;
double **gpar;
int *jnbpar;
int *jstat;

ARGUMENTS
Input Arguments:

epoint - Array (of length idim × inbpnt) containing the points/-
derivatives to be interpolated.

inbpnt - No. of points/derivatives in the epoint array.
idim - The dimension of the space in which the points lie.
nptyp - Array (length inbpnt) containing type indicator for

points/derivatives/second-derivatives:
= 1 : Ordinary point.
= 2 : Knuckle point. (Is treated as an ordinary

point.)
= 3 : Derivative to next point.
= 4 : Derivative to prior point.
(= 5 : Second-derivative to next point.)
(= 6 : Second derivative to prior point.)
= 13 : Point of tangent to next point.
= 14 : Point of tangent to prior point.

CHAPTER 3. CURVE DEFINITION 21

icnsta - Additional condition at the start of the curve:
= 0 : No additional condition.
= 1 : Zero curvature at start.

icnend - Additional condition at the end of the curve:
= 0 : No additional condition.
= 1 : Zero curvature at end.

iopen - Flag telling if the curve should be open or closed:
= 1 : Open curve.
= 0 : Closed, non-periodic curve.
= −1 : Periodic (and closed) curve.

ik - The order of the spline curve to be produced.
astpar - Parameter value to be used at the start of the curve.

Output Arguments:
cendpar - Parameter value used at the end of the curve.
rc - Pointer to output B-spline curve.
gpar - Pointer to the parameter values of the points in the curve.

Represented only once, although derivatives and second-
derivatives will have the same parameter value as the
points.

jnbpar - No. of unique parameter values.
jstat - Status message

< 0 : Error.
= 0 : Ok.
> 0 : Warning.

EXAMPLE OF USE
{

double epoint[30];
int inbpnt = 10;
int idim = 3;
int nptyp[10];
int icnsta = 0;
int icnend = 0;
int iopen = 1;
int ik = 4;
double astpar = 0.0;
double cendpar = 0.0;
SISLCurve *rc = NULL;
double *gpar = NULL;
int jnbpar = 0;
int jstat = 0;
. . .
s1356(epoint, inbpnt, idim, nptyp, icnsta, icnend, iopen, ik, astpar, &cend-

par, &rc, &gpar, &jnbpar, &jstat);
. . .

}

CHAPTER 3. CURVE DEFINITION 22

3.1.3 Compute a curve interpolating a set of points, parameter-
ization as input.

NAME
s1357 - Compute a curve interpolating a set of points. The points can be as-

signed a tangent (derivative). The curve can be open, closed or peri-
odic. If end-conditions are conflicting, the condition closed curve rules
out other end conditions. The parameterization is given by the array
epar. The output will be represented as a B-spline curve.

SYNOPSIS
void s1357(epoint, inbpnt, idim, ntype, epar, icnsta, icnend, iopen, ik, astpar,

cendpar, rc, gpar, jnbpar, jstat)
double epoint[];
int inbpnt;
int idim;
int ntype[];
double epar[];
int icnsta;
int icnend;
int iopen;
int ik;
double astpar;
double *cendpar;
SISLCurve **rc;
double **gpar;
int *jnbpar;
int *jstat;

ARGUMENTS
Input Arguments:

epoint - Array (length idim × inbpnt) containing the points/-
derivatives to be interpolated.

inbpnt - No. of points/derivatives in the epoint array.
idim - The dimension of the space in which the points lie.
ntype - Array (length inbpnt) containing type indicator for

points/derivatives/second-derivatives:
= 1 : Ordinary point.
= 2 : Knuckle point. (Is treated as an ordinary

point.)
= 3 : Derivative to next point.
= 4 : Derivative to prior point.
(= 5 : Second-derivative to next point.)
(= 6 : Second derivative to prior point.)
= 13 : Point of tangent to next point.
= 14 : Point of tangent to prior point.

CHAPTER 3. CURVE DEFINITION 23

epar - Array containing the wanted parameterization. Only pa-
rameter values corresponding to position points are given.
For closed curves, one additional parameter value must
be specified. The last entry contains the parametrization
of the repeated start point. (if the end point is equal to
the start point of the interpolation the length of the array
should be equal to inpt1 also in the closed case).

icnsta - Additional condition at the start of the curve:
= 0 : No additional condition.
= 1 : Zero curvature at start.

icnend - Additional condition at the end of the curve:
= 0 : No additional condition.
= 1 : Zero curvature at end.

iopen - Flag telling if the curve should be open or closed:
= 1 : The curve should be open.
= 0 : The curve should be closed.
= −1 : The curve should be closed and periodic.

ik - The order of the spline curve to be produced.
astpar - Parameter value to be used at the start of the curve.

Output Arguments:
cendpar - Parameter value used at the end of the curve.
rc - Pointer to the output B-spline curve.
gpar - Pointer to the parameter values of the points in the curve.

Represented only once, although derivatives and second-
derivatives will have the same parameter value as the
points.

jnbpar - No, of unique parameter values.
jstat - Status message

< 0 : Error.
= 0 : Ok.
> 0 : Warning.

CHAPTER 3. CURVE DEFINITION 24

EXAMPLE OF USE
{

double epoint[30];
int inbpnt = 10;
int idim = 3;
int ntype[10];
double epar[10];
int icnsta = 0;
int icnend = 0;
int iopen = 0;
int ik = 4;
double astpar = 0.0;
double cendpar;
SISLCurve *rc = NULL;
double *gpar = NULL;
int jnbpar;
int jstat = 0;
. . .
s1357(epoint, inbpnt, idim, ntype, epar, icnsta, icnend, iopen, ik, astpar,

&cendpar, &rc, &gpar, &jnbpar, &jstat);
. . .

}

CHAPTER 3. CURVE DEFINITION 25

3.1.4 Compute a curve by Hermite interpolation, auto-
matic parameterization.

NAME
s1380 - To compute the cubic Hermite interpolant to the data given by the

points point and the derivatives derivate. The output is represented as
a B-spline curve.

SYNOPSIS
void s1380(point, derivate, numpt, dim, typepar, curve, stat)

double point[];
double derivate[];
int numpt;
int dim;
int typepar;
SISLCurve **curve;
int *stat;

ARGUMENTS
Input Arguments:

point - Array (length dim*numpt) containing the points in se-
quence (x0, y0, x1, y1, . . .) to be interpolated.

derivate - Array (length dim*numpt) containing the derivate in se-
quence (dx0

dt ,
dy0

dt ,
dx1

dt ,
dy1

dt , . . .) to be interpolated.

numpt - No. of points/derivatives in the point and derivative ar-
rays.

dim - The dimension of the space in which the points lie.
typepar - Type of parameterization:

= 1 : Parameterization using cord length
between the points.

6= 1 : Uniform parameterization.

Output Arguments:
curve - Pointer to the output B-spline curve
stat - Status messages

> 0 : warning
= 0 : ok
< 0 : error

CHAPTER 3. CURVE DEFINITION 26

EXAMPLE OF USE
{

double point[10];
double derivate[10];
int numpt = 5;
int dim = 2;
int typepar = 1;
SISLCurve *curve = NULL;
int stat = 0;
. . .
s1380(point, derivate, numpt, dim, typepar, &curve, &stat);
. . .

}

CHAPTER 3. CURVE DEFINITION 27

3.1.5 Compute a curve by Hermite interpolation, parameter-
ization as input.

NAME
s1379 - To compute the cubic Hermite interpolant to the data given by the points

point and the derivatives derivate and the parameterization par. The
output is represented as a B-spline curve.

SYNOPSIS
void s1379(point, derivate, par, numpt, dim, curve, stat)

double point[];
double derivate[];
double par[];
int numpt;
int dim;
SISLCurve **curve;
int *stat;

ARGUMENTS
Input Arguments:

point - Array (length dim*numpt) containing the points to be in-
terpolated in the sequence is (x0, y0, x1, y1, . . .) .

derivate - Array (length dim*numpt) containing the derivatives to
be interpolated in the sequence is

(
dx0
dt

,
dy0
dt
,
dx1
dt

,
dy1
dt
, . . .).

par - Parameterization array, (t0, t1, . . .). The array should be
increasing in value.

numpt - No. of points/derivatives in the point and derivative ar-
rays.

dim - The dimension of the space in which the points lie.

Output Arguments:
curve - Pointer to output B-spline curve
stat - Status messages

> 0 : warning
= 0 : ok
< 0 : error

CHAPTER 3. CURVE DEFINITION 28

EXAMPLE OF USE
{

double point[10];
double derivate[10];
double par[5];
int numpt = 5;
int dim = 2;
SISLCurve *curve = NULL;
int stat = 0;
. . .
s1379(point, derivate, par, numpt, dim, &curve, &stat);
. . .

}

CHAPTER 3. CURVE DEFINITION 29

3.1.6 Compute a fillet curve based on parameter value.

NAME
s1607 - To calculate a fillet curve between two curves. The start and end point

for the fillet is given as one parameter value for each of the curves. The
output is represented as a B-spline curve.

SYNOPSIS
void s1607(curve1, curve2, epsge, end1, fillpar1, end2, fillpar2, filltype, dim, or-

der, newcurve, stat)
SISLCurve *curve1;
SISLCurve *curve2;
double epsge;
double end1;
double fillpar1;
double end2;
double fillpar2;
int filltype;
int dim;
int order;
SISLCurve **newcurve;
int *stat;

ARGUMENTS
Input Arguments:

curve1 - The first input curve.
curve2 - The second input curve.
epsge - Geometry resolution.
end1 - Parameter value on the first curve. The parameter fillpar1

divides the first curve in two pieces. End1 is used to select
which of these pieces the fillet should extend.

fillpar1 - Parameter value of the start point of the fillet on the first
curve.

end2 - Parameter value on the second curve indicating that the
part of the curve lying on this side of fillpar2 shall not be
replaced by the fillet.

fillpar2 - Parameter value of the start point of the fillet on the second
curve.

CHAPTER 3. CURVE DEFINITION 30

filltype - Indicator of the type of fillet.
= 1 : Circle approximation, interpolating tangent

on first curve, not on curve 2.
= 2 : Conic approximation if possible,
else : polynomial segment.

dim - Dimension of space.
order - Order of the fillet curve, which is not always used.

Output Arguments:
newcurve - Pointer to the B-spline fillet curve.
stat - Status messages

> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLCurve *curve1; /* Must be defined */
SISLCurve *curve2; /* Must be defined */
double epsge = 0.0001;
double end1; /* Must be defined */
double fillpar1; /* Must be defined */
double end2; /* Must be defined */
double fillpar2; /* Must be defined */
int filltype = 2;
int dim = 3;
int order = 4;
SISLCurve *newcurve = NULL;
int stat = 0;
. . .
s1607(curve1, curve2, epsge, end1, fillpar1, end2, fillpar2, filltype, dim, order,

&newcurve, &stat);
. . .

}

CHAPTER 3. CURVE DEFINITION 31

3.1.7 Compute a fillet curve based on points.

NAME
s1608 - To calculate a fillet curve between two curves. Points indicate between

which points on the input curve the fillet is to be produced. The output
is represented as a B-spline curve.

SYNOPSIS
void s1608(curve1, curve2, epsge, point1, startpt1, point2, endpt2, filltype, dim,

order, newcurve, parpt1, parspt1, parpt2, parept2, stat)
SISLCurve *curve1;
SISLCurve *curve2;
double epsge;
double point1[];
double startpt1[];
double point2[];
double endpt2[];
int filltype;
int dim;
int order;
SISLCurve **newcurve;
double *parpt1;
double *parspt1;
double *parpt2;
double *parept2;
int *stat;

ARGUMENTS
Input Arguments:

curve1 - The first input curve.
curve2 - The second input curve.
epsge - Geometry resolution.
point1 - Point close to curve 1 indicating that the part of the curve

lying on this side of startpt1 is not to be replaced by the
fillet.

startpt1 - Point close to curve 1, indicating where the fillet is to start.
The tangent at the start of the fillet will have the same
orientation as the curve from point1 to startpt1.

point2 - Point close to curve 2 indicating that the part of the curve
lying on this side of endpt2 is not to be replaced by the
fillet.

endpt2 - Point close to curve two, indicating where the fillet is to
end. The tangent at the end of the fillet will have the same
orientation as the curve from endpt2 to point2.

CHAPTER 3. CURVE DEFINITION 32

filltype - Indicator of type of fillet.
= 1 : Circle, interpolating tangent on first curve,

not on curve 2.
= 2 : Conic if possible,
else : polynomial segment.

dim - Dimension of space.
order - Order of fillet curve, which is not always used.

Output Arguments:
newcurve - Pointer to the B-spline fillet curve.
parpt1 - Parameter value of point point1 on curve 1.
parspt1 - Parameter value of point startpt1 on curve 1.
parpt2 - Parameter value of point point2 on curve 2.
parept2 - Parameter value of point endpt2 on curve 2.
stat - Status messages

> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLCurve *curve1; /* Must be defined */
SISLCurve *curve2; /* Must be defined */
double epsge = 0.0001;
double point1[3]; /* Must be defined */
double startpt1[3]; /* Must be defined */
double point2[3]; /* Must be defined */
double endpt2[3]; /* Must be defined */
int filltype = 3;
int dim = 3;
int order = 4;
SISLCurve *newcurve = NULL;
double parpt1;
double parspt1;
double parpt2;
double parept2;
int stat = 0;
. . .
s1608(curve1, curve2, epsge, point1, startpt1, point2, endpt2,

filltype, dim, order, &newcurve, &parpt1, &parspt1,
&parpt2, &parept2, &stat);

. . .
}

CHAPTER 3. CURVE DEFINITION 33

3.1.8 Compute a fillet curve based on radius.

NAME
s1609 - To calculate a constant radius fillet curve between two curves if possible.

The output is represented as a B-spline curve.

SYNOPSIS
void s1609(curve1, curve2, epsge, point1, pointf, point2, radius, normal,

filltype, dim, order, newcurve, parend1, parspt1, parend2,
parept2, stat)

SISLCurve *curve1;
SISLCurve *curve2;
double epsge;
double point1[];
double pointf[];
double point2[];
double radius;
double normal[];
int filltype;
int dim;
int order;
SISLCurve **newcurve;
double *parend1;
double *parspt1;
double *parend2;
double *parept2;
int *stat;

ARGUMENTS
Input Arguments:

curve1 - The first input curve.
curve2 - The second input curve.
epsge - Geometry resolution.
point1 - Point indicating that the fillet should be put on the side

of curve1 where point1 is situated.
pointf - Point indicating where the fillet curve should go. point1

together with pointf indicates the direction of the start
tangent of the curve, while pointf together with point2
indicates the direction of the end tangent of the curve. If
more than one position of the fillet curve is possible, the
closest curve to pointf is chosen.

point2 - Point indicating that the fillet should be put on the side
of curve2 where point2 is situated.

radius - The radius to be used on the fillet if a circular fillet is
possible, otherwise a conic or a quadratic polynomial curve
is used, approximating the circular fillet.

normal - Normal to the plane the fillet curve should lie close to.
This is only used in 3D fillet calculations, and the fillet
centre will be in the direction of the cross product of the
curve tangents and the normal.

CHAPTER 3. CURVE DEFINITION 34

filltype - Indicator of type of fillet.
= 1 : Circle, interpolating tangent on first curve,

not on curve 2.
= 2 : Conic if possible,
else : polynomial segment.

dim - Dimension of space.
order - Order of fillet curve, which is not always used.

Output Arguments:
newcurve - Pointer to the B-spline fillet curve.
parend1 - Parameter value of the end of curve 1 not affected by the

fillet.
parspt1 - Parameter value of the point on curve 1 where the fillet

starts.
parend2 - Parameter value of the end of curve 2 not affected by the

fillet.
parept2 - Parameter value of the point on curve 2 where the fillet

ends.
stat - Status messages

> 0 : warning
= 0 : ok
< 0 : error

CHAPTER 3. CURVE DEFINITION 35

EXAMPLE OF USE
{

SISLCurve *curve1; /* Must be defined */
SISLCurve *curve2; /* Must be defined */
double epsge = 0.00001;
double point1[3]; /* Must be defined */
double pointf[3]; /* Must be defined */
double point2[3]; /* Must be defined */
double radius; /* Must be defined */
double normal[3]; /* Must be defined */
int filltype = 2;
int dim = 3;
int order = 4; /* If not given by filltype */
SISLCurve *newcurve = NULL;
double parend1;
double parspt1;
double parend2;
double parept2;
int stat = 0;
. . .
s1609(curve1, curve2, epsge, point1, pointf, point2, radius,

normal, filltype, dim, order, &newcurve, &parend1, &parspt1,
&parend2, &parept2, &stat);

. . .
}

CHAPTER 3. CURVE DEFINITION 36

3.1.9 Compute a circular fillet between a 2D curve and a
circle.

NAME
s1014 - Compute the fillet by iterating to the start and end points of a fillet

between a 2D curve and a circle. The centre of the circular fillet is also
calculated.

SYNOPSIS
void s1014(pc1, circ cen, circ rad, aepsge, eps1, eps2, aradius, parpt1, parpt2,

centre, jstat)
SISLCurve *pc1;
double circ cen[];
double circ rad;
double aepsge;
double eps1[];
double eps2[];
double aradius;
double *parpt1;
double *parpt2;
double centre[];
int *jstat;

ARGUMENTS
Input Arguments:

pc1 - The first input curve.
circ cen - 2D centre of the circle.
circ rad - Radius of the circle.
aepsge - Geometry resolution.
eps1 - 2D point telling that the fillet should be put on the side of

curve 1 where eps1 is situated.

eps2 - 2D point telling that the fillet should be put on the side of
the input circle where eps2 is situated.

aradius - The radius to be used on the fillet.

Input/Output Arguments:
parpt1 - Parameter value of the point on curve 1 where the fillet

starts. Input is a guess value for the iteration.

parpt2 - Parameter value of the point on the input circle where the
fillet ends. Input is a guess value for the iteration.

Output Arguments:
centre - 2D centre of the circular fillet. Space must be allocated

outside the function.
jstat - Status message

= 1 : Converged,
= 2 : Diverged,
< 0 : Error.

CHAPTER 3. CURVE DEFINITION 37

EXAMPLE OF USE
{

SISLCurve *pc1; /* Must be defined */
double circ cen[2]; /* Must be defined */
double circ rad; /* Must be defined */
double aepsge = 0.00001;
double eps1[2]; /* Must be defined */
double eps2[2]; /* Must be defined */
double aradius; /* Must be defined */
double parpt1;
double parpt2;
double centre[2];
int jstat = 0;
. . .
s1014(pc1, circ cen, circ rad, aepsge, eps1, eps2, aradius, &parpt1, &parpt2,

centre, &jstat);
. . .

}

CHAPTER 3. CURVE DEFINITION 38

3.1.10 Compute a circular fillet between two 2D curves.

NAME
s1015 - Compute the fillet by iterating to the start and end points of a fillet

between two 2D curves. The centre of the circular fillet is also calculated.

SYNOPSIS
void s1015(pc1, pc2, aepsge, eps1, eps2, aradius, parpt1, parpt2, centre, jstat)

SISLCurve *pc1;
SISLCurve *pc2;
double aepsge;
double eps1[];
double eps2[];
double aradius;
double *parpt1;
double *parpt2;
double centre[];
int *jstat;

ARGUMENTS
Input Arguments:

pc1 - The first 2D input curve.
pc2 - The second 2D input curve.
aepsge - Geometry resolution.
eps1 - 2D point telling that the fillet should be put on the side of

curve 1 where eps1 is situated.

eps2 - 2D point telling that the fillet should be put on the side of
curve 2 where eps2 is situated.

aradius - The radius to be used on the fillet.

Input/Output Arguments:
parpt1 - Parameter value of the point on curve 1 where the fillet

starts. Input is a guess value for the iteration.

parpt2 - Parameter value of the point on curve 2 where the fillet
ends. Input is a guess value for the iteration.

Output Arguments:
centre - 2D centre of the circular fillet. Space must be allocated

outside the function.
jstat - Status message

= 1 : Converged,
= 2 : Diverged,
< 0 : Error.

CHAPTER 3. CURVE DEFINITION 39

EXAMPLE OF USE
{

SISLCurve *pc1; /* Must be defined */
SISLCurve *pc2; /* Must be defined */
double aepsge = 0.00001;
double eps1[2]; /* Must be defined */
double eps2[2]; /* Must be defined */
double aradius; /* Must be defined */
double parpt1; /* Must be defined */
double parpt2; /* Must be defined */
double centre[2];
int jstat = 0;
. . .
s1015(pc1, pc2, aepsge, eps1, eps2, aradius, &parpt1, &parpt2, centre, &js-

tat);
. . .

}

CHAPTER 3. CURVE DEFINITION 40

3.1.11 Compute a circular fillet between a 2D curve and
a 2D line.

NAME
s1016 - Compute the fillet by iterating to the start and end points of a fillet

between a 2D curve and a 2D line. The centre of the circular fillet is
also calculated.

SYNOPSIS
void s1016(pc1, point, normal, aepsge, eps1, eps2, aradius, parpt1, parpt2, centre,

jstat)
SISLCurve *pc1;
double point[];
double normal[];
double aepsge;
double eps1[];
double eps2[];
double aradius;
double *parpt1;
double *parpt2;
double centre[];
int *jstat;

ARGUMENTS
Input Arguments:

pc1 - The 2D input curve.
point - 2D point on the line.
normal - 2D normal to the line.
aepsge - Geometry resolution.
eps1 - 2D point telling that the fillet should be put on the side of

curve 1 where eps1 is situated.

eps2 - 2D point telling that the fillet should be put on the side of
curve 2 where eps2 is situated.

aradius - The radius to be used on the fillet.

Input/Output Arguments:
parpt1 - Parameter value of the point on curve 1 where the fillet

starts. Input is a guess value for the iteration.

parpt2 - Parameter value of the point on the line where the fillet
ends. Input is a guess value for the iteration.

Output Arguments:
centre - 2D centre of the (circular) fillet. Space must be allocated

outside the function.

CHAPTER 3. CURVE DEFINITION 41

jstat - Status message
= 1 : Converged,
= 2 : Diverged,
< 0 : Error.

EXAMPLE OF USE
{

SISLCurve *pc1; /* Must be defined */
double point[2]; /* Must be defined */
double normal[2]; /* Must be defined */
double aepsge = 0.00001;
double eps1[2]; /* Must be defined */
double eps2[2]; /* Must be defined */
double aradius; /* Must be defined */
double parpt1;
double parpt2;
double centre[2];
int jstat = 0;
. . .
s1016(pc1, point, normal, aepsge, eps1, eps2, aradius, &parpt1, &parpt2,

centre, &jstat);
. . .

}

CHAPTER 3. CURVE DEFINITION 42

3.1.12 Compute a blending curve between two curves.

NAME
s1606 - To compute a blending curve between two curves. Two points indicate

between which ends the blend is to be produced. The blending curve is
either a circle or an approximated conic section if this is possible, other-
wise it is a quadratic polynomial spline curve. The output is represented
as a B-spline curve.

SYNOPSIS
void s1606(curve1, curve2, epsge, point1, point2, blendtype, dim, order,

newcurve, stat)
SISLCurve *curve1;
SISLCurve *curve2;
double epsge;
double point1[];
double point2[];
int blendtype;
int dim;
int order;
SISLCurve **newcurve;
int *stat;

ARGUMENTS
Input Arguments:

curve1 - The first input curve.
curve2 - The second input curve.
epsge - Geometry resolution.
point1 - Point near the end of curve 1 where the blend starts.
point2 - Point near the end of curve 2 where the blend starts.
blendtype - Indicator of type of blending.

= 1 : Circle, interpolating tangent on first curve,
not on curve 2, if possible.

= 2 : Conic if possible,
else : polynomial segment.

dim - Dimension of the geometry space.
order - Order of the blending curve.

Output Arguments:
newcurve - Pointer to the B-spline blending curve.
stat - Status messages

> 0 : warning
= 0 : ok
< 0 : error

CHAPTER 3. CURVE DEFINITION 43

EXAMPLE OF USE
{

SISLCurve *curve1; /* Must be defined */
SISLCurve *curve2; /* Must be defined */
double epsge = 0.00001;
double point1[3]; /* Must be defined */
double point2[3]; /* Must be defined */
int blendtype = 1;
int dim = 3; /* Must be consistent with curve1 and curve2 /*
int order = 3; /* If not given by blendtype */
SISLCurve *newcurve;
int stat = 0;
. . .
s1606(curve1, curve2, epsge, point1, point2, blendtype, dim, order,

&newcurve, &stat);
. . .

}

CHAPTER 3. CURVE DEFINITION 44

3.2 Approximation

Two kinds of curves are treated in this section. The first is approximations of
special shapes like circles and conic segments. The second is approximation of
a point set, or offsets to curves.

Except for the point set approximation function, all functions require a tol-
erance for the approximation. Note that there is a close relationship between
the size of the tolerance and the amount of data for the curve.

3.2.1 Approximate a circular arc with a curve.

NAME
s1303 - To create a curve approximating a circular arc around the axis defined by

the centre point, an axis vector, a start point and a rotational angle. The
maximal deviation between the true circular arc and the approximation
to the arc is controlled by the geometric tolerance (epsge). The output
will be represented as a B-spline curve.

SYNOPSIS
void s1303(startpt, epsge, angle, centrept, axis, dim, curve, stat)

double startpt[];
double epsge;
double angle;
double centrept[];
double axis[];
int dim;
SISLCurve **curve;
int *stat;

ARGUMENTS
Input Arguments:

startpt - Start point of the circular arc
epsge - Maximal deviation allowed between the true circle and the

circle approximation.
angle - The rotational angle. Counterclockwise around axis. If

the rotational angle is outside < −2π,+2π > then a closed
curve is produced.

centrept - Point on the axis of the circle.
axis - Normal vector to plane in which the circle lies. Used if

dim = 3.
dim - The dimension of the space in which the circular arc lies

(2 or 3).

CHAPTER 3. CURVE DEFINITION 45

Output Arguments:
curve - Pointer to the B-spline curve.
stat - Status messages

> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

double startpt[3]; /* Must be defined */
double epsge = 0.001;
double angle; /* Must be defined */
double centrept[3]; /* Must be defined */
double axis[3]; /* Must be defined */
int dim = 3;
SISLCurve *curve = NULL;
int stat = 0;
. . .
s1303(startpt, epsge, angle, centrept, axis, dim, &curve, &stat);
. . .

}

CHAPTER 3. CURVE DEFINITION 46

3.2.2 Approximate a conic arc with a curve.

NAME
s1611 - To approximate a conic arc with a curve in two or three dimensional

space. If two points are given, a straight line is produced, if three an
approximation of a circular arc, and if four or five a conic arc. The
output will be represented as a B-spline curve.

SYNOPSIS
void s1611(point, numpt, dim, typept, open, order, startpar, epsge, endpar,

curve, stat)
double point[];
int numpt;
int dim;
double typept[];
int open;
int order;
double startpar;
double epsge;
double *endpar;
SISLCurve **curve;
int *stat;

ARGUMENTS
Input Arguments:

point - Array of length dim×numpt containing the points/ deriva-
tives to be interpolated.

numpt - No. of points/derivatives in the point array.
dim - The dimension of the space in which the points lie.
typept - Array (length numpt) containing type indicator for

points/derivatives/ second-derivatives:
1 : Ordinary point.
3 : Derivative to next point.
4 : Derivative to prior point.

open - Open or closed curve:
0 : Closed curve, not implemented.
1 : Open curve.

order - The order of the B-spline curve to be produced.
startpar - Parameter-value to be used at the start of the curve.
epsge - The geometry resolution.

CHAPTER 3. CURVE DEFINITION 47

Output Arguments:
endpar - Parameter-value used at the end of the curve.
curve - Pointer to the output B-spline curve.
stat - Status messages

> 0 : warning
= 0 : ok
< 0 : error

NOTE
When four points/tangents are given as input, the xy term of the implicit equation
is set to zero. Thus the points might end on two branches of a hyperbola and a
straight line is produced. When four or five points/tangents are given only three
of these should actually be points.

EXAMPLE OF USE
{

double point[30]; /* Must be defined */
int numpt = 10;
int dim = 3;
double typept[10]; /* Must be defined */
int open = 1;
int order = 4;
double startpar = 0.0;
double epsge = 0.0001;
double endpar;
SISLCurve *curve = NULL;
int stat = 0;
. . .
s1611(point, numpt, dim, typept, open, order, startpar, epsge,

&endpar, &curve, &stat);
. . .

}

CHAPTER 3. CURVE DEFINITION 48

3.2.3 Compute a curve using the input points as control-
ling vertices, automatic parameterization.

NAME
s1630 - To compute a curve using the input points as controlling vertices. The

distances between the points are used as parametrization. The output
will be represented as a B-spline curve.

SYNOPSIS
void s1630(epoint, inbpnt, astpar, iopen, idim, ik, rc, jstat)

double epoint[];
int inbpnt;
double astpar;
int iopen;
int idim;
int ik;
SISLCurve **rc;
int *jstat;

ARGUMENTS
Input Arguments:

epoint - The array containing the points to be used as controlling
vertices of the B-spline curve.

inbpnt - No. of points in epoint.
astpar - Parameter value to be used at the start of the curve.

iopen - Open/closed/periodic condition.

= −1 : Closed and periodic.
= 0 : Closed.
= 1 : Open.

idim - The dimension of the space.
ik - The order of the spline curve to be produced.

Output Arguments:
rc - Pointer to the B-spline curve.
jstat - Status message

< 0 : Error.
= 0 : Ok.
> 0 : Warning.

CHAPTER 3. CURVE DEFINITION 49

EXAMPLE OF USE
{

double epoint[30]; /* Must be defined */
int inbpnt = 10;
double astpar = 0.0;
int iopen = 1;
int idim = 3;
int ik = 4;
SISLCurve *rc = NULL;
int jstat = 0;
. . .
s1630(epoint, inbpnt, astpar, iopen, idim, ik, &rc, &jstat);
. . .

}

CHAPTER 3. CURVE DEFINITION 50

3.2.4 Approximate the offset of a curve with a curve.

NAME
s1360 - To create a approximation of the offset to a curve within a tolerance.

The output will be represented as a B-spline curve.
With an offset of zero, this routine can be used to approximate any
NURBS curve, within a tolerance, with a (non-rational) B-spline curve.

SYNOPSIS
void s1360(oldcurve, offset, epsge, norm, max, dim, newcurve, stat)

SISLCurve *oldcurve;
double offset;
double epsge;
double norm[];
double max;
int dim;
SISLCurve **newcurve;
int *stat;

ARGUMENTS
Input Arguments:

oldcurve - The input curve.
offset - The offset distance. If dim=2, a positive sign on this value

put the offset on the side of the positive normal vector,
and a negative sign puts the offset on the negative normal
vector. If dim=3, the offset direction is determined by the
cross product of the tangent vector and the normal vector.
The offset distance is multiplied by this cross product.

epsge - Maximal deviation allowed between the true offset curve
and the approximated offset curve.

norm - Vector used in 3D calculations.
max - Maximal step length. It is neglected if max≤epsge. If

max=0.0, then a maximal step equal to the longest box
side of the curve is used.

dim - The dimension of the space must be 2 or 3.

NOTE
If the vector norm and the curve tangent are parallel at some point, then the curve
produced will not be an offset at this point, and it will probably move from one
side of the input curve to the other side.

CHAPTER 3. CURVE DEFINITION 51

Output Arguments:
newcurve - Pointer to the B-spline curve approximating the offset

curve.
stat - Status messages.

> 0 : Warning.
= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLCurve *oldcurve; /* Must be defined */
double offset; /* Must be defined */
double epsge; /* Must be defined */
double norm[3]; /* Must be defined */
double max = 0.0;
int dim = 3;
SISLCurve *newcurve = NULL;
int stat = 0;
. . .
s1360(oldcurve, offset, epsge, norm, max, dim, &newcurve, &stat);
. . .

}

CHAPTER 3. CURVE DEFINITION 52

3.2.5 Approximate a curve with a sequence of straight
lines.

NAME
s1613 - To calculate a set of points on a curve. The straight lines between the

points will not deviate more than epsge from the curve at any point.
The generated points will have the same spatial dimension as the input
curve.

SYNOPSIS
void s1613(curve, epsge, points, numpoints, stat)

SISLCurve *curve;
double epsge;
double **points;
int *numpoints;
int *stat;

ARGUMENTS
Input Arguments:

curve - The input curve.
epsge - Geometry resolution, maximum distance allowed between

the curve and the straight lines that are to be calculated.

Output Arguments:
points - Calculated points,

(a vector of numpoints× curve->idim elements).
numpoints - Number of calculated points.
stat - Status messages

> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLCurve *curve; /* Must be defined */
double epsge; /* Must be defined */
double *points = NULL;
int numpoints = 0;
int stat = 0;
. . .
s1613(curve, epsge, &points, &numpoints, &stat);
. . .

}

CHAPTER 3. CURVE DEFINITION 53

3.3 Mirror a Curve

NAME
s1600 - To mirror a curve around a plane.

SYNOPSIS
void s1600(oldcurve, point, normal, dim, newcurve, stat)

SISLCurve *oldcurve;
double point[];
double normal[];
int dim;
SISLCurve **newcurve;
int *stat;

ARGUMENTS
Input Arguments:

oldcurve - Pointer to original curve.
point - A point in the plane.
normal - Normal vector to the plane.
dim - The dimension of the space.

Output Arguments:
newcurve - Pointer to the mirrored curve.
stat - Status messages

> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLCurve *oldcurve; /* Must be defined */
double point[3]; /* Must be defined */
double normal[3]; /* Must be defined */
int dim = 3;
SISLCurve *newcurve =NULL;
int stat = 0;
. . .
s1600(oldcurve, point, normal, dim, &newcurve, &stat);
. . .

}

CHAPTER 3. CURVE DEFINITION 54

3.4 Conversion

3.4.1 Convert a curve of order up to four, to a sequence
of cubic polynomials.

NAME
s1389 - Convert a curve of order up to 4 to a sequence of non-rational cubic

segments with uniform parameterization.
SYNOPSIS

void s1389(curve, cubic, numcubic, dim, stat)

SISLCurve *curve;
double **cubic;
int *numcubic;
int *dim;
int *stat;

ARGUMENTS
Input Arguments:

curve - Pointer to the curve that is to be converted

Output Arguments:
cubic - Array containing the sequence of cubic segments. Each

segment is represented by the start point, followed by the
start tangent, end point and end tangent. Each segment
needs 4*dim doubles for storage.

numcubic - Number of elements of length (4*dim) in the array cubic

dim - The dimension of the geometric space.
stat - Status messages

> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLCurve *curve; /* Must be defined */
double *cubic = NULL;
int numcubic;
int dim;
int stat = 0;
. . .
s1389(curve, &cubic, &numcubic, &dim, &stat);
. . .

}

CHAPTER 3. CURVE DEFINITION 55

3.4.2 Convert a curve to a sequence of Bezier curves.

NAME
s1730 - To convert a curve to a sequence of Bezier curves. The Bezier curves are

stored as one curve with all knots of multiplicity newcurve->ik (order of
the curve). If the input curve is rational, the generated Bezier curves will
be rational too (i.e. there will be rational weights in the representation
of the Bezier curves).

SYNOPSIS
void s1730(curve, newcurve, stat)

SISLCurve *curve;
SISLCurve **newcurve;
int *stat;

ARGUMENTS
Input Arguments:

curve - The curve to convert.

Output Arguments:
newcurve - The new curve containing all the Bezier curves.

stat - Status messages
> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLCurve *curve; /* Must be defined */
SISLCurve *newcurve = NULL;
int stat = 0;
. . .
s1730(curve, &newcurve, &stat);
. . .

}

CHAPTER 3. CURVE DEFINITION 56

3.4.3 Pick out the next Bezier curve from a curve.

NAME
s1732 - To pick out the next Bezier curve from a curve. This function requires

a curve represented as the curve that is output from s1730(). If the
input curve is rational, the generated Bezier curves will be rational too
(i.e. there will be rational weights in the representation of the Bezier
curves, note the convention for coefficients in the rational case, see Chap-
ter 6.1.1).

SYNOPSIS
void s1732(curve, number, startpar, endpar, coef, stat)

SISLCurve *curve;
int number;
double *startpar;
double *endpar;
double coef[];
int *stat;

ARGUMENTS
Input Arguments:

curve - curve to pick from.
number - The number of the Bezier curve that is to be picked, where

0 ≤ number < in/ik (i.e. the number of vertices in the
curve divided by the order of the curve).

Output Arguments:
startpar - The start parameter value of the Bezier curve.
endpar - The end parameter value of the Bezier curve.
coef - The vertices of the Bezier curve. Space of size (idim +

1)× ik (i.e. spatial dimension of curve +1 times the order
of the curve) must be allocated outside the function.

stat - Status messages
> 0 : warning
= 0 : ok
< 0 : error

CHAPTER 3. CURVE DEFINITION 57

EXAMPLE OF USE
{

SISLCurve *curve; /* Must be defined */
int number; /* Must be defined */
double startpar;
double endpar;
double coef[12]; /* Assumes dimension=3, order=4, non-rational */
int stat = 0;
. . .
s1732(curve, number, &startpar, &endpar, coef, &stat);
. . .

}

CHAPTER 3. CURVE DEFINITION 58

3.4.4 Express a curve using a higher order basis.

NAME
s1750 - To describe a curve using a higher order basis.

SYNOPSIS
void s1750(curve, order, newcurve, stat)

SISLCurve *curve;
int order;
SISLCurve **newcurve;
int *stat;

ARGUMENTS
Input Arguments:

curve - The input curve.
order - Order of the new curve.

Output Arguments:
newcurve - The new curve of higher order.
stat - Status messages

> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLCurve *curve; /* Must be defined */
double order; /* Must be defined */
SISLCurve *newcurve = NULL;
int stat = 0;
. . .
s1750(curve, order, &newcurve, &stat);
. . .

}

CHAPTER 3. CURVE DEFINITION 59

3.4.5 Express the “i”-th derivative of an open curve as a
curve.

NAME
s1720 - To express the “i”-th derivative of an open curve as a curve.

SYNOPSIS
void s1720(curve, derive, newcurve, stat)

SISLCurve *curve;
int derive;
SISLCurve **newcurve;
int *stat;

ARGUMENTS
Input Arguments:

curve - Curve to be differentiated.
derive - The order ”i” of the derivative, where 0 ≤ derive.

Output Arguments:
newcurve - The ”i”-th derivative of a curve represented as a curve.

stat - Status messages
> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLCurve *curve; /* Must be defined */
int derive = 1;
SISLCurve *newcurve = NULL;
int stat = 0;
. . .
s1720(curve, derive, &newcurve, &stat);
. . .

}

CHAPTER 3. CURVE DEFINITION 60

3.4.6 Express a 2D or 3D ellipse as a curve.

NAME
s1522 - Convert a 2D or 3D analytical ellipse to a curve. The curve will be

geometrically exact.

SYNOPSIS
void s1522(normal, centre, ellipaxis, ratio, dim, ellipse, jstat)

double normal[];
double centre[];
double ellipaxis[];
double ratio;
int dim;
SISLCurve **ellipse;
int *jstat;

ARGUMENTS
Input Arguments:

normal - 3D normal to ellipse plane (not necessarily normalized).
Used if dim = 3.

centre - Centre of ellipse (2D if dim = 2 and 3D if dim = 3).

ellipaxis - This will be used as starting point for the ellipse curve (2D
if dim = 2 and 3D if dim = 3).

ratio - The ratio between the length of the given ellipaxis and
the length of the other axis, i.e. |ellipaxis|/|otheraxis| (a
compact representation format).

dim - Dimension of the space in which the elliptic nurbs curve
lies (2 or 3).

Output Arguments:
ellipse - Ellipse curve (2D if dim = 2 and 3D if dim = 3).

stat - Status messages
> 0 : warning
= 0 : ok
< 0 : error

CHAPTER 3. CURVE DEFINITION 61

EXAMPLE OF USE
{

double normal[3]; /* Must be defined */
double centre[3]; /* Must be defined */
double ellipaxis[3]; /* Must be defined */
double ratio; /* Must be defined */
int dim = 3;
SISLCurve *ellipse = NULL;
int jstat = 0;
. . .
s1522(normal, centre, ellipaxis, ratio, dim, &ellipse, &jstat);
. . .

}

CHAPTER 3. CURVE DEFINITION 62

3.4.7 Express a conic arc as a curve.

NAME
s1011 - Convert an analytic conic arc to a curve. The curve will be geometrically

exact. The arc is given by position at start, shoulder point and end, and
a shape factor.

SYNOPSIS
void s1011(start pos, top pos, end pos, shape, dim, arc seg, stat)

double start pos[];
double top pos[];
double end pos[];
double shape;
int dim;
SISLCurve **arc seg;
int *stat;

ARGUMENTS
Input Arguments:

start pos - Start point of segment.
top pos - Shoulder point of segment. This is the intersection point

of the tangents in start pos and end pos.

end pos - End point of segment.
shape - Shape factor, must be ≥ 0.

< 0.5, an ellipse,
= 0.5, a parabola,
> 0.5, a hyperbola,
≥ 1, the start and end points lies on different

branches of the hyperbola. We want a sin-
gle arc segment, therefore if shape ≥ 1, shape
is set to 0.999999.

dim - The spatial dimension of the curve to be produced.

Output Arguments:
jstat - Status message

< 0 : Error.
= 0 : Ok.
> 0 : Warning.

arc seg - Pointer to the curve produced.

CHAPTER 3. CURVE DEFINITION 63

EXAMPLE OF USE
{

double start pos[3]; /* Must be defined */
double top pos[3]; /* Must be defined */
double end pos[3]; /* Must be defined */
double shape = 0.3;
int dim = 3;
SISLCurve *arc seg = NULL;
int stat = 0;
. . .
s1011(start pos, top pos, end pos, shape, dim, &arc seg, &stat);
. . .

}

CHAPTER 3. CURVE DEFINITION 64

3.4.8 Express a truncated helix as a curve.

NAME
s1012 - Convert an analytical truncated helix to a curve. The curve will be

geometrically exact.

SYNOPSIS
void s1012(start pos, axis pos, axis dir, frequency, numb quad, counter clock, he-

lix, stat)
double start pos[];
double axis pos[];
double axis dir[];
double frequency;
int numb quad;
int counter clock;
SISLCurve **helix;
int *stat;

ARGUMENTS
Input Arguments:

start pos - Start position on the helix.
axis pos - Point on the helix axis.
axis dir - Direction of the helix axis.
frequency - The length along the helix axis for one period of revolution.

numb quad - Number of quadrants in the helix.
counter clock - Flag for direction of revolution:

= 0 : clockwise,
= 1 : counter clockwise.

Output Arguments:
jstat - Status message

< 0 : Error.
= 0 : Ok.
> 0 : Warning.

helix - Pointer to the helix curve produced.

CHAPTER 3. CURVE DEFINITION 65

EXAMPLE OF USE
{

double start pos[3]; /* Must be defined */
double axis pos[3]; /* Must be defined */
double axis dir[3]; /* Must be defined */
double frequency; /* Must be defined */
int numb quad = 5;
int counter clock = 1;
SISLCurve *helix = NULL;
int stat = 0;
. . .
s1012(start pos, axis pos, axis dir, frequency, numb quad, counter clock,

&helix, &stat)
. . .

}

Chapter 4

Curve Interrogation

This chapter describes the functions in the Curve Interrogation module.

4.1 Intersections

4.1.1 Intersection between a curve and a point.

NAME
s1871 - Find all the intersections between a curve and a point.

SYNOPSIS
void s1871(pc1, pt1, idim, aepsge, jpt, gpar1, jcrv, wcurve, jstat)

SISLCurve *pc1;
double *pt1;
int idim;
double aepsge;
int *jpt;
double **gpar1;
int *jcrv;
SISLIntcurve ***wcurve;
int *jstat;

ARGUMENTS
Input Arguments:

pc1 - Pointer to the curve.
pt1 - coordinates of the point.
idim - number of coordinates in pt1.
aepsge - Geometry resolution.

Output Arguments:
jpt - Number of single intersection points.
gpar1 - Array containing the parameter values of the single in-

tersection points in the parameter interval of the curve.
The points lie continuous. Intersection curves are stored
in wcurve.

66

CHAPTER 4. CURVE INTERROGATION 67

jcrv - Number of intersection curves.
wcurve - Array containing descriptions of the intersection curves.

The curves are only described by points in the parameter
plane. The curve-pointers points to nothing.
If the curves given as input are degenerate, an intersection
point can be returned as an intersection curve. Use s1327()
to decide if an intersection curve is a point on one of the
curves.

jstat - Status messages
> 0 : Warning.
= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLCurve *pc1; /* Must be defined */
double *pt1; /* Must be defined */
int idim; /* Equal to the curve dimension */
double aepsge = 0.000001 ;
int jpt = 0;
double *gpar1 = NULL;
int jcrv = 0;
SISLIntcurve **wcurve = NULL;
int jstat = 0;
. . .
s1871(pc1, pt1, idim, aepsge, &jpt, &gpar1, &jcrv, &wcurve, &jstat);
. . .

}

CHAPTER 4. CURVE INTERROGATION 68

4.1.2 Intersection between a spline curve and a straight
line or a plane.

NAME
s1850 - Find all the intersections between a spline curve and a plane (if curve

dimension and dim = 3) or a curve and a line (if curve dimension and
dim = 2).

SYNOPSIS
void s1850(curve, point, normal, dim, epsco, epsge, numintpt, intpar,

numintcu, intcurve, stat)
SISLCurve *curve;
double point[];
double normal[];
int dim;
double epsco;
double epsge;
int *numintpt;
double **intpar;
int *numintcu;
SISLIntcurve ***intcurve;
int *stat;

ARGUMENTS

Input Arguments:
curve - Pointer to the curve.
point - Point in the plane/line.
normal - Normal to the plane or any normal to the direction of the

line.
dim - Dimension of the space in which the curve and the

plane/line lies, dim must be equal to two or three.

epsco - Computational resolution (not used).
epsge - Geometry resolution.

Output Arguments:
numintpt - Number of single intersection points.
intpar - Array containing the parameter values of the single inter-

section points in the parameter interval of the curve. The
points lie in sequence. Intersection curves are stored in
intcurve.

numintcu - Number of intersection curves.

CHAPTER 4. CURVE INTERROGATION 69

intcurve - Array of pointers to SISLIntcurve objects containing de-
scription of the intersection curves. The curves are only
described by start points and end points in the parameter
interval of the curve. The curve pointers point to nothing.

stat - Status messages
> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLCurve *curve; /* Must be defined */
double point[3]; /* Must be defined */
double normal[3]; /* Must be defined */
int dim = 3;
double epsco = 1.0e-9; /* Not used */
double epsge = 1.0e-6;
int numintpt = 0;
double *intpar = NULL;
int numintcu = 0;
SISLIntcurve **intcurve = NULL;
int stat = 0;
. . .
s1850(curve, point, normal, dim, epsco, epsge, &numintpt, &intpar, &nu-

mintcu, &intcurve, &stat);
. . .

}

CHAPTER 4. CURVE INTERROGATION 70

4.1.3 Convert a curve/line intersection into a two-dimensional
curve/origo intersection

NAME
s1327 - Put the equation of the curve pointed at by pcold into two planes given

by the point epoint and the normals enorm1 and enorm2. The result is
an equation where the new two-dimensional curve rcnew is to be equal
to origo.

SYNOPSIS
void s1327(pcold, epoint, enorm1, enorm2, idim, rcnew, jstat)

SISLCurve *pcold;
double epoint[];
double enorm1[];
double enorm2[];
int idim;
SISLCurve **rcnew;
int *jstat;

ARGUMENTS
Input Arguments:

pcold - Pointer to input curve.
epoint - SISLPoint in the planes.
enorm1 - Normal to the first plane.
enorm2 - Normal to the second plane.
idim - Dimension of the space in which the planes lie.

Output Arguments:
rcnew - 2-dimensional curve.
jstat - status messages

> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLCurve *pcold; /* Must be defined */
double epoint[3]; /* Must be defined */
double enorm1[3]; /* Must be defined */
double enorm2[3]; /* Must be defined */
int idim = 3; /* Equal to curve dimension */
SISLCurve **rcnew = NULL;
int *jstat = 0;
. . .
s1327(pcold, epoint, enorm1, enorm2, idim, rcnew, jstat);
. . .

}

CHAPTER 4. CURVE INTERROGATION 71

4.1.4 Intersection between a spline curve and a 2D circle
or a sphere.

NAME
s1371 - Find all the intersections between a curve and a sphere (if curve di-

mension and dim = 3), or a curve and a circle (if curve dimension and
dim = 2).

SYNOPSIS
void s1371(curve, centre, radius, dim, epsco, epsge, numintpt, intpar,

numintcu, intcurve, stat)
SISLCurve *curve;
double centre[];
double radius;
int dim;
double epsco;
double epsge;
int *numintpt;
double **intpar;
int *numintcu;
SISLIntcurve ***intcurve;
int *stat;

ARGUMENTS
Input Arguments:

curve - Pointer to the curve.
centre - Centre of the circle/sphere.
radius - Radius of circle or sphere.
dim - Dimension of the space in which the curve and the cir-

cle/sphere lies, dim should be equal to two or three.
epsco - Computational resolution (not used).
epsge - Geometry resolution.

Output Arguments:
numintpt - Number of single intersection points.
intpar - Array containing the parameter values of the single inter-

section points in the parameter interval of the curve. The
points lie in sequence. Intersection curves are stored in
intcurve.

numintcu - Number of intersection curves.
intcurve - Array of pointers to SISLIntcurve objects containing de-

scriptions of the intersection curves. The curves are only
described by start points and end points in the parameter
interval of the curve. The curve pointers point to nothing.

CHAPTER 4. CURVE INTERROGATION 72

stat - Status messages
> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLCurve *curve; /* Must be defined */
double centre[3]; /* Must be defined */
double radius; /* Must be defined */
int dim = 3;
double epsco = 1.0e-9; /* Not used */
double epsge = 1.0e-6;
int numintpt = 0;
double *intpar = NULL;
int numintcu = 0;
SISLIntcurve **intcurve = NULL;
int stat = 0;
. . .
s1371(curve, centre, radius, dim, epsco, epsge, &numintpt, &intpar, &nu-

mintcu, &intcurve, &stat);
. . .

}

CHAPTER 4. CURVE INTERROGATION 73

4.1.5 Intersection between a curve and a quadric curve.

NAME
s1374 - Find all the intersections between a curve and a quadric curve, (if curve

dimension and dim = 2), or a curve and a quadric surface, (if curve
dimension and dim = 3).

SYNOPSIS
void s1374(curve, conarray, dim, epsco, epsge, numintpt, intpar, numintcu,

intcurve, stat)
SISLCurve *curve;
double conarray[];
int dim;
double epsco;
double epsge;
int *numintpt;
double **intpar;
int *numintcu;
SISLIntcurve ***intcurve;
int *stat;

ARGUMENTS
Input Arguments:

curve - Pointer to the curve.
conarray - Matrix of dimension (dim+ 1)× (dim+ 1) describing the

conic curve or surface with homogeneous coordinates. For
dim=2 the implicit equation of the curve is that the fol-
lowing is equal to zero:

(
x y 1

) c0 c1 c2
c3 c4 c5
c6 c7 c8

 x
y
1


dim - Dimension of the space in which the cone and the curve

lie, dim should be equal to two or three.
epsco - Computational resolution (not used).
epsge - Geometry resolution.

CHAPTER 4. CURVE INTERROGATION 74

Output Arguments:
numintpt - Number of single intersection points.
intpar - Array containing the parameter values of the single inter-

section points in the parameter interval of the curve. The
points lie in sequence. Intersection curves are stored in
intcurve.

numintcu - Number of intersection curves.
intcurve - Array of pointers to SISLIntcurve objects containing de-

scriptions of the intersection curves. The curves are only
described by start points and end points in the parameter
interval of the curve. The curve pointers point to nothing.

stat - Status messages
> 0 : Warning.
= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLCurve *curve; /* Must be defined */
double conarray[16]; /* Must be defined */
int dim = 3;
double epsco = 1.0e-9; /* Not used */
double epsge = 1.0e-6;
int numintpt = 0;
double *intpar = NULL;
int numintcu = 0;
SISLIntcurve **intcurve = NULL;
int stat = 0;
. . .
s1374(curve, conarray, dim, epsco, epsge, &numintpt, &intpar,

&numintcu, &intcurve, &stat);
. . .

}

CHAPTER 4. CURVE INTERROGATION 75

4.1.6 Intersection between two curves.

NAME
s1857 - Find all the intersections between two curves.

SYNOPSIS
void s1857(curve1, curve2, epsco, epsge, numintpt, intpar1, intpar2,

numintcu, intcurve, stat)
SISLCurve *curve1;
SISLCurve *curve2;
double epsco;
double epsge;
int *numintpt;
double **intpar1;
double **intpar2;
int *numintcu;
SISLIntcurve ***intcurve;
int *stat;

ARGUMENTS
Input Arguments:

curve1 - Pointer to the first curve.
curve2 - Pointer to the second curve.
epsco - Computational resolution (not used).
epsge - Geometry resolution.

Output Arguments:
numintpt - Number of single intersection points.
intpar1 - Array containing the parameter values of the single inter-

section points in the parameter interval of the first curve.
Intersection curves are stored in intcurve.

intpar2 - Array containing the parameter values of the single in-
tersection points in the parameter interval of the second
curve. Intersection curves are stored in intcurve.

numintcu - Number of intersection curves.
intcurve - Array of pointers to the SISLIntcurve objects containing

descriptions of the intersection curves. The curves are only
described by start points and end points in the parameter
interval of the curve. The curve pointers point to nothing.
If the curves given as input are degenerate, an intersection
point can be returned as an intersection curve.

stat - Status messages
> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLCurve *curve1; /* Must be defined */
SISLCurve *curve2; /* Must be defined */

CHAPTER 4. CURVE INTERROGATION 76

double epsco = 1.0e-9; /* Not used */
double epsge = 1.0e-6;
int numintpt = 0;
double *intpar1 = NULL;
double *intpar2 = NULL;
int numintcu = 0;
SISLIntcurve **intcurve = NULL;
int stat = 0;
. . .
s1857(curve1, curve2, epsco, epsge, &numintpt, &intpar1, &intpar2, &nu-

mintcu, &intcurve, &stat);
. . .

}

CHAPTER 4. CURVE INTERROGATION 77

4.2 Compute the Length of a Curve

NAME
s1240 - Compute the length of a curve. The length calculated will not deviate

more than epsge divided by the calculated length, from the real length
of the curve.

SYNOPSIS
void s1240(curve, epsge, length, stat)

SISLCurve *curve;
double epsge;
double *length;
int *stat;

ARGUMENTS
Input Arguments:

curve - The curve.
epsge - Geometry resolution.

Output Arguments:
length - The length of the curve.
stat - Status messages

> 0 : Warning.
= 0 : Ok.
< 0 : Error.

NOTE
The algorithm is based on recursive subdivision and will thus for small values of
epsge require long computation time.

EXAMPLE OF USE
{

SISLCurve *curve; /* Must be defined */
double epsge = 0.001;
double length;
int stat = 0;
. . .
s1240(curve, epsge, &length, &stat);
. . .

}

CHAPTER 4. CURVE INTERROGATION 78

4.3 Check if a Curve is Closed

NAME
s1364 - To check if a curve is closed, i.e. test if the distance between the end

points of the curve is less than a given tolerance.

SYNOPSIS
void s1364(curve, epsge, stat)

SISLCurve *curve;
double epsge;
int *stat;

ARGUMENTS
Input Arguments:

curve - The curve.
epsge - Geometric tolerance.

Output Arguments:
stat - Status messages

= 2 : Curve is closed and periodic.
= 1 : Curve is closed.
= 0 : Curve is open.
< 0 : Error.

EXAMPLE OF USE
{

SISLCurve *curve; /* Must be defined */
double epsge = 1.0e-6;
int stat = 0;
. . .
s1364(curve, epsge, &stat);
. . .

}

CHAPTER 4. CURVE INTERROGATION 79

4.4 Check if a Curve is Degenerated.

NAME
s1451 - To check if a curve is degenerated.

SYNOPSIS
void s1451(pc1, aepsge, jdgen, jstat)

SISLCurve *pc1;
double aepsge;
int *jdgen;
int *jstat;

ARGUMENTS
Input Arguments:

pc1 - Pointer to the curve to be tested.
aepsge - The curve is degenerate if all vertices lie within the dis-

tance aepsge from each other

Output Arguments:
jdgen - Degenerate indicator

= 0 : The curve is not degenerate.
= 1 : The curve is degenerate.

jstat - Status message
< 0 : Error.
= 0 : Ok.
> 0 : Warning.

EXAMPLE OF USE
{

SISLCurve *pc1; /* Must be defined */
double aepsge = 1.0e-5;
int *jdgen = 0;
int *jstat = 0;
. . .
s1451(pc1, aepsge, jdgen, jstat);
. . .

}

CHAPTER 4. CURVE INTERROGATION 80

4.5 Pick the Parameter Range of a Curve

NAME
s1363 - To pick the parameter range of a curve.

SYNOPSIS
void s1363(curve, startpar, endpar, stat)

SISLCurve *curve;
double *startpar;
double *endpar;
int *stat;

ARGUMENTS
Input Arguments:

curve - The curve.

Output Arguments:
startpar - Start of the parameter interval of the curve.
endpar - End of the parameter interval of the curve.
stat - Status messages

= 1 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLCurve *curve; /* Must be defined */
double startpar;
double endpar;
int stat = 0;
. . .
s1363(curve, &startpar, &endpar, &stat);
. . .

}

CHAPTER 4. CURVE INTERROGATION 81

4.6 Closest Points

4.6.1 Find the closest point between a curve and a point.

NAME
s1953 - Find the closest points between a curve and a point.

SYNOPSIS
void s1953(curve, point, dim, epsco, epsge, numintpt, intpar,

numintcu, intcurve, jstat)
SISLCurve *curve;
double point[];
int dim;
double epsco;
double epsge;
int *numintpt;
double **intpar;
int *numintcu;
SISLIntcurve ***intcurve;
int *jstat;

ARGUMENTS
Input Arguments:

curve - Pointer to the curve in the closest point problem.
point - The point in the closest point problem.
dim - Dimension of the space in which the curve and point lie.

epsco - Computational resolution (not used).
epsge - Geometry resolution.

Output Arguments:
numintpt - Number of single closest points.
intpar - Array containing the parameter values of the single closest

points in the parameter interval of the curve. The points
lie in sequence. Closest curves are stored in intcurve.

numintcu - Number of closest curves.
intcurve - Array of pointers to the SISLIntcurve objects containing

descriptions of the closest curves. The curves are only
described by start points and end points in the parameter
interval of the curve. The curve pointers point to nothing.

jstat - Status messages
> 0 : warning
= 0 : ok
< 0 : error

CHAPTER 4. CURVE INTERROGATION 82

EXAMPLE OF USE
{

SISLCurve *curve; /* Must be defined */
double point[3]; /* Must be defined */
int dim = 3;
double epsco = 1.9e-9; /* Not used */
double epsge = 1.0e-6;
int numintpt = 0;
double *intpar = NULLL;
int numintcu = 0;
SISLIntcurve **intcurve = NULL;
int jstat = 0;
. . .
s1953(curve, point, dim, epsco, epsge, &numintpt, &intpar,

&numintcu, &intcurve, &jstat);
. . .

}

CHAPTER 4. CURVE INTERROGATION 83

4.6.2 Find the closest point between a curve and a point.
Simple version.

NAME
s1957 - Find the closest point between a curve and a point. The method is fast

and should work well in clear cut cases but does not guarantee finding
the right solution. As long as it doesn’t fail, it will find exactly one
point. In other cases, use s1953().

SYNOPSIS
void s1957(pcurve, epoint, idim, aepsco, aepsge, gpar, dist, jstat)

SISLCurve *pcurve;
double epoint[];
int idim;
double aepsco;
double aepsge;
double *gpar;
double *dist;
int *jstat;

ARGUMENTS
Input Arguments:

pcurve - Pointer to the curve in the closest point problem.

epoint - The point in the closest point problem.
idim - Dimension of the space in which epoint lies.
aepsco - Computational resolution (not used).
aepsge - Geometry resolution.

Output Arguments:
gpar - The parameter value of the closest point in the parameter

interval of the curve.
dist - The closest distance between curve and point.
jstat - Status message

< 0 : Error.
= 0 : Point found by iteration.
> 0 : Warning.
= 1 : Point lies at an end.

CHAPTER 4. CURVE INTERROGATION 84

EXAMPLE OF USE
{

SISLCurve *pcurve; /* Must be defined */
double epoint[3]; /* Must be defined */
int idim = 3;
double aepsco = 1.0e-9; /* Not used */
double aepsge = 1.0e-6;
double gpar = 0;
double dist = 0;
int jstat = 0;
. . .
s1957(pcurve, epoint, idim, aepsco, aepsge, &gpar, &dist, &jstat);
. . .

}

CHAPTER 4. CURVE INTERROGATION 85

4.6.3 Local iteration to closest point between point and
curve.

NAME
s1774 - Newton iteration on the distance function between a curve and a point,

to find a closest point or an intersection point. If a bad choice for the
guess parameter is given in, the iteration may end at a local, not global
closest point.

SYNOPSIS
void s1774(crv, point, dim, epsge, start, end, guess, clpar, stat)

SISLCurve *crv;
double point[];
int dim;
double epsge;
double start;
double end;
double guess;
double *clpar;
int *stat;

ARGUMENTS
Input Arguments:

crv - The curve in the closest point problem.
point - The point in the closest point problem.
dim - Dimension of the geometry.
epsge - Geometrical resolution.
start - Curve parameter giving the start of the search interval.
end - Curve parameter giving the end of the search interval.
guess - Curve guess parameter for the closest point iteration.

Output Arguments:
clpar - Resulting curve parameter from the iteration.
stat - Status messages

> 0 : A minimum distance found.
= 0 : Intersection found.
< 0 : Error.

EXAMPLE OF USE
{

SISLCurve *crv; /* Must be defined */
double point[3]; /* Must be defined */
int dim = 3;
double epsge = 1.0e-6;
double start; /* Must be defined */
double end; /* Must be defined */
double guess; /* Must be defined */
double clpar = 0;
int stat = 0;
. . .

CHAPTER 4. CURVE INTERROGATION 86

s1774(crv, point, dim, epsge, start, end, guess, &clpar, &stat);
. . .

}

CHAPTER 4. CURVE INTERROGATION 87

4.6.4 Find the closest points between two curves.

NAME
s1955 - Find the closest points between two curves.

SYNOPSIS
void s1955(curve1, curve2, epsco, epsge, numintpt, intpar1, intpar2,

numintcu, intcurve, stat)
SISLCurve *curve1;
SISLCurve *curve2;
double epsco;
double epsge;
int *numintpt;
double **intpar1;
double **intpar2;
int *numintcu;
SISLIntcurve ***intcurve;
int *stat;

ARGUMENTS
Input Arguments:

curve1 - Pointer to the first curve in the closest point problem.
curve2 - Pointer to the second curve in the closest point problem.

epsco - Computational resolution (not used).
epsge - Geometry resolution.

Output Arguments:
numintpt - Number of single closest points.
intpar1 - Array containing the parameter values of the single clos-

est points in the parameter interval of the first curve.
The points lie in sequence. Closest curves are stored in
intcurve.

intpar2 - Array containing the parameter values of the single clos-
est points in the parameter interval of the second curve.
The points lie in sequence. Closest curves are stored in
intcurve.

numintcu - Number of closest curves.
intcurve - Array of pointers to the SISLIntcurve objects containing

descriptions of the closest curves. The curves are only
described by start points and end points in the parameter
interval of the curve. The curve pointers point to nothing.
If the curves given as input are degenerate, a closest point
may be returned as a closest curve.

CHAPTER 4. CURVE INTERROGATION 88

stat - Status messages
> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLCurve *curve1; /* Must be defined */
SISLCurve *curve2; /* Must be defined */
double epsco = 1.0e-9; /* Not used */
double epsge = 1.0e-6;
int numintpt = 0;
double *intpar1 = NULL;
double *intpar2 = NULL;
int numintcu = 0;
SISLIntcurve **intcurve = NULL;
int stat = 0;
. . .
s1955(curve1, curve2, epsco, epsge, &numintpt, &intpar1, &intpar2, &nu-

mintcu, &intcurve, &stat);
. . .

}

CHAPTER 4. CURVE INTERROGATION 89

4.6.5 Find a point on a 2D curve along a given direction.

NAME
s1013 - Find a point on a 2D curve along a given direction.

SYNOPSIS
void s1013(pcurve, ang, ang tol, guess par, iter par, jstat)

SISLCurve *pcurve;
double ang;
double ang tol;
double guess par;
double *iter par;
int *jstat;

ARGUMENTS
Input Arguments:

pcurve - Pointer to the curve.
ang - The angle (in radians) describing the wanted direction.

ang tol - The angular tolerance (in radians).
guess par - Start parameter value on the curve.

Output Arguments:
iter par - The parameter value found on the curve.
stat - Status messages

= 2 : A minimum distance found.
= 1 : Intersection found.
< 0 : Error.

EXAMPLE OF USE
{

SISLCurve *pcurve; /* Must be defined */
double ang; /* Must be defined */
double ang tol = 0.01;
double guess par; /* Must be defined */
double iter par;
int jstat = 0;
. . .
s1013(pcurve, ang, ang tol, guess par, &iter par, &jstat);
. . .

}

CHAPTER 4. CURVE INTERROGATION 90

4.7 Find the Absolute Extremals of a Curve.

NAME
s1920 - Find the absolute extremal points/intervals of a curve relative to a given

direction.

SYNOPSIS
void s1920(curve, dir, dim, epsco, epsge, numintpt, intpar,

numintcu, intcurve, stat)
SISLCurve *curve;
double dir[];
int dim;
double epsco;
double epsge;
int *numintpt;
double **intpar;
int *numintcu;
SISLIntcurve ***intcurve;
int *stat;

ARGUMENTS
Input Arguments:

curve - Pointer to the curve.
dir - The direction in which the extremal point(s) and/or inter-

val(s) are to be calculated. If dim = 1, a positive value in-
dicates the maximum of the function and a negative value
the minimum. If the dimension is greater than 1, the array
contains the coordinates of the direction vector.

dim - Dimension of the space in which the curve and dir lie.

epsco - Computational resolution (not used).
epsge - Geometry resolution.

Output Arguments:
numintpt - Number of single extremal points.
intpar - Array containing the parameter values of the single ex-

tremal points in the parameter interval of the curve. The
points lie in sequence. Extremal curves are stored in
intcurve.

numintcu - Number of extremal curves.
intcurve - Array of pointers to the SISLIntcurve objects containing

descriptions of the extremal curves. The curves are only
described by start points and end points in the parameter
interval of the curve. The curve pointers point to nothing.

CHAPTER 4. CURVE INTERROGATION 91

stat - Status messages
> 0 : Warning.
= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLCurve *curve; /* Must be defined */
double dir[3]; /* Must be defined */
int dim = 3;
double epsco = 1.0e-9; /* Not used */
double epsge = 1.0e-6;
int numintpt = 0;
double *intpar = NULL;
int numintcu = 0;
SISLIntcurve **intcurve = NULL;
int stat = 0;
. . .
s1920(curve, dir, dim, epsco, epsge, &numintpt, &intpar, &numintcu,

&intcurve, &stat);
. . .

}

CHAPTER 4. CURVE INTERROGATION 92

4.8 Area between Curve and Point

4.8.1 Calculate the area between a 2D curve and a 2D
point.

NAME
s1241 - To calculate the area between a 2D curve and a 2D point. When the

curve is rotating counter-clockwise around the point, the area contribu-
tion is positive. When the curve is rotating clockwise around the point,
the area contribution is negative. If the curve is closed or periodic, the
area calculated is independent of where the point is situated. The area
is calculated exactly for B-spline curves, for NURBS the result is an ap-
proximation. This routine will only perform if the order of the curve is
less than 7 (can easily be extended).

SYNOPSIS
void s1241(pcurve, point, dim, epsge, area, stat)

SISLCurve *pcurve;
double point[];
int dim;
double epsge;
double *area;
int *stat;

ARGUMENTS
Input Arguments:

pcurve - The 2D curve.
point - The reference point.
dim - Dimension of geometry (must be 2).
epsge - Absolute geometrical tolerance.

Output Arguments:
area - Calculated area.
stat - Status messages

> 0 : Warning.
= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLCurve *pcurve; /* Must be defined */
double point[2]; /* Must be defined */
int dim = 2; /* Must be equal to 2 */
double epsge = 0.001;
double area;
int stat = 0;
. . .
s1241(pcurve, point, dim, epsge, &area, &stat);
. . .

}

CHAPTER 4. CURVE INTERROGATION 93

4.8.2 Calculate the weight point and rotational momen-
tum of an area between a 2D curve and a 2D point.

NAME
s1243 - To calculate the weight point and rotational momentum of an area be-

tween a 2D curve and a 2D point. The area is also calculated. When the
curve is rotating counter-clockwise around the point, the area contribu-
tion is positive. When the curve is rotating clockwise around the point,
the area contribution is negative. OBSERVE: FOR CALCULATION
OF AREA ONLY, USE s1241().

SYNOPSIS
void s1243(pcurve, point, dim, epsge, weight, area, moment, stat)

SISLCurve *pcurve;
double point[];
int dim;
double epsge;
double weight[];
double *area;
double *moment;
int *stat;

ARGUMENTS
Input Arguments:

pcurve - The 2D curve.
point - The reference point.
dim - Dimension of geometry (must be 2).
epsge - Absolute geometrical tolerance.

Output Arguments:
weight - Weight point.
area - Area.
moment - Rotational momentum.
stat - Status messages

> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLCurve *pcurve; /* Must be defined */
double point[2]; /* Must be defined */
int dim = 2; /* Dimension 2 is required */
double epsge = 0.01;
double weight[2];
double area = 0.0;
double moment = 0.0;
int stat = 0;
. . .
s1243(pcurve, point, dim, epsge, weight, &area, &moment, &stat);

CHAPTER 4. CURVE INTERROGATION 94

. . .
}

CHAPTER 4. CURVE INTERROGATION 95

4.9 Bounding Box

Both curves and surfaces have bounding boxes. These are boxes surrounding
an object not only parallel to the main axis, but also rotated 45 degrees around
each main axis. These bounding boxes are used by the intersection functions to
decide if an intersection is possible or not. They might also be used to find the
position of objects under other circumstances.

4.9.1 Bounding box object.

In the library a bounding box is stored in a struct SISLbox containing the
following:

double *emax; Allocated array containing the minimum values of the
bounding box

double *emin; Allocated array containing the maximum values of the
bounding box

int imin; The index of the minimum coefficient ecoef[imin]. Only
used in dimension one. ecoef is the control polygon of the
curve/surface.

int imax; The index of the maximum coefficient ecoef[imax]. Only
used in dimension one. ecoef is the control polygon of the
curve/surface.

CHAPTER 4. CURVE INTERROGATION 96

4.9.2 Create and initialize a curve/surface bounding box
instance.

NAME
newbox - Create and initialize a curve/surface bounding box instance.

SYNOPSIS
SISLbox *newbox(idim)

int idim;

ARGUMENTS
Input Arguments:

idim - Dimension of geometry space.

Output Arguments:
newbox - Pointer to new SISLbox structure. If it is impossible to al-

locate space for the structure, newbox will return a NULL
value.

EXAMPLE OF USE
{

int idim = 3;
SISLbox *box = NULL;
. . .
box = newbox(idim);
. . .

}

CHAPTER 4. CURVE INTERROGATION 97

4.9.3 Find the bounding box of a curve.

NAME
s1988 - Find the bounding box of a SISLCurve. NB. The geometric bounding

box is returned also in the rational case, that is the box in homogenous
coordinates is NOT computed.

SYNOPSIS
void s1988(pc, emax, emin, jstat)

SISLCurve *pc;
double **emax;
double **emin;
int *jstat;

ARGUMENTS
Input Arguments:

pc - The curve to treat.

Output Arguments:
emin - Array of dimension idim containing the minimum values

of the bounding box, i.e. bottom-left corner of the box.

emax - Array of dimension idim containing the maximum values
of the bounding box, i.e. upper-right corner of the box.

jstat - Status message
< 0 : Error.
= 0 : Ok.
> 0 : Warning.

EXAMPLE OF USE
{

SISLCurve *pc; /* Must be defined */
double *emax = NULL;
double *emin = NULL;
int jstat = 0;
. . .
s1988(pc, &emax, &emin, &jstat);
. . .

}

CHAPTER 4. CURVE INTERROGATION 98

4.10 Normal Cone

Both curves and surfaces have normal cones. These are the cones that are
convex hull of all normalized tangents of a curve and all normalized normals of
a surface.

These normal cones are used by the intersection functions to decide if only
one intersection is possible. They might also be used to find directions of objects
for other reasons.

4.10.1 Normal cone object.

In the library a direction cone is stored in a struct SISLdir containing the fol-
lowing:

int igtpi; To mark if the angle of direction cone is greater than π.
= 0 : The direction of a surface and its boundary

curves or a curve is not greater than π in any
parameter direction.

= 1 : The direction of a surface or a curve is greater
than π in the first parameter direction.

= 2 : The angle of direction cone of a surface is
greater than π in the second parameter di-
rection.

= 10 : The angle of direction cone of a boundary
curve in first parameter direction of a surface
is greater than π.

= 20 : The angle of direction cone of a boundary
curve in second parameter direction of a sur-
face is greater than π.

double *ecoef; Allocated array containing the coordinates of the centre of
the cone.

double aang; The angle from the centre which describes the cone.

CHAPTER 4. CURVE INTERROGATION 99

4.10.2 Create and initialize a curve/surface direction in-
stance.

NAME
newdir - Create and initialize a curve/surface direction instance.

SYNOPSIS
SISLdir *newdir(idim)

int idim;

ARGUMENTS
Input Arguments:

idim - Dimension of the space in which the object lies.

Output Arguments:
newdir - Pointer to new direction structure. If it is impossible to

allocate space for the structure, newdir will return a NULL
value.

EXAMPLE OF USE
{

int idim = 3;
SISLdir *dir = NULL;
. . .
dir = newdir(idim);
. . .

}

CHAPTER 4. CURVE INTERROGATION 100

4.10.3 Find the direction cone of a curve.

NAME
s1986 - Find the direction cone of a curve.

SYNOPSIS
void s1986(pc, aepsge, jgtpi, gaxis, cang, jstat)

SISLCurve *pc;
double aepsge;
int *jgtpi;
double **gaxis;
double *cang;
int *jstat;

ARGUMENTS
Input Arguments:

pc - The curve to treat.
aepsge - Geometry tolerance.

Output Arguments:
jgtpi - To mark if the angle of the direction cone is greater than

π.
= 0 The direction cone of the curve ≤ π.

= 1 The direction cone of the curve > π.

gaxis - Allocated array containing the coordinates of the centre of
the cone. It is only computed if jgtpi = 0.

cang - The angle from the centre to the boundary of the cone. It
is only computed if jgtpi = 0.

jstat - Status messages
> 0 : Warning.
= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLCurve *pc; /* Must be defined */
double aepsge = 1.0e-10;
int jgtpi = 0;
double *gaxis = NULL;
double cang = 0.0;
int jstat = 0;
. . .
s1986(pc, aepsge, &jgtpi, &gaxis, &cang, &jstat);
. . .

}

Chapter 5

Curve Analysis

This chapter describes the Curve Analysis part.

5.1 Curvature Evaluation

5.1.1 Evaluate the curvature of a curve at given parameter
values.

NAME
s2550 - Evaluate the curvature of a curve at given parameter values ax[0],...,ax[

num ax - 1].

SYNOPSIS
void s2550(curve, ax, num ax, curvature, jstat)

SISLCurve *curve;
double ax[];
int num ax;
double curvature[];
int *jstat;

ARGUMENTS
Input Arguments:

curve - Pointer to the curve.
ax - The parameter values
num - No. of parameter values

Output Arguments:
-

curvature - The ”num ax” curvature values computed
jstat - Status messages

> 0 : Warning.
= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE

101

CHAPTER 5. CURVE ANALYSIS 102

{
SISLCurve *curve; /* Must be defined */
double ax[10]; /* Must be defined */
int num ax = 10;
double curvature[10]; /* Size equal to num ax */
int jstat = 0;
. . .
s2550(curve, ax, num ax, curvature, &jstat);
. . .

}

CHAPTER 5. CURVE ANALYSIS 103

5.1.2 Evaluate the torsion of a curve at given parameter
values.

NAME
s2553 - Evaluate the torsion of a curve at given parameter values ax[0],...,ax[

num ax - 1].

SYNOPSIS
void s2553(curve, ax, num ax, torsion, jstat)

SISLCurve *curve;
double ax[];
int num ax;
double torsion[];
int *jstat;

ARGUMENTS
Input Arguments:

curve - Pointer to the curve.
ax - The parameter values
num - No. of parameter values

Output Arguments:
-

torsion - The ”num ax” torsion values computed
jstat - Status messages

> 0 : Warning.
= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLCurve *curve; /* Must be defined */
double ax[10]; /* Must be defined */
int num ax = 10;
double torsion[10]; /* Size equal to num ax */
int jstat = 0;
. . .
s2553(curve, ax, num ax, torsion, &jstat);
. . .

}

CHAPTER 5. CURVE ANALYSIS 104

5.1.3 Evaluate the Variation of Curvature (VoC) of a curve
at given parameter values.

NAME
s2556 - Evaluate the Variation of Curvature (VoC) of a curve at given parameter

values ax[0],...,ax[num ax - 1].

SYNOPSIS
void s2556(curve, ax, num ax, VoC, jstat)

SISLCurve *curve;
double ax[];
int num ax;
double VoC[];
int *jstat;

ARGUMENTS
Input Arguments:

curve - Pointer to the curve.
ax - The parameter values
num - No. of parameter values

Output Arguments:
-

VoC - The ”num ax” Variation of Curvature (VoC) values com-
puted

jstat - Status messages
> 0 : Warning.
= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLCurve *curve; /* Must be defined */
double ax[10]; /* Must be defined */
int num ax = 10;
double VoC[10]; /* Size equal to num ax */
int jstat = 0;
. . .
s2556(curve, ax, num ax, VoC, &jstat);
. . .

}

CHAPTER 5. CURVE ANALYSIS 105

5.1.4 Evaluate the Frenet Frame (t,n,b) of a curve at given
parameter values.

NAME
s2559 - Evaluate the Frenet Frame (t,n,b) of a curve at given parameter values

ax[0],...,ax[num ax - 1].

SYNOPSIS
void s2559(curve, ax, num ax, p, t, n, b, jstat)

SISLCurve *curve;
double ax[];
int num ax;
double p[];
double t[];
double n[];
double b[];
int *jstat;

ARGUMENTS
Input Arguments:

curve - Pointer to the curve.
ax - The parameter values
num - No. of parameter values

Output Arguments:
-

t - The Frenet Frame (in 3D) computed. Each of the arrays
(t,n,b) are of dim. 3*num ax, and the data are stored
like this: tx(ax[0]), ty(ax[0]), tz(ax[0]), ...,tx(ax[num ax-
1]), ty(ax[num ax-1]), tz(ax[num ax-1]).

p - 1]
jstat - Status messages

> 0 : Warning.
= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLCurve *curve; /* Must be defined */
double ax[10];
int num ax = 10;
double p[10]; /* Size equal to num ax */
double t[10]; /* Size equal to num ax */
double n[10]; /* Size equal to num ax */
double b[10]; /* Size equal to num ax */
int jstat = 0;
. . .
s2559(curve, ax, num ax, p, t, n, b, &jstat);
. . .

}

CHAPTER 5. CURVE ANALYSIS 106

5.1.5 Evaluate geometric properties at given parameter
values.

NAME
s2562 - Evaluate the 3D position, the Frenet Frame (t,n,b) and geometric prop-

erty (curvature, torsion or variation of curvature) of a curve at given
parameter values ax[0],...,ax[num ax-1]. These data are needed to pro-
duce spike plots (using the Frenet Frame and the geometric property)
and circular tube plots (using circular in the normal plane (t,b), where
the radius is equal to the geometric property times a scaling factor for
visual effects).

SYNOPSIS
void s2562(curve, ax, num ax, val flag, p, t, n, b, val, jstat)

SISLCurve *curve;
double ax[];
int num ax;
int val flag;
double p[];
double t[];
double n[];
double b[];
double val[];
int *jstat;

ARGUMENTS
Input Arguments:

curve - Pointer to the curve.
ax - The parameter values
num - No. of parameter values
val - Compute geometric property

= 1 : curvature
= 2 : torsion
= 3 : variation of curvature

Output Arguments:
-

t - The Frenet Frame (in 3D) computed. Each of the arrays
(t,n,b) are of dim. 3*num ax, and the data are stored
like this: tx(ax[0]), ty(ax[0]), tz(ax[0]), ...,tx(ax[num ax-
1]), ty(ax[num ax-1]), tz(ax[num ax-1]).

p - 1]
val - Geometric property (curvature, torsion or variation

of curvature) of a curve at given parameter values
ax[0],...,ax[num ax-1].

jstat - Status messages
> 0 : Warning.
= 0 : Ok.
< 0 : Error.

CHAPTER 5. CURVE ANALYSIS 107

EXAMPLE OF USE
{

SISLCurve *curve; /* Must be defined */
double ax[10]; /* Must be defined */
int num ax = 10;
int val flag = 1;
double p[30]; /* Size equal to dimension times num ax */
double t[30]; /* Size equal to dimension times num ax */
double n[30]; /* Size equal to dimension times num ax */
double b[30]; /* Size equal to dimension times num ax */
double val[10]; /* Size equal to num ax */
int jstat = 0;
. . .
s2562(curve, ax, num ax, val flag, p, t, n, b, val, &jstat);
. . .

}

Chapter 6

Curve Utilities

This chapter describes the Curve Utilities. These are common to both the Curve
Definition and Curve Interrogation modules.

6.1 Curve Object

In the library both B-spline and NURBS curves are stored in a struct SISLCurve
containing the following:

int ik; Order of curve.
int in; Number of vertices.
double *et; Pointer to the knot vector.
double *ecoef; Pointer to the array containing non-rational vertices, size

in× idim.

double *rcoef; Pointer to the array of rational vertices and weights, size
in× (idim+ 1).

int ikind; Type of curve
= 1 : Polynomial B-spline curve.
= 2 : Rational B-spline (nurbs) curve.
= 3 : Polynomial Bezier curve.
= 4 : Rational Bezier curve.

int idim; Dimension of the space in which the curve lies.
int icopy; Indicates whether the arrays of the curve are allocated and

copied or referenced by creation of the curve.
= 0 : Pointer set to input arrays. The arrays are

not deleted by freeCurve.
= 1 : Array allocated and copied. The arrays are

deleted by freeCurve.
= 2 : Pointer set to input arrays, but are to be

treated as copied. The arrays are deleted by
freeCurve.

SISLdir *pdir; Pointer to a SISLdir object used for storing curve direction.

SISLbox *pbox; Pointer to a SISLbox object used for storing the surround-
ing boxes.

int cuopen; Open/closed/periodic flag.

108

CHAPTER 6. CURVE UTILITIES 109

= −1 : Closed curve with periodic (cyclic) parame-
terization and overlapping end vertices.

= 0 : Closed curve with k-tuple end knots and co-
inciding start/end vertices.

= 1 : Open curve (default).

Note that in the rational case are the curve coefficients stored as
w1p1, w1, w2p2, w2, . . . , wnpn, wn where wi are the weights and pi, i = 1, . . . , n
are the curve coefficients.

When using a curve, do not declare a SISLCurve but a pointer to a SISLCurve,
and initialize it to point on NULL. Then you may use the dynamic allocation
functions newCurve and freeCurve described below, to create and delete curves.

There are two ways to pass coefficient and knot arrays to newCurve. By
setting icopy = 1, newCurve allocates new arrays and copies the given ones.
But by setting icopy = 0 or 2, newCurve simply points to the given arrays.
Therefore it is IMPORTANT that the given arrays have been allocated in free
memory beforehand.

CHAPTER 6. CURVE UTILITIES 110

6.1.1 Create new curve object.

NAME
newCurve - Create and initialize a SISLCurve-instance. Note that the vertex input

to a rational curve is unstandard. Given the curve

c(t) =

∑n
i=1 wipiBi,k,t(t)∑n
i=1 wiBi,k,t(t)

,

must the vertices be given as w1p1, w1, w2p2, w2, . . . , wnpn, wn when in-
voking this function. Thus the vertices are multiplied with the associated
weight.

SYNOPSIS
SISLCurve *newCurve(number, order, knots, coef, kind, dim, copy)

int number;
int order;
double knots[];
double coef[];
int kind;
int dim;
int copy;

ARGUMENTS
Input Arguments:

number - Number of vertices in the new curve.
order - Order of curve.
knots - Knot vector of curve.
coef - Vertices of curve. These can either be the dim dimensional

non-rational vertices, or the (dim+1) dimensional rational
vertices.

kind - Type of curve.
= 1 : Polynomial B-spline curve.
= 2 : Rational B-spline (nurbs) curve.
= 3 : Polynomial Bezier curve.
= 4 : Rational Bezier curve.

dim - Dimension of the space in which the curve lies.
copy - Flag

= 0 : Set pointer to input arrays.
= 1 : Copy input arrays.
= 2 : Set pointer and remember to free arrays.

Output Arguments:
newCurve - Pointer to the new curve. If it is impossible to allocate

space for the curve, newCurve returns NULL.

CHAPTER 6. CURVE UTILITIES 111

EXAMPLE OF USE
{

SISLCurve *curve = NULL;
int number = 10;
int order = 4;
double knots[14]; /* Must be defined */
double coef[30]; /* Must be defined */
int kind = 1; /* Non-rational */
int dim = 3;
int copy = 1;
. . .
curve = newCurve(number, order, knots, coef, kind, dim, copy);
. . .

}

CHAPTER 6. CURVE UTILITIES 112

6.1.2 Make a copy of a curve.

NAME
copyCurve - Make a copy of a curve.

SYNOPSIS
SISLCurve *copyCurve(pcurve)

SISLCurve *pcurve;

ARGUMENTS
Input Arguments:

pcurve - Curve to be copied.

Output Arguments:
copyCurve - The new curve.

EXAMPLE OF USE
{

SISLCurve *curvecopy = NULL;
SISLCurve *curve = NULL;
int number = 10;
int order = 4;
double knots[14]; /* Must be defined */
double coef[30]; /* Must be defined */
int kind = 1; /* Non-rational */
int dim = 3;
int copy = 1;
. . .
curve = newCurve(number, order, knots, coef, kind, dim, copy);
. . .
curvecopy = copyCurve(curve);
. . .

}

CHAPTER 6. CURVE UTILITIES 113

6.1.3 Delete a curve object.

NAME
freeCurve - Free the space occupied by the curve. Before using freeCurve, make sure

the curve object exists.

SYNOPSIS
void freeCurve(curve)

SISLCurve *curve;

ARGUMENTS
Input Arguments:

curve - Pointer to the curve to delete.
EXAMPLE OF USE

{
SISLCurve *curve = NULL;
int number = 10;
int order = 4;
double knots[14];
double coef[30];
int kind = 1;
int dim = 3;
int copy = 1;
. . .
curve = newCurve(number, order, knots, coef, kind, dim, copy);
. . .
if (curve) freeCurve(curve);
. . .

}

CHAPTER 6. CURVE UTILITIES 114

6.2 Evaluation

6.2.1 Compute the position and the left-hand derivatives
of a curve at a given parameter value.

NAME
s1227 - To compute the position and the first derivatives of the curve at a given

parameter value Evaluation from the left hand side.

SYNOPSIS
void s1227(curve, der, parvalue, leftknot, derive, stat)

SISLCurve *curve;
int der;
double parvalue;
int *leftknot;
double derive[];
int *stat;

ARGUMENTS
Input Arguments:

curve - Pointer to the curve for which position and derivatives are
to be computed.

der - The number of derivatives to compute.
< 0 : Error.
= 0 : Compute position.
= 1 : Compute position and derivative.
etc.

parvalue - The parameter value at which to compute position and
derivatives.

Input/Output Arguments:
leftknot - Pointer to the interval in the knot vector where parvalue

is located. If et[] is the knot vector, the relation:

et[leftknot] < parvalue ≤ et[leftknot + 1]

should hold. (If parvalue ≤ et[ik−1]) then leftknot should
be “ik-1”. Here “ik” is the order of the curve.) If leftknot
does not have the right value when entering the routine,
its value will be changed to the value satisfying the above
condition.

CHAPTER 6. CURVE UTILITIES 115

Output Arguments:
derive - Double array of dimension (der+ 1)× dim containing the

position and derivative vectors. (dim is the dimension
of the Euclidean space in which the curve lies.) These
vectors are stored in the following order: first the com-
ponents of the position vector, then the dim components
of the tangent vector, then the dim components of the
second derivative vector, and so on. (The C declaration
of derive as a two dimensional array would therefore be
derive[der + 1][dim].)

stat - Status messages
> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLCurve *curve; /* Must be defined */
int der = 3;
double parvalue; /* Must be defined */
int leftknot = 0; /* Define initially as zero. For consequtive evaluations

leave leftknot as returned from s1227 */
double derive[12]; /* Curve dimension times (der+1) */
int stat = 0;
. . .
s1227(curve, der, parvalue, &leftknot, derive, &stat);
. . .

}

CHAPTER 6. CURVE UTILITIES 116

6.2.2 Compute the position and the right-hand derivatives
of a curve at a given parameter value.

NAME
s1221 - To compute the positione and the first derivatives of a curve at a given

parameter value. Evaluation from the right hand side.

SYNOPSIS
void s1221(curve, der, parvalue, leftknot, derive, stat)

SISLCurve *curve;
int der;
double parvalue;
int *leftknot;
double derive[];
int *stat;

ARGUMENTS
Input Arguments:

curve - Pointer to the curve for which position and derivatives are
to be computed.

der - The number (order) of derivatives to compute.
< 0 : Error.
= 0 : Compute position.
= 1 : Compute position and derivative.
etc.

parvalue - The parameter value at which to compute position and
derivatives.

Input/Output Arguments:
leftknot - Pointer to the interval in the knot vector where parvalue

is located. If et[] is the knot vector, the relation:

et[leftknot] ≤ parvalue < et[leftknot+ 1]

should hold. (If parvalue ≥ et[in]) then leftknot should be
“in-1”. Here “in” is the number of coefficients.) If leftknot
does not have the right value when entering the routine,
its value will be changed to the value satisfying the above
condition.

CHAPTER 6. CURVE UTILITIES 117

Output Arguments:
derive - Double array of dimension (der+ 1)× dim containing the

position and derivative vectors. (dim is the dimension of
the Euclidean space in which the curve lies.) These vectors
are stored in the following order: first the dim components
of the position vector, then the dim components of the
tangent vector, then the dim components of the second
derivative vector, and so on. (The C declaration of derive
as a two dimensional array would therefore be derive[der+
1][dim].)

stat - Status messages
> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLCurve *curve; /* Must be defined */
int der = 3;
double parvalue; /* Must be defined */
int leftknot = 0; /* Define initially as zero. For consequtive evaluations

leave leftknot as returned from s1221 */
double derive[12]; /* Curve dimension times (der+1) */
int stat = 0;
. . .
s1221(curve, der, parvalue, &leftknot, derive, &stat);
. . .

}

CHAPTER 6. CURVE UTILITIES 118

6.2.3 Evaluate position, first derivative, curvature and ra-
dius of curvature of a curve at a given parameter
value, from the left hand side.

NAME
s1225 - Evaluate position, derivatives, curvature and radius of curvature of a

curve at a given parameter value, from the left hand side.

SYNOPSIS
void s1225(curve, der, parvalue, leftknot, derive, curvature, radius of curvature,

jstat)
SISLCurve *curve;
int der;
double parvalue;
int *leftknot;
double derive[];
double curvature[];
double *radius of curvature;
int *jstat;

ARGUMENTS
Input Arguments:

curve - Pointer to the curve for which position and derivatives are
to be computed.

der - The number of derivatives to compute.
< 0 : Error.
= 0 : Compute position.
= 1 : Compute position and first derivative.
etc.

parvalue - The parameter value at which to compute position and
derivatives.

Input/Output Arguments:
leftknot - Pointer to the interval in the knot vector where ax is lo-

cated. If et is the knot vector, the relation

et[ileft] < parvalue <= et[ileft+ 1]

should hold. (If parvalue = et[ik-1] then ileft should be ik-
1. Here in is the number of B-spline coefficients.) If ileft
does not have the right value upon entry to the routine,
its value will be changed to the value satisfying the above
condition.

Output Arguments:

CHAPTER 6. CURVE UTILITIES 119

derive - Double array of dimension [(ider + 1) ∗ idim] containing
the position and derivative vectors. (idim is the number
of components of each B-spline coefficient, i.e. the dimen-
sion of the Euclidean space in which the curve lies.) These
vectors are stored in the following order: First the idim
components of the position vector, then the idim compo-
nents of the tangent vector, then the idim components of
the second derivative vector, and so on. (The C declara-
tion of eder as a two dimensional array would therefore be
eder[ider+1,idim].)

curvature - Array of dimension idim
radius - 1, indicates that the radius of curvature is infinit.
jstat - Status messages

> 0 : Warning.
= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLCurve *curve; /* Must be defined */
int der = 1;
double parvalue; /* Must be defined */
int leftknot = 0; /* Define initially as zero. For consequtive evaluations

leave leftknot as returned from s1225 */
double derive[6]; /* Curve dimension times (der + 1) */
double curvature[3]; /* Curve dimension */
double radius of curvature = 0;
int jstat = 0;
. . .
s1225(curve, der, parvalue, leftknot, derive, curvature, &radius of curvature,

&jstat);
. . .

}

CHAPTER 6. CURVE UTILITIES 120

6.2.4 Evaluate position, first derivative, curvature and ra-
dius of curvature of a curve at a given parameter
value, from the right hand side.

NAME
s1226 - Evaluate position, derivatives, curvature and radius of curvature of a

curve at a given parameter value, from the right hand side.

SYNOPSIS
void s1226(curve, der, parvalue, leftknot, derive, curvature, radius of curvature,

jstat)
SISLCurve *curve;
int der;
double parvalue;
int *leftknot;
double derive[];
double curvature[];
double *radius of curvature;
int *jstat;

ARGUMENTS
Input Arguments:

curve - Pointer to the curve for which position and derivatives are
to be computed.

der - The number of derivatives to compute.
< 0 : Error.
= 0 : Compute position.
= 1 : Compute position and first derivative.
etc.

parvalue - The parameter value at which to compute position and
derivatives.

Input/Output Arguments:
leftknot - Pointer to the interval in the knot vector where ax is lo-

cated. If et is the knot vector, the relation

et[ileft] < parvalue <= et[ileft+ 1]

should hold. (If parvalue = et[ik-1] then ileft should be ik-
1. Here in is the number of B-spline coefficients.) If ileft
does not have the right value upon entry to the routine,
its value will be changed to the value satisfying the above
condition.

Output Arguments:

CHAPTER 6. CURVE UTILITIES 121

derive - Double array of dimension [(ider+1)*idim] containing the
position and derivative vectors. (idim is the number of
components of each B-spline coefficient, i.e. the dimen-
sion of the Euclidean space in which the curve lies.) These
vectors are stored in the following order: First the idim
components of the position vector, then the idim compo-
nents of the tangent vector, then the idim components of
the second derivative vector, and so on. (The C declara-
tion of eder as a two dimensional array would therefore be
eder[ider+1,idim].)

curvature - Array of dimension idim
radius - 1, indicates that the radius of curvature is infinit.
jstat - Status messages

> 0 : Warning.
= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLCurve *curve; /* Must be defined */
int der = 1;
double parvalue; /* Must be defined */
int leftknot = 0; /* Define initially as zero. For consequtive evaluations

leave leftknot as returned from s1226 */
double derive[6]; /* Geometry space dimension times (der + 1) */
double curvature[3]; /* Geometry space dimension */
double radius of curvature = 0;
int jstat = 0;
. . .
s1226(curve, der, parvalue, leftknot, derive, curvature, &radius of curvature,

&jstat);
. . .

}

CHAPTER 6. CURVE UTILITIES 122

6.2.5 Evaluate the curve over a grid of m points. Only
positions are evaluated.

NAME
s1542 - Evaluate the curve pointed at by pc1 over a m grid of points (x[i]). Only

positions are evaluated. Do not apply in the rational case.

SYNOPSIS
void s1542(pc1, m, x, eder, jstat)

SISLCurve *pc1;
int m;
double x[];
double eder[];
int *jstat;

ARGUMENTS
Input Arguments:

pc1 - Pointer to the curve to evaluate.
m - Number of grid points.
x - Array of parameter values of the grid.

Output Arguments:
eder - Array where the positions of the curve are placed, dimen-

sion idim * m. The sequence is position at point x[0],
followed by the same information at x[1], etc.

jstat - status messages
= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLCurve *pc1; /* Must be defined */
int m = 25;
double x[25];
double eder[75]; /* Geometry space dimension times m */
int jstat = 0;
. . .
s1542(pc1, m, x, eder, &jstat);
. . .

}

6.3 Subdivision

6.3.1 Subdivide a curve at a given parameter value.

NAME

CHAPTER 6. CURVE UTILITIES 123

s1710 - Subdivide a curve at a given parameter value.
NOTE: When the curve is periodic (i.e. when the cuopen flag of the
curve has value = −1), this function will return only ONE curve through
rcnew1. This curve is the same geometric curve as pc1, but is repre-
sented on a closed basis, i.e. with k-tuple start/end knots and coinciding
start/end coefficients. The cuopen flag of the curve will then be set to
closed (= 0) and a status value jstat equal to 2 will be returned.

SYNOPSIS
void s1710(pc1, apar, rcnew1, rcnew2, jstat)

SISLCurve *pc1;
double apar;
SISLCurve **rcnew1;
SISLCurve **rcnew2;
int *jstat;

ARGUMENTS
Input Arguments:

pc1 - The curve to subdivide.
apar - Parameter value at which to subdivide.

Output Arguments:
rcnew1 - First part of the subdivided curve.
rcnew2 - Second part of the subdivided curve. If the parameter

value is at the end of a curve NULL pointers might be
returned

jstat - Status messages
= 5 : Parameter value at end of curve,

rcnew1=NULL or rcnew2=NULL.
= 2 : pc1 periodic, rcnew2=NULL.
> 0 : Warning.
= 0 : Ok.
< 0 : Error.

CHAPTER 6. CURVE UTILITIES 124

EXAMPLE OF USE
{

SISLCurve *pc1; /* Must be defined */
double apar; /* Must be defined */
SISLCurve *rcnew1 = NULL;
SISLCurve *rcnew2 = NULL;
int jstat = 0;
. . .

s1710(pc1, apar, &rcnew1, &rcnew2, &jstat);
. . .

}

CHAPTER 6. CURVE UTILITIES 125

6.3.2 Insert a given knot into the description of a curve.

NAME
s1017 - Insert a given knot into the description of a curve.

NOTE : When the curve is periodic (i.e. the curve flag cuopen = −1), the
input parameter value must lie in the half-open [et[kk−1], et[kn) interval,
the function will automatically update the extra knots and coeffisients.
rcnew->in is still equal to pc->in+ 1!

SYNOPSIS
void s1017(pc, rc, apar, jstat)

SISLCurve *pc;
SISLCurve **rc;
double apar;
int *jstat;

ARGUMENTS
Input Arguments:

pc - The curve to be refined.
apar - Parameter value of the knot to be inserted.

Output Arguments:
rc - The new, refined curve.
jstat - Status message

> 0 : Warning.
= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLCurve *pc; /* Must be defined */
double apar; /* Must be defined */
SISLCurve *rc = NULL;
int jstat = 0;
. . .
s1017(pc, &rc, apar, &jstat);
. . .

}

CHAPTER 6. CURVE UTILITIES 126

6.3.3 Insert a given set of knots into the description of a
curve.

NAME
s1018 - Insert a given set of knots into the description of a curve.

NOTE : When the curve is periodic (i.e. when the curve flag cuopen =
−1), the input parameter values must lie in the half-open [et[kk −
1], et[kn), the function will automatically update the extra knots and
coeffisients. The rcnew->in will still be equal to pc->in+ inpar.

SYNOPSIS
void s1018(pc, epar, inpar, rcnew, jstat)

SISLCurve *pc;
double epar[];
int inpar;
SISLCurve **rcnew;
int *jstat;

ARGUMENTS
Input Arguments:

pc - The curve to be refined.
epar - Knots to be inserted. The values are stored in increasing

order and may be multiple.

inpar - Number of knots in epar.

Output Arguments:
rcnew - The new, refined curve.
jstat - Status message

> 0 : Warning.
= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLCurve *pc; /* Must be defined */
double epar[5]; /* Must be defined */
int inpar = 5;
SISLCurve *rcnew = NULL;
int jstat = 0;
. . .
s1018(pc, epar, inpar, &rcnew, &jstat);
. . .

}

CHAPTER 6. CURVE UTILITIES 127

6.3.4 Split a curve into two new curves.

NAME
s1714 - Split a curve in two parts at two specified parameter values. The first

curve starts at parval1. If the curve is open, the last part of the curve
is translated so that the end of the curve joins the start.

SYNOPSIS
void s1714(curve, parval1, parval2, newcurve1, newcurve2, stat)

SISLCurve *curve;
double parval1;
double parval2;
SISLCurve **newcurve1;
SISLCurve **newcurve2;
int *stat;

ARGUMENTS
Input Arguments:

curve - The curve to split.
parval1 - Start parameter value of the first new curve.
parval2 - Start parameter value of the second new curve.

Output Arguments:
newcurve1 - The first new curve.
newcurve2 - The second new curve.
stat - Status messages

> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLCurve *curve; /* Must be defined */
double parval1; /* Must be defined */
double parval2; /* Must be defined */
SISLCurve *newcurve1 = NULL;
SISLCurve *newcurve2 = NULL;
int stat = 0;
. . .
s1714(curve, parval1, parval2, &newcurve1, &newcurve2, &stat);
. . .

}

CHAPTER 6. CURVE UTILITIES 128

6.3.5 Pick a part of a curve.

NAME
s1712 - To pick one part of a curve and make a new curve of the part. If

endpar < begpar the direction of the new curve is turned. Use s1713() to
pick a curve part crossing the start/end points of a closed (or periodic)
curve.

SYNOPSIS
void s1712(curve, begpar, endpar, newcurve, stat)

SISLCurve *curve;
double begpar;
double endpar;
SISLCurve **newcurve;
int *stat;

ARGUMENTS
Input Arguments:

curve - The curve to pick a part from.
begpar - Start parameter value of the part curve to be picked.
endpar - End parameter value of the part curve to be picked.

Output Arguments:
newcurve - The new curve that is a part of the original curve.
stat - Status messages

> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLCurve *curve; /* Must be defined */
double begpar; /* Must be defined */
double endpar; /* Must be defined */
SISLCurve *newcurve = NULL;
int stat = 0;
. . .
s1712(curve, begpar, endpar, &newcurve, &stat);
. . .

}

CHAPTER 6. CURVE UTILITIES 129

6.3.6 Pick a part of a closed curve.

NAME
s1713 - To pick one part of a closed curve and make a new curve of that part. If

the routine is used on an open curve and endpar ≤ begpar, the last part
of the curve is translated so that the end of the curve joins the start.

SYNOPSIS
void s1713(curve, begpar, endpar, newcurve, stat)

SISLCurve *curve;
double begpar;
double endpar;
SISLCurve **newcurve;
int *stat;

ARGUMENTS
Input Arguments:

curve - The curve to pick a part from.
begpar - Start parameter value of the part of the curve to be picked.

endpar - End parameter value of the part of the curve to be picked.

Output Arguments:
newcurve - The new curve that is a part of the original curve.
stat - Status messages

> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLCurve *curve; /* Must be defined */
double begpar; /* Must be defined */
double endpar; /* Must be defined */
SISLCurve *newcurve = NULL;
int stat = 0;
. . .
s1713(curve, begpar, endpar, &newcurve, &stat);
. . .

}

CHAPTER 6. CURVE UTILITIES 130

6.4 Joining

6.4.1 Join two curves at specified ends.

NAME
s1715 - To join one end of one curve with one end of another curve by translating

the second curve. If curve1 is to be joined at the start, the direction of
the curve is turned. If curve2 is to be joined at the end, the direction
of this curve is turned. This means that curve1 always makes the first
part of the new curve.

SYNOPSIS
void s1715(curve1, curve2, end1, end2, newcurve, stat)

SISLCurve *curve1;
SISLCurve *curve2;
int end1;
int end2;
SISLCurve **newcurve;
int *stat;

ARGUMENTS
Input Arguments:

curve1 - First curve to join.
curve2 - Second curve to join.
end1 - True (1) if the first curve is to be joined at the end, else

false (0).
end2 - True (1) if the second curve is to be joined at the end, else

false (0).

Output Arguments:
newcurve - The new joined curve.
stat - Status messages

> 0 : warning
= 0 : ok
< 0 : error

CHAPTER 6. CURVE UTILITIES 131

EXAMPLE OF USE
{

SISLCurve *curve1; /* Must be defined */
SISLCurve *curve2; /* Must be defined */
int end1 = 1;
int end2 = 0;
SISLCurve *newcurve = NULL;
int stat = 0;
. . .
s1715(curve1, curve2, end1, end2, &newcurve, &stat);
. . .

}

CHAPTER 6. CURVE UTILITIES 132

6.4.2 Join two curves at closest ends.

NAME
s1716 - To join two curves at the ends that lie closest to each other, if the

distance between the ends is less than the tolerance epsge. If curve1 is
to be joined at the start, the direction of the curve is turned. If curve2 is
to be joined at the end, the direction of this curve is turned. This means
that curve1 always makes up the first part of the new curve. If epsge is
positive, but smaller than the smallest distance between the ends of the
two curves, a NULL pointer is returned.

SYNOPSIS
void s1716(curve1, curve2, epsge, newcurve, stat)

SISLCurve *curve1;
SISLCurve *curve2;
double epsge;
SISLCurve **newcurve;
int *stat;

ARGUMENTS
Input Arguments:

curve1 - First curve to join.
curve2 - Second curve to join.
epsge - The curves are to be joined if epsge is greater than or

equal to the distance between the ends lying closest to each
other. If epsge is negative, the curves are automatically
joined.

Output Arguments:
newcurve - The new joined curve.
stat - Status messages

> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLCurve *curve1; /* Must be defined */
SISLCurve *curve2; /* Must be defined */
double epsge = 1.0e-6;
SISLCurve *newcurve = NULL;
int stat = 0;
. . .
s1716(curve1, curve2, epsge, &newcurve, &stat);
. . .

}

CHAPTER 6. CURVE UTILITIES 133

6.5 Reverse the Orientation of a Curve.

NAME
s1706 - Turn the direction of a curve by reversing the ordering of the coefficients.

The start parameter value of the new curve is the same as the start
parameter value of the old curve. This routine turns the direction of the
orginal curve. If you want a copy with a turned direction, just make a
copy and turn the direction of the copy.

SYNOPSIS
void s1706(curve)

SISLCurve *curve;

ARGUMENTS
Input Arguments:

curve - The curve to turn.

EXAMPLE OF USE
{

SISLCurve *curve; /* Must be defined */
. . .
s1706(curve);
. . .

}

CHAPTER 6. CURVE UTILITIES 134

6.6 Extend a B-spline Curve.

NAME
s1233 - To extend a B-spline curve (i.e. NOT rationals) at the start and/or the

end of the curve by continuing the polynomial behaviour of the curve.

SYNOPSIS
void s1233(pc, afak1, afak2, rc, jstat)

SISLCurve *pc;
double afak1;
double afak2;
SISLCurve **rc;
int *jstat;

ARGUMENTS
Input Arguments:

pc - Pointer to the B-spline curve to be extended.

afak1 - How much the curve is to be stretched at the start of the
curve. The length of the stretched curve will be equal to
(1 + afak1) times the input curve. afak1 ≥ 0 and will be
set to 0 if negative.

afak2 - How much the curve is to be stretched at the end of the
curve. The length of the stretched curve will be equal to
(1 + afak2) times the input curve. afak2 ≥ 0 and will be
set to 0 if negative.

Output Arguments:
rc - Pointer to the extended B-spline curve.
jstat - Status message

< 0 : Error.
= 0 : Ok.
= 1 : Stretching factors less than 0 – read: adjusted

factor(s) have been used.
> 0 : Warning.

CHAPTER 6. CURVE UTILITIES 135

EXAMPLE OF USE
{

SISLCurve *pc; /* Must be defined */
double afak1 = 0.1;
double afak2 = 0.1;
SISLCurve *rc = NULL;
int jstat = 0;
. . .
s1233(pc, afak1, afak2, &rc, &jstat);
. . .

}

Chapter 7

Surface Definition

7.1 Interpolation

7.1.1 Compute a surface interpolating a set of points, au-
tomatic parameterization.

NAME
s1536 - To compute a tensor surface interpolating a set of points, automatic

parameterization. The output is represented as a B-spline surface.

SYNOPSIS
void s1536(points, im1, im2, idim, ipar, con1, con2, con3, con4, order1, order2,

iopen1, iopen2, rsurf, jstat)
double points[];
int im1;
int im2;
int idim;
int ipar;
int con1;
int con2;
int con3;
int con4;
int order1;
int order2;
int iopen1;
int iopen2;
SISLSurf **rsurf;
int *jstat;

136

CHAPTER 7. SURFACE DEFINITION 137

ARGUMENTS
Input Arguments:

points - Array of dimension idim× im1× im2 containing the posi-
tions of the nodes (using the same ordering as ecoef in the
SISLSurf structure).

im1 - The number of interpolation points in the first parameter
direction.

im2 - The number of interpolation points in the second parame-
ter direction.

idim - Dimension of the space we are working in.
ipar - Flag showing the desired parametrization to be used:

= 1 : Mean accumulated cord-length parameteriza-
tion.

= 2 : Uniform parametrization.
Numbering of surface edges:

3 4

1

2

-
(i)

6
(ii)

(i) first parameter direction of surface.
(ii) second parameter direction of surface.

con1 - Additional condition along edge 1:
= 0 : No additional condition.
= 1 : Zero curvature.

con2 - Additional condition along edge 2:
= 0 : No additional condition.
= 1 : Zero curvature.

con3 - Additional condition along edge 3:
= 0 : No additional condition.
= 1 : Zero curvature.

con4 - Additional condition along edge 4:
= 0 : No additional condition.
= 1 : Zero curvature.

order1 - Order of surface in first parameter direction.
order2 - Order of surface in second
iopen1 - Open/closed/periodic in first parameter direction.

= 1 : Open surface.
= 0 : Closed surface.
= −1 : Closed and periodic surface.

CHAPTER 7. SURFACE DEFINITION 138

iopen2 - Open/closed/periodic in second parameter direction.
= 1 : Open surface.
= 0 : Closed surface.
= −1 : Closed and periodic surface.

Output Arguments:
rsurf - Pointer to the B-spline surface produced.
jstat - Status message

< 0 : Error.
= 0 : Ok.
> 0 : Warning.

EXAMPLE OF USE
{

double points[300]; /* Must be defined */
int im1 = 10;
int im2 = 10;
int idim = 3;
int ipar = 1;
int con1 = 0;
int con2 = 0;
int con3 = 0;
int con4= 0;
int order1 = 4; /* Cubic */
int order2 = 4;
int iopen1 = 1;
int iopen2 = 0;
SISLSurf *rsurf = NULL;
int jstat = 0;
. . .
s1536(points, im1, im2, idim, ipar, con1, con2, con3, con4, order1, order2,

iopen1, iopen2, &rsurf, &jstat);
. . .

}

CHAPTER 7. SURFACE DEFINITION 139

7.1.2 Compute a surface interpolating a set of points, pa-
rameterization as input.

NAME
s1537 - Compute a tensor surface interpolating a set of points, parameterization

as input. The output is represented as a B-spline surface.

SYNOPSIS
void s1537(points, im1, im2, idim, par1, par2, con1, con2, con3, con4, order1,

order2, iopen1, iopen2, rsurf, jstat)
double points[];
int im1;
int im2;
int idim;
double par1[];
double par2[];
int con1;
int con2;
int con3;
int con4;
int order1;
int order2;
int iopen1;
int iopen2;
SISLSurf **rsurf;
int *jstat;

ARGUMENTS
Input Arguments:

points - Array of dimension idim× im1× im2 containing the posi-
tions of the nodes (using the same ordering as ecoef in the
SISLSurf structure).

im1 - The number of interpolation points in the first parameter
direction.

im2 - The number of interpolation points in the second parame-
ter direction.

idim - Dimension of the space we are working in.
par1 - Parametrization in first parameter direction.
par2 - Parametrization in second parameter direction.

CHAPTER 7. SURFACE DEFINITION 140

Numbering of surface edges:

3 4

1

2

-
(i)

6
(ii)

(i) first parameter direction of surface.
(ii) second parameter direction of surface.

con1 - Additional condition along edge 1:
= 0 : No additional condition.
= 1 : Zero curvature.

con2 - Additional condition along edge 2:
= 0 : No additional condition.
= 1 : Zero curvature.

con3 - Additional condition along edge 3:
= 0 : No additional condition.
= 1 : Zero curvature.

con4 - Additional condition along edge 4:
= 0 : No additional condition.
= 1 : Zero curvature.

order1 - Order of surface in first parameter direction.
order2 - Order of surface in second parameter direction.
iopen1 - Open/closed/periodic in first parameter direction.

= 1 : Open surface.
= 0 : Closed surface.
= −1 : Closed and periodic surface.

iopen2 - Open/closed/periodic in second parameter direction.
= 1 : Open surface.
= 0 : Closed surface.
= −1 : Closed and periodic surface.

Output Arguments:
rsurf - Pointer to the B-spline surface produced.
jstat - Status message

< 0 : Error.
= 0 : Ok.
> 0 : Warning.

CHAPTER 7. SURFACE DEFINITION 141

EXAMPLE OF USE
{

double points[300]; /* Must be defined */
int im1 = 10;
int im2 = 10;
int idim = 3;
double par1[10]; /* Must be defined */
double par2[10]; /* Must be defined */
int con1 = 0;
int con2 = 0;
int con3 = 0;
int con4 = 0;
int order1 = 4; /* Cubic */
int order2 = 4;
int iopen1 = 1;
int iopen2 = 0;
SISLSurf *rsurf = NULL;
int jstat = 0;
. . .
s1537(points, im1, im2, idim, par1, par2, con1, con2, con3, con4, order1,

order2, iopen1, iopen2, &rsurf, &jstat);
. . .

}

CHAPTER 7. SURFACE DEFINITION 142

7.1.3 Compute a surface interpolating a set of points, deriva-
tives as input.

NAME
s1534 - To compute a surface interpolating a set of points, derivatives as input.

The output is represented as a B-spline surface.

SYNOPSIS
void s1534(points, der10, der01, der11, im1, im2, idim, ipar, con1, con2, con3,

con4, order1, order2, rsurf, jstat)
double points[];
double der10[];
double der01[];
double der11[];
int im1;
int im2;
int idim;
int ipar;
int con1;
int con2;
int con3;
int con4;
int order1;
int order2;
SISLSurf **rsurf;
int *jstat;

ARGUMENTS
Input Arguments:

points - Array of dimension idim× im1× im2 containing the posi-
tions of the nodes (using the same ordering as ecoef in the
SISLSurf structure).

der10 - Array of dimension idim× im1× im2 containing the first
derivatives in the first parameter direction.

der01 - Array of dimension idim× im1× im2 containing the first
derivatives in the second parameter direction.

der11 - Array of dimension idim× im1× im2 containing the cross
derivatives (the twists).

im1 - The number of interpolation points in the first parameter
direction.

im2 - The number of interpolation points in the second parame-
ter direction.

idim - Dimension of the space we are working in.
ipar - Flag showing the desired parametrization to be used:

= 1 : Mean accumulated cord-length parameteriza-
tion.

= 2 : Uniform parametrization.

CHAPTER 7. SURFACE DEFINITION 143

Numbering of surface edges:

3 4

1

2

-
(i)

6
(ii)

(i) first parameter direction of surface.
(ii) second parameter direction of surface.

con1 - Additional condition along edge 1:
= 0 : No additional condition.
= 1 : Zero curvature.

con2 - Additional condition along edge 2:
= 0 : No additional condition.
= 1 : Zero curvature.

con3 - Additional condition along edge 3:
= 0 : No additional condition.
= 1 : Zero curvature.

con4 - Additional condition along edge 4:
= 0 : No additional condition.
= 1 : Zero curvature.

order1 - Order of surface in first parameter direction.
order2 - Order of surface in second parameter direction.

Output Arguments:
rsurf - Pointer to the B-spline surface produced.
jstat - Status message

< 0 : Error.
= 0 : Ok.
> 0 : Warning.

CHAPTER 7. SURFACE DEFINITION 144

EXAMPLE OF USE
{

double points[300]; /* Must be defined */
double der10[300]; /* Must be defined */
double der01[300]; /* Must be defined */
double der11[300]; /* Must be defined */
int im1 = 10;
int im2 = 10;
int idim = 3;
int ipar = 1;
int con1 = 0;
int con2 = 0;
int con3 = 0;
int con4 = 0;
int order1 = 4; /* Cubic */
int order2 = 4;
SISLSurf *rsurf = NULL;
int jstat = 0;
. . .
s1534(points, der10, der01, der11, im1, im2, idim, ipar, con1, con2, con3,

con4, order1, order2, &rsurf, &jstat);
. . .

}

CHAPTER 7. SURFACE DEFINITION 145

7.1.4 Compute a surface interpolating a set of points, deriva-
tives and parameterization as input.

NAME
s1535 - Compute a surface interpolating a set of points, derivatives and param-

eterization as input. The output is represented as a B-spline surface.

SYNOPSIS
void s1535(points, der10, der01, der11, im1, im2, idim, par1, par2, con1, con2,

con3, con4, order1, order2, rsurf, jstat)
double points[];
double der10[];
double der01[];
double der11[];
int im1;
int m2;
int idim;
double par1[];
double par2[];
int con1;
int con2;
int con3;
int con4;
int order1;
int order2;
SISLSurf **rsurf;
int *jstat;

ARGUMENTS
Input Arguments:

points - Array of dimension idim× im1× im2 containing the posi-
tions of the nodes (using the same ordering as ecoef in the
SISLSurf structure).

der10 - Array of dimension idim× im1× im2 containing the first
derivatives in the first parameter direction.

der01 - Array of dimension idim× im1× im2 containing the first
derivatives in the second parameter direction.

der11 - Array of dimension idim× im1× im2 containing the cross
derivatives (the twists).

im1 - The number of interpolation points in the first parameter
direction.

im2 - The number of interpolation points in the second parame-
ter direction.

idim - Dimension of the space we are working in.
par1 - Parametrization in first parameter direction.
par2 - Parametrization in second parameter direction.

CHAPTER 7. SURFACE DEFINITION 146

Numbering of surface edges:

3 4

1

2

-
(i)

6
(ii)

(i) first parameter direction of surface.
(ii) second parameter direction of surface.

con1 - Additional condition along edge 1:
= 0 : No additional condition.
= 1 : Zero curvature.

con2 - Additional condition along edge 2:
= 0 : No additional condition.
= 1 : Zero curvature.

con3 - Additional condition along edge 3:
= 0 : No additional condition.
= 1 : Zero curvature.

con4 - Additional condition along edge 4:
= 0 : No additional condition.
= 1 : Zero curvature.

order1 - Order of surface in first parameter direction.
order2 - Order of surface in second parameter direction.

Output Arguments:
rsurf - Pointer to the B-spline surface produced.
jstat - Status message

< 0 : Error.
= 0 : Ok.
> 0 : Warning.

CHAPTER 7. SURFACE DEFINITION 147

EXAMPLE OF USE
{

double points[300]; /* Must be defined */
double der10[300]; /* Must be defined */
double der01[300]; /* Must be defined */
double der11[300]; /* Must be defined */
int im1 = 10;
int im2 = 10;
int idim = 3;
double par1[10]; /* Must be defined */
double par2[10]; /* Must be defined */
int con1 = 0;
int con2 = 0;
int con3 = 0;
int con4 = 0;
int order1 = 4; /* Cubic */
int order2 = 4;
SISLSurf *rsurf = NULL;
int jstat = 0;
. . .
s1535(points, der10, der01, der11, im1, im2, idim, par1, par2, con1, con2,

con3, con4, order1, order2, &rsurf, &jstat);
. . .

}

CHAPTER 7. SURFACE DEFINITION 148

7.1.5 Compute a surface by Hermite interpolation, auto-
matic parameterization.

NAME
s1529 - Compute the cubic Hermite surface interpolant to the data given. More

specifically, given positions, (u’,v), (u,v’), and (u’,v’) derivatives at
points of a rectangular grid, the routine computes a cubic tensor-product
B-spline interpolant to the given data with double knots at each data
(the first knot vector will have double knots at all interior points in
epar1, quadruple knots at the first and last points, and similarly for the
second knot vector). The output is represented as a B-spline surface.

SYNOPSIS
void s1529(ep, eder10, eder01, eder11, im1, im2, idim, ipar, rsurf, jstat)

double ep[];
double eder10[];
double eder01[];
double eder11[];
int im1;
int im2;
int idim;
int ipar;
SISLSurf **rsurf;
int *jstat;

ARGUMENTS
Input Arguments:

ep - Array of dimension idim× im1× im2 containing the posi-
tions of the nodes (using the same ordering as ecoef in the
SISLSurf structure).

eder10 - Array of dimension idim× im1× im2 containing the first
derivative in the first parameter direction.

eder01 - Array of dimension idim× im1× im2 containing the first
derivative in the second parameter direction.

eder11 - Array of dimension idim× im1× im2 containing the cross
derivative (twist vector).

ipar - Flag showing the desired parametrization to be used:
= 1 : Mean accumulated cord-length parameter-

ization.
= 2 : Uniform parametrization.

im1 - The number of interpolation points in the first parameter
direction.

im2 - The number of interpolation points in the second parame-
ter direction.

idim - Spatial dimension.

Output Arguments:
rsurf - Pointer to the B-spline surface produced.
jstat - Status message

CHAPTER 7. SURFACE DEFINITION 149

< 0 : Error.
= 0 : Ok.
> 0 : Warning.

EXAMPLE OF USE
{

double ep[300]; /* Must be defined */
double eder10[300]; /* Must be defined */
double eder01[300]; /* Must be defined */
double eder11[300]; /* Must be defined */
int im1 = 10;
int im2 = 10;
int idim = 3;
int ipar = 1;
SISLSurf *rsurf = NULL;
int jstat = 0;
. . .
s1529(ep, eder10, eder01, eder11, im1, im2, idim, ipar, &rsurf, &jstat);
. . .

}

CHAPTER 7. SURFACE DEFINITION 150

7.1.6 Compute a surface by Hermite interpolation, parameter-
ization as input.

NAME
s1530 - To compute the cubic Hermite interpolant to the data given. More

specifically, given positions, 10, 01, and 11 derivatives at points of a
rectangular grid, the routine computes a cubic tensor-product B-spline
interpolant to the given data with double knots at each data point (the
first knot vector will have double knots at all interior points in epar1,
quadruple knots at the first and last points, and similarly for the second
knot vector). The output is represented as a B-spline surface.

SYNOPSIS
void s1530(ep, eder10, eder01, eder11, epar1, epar2, im1, im2, idim, rsurf, jstat)

double ep[];
double eder10[];
double eder01[];
double eder11[];
double epar1[];
double epar2[];
int im1;
int im2;
int idim;
SISLSurf **rsurf;
int *jstat;

ARGUMENTS
Input Arguments:

ep - Array of dimension idim× im1× im2 containing the posi-
tions of the nodes (using the same ordering as ecoef in the
SISLSurf structure).

eder10 - Array of dimension idim× im1× im2 containing the first
derivative in the first parameter direction.

eder01 - Array of dimension idim× im1× im2 containing the first
derivative in the second parameter direction.

eder11 - Array of dimension idim× im1× im2 containing the cross
derivative (twist vector).

epar1 - Array of size im1 containing the parametrization in the
first direction.

epar2 - Array of size im2 containing the parametrization in the
first direction.

im1 - The number of interpolation points in the 1st param. dir.
im2 - The number of interpolation points in the 2nd param. dir.
idim - Dimension of the space we are working in.

Output Arguments:
rsurf - Pointer to the B-spline surface produced.
jstat - Status message

< 0 : Error.

CHAPTER 7. SURFACE DEFINITION 151

= 0 : Ok.
> 0 : Warning.

EXAMPLE OF USE
{

double ep[30]; /* Must be defined */
double eder10[30]; /* Must be defined */
double eder01[30]; /* Must be defined */
double eder11[30]; /* Must be defined */
double epar1[2]; /* Must be defined */
double epar2[5]; /* Must be defined */
int im1 = 2;
int im2 = 5;
int idim = 3;
SISLSurf *rsurf = NULL;
int jstat = 0;
. . .
s1530(ep, eder10, eder01, eder11, epar1, epar2, im1, im2, idim, &rsurf, &js-

tat);
. . .

}

CHAPTER 7. SURFACE DEFINITION 152

7.1.7 Create a lofted surface from a set of B-spline input
curves.

NAME
s1538 - To create a lofted surface from a set of B-spline (i.e. NOT rational) input

curves. The output is represented as a B-spline surface.

SYNOPSIS
void s1538(inbcrv, vpcurv, nctyp, astpar, iopen, iord2, iflag, rsurf, gpar, jstat)

int inbcrv;
SISLCurve *vpcurv[];
int nctyp[];
double astpar;
int iopen;
int iord2;
int iflag;
SISLSurf **rsurf;
double **gpar;
int *jstat;

ARGUMENTS
Input Arguments:

inbcrv - Number of B-spline curves in the curve set.
vpcurv - Array (length inbcrv) of pointers to the curves in the curve-

set.
nctyp - Array (length inbcrv) containing the types of curves in the

curve-set.
= 1 : Ordinary curve.
= 2 : Knuckle curve. Treated as an ordinary curve.
= 3 : Tangent to next curve.
= 4 : Tangent to prior curve.
(= 5 : Second derivative to prior curve.)
(= 6 : Second derivative to next curve.)
= 13 : Curve giving start of tangent to next curve.
= 14 : Curve giving end of tangent to prior curve.

astpar - Start parameter for spline lofting direction.
iopen - Flag telling if the resulting surface should be open, closed

or periodic in the lofting direction (i.e. not the curve di-
rection).
= 1 : Open.
= 0 : Closed.
= −1 : Closed and periodic.

iord2 - Maximal order of the surface in the lofting direction.

CHAPTER 7. SURFACE DEFINITION 153

iflag - Flag telling if the size of the tangents in the derivative
curves should be adjusted or not.
= 0 : Do not adjust tangent sizes.
= 1 : Adjust tangent sizes.

Output Arguments:
rsurf - Pointer to the B-spline surface produced.
gpar - The input curves are constant parameter lines in the

parameter-plane of the produced surface. The i-th ele-
ment in this array contains the (constant) value of this
parameter of the i-th. input curve.

jstat - Status message
< 0 : Error.
= 0 : Ok.
> 0 : Warning.

EXAMPLE OF USE
{

int inbcrv = 3;
SISLCurve *vpcurv[3]; /* Must be defined */
int nctyp[3]; /* Must be defined */
double astpar = 0.0;
int iopen = 1;
int iord2 = 4; /* Cubic */
int iflag = 1;
SISLSurf *rsurf = NULL;
double *gpar = NULL;
int jstat = 0;
. . .
s1538(inbcrv, vpcurv, nctyp, astpar, iopen, iord2, iflag, &rsurf, &gpar, &js-

tat);
. . .

}

CHAPTER 7. SURFACE DEFINITION 154

7.1.8 Create a lofted surface from a set of B-spline input
curves and parametrization.

NAME
s1539 - To create a spline lofted surface from a set of input curves. The

parametrization of the position curves is given in epar.

SYNOPSIS
void s1539(inbcrv, vpcurv, nctyp, epar, astpar, iopen, iord2, iflag, rsurf, gpar,

jstat)
int inbcrv;
SISLCurve *vpcurv[];
int nctyp[];
double epar[];
double astpar;
int iopen;
int iord2;
int iflag;
SISLSurf **rsurf;
double **gpar;
int *jstat;

ARGUMENTS
Input Arguments:

inbcrv - set.
vpcurv - Array (length inbcrv) of pointers to the curves in the curve-

set.
nctyp - Array (length inbcrv) containing the types of curves in the

curve-set.
= 1 : Ordinary curve.
= 2 : Knuckle curve. Treated as an ordinary curve.
= 3 : Tangent to next curve.
= 4 : Tangent to previous curve.
(= 5 : Second derivative to previous curve.)
(= 6 : Second derivative to next curve.)
= 13 : Curve giving start of tangent to next curve.
= 14 : Curve giving end of tangent to previous curve.

epar - Array containing the wanted parametrization. Only pa-
rametervalues corresponding to position curves are given.
For closed curves, one additional parameter value must
be spesified. The last entry contains the parametrization
of the repeated start curve. (if the endpoint is equal to
the startpoint of the interpolation the lenght of the array
should be equal to inpt1 also in the closed case). The num-
ber of entries in the array is thus equal to the number of
position curves (number plus one if the curve is closed).

astpar - parameter for spline lofting direction.
iopen - Flag saying whether the resulting surface should be closed

or open.
= 1 : Open.

CHAPTER 7. SURFACE DEFINITION 155

= 0 : Closed.
= −1 : Closed and periodic.

iord2 - spline basis in the lofting direction.

iflag - Flag saying whether the size of the tangents in the deriva-
tive curves should be adjusted or not.
= 0 : Do not adjust tangent sizes.
= 1 : Adjust tangent sizes.

Output Arguments:
rsurf - Pointer to the surface produced.
gpar - The input curves are constant parameter lines in the

parameter-plane of the produced surface. The i-th ele-
ment in this array contains the (constant) value of this
parameter of the i-th. input curve.

jstat - Status message
< 0 : Error.
= 0 : Ok.
> 0 : Warning.

EXAMPLE OF USE
{

int inbcrv = 4;
SISLCurve *vpcurv[4]; /* Must be defined */
int nctyp[4]; /* Must be defined */
double epar[5]; /* Must be defined. The length corresponds to only

positional curves and no duplication of first curve */
double astpar = 0.0;
int iopen = 0;
int iord2 = 4; /* Cubic */
int iflag = 0;
SISLSurf *rsurf = NULL;
double *gpar = NULL;
int jstat = 0;
. . .
s1539(inbcrv, vpcurv, nctyp, epar, astpar, iopen, iord2, iflag, &rsurf, &gpar,

&jstat);
. . .

}

CHAPTER 7. SURFACE DEFINITION 156

7.1.9 Create a rational lofted surface from a set of rational
input-curves

NAME
s1508 - To create a rational lofted surface from a set of rational input-curves.

The surface will be C1 cubic in the lofting direction.

SYNOPSIS
void s1508(inbcrv, vpcurv, par arr, rsurf, jstat)

int inbcrv;
SISLCurve *vpcurv[];
double par arr[];
SISLSurf **rsurf;
int *jstat;

ARGUMENTS
Input Arguments:

inbcrv - Number of NURBS-curves in the curve set.
vpcurv - Array (length inbcrv) of pointers to the curves in the curve-

set.
par arr - The required parametrization, must be strictly increasing,

length inbcrv.
Output Arguments:

rsurf - Pointer to the NURBS surface produced.
jstat - status message

< 0 : Error.
= 0 : Ok.
> 0 : Warning.

EXAMPLE OF USE
{

int inbcrv = 3;
SISLCurve *vpcurv[3]; /* Must be defined */
double par arr[3]; /* Must be defined */
SISLSurf *rsurf = NULL;
int jstat = 0;
. . .
s1508(inbcrv, vpcurv, par arr, &rsurf, &jstat);
. . .

}

CHAPTER 7. SURFACE DEFINITION 157

7.1.10 Compute a rectangular blending surface from a set
of B-spline input curves.

NAME
s1390 - Make a 4-edged blending surface between 4 B-spline (i.e. NOT rational)

curves where each curve is associated with a number of cross-derivative
B-spline (i.e. NOT rational) curves. The output is represented as a B-
spline surface. The input curves are numbered successively around the
blending parameter, and the directions of the curves are expected to be
as follows when this routine is entered:

6 6

-

-

4 2

1

3

-
(i)

6
(ii)

(i) first parameter direction of the surface.
(ii) second parameter direction of the surface.

NB! The cross-derivatives are always pointing into the patch, and note
the directions in the above diagram.

SYNOPSIS
void s1390(curves, surf, numder, stat)

SISLCurve *curves[];
SISLSurf **surf;
int numder[];
int *stat;

ARGUMENTS
Input Arguments:

curves - Pointers to the boundary B-spline curves:
curves[i], i = 0, . . . , numder[0]−1, are pointers to position
and cross-derivatives along the first edge.
curves[i],
i = numder[0], . . . , numder[0]+numder[1]−1, are pointers
to position and cross-derivatives along the second edge.
curves[i], i = numder[0] + numder[1], . . . ,
numder[0] + numder[1] + numder[2] − 1, are pointers to
position and cross-derivatives along the third edge.

CHAPTER 7. SURFACE DEFINITION 158

curves[i],
i = numder[0] + numder[1] + numder[2], . . . ,
numder[0] + numder[1] + numder[2] + numder[3]− 1, are
pointers to position and cross-derivatives along the fourth
edge.

numder - Array of length 4, numder[i] gives the number of curves on
edge number i+ 1.

Output Arguments:
surf - Pointer to the blending B-spline surface.
stat - Status messages

> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLCurve *curves[8]; /* Must be defined */
SISLSurf *surf = NULL;
int numder[4]; /* Each entry is equal to 2 in this case */
int stat = 0;
. . .
s1390(curves, &surf, numder, &stat)
. . .

}

CHAPTER 7. SURFACE DEFINITION 159

7.1.11 Compute a first derivative continuous blending sur-
face set, over a 3-, 4-, 5- or 6-sided region in space,
from a set of B-spline input curves.

NAME
s1391 - To create a first derivative continuous blending surface set over a 3-, 4-,

5- and 6-sided region in space. The boundary of the region are B-spline
(i.e. NOT rational) curves and the cross boundary derivatives are given
as B-spline (i.e. NOT rational) curves. This function automatically pre-
processes the input cross tangent curves in order to make them suitable
for the blending. Thus, the cross tangent curves should be taken as the
cross tangents of the surrounding surface. It is not necessary and not ad-
visable to match tangents etc. in the corners. The output is represented
as a set of B-spline surfaces.

SYNOPSIS
void s1391(pc, ws, icurv, nder, jstat)

SISLCurve **pc;
SISLSurf ***ws;
int icurv;
int nder[];
int *jstat;

ARGUMENTS
Input Arguments:

pc - Pointers to boundary B-spline curves. All curves must
have same parameter direction around the patch, either
clockwise or counterclockwise. pc1[i], i = 0, . . . nder[0]− 1
are pointers to position and cross-derivatives along first
edge. pc1[i], i = nder[0], . . . nder[1] − 1 are pointers to
position and cross-derivatives along second edge.

...

pc1[i], i = nder[0]+. . .+nder[icurv−2], . . . , nder[icurv−1]−1

are pointers to position and cross-derivatives along fourth
edge.

icurv - Number of boundary curves (3, 5, 4 or 6).
nder - nder[i] gives number of curves on edge number i+1. These

numbers has to be equal to 2. The vector is of length icurv.

CHAPTER 7. SURFACE DEFINITION 160

Output Arguments:
ws - These are pointers to the blending B-spline surfaces. The

vector is of length icurv.

jstat - Status message
< 0 : Error.
= 0 : Ok.
> 0 : Warning.

EXAMPLE OF USE
{

SISLCurve *pc[10]; /* Position and derivative curves. Must be defined */
SISLSurf **ws = NULL; /* In this case 5 surfaces will be constructed
int icurv = 5;
int nder[5]; /* Each entry must be equal to 2 */
int jstat = 0;
. . .
s1391(pc, &ws, icurv, nder, &jstat);
. . .

}

CHAPTER 7. SURFACE DEFINITION 161

7.1.12 Compute a surface, representing a Gordon patch,
from a set of B-spline input curves.

NAME
s1401 - Compute a Gordon patch, given position and cross tangent conditions

as B-spline (i.e. NOT rational) curves at the boundary of a squared
region and the twist vector in the corners. The output is represented as
a B-spline surface.

SYNOPSIS
void s1401(vcurve, etwist, rsurf, jstat)

double etwist[];
SISLCurve *vcurve[];
int *jstat;
SISLSurf **rsurf;

ARGUMENTS
Input Arguments:

vcurve - Position and cross-tangent B-spline curves around the
square region. For each edge of the region position and
cross-tangent curves are given. The dimension of the ar-
ray is 8.

The orientation is as follows:

6 6

-

-

4 2

1

3

-
(i)

6
(ii)

(i) first parameter direction of the surface.
(ii) second parameter direction of the surface.

etwist - Twist-vectors of the corners of the vertex region. The first
element of the array is the twist in the corner before the
first edge, etc. The dimension of the array is 4 times the
spatial dimension of the input curves (currently only 3D).

CHAPTER 7. SURFACE DEFINITION 162

Output Arguments:
rsurf - Gordons-patch represented as a B-spline surface.
jstat - Status message

< 0 : Error.
= 0 : Ok.
> 0 : Warning.

EXAMPLE OF USE
{

int idim = 3;
double etwist[12]; /* 4*idim. Must be defined */
SISLCurve *vcurve[8]; /* Position and derivative curves. Must be defined */
int jstat = 0;
SISLSurf *rsurf = NULL;
. . .
s1401(vcurve, etwist, &rsurf, &jstat);
. . .

}

CHAPTER 7. SURFACE DEFINITION 163

7.2 Approximation

Two kinds of surfaces are treated in this section. The first is approximation
of special shape properties like rotation or sweeping. The second is offsets to
surfaces.

All functions require a tolerance for use in the approximation. It is useful
to note that there is a close relation between the size of the tolerance and the
amount of data for the surface.

7.2.1 Compute a surface using the input points as control
vertices, automatic parameterization.

NAME
s1620 - To calculate a surface using the input points as control vertices. The

parametrization is calculated according to ipar. The output is repre-
sented as a B-spline surface.

SYNOPSIS
void s1620(epoint, inbpnt1, inbpnt2, ipar, iopen1, iopen2, ik1, ik2, idim, rs, jstat)

double epoint[];
int inbpnt1;
int inbpnt2;
int ipar;
int iopen1;
int iopen2;
int ik1;
int ik2;
int idim;
SISLSurf **rs;
int *jstat;

ARGUMENTS
Input Arguments:

epoint - The array containing the points to be used as controlling
vertices of the B-spline surface.

inbpnt1 - The number of points in first parameter direction.
inbpnt2 - The number of points in second parameter direction.
ipar - Flag showing the desired parametrization to be used:

= 1 : Mean accumulated cord-length parameteriza-
tion.

= 2 : Uniform parametrization.
iopen1 - Open/close condition in the first parameter direction:

= 1 : Open.
= 0 : Closed.
= −1 : Closed and periodic.

CHAPTER 7. SURFACE DEFINITION 164

iopen2 - Open/close condition in the second parameter direction:
= 1 : Open.
= 0 : Closed.
= −1 : Closed and periodic.

ik1 - The order of the surface in first direction.
ik2 - The order of the surface in second direction.
idim - The dimension of the space.

Output Arguments:
rs - Pointer to the B-spline surface.
jstat - Status message

< 0 : Error.
= 0 : Ok.
> 0 : Warning.

EXAMPLE OF USE
{

double epoint[300]; /* Must be defined */
int inbpnt1 = 10;
int inbpnt2 = 10;
int ipar = 1;
int iopen1 = 1;
int iopen2 = 1;
int ik1 = 4; /* Cubic */
int ik2 = 4;
int idim = 3;
SISLSurf *rs = NULL;
int jstat = 0;
. . .
s1620(epoint, inbpnt1, inbpnt2, ipar, iopen1, iopen2, ik1, ik2, idim, &rs,

&jstat);
. . .

}

CHAPTER 7. SURFACE DEFINITION 165

7.2.2 Compute a linear swept surface.

NAME
s1332 - To create a linear swept surface by making the tensor-product of two

curves.

SYNOPSIS
void s1332(curve1, curve2, epsge, point, surf, stat)

SISLCurve *curve1;
SISLCurve *curve2;
double epsge;
double point[];
SISLSurf **surf;
int *stat;

ARGUMENTS
Input Arguments:

curve1 - Pointer to curve 1.
curve2 - Pointer to curve 2.
epsge - Maximal deviation allowed between the true swept surface

and the generated surface.
point - Point near the curve to sweep along. The vertices of the

new surface are made by adding the vector from point to
each of the vertices on the sweep curve, to each of the
vertices on the other curve.

Output Arguments:
surf - Pointer to the surface produced.
stat - Status messages

> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

curve *curve1; /* Must be defined */
curve *curve2; /* Must be defined */
double epsge = 0.001 ;
double point[3]; /* Dimension as for curve coefficients. Must be defined */
SISLSurf *surf = NULL;
int stat = 0;
. . .
s1332(curve1, curve2, epsge, point, &surf, &stat);
. . .

}

CHAPTER 7. SURFACE DEFINITION 166

7.2.3 Compute a rotational swept surface.

NAME
s1302 - To create a rotational swept surface by rotating a curve a given angle

around the axis defined by point[] and axis[]. The maximal deviation
allowed between the true rotational surface and the generated surface,
is epsge. If epsge is set to 0, a NURBS surface is generated and if
epsge > 0, a B-spline surface is generated.

SYNOPSIS
void s1302(curve, epsge, angle, point, axis, surf, stat)

SISLCurve *curve;
double epsge;
double angle;
double point[];
double axis[];
SISLSurf **surf;
int *stat;

ARGUMENTS
Input Arguments:

curve - Pointer to the curve that is to be rotated.
epsge - Maximal deviation allowed between the true rotational

surface and the generated surface.
angle - The rotational angle. The angle is counterclockwise

around axis. If the absolute value of the angle is greater
than 2π then a rotational surface that is closed in the ro-
tation direction is made.

point - Point on the rotational axis.
axis - Direction of rotational axis.

Output Arguments:
surf - Pointer to the produced surface. This will be a NURBS

(i.e. rational) surface if epsge = 0 and a B-spline (i.e. non-
rational) surface if epsge > 0.

stat - Status messages
> 0 : warning
= 0 : ok
< 0 : error

CHAPTER 7. SURFACE DEFINITION 167

EXAMPLE OF USE
{

SISLCurve *curve; /* Must be defined */
double epsge = 0.0;
double angle; /* Must be defined */
double point[3]; /* Must be defined */
double axis[3]; /* Must be defined */
SISLSurf *surf = NULL;
int stat = 0;
. . .
s1302(curve, epsge, angle, point, axis, &surf, &stat);
. . .

}

CHAPTER 7. SURFACE DEFINITION 168

7.2.4 Compute a surface approximating the offset of a sur-
face.

NAME
s1365 - Create a surface approximating the offset of a surface. The output is

represented as a B-spline surface.
With an offset of zero, this routine can be used to approximate any
NURBS (rational) surface with a B-spline (non-rational) surface.

SYNOPSIS
void s1365(ps, aoffset, aepsge, amax, idim, rs, jstat)

SISLSurf *ps;
double aoffset;
double aepsge;
double amax;
int idim;
SISLSurf **rs;
int *jstat;

ARGUMENTS
Input Arguments:

ps - The input surface.
aoffset - The offset distance. The offset direction is determined by

the normalized cross product of the tangent vector and
the anorm vector. The offset distance is multiplied by this
vector.

aepsge - Maximal deviation allowed between true offset surface and
the approximated offset surface.

amax - Maximal stepping length. Is negleceted if amax ≤ aepsge.
If amax = 0 then a maximal step length of the longest box
side is used.

idim - The dimension of the space (idim = 3 is required).
Output Arguments:

rs - The approximated offset represented as a B-spline surface.

jstat - Status message
< 0 : Error.
= 0 : Ok.
> 0 : Warning.

CHAPTER 7. SURFACE DEFINITION 169

EXAMPLE OF USE
{

SISLSurf *ps; /* Must be defined */
double aoffset; /* Must be defined */
double aepsge = 0.001;
double amax = 0;
int idim = 3;
SISLSurf *rs = NULL;
int jstat = 0;
. . .
s1365(ps, aoffset, aepsge, amax, idim, &rs, &jstat);
. . .

}

CHAPTER 7. SURFACE DEFINITION 170

7.3 Mirror a Surface

NAME
s1601 - Mirror a surface about a plane.

SYNOPSIS
void s1601(psurf, epoint, enorm, idim, rsurf, jstat)

SISLSurf *psurf;
double epoint[];
double enorm[];
int idim;
SISLSurf **rsurf;
int *jstat;

ARGUMENTS
Input Arguments:

psurf - The input surface.
epoint - A point in the plane.
enorm - The normal vector to the plane.
idim - The dimension of the space, must be the same as the sur-

face.
Output Arguments:

rsurf - Pointer to the mirrored surface.
jstat - Status message

< 0 : Error.
= 0 : Ok.
> 0 : Warning.

EXAMPLE OF USE
{

SISLSurf *psurf; /* Must be defined */
double epoint[3]; /* Must be defined */
double enorm[3]; /* Must be defined */
int idim = 3;
SISLSurf *rsurf = NULL;
int jstat = 0;
. . .
s1601(psurf, epoint, enorm, idim, &rsurf, &jstat);
. . .

}

CHAPTER 7. SURFACE DEFINITION 171

7.4 Conversion

7.4.1 Convert a surface of order up to four to a mesh of
Coons patches.

NAME
s1388 - To convert a surface of order less than or equal to 4 in both directions to

a mesh of Coons patches with uniform parameterization. The function
assumes that the surface is C1 continuous.

SYNOPSIS
void s1388(surf, coons, numcoons1, numcoons2, dim, stat)

SISLSurf *surf;
double **coons;
int *numcoons1;
int *numcoons2;
int *dim
int *stat;

ARGUMENTS
Input Arguments:

surf - Pointer to the surface that is to be converted

Output Arguments:
coons - Array containing the (sequence of) Coons patches. The

total number of patches is numcoons1×numcoons2. The
patches are stored in sequence with dim×16 values for each
patch. For each corner of the patch we store in sequence,
positions, derivative in first direction, derivative in second
direction, and twists.

numcoons1 - Number of Coons patches in first parameter direction.

numcoons2 - Number of Coons patches in second parameter direction.

dim - The dimension of the geometric space.
stat - Status messages

= 1 : Order too high, surface interpolated.
= 0 : Ok.
< 0 : Error.

CHAPTER 7. SURFACE DEFINITION 172

EXAMPLE OF USE
{

SISLSurf *surf; /* Must be defined */
double *coons = NULL;
int numcoons1 = 0;
int numcoons2 = 0;
int dim;
int stat = 0;
. . .
s1388(surf, &coons, &numcoons1, &numcoons2, &dim, &stat);
. . .

}

CHAPTER 7. SURFACE DEFINITION 173

7.4.2 Convert a surface to a mesh of Bezier surfaces.

NAME
s1731 - To convert a surface to a mesh of Bezier surfaces. The Bezier surfaces

are stored in a surface with all knots having multiplicity equal to the
order of the surface in the corresponding parameter direction. If the
input surface is rational, the generated Bezier surfaces will be rational
too (i.e. there will be rational weights in the representation of the Bezier
surfaces).

SYNOPSIS
void s1731(surf, newsurf, stat)

SISLSurf *surf;
SISLSurf **newsurf;
int *stat;

ARGUMENTS
Input Arguments:

surf - Surface to convert.

Output Arguments:
newsurf - The new surface storing the Bezier represented

surfaces.
stat - Status messages

> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLSurf *surf; /* Must be defined */
SISLSurf *newsurf = NULL;
int stat = 0;
. . .
s1731(surf, &newsurf, &stat);
. . .

}

CHAPTER 7. SURFACE DEFINITION 174

7.4.3 Pick the next Bezier surface from a surface.

NAME
s1733 - To pick the next Bezier surface from a surface. This function requires a

surface represented as the result of s1731(). See page 173. This routine
does not check that the surface is correct. If the input surface is ratio-
nal, the generated Bezier surfaces will be rational too (i.e. there will be
rational weights in the representation of the Bezier surfaces).

SYNOPSIS
void s1733(surf, number1, number2, startpar1, endpar1, startpar2,

endpar2, coef, stat)
SISLSurf *surf;
int number1;
int number2;
double *startpar1;
double *endpar1;
double *startpar2;
double *endpar2;
double coef[];
int *stat;

ARGUMENTS
Input Arguments:

surf - The surface to convert.
number1 - The number of the Bezier patch to pick in the horizontal

direction, where 0 ≤ number1 < in1/ik1 of the surface.

number2 - The number of the Bezier patch to pick in the vertical
direction, , where 0 ≤ number2 < in2/ik2 of the surface.

Output Arguments:
startpar1 - The start parameter value of the Bezier patch in the hori-

zontal direction.
endpar1 - The end parameter value of the Bezier patch in the hori-

zontal direction.
startpar2 - The start parameter value of the Bezier patch in the ver-

tical direction.
endpar2 - The end parameter value of the Bezier patch in the vertical

direction.
coef - The vertices of the Bezier patch. Space must be allocated

with a size of idim × ik1 × ik2 or (idim + 1) × ik1 × ik2
in the rational case. These parameters are given by the
surface (this is done for reasons of efficiency).

CHAPTER 7. SURFACE DEFINITION 175

stat - Status messages
> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLSurf *surf; /* Must be defined */
int number1; /* Must be defined */
int number2; /* Must be defined */
double startpar1;
double endpar1;
double startpar2;
double endpar2;
double coef[48]; /* Non-rational, degree 3 in both directions,

geometry space dimension equal to 3 */
int stat = 0;
. . .
s1733(surf, number1, number2, &startpar1, &endpar1, &startpar2, &end-

par2, coef, &stat);
. . .

}

CHAPTER 7. SURFACE DEFINITION 176

7.4.4 Express a surface using a higher order basis.

NAME
s1387 - To express a surface as a surface of higher order.

SYNOPSIS
void s1387(surf, order1, order2, newsurf, stat)

SISLSurf *surf;
int order1;
int order2;
SISLSurf **newsurf;
int *stat;

ARGUMENTS
Input Arguments:

surf - Surface to raise the order of.
order1 - New order in the first parameter direction.
order2 - New order in the second parameter direction.

Output Arguments:
newsurf - The resulting order elevated surface.
stat - Status messages

= 1 : Input order equal to order of surface. Pointer
set to input.

= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLSurf *surf; /* Must be defined */
int order1; /* Must be defined. Larger than or equal to surf–>ik1 */
int order2; /* Must be defined. Larger than or equal to surf–>ik2 */
SISLSurf *newsurf = NULL;
int stat = 0;
. . .
s1387(surf, order1, order2, &newsurf, &stat);
. . .

}

CHAPTER 7. SURFACE DEFINITION 177

7.4.5 Express the “i,j”-th derivative of an open surface as
a surface.

NAME
s1386 - To express the (der1, der2)-th derivative of an open surface as a surface.

SYNOPSIS
void s1386(surf, der1, der2, newsurf, stat)

SISLSurf *surf;
int der1;
int der2;
SISLSurf **newsurf;
int *stat;

ARGUMENTS
Input Arguments:

surf - Surface to differentiate.
der1 - The derivative to be produced in the first parameter direc-

tion: 0 ≤ der1
der2 - The derivative to be produced in the second parameter

direction: 0 ≤ der2
Output Arguments:

newsurf - The result of the (der1, der2) differentiation of surf.
stat - Status messages

> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLSurf *surf; /* Must be defined */
int der1 = 1;
int der2 = 0;
SISLSurf *newsurf = NULL;
int stat = 0;
. . .
s1386(surf, der1, der2, &newsurf, &stat);
. . .

}

CHAPTER 7. SURFACE DEFINITION 178

7.4.6 Express the octants of a sphere as a surface.

NAME
s1023 - To express the octants of a sphere as a surface. This can also be used to

describe the complete sphere. The sphere/the octants of the sphere will
be geometrically exact.

SYNOPSIS
void s1023(centre, axis, equator, latitude, longitude, sphere, stat)

double centre[];
double axis[];
double equator[];
int latitude;
int longitude;
SISLSurf **sphere;
int *stat;

ARGUMENTS
Input Arguments:

centre - Centre point of the sphere.
axis - Axis of the sphere (towards the north pole).
equator - Vector from centre to start point on the equator.
latitude - Flag indicating number of octants in north/south direc-

tion:
= 1 : Octants in the northern hemisphere.
= 2 : Octants in both hemispheres.

longitude - Flag indicating number of octants along the equator. This
is counted counterclockwise from equator.

= 1 : Octants in 1. quadrant.
= 2 : Octants in 1. and 2. quadrant.
= 3 : Octants in 1., 2. and 3. quadrant.
= 4 : Octants in all quadrants.

Output Arguments:
sphere - The sphere produced.
stat - Status messages

> 0 : warning
= 0 : ok
< 0 : error

CHAPTER 7. SURFACE DEFINITION 179

EXAMPLE OF USE
{

double centre[3]; /* Must be defined */
double axis[3]; /* Must be defined */
double equator[3]; /* Must be defined */
int latitude = 1;
int longitude = 2;
SISLSurf *sphere = NULL;
int stat = 0;
. . .
s1023(centre, axis, equator, latitude, longitude, &sphere, &stat);
. . .

}

CHAPTER 7. SURFACE DEFINITION 180

7.4.7 Express a truncated cylinder as a surface.

NAME
s1021 - To express a truncated cylinder as a surface. The cylinder can be elliptic.

The cylinder will be geometrically exact.

SYNOPSIS
void s1021(bottom pos, bottom axis, ellipse ratio, axis dir, height, cyl, stat)

double bottom pos[];
double bottom axis[];
double ellipse ratio;
double axis dir[];
double height;
SISLSurf **cyl;
int *stat;

ARGUMENTS
Input Arguments:

bottom pos - Center point of the bottom.
bottom axis - One of the bottom axis (major or minor).
ellipse ratio - Ratio between the other axis and bottom axis.
axis dir - Direction of the cylinder axis.
height - Height of the cone, can be negative.

Output Arguments:
cyl - Pointer to the cylinder produced.
stat - Status messages

> 0 : Warning.
= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

double bottom pos[3]; /* Must be defined */
double bottom axis[3]; /* Must be defined */
double ellipse ratio = 1.0; /* Circular cylinder */
double axis dir[3]; /* Must be defined */
double height; /* Must be defined */
SISLSurf *cyl = NULL;
int stat = 0;
. . .
s1021(bottom pos, bottom axis, ellipse ratio, axis dir, height, &cyl, &stat)
. . .

}

CHAPTER 7. SURFACE DEFINITION 181

7.4.8 Express the octants of a torus as a surface.

NAME
s1024 - To express the octants of a torus as a surface. This can also be used to

describe the complete torus. The torus/the octants of the torus will be
geometrically exact.

SYNOPSIS
void s1024(centre, axis, equator, minor radius, start minor, end minor,

numb major, torus, stat)
double centre[];
double axis[];
double equator[];
double minor radius;
int start minor;
int end minor;
int numb major;
SISLSurf **torus;
int *stat;

ARGUMENTS
Input Arguments:

centre - Centre point of the torus.
axis - Normal to the torus plane.
equator - Vector from centre to start point on the major circle.

minor radius - Radius of the minor circle.
start minor - Start quadrant on the minor circle (1,2,3 or 4). This is

counted clockwise from the extremum in the direction of
axis.

end minor - End quadrant on the minor circle (1,2,3 or 4). This is
counted clockwise from the extremum in the direction of
axis.

numb major - Number of quadrants on the major circle (1,2,3 or 4). This
is counted counterclockwise from equator.

Output Arguments:
torus - Pointer to the torus produced.
stat - Status messages

> 0 : Warning.
= 0 : Ok.
< 0 : Error.

CHAPTER 7. SURFACE DEFINITION 182

EXAMPLE OF USE
{

double centre[3]; /* Must be defined */
double axis[3]; /* Must be defined */
double equator[3]; /* Must be defined. Length gives major radius */
double minor radius; /* Must be defined */
int start minor = 1;
int end minor = 4; /* start minor and end minor defines full circle */
int numb major = 2;
SISLSurf *torus = NULL;
int stat = 0;
. . .
s1024(centre, axis, equator, minor radius, start minor, end minor,

numb major, &torus, &stat)
. . .

}

CHAPTER 7. SURFACE DEFINITION 183

7.4.9 Express a truncated cone as a surface.

NAME
s1022 - To express a truncated cone as a surface. The cone can be elliptic. The

cone will be geometrically exact.

SYNOPSIS
void s1022(bottom pos, bottom axis, ellipse ratio, axis dir, cone angle, height,

cone, stat)
double bottom pos[];
double bottom axis[];
double ellipse ratio;
double axis dir[];
double cone angle;
double height;
SISLSurf **cone;
int *stat;

ARGUMENTS
Input Arguments:

bottom pos - Center point of the bottom.
bottom axis - One of the bottom axis (major or minor).
ellipse ratio - Ratio between the other axis and bottom axis.
axis dir - Direction of the cone axis.
cone angle - Angle between axis dir and the cone at the end of bot-

tom axis, positive if the cone is sloping inwards.

height - Height of the cone, can be negative.

Output Arguments:
cone - Pointer to the cone produced.
stat - Status messages

> 0 : Warning.
= 0 : Ok.
< 0 : Error.

CHAPTER 7. SURFACE DEFINITION 184

EXAMPLE OF USE
{

double bottom pos[3]; /* Must be defined */
double bottom axis[3]; /* Must be defined */
double ellipse ratio =0.5; /* Elliptic cone */
double axis dir[3]; /* Must be defined */
double cone angle; /* Must be defined */
double height; /* Must be defined */
SISLSurf *cone = NULL;
int stat = 0;
. . .
s1022(bottom pos, bottom axis, ellipse ratio, axis dir, cone angle, height,

&cone, &stat)
. . .

}

Chapter 8

Surface Interrogation

This chapter describes the functions in the Surface Interrogation module.

8.1 Intersection Curves

Intersection curves are tied to two objects where at least one is a surface or a
curve. The representation of the intersection curves in the SISLIntcurve struc-
ture has two levels. The first level is guide points which are points in the
parametric space and on the intersection curve. In every case there must be at
least one guide point, but there is no upper bound. Guide points are computed
in the topology detection routines. The second level is curves, one curve in
the geometric space and one curve in each parameter plane if each surface is
parametric. These curves are the results of the marching routines.

8.1.1 Intersection curve object.

In the library an intersection curve is stored in a struct SISLIntcurve containing
the following:

int ipoint; Number of guide points defining the curve.
double *epar1; Pointer to the parameter values of the points in the first

object.
double *epar2; Pointer to the parameter values of the points in the second

object.
int ipar1; Number of parameter directions of first object.
int ipar2; Number of parameter directions of second object.
SISLCurve *pgeom; Pointer to the intersection curve in the geometry space. If

the curve is not computed, pgeom points to NULL.
SISLCurve *ppar1; Pointer to the intersection curve in the parameter plane of

the first object. If the curve is not computed, ppar1 points
to NULL.

SISLCurve *ppar2; Pointer to the intersection curve in the parameter plane
of the second object. If the curve is not computed, ppar2
points to NULL.

int itype; Type of curve:
= 1 : Straight line.

185

CHAPTER 8. SURFACE INTERROGATION 186

= 2 : Closed loop. No singularities.
= 3 : Closed loop. One singularity. Not used.
= 4 : Open curve. No singularity.
= 5 : Open curve. Singularity at the beginning of

the curve.
= 6 : Open curve. Singularity at the end of the

curve.
= 7 : Open curve. Singularity at the beginning and

end of the curve.
= 8 : An isolated singularity. Not used.

Singularities are points on the intersection curve where, in an intersection be-
tween a curve and a surface, the tangent of the curve lies in the tangent plane
of the surface, or in an intersection between two surfaces, the tangent plane of
the surfaces coincide.

CHAPTER 8. SURFACE INTERROGATION 187

8.1.2 Create a new intersection curve object.

NAME
newIntcurve - Create and initialize a SISLIntcurve-instance. Note that the arrays

guidepar1 and guidepar2 will be freed by freeIntcurve. In most cases
the SISLIntcurve objects will be generated internally in the SISL inter-
section routines.

SYNOPSIS
SISLIntcurve *newIntcurve(numgdpt, numpar1, numpar2, guidepar1,

guidepar2, type)
int numgdpt;
int numpar1;
int numpar2;
double guidepar1[];
double guidepar2[];
int type;

ARGUMENTS
Input Arguments:

numgdpt - Number of guide points that describe the curve.
numpar1 - Number of parameter directions of first object involved in

the intersection.
numpar2 - Number of parameter directions of second object involved

in the intersection.
guidepar1 - Parameter values of the guide points in the parameter area

of the first object. NB! The epar1 pointer is set to point
to this array. The values are not copied.

guidepar2 - Parameter values of the guide points in the parameter area
of the second object. NB! The epar2 pointer is set to point
to this array. The values are not copied.

. type - Kind of curve, see type SISLIntcurve on page 185

Output Arguments:
newIntcurve Pointer to new SISLIntcurve. If it is impossible to allocate

space for the SISLIntcurve, newIntcurve returns NULL.

CHAPTER 8. SURFACE INTERROGATION 188

EXAMPLE OF USE
{

SISLIntcurve *intcurve = NULL;
int numgdpt = 2;
int numpar1 = 2;
int numpar2 = 2;
double guidepar1[4]; /* Must be defined */
double guidepar2[4]; /* Must be defined */
int type = 4;
. . .
intcurve = newIntcurve(numgdpt, numpar1, numpar2, guidepar1,

guidepar2, type);
. . .

}

CHAPTER 8. SURFACE INTERROGATION 189

8.1.3 Delete an intersection curve object.

NAME
freeIntcurve - Free the space occupied by a SISLIntcurve.

Note that the arrays guidepar1 and guidepar2 will be freed as well.

SYNOPSIS
void freeIntcurve(intcurve)

SISLIntcurve *intcurve;

ARGUMENTS
Input Arguments:

intcurve - Pointer to the SISLIntcurve to delete.

EXAMPLE OF USE
{

SISLIntcurve *intcurve = NULL;
int numgdpt = 2;
int numpar1 = 2;
int numpar2 = 2;
double guidepar1[4];
double guidepar2[4];
int type = 4;
. . .
intcurve = newIntcurve(numgdpt, numpar1, numpar2, guidepar1,

guidepar2, type);
. . .
if (intcurve) freeIntcurve(intcurve);
. . .

}

CHAPTER 8. SURFACE INTERROGATION 190

8.1.4 Free a list of intersection curves.

NAME
freeIntcrvlist - Free a list of SISLIntcurve.

SYNOPSIS
void freeIntcrvlist(vilist, icrv)

SISLIntcurve **vilist;
int icrv;

ARGUMENTS
Input Arguments:

vilist - Array of pointers to pointers to instance of Intcurve.
icrv - number of SISLIntcurves in the list.

Output Arguments:
None - None.

EXAMPLE OF USE
{

SISLIntcurve **vilist = NULL;
int icrv = 0;
. . .
/* SISLIntcurve instances are generated for instance in surface–surface
intersection */
. . .
if (vilist) freeIntcrvlist(vilist, icrv);
. . .

}

CHAPTER 8. SURFACE INTERROGATION 191

8.2 Find the Intersections

Intersection functionality where at least one of the input geometry entities is or
can be a surface.

8.2.1 Intersection between a spline curve and a straight
line or a plane.

NAME
s1850 - Find all the intersections between a spline curve and a plane (if curve

dimension and dim = 3) or a curve and a line (if curve dimension and
dim = 2).

SYNOPSIS
void s1850(curve, point, normal, dim, epsco, epsge, numintpt, intpar,

numintcu, intcurve, stat)
SISLCurve *curve;
double point[];
double normal[];
int dim;
double epsco;
double epsge;
int *numintpt;
double **intpar;
int *numintcu;
SISLIntcurve ***intcurve;
int *stat;

ARGUMENTS

Input Arguments:
curve - Pointer to the curve.
point - Point in the plane/line.
normal - Normal to the plane or any normal to the direction of the

line.
dim - Dimension of the space in which the curve and the

plane/line lies, dim must be equal to two or three.

epsco - Computational resolution (not used).
epsge - Geometry resolution.

Output Arguments:
numintpt - Number of single intersection points.
intpar - Array containing the parameter values of the single inter-

section points in the parameter interval of the curve. The
points lie in sequence. Intersection curves are stored in
intcurve.

numintcu - Number of intersection curves.

CHAPTER 8. SURFACE INTERROGATION 192

intcurve - Array of pointers to SISLIntcurve objects containing de-
scription of the intersection curves. The curves are only
described by start points and end points in the parameter
interval of the curve. The curve pointers point to nothing.

stat - Status messages
> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLCurve *curve; /* Must be defined */
double point[3]; /* Must be defined */
double normal[3]; /* Must be defined */
int dim = 3;
double epsco = 1.0e-9; /* Not used */
double epsge = 1.0e-6;
int numintpt = 0;
double *intpar = NULL;
int numintcu = 0;
SISLIntcurve **intcurve = NULL;
int stat = 0;
. . .
s1850(curve, point, normal, dim, epsco, epsge, &numintpt, &intpar, &nu-

mintcu, &intcurve, &stat);
. . .

}

CHAPTER 8. SURFACE INTERROGATION 193

8.2.2 Intersection between a spline curve and a 2D circle
or a sphere.

NAME
s1371 - Find all the intersections between a curve and a sphere (if curve di-

mension and dim = 3), or a curve and a circle (if curve dimension and
dim = 2).

SYNOPSIS
void s1371(curve, centre, radius, dim, epsco, epsge, numintpt, intpar,

numintcu, intcurve, stat)
SISLCurve *curve;
double centre[];
double radius;
int dim;
double epsco;
double epsge;
int *numintpt;
double **intpar;
int *numintcu;
SISLIntcurve ***intcurve;
int *stat;

ARGUMENTS
Input Arguments:

curve - Pointer to the curve.
centre - Centre of the circle/sphere.
radius - Radius of circle or sphere.
dim - Dimension of the space in which the curve and the cir-

cle/sphere lies, dim should be equal to two or three.
epsco - Computational resolution (not used).
epsge - Geometry resolution.

Output Arguments:
numintpt - Number of single intersection points.
intpar - Array containing the parameter values of the single inter-

section points in the parameter interval of the curve. The
points lie in sequence. Intersection curves are stored in
intcurve.

numintcu - Number of intersection curves.
intcurve - Array of pointers to SISLIntcurve objects containing de-

scriptions of the intersection curves. The curves are only
described by start points and end points in the parameter
interval of the curve. The curve pointers point to nothing.

CHAPTER 8. SURFACE INTERROGATION 194

stat - Status messages
> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLCurve *curve; /* Must be defined */
double centre[3]; /* Must be defined */
double radius; /* Must be defined */
int dim = 3;
double epsco = 1.0e-9; /* Not used */
double epsge = 1.0e-6;
int numintpt = 0;
double *intpar = NULL;
int numintcu = 0;
SISLIntcurve **intcurve = NULL;
int stat = 0;
. . .
s1371(curve, centre, radius, dim, epsco, epsge, &numintpt, &intpar, &nu-

mintcu, &intcurve, &stat);
. . .

}

CHAPTER 8. SURFACE INTERROGATION 195

8.2.3 Intersection between a spline curve and a cylinder.

NAME
s1372 - Find all the intersections between a spline curve and a cylinder.

SYNOPSIS
void s1372(curve, point, dir, radius, dim, epsco, epsge, numintpt, intpar, nu-

mintcu, intcurve, stat)
SISLCurve *curve;
double point[];
double dir[];
double radius;
int dim;
double epsco;
double epsge;
int *numintpt;
double **intpar;
int *numintcu;
SISLIntcurve ***intcurve;
int *stat;

ARGUMENTS
Input Arguments:

curve - Pointer to the curve.
point - Point on the cylinder axis.
dir - Direction of the cylinder axis.
radius - Radius of the cylinder.
dim - Dimension of the space in which the cylinder and the curve

lie, dim should be equal to three.
epsco - Computational resolution (not used).
epsge - Geometry resolution.

Output Arguments:
numintpt - Number of single intersection points.
intpar - Array containing the parameter values of the single inter-

section points in the parameter interval of the curve. The
points lie in sequence. Intersection curves are stored in
intcurve.

numintcu - Number of intersection curves.
intcurve - Array of pointers to the SISLIntcurve objects containing

descriptions of the intersection curves. The curves are only
described by start points and end points in the parameter
interval of the curve. The curve pointers point to nothing.

CHAPTER 8. SURFACE INTERROGATION 196

stat - Status messages
> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLCurve *curve; /* Must be defined */
double point[3]; /* Must be defined */
double dir[3]; /* Must be defined */
double radius; /* Must be defined */
int dim = 3;
double epsco = 1.0e-9 /* Not used */;
double epsge = 1.0e-6;
int numintpt = 0;
double *intpar = NULL;
int numintcu = 0;
SISLIntcurve **intcurve = NULL;
int stat = 0;
. . .
s1372(curve, point, dir, radius, dim, epsco, epsge, &numintpt,

&intpar, &numintcu, &intcurve, &stat);
. . .

}

CHAPTER 8. SURFACE INTERROGATION 197

8.2.4 Intersection between a spline curve and a cone.

NAME
s1373 - Find all the intersections between a curve and a cone.

SYNOPSIS
void s1373(curve, top, dir, conept, dim, epsco, epsge, numintpt, intpar, numintcu,

intcurve, stat)
SISLCurve *curve;
double top[];
double axispt[];
double conept[];
int dim;
double epsco;
double epsge;
int *numintpt;
double **intpar;
int *numintcu;
SISLIntcurve ***intcurve;
int *stat;

ARGUMENTS
Input Arguments:

curve - Pointer to the curve.
top - Top point of the cone.
axispt - Point on the cone axis.
conept - Point on the cone surface, other than the top point.
dim - Dimension of the space in which the cone and the curve

lie, dim should be equal to three.
epsco - Computational resolution (not used).
epsge - Geometry resolution.

Output Arguments:
numintpt - Number of single intersection points.
intpar - Array containing the parameter values of the single inter-

section points in the parameter interval of the curve. The
points lie in sequence. Intersection curves are stored in
intcurve.

numintcu - Number of intersection curves.
intcurve - Array of pointers to the SISLIntcurve object containing

descriptions of the intersection curves. The curves are only
described by start points and end points in the parameter
interval of the curve. The curve pointers point to nothing.

CHAPTER 8. SURFACE INTERROGATION 198

stat - Status messages
> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLCurve *curve; /*Must be defined */
double top[3]; /* Must be defined */
double dir[3]; /* Must be defined */
double conept[3]; /* Must be defined */
int dim = 3;
double epsco = 1.0e-9; /* Not used */
double epsge = 1.0e-6;
int numintpt = 0;
double *intpar = NULL;
int numintcu = 0;
SISLIntcurve **intcurve = NULL;
int stat = 0;
. . .
s1373(curve, top, dir, conept, dim, epsco, epsge, &numintpt, &intpar, &nu-

mintcu, &intcurve, &stat);
. . .

}

CHAPTER 8. SURFACE INTERROGATION 199

8.2.5 Intersection between a spline curve and an elliptic
cone.

NAME
s1502 - Find all the intersections between a curve and an elliptic cone.

SYNOPSIS
void s1502(curve, basept, normdir, ellipaxis, alpha, ratio, dim, epsco, epsge, nu-

mintpt, intpar, numintcu, intcurve, stat)
SISLCurve *curve;
double basept[];
double normdir[];
double ellipaxis[];
double alpha;
double ratio;
int dim;
double epsco;
double epsge;
int *numintpt;
double **intpar;
int *numintcu;
SISLIntcurve ***intcurve;
int *stat;

ARGUMENTS
Input Arguments:

curve - Pointer to the curve.
basept - Base point of the cone, centre of elliptic base.
normdir - Direction of the cone axis, normal to the elliptic base. The

default is pointing from the base point to the top point of
the cone.

ellipaxis - One of the axes of the ellipse (major or minor).
alpha - The opening angle of the cone at the ellipaxis.
ratio - The ratio of the major and minor axes = elli-

paxis/otheraxis.
dim - Dimension of the space in which the cone and the curve

lie, dim should be equal to three.
epsco - Computational resolution (not used).
epsge - Geometry resolution.

CHAPTER 8. SURFACE INTERROGATION 200

Output Arguments:
numintpt - Number of single intersection points.
intpar - Array containing the parameter values of the single inter-

section points in the parameter interval of the curve. The
points lie in sequence. Intersection curves are stored in
intcurve.

numintcu - Number of intersection curves.
intcurve - Array of pointers to the SISLIntcurve object containing

descriptions of the intersection curves. The curves are only
described by start points and end points in the parameter
interval of the curve. The curve pointers point to nothing.

stat - Status messages
> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLCurve *curve; /* Must be defined */
double basept[3]; /* Must be defined */
double normdir[3]; /* Must be defined */
double ellipaxis[3]; /* Must be defined */
double alpha; /* Must be defined */
double ratio = 1.5;
int dim = 3;
double epsco = 1.0e-9; /* Not used */
double epsge = 1.0e-6;
int numintpt = 0;
double *intpar = NULL;
int numintcu = 0;
SISLIntcurve **intcurve = NULL;
int stat = 0;
. . .
s1502(curve, basept, normdir, ellipaxis, alpha, ratio, dim, epsco, epsge, &nu-

mintpt, &intpar, &numintcu, &intcurve, &stat);
. . .

}

CHAPTER 8. SURFACE INTERROGATION 201

8.2.6 Intersection between a curve and a torus.

NAME
s1375 - Find all the intersections between a spline curve and a torus.

SYNOPSIS
void s1375(curve, centre, normal, centdist, rad, dim, epsco, epsge,

numintpt, intpar, numintcu, intcurve, stat)
SISLCurve *curve;
double centre[];
double normal[];
double centdist;
double rad;
int dim;
double epsco;
double epsge;
int *numintpt;
double **intpar;
int *numintcu;
SISLIntcurve ***intcurve;
int *stat;

ARGUMENTS
Input Arguments:

curve - Pointer to the curve.
centre - The centre of the torus (lying in the symmetry plane)

normal - Normal of symmetry plane.
centdist - Distance from the centre of the cone to the centre circle of

the torus.
rad - The radius of the torus surface.
dim - Dimension of the space in which the torus and the curve

lie, dim should be equal to three.
epsco - Computational resolution (not used).
epsge - Geometry resolution.

Output Arguments:
numintpt - Number of single intersection points.
intpar - Array containing the parameter values of the single inter-

section points in the parameter interval of the curve. The
points lie in sequence. Intersection curves are stored in
intcurve.

numintcu - Number of intersection curves.
intcurve - Array of pointers to the SISLIntcurve objects containing

descriptions of the intersection curves. The curves are only
described by start points and end points in the parameter
interval of the curve. The curve pointers point to nothing.

stat - Status messages
> 0 : warning
= 0 : ok
< 0 : error

CHAPTER 8. SURFACE INTERROGATION 202

EXAMPLE OF USE
{

SISLCurve *curve; /* Must be defined */
double centre[3]; /* Must be defined */
double normal[3]; /* Must be defined */
double centdist; /* Must be defined */
double rad; /* Must be defined */
int dim = 3;
double epsco = 1.0e-9; /* Not used */
double epsge = 1.0e-6;
int numintpt = 0;
double *intpar = NULL;
int numintcu = 0;
SISLIntcurve **intcurve = NULL;
int stat = 0;
. . .
s1375(curve, centre, normal, centdist, rad, dim, epsco, epsge,

&numintpt, &intpar, &numintcu, &intcurve, &stat);
. . .

}

CHAPTER 8. SURFACE INTERROGATION 203

8.2.7 Intersection between a surface and a point.

NAME
s1870 - Find all intersections between a spline surface and a point.

SYNOPSIS
void s1870(ps1, pt1, idim, aepsge, jpt, gpar1, jcrv, wcurve, jstat)

SISLSurf *ps1;
double pt1[];
int idim;
double aepsge;
int *jpt;
double **gpar1;
int *jcrv;
SISLIntcurve ***wcurve;
int *jstat;

ARGUMENTS
Input Arguments:

ps1 - Pointer to the surface.
pt1 - Coordinates of the point.
idim - Number of coordinates in pt1.
aepsge - Geometry resolution.

Output Arguments:
jpt - Number of single intersection points.
gpar1 - Array containing the parameter values of the single in-

tersection points in the parameter interval of the surface.
The points lie continuous. Intersection curves are stored
in wcurve.

jcrv - Number of intersection curves.
wcurve - Array containing descriptions of the intersection curves.

The curves are only described by points in the parameter
plane. The curve-pointers points to nothing.
If the curves given as input are degnenerate an intersection
point can be returned as an intersection curve. Use s1327
to decide if an intersection curve is a point on one of the
curves.

jstat - Status messages
> 0 : Warning.
= 0 : Ok.
< 0 : Error.

CHAPTER 8. SURFACE INTERROGATION 204

EXAMPLE OF USE
{

SISLSurf *ps1; /* Must be defined */
double pt1[3]; /* Must be defined */
int idim = 3;
double aepsge = 1.0e-6;
int jpt = 0;
double *gpar1 = NULL;
int jcrv = 0;
SISLIntcurve **wcurve = NULL;
int jstat = 0;
. . .
s1870(ps1, pt1, idim, aepsge, &jpt, &gpar1, &jcrv, &wcurve, &jstat);
. . .

}

CHAPTER 8. SURFACE INTERROGATION 205

8.2.8 Intersection between a spline surface and a straight
line.

NAME
s1856 - Find all intersections between a tensor-product surface and an infinite

straight line.

SYNOPSIS
void s1856(surf, point, linedir, dim, epsco, epsge, numintpt, pointpar,

numintcr, intcurves, stat)
SISLSurf *surf;
double point[];
double linedir[];
int dim;
double epsco;
double epsge;
int *numintpt;
double **pointpar;
int *numintcr;
SISLIntcurve ***intcurves;
int *stat;

ARGUMENTS
Input Arguments:

surf - Pointer to the surface.
point - Point on the line.
linedir - Direction vector of the line.
dim - Dimension of the space in which the line lies.
epsco - Computational resolution (not used).
epsge - Geometry resolution.

Output Arguments:
numintpt - Number of single intersection points.
pointpar - Array containing the parameter values of the single inter-

section points in the parameter plane of the surface. The
points lie in sequence. Intersection curves are stored in
intcurves.

numintcr - Number of intersection curves.
intcurves - Array containing the description of the intersection curves.

The curves are only described by start points and end
points in the parameter plane. The curve pointers point
to nothing.

stat - Status messages
> 0 : warning
= 0 : ok
< 0 : error

CHAPTER 8. SURFACE INTERROGATION 206

EXAMPLE OF USE
{

SISLSurf *surf; /* Must be defined */
double point[3]; /* Must be defined */
double linedir[3]; /* Must be defined */
int dim = 3;
double epsco = 1.0e-9; /* Not used */
double epsge =1.0e-6;
int numintpt = 0;
double *pointpar = NULL;
int numintcr = 0;
SISLIntcurve **intcurves = NULL;
int stat = 0;
. . .
s1856(surf, point, linedir, dim, epsco, epsge, &numintpt, &pointpar, &nu-

mintcr, &intcurves, &stat);
. . .

}

CHAPTER 8. SURFACE INTERROGATION 207

8.2.9 Newton iteration on the intersection between a 3D
NURBS surface and a line.

NAME
s1518 - Newton iteration on the intersection between a 3D NURBS surface and

a line. If a good initial guess is given, the intersection will be found
quickly. However if a bad initial guess is given, the iteration might not
converge. We only search in the rectangular subdomain specified by
”start” and ”end”. This can be the whole domain if desired.

SYNOPSIS
void s1518(surf, point, dir, epsge, start, end, parin, parout, stat)

SISLSurf *surf;
double point[];
double dir[];
double epsge;
double start[];
double end[];
double parin[];
double parout[];
int *stat;

ARGUMENTS
Input Arguments:

surf - The NURBS surface.
point - A point on the line.
dir - The vector direction of the line (not necessarily normal-

ized).
epsge - Geometric resolution.
start - Lower limits of search rectangle (umin, vmin).
end - Upper limits of search rectangle (umax, vmax).
parin - Initial guess (u0,v0) for parameter point of intersection

(which should be inside the search rectangle).

Output Arguments:
parout - Parameter point (u,v) of intersection.
jstat - status messages = 1 : Intersection found. ¡ 0 : error.

EXAMPLE OF USE
{

SISLSurf *surf; /* Must be defined */
double point[3]; /* Must be defined */
double dir[3]; /* Must be defined */
double epsge = 1.0e-6;
double start[2]; /* Must be defined */
double end[2]; /* Must be defined */
double parin[2]; /* Guess parameter. Must be defined */
double parout[2];
int stat = 0;
. . .

CHAPTER 8. SURFACE INTERROGATION 208

s1518(surf, point, dir, epsge, start, end, parin, parout, &stat);
. . .

}

CHAPTER 8. SURFACE INTERROGATION 209

8.2.10 Convert a surface/line intersection into a two-dimensional
surface/origo intersection

NAME
s1328 - Put the equation of the surface pointed at by psold into two planes given

by the point epoint and the normals enorm1 and enorm2. The result is
an equation where the new two-dimensional surface rsnew is to be equal
to origo.

SYNOPSIS
void s1328(psold, epoint, enorm1, enorm2, idim, rsnew, jstat)

SISLSurf *psold;
double epoint[];
double enorm1[];
double enorm2[];
int idim;
SISLSurf **rsnew;
int *jstat;

ARGUMENTS
Input Arguments:

psold - Pointer to input surface.
epoint - SISLPoint in the planes.
enorm1 - Normal to the first plane.
enorm2 - Normal to the second plane.
idim - Dimension of the space in which the planes lie.

Output Arguments:
rsnew - dimensional surface.
jstat - status messages

> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLSurf *psold; /* Must be defined */
double epoint[3]; /* Must be defined */
double enorm1[3]; /* Must be defined */
double enorm2[3]; /* Must be defined */
int idim = 3;
SISLSurf **rsnew = NULL;
int *jstat = 0;
. . .
s1328(psold, epoint, enorm1, enorm2, idim, &rsnew, &jstat);
. . .

}

CHAPTER 8. SURFACE INTERROGATION 210

8.2.11 Intersection between a spline surface and a circle.

NAME
s1855 - Find all intersections between a tensor-product surface and a full circle.

SYNOPSIS
void s1855(surf, centre, radius, normal, dim, epsco, epsge, numintpt,

pointpar, numintcr, intcurves, stat)
SISLSurf *surf;
double centre[];
double radius;
double normal[];
int dim;
double epsco;
double epsge;
int *numintpt;
double **pointpar;
int *numintcr;
SISLIntcurve ***intcurves;
int *stat;

ARGUMENTS
Input Arguments:

surf - Pointer to the surface.
centre - Centre of the circle.
radius - Radius of the circle.
normal - Normal vector to the plane in which the circle lies.
epsco - Computational resolution (not used).
epsge - Geometry resolution.

Output Arguments:
numintpt - Number of single intersection points.
pointpar - Array containing the parameter values of the single inter-

section points in the parameter plane of the surface. The
points lie in sequence. Intersection curves are stored in
intcurves.

numintcr - Number of intersection curves.
intcurves - Array containing the description of the intersection curves.

The curves are only described by start points and end
points in the parameter plane. The curve pointers point
to nothing.

stat - Status messages
> 0 : warning
= 0 : ok
< 0 : error

CHAPTER 8. SURFACE INTERROGATION 211

EXAMPLE OF USE
{

SISLSurf *surf; /* Must be defined */
double centre[3]; /* Must be defined */
double radius; /* Must be defined */
double normal[3]; /* Must be defined */
int dim = 3;
double epsco = 1.0e-9; /* Not used */
double epsge = 1.0e-6;
int numintpt = 0;
double *pointpar = NULL;
int numintcr = 0;
SISLIntcurve **intcurves = NULL;
int stat = 0;
. . .
s1855(surf, centre, radius, normal, dim, epsco, epsge, &numintpt, &pointpar,

&numintcr, &intcurves, &stat);
. . .

}

CHAPTER 8. SURFACE INTERROGATION 212

8.2.12 Intersection between a surface and a curve.

NAME
s1858 - Find all intersections between a surface and a curve. Intersection curves

are described by guide points. To pick the intersection curves use s1712()
described on page 128.

SYNOPSIS
void s1858(surf, curve, epsco, epsge, numintpt, pointpar1, pointpar2,

numintcr, intcurves, stat)
SISLSurf *surf;
SISLCurve *curve;
double epsco;
double epsge;
int *numintpt;
double **pointpar1;
double **pointpar2;
int *numintcr;
SISLIntcurve ***intcurves;
int *stat;

ARGUMENTS
Input Arguments:

surf - Pointer to the surface.
curve - Pointer to the curve.
epsco - Computational resolution (not used).
epsge - Geometry resolution.

Output Arguments:
numintpt - Number of single intersection points.
pointpar1 - Array containing the parameter values of the single inter-

section points in the parameter plane of the surface. The
points lie in sequence. Intersection curves are stored in
intcurves.

pointpar2 - Array containing the parameter values of the single inter-
section points in the parameter interval of the curve.

numintcr - Number of intersection curves.
intcurves - Array containing the description of the intersection curves.

The curves are only described by start points and end
points (guide points) in the parameter plane.
The curve pointers point to nothing. If the curves given as
input are degenerate, an intersection point can be returned
as an intersection curve.

CHAPTER 8. SURFACE INTERROGATION 213

stat - Status messages
> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLSurf *surf; /* Must be defined */
SISLCurve *curve; /* Must be defined */
double epsco = 1.0e-9; /* Not used */
double epsge = 1.0e-6;
int numintpt = 0;
double *pointpar1 = NULL;
double *pointpar2 = NULL;
int numintcr = 0;
SISLIntcurve **intcurves = NULL;
int stat = 0;
. . .
s1858(surf, curve, epsco, epsge, &numintpt, &pointpar1, &pointpar2, &nu-

mintcr, &intcurves, &stat);
. . .

}

CHAPTER 8. SURFACE INTERROGATION 214

8.3 Find the Topology of the Intersection

8.3.1 Find the topology for the intersections between a
spline surface and a plane.

NAME
s1851 - Find all intersections between a tensor-product surface and a plane. In-

tersection curves are described by guide points. To make the intersection
curves use s1314() described on page 234.

SYNOPSIS
void s1851(surf, point, normal, dim, epsco, epsge, numintpt, pointpar, numintcr,

intcurves, stat)
SISLSurf *surf;
double point[];
double normal[];
int dim;
double epsco;
double epsge;
int *numintpt;
double **pointpar;
int *numintcr;
SISLIntcurve ***intcurves;
int *stat;

ARGUMENTS
Input Arguments:

surf - Pointer to surface
point - Point in the plane.
normal - Normal to the plane.
dim - Dimension of the space in which the plane lies.
epsco - Computational resolution (not used).
epsge - Geometry resolution.

Output Arguments:
numintpt - Number of single intersection points.
pointpar - Array containing the parameter values of the single inter-

section points in the parameter plane of the surface. The
points lie in sequence. Intersection curves are stored in
intcurves.

numintcr - Number of intersection curves.
intcurves - Array containing descriptions of the intersection curves.

The curves are only described by start points and end
points (guide points) in the parameter plane. The curve
pointers point to nothing.

CHAPTER 8. SURFACE INTERROGATION 215

stat - Status messages
> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLSurf *surf; /* Must be defined */
double point[3]; /* Must be defined */
double normal[3]; /* Must be defined */
int dim = 3;
double epsco = 1.0e-9; /* Not used */
double epsge = 1.0e-6;
int numintpt = 0;
double *pointpar = NULL;
int numintcr = 0;
SISLIntcurve **intcurves = NULL;
int stat = 0;
. . .
s1851(surf, point, normal, dim, epsco, epsge, &numintpt, &pointpar, &nu-

mintcr, &intcurves, &stat);
. . .

}

CHAPTER 8. SURFACE INTERROGATION 216

8.3.2 Find the topology for the intersection between a
spline surface and a sphere.

NAME
s1852 - Find all intersections between a tensor-product surface and a sphere.

Intersection curves are described by guide points. To produce the inter-
section curves use s1315() described on page 236.

SYNOPSIS
void s1852(surf, centre, radius, dim, epsco, epsge, numintpt, pointpar,

numintcr, intcurves, stat)
SISLSurf *surf;
double centre [];
double radius;
int dim;
double epsco;
double epsge;
int *numintpt;
double **pointpar;
int *numintcr;
SISLIntcurve ***intcurves;
int *stat;

ARGUMENTS
Input Arguments:

surf - Pointer to the surface.
centre - Center of the sphere.
radius - Radius of the sphere.
dim - Dimension of the space in which the sphere lies.
epsco - Computational resolution (not used).
epsge - Geometry resolution.

Output Arguments:
numintpt - Number of single intersection points.
pointpar - Array containing the parameter values of the single inter-

section points in the parameter plane of the surface. The
points lie in sequence. Intersection curves are stored in
intcurves.

numintcr - Number of intersection curves.
intcurves - Array containing description of the intersection curves.

The curves are only described by start points and end
points (guide points) in the parameter plane. The curve
pointers point to nothing.

stat - Status messages
> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLSurf *surf; /* Must be defined */

CHAPTER 8. SURFACE INTERROGATION 217

double centre[3]; /* Must be defined */
double radius; /* Must be defined */
int dim = 3;
double epsco = 1.0e-9; /* Not used */
double epsge = 1.0e-6;
int numintpt = 0;
double *pointpar = NULL;
int numintcr = 0;
SISLIntcurve **intcurves = NULL;
int stat = 0;
. . .
s1852(surf, centre, radius, dim, epsco, epsge, &numintpt, &pointpar, &nu-

mintcr, &intcurves, &stat);
. . .

}

CHAPTER 8. SURFACE INTERROGATION 218

8.3.3 Find the topology for the intersections between a
spline surface and a cylinder.

NAME
s1853 - Find all intersections between a tensor-product surface and a cylinder.

Intersection curves are described by guide points. To produce the inter-
section curves use s1316() described on page 238.

SYNOPSIS
void s1853(surf, point, cyldir, radius, dim, epsco, epsge, numintpt,

pointpar, numintcr, intcurves, stat)
SISLSurf *surf;
double point[];
double cyldir[];
double radius;
int dim;
double epsco;
double epsge;
int *numintpt;
double **pointpar;
int *numintcr;
SISLIntcurve ***intcurves;
int *stat;

ARGUMENTS
Input Arguments:

surf - Pointer to the surface.
point - Point on the axis of the cylinder.
cyldir - The direction vector of the axis of the cylinder.
radius - Radius of the cylinder.
dim - Dimension of the space in which the cylinder lies.
epsco - Computational resolution (not used).
epsge - Geometry resolution.

Output Arguments:
numintpt - Number of single intersection points.
pointpar - Array containing the parameter values of the single inter-

section points in the parameter plane of the surface. The
points lie in sequence. Intersection curves are stored in
intcurves.

numintcr - Number of intersection curves.
intcurves - Array containing description of the intersection curves.

The curves are only described by start points and end
points (guide points) in the parameter plane. The curve
pointers point to nothing.

CHAPTER 8. SURFACE INTERROGATION 219

stat - Status messages
> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLSurf *surf; /* Must be defined */
double point[3]; /* Must be defined */
double cyldir[3]; /* Must be defined */
double radius; /* Must be defined */
int dim = 3;
double epsco = 1.0e-9; /* Not used */
double epsge = 1.0e-6;
int numintpt = 0;
double *pointpar = NULL;
int numintcr = 0;
intcurve **intcurves = NULL;
int stat = 0;
. . .
s1853(surf, point, cyldir, radius, dim, epsco, epsge, &numintpt, &pointpar,

&numintcr, &intcurves, &stat);
. . .

}

CHAPTER 8. SURFACE INTERROGATION 220

8.3.4 Find the topology for the intersections between a
spline surface and a cone.

NAME
s1854 - Find all intersections between a tensor-product surface and a cone. Inter-

section curves are described by guide points. To produce the intersection
curves use s1317() described on page 240.

SYNOPSIS
void s1854(surf, toppt, axispt, conept, dim, epsco, epsge, numintpt, pointpar,

numintcr, intcurves, stat)
SISLSurf *surf;
double toppt[];
double axispt[];
double conept[];
int dim;
double epsco;
double epsge;
int *numintpt;
double **pointpar;
int *numintcr;
SISLIntcurve ***intcurves;
int *stat;

ARGUMENTS
Input Arguments:

surf - Pointer to the surface
toppt - Top point of the cone.
axispt - Point on the axis of the cone, axispt must be different from

toppt.

conept - Point on the cone surface, conept must be different from
toppt.

dim - Dimension of the space in which the cone lies.
epsco - Computational resolution (not used).
epsge - Geometry resolution.

Output Arguments:
numintpt - Number of single intersection points.
pointpar - Array containing the parameter values of the single inter-

section points in the parameter plane of the surface. The
points lie in sequence. Intersection curves are stored in
intcurves.

numintcr - Number of intersection curves.
intcurves - Array containing the description of the intersection curves.

The curves are only described by start points and end
points (guide points) in the parameter plane. The curve
pointers point to nothing.

stat - Status messages
> 0 : warning
= 0 : ok

CHAPTER 8. SURFACE INTERROGATION 221

< 0 : error

EXAMPLE OF USE
{

SISLSurf *surf; /* Must be defined */
double toppt[3]; /* Must be defined */
double axispt[3]; /* Must be defined */
double conept[3]; /* Must be defined */
int dim = 3;
double epsco = 1.0e-9; /* Not used */
double epsge = 1.0e-6;
int numintpt = 0;
double *pointpar = NULL;
int numintcr = 0;
SISLIntcurve **intcurves = NULL;
int stat = 0;
. . .
s1854(surf, toppt, axispt, conept, dim, epsco, epsge, &numintpt, &pointpar,

&numintcr, &intcurves, &stat);
. . .

}

CHAPTER 8. SURFACE INTERROGATION 222

8.3.5 Find the topology for the intersections between a
spline surface and an elliptic cone.

NAME
s1503 - Find all intersections between a tensor-product surface and an elliptic

cone. Intersection curves are described by guide points. To produce the
intersection curves use s1501() described on page 242.

SYNOPSIS
void s1503(surf, basept, normdir, ellipaxis, alpha, ratio, dim, epsco, epsge, nu-

mintpt, pointpar, numintcr, intcurves, stat)
SISLSurf *surf;
double basept[];
double normdir[];
double ellipaxis[];
double alpha;
double ratio;
int dim;
double epsco;
double epsge;
int *numintpt;
double **pointpar;
int *numintcr;
SISLIntcurve ***intcurves;
int *stat;

ARGUMENTS
Input Arguments:

surf - Pointer to the surface
basept - Base point of the cone, centre of elliptic base.
normdir - Direction of the cone axis, normal to the elliptic base. The

default is pointing from the base point to the top point.

ellipaxis - One of the axes of the ellipse (major or minor). The other
axis will be calculated as normdir × ellipaxis scaled with
ratio.

alpha - The opening angle in radians of the cone at the ellipaxis.

ratio - The ratio of the major and minor axes = elli-
paxis/otheraxis.

dim - Dimension of the space in which the cone lies.
epsco - Computational resolution (not used).
epsge - Geometry resolution.

CHAPTER 8. SURFACE INTERROGATION 223

Output Arguments:
numintpt - Number of single intersection points.
pointpar - Array containing the parameter values of the single inter-

section points in the parameter plane of the surface. The
points lie in sequence. Intersection curves are stored in
intcurves.

numintcr - Number of intersection curves.
intcurves - Array containing the description of the intersection curves.

The curves are only described by start points and end
points (guide points) in the parameter plane. The curve
pointers point to nothing.

stat - Status messages
> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLSurf *surf; /* Must be defined */
double basept[3]; /* Must be defined */
double normdir[3]; /* Must be defined */
double ellipaxis[3]; /* Must be defined */
double alpha; /* Must be defined */
double ratio; /* Must be defined */
int dim = 3;
double epsco = 1.0e-9; /* Not used */
double epsge = 1.0e-6;
int numintpt = 0;
double *pointpar = NULL;
int numintcr = 0;
SISLIntcurve **intcurves = NULL;
int stat = 0;
. . .
s1503(surf, basept, normdir, ellipaxis, alpha, ratio, dim, epsco, epsge, &nu-

mintpt, &pointpar, &numintcr, &intcurves, &stat);
. . .

}

CHAPTER 8. SURFACE INTERROGATION 224

8.3.6 Find the topology for the intersections between a
spline surface and a torus.

NAME
s1369 - Find all intersections between a surface and a torus. Intersection curves

are described by guide points. To produce the intersection curves use
s1318() described on page 245.

SYNOPSIS
void s1369(surf, centre, normal, cendist, radius, dim, epsco, epsge,

numintpt, pointpar, numintcr, intcurves, stat)
SISLSurf *surf;
double centre[];
double normal[];
double cendist;
double radius;
int dim;
double epsco;
double epsge;
int *numintpt;
double **pointpar;
int *numintcr;
SISLIntcurve ***intcurves;
int *stat;

ARGUMENTS
Input Arguments:

surf - Pointer to the surface.
centre - The centre of the torus (lying in the symmetry plane)
normal - Normal to the symmetry plane.
cendist - Distance from centre to centre circle of the torus.
radius - The radius of the torus surface.
dim - Dimension of the space in which the torus lies. dim should

be equal to two or three.
epsco - Computational resolution (not used).
epsge - Geometry resolution.

Output Arguments:
numintpt - Number of single intersection points.
pointpar - Array containing the parameter values of the single inter-

section points in the parameter plane of the surface. The
points lie in sequence. Intersection curves are stored in
intcurves.

numintcr - Number of intersection curves.
intcurves - Array containing the description of the intersection curves.

The curves are only described by start points and end
points (guide points) in the parameter planes. The curve
pointers point to nothing.

stat - Status messages
> 0 : warning
= 0 : ok

CHAPTER 8. SURFACE INTERROGATION 225

< 0 : error

EXAMPLE OF USE
{

SISLSurf *surf; /* Must be defined */
double centre[3]; /* Must be defined */
double normal[3]; /* Must be defined */
double cendist; /* Must be defined */
double radius; /* Must be defined */
int dim = 3;
double epsco = 1.0e-9; /* Not used */
double epsge = 1.0e-6;
int numintpt = 0;
double *pointpar = NULL;
int numintcr = 0;
SISLIntcurve **intcurves = NULL;
int stat = 0;
. . .
s1369(surf, centre, normal, cendist, radius, dim, epsco, epsge,

&numintpt, &pointpar, &numintcr, &intcurves, &stat);
. . .

}

CHAPTER 8. SURFACE INTERROGATION 226

8.3.7 Find the topology for the intersection between two
spline surfaces.

NAME
s1859 - Find all intersections between two surfaces. Intersection curves are de-

scribed by guide points. To produce the intersection curves use s1310()
described on page 248.

SYNOPSIS
void s1859 (surfl, surf2, epsco, epsge, numintpt, pointpar1, pointpar2,

numintcr, intcurves, stat)
SISLSurf *surf1;
SISLSurf *surf2;
double epsco;
double epsge;
int *numintpt;
double **pointpar1;
double **pointpar2;
int *numintcr;
SISLIntcurve ***intcurves;
int *stat;

ARGUMENTS
Input Arguments:

surf1 - Pointer to the first surface.
surf2 - Pointer to the second surface.
epsco - Computational resolution (not used).
epsge - Geometry resolution.

Output Arguments:
numintpt - Number of single intersection points.
pointpar1 - Array containing the parameter values of the single inter-

section points in the parameter plane of the first surface.
The points lie in sequence. Intersection curves are stored
in intcurves.

pointpar2 - Array containing the parameter values of the single inter-
section points in the parameter plane of the second surface.

numintcr - Number of intersection curves.
intcurves - Array containing description of the intersection curves.

The curves are only described by start points and end
points (guide points) in the parameter planes of the sur-
faces. The curve pointers point to nothing.

stat - Status messages
> 0 : warning
= 0 : ok
< 0 : error

CHAPTER 8. SURFACE INTERROGATION 227

EXAMPLE OF USE
{

SISLSurf *surf1; /* Must be defined */
SISLSurf *surf2; /* Must be defined */
double epsco = 1.0e-9; /* Not used */
double epsge = 1.0e-6;
int numintpt = 0;
double *pointpar1 = NULL;
double *pointpar2 = NULL;
int numintcr = 0;
SISLIntcurve **intcurves = NULL;
int stat = 0;
. . .
s1859(surfl, surf2, epsco, epsge, &numintpt, &pointpar1, &pointpar2, &nu-

mintcr, &intcurves, &stat);
. . .

}

CHAPTER 8. SURFACE INTERROGATION 228

8.4 Find the Topology of a Silhouette

8.4.1 Find the topology of the silhouette curves of a spline
surface, using parallel projection.

NAME
s1860 - Find the silhouette curves and points of a surface when the surface is

viewed from a specific direction (i.e. parallel projection). In addition
to the points and curves found by this routine, break curves and edge-
curves might be silhouette curves. Silhouette curves are described by
guide points. To produce the silhouette curves use s1319() described on
page 250.

NOTE
The silhouette curves are defined as curves on the surface where the inner product
of the surface normal and the direction vector of the viewing is 0. This definition
will include surface points where the normal is zero.

SYNOPSIS
void s1860(surf, viewdir, dim, epsco, epsge, numsilpt, pointpar, numsilcr, sil-

curves, stat)
SISLSurf *surf;
double viewdir[];
int dim;
double epsco;
double epsge;
int *numsilpt;
double **pointpar;
int *numsilcr;
SISLIntcurve ***silcurves;
int *stat;

ARGUMENTS
Input Arguments:

surf - Pointer to the surface.
viewdir - The direction vector of the viewing.
dim - Dimension of the space in which viewdir lies.
epsco - Computational resolution (not used).
epsge - Geometry resolution.

Output Arguments:
numsilpt - Number of single silhouette points.
pointpar - Array containing the parameter values of the single sil-

houette points in the parameter plane of the surface. The
points lie in sequence. Silhouette curves are stored in sil-
curves.

numsilcr - Number of silhouette curves.

CHAPTER 8. SURFACE INTERROGATION 229

silcurves - Array containing the description of the silhouette curves.
The curves are only described by start points and end
points (guide points) in the parameter plane. The curve
pointers point to nothing.

stat - Status messages
> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLSurf *surf; /* Must be defined */
double viewdir[3]; /* Must be defined */
int dim = 3;
double epsco = 1.0e-9; /* Not used */
double epsge = 1.0e-6;
int numsilpt = 0;
double *pointpar = NULL;
int numsilcr = 0;
SISLIntcurve **silcurves = NULL;
int stat = 0;
. . .
s1860(surf, viewdir, dim, epsco, epsge, &numsilpt, &pointpar,

&numsilcr, &silcurves, &stat);
. . .

}

CHAPTER 8. SURFACE INTERROGATION 230

8.4.2 Find the topology of the silhouette curves of a spline
surface, using perspective projection.

NAME
s1510 - Find the silhouette curves and points of a surface when the surface is

viewed perspectively from a specific eye point. In addition to the points
and curves found by this routine, break curves and edge-curves might
be silhouette curves. To march out the silhouette curves, use s1514() on
page 253.

SYNOPSIS
void s1510(ps, eyepoint, idim, aepsco, aepsge, jpt, gpar, jcrv, wcurve, jstat)

SISLSurf *ps;
double eyepoint[];
int idim;
double aepsco;
double aepsge;
int *jpt;
double **gpar;
int *jcrv;
SISLIntcurve ***wcurve;
int *jstat;

ARGUMENTS
Input Arguments:

ps - Pointer to the surface.
eyepoint - The eye point vector.
idim - Dimension of the space in which eyepoint lies.
aepsco - Computational resolution (not used).
aepsge - Geometry resolution.

Output Arguments:
jpt - Number of single silhouette points.
gpar - Array containing the parameter values of the single sil-

houette points in the parameter plane of the surface. The
points lie continuous. Silhouette curves are stored in
wcurve.

jcrv - Number of silhouette curves.
wcurve - Array containing descriptions of the silhouette curves. The

curves are only described by points in the parameter plane.
The curve-pointers points to nothing.

jstat - Status messages
> 0 : warning
= 0 : ok
< 0 : error

CHAPTER 8. SURFACE INTERROGATION 231

EXAMPLE OF USE
{

SISLSurf *ps; /* Must be defined */
double eyepoint[3]; /* Must be defined */
int idim = 3;
double aepsco = 1.0e-9; /* Not used */
double aepsge = 1.0e-6;
int jpt = 0;
double *gpar = NULL;
int jcrv = 0;
SISLIntcurve **wcurve = NULL;
int jstat = 0;
. . .
s1510(ps, eyepoint, idim, aepsco, aepsge, &jpt, &gpar, &jcrv, &wcurve, &js-

tat);
. . .

}

CHAPTER 8. SURFACE INTERROGATION 232

8.4.3 Find the topology of the circular silhouette curves
of a spline surface.

NAME
s1511 - Find the circular silhouette curves and points of a surface. In addition

to the points and curves found by this routine, break curves and edge-
curves might be silhouette curves. To march out the silhouette curves
use s1515() on page 255.

SYNOPSIS
void s1511(ps, qpoint, bvec, idim, aepsco, aepsge, jpt, gpar, jcrv, wcurve, jstat)

SISLSurf *ps;
double qpoint[];
double bvec[];
int idim;
double aepsco;
double aepsge;
int *jpt;
double **gpar;
int *jcrv;
SISLIntcurve ***wcurve;
int *jstat;

ARGUMENTS
Input Arguments:

ps - Pointer to the surface.
qpoint - A point on the spin axis.
bvec - The circular silhouette axis direction.
idim - Dimension of the space in which axis lies.
aepsco - Computational resolution (not used).
aepsge - Geometry resolution.

Output Arguments:
jpt - Number of single silhouette points.
gpar - Array containing the parameter values of the single sil-

houette points in the parameter plane of the surface. The
points lie continuous. Silhouette curves are stored in
wcurve.

jcrv - Number of silhouette curves.
wcurve - Array containing descriptions of the silhouette curves. The

curves are only described by points in the parameter plane.
The curve-pointers points to nothing.

jstat - Status messages
> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLSurf *ps; /* Must be defined */

CHAPTER 8. SURFACE INTERROGATION 233

double qpoint[3]; /* Must be defined */
double bvec[3]; /* Must be defined */
int idim = 3;
double aepsco =1.0e-9; /* Not used */
double aepsge = 1.0e-6;
int jpt = 0;
double *gpar = NULL;
int jcrv = 0;
SISLIntcurve **wcurve = NULL;
int jstat = 0;
. . .
s1511(ps, qpoint, bvec, idim, aepsco, aepsge, &jpt, &gpar, &jcrv, &wcurve,

&jstat);
. . .

}

CHAPTER 8. SURFACE INTERROGATION 234

8.5 Marching

8.5.1 March an intersection curve between a spline surface
and a plane.

NAME
s1314 - To march an intersection curve described by parameter pairs in an in-

tersection curve object, a surface and a plane. The guide points are
expected to be found by s1851(), described on page 214. The generated
geometric curves are represented as B-spline curves.

SYNOPSIS
void s1314(surf, point, normal, dim, epsco, epsge, maxstep, intcurve,

makecurv, graphic, stat)
SISLSurf *surf;
double point[];
double normal[];
int dim;
double epsco;
double epsge;
double maxstep;
SISLIntcurve *intcurve;
int makecurv;
int graphic;
int *stat;

ARGUMENTS
Input Arguments:

surf - Pointer to the surface.
point - Point in the plane.
normal - Normal to the plane.
dim - Dimension of the space in which the plane lies. Should be

3.
epsco - Computational resolution (not used).
epsge - Geometry resolution.
maxstep - Maximum step length allowed. If maxstep ≤ epsge

maxstep is neglected. maxstep = 0.0 is recommended.

makecurv - Indicator telling if a geometric curve is to be made:
0 - Do not make curves at all.
1 - Make only one geometric curve.
2 - Make geometric curve and curve in the pa-

rameter plane.
graphic - Indicator telling if the function should draw the curve:

0 - Don’t draw the curve.
1 - Draw the geometric curve. This option is out-

dated, if used see NOTE!

CHAPTER 8. SURFACE INTERROGATION 235

Input/Output Arguments:
intcurve - Pointer to the intersection curve. As input, only guide

points (points in parameter space) exist. These guide
points are used to guide the marching. The routine adds
intersection curve and curve in the parameter plane to the
SISLIntcurve object, according to the value of makecurv.

Output Arguments:
stat - Status messages

= 3 : Iteration stopped due to singular point or de-
generate surface. A part of an intersection
curve may have been traced out. If no curve
is traced out the curve pointers in the SIS-
LIntcurve object point to NULL.

= 0 : ok
< 0 : error

NOTE
If the draw option is used the empty dummy functions s6move() and s6line() are
called. Thus if the draw option is used, make sure you have versions of functions
s6move() and s6line() interfaced to your graphic package.

EXAMPLE OF USE
{

SISLSurf *surf; /* Must be defined */
double point[3]; /* Must be defined */
double normal[3]; /* Must be defined */
int dim = 3;
double epsco = 1.0e-9; /* Not used */
double epsge = 1.0e-5;
double maxstep = 0.0;
SISLIntcurve *intcurve; /* The intersection curve instance is defined in s1851 */
int makecurv = 2;
int graphic = 0;
int stat = 0;
. . .
s1314(surf, point, normal, dim, epsco, epsge, maxstep, intcurve,

makecurv, graphic, &stat);
. . .

}

CHAPTER 8. SURFACE INTERROGATION 236

8.5.2 March an intersection curve between a spline surface
and a sphere.

NAME
s1315 - To march an intersection curve described by parameter pairs in an in-

tersection curve object, a surface and a sphere. The guide points are
expected to be found by s1852(), described on page 216. The generated
geometric curves are represented as B-spline curves.

SYNOPSIS
void s1315(surf, centre, radius, dim, epsco, epsge, maxstep, intcurve, makecurv,

graphic, stat)
SISLSurf *surf;
double centre[];
double radius;
int dim;
double epsco;
double epsge;
double maxstep;
SISLIntcurve *intcurve;
int makecurv;
int graphic;
int *stat;

ARGUMENTS
Input Arguments:

surf - Pointer to the surface.
centre - Center of the sphere.
radius - Radius of sphere
dim - Dimension of the space in which the sphere lies. Should

be 3.
epsco - Computational resolution (not used).
epsge - Geometry resolution.
maxstep - Maximum step length allowed. If maxstep ≤ epsge

maxstep is neglected. maxstep = 0.0 is recommended.
makecurv - Indicator specifying if a geometric curve is to be made:

0 - Do not make curves at all.
1 - Make only a geometric curve.
2 - Make geometric curve and curve in parameter

plane.
graphic - Indicator specifying if the function should draw the curve:

0 - Don’t draw the curve.
1 - Draw the geometric curve. This option is out-

dated, if used see NOTE!

CHAPTER 8. SURFACE INTERROGATION 237

Input/Output Arguments:
intcurve - Pointer to the intersection curve. As input only guide

points (points in parameter space) exist. These guide
points are used to guide the marching. The routine adds
intersection curve and curve in the parameter plane to the
SISLIntcurve object according to the value of makecurv.

Output Arguments:
stat - Status messages

= 3 : Iteration stopped due to singular point or de-
generate surface. A part of an intersection
curve may have been traced out. If no curve
is traced out, the curve pointers in the SIS-
LIntcurve object point to NULL.

= 0 : ok
< 0 : error

NOTE
If the draw option is used the empty dummy functions s6move() and s6line() are
called. Thus if the draw option is used, make sure you have versions of functions
s6move() and s6line() interfaced to your graphic package.

EXAMPLE OF USE
{

SISLSurf *surf; /* Must be defined */
double centre[3]; /* Must be defined */
double radius; /* Must be defined */
int dim = 3;
double epsco = 1.0e-9; /* Not used */
double epsge = 1.0e-5;
double maxstep = 0;
SISLIntcurve *intcurve; /* The intersection curve instance is defined in s1852 */
int makecurv = 2;
int graphic = 0;
int stat = 0;
. . .
s1315(surf, centre, radius, dim, epsco, epsge, maxstep, intcurve, makecurv,

graphic, &stat);
. . .

}

CHAPTER 8. SURFACE INTERROGATION 238

8.5.3 March an intersection curve between a spline surface
and a cylinder.

NAME
s1316 - To march an intersection curve described by parameter pairs in an in-

tersection curve object, a surface and a cylinder. The guide points are
expected to be found by s1853() described on page 218. The generated
geometric curves are represented as B-spline curves.

SYNOPSIS
void s1316(surf, point, cyldir, radius, dim, epsco, epsge, maxstep, intcurve, make-

curv, graphic, stat)
SISLSurf *surf;
double point[];
double cyldir[];
double radius;
int dim;
double epsco;
double epsge;
double maxstep;
SISLIntcurve *intcurve;
int makecurv;
int graphic;
int *stat;

ARGUMENTS
Input Arguments:

surf - Pointer to the surface.
point - Point on the axis of the cylinder.
cyldir - The direction vector of the axis of the cylinder.
radius - Radius of the cylinder.
dim - Dimension of the space in which the cylinder lies. Should

be 3.
epsco - Computational resolution (not used).
epsge - Geometry resolution.
maxstep - Maximum step length allowed. If maxstep ≤ epsge

maxstep is neglected. maxstep = 0.0 is recommended.

makecurv - Indicator specifying if a geometric curve is to be made:
0 - Do not make curves at all.
1 - Make only a geometric curve.
2 - Make geometric curve and curve in the pa-

rameter plane.
graphic - Indicator specifying if the function should draw the curve:

0 - Don’t draw the curve.
1 - Draw the geometric curve. This option is out-

dated, if used see NOTE!

Input/Output Arguments:

CHAPTER 8. SURFACE INTERROGATION 239

intcurve - Pointer to the intersection curve. As input only guide
points (points in parameter space) exist. These guide
points are used to guide the marching. The routine adds
intersection curve and curve in the parameter plane to the
SISLIntcurve object according to the value of makecurv.

Output Arguments:
stat - Status messages

= 3 : Iteration stopped due to singular point or de-
generate surface. A part of an intersection
curve may have been traced out. If no curve
is traced out, the curve pointers in the SIS-
LIntcurve object point to NULL.

= 0 : ok
< 0 : error

NOTE
If the draw option is used the empty dummy functions s6move() and s6line() are
called. Thus if the draw option is used, make sure you have versions of functions
s6move() and s6line() interfaced to your graphic package.

EXAMPLE OF USE
{

SISLSurf *surf; /* Must be defined */
double point[3]; /* Must be defined */
double cyldir[3]; /* Must be defined */
double radius; /* Must be defined */
int dim = 3;
double epsco = 1.0e-9; /* Not used */
double epsge = 1.0e-5;
double maxstep = 0.0;
SISLIntcurve *intcurve; /* The intersection curve instance is defined in s1853 */
int makecurv;
int graphic;
int stat = 0;
. . .
s1316(surf, point, cyldir, radius, dim, epsco, epsge, maxstep, intcurve, make-

curv, graphic, &stat);
. . .

}

CHAPTER 8. SURFACE INTERROGATION 240

8.5.4 March an intersection curve between a spline surface
and a cone.

NAME
s1317 - To march an intersection curve described by parameter pairs in an inter-

section curve object, a surface and a cone. The guide points are expected
to be found by s1854() described on page 220. The generated geometric
curves are represented as B-spline curves.

SYNOPSIS
void s1317(surf, toppt, axispt, conept, dim, epsco, epsge, maxstep, intcurve,

makecurv, graphic, stat)
SISLSurf *surf;
double toppt[];
double axispt[];
double conept[];
int dim;
double epsco;
double epsge;
double maxstep;
SISLIntcurve *intcurve;
int makecurv;
int graphic;
int *stat;

ARGUMENTS
Input Arguments:

surf - Pointer to the surface.
toppt - The top point of the cone.
axispt - Point on the axis of the cone; axispt must be different from

toppt.
conept - A point on the cone surface that is not the top point.

dim - Dimension of the space in which the cone lies. Should be
3.

epsco - Computational resolution (not used).
epsge - Geometry resolution.
maxstep - Maximum step length allowed. If maxstep ≤ epsge,

maxstep is neglected. maxstep = 0.0 is recommended.

makecurv - Indicator specifying if a geometric curve is to be made:
0 - Do not make curves at all.
1 - Make only a geometric curve.
2 - Make geometric curve and curve in the pa-

rameter plane
graphic - Indicator specifying if the function should draw the curve:

0 - Don’t draw the curve.
1 - Draw the geometric curve. This option is out-

dated, if used see NOTE!

Input/Output Arguments:

CHAPTER 8. SURFACE INTERROGATION 241

intcurve - Pointer to the intersection curve. As input only guide
points (points in parameter space) exist. These guide
points are used for guiding the marching. The routine
adds the intersection curve and curve in the parameter
plane to the SISLIntcurve object according to the value of
makecurv.

Output Arguments:
stat - Status messages

= 3 : Iteration stopped due to singular point or de-
generate surface. A part of an intersection
curve may have been traced out. If no curve
is traced out, the curve pointers in the SIS-
LIntcurve object point to NULL.

= 0 : ok
< 0 : error

NOTE
If the draw option is used the empty dummy functions s6move() and s6line() are
called. Thus if the draw option is used, make sure you have versions of functions
s6move() and s6line() interfaced to your graphic package.

EXAMPLE OF USE
{

SISLSurf *surf; /* Must be defined */
double toppt[3]; /* Must be defined */
double axispt[3]; /* Must be defined */
double conept[3]; /* Must be defined */
int dim = 3;
double epsco = 1.0e-9; /* Not used */
double epsge = 1.0e-5;
double maxstep = 0.0;
SISLIntcurve *intcurve; /* The intersection curve instance is defined in s1854 */
int makecurv = 2;
int graphic = 0;
int stat = 0;
. . .
s1317(surf, toppt, axispt, conept, dim, epsco, epsge, maxstep, intcurve,

makecurv, graphic, &stat);
. . .

}

CHAPTER 8. SURFACE INTERROGATION 242

8.5.5 March an intersection curve between a surface and
an elliptic cone.

NAME
s1501 - To march an intersection curve described by parameter pairs in an inter-

section curve object, a surface and an elliptic cone. The guide points are
expected to be found by s1503() described on page 222. The generated
geometric curves are represented as B-spline curves.

SYNOPSIS
void s1501(surf, basept, normdir, ellipaxis, alpha, ratio, dim, epsco, epsge,

maxstep, intcurve, makecurv, graphic, stat)
SISLSurf *surf;
double basept[];
double normdir[];
double ellipaxis[];
double alpha;
double ratio;
int dim;
double epsco;
double epsge;
double maxstep;
SISLIntcurve *intcurve;
int makecurv;
int graphic;
int *stat;

ARGUMENTS
Input Arguments:

surf - Pointer to the surface.
basept - Base point of the cone, centre of elliptic base.
normdir - Direction of the cone axis, normal to the elliptic base. The

default is pointing from the base point to the top point.
ellipaxis - One of the axes of the ellipse (major or minor). The other

axis will be calculated as normdir × ellipaxis scaled with
ratio.

alpha - The opening angle in radians of the cone at the ellipaxis.

ratio - The ratio of the major and minor axes = elli-
paxis/otheraxis.

dim - Dimension of the space in which the cone lies. Should be
3.

epsco - Computational resolution (not used).
epsge - Geometry resolution.
maxstep - Maximum step length allowed. If maxstep ≤ epsge,

maxstep is neglected. maxstep = 0.0 is recommended.
makecurv - Indicator specifying if a geometric curve is to be made:

0 - Do not make curves at all.
1 - Make only a geometric curve.
2 - Make geometric curve and curve in the pa-

rameter plane

CHAPTER 8. SURFACE INTERROGATION 243

graphic - Indicator specifying if the function should draw the curve:
0 - Don’t draw the curve.
1 - Draw the geometric curve. This option is out-

dated, if used see NOTE!

Input/Output Arguments:
intcurve - Pointer to the intersection curve. As input only guide

points (points in parameter space) exist. These guide
points are used for guiding the marching. The routine
adds the intersection curve and curve in the parameter
plane to the SISLIntcurve object according to the value of
makecurv.

Output Arguments:
stat - Status messages

= 3 : Iteration stopped due to singular point or de-
generate surface. A part of an intersection
curve may have been traced out. If no curve
is traced out, the curve pointers in the SIS-
LIntcurve object point to NULL.

= 0 : ok
< 0 : error

NOTE
If the draw option is used the empty dummy functions s6move() and s6line() are
called. Thus if the draw option is used, make sure you have versions of functions
s6move() and s6line() interfaced to your graphic package.

CHAPTER 8. SURFACE INTERROGATION 244

EXAMPLE OF USE
{

SISLSurf *surf; /* Must be defined */
double basept[3]; /* Must be defined */
double normdir[3]; /* Must be defined */
double ellipaxis[3]; /* Must be defined */
double alpha; /* Must be defined */
double ratio; /* Must be defined */
int dim = 3;
double epsco = 1.0e-9; /* Not used */
double epsge = 1.0e-6;
double maxstep = 0.0;
SISLIntcurve *intcurve; /* The intersection curve instance is defined in s1853 */
int makecurv = 2;
int graphic = 0;
int stat = 0;
. . .
s1501(surf, basept, normdir, ellipaxis, alpha, ratio, dim, epsco, epsge,

maxstep, intcurve, makecurv, graphic, &stat);
. . .

}

CHAPTER 8. SURFACE INTERROGATION 245

8.5.6 March an intersection curve between a spline surface
and a torus.

NAME
s1318 - To march an intersection curve described by parameter pairs in an in-

tersection curve object, a surface and a torus. The guide points are
expected to be found by s1369(), described on page 224. The generated
geometric curves are represented as B-spline curves.

SYNOPSIS
void s1318(surf, centre, normal, cendist, radius, dim, epsco, epsge, maxstep,

intcurve, makecurv, graphic, stat)
SISLSurf *surf;
double centre[];
double normal[];
double cendist;
double radius;
int dim;
double epsco;
double epsge;
double maxstep;
SISLIntcurve *intcurve;
int makecurv;
int graphic;
int *stat;

ARGUMENTS
Input Arguments:

surf - Pointer to the surface.
centre - The centre of the torus (lying in the symmetry plane)
normal - Normal to the symmetry plane.
cendist - Distance from centre to the centre circle of torus.
radius - The radius of the torus surface.
dim - Dimension of the space in which the torus lies. Should be

3.
epsco - Computational resolution (not used).
epsge - Geometry resolution.
maxstep - Maximum step length allowed. If maxstep ≤ epsge

maxstep is neglected. maxstep = 0.0 is recommended.

makecurv - Indicator specifying if a geometric curve is to be made:
0 - Do not make curves at all.
1 - Make only a geometric curve.
2 - Make geometric curve and curve in the pa-

rameter plane

CHAPTER 8. SURFACE INTERROGATION 246

graphic - Indicator specifying if the function should draw the curve:
0 - Don’t draw the curve.
1 - Draw the geometric curve. This option is out-

dated, if used see NOTE!

Input/Output Arguments:
intcurve - Pointer to the intersection curve. As input only guide

points (points in parameter space) exist. These guide
points are used for guiding the marching. The routine
adds the intersection curve and curve in the parameter
plane to the SISLIntcurve object according to the value of
makecurv.

Output Arguments:
stat - Status messages

= 3 : Iteration stopped due to singular point or de-
generate surface. A part of an intersection
curve may have been traced out. If no curve
is traced out the curve pointers in the SIS-
LIntcurve object point to NULL.

= 0 : ok
< 0 : error

NOTE
If the draw option is used the empty dummy functions s6move() and s6line() are
called. Thus if the draw option is used, make sure you have versions of functions
s6move() and s6line() interfaced to your graphic package.

CHAPTER 8. SURFACE INTERROGATION 247

EXAMPLE OF USE
{

SISLSurf *surf; /* Must be defined */
double centre[3]; /* Must be defined */
double normal[3]; /* Must be defined */
double cendist; /* Must be defined */
double radius; /* Must be defined */
int dim = 3;
double epsco = 1.0e-9; /* Not used */
double epsge = 1.0e-5;
double maxstep = 0.0;
SISLIntcurve *intcurve; /* The intersection curve instance is defined in s1369 */
int makecurv = 2;
int graphic = 0;
int stat = 0;
. . .
s1318(surf, centre, normal, cendist, radius, dim, epsco, epsge, maxstep,

intcurve, makecurv, graphic, &stat);
. . .

}

CHAPTER 8. SURFACE INTERROGATION 248

8.5.7 March an intersection curve between two spline sur-
faces.

NAME
s1310 - To march an intersection curve between two surfaces. The intersection

curve is described by guide parameter pairs stored in an intersection
curve object. The guide points are expected to be found by s1859()
described on page 226. The generated geometric curves are represented
as B-spline curves.

SYNOPSIS
void s1310(surf1, surf2, intcurve, epsge, maxstep, makecurv, graphic, stat)

SISLSurf *surf1;
SISLSurf *surf2;
SISLIntcurve *intcurve;
double epsge;
double maxstep;
int makecurv;
int graphic;
int *stat;

ARGUMENTS
Input Arguments:

surf1 - Pointer to the first surface.
surf2 - Pointer to the second surface.
epsge - Geometry resolution.
maxstep - Maximum step length. If maxstep≤0, maxstep is ignored.

maxstep = 0.0 is recommended.

makecurv - Indicator specifying if a geometric curve is to be made:
0 - Do not make curves at all
1 - Make only a geometric curve.
2 - Make geometric curve and curves in the pa-

rameter planes
graphic - Indicator specifying if the function should draw the geo-

metric curve:
0 - Don’t draw the curve
1 - Draw the geometric curve. This option is out-

dated, if used see NOTE!

Input/Output Arguments:
intcurve - Pointer to the intersection curve. As input only guide

points (points in parameter space) exist. These guide
points are used for guiding the marching. The routine adds
intersection curve and curves in the parameter planes to
the SISLIntcurve object, according to the value of make-
curv.

CHAPTER 8. SURFACE INTERROGATION 249

Output Arguments:
stat - Status messages

= 3 : Iteration stopped due to singular point or de-
generate surface. A part of an intersection
curve may have been traced out. If no curve
is traced out, the curve pointers in the SIS-
LIntcurve object point to NULL.

= 0 : ok
< 0 : error

NOTE
If the draw option is used the empty dummy functions s6move() and s6line() are
called. Thus if the draw option is used, make sure you have versions of functions
s6move() and s6line() interfaced to your graphic package.

EXAMPLE OF USE
{

SISLSurf *surf1; /* Must be defined */
SISLSurf *surf2; /* Must be defined */
SISLIntcurve *intcurve; /* The intersection curve instance is defined in s1859 */
double epsge = 1.0e-5;
double maxstep = 0.0;
int makecurv = 2;
int graphic = 0;
int stat = 0;
. . .
s1310(surf1, surf2, intcurve, epsge, maxstep, makecurv, graphic, &stat);
. . .

}

CHAPTER 8. SURFACE INTERROGATION 250

8.6 Marching of Silhouettes

8.6.1 March a silhouette curve of a surface, using parallel
projection.

NAME
s1319 - To march the silhouette curve described by an intersection curve ob-

ject, a surface and a view direction (i.e. parallel projection). The guide
points are expected to be found by s1860(), described on page 228. The
generated geometric curves are represented as B-spline curves.

NOTE
The silhouette curves are defined as curves on the surface where the inner product
of the surface normal and the direction vector of the viewing is 0. This definition
will include surface points where the normal is zero.

SYNOPSIS
void s1319(surf, viewdir, dim, epsco, epsge, maxstep, intcurve, makecurv,

graphic, stat)
SISLSurf *surf;
double viewdir[];
int dim;
double epsco;
double epsge;
double maxstep;
SISLIntcurve *intcurve;
int makecurv;
int graphic;
int *stat;

ARGUMENTS
Input Arguments:

surf - Pointer to the surface.
viewdir - View direction.
dim - Dimension of the space in which vector describing the view

direction lies. Should be 3.
epsco - Computational resolution (not used).
epsge - Geometry resolution.
maxstep - Maximum step length allowed. If maxstep ≤ epsge

maxstep is neglected. maxstep = 0.0 is recommended.

CHAPTER 8. SURFACE INTERROGATION 251

makecurv - Indicator specifying if a geometric curve is to be made:
0 - Do not make curves at all.
1 - Make only a geometric curve.
2 - Make geometric curve and curve in the pa-

rameter plane.
graphic - Indicator specifying if the function should draw the geo-

metric curve:
0 - Don’t draw the curve.
1 - Draw the geometric curve. This option is out-

dated, if used see NOTE!

Input/Output Arguments:
intcurve - Pointer to the intersection curve. As input, only guide

points (points in parameter space) exist. These guide
points are used for guiding the marching. The routine adds
intersection curve and curve in the parameter plane to the
SISLIntcurve object according to the value of makecurv.

Output Arguments:
stat - Status messages

= 3 : Iteration stopped due to singular point or de-
generate surface. A part of an intersection
curve may have been traced out. If no curve
is traced out the curve pointers in the SIS-
LIntcurve object point to NULL.

= 0 : ok
< 0 : error

NOTE
If the draw option is used the empty dummy functions s6move() and s6line() are
called. Thus if the draw option is used, make sure you have versions of functions
s6move() and s6line() interfaced to your graphic package.

CHAPTER 8. SURFACE INTERROGATION 252

EXAMPLE OF USE
{

SISLSurf *surf; /* Must be defined */
double viewdir[3]; /* Must be defined */
int dim = 3;
double epsco = 1.0e-9; /* Not used */
double epsge = 1.0e-5;
double maxstep = 0.0;
SISLIntcurve *intcurve; /* The silhouette curve instance is defined in s1860 */
int makecurv = 2;
int graphic = 0;
int stat = 0;
. . .
s1319(surf, viewdir, dim, epsco, epsge, maxstep, intcurve, makecurv,

graphic, &stat);
. . .

}

CHAPTER 8. SURFACE INTERROGATION 253

8.6.2 March a silhouette curve of a surface, using perspec-
tive projection.

NAME
s1514 - To march the perspective silhouette curve described by an intersection

curve object, a surface and an eye point. The guide points are expected
to be found by s1510() described on page 230. The generated geometric
curves are represented as B-spline curves.

SYNOPSIS
void s1514(ps1, eyepoint, idim, aepsco, aepsge, amax, pintcr, icur, igraph, jstat)

SISLSurf *ps1;
double eyepoint[]
int idim;
double aepsco;
double aepsge;
double amax;
SISLIntcurve *pintcr;
int icur;
int igraph;
int *jstat;

ARGUMENTS
Input Arguments:

ps1 - Pointer to surface.
eyepoint - Eye point for perspective view
idim - Dimension of the space in which the eyepoint lies.

aepsco - Computational resolution (not used).
aepsge - Geometry resolution.
amax - Maximal allowed step length.

If amax ≤ aepsge amax is neglected.

icur - Indicator telling if a 3D curve is to be made.
= 0 : Don’t make 3D curve.
= 1 : Make 3D curve.
= 2 : Make 3D curve and curves in the parameter

plane.

igraph - Indicator telling if the curve is to be output through
function calls:

= 0 : Don’t output curve through function call.

= 0 : Output as straight line segments. This option
is outdated, if used see NOTE!

CHAPTER 8. SURFACE INTERROGATION 254

Input/Output Arguments:
pintcr - The intersection curve. When coming in as input only pa-

rameter values in the parameter plane exist. When coming
as output the 3D geometry and possibly the curve in the
parameter plane of the surface is added.

Output Arguments:
jstat - Status messages

= 3 : Iteration stopped due to singular point or de-
generate surface. A part of intersection curve
may have been traced out. If no curve is
traced out the curve pointers in the Intcurve
object point to NULL.

> 0 : Warning.
= 0 : Ok.
< 0 : Error.
= −185 : No points produced on intersection curve.

NOTE
If the draw option is used the empty dummy functions s6move() and s6line() are
called. Thus if the draw option is used, make sure you have versions of functions
s6move() and s6line() interfaced to your graphic package.

EXAMPLE OF USE
{

SISLSurf *ps1; /* Must be defined */
double eyepoint[3]; /* Must be defined */
int idim = 3;
double aepsco = 1.0e-9; /* Not used */
double aepsge = 1.0e-5;
double amax = 0.0;
SISLIntcurve *pintcr; /* The silhouette curve instance is defined in s1510 */
int icur;
int igraph;
int jstat = 0;
. . .
s1514(ps1, eyepoint, idim, aepsco, aepsge, amax, pintcr, icur, igraph, &js-

tat);
. . .

}

CHAPTER 8. SURFACE INTERROGATION 255

8.6.3 March a circular silhouette curve of a surface.

NAME
s1515 - To march the circular silhouette curve described by an intersection curve

object, a surface, point Q and direction B i.e. solution of f(u, v) =
N(u, v)× (P (u, v)−Q) ·B.
The guide points are expected to be found by s1511() described on page
232. The generated geometric curves are represented as B-spline curves.

SYNOPSIS
void s1515(ps1, qpoint, bvec, idim, aepsco, aepsge, amax, pintcr, icur, igraph,

jstat)
SISLSurf *ps1;
double qpoint[];
double bvec[];
int idim;
double aepsco;
double aepsge;
double amax;
SISLIntcurve *pintcr;
int icur;
int igraph;
int *jstat;

ARGUMENTS
Input Arguments:

ps1 - Pointer to surface.
qpoint - Point Q for circular silhouette.
bvec - Direction B for circular silhouette.
idim - Dimension of the space in which Q lies.
aepsco - Computational resolution (not used).
aepsge - Geometry resolution.
amax - Maximal allowed step length. If amax ≤ aepsge amax is

neglected.
icur - Indicator telling if a 3D curve is to be made.

= 0 : Don’t make 3D curve.
= 1 : Make 3D curve.
= 2 : Make 3D curve and curves in the parameter

plane.

igraph - Indicator telling if the curve is to be output through
function calls:

= 0 : Don’t output curve through function call.

= 0 : Output as straight line segments . This option
is outdated, if used see NOTE!

CHAPTER 8. SURFACE INTERROGATION 256

Input/Output Arguments:
pintcr - The intersection curve. When coming in as input only pa-

rameter values in the parameter plane exist. When coming
as output the 3-D geometry and possibly the curve in the
parameter plane of the surface is added.

Output Arguments:
jstat - Status messages

= 3 : Iteration stopped due to singular point or de-
generate surface. A part of intersection curve
may have been traced out. If no curve is
traced out the curve pointers in the Intcurve
object point to NULL.

> 0 : Warning.
= 0 : Ok.
< 0 : Error.
= −185 : No points produced on intersection curve.

NOTE
If the draw option is used the empty dummy functions s6move() and s6line() are
called. Thus if the draw option is used, make sure you have versions of functions
s6move() and s6line() interfaced to your graphic package.

EXAMPLE OF USE
{

SISLSurf *ps1; /* Must be defined */
double qpoint[3]; /* Must be defined */
double bvec[3]; /* Must be defined */
int idim = 3;
double aepsco = 1.0e-9; /* Not used */
double aepsge = 1.0e-6;
double amax = 0.0;
SISLIntcurve *pintcr; /* The silhouette curve instance is defined in s1511 */
int icur = 2;
int igraph = 0;
int jstat = 0;
. . .

s1515(ps1, qpoint, bvec, idim, aepsco, aepsge, amax, pintcr, icur, igraph,
&jstat);

. . .
}

CHAPTER 8. SURFACE INTERROGATION 257

8.7 Check if a Surface is Closed or has Degen-
erate Edges.

NAME
s1450 - To check if a surface is closed or has degenerate boundaries. The edge

numbers correspond to the following:

4 2

1

3

-
(i)

6
(ii)

(i) first parameter direction of surface.
(ii) second parameter direction of surface.

SYNOPSIS
void s1450(surf, epsge, close1, close2, degen1, degen2, degen3, degen4, stat)

SISLSurf *surf;
double epsge;
int *close1;
int *close2;
int *degen1;
int *degen2;
int *degen3;
int *degen4;
int *stat;

ARGUMENTS
Input Arguments:

surf - Pointer to the surface that is to be checked.

epsge - Tolerance used during testing.

CHAPTER 8. SURFACE INTERROGATION 258

Output Arguments:
close1 - Closed indicator in the first parameter direction.

= 0 : Surface open in first direction
= 1 : Surface closed in first direction

close2 - Closed indicator in second direction
= 0 : Surface open in second direction

= 1 : Surface closed in second direction

degen1 - Degenerate indicator along standard edge 1
= 0 : Edge is not degenerate
= 1 : Edge is degenerate

degen2 - Degenerate indicator along standard edge 2
= 0 : Edge is not degenerate
= 1 : Edge is degenerate

degen3 - Degenerate indicator along standard edge 3
= 0 : Edge is not degenerate
= 1 : Edge is degenerate

degen4 - Degenerate indicator along standard edge 4
= 0 : Edge is not degenerate
= 1 : Edge is degenerate

stat - Status messages
> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLSurf *surf; /* Must be defined */
double epsge = 0.000001;
int close1 = 0;
int close2 = 0;
int degen1 = 0;
int degen2 = 0;
int degen3 = 0;
int degen4 = 0;
int stat = 0;
. . .
s1450(surf, epsge, &close1, &close2, °en1, °en2, °en3, °en4,

&stat);
. . .

}

CHAPTER 8. SURFACE INTERROGATION 259

8.8 Pick the Parameter Ranges of a Surface

NAME
s1603 - To pick the parameter ranges of a surface.

SYNOPSIS
void s1603(surf, min1, min2, max1, max2, stat)

SISLSurf *surf;
double *min1;
double *min2;
double *max1;
double *max2;
int *stat;

ARGUMENTS
Input Arguments:

surf - The surface.

Output Arguments:
min1 - Start parameter in the first parameter direction.
min2 - Start parameter in the second parameter direction.
max1 - End parameter in the first parameter direction.
max2 - End parameter in the second parameter direction.
stat - Status messages

> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLSurf *surf; /* Must be defined */
double min1;
double min2;
double max1;
double max2;
int stat = 0;
. . .
s1603(surf, &min1, &min2, &max1, &max2, &stat);
. . .

}

CHAPTER 8. SURFACE INTERROGATION 260

8.9 Closest Points

8.9.1 Find the closest point between a surface and a point.

NAME
s1954 - Find the points on a surface lying closest to a given point.

SYNOPSIS
void s1954(surf, point, dim, epsco, epsge, numclopt, pointpar, numclocr,

clocurves, stat)
SISLSurf *surf;
double point[];
int dim;
double epsco;
double epsge;
int *numclopt;
double **pointpar;
int *numclocr;
SISLIntcurve ***clocurves;
int *stat;

ARGUMENTS
Input Arguments:

surf - Pointer to the surface in the closest point problem.

point - The point in the closest point problem.
dim - Dimension of the space in which the point lies.
epsco - Computational resolution (not used).
epsge - Geometry resolution.

Output Arguments:
numclopt - Number of single closest points.
pointpar - Array containing the parameter values of the single closest

points in the parameter area of the surface. The points lie
in sequence. Closest curves are stored in clocurves.

numclocr - Number of closest curves.
clocurves - Array containing the description of the closest curves. The

curves are only described by points in the parameter area.
The curve pointers point to nothing.

stat - Status messages
> 0 : warning
= 0 : ok
< 0 : error

CHAPTER 8. SURFACE INTERROGATION 261

EXAMPLE OF USE
{

SISLSurf *surf /* Must be defined */;
double point[3]; /* Must be defined */
int dim = 3;
double epsco = 1.0e-9; /* Not used */
double epsge = 1.0e-6;
int numclopt = 0;
double *pointpar = NULL;
int numclocr = 0;
SISLIntcurve **clocurves = NULL;
int stat = 0;
. . .
s1954(surf, point, dim, epsco, epsge, &numclopt, &pointpar, &numclocr,

&clocurves, &stat);
. . .

}

CHAPTER 8. SURFACE INTERROGATION 262

8.9.2 Find the closest point between a surface and a point.
Simple version.

NAME
s1958 - Find the closest point between a surface and a point. The method is

fast and should work well in clear cut cases, but there is no guarantee it
will find the right solution. As long as it doesn’t fail, it will find exactly
one point. In other cases, use s1954() on page 260.

SYNOPSIS
void s1958(psurf, epoint, idim, aepsco, aepsge, gpar, dist, jstat)

SISLSurf *psurf;
double epoint[];
int idim;
double aepsco;
double aepsge;
double gpar[];
double *dist;
int *jstat;

ARGUMENTS
Input Arguments:

psurf - Pointer to the surface in the closest point problem.
epoint - The point in the closest point problem.
idim - Dimension of the space in which epoint lies.
aepsco - Computational resolution (not used).
aepsge - Geometry resolution.

Output Arguments:
gpar - 2D array containing the parameter values of the closest

point in the parameter space of the surface.
dist - The closest distance between point and the surface.
jstat - Status messages

> 2 : Warning.
= 2 : Solution at a corner.
= 1 : Solution at an edge.
= 0 : Solution in interior.
< 0 : Error.

CHAPTER 8. SURFACE INTERROGATION 263

EXAMPLE OF USE
{

SISLSurf *psurf; /* Must be defined */
double epoint[3]; /* Must be defined */
int idim = 3;
double aepsco = 1.0e-9; /* Not used */
double aepsge = 1.0e-6;
double gpar[2];
double dist = 0.0;
int jstat = 0;
. . .
s1958(psurf, epoint, idim, aepsco, aepsge, gpar, &dist, &jstat);
. . .

}

CHAPTER 8. SURFACE INTERROGATION 264

8.9.3 Local iteration to closest point bewteen point and
surface.

NAME
s1775 - Newton iteration on the distance function between a surface and a point,

to find a closest point or an intersection point. If a bad choice for the
guess parameters is given in, the iteration may end at a local, not global
closest point.

SYNOPSIS
void s1775(surf, point, dim, epsge, start, end, guess, clpar, stat)

SISLSurf *surf;
double point[];
int dim;
double epsge;
double start[];
double end[];
double guess[];
double clpar[];
int *stat;

ARGUMENTS
Input Arguments:

surf - The surface in the closest point problem.
point - The point in the closest point problem.
dim - Dimension of the geometry.
epsge - Geometry resolution.
start - Surface parameters giving the start of the search area

(umin, vmin).
end - Surface parameters giving the end of the search area

(umax, vmax).
guess - Surface guess parameters for the closest point iteration.

Output Arguments:
clpar - Resulting surface parameters from the iteration.
stat - Status messages

> 0 : A minimum distance found.
= 0 : Intersection found.
< 0 : Error.

EXAMPLE OF USE
{

SISLSurf *surf; /* Must be defined */
double point[3]; /* Must be defined */
int dim = 3;
double epsge = 1.0e-6;
double start[2]; /* Must be defined */
double end[2]; /* Must be defined */
double guess[2]; /* Must be defined */
double clpar[2];

CHAPTER 8. SURFACE INTERROGATION 265

int stat = 0;
. . .
s1775(surf, point, dim, epsge, start, end, guess, clpar, &stat);
. . .

}

CHAPTER 8. SURFACE INTERROGATION 266

8.10 Find the Absolute Extremals of a Surface.

NAME
s1921 - Find the absolute extremal points/curves of a surface along a given di-

rection.

SYNOPSIS
void s1921(ps1, edir, idim, aepsco, aepsge, jpt, gpar, jcrv, wcurve, jstat)

SISLSurf *ps1;
double edir[];
int idim;
double aepsco;
double aepsge;
int *jpt;
double **gpar;
int *jcrv;
SISLIntcurve ***wcurve;
int *jstat;

ARGUMENTS
Input Arguments:

ps1 - Pointer to the surface.
edir - The direction in which the extremal point(s) and/or inter-

val(s) are to be calculated. If idim = 1 a positive value in-
dicates the maximum of the function and a negative value
the minimum. If the dimension is greater that 1 the array
contains the coordinates of the direction vector.

idim - Dimension of the space in which the vector edir lies.
aepsco - Computational resolution (not used).
aepsge - Geometry resolution.

Output Arguments:
jpt - Number of single extremal points.
gpar - Array containing the parameter values of the single ex-

tremal points in the parameter area of the surface. The
points lie continuous. Extremal curves are stored in
wcurve.

jcrv - Number of extremal curves.
wcurve - Array containing descriptions of the extremal curves. The

curves are only described by points in the parameter area.
The curve-pointers point to nothing.

CHAPTER 8. SURFACE INTERROGATION 267

jstat - Status messages
> 0 : Warning.
= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLSurf *ps1; /* Must be defined */
double edir[3]; /* Must be defined */
int idim = 3;
double aepsco = 1.0e-9; /* Not used */
double aepsge = 1.0e-6;
int jpt = 0;
double *gpar = NULL;
int jcrv = 0;
SISLIntcurve **wcurve = NULL;
int jstat = 0;
. . .
s1921(ps1, edir, idim, aepsco, aepsge, &jpt, &gpar, &jcrv, &wcurve, &jstat);
. . .

}

CHAPTER 8. SURFACE INTERROGATION 268

8.11 Bounding Box

Both curves and surfaces have bounding boxes. These are boxes surrounding
an object not only parallel to the main axis, but also rotated 45 degrees around
each main axis. These bounding boxes are used by the intersection functions to
decide if an intersection is possible or not. They might also be used to find the
position of objects under other circumstances. The bounding box object and
corresponding initialization functionality ar described in Section 4.9.1 at pages
95 and 96.

8.11.1 Find the bounding box of a surface.

NAME
s1989 - Find the bounding box of a surface.

NOTE: The geometric bounding box is returned also in the rational case,
that is the box in homogeneous coordinates is NOT computed.

SYNOPSIS
void s1989(ps, emax, emin, jstat)

SISLSurf *ps;
double **emax;
double **emin;
int *jstat;

ARGUMENTS
Input Arguments:

ps - Surface to treat.

Output Arguments:
emin - Array of dimension idim containing the minimum values

of the bounding box, i.e. bottom-left corner of the box.

emax - Array of dimension idim containing the maximum values
of the bounding box, i.e. upper-right corner of the box.

jstat - Status messages
> 0 : Warning.
= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLSurf *ps; /* Must be defined */
double *emax = NULL;
double *emin = NULL;
int jstat = 0;
. . .
s1989(ps, &emax, &emin, &jstat);
. . .

}

CHAPTER 8. SURFACE INTERROGATION 269

8.12 Normal Cone

Both curves and surfaces have normal cones. These are the cones that are
convex hull of all normalized tangents of a curve and all normalized normals of
a surface.

These normal cones are used by the intersection functions to decide if only
one intersection is possible. They might also be used to find directions of objects
for other reasons. The direction cone object and corresponding initialization
functionality ar described in Section 4.10.1 at pages 98 and 99.

8.12.1 Find the direction cone of a surface.

NAME
s1987 - Find the direction cone of a surface.

SYNOPSIS
void s1987(ps, aepsge, jgtpi, gaxis, cang, jstat)

SISLSurf *ps;
double aepsge;
int *jgtpi;
double **gaxis;
double *cang;
int *jstat;

ARGUMENTS
Input Arguments:

ps - Surface to treat.
aepsge - Geometry tolerance.

Output Arguments:
jgtpi - To mark if the angle of the direction cone is greater than

π.
= 0 : The direction cone of the surface is not greater

than π in any parameter direction.

= 1 : The direction cone of the surface is greater
than π in the first parameter direction.

= 2 : The direction cone of the surface is greater
than π in the second parameter direction.

= 10 : The direction cone of a boundary curve of the
surface is greater than π in the first parameter
direction.

= 20 : The direction cone of a boundary curve of the
surface is greater than π in the second param-
eter direction.

gaxis - Allocated array containing the coordinates of the centre of
the cone. It is only computed if jgtpi = 0.

cang - The angle from the centre to the boundary of the cone. It
is only computed if jgtpi = 0.

jstat - Status messages

CHAPTER 8. SURFACE INTERROGATION 270

> 0 : Warning.
= 0 : Ok.
< 0 : Error.

CHAPTER 8. SURFACE INTERROGATION 271

EXAMPLE OF USE
{

SISLSurf *ps; /* Must be defined */
double aepsge = 1.0e-10;
int jgtpi = 0;
double *gaxis = NULL;
double cang = 0.0;
int jstat = 0;
. . .
s1987(ps, aepsge, &jgtpi, &gaxis, &cang, &jstat);
. . .

}

Chapter 9

Surface Analysis

This chapter describes the Surface Analysis part.

9.1 Curvature Evaluation

9.1.1 Gaussian curvature of a spline surface.

NAME
s2500 - To compute the Gaussian curvature K(u,v) of a spline surface at

given values (u,v) = (parvalue[0],parvalue[1]), where et1[leftknot1] <=
parvalue[0] < et1[leftknot1+1] and et2[leftknot2] <= parvalue[1] <
et2[leftknot2+1]. See also s2501().

SYNOPSIS
void s2500(surf, ider, iside1, iside2, parvalue, leftknot1, leftknot2, gaussian, jstat)

SISLSurf *surf;
int ider;
int iside1;
int iside2;
double parvalue[];
int *leftknot1;
int *leftknot2;
double gaussian[];
int *jstat;

ARGUMENTS
Input Arguments:

surf - Pointer to the surface to evaluate.

ider - Number of derivatives to calculate. Only implemented for
ider=0.
< 0 : No derivative calculated.
= 0 : Position calculated.
= 1 : Position and first derivative calculated, etc.

iside1 - Flag indicating whether the derivatives in the first param-
eter direction are to be calculated from the left or from the
right:

272

CHAPTER 9. SURFACE ANALYSIS 273

< 0 : calculate derivative from the left hand side.
>= 0 : calculate derivative from the right hand side.

iside2 - Flag indicating whether the derivatives in the second pa-
rameter direction are to be calculated from the left or from
the right:

< 0 : calculate derivative from the left hand side.
>= 0 : calculate derivative from the right hand side.

parvalue - Parameter value at which to evaluate. Dimension of par-
value is 2.

Input/Output Arguments:
leftknot1 - Pointer to the interval in the knot vector in the first

parameter direction where parvalue[0] is found, that is:
et1[leftknot1] <= parvalue[0] < et1[leftknot1+1]. left-
knot1 should be set equal to zero at the first call to the
routine.

leftknot2 - Pointer to the interval in the knot vector in the second
parameter direction where parvalue[1] is found, that is:
et2[leftknot2] <= parvalue[1] < et2[leftknot2+1]. left-
knot2 should be set equal to zero at the first call to the
routine.

Output Arguments:
gaussian - Gaussian of the surface at (u,v) = (par-

value[0],parvalue[1]).

jstat - Status messages
= 2 : Surface is degenerate at the point, that is, the

surface is not regular at this point.

= 1 : Surface is close to degenerate at the point.
Angle between tangents is less than the angu-
lar tolerance.

= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLSurf *surf; /* Must be defined */
int ider = 0;
int iside1 = 1;
int iside2 = 1;
double parvalue[2]; /* Must be defined */
int leftknot1 = 0; /* Define initially as zero. For consequtive evaluations

leave leftknot1 as returned from s1500 */
int leftknot2 = 0; /* As for leftknot1 */
double gaussian[1]; /* A pre allocated array is expected */
int jstat = 0;
. . .
s2500(surf, ider, iside1, iside2, parvalue, &leftknot1, &leftknot2, gaussian,

&jstat);

CHAPTER 9. SURFACE ANALYSIS 274

. . .
}

CHAPTER 9. SURFACE ANALYSIS 275

9.1.2 Mean curvature of a spline surface.

NAME
s2502 - To compute the mean curvature H(u,v) of a spline surface at given values

(u,v) = (parvalue[0],parvalue[1]), where etl[leftknot1] <= parvalue[0] <
etl[leftknot1+1] and et2[leftknot2] <= parvalue[1] < et2[leftknot2+1].

SYNOPSIS
void s2502(surf, ider, iside1, iside2, parvalue, leftknot1, leftknot2, meancurvature,

jstat)
SISLSurf *surf;
int ider;
int iside1;
int iside2;
double parvalue[];
int *leftknot1;
int *leftknot2;
double meancurvature[];
int *jstat;

ARGUMENTS
Input Arguments:

surf - Pointer to the surface to evaluate.

ider - Number of derivatives to calculate. Only implemented for
ider=0.
< 0 : No derivative calculated.
= 0 : Position calculated.
= 1 : Position and first derivative calculated, etc.

iside1 - Flag indicating whether the derivatives in the first param-
eter direction are to be calculated from the left or from the
right:

< 0 : calculate derivative from the left hand side.
>= 0 : calculate derivative from the right hand side.

iside2 - Flag indicating whether the derivatives in the second pa-
rameter direction are to be calculated from the left or from
the right:

< 0 : calculate derivative from the left hand side.
>= 0 : calculate derivative from the right hand side.

parvalue - Parameter value at which to evaluate. Dimension of par-
value is 2.

Input/Output Arguments:
leftknot1 - Pointer to the interval in the knot vector in the first

parameter direction where parvalue[0] is found, that is:
et1[leftknot1] <= parvalue[0] < et1[leftknot1+1]. left-
knot1 should be set equal to zero at the first call to the
routine.

CHAPTER 9. SURFACE ANALYSIS 276

leftknot2 - Pointer to the interval in the knot vector in the second
parameter direction where parvalue[1] is found, that is:
et2[leftknot2] <= parvalue[1] < et2[leftknot2+1]. left-
knot2 should be set equal to zero at the first call to the
routine.

Output Arguments:
meancurvature- Mean curvature of the surface at (u,v) = (par-

value[0],parvalue[1]).
jstat - Status messages

= 2 : Surface is degenerate at the point, that is, the
surface is not regular at this point.

= 1 : Surface is close to degenerate at the point.
Angle between tangents is less than the angu-
lar tolerance.

= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLSurf *surf; /* Must be defined */
int ider = 0;
int iside1 = 1;
int iside2 = 1;
double parvalue[2]; /* Must be defined */
int leftknot1 = 0; /* Define initially as zero. For consequtive evaluations

leave leftknot1 as returned from s1502 */
int leftknot2 = 0; /* As for leftknot1 */
double meancurvature[1]; /* A pre allocated array is expected */
int jstat = 0;
. . .
s2502(surf, ider, iside1, iside2, parvalue, leftknot1, leftknot2, meancurvature,

&jstat);
. . .

}

CHAPTER 9. SURFACE ANALYSIS 277

9.1.3 Absolute curvature of a spline surface.

NAME
s2504 - To compute the absolute curvature A(u,v) of a spline surface at

given values (u,v) = (parvalue[0],parvalue[1]), where et1[leftknot1] <=
parvalue[0] < et1[leftknot1+1] and et2[leftknot2] <= parvalue[1] <
et2[leftknot2+1].

SYNOPSIS
void s2504(surf, ider, iside1, iside2, parvalue, leftknot1, leftknot2, absCurvature,

jstat)
SISLSurf *surf;
int ider;
int iside1;
int iside2;
double parvalue[];
int *leftknot1;
int *leftknot2;
double absCurvature[];
int *jstat;

ARGUMENTS
Input Arguments:

surf - Pointer to the surface to evaluate.

ider - Number of derivatives to calculate. Only implemented for
ider=0.
< 0 : No derivative calculated.
= 0 : Position calculated.
= 1 : Position and first derivative calculated, etc.

iside1 - Flag indicating whether the derivatives in the first param-
eter direction are to be calculated from the left or from the
right:

< 0 : calculate derivative from the left hand side.
>= 0 : calculate derivative from the right hand side.

iside2 - Flag indicating whether the derivatives in the second pa-
rameter direction are to be calculated from the left or from
the right:

< 0 : calculate derivative from the left hand side.
>= 0 : calculate derivative from the right hand side.

parvalue - Parameter value at which to evaluate. Dimension of par-
value is 2.

Input/Output Arguments:
leftknot1 - Pointer to the interval in the knot vector in the first

parameter direction where parvalue[0] is found, that is:
et1[leftknot1] <= parvalue[0] < et1[leftknot1+1]. left-
knot1 should be set equal to zero at the first call to the
routine.

CHAPTER 9. SURFACE ANALYSIS 278

leftknot2 - Pointer to the interval in the knot vector in the second
parameter direction where parvalue[1] is found, that is:
et2[leftknot2] <= parvalue[1] < et2[leftknot2+1]. left-
knot2 should be set equal to zero at the first call to the
routine.

Output Arguments:
absCurvature - Absolute curvature of the surface at (u,v) = (par-

value[0],parvalue[1]).
jstat - Status messages

= 2 : Surface is degenerate at the point, that is, the
surface is not regular at this point.

= 1 : Surface is close to degenerate at the point.
Angle between tangents is less than the angu-
lar tolerance.

= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLSurf *surf; /* Must be defined */
int ider = 0;
int iside1 = 1;
int iside2 = 1;
double parvalue[2]; /* Must be defined */
int leftknot1 = 0; /* Define initially as zero. For consequtive evaluations

leave leftknot1 as returned from s1504 */
int leftknot2 = 0; /* As for leftknot1 */
double absCurvature[1]; /* A pre allocated array is expected */
int jstat = 0;
. . .
s2504(surf, ider, iside1, iside2, parvalue, leftknot1, leftknot2, absCurvature,

&jstat);
. . .

}

CHAPTER 9. SURFACE ANALYSIS 279

9.1.4 Total curvature of a spline surface.

NAME
s2506 - To compute the total curvature T(u,v) of a surface at given values

(u,v) = (parvalue[0],parvalue[1]), where et1[leftknot1] <= parvalue[0] <
et1[leftknot1+1] and et2[leftknot2] <= parvalue[1] < et2[leftknot2+1].

SYNOPSIS
void s2506(surf, ider, iside1, iside2, parvalue, leftknot1, leftknot2, totalCurvature,

jstat)
SISLSurf *surf;
int ider;
int iside1;
int iside2;
double parvalue[];
int *leftknot1;
int *leftknot2;
double totalCurvature[];
int *jstat;

ARGUMENTS
Input Arguments:

surf - Pointer to the surface to evaluate.

ider - Number of derivatives to calculate. Only implemented for
ider=0.
< 0 : No derivative calculated.
= 0 : Position calculated.
= 1 : Position and first derivative calculated, etc.

iside1 - Flag indicating whether the derivatives in the first param-
eter direction are to be calculated from the left or from the
right:

< 0 : calculate derivative from the left hand side.
>= 0 : calculate derivative from the right hand side.

iside2 - Flag indicating whether the derivatives in the second pa-
rameter direction are to be calculated from the left or from
the right:

< 0 : calculate derivative from the left hand side.
>= 0 : calculate derivative from the right hand side.

parvalue - Parameter value at which to evaluate. Dimension of par-
value is 2.

Input/Output Arguments:
leftknot1 - Pointer to the interval in the knot vector in the first

parameter direction where parvalue[0] is found, that is:
et1[leftknot1] <= parvalue[0] < et1[leftknot1+1]. left-
knot1 should be set equal to zero at the first call to the
routine.

CHAPTER 9. SURFACE ANALYSIS 280

leftknot2 - Pointer to the interval in the knot vector in the second
parameter direction where parvalue[1] is found, that is:
et2[leftknot2] <= parvalue[1] < et2[leftknot2+1]. left-
knot2 should be set equal to zero at the first call to the
routine.

Output Arguments:
totalCurvature- Total curvature of the surface at (u,v) = (par-

value[0],parvalue[1]).

jstat - Status messages
= 2 : Surface is degenerate at the point, that is, the

surface is not regular at this point.

= 1 : Surface is close to degenerate at the point.
Angle between tangents is less than the angu-
lar tolerance.

= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLSurf *surf; /* Must be defined */
int ider = 0;
int iside1 = 1;
int iside2 = 1;
double parvalue[2] /* Must be defined */;
int leftknot1 = 0; /* Define initially as zero. For consequtive evaluations

leave leftknot1 as returned from s1506 */
int leftknot2 = 0; /* As for leftknot1 */
double totalCurvature[1]; /* A pre allocated array is expected */
int jstat = 0;
. . .
s2506(surf, ider, iside1, iside2, parvalue, leftknot1, leftknot2, totalCurvature,

&jstat);
. . .

}

CHAPTER 9. SURFACE ANALYSIS 281

9.1.5 Second order Mehlum curvature of a spline surface.

NAME
s2508 - To compute the second order Mehlum curvature M(u,v) of a surface

at given values (u,v) = (parvalue[0],parvalue[1]), where et1[leftknot1]
<= parvalue[0] < et1[leftknot1+1] and et2[leftknot2] <= parvalue[1] <
et2[leftknot2+1]. See also s2509().

SYNOPSIS
void s2508(surf, ider, iside1, iside2, parvalue, leftknot1, leftknot2, mehlum, jstat)

SISLSurf *surf;
int ider;
int iside1;
int iside2;
double parvalue[];
int *leftknot1;
int *leftknot2;
double mehlum[];
int *jstat;

ARGUMENTS
Input Arguments:

surf - Pointer to the surface to evaluate.

ider - Number of derivatives to calculate. Only implemented for
ider=0.
< 0 : No derivative calculated.
= 0 : Position calculated.
= 1 : Position and first derivative calculated, etc.

iside1 - Flag indicating whether the derivatives in the first param-
eter direction are to be calculated from the left or from the
right:

< 0 : calculate derivative from the left hand side.
>= 0 : calculate derivative from the right hand side.

iside2 - Flag indicating whether the derivatives in the second pa-
rameter direction are to be calculated from the left or from
the right:

< 0 : calculate derivative from the left hand side.
>= 0 : calculate derivative from the right hand side.

parvalue - Parameter value at which to evaluate. Dimension of par-
value is 2.

Input/Output Arguments:
leftknot1 - Pointer to the interval in the knot vector in the first

parameter direction where parvalue[0] is found, that is:
et1[leftknot1] <= parvalue[0] < et1[leftknot1+1]. left-
knot1 should be set equal to zero at the first call to the
routine.

CHAPTER 9. SURFACE ANALYSIS 282

leftknot2 - Pointer to the interval in the knot vector in the second
parameter direction where parvalue[1] is found, that is:
et2[leftknot2] <= parvalue[1] < et2[leftknot2+1]. left-
knot2 should be set equal to zero at the first call to the
routine.

Output Arguments:
mehlum - The second order Mehlum curvature of the surface at (u,v)

= (parvalue[0],parvalue[1]).

jstat - Status messages
= 2 : Surface is degenerate at the point, that is, the

surface is not regular at this point.

= 1 : Surface is close to degenerate at the point.
Angle between tangents is less than the angu-
lar tolerance.

= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLSurf *surf; /* Must be defined */
int ider = 0;
int iside1 = 1;
int iside2 = 1;
double parvalue[2]; /* Must be defined */
int leftknot1 = 0; /* Define initially as zero. For consequtive evaluations

leave leftknot1 as returned from s1506
int leftknot2 = 0; /* As for leftknot1 */
double mehlum[1]; /* A pre allocated array is expected
int jstat = 0;
. . .
s2508(surf, ider, iside1, iside2, parvalue, leftknot1, leftknot2, mehlum, &js-

tat);
. . .

}

CHAPTER 9. SURFACE ANALYSIS 283

9.1.6 Third order Mehlum curvature of a spline surface.

NAME
s2510 - To compute the third order Mehlum curvature M(u,v) of a surface

at given values (u,v) = (parvalue[0],parvalue[1]), where et1[leftknot1]
<= parvalue[0] < et1[leftknot1+1], et2[leftknot2] <= parvalue[1] <
et2[leftknot2+1].

SYNOPSIS
void s2510(surf, ider, iside1, iside2, parvalue, leftknot1, leftknot2, mehlum, jstat)

SISLSurf *surf;
int ider;
int iside1;
int iside2;
double parvalue[];
int *leftknot1;
int *leftknot2;
double mehlum[];
int *jstat;

ARGUMENTS
Input Arguments:

surf - Pointer to the surface to evaluate.

ider - Number of derivatives to calculate. Only implemented for
ider=0.
< 0 : No derivative calculated.
= 0 : Position calculated.
= 1 : Position and first derivative calculated, etc.

iside1 - Flag indicating whether the derivatives in the first param-
eter direction are to be calculated from the left or from the
right:

< 0 : calculate derivative from the left hand side.
>= 0 : calculate derivative from the right hand side.

iside2 - Flag indicating whether the derivatives in the second pa-
rameter direction are to be calculated from the left or from
the right:

< 0 : calculate derivative from the left hand side.
>= 0 : calculate derivative from the right hand side.

parvalue - Parameter value at which to evaluate. Dimension of par-
value is 2.

Input/Output Arguments:
leftknot1 - Pointer to the interval in the knot vector in the first

parameter direction where parvalue[0] is found, that is:
et1[leftknot1] <= parvalue[0] < et1[leftknot1+1]. left-
knot1 should be set equal to zero at the first call to the
routine.

CHAPTER 9. SURFACE ANALYSIS 284

leftknot2 - Pointer to the interval in the knot vector in the second
parameter direction where parvalue[1] is found, that is:
et2[leftknot2] <= parvalue[1] < et2[leftknot2+1]. left-
knot2 should be set equal to zero at the first call to the
routine.

Output Arguments:
mehlum - Third order Mehlum curvature of the surface at (u,v) =

(parvalue[0],parvalue[1]).

jstat - Status messages
= 2 : Surface is degenerate at the point, that is, the

surface is not regular at this point.

= 1 : Surface is close to degenerate at the point.
Angle between tangents is less than the angu-
lar tolerance.

= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLSurf *surf; /* Must be defined */
int ider = 0;
int iside1 = 1;
int iside2 = 1;
double parvalue[2]; /* Must be defined */
int leftknot1 = 0; /* Define initially as zero. For consequtive evaluations

leave leftknot1 as returned from s1510 */
int leftknot2 = 0; /* As for leftknot1 */
double mehlum[1]; /* A pre allocated array is expected */
int jstat = 0;
. . .
s2510(surf, ider, iside1, iside2, parvalue, leftknot1, leftknot2, mehlum, &js-

tat);
. . .

}

CHAPTER 9. SURFACE ANALYSIS 285

9.1.7 Gaussian curvature of a B-spline or NURBS surface
as a NURBS surface.

NAME
s2532 - To interpolate or approximate the Gaussian curvature of a B-spline or

NURBS surface by a NURBS surface. The desired continuity of the
Gaussian curvature surface is input and this may lead to a patchwork
of output surfaces. Interpolation results in a high order surface. If
the original surface is a B-spline surface of order k, the result is of order
8k−11, in the NURBS case, order 32k−35. To avoid instability beacuse
of this, a maximum order is applied. This may lead to an approximation
rather than an interpolation.

SYNOPSIS
void s2532(surf, u continuity, v continuity, u surfnumb, v surfnumb, gauss surf,

stat)
SISLSurf *surf;
int u continuity;
int v continuity1;
int *u surfnumb;
int *v surfnumb;
SISLSurf ***gauss surf;
int *stat;

ARGUMENTS
Input Arguments:

surf - The original surface.

u continuity - Desired continuity of the Gaussian curvature surfaces in
the u direction: 0 implies positional continuity, 1 implies
tangential continuity, and so on. SISL only accepts sur-
faces of continuity 0 or higher. If the surface is to be inter-
sected with another, the continuity must be 1 or higher to
find all the intersection curves. If the requested continuity
is higher than the minimum continuity of the surface in
the first parameter direction minus 2, an approximation
will be performed.

v continuity - Desired continuity of the Gaussian curvature surfaces in
the v direction: 0 implies positional continuity, 1 implies
tangential continuity, and so on. SISL only accepts sur-
faces of continuity 0 or higher. If the surface is to be inter-
sected with another, the continuity must be 1 or higher to
find all the intersection curves. If the requested continu-
ity is higher than the minimum continuity of the surface in
the second parameter direction minus 2, an approximation
will be performed.

Output Arguments:
u surfnumb - Number of Gaussian curvature surface patches in the u

direction.

CHAPTER 9. SURFACE ANALYSIS 286

v surfnumb - Number of Gaussian curvature surface patches in the v
direction.

gauss surf - The Gaussian curvature interpolation surfaces. This will
be a pointer to an array of length u surfnum * v surfnumb
of SISLSurf pointers, where the indexing runs fastest in
the u direction.

stat - Status messages
> 0 : Warning.
= 2 : The surface is degenerate.
= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLSurf *surf; /* Must be defined */
int u continuity = 0; /* Should depend on continuity of input

surface and the use of the result */
int v continuity = 0;
int u surfnumb = 0;
int v surfnumb = 0;
SISLSurf **gauss surf = NULL;
int stat = 0;
. . .
s2532(surf, u continuity, v continuity, &u surfnumb, &v surfnumb,

&gauss surf, &stat);
. . .

}

CHAPTER 9. SURFACE ANALYSIS 287

9.1.8 Mehlum curvature of a B-spline or NURBS surface
as a NURBS surface.

NAME
s2536 - To interpolate or approximate the Mehlum curvature of a B-spline or

NURBS surface by a NURBS surface. The desired continuity of the
Mehlum curvature surface is input and this may lead to a patchwork
of output surfaces. Interpolation results in a high order surface. If
the original surface is a B-spline surface of order k, the result is of order
12k−17, in the NURBS case, order 48k−53. To avoid instability beacuse
of this, a maximum order is applied. This may lead to an approximation
rather than an interpolation.

SYNOPSIS
void s2536(surf, u continuity, v continuity, u surfnumb, v surfnumb,

mehlum surf, stat)
SISLSurf *surf;
int u continuity;
int v continuity;
int *u surfnumb;
int *v surfnumb;
SISLSurf ***mehlum surf;
int *stat;

ARGUMENTS
Input Arguments:

surf - The original surface.

u continuity - Desired continuity of the Mehlum curvature surfaces in the
u direction: 0 implies positional continuity, 1 implies tan-
gential continuity, and so on. SISL only accepts surfaces
of continuity 0 or higher. If the surface is to be intersected
with another, the continuity must be 1 or higher to find
all the intersection curves. If the requested continuity is
higher than the minimum continuity of the surface in the
first parameter direction minus 2, an approximation will
be performed.

v continuity - Desired continuity of the Mehlum curvature surfaces in the
v direction: 0 implies positional continuity, 1 implies tan-
gential continuity, and so on. SISL only accepts surfaces
of continuity 0 or higher. If the surface is to be intersected
with another, the continuity must be 1 or higher to find
all the intersection curves. If the requested continuity is
higher than the minimum continuity of the surface in the
second parameter direction minus 2, an approximation will
be performed.

Output Arguments:
u surfnumb - Number of Mehlum curvature surface patches in the u di-

rection.

CHAPTER 9. SURFACE ANALYSIS 288

v surfnumb - Number of Mehlum curvature surface patches in the v di-
rection.

mehlum surf - The Mehlum curvature interpolation surfaces. This will be
a pointer to an array of length u surfnum * v surfnumb of
SISLSurf pointers, where the indexing runs fastest in the
u direction.

stat - Status messages
> 0 : Warning.
= 2 : The surface is degenerate.
= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLSurf *surf /* Must be defined */;
int u continuity = 0; /* Should depend on continuity of input

surface and the use of the result */
int v continuity = 0;
int u surfnumb = 0;
int v surfnumb = 0;
SISLSurf **mehlum surf = NULL;
int stat = 0;
. . .
s2536(surf, u continuity, v continuity, &u surfnumb, &v surfnumb,

&mehlum surf, &stat);
. . .

}

CHAPTER 9. SURFACE ANALYSIS 289

9.1.9 Curvature on a uniform grid of a NURBS surface.

NAME
s2540 - To compute a set of curvature values on a uniform grid in a selected

subset of the parameter domain of a NURBS surface.

SYNOPSIS
void s2540(surf, curvature type, export par val, pick subpart, boundary[], n u,

n v, garr, stat)
SISLSurf *surf;
int curvature type;
int export par val;
int pick subpart;
double boundary[];
int n u;
int n v;
double **garr;
int *stat;

ARGUMENTS
Input Arguments:

surf - The surface to evaluate.

curvature - The type of curvature:

0 : Gaussian curvature.
1 : Mean curvature.
2 : Absolute curvature.
3 : Total curvature.
4 : Second order Mehlum curvature.
5 : Third order Mehlum curvature.

export - Flag indicating whether the parameter values of the grid
points are to be exported:

0 : False, do not export parameter values.
1 : True, do export parameter values.

pick - Flag indicating whether the grid is to be calculated on a
subpart of the surface:

0 : False, calculate grid on the complete surface.
1 : True, calculate grid on a part of the surface.

boundary - A rectangular subset of the parameter domain.

0 : Minimum value in the first parameter.
1 : Minimum value in the second parameter.
2 : Maximum value in the first parameter.
3 : Maximum value in the second parameter.
ONLY USED WHEN pick subpart = 1. If pick subpart
= 0 the parameter area of surf is returned here.

n u - Number of segments in the first parameter.

n v - Number of segments in the second parameter.

Output Arguments:

CHAPTER 9. SURFACE ANALYSIS 290

garr - Array containing the computed values on the grid.
The allocation is done internally and the dimension
is 3*(n u+1)*(n v+1) if export par val is true, and
(n u+1)*(n v+1) if export par val is false. Each grid-
point consists of a triple (ui, vj , curvature(ui, vj)) or only
curvature(u,vj). The sequence runs first in the first pa-
rameter.

stat - Status messages
> 0 : Warning.
= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLSurf *surf; /* Must be defined */
int curvature type = 1;
int export par val = 1 ;
int pick subpart = 0;
double boundary[4]; /* Must be defined if pick subpart = 1 */
int n u = 10;
int n v = 10;
double *garr = NULL;
int stat = 0;
. . .
s2540(surf, curvature type, export par val, pick subpart, boundary[], n u,

n v, &garr, &stat);
. . .

}

CHAPTER 9. SURFACE ANALYSIS 291

9.1.10 Principal curvatures of a spline surface.

NAME
s2542 - To compute principal curvatures (k1,k2) with corresponding prin-

cipal directions (d1,d2) of a spline surface at given values (u,v)
= (parvalue[0],parvalue[1]), where etl[leftknot1] <= parvalue[0] <
etl[leftknot1+1] and et2[leftknot2] <= parvalue[1] < et2[leftknot2+1].

SYNOPSIS
void s2542(surf, ider, iside1, iside2, parvalue, leftknot1, leftknot2, k1, k2, d1, d2,

jstat)
SISLSurf *surf;
int ider;
int iside1;
int iside2;
double parvalue[];
int *leftknot1;
int *leftknot2;
double *k1;
double *k2;
double d1[];
double d2[];
int *jstat;

ARGUMENTS
Input Arguments:

surf - Pointer to the surface to evaluate.

ider - Number of derivatives to calculate. Only implemented for
ider=0.
< 0 : No derivative calculated.
= 0 : Position calculated.
= 1 : Position and first derivative calculated, etc.

iside1 - Flag indicating whether the principal curvature in the first
parameter is to be calculated from the left or from the
right:

< 0 : calculate curvature from the left hand side.
>= 0 : calculate curvature from the right hand side.

iside2 - Flag indicating whether the principal curvature in the sec-
ond parameter is to be calculated from the left or from the
right:

< 0 : calculate curvature from the left hand side.
>= 0 : calculate curvature from the right hand side.

parvalue - Parameter value at which to evaluate. Dimension of par-
value is 2.

Input/Output Arguments:

CHAPTER 9. SURFACE ANALYSIS 292

leftknot1 - Pointer to the interval in the knot vector in the first
parameter direction where parvalue[0] is found, that is:
et1[leftknot1] <= parvalue[0] < et1[leftknot1+1]. left-
knot1 should be set equal to zero at the first call to the
routine.

leftknot2 - Pointer to the interval in the knot vector in the second
parameter direction where parvalue[1] is found, that is:
et2[leftknot2] <= parvalue[1] < et2[leftknot2+1]. left-
knot2 should be set equal to zero at the first call to the
routine.

Output Arguments:
k1 - Max. principal curvature.
k2 - Min. principal curvature.
d1 - Max. direction of the principal curvature k1, given in local

coordinates (with regard to Xu,Xv). Dim. = 2.
d2 - Min. direction of the principal curvature k2, given in local

coordinates (with regard to Xu,Xv). Dim. = 2.
jstat - Status messages

= 2 : Surface is degenerate at the point, that is, the
surface is not regular at this point.

= 1 : Surface is close to degenerate at the point.
Angle between tangents is less than the angu-
lar tolerance.

= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLSurf *surf; /* Must be defined */
int ider = 0;
int iside1 = 1;
int iside2 = 1;
double parvalue[2]; /* Must be defined */
int leftknot1 = 0; /* Define initially as zero. For consequtive evaluations

leave leftknot1 as returned from s2542
int leftknot2 = 0; /* As for leftknot1 */
double k1;
double k2;
double d1[2];
double d2[2];
int jstat = 0;
. . .
s2542(surf, ider, iside1, iside2, parvalue, &leftknot1, &leftknot2, &k1, &k2,

d1, d2, &jstat);
. . .

}

CHAPTER 9. SURFACE ANALYSIS 293

9.1.11 Normal curvature of a spline surface.

NAME
s2544 - To compute the Normal curvature of a splne surface at given values (u,v)

= (parvalue[0],parvalue[1]) in the direction (parvalue[2],parvalue[3])
where et1[leftknot1] <= parvalue[0] < et1[leftknot1+1] and
et2[leftknot2] <= parvalue[1] < et2[leftknot2+1].

SYNOPSIS
void s2544(surf, ider, iside1, iside2, parvalue, leftknot1, leftknot2, norcurv, jstat)

SISLSurf *surf;
int ider;
int iside1;
int iside2;
double parvalue[];
int *leftknot1;
int *leftknot2;
double norcurv[];
int *jstat;

ARGUMENTS
Input Arguments:

surf - Pointer to the surface to evaluate.

ider - Number of derivatives to calculate. Only implemented for
ider=0.
< 0 : No derivative calculated.
= 0 : Position calculated.
= 1 : Position and first derivative calculated, etc.

iside1 - Flag indicating whether the derivatives in the first param-
eter direction are to be calculated from the left or from the
right:

< 0 : calculate derivative from the left hand side.
>= 0 : calculate derivative from the right hand side.

iside2 - Flag indicating whether the derivatives in the second pa-
rameter direction are to be calculated from the left or from
the right:

< 0 : calculate derivative from the left hand side.
>= 0 : calculate derivative from the right hand side.

parvalue - Parameter value at which to evaluate plus the direction.
Dimension of parvalue is 4.

Input/Output Arguments:
leftknot1 - Pointer to the interval in the knot vector in the first

parameter direction where parvalue[0] is found, that is:
et1[leftknot1] <= parvalue[0] < et1[leftknot1+1]. left-
knot1 should be set equal to zero at the first call to the
routine.

CHAPTER 9. SURFACE ANALYSIS 294

leftknot2 - Pointer to the interval in the knot vector in the second
parameter direction where parvalue[1] is found, that is:
et2[leftknot2] <= parvalue[1] < et2[leftknot2+1]. left-
knot2 should be set equal to zero at the first call to the
routine.

Output Arguments:
gaussian - Normal curvature and derivatives of normal curvature of

the surface at (u,v) = (parvalue[0],parvalue[1]) in the di-
rection (parvalue[2],parvalue[3]).

jstat - Status messages
= 2 : Surface is degenerate at the point, that is, the

surface is not regular at this point.

= 1 : Surface is close to degenerate at the point.
Angle between tangents is less than the angu-
lar tolerance.

= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLSurf *surf; /* Must be defined */
int ider = 0;
int iside1 = 1;
int iside2 = 1;
double parvalue[2]; /* Must be defined */
int leftknot1 = 0;/* Define initially as zero. For consequtive evaluations

leave leftknot1 as returned from s2544 */
int leftknot2 = 0; /* As for leftknot1 */
double norcurv[1]; /* An allocated array with length ider is expected */
int jstat;
. . .
s2544(surf, ider, iside1, iside2, parvalue, &leftknot1, &leftknot2, norcurv,

&jstat);
. . .

}

CHAPTER 9. SURFACE ANALYSIS 295

9.1.12 Focal values on a uniform grid of a NURBS surface.

NAME
s2545 - To compute a set of focal values on a uniform grid in a selected subset

of the parameter domain of a NURBS surface. A focal value is a surface
position offset by the surface curvature.

SYNOPSIS
void s2545(surf, curvature type, export par val, pick subpart, boundary, n u,

n v, scale, garr, stat)
SISLSurf *surf;
int curvature type;
int export par val;
int pick subpart;
double boundary[];
int n u;
int n v;
double scale;
double **garr;
int *stat;

ARGUMENTS
Input Arguments:

surf - The surface to evaluate.

curvature - The type of curvature:

0 : Gaussian curvature.
1 : Mean curvature.
2 : Absolute curvature.
3 : Total curvature.
4 : Second order Mehlum curvature.
5 : Third order Mehlum curvature.

export - Flag indicating whether the parameter values of the grid
points are to be exported:

0 : False, do not export parameter values.
1 : True, do export parameter values.

pick - Flag indicating whether the grid is to be calculated on a
subpart of the surface:

0 : False, calculate grid on the complete surface.
1 : True, calculate grid on a part of the surface.

boundary - A rectangular subset of the parameter domain.

0 : Minmum value in the first parameter.
1 : Minmum value in the second parameter.
2 : Maximum value in the first parameter.
3 : Maximum value in the second parameter.
ONLY USED WHEN pick subpart = 1. If pick subpart
= 0 the parameter area of surf is returned here.

n u - Number of segments in the first parameter.

n v - Number of segments in the second parameter.

CHAPTER 9. SURFACE ANALYSIS 296

scale - Scaling factor.

Output Arguments:
garr - Array containing the computed values on the grid.

The allocation is done internally and the dimension is
(dim+2)*(n u+1)*(n v+1) if export par val is true, and
dim*(n u+1)*(n v+1) if export par val is false. Each grid-
point consists of dim + 2 values (ui, vj , x(ui, vj), ...) or only
the focal points (x(ui, vj),). The sequence runs first in
the first parameter.

stat - Status messages
> 0 : Warning.
= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLSurf *surf; /* Must be defined */
int curvature type = 0;
int export par val = 1;
int pick subpart 0;
double boundary[4]; /* Must be defined if pick subpart = 1*/
int n u = 10;
int n v = 10;
double scale = 1.0;
double *garr = NULL;
int stat = 0;
. . .
s2545(surf, curvature type, export par val, pick subpart, boundary[], n u,

n v, scale, &garr, &stat);
. . .

}

Chapter 10

Surface Utilities

This chapter describes the Surface Utilities. These are common to both the
Surface Definition and Surface Interrogation modules.

10.1 Surface Object

In the library both B-spline and NURBS surfaces are stored in a struct SISLSurf
containing the following:

int ik1; Order of surface in first parameter direction.
int ik2; Order of surface in second parameter direction.
int in1; Number of coefficients in first parameter direction.
int in2; Number of coefficients in second parameter direction.
double *et1; Pointer to knot vector in first parameter direction.
double *et2; Pointer to knot vector in second parameter direction.
double *ecoef; Pointer to array of non-rational coefficients of the surface,

size in1× in2× idim.

double *rcoef; Pointer to the array of rational vertices and weights, size
in1× in2× (idim+ 1).

int ikind; Type of surface
= 1 : Polynomial B-spline tensor-product surface.
= 2 : Rational B-spline (nurbs) tensor-product surface.
= 3 : Polynomial Bezier tensor-product surface.
= 4 : Rational Bezier tensor-product surface.

int idim; Dimension of the space in which the surface lies.

297

CHAPTER 10. SURFACE UTILITIES 298

int icopy; Indicates whether the arrays of the surface are allocated
and copied or referenced when the surface was created.

= 0 : Pointer set to input arrays. The arrays are
not deleted by freeSurf.

= 1 : Array allocated and copied. The arrays are
deleted by freeSurf.

= 2 : Pointer set to input arrays, but the arrays are
to be treated as allocated and copied. The
arrays are deleted by freeSurf.

SISLdir *pdir; Pointer to a SISLdir object used for storing surface direc-
tion.

SISLbox *pbox; Pointer to a SISLbox object used for storing the sur-
rounded boxes.

int cuopen 1; Open/closed/periodic flag for the first parameter direction.

= −1 : Closed curve with periodic (cyclic) parame-
terization and overlapping end vertices.

= 0 : Closed curve with k-tuple end knots and co-
inciding start/end vertices.

= 1 : Open curve (default).

int cuopen 2; Open/closed/periodic flag for the second parameter direc-
tion.
= −1 : Closed curve with periodic (cyclic) parame-

terization and overlapping end vertices.

= 0 : Closed curve with k-tuple end knots and co-
inciding start/end vertices.

= 1 : Open curve (default).

When using a surface, do not declare a Surface but a pointer to a Surface,
and initialize it to point to NULL. Then you may use the dynamic allocation
functions newSurface and freeSurface, which are described below, to create and
delete surfaces.

There are two ways to pass coefficient and knot arrays to newSurf. By
setting icopy = 1, newSurf allocates new arrays and copies the given ones. But
by setting icopy = 0 or 2, newSurf simply points to the given arrays. Therefore
it is IMPORTANT that the given arrays have been allocated in free memory
beforehand.

CHAPTER 10. SURFACE UTILITIES 299

10.1.1 Create a new surface object.

NAME
newSurf - Create and initialize a surface object instance. Note that the vertex

input to a rational surface is unstandard. Given the surface

s(u, v) =

∑n1

i=1

∑n2

j=1 wi,jpi,jBi,k1,u(u)Bj,k2,v(v)∑n1

i=1

∑n2

j=1 wi,jBi,k1,u(u)Bj,k2,v(v)
,

must the vertices be given as w1,1p1,1, w1,1, w1,2p1,2, w1,2, . . . , wn1,n2
pn1,n2

, wn1,n2

when invoking this function. Thus the vertices are multiplied with the
associated weight.

SYNOPSIS
SISLSurf *newSurf(number1, number2, order1, order2, knot1, knot2, coef,

kind, dim, copy)
int number1;
int number2;
int order1;
int order2;
double knot1[];
double knot2[];
double coef[];
int kind;
int dim;
int copy;

ARGUMENTS
Input Arguments:

number1 - Number of vertices in the first parameter direction of new
surface.

number2 - Number of vertices in the second parameter direction of
new surface.

order1 - Order of surface in first parameter direction.
order2 - Order of surface in second parameter direction.
knot1 - Knot vector of surface in first parameter direction.
knot2 - Knot vector of surface in second parameter direction.

coef - Vertices of surface. These may either be the dim dimen-
sional non-rational vertices or the (dim+1) dimensional
rational vertices.

kind - Type of surface.
= 1 : Polynomial B-spline surface.
= 2 : Rational B-spline (nurbs) surface.
= 3 : Polynomial Bezier surface.
= 4 : Rational Bezier surface.

dim - Dimension of the space in which the surface lies.
copy - Flag

= 0 : Set pointer to input arrays.
= 1 : Copy input arrays.
= 2 : Set pointer and remember to free arrays.

Output Arguments:

CHAPTER 10. SURFACE UTILITIES 300

newSurf - Pointer to new surface. If it is impossible to allocate space
for the surface, newSurface returns NULL.

CHAPTER 10. SURFACE UTILITIES 301

EXAMPLE OF USE
{

SISLSurf *surf = NULL;
int number1 = 5;
int number2 = 4;
int order1 = 4; /* Polynomial degree 3 */
int order2 = 3; /* Polynomial degree 2 */
double knot1[9]; /* Must be defined */
double knot2[7]; /* Must be defined */
double coef[60]; /* Must be defined */
int kind = 1;
int dim = 3;
int copy = 1;
/* Knots and vertices must be defined prior to the function call.
The vertices are given in a 1-dimensional array */
. . .
surf = newSurf(number1, number2, order1, order2, knot1, knot2,

coef, kind, dim, copy);
. . .

}

CHAPTER 10. SURFACE UTILITIES 302

10.1.2 Make a copy of a surface object.

NAME
copySurface - Make a copy of a SISLSurface object.

SYNOPSIS
SISLSurf *copySurface(psurf)

SISLSurf *psurf;

ARGUMENTS
Input Arguments:

psurf - Surface to be copied.

Output Arguments:
copySurface - The new surface.

EXAMPLE OF USE
{

SISLSurf *surfcopy = NULL;
SISLSurf *surf = NULL;
int number1 = 5;
int number2 = 4;
int order1 = 4;
int order2 = 3;
double knot1[9];
double knot2[7];
double coef[60];
int kind = 1;
int dim = 3;
int copy = 1;
. . .
surf = newSurf(number1, number2, order1, order2, knot1, knot2,

coef, kind, dim, copy);
. . .
surfcopy = copySurface(surf);
. . .

}

CHAPTER 10. SURFACE UTILITIES 303

10.1.3 Delete a surface object.

NAME
freeSurf - Free the space occupied by the surface. Before using freeSurf, make sure

that the surface object exists.
SYNOPSIS

void freeSurf(surf)

SISLSurf *surf;

ARGUMENTS
Input Arguments:

surf - Pointer to the surface to delete.

EXAMPLE OF USE
{

SISLSurf *surf = NULL;
int number1 = 5;
int number2 = 4;
int order1 = 4;
int order2 = 3;
double knot1[9];
double knot2[7];
double coef[60];
int kind = 1;
int dim = 3;
int copy = 1;
. . .
surf=newSurf(number1, number2, order1, order2, knot1, knot2,

coef, kind, dim, copy);
. . .
if (surf) freeSurf(surf);
. . .

}

CHAPTER 10. SURFACE UTILITIES 304

10.2 Evaluation

10.2.1 Compute the position, the derivatives and the nor-
mal of a surface at a given parameter value pair.

NAME
s1421 - Evaluate the surface at a given parameter value pair. Compute der

derivatives and the normal if der ≥ 1. See also s1424() on page 306.

SYNOPSIS
void s1421(surf, der, parvalue, leftknot1, leftknot2, derive, normal, stat)

SISLSurf *surf;
int der;
double parvalue[];
int *leftknot1;
int *leftknot2;
double derive[];
double normal[];
int *stat;

ARGUMENTS
Input Arguments:

surf - Pointer to the surface to evaluate.
der - Number (order) of derivatives to evaluate.

< 0 : No derivatives evaluated.
= 0 : Position evaluated.
> 0 : Position and derivatives evaluated.

parvalue - Parameter value at which to evaluate. Dimension of par-
value is 2.

Input/Output Arguments:
leftknot1 - Pointer to the interval in the knot vector in first parameter

direction where parvalue[0] is found. The relation

etl[leftknot1] ≤ parvalue[0] < etl[leftknot1 + 1],

where etl is the knot vector, should hold. leftknot1 should
be set equal to zero at the first call to the routine. Do not
change leftknot during a section of calls to s1421().

leftknot2 - Corresponding to leftknot1 in the second parameter direc-
tion.

CHAPTER 10. SURFACE UTILITIES 305

Output Arguments:
derive - Array where the derivatives of the surface in parvalue are

placed. The sequence is position, first derivative in first
parameter direction, first derivative in second parameter
direction, (2,0) derivative, (1,1) derivative, (0,2) deriva-
tive, etc. The expresion

dim ∗ (1 + 2 + . . .+ (der+ 1)) = dim ∗ (der+ 1)(der+ 2)/2

gives the dimension of the derive array.

normal - Normal of surface. Is evaluated if der ≥ 1. Dimension is
dim. The normal is not normalised.

stat - Status messages
= 2 : Surface is degenerate at the point, normal has

zero length.

= 1 : Surface is close to degenerate at the point.
Angle between tangents is less than the angu-
lar tolerance.

= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLSurf *surf; /* Must be defined */
int der = 2;
double parvalue[2]; /* Must be defined */
int leftknot1 = 0; /* Define initially as zero. For consequtive evaluations

leave leftknot1 as returned from s1421 */
int leftknot2 = 0; /* As for leftknot1 */
double derive[18]; /* Length is spatial dimension times total number of entities */
double normal[3]; /* Length is spatial dimension */
int stat = 0;
. . .
s1421(surf, der, parvalue, &leftknot1, &leftknot2, derive, normal, &stat);
. . .

}

CHAPTER 10. SURFACE UTILITIES 306

10.2.2 Compute the position and derivatives of a surface
at a given parameter value pair.

NAME
s1424 - Evaluate the surface the parameter value (parvalue[0], parvalue[1]).

Compute the der1 × der2 first derivatives. The derivatives that will
be computed are Di,j , i = 0, 1, . . . , der1, j = 0, 1, ..., der2.

SYNOPSIS
void s1424(surf, der1, der2, parvalue, leftknot1, leftknot2, derive, stat)

SISLSurf *surf;
int der1;
int der2;
double parvalue[];
int *leftknot1;
int *leftknot2;
double derive[];
int *stat;

ARGUMENTS
Input Arguments:

surf - Pointer to the surface to evaluate.
der1 - Number (order) of derivatives to be evaluated in first pa-

rameter direction, where 0 ≤ der1.

der2 - Number (order) of derivatives to be evaluated in second
parameter direction, where 0 ≤ der2.

parvalue - Parameter-value at which to evaluate. The dimension of
parvalue is 2.

Input/Output Arguments:
leftknot1 - Pointer to the interval in the knot vector in first parameter

direction where parvalue[0] is found. The relation

etl[leftknot1] ≤ parvalue[0] < etl[leftknot1 + 1],

where etl is the knot vector, should hold. leftknot1 should
be set equal to zero at the first call to the routine. Do not
change the value of leftknot1 between calls to the routine.

leftknot2 - Corresponding to leftknot1 in the second parameter direc-
tion.

CHAPTER 10. SURFACE UTILITIES 307

Output Arguments:
derive - Array of size d(der1 + 1)(der2 + 1) where the position and

the derivative vectors of the surface in (parvalue[0], par-
value[1]) is placed. d = surf → dim is the number of
elements in each vector and is equal to the geometrical
dimension. The vectors are stored in the following order:
First the d components of the position vector, then the
d components of the D1,0 vector, and so on up to the
d components of the Dder1,0 vector, then the d compo-
nents of the D0,1 vector etc. If derive is considered to be
a three dimensional array, then its declaration in C would
be derive[der2 + 1][der1 + 1][d].

stat - Status messages
> 0 : Warning.
= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLSurf *surf; /* Must be defined */
int der1 = 2;
int der2 = 1;
double parvalue[2]; /* Must be defined */
int leftknot1 = 0; /* Define initially as zero. For consequtive evaluations

leave leftknot1 as returned from s1424 */
int leftknot2 = 0;; /* As for leftknot1 */
double derive[18]; /* Length is spatial dimension times total number of entities */
int stat = 0;
. . .
s1424(surf, der1, der2, parvalue, &leftknot1, &leftknot2, derive, &stat);
. . .

}

CHAPTER 10. SURFACE UTILITIES 308

10.2.3 Compute the position and the left- or right-hand
derivatives of a surface at a given parameter value
pair.

NAME
s1422 - Evaluate and compute the left- or right-hand derivatives of a surface at

a given parameter position.

SYNOPSIS
void s1422(ps1, ider, iside1, iside2, epar, ilfs, ilft, eder, enorm, jstat)

SISLSurf *ps1;
int ider;
int iside1;
int iside2;
double epar[];
int *ilfs;
int *ilft;
double eder[];
double enorm[];
int *jstat;

ARGUMENTS
Input Arguments:

ps1 - Pointer to the surface to evaluate.
ider - Number of derivatives to calculate.

< 0 : No derivative calculated.
= 0 : Position calculated.
= 1 : Position and first derivative calculated.

etc.
iside1 - Indicator telling if the derivatives in the first parameter

direction is to be calculated from the left or from the right:
< 0 : Calculate derivative from the left hand side.

≥ 0 : Calculate derivative from the right hand side.

iside2 - Indicator telling if the derivatives in the second parameter
direction is to be calculated from the left or from the right:
< 0 : Calculate derivative from the left hand side.

≥ 0 : Calculate derivative from the right hand side.

epar - Parameter value at which to calculate. Dimension of epar
is 2.

CHAPTER 10. SURFACE UTILITIES 309

Input/Output Arguments:
ilfs - Pointer to the interval in the knotvector in first parameter

direction where epar[0] is found. The relation

et1[ilfs] ≤ epar[0] < et1[ilfs+ 1],

where et1 is the knotvektor, should hold. ilfs is set equal
to zero at the first call to the routine.

ilft - Corresponding to ilfs in the second parameter direction.

Output Arguments:
eder - Array where the derivative of the curve in apar is placed.

The sequence is position, first derivative in first parameter
direction, first derivative in second parameter direction,
(2,0) derivative, (1,1) derivative, (0,2) derivative, etc. The
expression

idim ∗ (1 + 2 + ...+ (ider + 1))

gives the dimension of the eder array.

enorm - Normal of surface. Is calculated if ider ≥ 1. Dimension is
idim. The normal is not normalized.

jstat - Status messages
= 2 : Surface is degenerate at the point, normal has

zero length.

= 1 : Surface is close to degenerate at the point.
Angle between tangents is less than the angu-
lar tolerance.

= 0 : Ok.
< 0 : Error.

CHAPTER 10. SURFACE UTILITIES 310

EXAMPLE OF USE
{

SISLSurf *ps1; /* Must be defined */
int ider = 1;
int iside1 = 0;
int iside2 = 1;
double epar[2]; /* Must be defined */
int ilfs = 0; /* Define initially as zero. For consequtive evaluations

leave ilfs as returned from s1422 */
int ilft = 0; /* As for ilfs */
double eder[9]; /* Length is spatial dimension times total number of entities */
double enorm[3]; /* Length is spatial dimension */
int jstat = 0;
. . .
s1422(ps1, ider, iside1, iside2, epar, &ilfs, &ilft, eder, enorm, &jstat);
. . .

}

CHAPTER 10. SURFACE UTILITIES 311

10.2.4 Compute the position and the derivatives of a sur-
face at a given parameter value pair.

NAME
s1425 - To compute the value and ider1 × ider2 first derivatives of a tensor

product surface at the point with parameter value (epar[0], epar[1]).
The derivatives that will be computed are D(i, j), i = 0, 1, . . . , ider1,
j = 0, 1, . . . , ider2. The calculations are from the right hand or left
hand side.

SYNOPSIS
void s1425(ps1, ider1, ider2, iside1, iside2, epar, ileft1, ileft2, eder, jstat)

SISLSurf *ps1;
int ider1;
int ider2;
int iside1;
int iside2;
double epar[];
int *ileft1;
int *ileft2;
double eder[];
int *jstat;

ARGUMENTS
Input Arguments:

ps1 - Pointer to the surface for which position and derivatives
are to be computed.

ider1 - The number of derivatives to be computed with respect to
the first parameter direction.

< 0 : Error, no derivative calculated.
= 0 : No derivatives with respect to the

first parameter direction will be com-
puted. (Only derivatives of the type
D(0, 0), D(0, 1), . . . , D(0, ider2)).

= 1 : Derivatives up to first order with respect to
the first parameter direction will be com-
puted.

etc.

CHAPTER 10. SURFACE UTILITIES 312

ider2 - The number of derivatives to be computed with respect to
the second parameter direction.

< 0 : Error, no derivative calculated.
= 0 : No derivatives with respect to the sec-

ond parameter direction will be com-
puted. (Only derivatives of the type
D(0, 0), D(1, 0), . . . , D(ider1, 0)).

= 1 : Derivatives up to first order with respect to
the second parameter direction will be com-
puted.

etc.
iside1 - Indicator telling if the derivatives in the first parameter

direction is to be calculated from the left or from the right:
< 0 : Calculate derivative from the left hand side.

≥ 0 : Calculate derivative from the right hand side.

iside2 - Indicator telling if the derivatives in the second parameter
direction is to be calculated from the left or from the right:
< 0 : Calculate derivative from the left hand side.

≥ 0 : Calculate derivative from the right hand side.

epar - Array of dimension 2 containing the parameter values of
the point at which the position and derivatives are to be
computed.

Input/Output Arguments:
ileft1 - Pointer to the interval in the knot vector in the first pa-

rameter direction where epar[0] is located. If et1 is the
knot vector in the first parameter direction, the relation

et1[ileft] ≤ epar[0] < et1[ileft+ 1],

should hold. (If epar[0] = et1[in1] then ileft should be
in1 − 1. Here in1 is the number of B-spline coefficients
associated with et1.) If ileft1 does not have the right value
upon entry to the routine, its value will be changed to the
value satisfying the above condition.

ileft2 - Pointer to the interval in the knot vector in the second
parameter direction where epar[1] is located. If et2 is the
knot vector in the second parameter direction, the relation

et2[ileft] ≤ epar[1] < et2[ileft+ 1],

should hold. (If epar[1] = et2[in2] then ileft should be
in2 − 1. Here in2 is the number of B-spline coefficients
associated with et2.) If ileft2 does not have the right value
upon entry to the routine, its value will be changed to the
value satisfying the above condition.

Output Arguments:

CHAPTER 10. SURFACE UTILITIES 313

eder - Array of dimension (ider2+1)∗ (ider1+1)∗ idim contain-
ing the position and the derivative vectors of the surface
at the point with parameter value (epar[0], epar[1]). (idim
is the number of components of each B-spline coefficient,
i.e. the dimension of the Euclidean space in which the sur-
face lies.) These vectors are stored in the following order:
First the idim components of the position vector, then the
idim components of the D(1, 0) vector, and so on up to
the idim components of the D(ider1, 0) vector, then the
idim components of the D(1, 1) vector etc. Equivalently, if
eder is considered to be a three dimensional array, then its
declaration in C would be eder[ider2 + 1, ider1 + 1, idim].

jstat - Status messages
> 0 : Warning.
= 0 : Ok.
< 0 : Error.

CHAPTER 10. SURFACE UTILITIES 314

EXAMPLE OF USE
{

SISLSurf *ps1; /* Must be defined */
int ider1 = 1;
int ider2 = 1;
int iside1 = 0;
int iside2 = -1;
double epar[2]; /* Must be defined */
int ileft1 = 0; /* Define initially as zero. For consequtive evaluations

leave ileft1 as returned from s1425 */
int ileft2 = 0; /* As for ileft1 */
double eder[12]; /* Length is spatial dimension times total number of entities */
int jstat = 0;
. . .
s1425(ps1, ider1, ider2, iside1, iside2, epar, &ileft1, &ileft2, eder, &jstat);
. . .

}

CHAPTER 10. SURFACE UTILITIES 315

10.2.5 Evaluate the surface pointed at by ps1 over an m1
* m2 grid of points (x[i],y[j]). Compute ider deriva-
tives and normals if suitable.

NAME
s1506 - Evaluate the surface pointed at by ps1 over an m1 * m2 grid of points

(x[i],y[j]). Compute ider derivatives and normals if suitable.

SYNOPSIS
void s1506(ps1, ider, m1, x, m2, y, eder, norm, jstat)

SISLSurf *ps1;
int ider;
int m1;
double *x;
int m2;
double *y;
double eder[];
double norm[];
int *jstat;

ARGUMENTS
Input Arguments:

ps1 - Pointer to the surface to evaluate.
ider - Number of derivatives to calculate.

< 0 : No derivative calculated.
= 0 : Position calculated.
= 1 : Position and first derivative calculated.
etc.

m1 - Number of grid points in first direction.
x - Array of x values of the grid.
m2 - Number of grid points in first direction.
y - Array of y values of the grid.

Output Arguments:
eder - Array where the derivatives of the surface are placed, di-

mension idim * ((ider+1)(ider+2) / 2) * m1 * m2. The
sequence is position, first derivative in first parameter di-
rection, first derivative in second parameter direction, (2,0)
derivative, (1,1) derivative, (0,2) derivative, etc. at point
(x[0],y[0]), followed by the same information at (x[1],y[0]),
etc.

norm - Normals of surface. Is calculated if ider ≥ 1. Dimension is
idim*m1*m2. The normals are not normalized.

jstat - status messages
= 2 : Surface is degenerate at some point,

normal has zero length.
= 1 : Surface is close to degenerate at some point.

Angle between tangents, less than angular tolerance.
= 0 : Ok.
< 0 : Error.

CHAPTER 10. SURFACE UTILITIES 316

EXAMPLE OF USE
{

SISLSurf *ps1; /* Must be defined */
int ider = 1;
int m1 = 10;
double x[10]; /* Must be defined */
int m2 = 8;
double y[8]; /* Must be defined */
double eder[720]; /* Length: spatial dimension times number of

entities times number of grid points */
double norm[240]; /* Length: spatial dimension times number of grid points */
int jstat = 0;
. . .
s1506(ps1, ider, m1, x, m2, y, eder, norm, &jstat);
. . .

}

CHAPTER 10. SURFACE UTILITIES 317

10.3 Subdivision

10.3.1 Subdivide a surface along a given parameter line.

NAME
s1711 - Subdivide a surface along a given internal parameter line.

SYNOPSIS
void s1711(surf, pardir, parval, newsurf1, newsurf2, stat)

SISLSurf *surf;
int pardir;
double parval;
SISLSurf **newsurf1;
SISLSurf **newsurf2;
int *stat;

ARGUMENTS
Input Arguments:

surf - Surface to subdivide.
pardir - Value used to indicate in which parameter direction the

subdivision is to take place.

= 1 : First parameter direction.
= 2 : Second parameter direction.

parval - Parameter value at which to subdivide.

Output Arguments:
newsurf1 - First part of the subdivided surface.
newsurf2 - Second part of the subdivided surface.
stat - Status messages

> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLSurf *surf; /* Must be defined */
int pardir = 2;
double parval; /* Must be defined */
SISLSurf *newsurf1 = NULL;
SISLSurf *newsurf2 = NULL;
int stat = 0;
. . .
s1711(surf, pardir, parval, &newsurf1, &newsurf2, &stat);
. . .

}

CHAPTER 10. SURFACE UTILITIES 318

10.3.2 Insert a given set of knots, in each parameter di-
rection, into the description of a surface.

NAME
s1025 - Insert a given set of knots in each parameter direction into the descrip-

tion of a surface.
NOTE : When the surface is periodic in one direction, the input
parameter values in this direction must lie in the half-open interval
[et[kk−1], et[kn), the function will automatically update the extra knots
and coeffisients.

SYNOPSIS
void s1025(ps, epar1, inpar1, epar2, inpar2, rsnew, jstat)

SISLSurf *ps;
double epar1[];
int inpar1;
double epar2[];
int inpar2;
SISLSurf **rsnew;
int *jstat;

ARGUMENTS
Input Arguments:

ps - Surface to be refined.
epar1 - Knots to insert in first parameter direction.
inpar1 - Number of new knots in first parameter direction.
epar2 - Knots to insert in second parameter direction.
inpar2 - Number of new knots in second parameter direction.

Output Arguments:
rsnew - The new, refined surface.
stat - Status messages

> 0 : Warning.
= 0 : Ok.
< 0 : Error.

CHAPTER 10. SURFACE UTILITIES 319

EXAMPLE OF USE
{

SISLSurf *ps; /* Must be defined */
double epar1[3]; /* Must be defined */
int inpar1 = 3;
double epar2[4]; /* Must be defined */
int inpar2 = 4;
SISLSurf *rsnew = NULL;
int jstat = 0;
. . .
s1025(ps, epar1, inpar1, epar2, inpar2, &rsnew, &jstat);
. . .

}

CHAPTER 10. SURFACE UTILITIES 320

10.4 Picking Curves from a Surface

10.4.1 Pick a curve along a constant parameter line in a
surface.

NAME
s1439 - Make a constant parameter curve along a given parameter direction in

a surface.

SYNOPSIS
void s1439(ps1, apar, idirec, rcurve, jstat)

SISLSurf *ps1;
double apar;
int idirec;
SISLCurve **rcurve;
int *jstat;

ARGUMENTS
Input Arguments:

ps1 - Pointer to the surface.
apar - Parameter value to use when picking out constant param-

eter curve.
idirec - Parameter direction in which to pick (must be 1 or 2).

Output Arguments:
rcurve - Constant parameter curve.
jstat - Status messages

> 0 : Warning.
= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLSurf *ps1; /* Must be defined */
double apar; /* Must be defined */
int idirec = 1;
SISLCurve *rcurve = NULL;
int jstat = 0;
. . .
s1439(ps1, apar, idirec, &rcurve, &jstat);
. . .

}

CHAPTER 10. SURFACE UTILITIES 321

10.4.2 Pick the curve lying in a surface, described by a
curve in the parameter plane of the surface.

NAME
s1383 - To create a 3D approximation to the curve in a surface, traced out by a

curve in the parameter plane. The output is represented as a B-spline
curve.

SYNOPSIS
void s1383(surf, curve, epsge, maxstep, der, newcurve1, newcurve2, newcurve3,

stat)
SISLSurf *surf;
SISLCurve *curve;
double epsge;
double maxstep;
int der;
SISLCurve **newcurve1;
SISLCurve **newcurve2;
SISLCurve **newcurve3;
int *stat;

ARGUMENTS
Input Arguments:

surf - The surface object
curve - The input curve in the parameter plane.
epsge - Maximal deviation allowed between true 3D curve lying in

the surface, and the approximated 3D curve.
maxstep - Maximum step length. Is neglected if maxstep ≤ epsge

If maxstep ≤ 0.0 the 3D box of the surface is used to
estimate the maximum step length.

der - Derivative indicator
= 0 : Calculate only position curve.
= 1 : Calculate position + derivative curves.

Output Arguments:
newcurve1 - Pointer to the B-spline curve approximating the position

curve.
newcurve2 - Pointer to the B-spline curve approximating the deriva-

tive curve along the position curve in the first parameter
direction of the surface.

newcurve3 - Pointer to the B-spline curve approximating derivative
curve in the second parameter direction of the surface,
along the position curve.

stat - Status messages
> 0 : warning
= 0 : ok
< 0 : error

CHAPTER 10. SURFACE UTILITIES 322

EXAMPLE OF USE
{

SISLSurf *surf; /* Must be defined */
SISLCurve *curve; /* Must be defined */
double epsge = 0.0001;
double maxstep = 0.0;
int der = 1;
SISLCurve *newcurve1 = NULL;
SISLCurve *newcurve2 = NULL;
SISLCurve *newcurve3 = NULL;
int stat = 0;
. . .
s1383(surf, curve, epsge, maxstep, der, &newcurve1, &newcurve2,

&newcurve3, &stat);
. . .

}

CHAPTER 10. SURFACE UTILITIES 323

10.5 Pick a Part of a Surface.

NAME
s1001 - To pick a part of a surface. The surface produced will always be k-

regular, i.e. with k-tupple start/end knots.

SYNOPSIS
void s1001(ps, min1, min2, max1, max2, rsnew, jstat)

SISLSurf *ps;
double min1;
double min2;
double max1;
double max2;
SISLSurf **rsnew;
int *jstat;

ARGUMENTS
Input Arguments:

ps - Surface to pick a part of.
min1 - Minimum value in first parameter direction.
min2 - Minimum value in second parameter direction.
max1 - Maximum value in first parameter direction.
max2 - Maximum value second parameter direction.

Output Arguments:
rsnew - The new, picked surface.
jstat - Status messages

> 0 : Warning.
= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLSurf *ps; /* Must be defined */
double min1; /* Must be defined */
double min2; /* Must be defined */
double max1; /* Must be defined */
double max2; /* Must be defined */
SISLSurf *rsnew = NULL;
int jstat = 0;
. . .
s1001(ps, min1, min2, max1, max2, &rsnew, &jstat);
. . .

}

CHAPTER 10. SURFACE UTILITIES 324

10.6 Turn the Direction of the Surface Normal
Vector.

NAME
s1440 - Interchange the two parameter directions used in the mathematical de-

scription of a surface and thereby change the direction of the normal
vector of the surface.

SYNOPSIS
void s1440(surf, newsurf, stat)

SISLSurf *surf;
SISLSurf **newsurf;
int *stat;

ARGUMENTS
Input Arguments:

surf - Pointer to the original surface.
Output Arguments:

newsurf - Pointer to the surface where the parameter directions are
interchanged.

stat - Status messages
> 0 : warning
= 0 : ok
< 0 : error

EXAMPLE OF USE
{

SISLSurf *surf; /* Must be defined */
SISLSurf *newsurf = NULL;
int stat = 0;
. . .
s1440(surf, &newsurf, &stat);
. . .

}

Chapter 11

Data Reduction

11.1 Curves

11.1.1 Data reduction: B-spline curve as input.

NAME
s1940 - To remove as many knots as possible from a spline curve without per-

turbing the curve more than a given tolerance.

SYNOPSIS
void s1940(oldcurve, eps, startfix, endfix, iopen, itmax, newcurve, maxerr, stat)

SISLCurve *oldcurve;
double eps[];
int startfix;
int endfix;
int iopen;
int itmax;
SISLCurve **newcurve;
double maxerr[];
int *stat;

ARGUMENTS
Input Arguments:

oldcurve - pointer to the original spline curve.
eps - double array giving the desired absolute accuracy of the

final approximation as compared to oldcurve. If oldcurve
is a spline curve in a space of dimension dim, then eps must
have length dim. Note that it is not relative, but absolute
accuracy that is being used. This means that the difference
in component i at any parameter value, between the given
curve and the approximation, is to be less than eps[i]. Note
that in such comparisons the same parametrization is used
for both curves.

325

CHAPTER 11. DATA REDUCTION 326

startfix - the number of derivatives to be kept fixed at the beginning
of the knot interval. The 0, . . . , (startfix− 1) derivatives
will be kept fixed. If startfix < 0, this routine will set it to
0. If startfix < the order of the curve, this routine will set
it to the order.

endfix - the number of derivatives to be kept fixed at the end of
the knot interval. The 0, . . . , (endfix − 1) derivatives will
be kept fixed. If endfix < 0, this routine will set it to 0. If
endfix < the order of the curve, this routine will set it to
the order.

iopen - Open/closed parameter
= 1 : Produce open curve.
= 0 : Produce closed, non-periodic curve if possible.
= −1 : Produce closed, periodic curve if possible.

itmax - maximum number of iterations. The routine will follow an
iterative procedure trying to remove more and more knots.
The process will almost always stop after less than 10 iter-
ations and it will often stop after less than 5 iterations. A
suitable value for itmax is therefore usually in the region
3-10.

Output Arguments:
-

newcurve - the spline approximation on the reduced knot vector.
maxerr - double array containing an upper bound for the pointwise

error in each of the components of the spline approxima-
tion. The two curves oldcurve and newcurve are com-
pared at the same parameter value, i.e., if oldcurve is f
and newcurve is g, then |f(t)− g(t)| <= eps in each of the
components.

stat - Status messages
> 0 : Warning.
= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLCurve *oldcurve; /* Must be defined */
double eps[3]; /* Spatial dimension. Must be defined */
int startfix = 1;
int endfix = 1;
int iopen = 1;
int itmax = 8;
SISLCurve *newcurve = NULL;
double maxerr[3]; /* Spatial dimension */
int stat = 0;
. . .
s1940(oldcurve, eps, startfix, endfix, iopen, itmax, &newcurve, maxerr,

&stat);
. . .

CHAPTER 11. DATA REDUCTION 327

}

CHAPTER 11. DATA REDUCTION 328

11.1.2 Data reduction: Point data as input.

NAME
s1961 - To compute a spline-approximation to the data given by the points ep,

and represent it as a B-spline curve with parameterization determined by
the parameter ipar. The approximation is determined by first forming
the piecewise linear interpolant to the data, and then performing knot
removal on this initial approximation.

SYNOPSIS
void s1961(ep, im, idim, ipar, epar, eeps, ilend, irend, iopen, afctol, itmax, ik, rc,

emxerr, jstat)
double ep[];
int im;
int idim;
int ipar;
double epar[];
double eeps[];
int ilend;
int irend;
int iopen;
double afctol;
int itmax;
int ik;
SISLCurve **rc;
double emxerr[];
int *jstat;

ARGUMENTS
Input Arguments:

ep - Array (length idim ∗ im) containing the points to be ap-
proximated.

im - The no. of data points.
idim - The dimension of the euclidean space in which the data

points lie, i.e. the number of components of each data
point.

ipar - Flag indicating the type of parameterization to be used:

= 1 : Paramterize by accumulated cord length.
(Arc length parametrization for the piecewise
linear interpolant.)
= 2 : Uniform parameterization.
= 3 : Parametrization given by epar.
If ipar < 1 or ipar > 3, it will be set to 1.

epar - Array (length im) containing a parametrization of the
given data.

eeps - Array (length idim) containing the tolerance to be used
during the data reduction stage. The final approximation
to the data will deviate less than eeps from the piecewise
linear interpolant in each of the idim components.

CHAPTER 11. DATA REDUCTION 329

ilend - The no. of derivatives that are not allowed to change at
the left end of the curve. The 0, . . . , (ilend−1) derivatives
will be kept fixed. If ilend < 0, this routine will set it to
0. If ilend < ik, this routine will set it to ik.

irend - The no. of derivatives that are not allowed to change at the
right end of the curve. The 0, . . . , (irend − 1) derivatives
will be kept fixed. If irend < 0, this routine will set it to
0. If irend < ik, this routine will set it to ik.

iopen - Open/closed parameter
= 1 : Produce open curve.
= 0 : Produce closed, non-periodic curve if possible.
= −1 : Produce closed, periodic curve if possible.
If a closed or periodic curve is to be produced and the start-
and endpoint is more distant than the length of the toler-
ance, a new point is added. Note that if the parametriza-
tion is given as input, the parametrization if the last point
will be arbitrary.

afctol - Number indicating how the tolerance is to be shared be-
tween the two data reduction stages. For the linear re-
duction, a tolerance of afctol ∗ eeps will be used, while a
tolerance of (1−afctol)∗eeps will be used during the final
data reduction. (Similarly for edgeps.)

itmax - Max. no. of iterations in the data-reduction routine.
ik - The polynomial order of the approximation.

Output Arguments:
rc - Pointer to curve.
emxerr - Array (length idim) (allocated outside this routine.) con-

taining for each component an upper bound on the max.
deviation of the final approximation from the initial piece-
wise linear interpolant.

jstat - Status messages
> 0 : Warning.
= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

double ep[300]; /* Must be defined */
int im = 100;
int idim = 3;
int ipar = 1;
double epar[100]; /* Used if ipar = 3 */
double eeps[3]; /* Spatial dimension. Must be defined */
int ilend = 0;
int irend = 0;
int iopen = 1;
double afctol = 0.5;
int itmax = 6;
int ik = 4;

CHAPTER 11. DATA REDUCTION 330

SISLCurve *rc = NULL;
double emxerr[3]; /* Spatial dimension */
int jstat = 0;
. . .
s1961(ep, im, idim, ipar, epar, eeps, ilend, irend, iopen, afctol, itmax, ik,

&rc, emxerr, &jstat);
. . .

}

CHAPTER 11. DATA REDUCTION 331

11.1.3 Data reduction: Points and tangents as input.

NAME
s1962 - To compute the approximation to the data given by the points ep and

the derivatives (tangents) ev, and represent it as a B-spline curve with
parametrization determined by the parameter ipar. The approximation
is determined by first forming the cubic hermite interpolant to the data,
and then performing knot removal on this initial approximation.

SYNOPSIS
void s1962(ep, ev, im, idim, ipar, epar, eeps, ilend, irend, iopen, itmax, rc, emxerr,

jstat)
double ep[];
double ev[];
int im;
int idim;
int ipar;
double epar[];
double eeps[];
int ilend;
int irend;
int iopen;
int itmax;
SISLCurve **rc;
double emxerr[];
int *jstat;

ARGUMENTS
Input Arguments:

ep - Array (length idim*im) comtaining the points to be ap-
proximated.

ev - Array (length idim*im) containing the derivatives of the
points to be approximated.

im - The no. of data points.
idim - The dimension of the euclidean space in which the curve

lies.
ipar - Flag indicating the type of parameterization to be used:

= 1 : Paramterize by accumulated cord length.
(Arc length parametrization for the piecewise
linear interpolant.)
= 2 : Uniform parameterization.
= 3 : Parametrization given by epar.
If ipar < 1 or ipar > 3, it will be set to 1.

epar - Array (length im) containing a parameterization of the
given data.

eeps - Array (length idim) giving the desired accuracy of the
spline-approximation in each component.

CHAPTER 11. DATA REDUCTION 332

ilend - The no. of derivatives that are not allowed to change at
the left end of the curve. The 0, . . . , (ilend−1) derivatives
will be kept fixed. If ilend < 0, this routine will set it to
0. If ilend < ik, this routine will set it to ik.

irend - The no. of derivatives that are not allowed to change at the
right end of the curve. The 0, . . . , (irend − 1) derivatives
will be kept fixed. If irend < 0, this routine will set it to
0. If irend < ik, this routine will set it to ik.

iopen - Open/closed parameter
= 1 : Produce open curve.
= 0 : Produce closed, non-periodic curve if possible.
= −1 : Produce closed, periodic curve if possible.
If a closed or periodic curve is to be produced and the start-
and endpoint is more distant than the length of the toler-
ance, a new point is added. Note that if the parametriza-
tion is given as input, the parametrization if the last point
will be arbitrary.

itmax - Max. no. of iteration.

Output Arguments:
rc - Pointer to curve.
emxerr - Array (length idim) (allocated outside this routine.) con-

taining an upper bound for the pointwise error in each of
the components of the spline-approximation.

jstat - Status messages
> 0 : Warning.
= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

double ep[120]; /* Must be defined */
double ev[120]; /* Must be defined */
int im = 40;
int idim = 3;
int ipar = 3;
double epar[40]; /* Must be defined. Used only if ipar = 3 */
double eeps[3]; /* Spatial dimension. Must be defined */
int ilend = 1;
int irend = 1;
int iopen = 1;
int itmax = 8;
SISLCurve *rc = NULL;
double emxerr[3]; /* Spatial dimension */
int jstat = 0;
. . .
s1962(ep, ev, im, idim, ipar, epar, eeps, ilend, irend, iopen, itmax, &rc,

emxerr, &jstat);
. . .

}

CHAPTER 11. DATA REDUCTION 333

11.1.4 Degree reduction: B-spline curve as input.

NAME
s1963 - To approximate the input spline curve by a cubic spline curve with error

less than eeps in each of the kdim components.

SYNOPSIS
void s1963(pc, eeps, ilend, irend, iopen, itmax, rc, jstat)

SISLCurve *pc;
double eeps[];
int ilend;
int irend;
int iopen;
int itmax;
SISLCurve **rc;
int *jstat;

ARGUMENTS
Input Arguments:

pc - Pointer to curve.

eeps - Array (length kdim) giving the desired accuracy of the
spline-approximation in each component.

ilend - The no. of derivatives that are not allowed to change at
the left end of the curve. The 0, . . . , (ilend−1) derivatives
will be kept fixed. If ilend < 0, this routine will set it to
0. If ilend < ik, this routine will set it to ik.

irend - The no. of derivatives that are not allowed to change at the
right end of the curve. The 0, . . . , (irend − 1) derivatives
will be kept fixed. If irend < 0, this routine will set it to
0. If irend < ik, this routine will set it to ik.

iopen - Open/closed parameter
= 1 : Produce open curve.
= 0 : Produce closed, non-periodic curve if possible.
= −1 : Produce closed, periodic curve if possible.

itmax - Max. no. of iterations.

Output Arguments:
rc - Pointer to curve.
jstat - Status messages

> 0 : Warning.
= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLCurve *pc; /* Must be defined */
double eeps[3]; /* Spatial dimension. Must be defined */
int ilend = 1;
int irend = 1;

CHAPTER 11. DATA REDUCTION 334

int iopen = 1;
int itmax = 8;
SISLCurve *rc = NULL;
int jstat = 0;
. . .
s1963(pc, eeps, ilend, irend, iopen, itmax, &rc, &jstat);
. . .

}

CHAPTER 11. DATA REDUCTION 335

11.2 Surfaces

11.2.1 Data reduction: B-spline surface as input.

NAME
s1965 - To remove as many knots as possible from a spline surface without per-

turbing the surface more than the given tolerance. The error in con-
tinuity over the start and end of a closed or periodic surface is only
guaranteed to be within edgeps.

SYNOPSIS
void s1965(oldsurf, eps, edgefix, iopen1, iopen2, edgeps, opt, itmax, newsurf,

maxerr, stat)
SISLSurf *oldsurf;
double eps[];
int edgefix[4];
int iopen1;
int iopen2;
double edgeps[];
int opt;
int itmax;
SISLSurf **newsurf;
double maxerr[];
int *stat;

ARGUMENTS
Input Arguments:

oldsurf - pointer to the original spline surface. Note if the polyno-
mial orders of the surface are k1 and k2, then the two knot
vectors are assumed to have knots of multiplicity k1 and
k2 at the ends.

eps - double array of length dim (the number of components
of the surface, typically three) giving the desired accu-
racy of the final approximation compared to oldcurve.
Note that in such comparisons the two surfaces are not
reparametrized in any way.

edgefix - integer array of dimension (4) giving the number of deriva-
tives to be kept fixed along each edge of the surface. The
numbering of the edges is the same as for edgeps below.
All the derivatives of order < nend(i) − 1 will be kept
fixed along edge i. Hence nend(i) = 0 indicates that noth-
ing is to be kept fixed along edge i. NB! TO BE KEPT
FIXED HERE MEANS TO HAVE ERROR LESS THAN
EDGEPS. IN GENERAL, IT IS IMPOSSIBLE TO RE-
MOVE KNOTS AND KEEP AN EDGE COMPLETELY
FIXED.

iopen1 - Open/closed parameter in first direction.
= 1 : Produce open surface.
= 0 : Produce closed, non-periodic surface if possible.
= −1 : Produce closed, periodic surface

CHAPTER 11. DATA REDUCTION 336

iopen2 - Open/closed parameter in second direction.
= 1 : Produce open surface.
= 0 : Produce closed, non-periodic surface if possible.
= −1 : Produce closed, periodic surface

edgeps - double array of length 4*dim ([4,dim]) (dim is the number
of components of each coefficient) containing the maximum
deviation which is acceptable along the edges of the sur-
face. edgeps[0]− edgeps[dim− 1] gives the tolerance along
the edge corresponding to x1 (the first parameter) hav-
ing it’s minimum value. edgeps[dim]− edgeps[2 ∗ dim− 1]
gives the tolerance along the edge corresponding to x1 (the
first parameter) having it’s maximum value. edgeps[2 ∗
dim] − edgeps[3 ∗ dim − 1] gives the tolerance along the
edge corresponding to x2 (the second parameter) having
it’s minimum value. edgeps[3 ∗ dim]− edgeps[4 ∗ dim− 1]
gives the tolerance along the edge corresponding to x2
(the second parameter) having its maximum value. NB!
EDGEPS WILL ONLY HAVE ANY SIGNIFICANCE IF
THE CORRESPONDING ELEMENT OF EDGEFIX IS
POSITIVE.

itmax - maximum number of iterations. The routine will follow
an iterative procedure trying to remove more and more
knots, one direction at a time. The process will almost
always stop after less than 10 iterations and it will often
stop after less than 5 iterations. A suitable value for itmax
is therefore usually in the region 3-10.

opt - integer indicating the order in which the knot removal is
to be performed.

1 : remove knots in parameter 1 only.
2 : remove knots in parameter 2 only.
3 : remove knots first in parameter 1 and then 2.
4 : remove knots first in parameter 2 and then 1.

Output Arguments:
newsurf - the approximating surface on the reduced knot vectors.

maxerr - double array of length dim containing an upper bound for
the pointwise error in each of the components of the spline
approximation. The two surfaces oldsurf and newsurf are
compared at the same parameter vaues, i.e., if oldsurf is f
and newsurf is g then |f(u, v)− g(u, v)| <= eps in each of
the components.

stat - Status messages
> 0 : Warning.
= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLSurf *oldsurf; /* Must be defined */

CHAPTER 11. DATA REDUCTION 337

double eps[3]; /* Spatial dimension. Must be defined */
int edgefix[4]; /* Must be defined */
int iopen1 = 1;
int iopen2 = 1;
double edgeps[12]; /* Spatial dimension times number of edges.

Must be defined */
int opt = 3;
int itmax = 8;
SISLSurf *newsurf = NULL;
double maxerr[3]; /* Spatial dimension */
int stat = 0;
. . .
s1965(oldsurf, eps, edgefix, iopen1, iopen2, edgeps, opt, itmax, &newsurf,

maxerr, &stat);
. . .

}

CHAPTER 11. DATA REDUCTION 338

11.2.2 Data reduction: Point data as input.

NAME
s1966 - To compute a tensor-product spline-approximation of order (ik1,ik2) to

the rectangular array of idim-dimensional points given by ep.

SYNOPSIS
void s1966(ep, im1, im2, idim, ipar, epar1, epar2, eeps, nend, iopen1, iopen2,

edgeps, afctol, iopt, itmax, ik1, ik2, rs, emxerr, jstat)
double ep[];
int im1;
int im2;
int idim;
int ipar;
double epar1[];
double epar2[];
double eeps[];
int nend[];
int iopen1;
int iopen2;
double edgeps[];
double afctol;
int iopt;
int itmax;
int ik1;
int ik2;
SISLSurf **rs;
double emxerr[];
int *jstat;

ARGUMENTS
Input Arguments:

ep - Array (length idim*im1*im2) containing the points to be
approximated.

im1 - The no. of points in the first parameter.

im2 - The no. of points in the second parameter.

idim - The no. of components of each input point. The ap-
proximation will be a parametric surface situated in idim-
dimensional Euclidean space (usually 3).

ipar - Flag determining the parametrization of the data points:

= 1 : Mean accumulated cord-length parameterization.
= 2 : Uniform parametrization.
= 3 : Parametrization given by epar1 and epar2.

epar1 - Array (length im1) containing a parametrization in the
first parameter. (Will only be used if ipar = 3).

epar2 - Array (length im2) containing a parametrization in the
second parameter. (Will only be used if ipar = 3).

CHAPTER 11. DATA REDUCTION 339

eeps - Array (length idim) containing the max. permissible devi-
ation of the approximation from the given data points, in
each of the components. More specifically, the approxima-
tion will not deviate more than eeps(kdim) in component
no. kdim, from the bilinear approximation to the data.

nend - Array (length 4) giving the no. of derivatives to be kept
fixed along each edge of the bilinear interpolant. The num-
bering of the edges is the same as for edgeps below. All the
derivatives of order < (nend(i)−1) will be kept fixed along
the edge i. Hence nend(i) = 0 indicates that nothing is to
be kept fixed along edge i. To be kept fixed here means to
have error less than edgeps. In general, it is impossible to
remove any knots and keep an edge completely fixed.

iopen1 - Open/closed parameter in first direction.
= 1 : Produce open surface.
= 0 : Produce closed, non-periodic surface if possible.
= −1 : Produce closed, periodic surface
NB! The surface will be closed/periodic only if the first
and last column of data points are (approximately) equal.

iopen2 - Open/closed parameter in second direction.
= 1 : Produce open surface.
= 0 : Produce closed, non-periodic surface if possible.
= −1 : Produce closed, periodic surface
NB! The surface will be closed/periodic only if the first
and last row of data points are (approximately) equal.

edgeps - Array (length idim*4) containing the max. deviation from
the bilinear interpolant which is acceptable along the edges
of the surface. edgeps(1,i):edgeps(idim,i) gives the toler-
ance along the edge corresponding to the i-th parameter
having one of it‘s extremal-values.

i = 1: min value of first parameter.
i = 2: max value of first parameter.
i = 3: min value of second parameter.
i = 4: max value of second parameter.
edgeps(kp,i) will only have significance if nend(i) > 0.

afctol - 0.0 >= afctol <= 1.0. Afctol indicates how the tolerance
is to be shared between the two data-reduction stages. For
the linear reduction, a tolerance of afctol ∗ eeps will be
used, while a tolerance of (1.0−afctol) ∗ eeps will be used
during the final data reduction (similarly for edgeps.) De-
fault is 0.

iopt - Flag indicating the order in which the data-reduction is to
be performed:

= 1: Remove knots in parameter 1 only.
= 2: Remove knots in parameter 2 only.
= 3: Remove knots first in parameter 1 and then in 2.
= 4: Remove knots first in parameter 2 and then in 1.

itmax - Max. no. of iterations in the data-reduction..

CHAPTER 11. DATA REDUCTION 340

ik1 - The order of the approximation in the first parameter.

ik2 - The order of the approximation in the second parameter.

Output Arguments:
rs - Pointer to surface.

emxerr - Array (length idim) (allocated outside this routine.) con-
taining the error in the approximation to the data. This
is a guaranteed upper bound on the max. deviation in
each component, between the final approximation and the
bilinear spline- pproximation to the original data.

jstat - Status messages
> 0 : Warning.
= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

double ep[7500]; /* Spatial dimension times number of points. Must be defined */
int im1 = 50;
int im2 = 50;
int idim = 3;
int ipar = 1;
double epar1[50]; /* Used if ipar = 3 */
double epar2[50]; /* Used if ipar = 3 */
double eeps[3]; /* Must be defined */
int nend[4]; /* Must be defined */
int iopen1 = 1;
int iopen2 = 1;
double edgeps[12]; /* Spatial dimension times number of edges.

Must be defined */
double afctol = 0.5;
int iopt = 4;
int itmax = 8;
int ik1 = 4;
int ik2 = 4;
SISLSurf *rs = NULL;
double emxerr[3]; /* Spatial dimension */
int jstat = 0;
. . .
s1966(ep, im1, im2, idim, ipar, epar1, epar2, eeps, nend, iopen1, iopen2,

edgeps, afctol, iopt, itmax, ik1, ik2, &rs, emxerr, &jstat);
. . .

}

CHAPTER 11. DATA REDUCTION 341

11.2.3 Data reduction: Points and tangents as input.

NAME
s1967 - To compute a bicubic hermite spline-approximation to the position and

derivative data given by ep,etang1,etang2 and eder11.

SYNOPSIS
void s1967(ep, etang1, etang2, eder11, im1, im2, idim, ipar, epar1, epar2, eeps,

nend, iopen1, iopen2, edgeps, iopt, itmax, rs, emxerr, jstat)
double ep[];
double etang1[];
double etang2[];
double eder11[];
int im1;
int im2;
int idim;
int ipar;
double epar1[];
double epar2[];
double eeps[];
int nend[];
int iopen1;
int iopen2;
double edgeps[];
int iopt;
int itmax;
SISLSurf **rs;
double emxerr[];
int *jstat;

ARGUMENTS
Input Arguments:

ep - Array (length idim*im1*im2) containing the points to be
approximated.

etang1 - Array (length idim*im1*im2) containing the derivatives
(tangents) in the first parameter-direction at the data-
points.

etang2 - Array (length idim*im1*im2) containing the derivatives
(tangents) in the second parameter-direction at the data-
points.

eder11 - Array (length idim*im1*im2) containing the cross (twist)
derivatives at the data-points.

im1 - The no. of points in the first parameter.

im2 - The no. of points in the second parameter.

idim - The no. of components of each input point. The ap-
proximation will be a parametric surface situated in idim-
dimensional Euclidean space (usually 3).

ipar - Flag determining the parametrization of the data points:

= 1 : Mean accumulated cord-length parameterization.

CHAPTER 11. DATA REDUCTION 342

= 2 : Uniform parametrization.
= 3 : Parametrization given by epar1 and epar2.

epar1 - Array (length im1) containing a parametrization in the
first parameter. (Will only be used if ipar = 3).

epar2 - Array (length im2) containing a parametrization in the
second parameter. (Will only be used if ipar = 3).

eeps - Array (length idim) containing the maximum deviation
which is acceptable in each of the idim components of the
surface (except possibly along the edges).

nend - Array (length 4) giving the no. of derivatives to be kept
fixed along each edge of the bilinear interpolant. The num-
bering of the edges is the same as for edgeps below. All the
derivatives of order < (nend(i)−1) will be kept fixed along
the edge i. Hence nend(i) = 0 indicates that nothing is to
be kept fixed along edge i. To be kept fixed here means to
have error less than edgeps. In general, it is impossible to
remove any knots and keep an edge completely fixed.

iopen1 - Open/closed parameter in first direction.
= 1 : Produce open surface.
= 0 : Produce closed, non-periodic surface if possible.
= −1 : Produce closed, periodic surface
NB! The surface will be closed/periodic only if the first
and last column of data points are (approximately) equal.

iopen2 - Open/closed parameter in second direction.
= 1 : Produce open surface.
= 0 : Produce closed, non-periodic surface if possible.
= −1 : Produce closed, periodic surface
NB! The surface will be closed/periodic only if the first
and last row of data points are (approximately) equal.

edgeps - Array (length idim*4) containing the max. deviation from
the bilinear interpolant which is acceptable along the edges
of the surface. edgeps(1,i):edgeps(idim,i) gives the toler-
ance along the edge corresponding to the i-th parameter
having one of it‘s extremal-values.

i = 1: min value of first parameter.
i = 2: max value of first parameter.
i = 3: min value of second parameter.
i = 4: max value of second parameter.
edgeps(kp,i) will only have significance if nend(i) > 0.

iopt - Flag indicating the order in which the data reduction is to
be performed:

= 1: Remove knots in parameter 1 only.
= 2: Remove knots in parameter 2 only.
= 3: Remove knots first in parameter 1 and then in 2.
= 4: Remove knots first in parameter 2 and then in 1.

itmax - Max. no. of iterations in the data reduction.

Output Arguments:

CHAPTER 11. DATA REDUCTION 343

rs - Pointer to surface.

emxerr - Array (length idim) (allocated outside this routine.) con-
taining an upper bound for the error comitted in each com-
ponent during the data reduction.

jstat - Status messages
> 0 : Warning.
= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

double ep[6000]; /* Spatial dimension times number of points.
Must be defined */

double etang1[6000]; /* Spatial dimension times number of points.
Must be defined */

double etang2[6000]; /* Spatial dimension times number of points.
Must be defined */

double eder11[6000]; /* Spatial dimension times number of points.
Must be defined */

int im1 = 100;
int im2 = 20;
int idim = 3;
int ipar = 3;
double epar1[100]; /* Must be defined, used when ipar = 3 */
double epar2[20]; /* Must be defined, used when ipar = 3
double eeps[3]; /* Must be defined */
int nend[4]; /* Must be defined */
int iopen1 = 1;
int iopen2 = 1;
double edgeps[12];/* Spatial dimension times number of edges.

Must be defined */
int iopt = 1;
int itmax = 7;
SISLSurf *rs = NULL;
double emxerr[3]; /* Spatial dimension */
int jstat = 0;
. . .
s1967(ep, etang1, etang2, eder11, im1, im2, idim, ipar, epar1, epar2, eeps,

nend, iopen1, iopen2, edgeps, iopt, itmax, &rs, emxerr, &jstat);
. . .

}

CHAPTER 11. DATA REDUCTION 344

11.2.4 Degree reduction: B-spline surface as input.

NAME
s1968 - To compute a cubic tensor-product spline approximation to a given ten-

sor product spline surface of arbitrary order, with error less than eeps
in each of the idim components. The error in continuity over the start
and end of a closed or periodic surface is only guaranteed to be within
edgeps.

SYNOPSIS
void s1968(ps, eeps, nend, iopen1, iopen2, edgeps, iopt, itmax, rs, jstat)

SISLSurf *ps;
double eeps[];
int nend[];
int iopen1;
int iopen2;
double edgeps[];
int iopt;
int itmax;
SISLSurf **rs;
int *jstat;

ARGUMENTS
Input Arguments:

ps - Pointer to surface.
eeps - Array (length idim) containing the max. permissible devi-

ation of the approximation from the given data points, in
each of the components. More specifically, the approxima-
tion will not deviate more than eeps(kdim) in component
no. kdim, from the bilinear approximation to the data.

nend - Array (length 4) giving the no. of derivatives to be kept
fixed along each edge of the bilinear interpolant. The num-
bering of the edges is the same as for edgeps below. All the
derivatives of order < (nend(i)−1) will be kept fixed along
the edge i. Hence nend(i) = 0 indicates that nothing is to
be kept fixed along edge i. To be kept fixed here means to
have error less than edgeps. In general, it is impossible to
remove any knots and keep an edge completely fixed.

iopen1 - Open/closed parameter in first direction.
= 1 : Produce open surface.
= 0 : Produce closed, non-periodic surface if possible.
= −1 : Produce closed, periodic surface
NB! The surface will be closed/periodic only if the first
and last column of data points are (approximately) equal.

iopen2 - Open/closed parameter in second direction.
= 1 : Produce open surface.
= 0 : Produce closed, non-periodic surface if possible.
= −1 : Produce closed, periodic surface
NB! The surface will be closed/periodic only if the first
and last row of data points are (approximately) equal.

CHAPTER 11. DATA REDUCTION 345

edgeps - Array (length idim*4) containing the max. deviation from
the bilinear interpolant which is acceptable along the edges
of the surface. edgeps(1,i):edgeps(idim,i) gives the toler-
ance along the edge corresponding to the i-th parameter
having one of it‘s extremal-values.

i = 1: min value of first parameter.
i = 2: max value of first parameter.
i = 3: min value of second parameter.
i = 4: max value of second parameter.
edgeps(kp,i) will only have significance if nend(i) > 0.

iopt - Flag indicating the order in which the data-reduction is to
be performed:

= 1: Remove knots in parameter 1 only.
= 2: Remove knots in parameter 2 only.
= 3: Remove knots first in parameter 1 and then in 2.
= 4: Remove knots first in parameter 2 and then in 1.

itmax - Max. no. of iterations in the data-reduction..

Output Arguments:
rs - Pointer to surface.
jstat - Status messages

> 0 : Warning.
= 0 : Ok.
< 0 : Error.

EXAMPLE OF USE
{

SISLSurf *ps; /*Must be defined */
double eeps[3]; /*Must be defined */
int nend[4]; /*Must be defined */
int iopen1 = 1;
int iopen2 = -1;
double edgeps[12];/* Spatial dimension times number of edges.

Must be defined */
int iopt = 4;
int itmax = 7;
SISLSurf *rs = NULL;
int **jstat = 0;
. . .
s1968(ps, eeps, nend, iopen1, iopen2, edgeps, iopt, itmax, &rs, &jstat);
. . .

}

Chapter 12

Tutorial programs

This release of SISL is bundled with a number of sample programs which are
intended to make the user more familiar with the use of the API, as well as
demonstrating some of its capabilities.

12.1 Compiling the programs

The default cmake setup is not to compile example programs, the stream library
and the viewer. To enable compilation of the example programs the cmake call
must be extended with -Dsisl COMPILE EXAMPLES=ON. This option also
enables compilation of the streaming library. With ccmake compile options are
changed pressing enter. In cmake-gui compilation of the examples is invoked by
ticking the appropriate box. Compilation and linking is performed with the call

$ make example01

The example programs and the code for the streaming library is written in C++.

12.2 Description and commentaries on the sam-
ple programs

The example programs are named example01 through example15. Each of the
program demonstrates the use of a single or a couple of SISL functions. The
programs produces output files that contain geometric objects in the Go-format,
which can then be visualised by the provided viewer. These objects can also be
visualized in the viewer belonging to the GoTools library.

To keep things as simple as possible, the example programs (with the excep-
tion of example15) take no command line arguments. Instead, upon execution
they inform the user about what they are about to do, and which files will be
read from and written to. The names of the input and output files are hard-
coded in each example, but the user can experiment by changing the name of
these files if she wants to. Several of the sample programs rely upon files gener-
ated by earlier examples, so the user should make sure she runs through them
in chronological order.

346

CHAPTER 12. TUTORIAL PROGRAMS 347

12.2.1 example01.C

What it does

This program demonstrates how to directly specify a spline curve by providing
the position of control points and a knotvector (parametrization). It generates
such a curve by using hard-coded values as input to the SISL newCurve routine.

What it demonstrates

1. How control points and knotvectors are specified in memory.

2. How to use the newCurve routine.

3. How to clean up memory using freeCurve.

Input/output

The program takes no input files.
The program generates the files example1_curve.g2 and example1_points.g2.
The former contains the curve object and the latter contains the control points,
expressed in the Go-format.

12.2.2 example02.C

What it does

This program demonstrates one of the simplest interpolation cases for spline
curves in SISL. A sequence of 6 3D-points are provided (hardcoded), and the
routine generates a spline curve that fits exactly through these points. Note
that this is a simple example of a more general routine, which can also take into
consideration tangents, end point conditions, etc.

What it demonstrates

1. The use of the SISL routine s1356 for interpolating points with a curve.

Input/output

The program takes no input files.
The program generates the file example2_points.g2 and example2_curve.g2.
The first file contains the points to be interpolated, and the second file contains
the generated curve.

12.2.3 example03.C

What it does

This program creates a so-called blend-curve between two other curves, creating
a smooth connection between these. In this program, the blend curve connects
the end points of the two other curves, but in its generality, the routine can be
used to create blend curves connecting to any point on the other curves.

CHAPTER 12. TUTORIAL PROGRAMS 348

What it demonstrates

1. What a blend curve is and how it can be specified.

2. The use of the SISL routine s1606, which computes the blend curve.

3. The use of the SISL routine s1227, which evaluates points (and deriva-
tives) on a spline curve.

4. How to directly access data members of the SISLCurve struct.

Input/output

The program takes as input the files example1_curve.g2 and example2_points.g2,
which are respectively generated by the programs example01 and example02.
The generated blend curve will be saved to the file example3_curve.g2.

12.2.4 example04.C

What it does

This program generates an offset curve from another curve. An offset curve
is specified as having a fixed distance in a specified direction from the original
curve. The generated offset curve will not be exact, as this would in general be
impossible using a spline-function. We can however obtain an approximation
within a user-specified tolerance.

What it demonstrates

1. What an offset curve is and how it can be specified.

2. The way in which many SISL routines deal with geometric tolerances.

3. The use of the SISL routine s1360, which computes the offset curve within
a specified, geometric tolerance.

Input/output

The original curve is read from the file example1_curve.g2, which is generated
by the program example01. The resulting approximation of the offset curve will
be written to the file example4_curve.g2.

12.2.5 example05.C

What it does

This program generates a family of conic section curves, which are represented
as rational splines. Conic sections can be exactly represented with such splines,
so no geometric tolerance specification is needed. The program will generate
three ellipse segments, one parabola segment and three hyperbola segments,
based on internal, hard-coded data.

CHAPTER 12. TUTORIAL PROGRAMS 349

What it demonstrates

1. The use of the SISL routine s1011 to generate all kinds of conic sections.

2. The important fact that conic sections can be exactly represented by ra-
tional splines.

3. How a single shape parameter can specify whether the generated curve
will be an ellipse, a parabola or a hyperbola.

Input/output

The program takes no input files.
The program generates the file example5_curve.g2 which contains all the gen-
erated curves.

12.2.6 example06.C

What it does

This program generates two curves (from internal, hardcoded data), and com-
putes their intersections. Computation of intersections is an extremely impor-
tant part of SISL, although the intersection of two curves is a minor problem in
this respect.

What it demonstrates

1. The use of the SISL routine s1857 for computing the intersection points
between two given spline curves.

2. Underlines the fact that the detected intersection points are returned as
parameter values, and have to be evaluated in order to find their 3D
positions.

3. How to clean up an array of intersection curves (SISLIntcurve), although,
in this example, this array will already be empty.

Input/output

The program takes no input files (the data for the curves is hard-coded).
The generated curves will be written to the files example6_curve_1.g2 and
example6_curve_2.g2. The intersection point positions will be written to the
file example6_isectpoints.g2.

12.2.7 example07.C

What it does

This is a very short and simple program that calculates the arc length of a curve.

What it demonstrates

1. The use of the SISL routine s1240 for computing the length of a spline
curve.

CHAPTER 12. TUTORIAL PROGRAMS 350

Input/output

The curve whose length is calculated is read from the file example6_curve_1,
which has been generated by the sample program example06. The calculated
length will be written to standard output.

12.2.8 example08.C

What it does

This program generates two non-intersecting spline curves (from internal, hard-
coded cata), and computes their mutual closest point. The call is very similar
to the one in example06, where we wanted to compute curve intersections.

What it demonstrates

1. The use of the SISL routine s1955 for locating the closest points of two
curves.

Input/output

As the curves are specified directly by internal data, no input files are needed.
The two generated curves will be saved to the two files example8_curve_1.g2

and example8_curve_2.g2. The closest points will be written to the file
example8_closestpoints.g2.

12.2.9 example09.C

What it does

This program generates four different surfaces interpolating an array of spa-
tial points. The surfaces have different spline order, so that even though they
interpolate the same points, they have different shapes.

What it demonstrates

1. The use of the SISL routine s1537 for generating an interpolating surface
to a grid of points.

2. The effect of the spline order on the interpolating surface.

Input/output

The program takes no input files (the points to be interpolated are hard-coded).
The program creates two data files: example9_points.g2, which contains all
the interpolated points, and example9_surf.g2, which contains the four gen-
erated surfaces.

CHAPTER 12. TUTORIAL PROGRAMS 351

12.2.10 example10.C

What it does

This program generates a sequence of spline curves. Moreover, it generates a
lofted surface interpolating these curves. The lofted surface has the original
sequence of curves as isoparametric curves in one of its parameters.

What it demonstrates

1. The use of the SISL routine s1538 for generating lofted spline surfaces.

2. Gives a good example of what a lofted surface looks like.

Input/output

The program takes no input files (the curves to be interpolated are hard-coded).
The program creates two data files: example10_curves.g2, containing the gen-
erated sequence of curves, and example10_surf.g2, containing the lofted sur-
face.

12.2.11 example11.C

What it does

This program generates a cylindrical surface with an oval base.

What it demonstrates

1. The use of the SISL routine s1021 for generating cylindrical surfaces.

2. The fact that cylindrical surfaces are exactly representable as rational
spline surfaces.

Input/output

The program takes no input files.
The program creates one data file: example11_surf.g2, containing the gener-
ated surface.

12.2.12 example12.C

What it does

This program finds the intersection points between a curve and a surface. The
curve and the surface in question have been defined by previous example pro-
grams.

What it demonstrates

1. The use of the SISL routine s1858 for computing intersection points be-
tween a curve and a surface.

CHAPTER 12. TUTORIAL PROGRAMS 352

Input/output

The curve and the surface in question are read from the files example4_curve.g2
and example10_surf.g2, respectively generated by the sample programs example04
and example10. The found intersections are written to the file
example12_isectpoints.g2.

12.2.13 example13.C

What it does

This program computes all intersection curves between two surfaces. This is
a nontrivial task in geometrical modeling. The problem is twofold. The first
problem is to determine the number of intersections, and their topology. The
region of an intersection can be either a point, a curve and a surface. In the
two latter cases, the shape of the region can usually only be approximated. We
do not know a priori how many separate intersections there exists between two
surfaces, so we have to look systematically for them. Intersection curves can
take the form of closed loops on the interior of the surfaces, of curves running
from the surface edges, or of curves meeting in a singularity. When we have
successfully determined the topology of the intersections, the second problem is
to determine their acutal shape. This is usually done by marching techniques.
However, we may run into problems with ’degenerated’ surfaces, or surfaces
being close to coplanar in the intersection.

What it demonstrates

1. The use of the SISL routine s1859 for determining the topology of the
intersections between two spline surfaces.

2. The use of the SISL routine s1310 for marching out the detected curves
after their topologies have been determined.

Input/output

The two surfaces have been generated by the previous sample programs example10
and example11, and can be found in the files example10_surf.g2 and
example11_surf.g2. The resulting intersection curves will be written to the
file example13_isectcurves.g2.

12.2.14 example14.C

What it does

This program demonstrates one of the data reduction techniques of SISL. As
input data, it first generates a dense point set by sampling from a (predefined)
spline curve. Then, using this data, it attempts to generate a new spline curve
that fits closely to these samples, while using as few control points as possible.
Since we know that in this case the data points come from a simple spline
curve, it should be no surprise that the generated curve will have approximately
the same expression as the sampled curve (and thus reduce the quantity of
data substantially compared to what is needed to store the points). However,

CHAPTER 12. TUTORIAL PROGRAMS 353

data reduction can be obtained on any sufficiently smooth point set, even if it
originates from other processes.

What it demonstrates

1. The use of the SISL routine s1961 for generating approximating spline
curves through a set of data, using as few control points as possible.

2. The power of this data reduction technique on smooth point data.

Input/output

The program takes no input files, as the curve to be sampled from is hard-coded.
The sampled points will be written to the file example14_points.g2, and the
obtained curve will be stored in example14_curve.g2.

12.2.15 example15.C

What it does

This is the last of the sample programs, and by far the most complicated. It
aims not only to demonstrate a certain feature of SISL, but to show how this
feature can be used for a purpose (raytracing). Moreover, it demonstrates two
ways of achieveing this, one slow and robust method and one rapid but fragile
method.
Raytracing can be seen as the process of determining what an object ’looks
like’ from a certain viewpoint, through a certain ’window’, as illustrated below.
Lines (’rays’) are extended from the viewpoint through a dense grid of points

on the window, and checked for intersection with the object. If such an inter-
section exists, it should be registered as a point on the object ’visible’ from the
viewpoint. In computer graphics, these points are projected back on the win-
dow, which becomes a 2D image that can be displayed on the computer screen.
For our purposes, we refrain from doing this projection, and store the full 3D
coordinates of the detected point.
Note that a ray may intersect the object more than once. In these cases, the
intersection point closest to the viewpoint is chosen, as the other points are

CHAPTER 12. TUTORIAL PROGRAMS 354

’hidden’ by it. As mentioned above, there are two raytracing routines in this
example program. The robust routine calculates all possible intersection points
for each ray, and then choses the nearest one. This should always work, but can
be slow since no information is re-used. When we have found an intersection
point for a given ray, we can usually expect that the next, neighouring ray will
intersect in a point close to the one already found. If this is the case, it would be
speedier to use a local algorithm that converges on the intersection point quickly
given a good initial guess. This is the basis for our ’quick’ routine. This routine
uses the robust raytracing algorithm to find the first point on a surface, and then
it switches over to the fast method as long as it is possible to do so. However,
since the quick method never finds more than one intersection point, and since
a ray may generally intersect an object more than once, we have no guarantee
that the point found is the one truly visible from the viewpoint. There are some
checking procedures that make things better, but we still have no guarantee. If
the user inspects the results obtained, he will notice this problem even on the
simple example given here. In general, it can be said that the rapid algorithm
should only be used in some special cases, where we know for a fact that any
ray from the viewpoint will not intersect the surface more than once.

This is the only of the example programs that can be run with a command
line argument. If the first argument is q, then the quick raytracing routine will
be invoked. Else, the robust and slow routine is used.

What it demonstrates

1. The basic setting and principe of a raytracer, with a defined viewpoint,
window and intersection with rays.

2. The use of the SISL routine s1856, which calculates all intersections be-
tween a spline surface and a line.

3. The use of the SISL routine s1518, which converges to an intersection
between a spline surface and a line, given a good initial guess.

Input/output

The surface to be raytraced is read from the file example10_surf.g2, generated
by the example10 program. The other parameters necessary for the raytracing
are hard- coded (viewpoint, view window, resolution, etc.). The resulting points
are written to the file example15_points.g2.

Chapter 13

The object viewer program

13.1 General

The object viewer program bundled with this distribution of SISL is intended to
be a simple but handy tool for visualising curves and surfaces generated by SISL.
The supported file format is the Go format, which is a simple, ASCII-based for-
mat defined by SINTEF. The viewer is based on OpenGL. An alternative viewer
with a more evolved user interface, but also more dependencies can be found in
the library GoTools also provided by SINTEF Mathematics and Cybernetics.
The object(s) to be viewed are for this viewer specified on the command line
when starting the program. Once the program is started, the user cannot open
other files containing SISL objects. The viewer allows the user to zoom, pan
and rotate the objects with the mouse, and some other useful commands can
be accessed through the keyboard.

In the viewer window, several curves and surfaces can be displayed simultane-
ously. At all times, exactly one surface and one curve are defined as being active
(the other ones being passive). With keyboard commands, the user can change
the currently active surface/curve. An object just becoming active will flash
for a few seconds. With other keyboard commands, the user can enable/disable
surfaces and curves. This refers to turning the display of these objects on or
off. For details, refer to the section on keyboard commands.

13.2 Compiling the viewer

The default cmake setup is not to compile example programs, the stream library
and the viewer. To enable compilation of the example programs the cmake
call must be extended with -Dsisl COMPILE VIEWER=ON. This option also
enables compilation of the streaming library. With ccmake compile options are
changed pressing enter. In cmake-gui compilation of the viewer is invoked by
ticking the appropriate box. Compilation and linking is performed with the call

$ make sisl_view_demo

The viewer is written in C++.

355

CHAPTER 13. THE OBJECT VIEWER PROGRAM 356

13.3 Command line arguments

When starting up the viewer, the options listed below can be used. If no option
is specified, a short text listing the available options is printed on screen.

• s filename - view the surface(s) contained in the file filename. Note: this
command line option can be used repetitively if the user wants to inspect
several surfaces at once.

• c filename - view the curve(s) contained in the file filename. Note: this
command can be used repetitively if the user wants to inspect several
curves at once.

• p filename - view the point(s) contained in the file filename. Note: this
command line option can be used repetitively if the user wants to inspect
several surfaces at once.

• r integer set surface refinement factor (number of facets in each direc-
tion on the surface). Default value is 100. Higher values gives smoother
drawing of the surface. NB: this option has to precede the ’s’ option!

• e string the string contains keypresses to execute directly upon start (see
the section on keyboard control keys for details).

• hotkeys does not start the viewer, but displays a list of keyboard com-
mands that can be used when viewing.

A file can contain one or several curves, or one or several surfaces. Files
containing both curves and surfaces are not supported. The viewer can read
several files to be viewed at once. On the command line, each “curve” file should
be preceded with the letter ’c’, and each “surface” file should be preceded with
the letter ’s’. After launch, all the objects contained in the given files are shown
simultaneously. The user can disable the view of certain curves and surfaces if
he or she wants to.

13.4 User controls

After program launch, the viewing of curves and surfaces can be controlled with
the mouse and keyboard. The mouse is used to define viewing angle, direction
and zoom factor, while keyboard keys are used to turn on/off objects and to
change certain view parameters.

13.4.1 Mouse commands

It is assumed that a 3-button mouse is used. By dragging the mouse while
holding down the left button, the user can rotate the current view in an intuitive
way. By dragging with a certain speed, the view will continue to rotate even
after the left button is released. The middle button is used for zooming. Hold
down this button and move the mouse forwards and backwards in order to zoom
in and out. Holding down the right button while dragging the mouse moves the
view up and down.

CHAPTER 13. THE OBJECT VIEWER PROGRAM 357

13.4.2 Keyboard commands

The available keyboard commands are:

• q - quit the viewer program

• <space> - change the currently active curve (cycles through each of them)

• <tab - change the currently active surface (cycles through each of them)

• w - turn on/off the wireframe display for surfaces

• B - toggle between black and white color for backgrounds

• A - toggle drawing of coordinate axes on/off

• S - toggle drawing of surfaces

• e - toggle visibility of currently active surface

• a - make all loaded surfaces visible

• d - hide all surfaces except the currently active one

• <ctrl>-e - toggle visibility of currently active curve

• <ctrl>-a - make all loaded curves visible

• <ctrl>-d - hide all curves except the currently active one

• O - center all objects around origo, and rescale objects so that they fit
inside the unit volume (does not preserve aspect ratio)

• o - center all objects around origo, no rescaling

• + - increase thickness of axes

• - - decrease thickness of axes

• > - increase size of points

• < - decrease size of points

• / - decrease length of axes

• <esc>-w-[n] - store viewpoint in slot [n], where [n] is a number from 0
to 9. The viewpoint will be saved to file, and can such be preserved from
one session to another.

• <esc>-r-[n] - load a previously saved viewpoint from slot [n], where [n]
is a number from 0 to 9.

Chapter 14

Appendix: Error Codes

For reference, here is a list of the error codes used in SISL. They can be useful for
diagnosing problems encountered when calling SISL routines. However please
note that a small number of SISL routines use their own convention.

Label Value Description

--

err101 -101 Error in memory allocation.

err102 -102 Error in input. Dimension less than 1.

err103 -103 Error in input. Dimension less than 2.

err104 -104 Error in input. Dimension not equal 3.

err105 -105 Error in input. Dimension not equal 2 or 3.

err106 -106 Error in input. Conflicting dimensions.

err107 -107

err108 -108 Error in input. Dimension not equal 2.

err109 -109 Error in input. Order less than 2.

err110 -110 Error in Curve description. Order less than 1.

err111 -111 Error in Curve description. Number of vertices less than order.

err112 -112 Error in Curve description. Error in knot vector.

err113 -113 Error in Curve description. Unknown kind of Curve.

err114 -114 Error in Curve description. Open Curve when expecting closed.

err115 -115 Error in Surf description. Order less than 1.

358

CHAPTER 14. APPENDIX: ERROR CODES 359

err116 -116 Error in Surf description. Number of vertices less than order.

err117 -117 Error in Surf description. Error in knot vector.

err118 -118 Error in Surf description. Unknown kind of Surf.

err119 -119

err120 -120 Error in input. Negative relative tolerance.

err121 -121 Error in input. Unknown kind of Object.

err122 -122 Error in input. Unexpected kind of Object found.

err123 -123 Error in input. Parameter direction does not exist.

err124 -124 Error in input. Zero length parameter interval.

err125 -125

err126 -126

err127 -127 Error in input. The whole curve lies on axis.

err128 -128

err129 -129

err130 -130 Error in input. Parameter value is outside parameter area.

err131 -131

err132 -132

err133 -133

err134 -134

err135 -135 Error in data structure.

Intersection point exists when it should not.

err136 -136 Error in data structure.

Intersection list exists when it should not.

err137 -137 Error in data structure.

Expected intersection point not found.

err138 -138 Error in data structure.

Wrong number of intersections on edges/endpoints.

CHAPTER 14. APPENDIX: ERROR CODES 360

err139 -139 Error in data structure.

Edge intersection does not lie on edge/endpoint.

err140 -140 Error in data structure. Intersection interval crosses

subdivision line when not expected to.

err141 -141 Error in input. Illegal edge point requested.

err142 -142

err143 -143

err144 -144 Unknown kind of intersection curve.

err145 -145 Unknown kind of intersection list (internal format).

err146 -146 Unknown kind of intersection type.

err147 -147

err148 -147

err149 -149

err150 -150 Error in input. NULL pointer was given.

err151 -151 Error in input. One or more illegal input values.

err152 -152 Too many knots to insert.

err153 -153 Lower level routine reported error. SHOULD use label "error".

err154 -154

err155 -155

err156 -156 Illegal derivative requested. Change this label to err178.

err157 -157

err158 -158 Intersection point outside Curve.

err159 -159 No of vertices less than 1. SHOULD USE err111 or err116.

err160 -160 Error in dimension of interpolation problem.

err161 -161 Error in interpolation problem.

err162 -162 Matrix may be noninvertible.

CHAPTER 14. APPENDIX: ERROR CODES 361

err163 -163 Matrix part contains diagonal elements.

err164 -164 No point conditions specified in interpolation problem.

err165 -165 Error in interpolation problem.

err166 -166

err167 -167

err168 -168

err169 -169

err170 -170 Internal error: Error in moving knot values.

err171 -171 Memory allocation failure: Could not create curve or surface.

err172 -172 Input error, inarr < 1 || inarr > 3.

err173 -173 Direction vector zero length.

err174 -174 Degenerate condition.

err175 -175 Unknown degree/type of implicit surface.

err176 -176 Unexpected iteration situation.

err177 -177 Error in input. Negative step length requested.

err178 -178 Illegal derivative requested.

err179 -179 No. of Curves < 2.

err180 -180 Error in torus description.

err181 -181 Too few points as input.

err182 -182

err183 -183 Order(s) specified to low.

err184 -184 Negative tolerance given.

err185 -185 Only degenerate or singular guide points.

err186 -186 Special error in traversal of curves.

err187 -187 Error in description of input curves.

CHAPTER 14. APPENDIX: ERROR CODES 362

err188 -188

err189 -189

err190 -190 Too small array for storing Curve segments.

err191 -191 Error in inserted parameter number.

err192 -192

err193 -193

err194 -194

err195 -195

err196 -196

err197 -197

err198 -198

err199 -199 Error in vectors?

Appendix A

GNU AFFERO GENERAL
PUBLIC LICENSE

Version 3, 19 November 2007
Copyright c© 2007 Free Software Foundation, Inc. https://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

363

Preamble

The GNU Affero General Public License is a free, copyleft license for software
and other kinds of works, specifically designed to ensure cooperation with the
community in the case of network server software.

The licenses for most software and other practical works are designed to take
away your freedom to share and change the works. By contrast, our General
Public Licenses are intended to guarantee your freedom to share and change all
versions of a program–to make sure it remains free software for all its users.

When we speak of free software, we are referring to freedom, not price. Our
General Public Licenses are designed to make sure that you have the freedom
to distribute copies of free software (and charge for them if you wish), that you
receive source code or can get it if you want it, that you can change the software
or use pieces of it in new free programs, and that you know you can do these
things.

Developers that use our General Public Licenses protect your rights with
two steps: (1) assert copyright on the software, and (2) offer you this License
which gives you legal permission to copy, distribute and/or modify the software.

A secondary benefit of defending all users’ freedom is that improvements
made in alternate versions of the program, if they receive widespread use, be-
come available for other developers to incorporate. Many developers of free
software are heartened and encouraged by the resulting cooperation. However,
in the case of software used on network servers, this result may fail to come
about. The GNU General Public License permits making a modified version
and letting the public access it on a server without ever releasing its source
code to the public.

The GNU Affero General Public License is designed specifically to ensure
that, in such cases, the modified source code becomes available to the commu-
nity. It requires the operator of a network server to provide the source code of
the modified version running there to the users of that server. Therefore, public
use of a modified version, on a publicly accessible server, gives the public access
to the source code of the modified version.

An older license, called the Affero General Public License and published by
Affero, was designed to accomplish similar goals. This is a different license, not
a version of the Affero GPL, but Affero has released a new version of the Affero
GPL which permits relicensing under this license.

The precise terms and conditions for copying, distribution and modification
follow.

APPENDIX A. GNU AFFERO GENERAL PUBLIC LICENSE 1

Terms and Conditions

0. Definitions.

“This License” refers to version 3 of the GNU Affero General Public Li-
cense.

“Copyright” also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.

“The Program” refers to any copyrightable work licensed under this Li-
cense. Each licensee is addressed as “you”. “Licensees” and “recipients”
may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a “modified version” of the earlier
work or a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work based
on the Program.

To “propagate” a work means to do anything with it that, without permis-
sion, would make you directly or secondarily liable for infringement under
applicable copyright law, except executing it on a computer or modifying
a private copy. Propagation includes copying, distribution (with or with-
out modification), making available to the public, and in some countries
other activities as well.

To “convey” a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through a
computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the
extent that it includes a convenient and prominently visible feature that
(1) displays an appropriate copyright notice, and (2) tells the user that
there is no warranty for the work (except to the extent that warranties
are provided), that licensees may convey the work under this License, and
how to view a copy of this License. If the interface presents a list of user
commands or options, such as a menu, a prominent item in the list meets
this criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for
making modifications to it. “Object code” means any non-source form of
a work.

A “Standard Interface” means an interface that either is an official stan-
dard defined by a recognized standards body, or, in the case of interfaces
specified for a particular programming language, one that is widely used
among developers working in that language.

The “System Libraries” of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of packag-
ing a Major Component, but which is not part of that Major Component,
and (b) serves only to enable use of the work with that Major Compo-
nent, or to implement a Standard Interface for which an implementation

APPENDIX A. GNU AFFERO GENERAL PUBLIC LICENSE 2

is available to the public in source code form. A “Major Component”, in
this context, means a major essential component (kernel, window system,
and so on) of the specific operating system (if any) on which the exe-
cutable work runs, or a compiler used to produce the work, or an object
code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the
source code needed to generate, install, and (for an executable work) run
the object code and to modify the work, including scripts to control those
activities. However, it does not include the work’s System Libraries, or
general-purpose tools or generally available free programs which are used
unmodified in performing those activities but which are not part of the
work. For example, Corresponding Source includes interface definition files
associated with source files for the work, and the source code for shared
libraries and dynamically linked subprograms that the work is specifically
designed to require, such as by intimate data communication or control
flow between those subprograms and other parts of the work.

The Corresponding Source need not include anything that users can re-
generate automatically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same
work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright
on the Program, and are irrevocable provided the stated conditions are
met. This License explicitly affirms your unlimited permission to run the
unmodified Program. The output from running a covered work is covered
by this License only if the output, given its content, constitutes a covered
work. This License acknowledges your rights of fair use or other equivalent,
as provided by copyright law.

You may make, run and propagate covered works that you do not con-
vey, without conditions so long as your license otherwise remains in force.
You may convey covered works to others for the sole purpose of having
them make modifications exclusively for you, or provide you with facili-
ties for running those works, provided that you comply with the terms of
this License in conveying all material for which you do not control copy-
right. Those thus making or running the covered works for you must do
so exclusively on your behalf, under your direction and control, on terms
that prohibit them from making any copies of your copyrighted material
outside their relationship with you.

Conveying under any other circumstances is permitted solely under the
conditions stated below. Sublicensing is not allowed; section 10 makes it
unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure
under any applicable law fulfilling obligations under article 11 of the WIPO
copyright treaty adopted on 20 December 1996, or similar laws prohibiting
or restricting circumvention of such measures.

APPENDIX A. GNU AFFERO GENERAL PUBLIC LICENSE 3

When you convey a covered work, you waive any legal power to forbid cir-
cumvention of technological measures to the extent such circumvention is
effected by exercising rights under this License with respect to the covered
work, and you disclaim any intention to limit operation or modification of
the work as a means of enforcing, against the work’s users, your or third
parties’ legal rights to forbid circumvention of technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropri-
ately publish on each copy an appropriate copyright notice; keep intact
all notices stating that this License and any non-permissive terms added
in accord with section 7 apply to the code; keep intact all notices of the
absence of any warranty; and give all recipients a copy of this License
along with the Program.

You may charge any price or no price for each copy that you convey, and
you may offer support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the terms
of section 4, provided that you also meet all of these conditions:

(a) The work must carry prominent notices stating that you modified it,
and giving a relevant date.

(b) The work must carry prominent notices stating that it is released
under this License and any conditions added under section 7. This
requirement modifies the requirement in section 4 to “keep intact all
notices”.

(c) You must license the entire work, as a whole, under this License
to anyone who comes into possession of a copy. This License will
therefore apply, along with any applicable section 7 additional terms,
to the whole of the work, and all its parts, regardless of how they
are packaged. This License gives no permission to license the work
in any other way, but it does not invalidate such permission if you
have separately received it.

(d) If the work has interactive user interfaces, each must display Appro-
priate Legal Notices; however, if the Program has interactive inter-
faces that do not display Appropriate Legal Notices, your work need
not make them do so.

A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work, and
which are not combined with it such as to form a larger program, in or on
a volume of a storage or distribution medium, is called an “aggregate” if
the compilation and its resulting copyright are not used to limit the access
or legal rights of the compilation’s users beyond what the individual works
permit. Inclusion of a covered work in an aggregate does not cause this
License to apply to the other parts of the aggregate.

APPENDIX A. GNU AFFERO GENERAL PUBLIC LICENSE 4

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the machine-readable
Corresponding Source under the terms of this License, in one of these
ways:

(a) Convey the object code in, or embodied in, a physical product (in-
cluding a physical distribution medium), accompanied by the Cor-
responding Source fixed on a durable physical medium customarily
used for software interchange.

(b) Convey the object code in, or embodied in, a physical product (in-
cluding a physical distribution medium), accompanied by a written
offer, valid for at least three years and valid for as long as you of-
fer spare parts or customer support for that product model, to give
anyone who possesses the object code either (1) a copy of the Cor-
responding Source for all the software in the product that is covered
by this License, on a durable physical medium customarily used for
software interchange, for a price no more than your reasonable cost of
physically performing this conveying of source, or (2) access to copy
the Corresponding Source from a network server at no charge.

(c) Convey individual copies of the object code with a copy of the written
offer to provide the Corresponding Source. This alternative is allowed
only occasionally and noncommercially, and only if you received the
object code with such an offer, in accord with subsection 6b.

(d) Convey the object code by offering access from a designated place
(gratis or for a charge), and offer equivalent access to the Correspond-
ing Source in the same way through the same place at no further
charge. You need not require recipients to copy the Corresponding
Source along with the object code. If the place to copy the object
code is a network server, the Corresponding Source may be on a dif-
ferent server (operated by you or a third party) that supports equiv-
alent copying facilities, provided you maintain clear directions next
to the object code saying where to find the Corresponding Source.
Regardless of what server hosts the Corresponding Source, you re-
main obligated to ensure that it is available for as long as needed to
satisfy these requirements.

(e) Convey the object code using peer-to-peer transmission, provided you
inform other peers where the object code and Corresponding Source
of the work are being offered to the general public at no charge under
subsection 6d.

A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be included
in conveying the object code work.

A “User Product” is either (1) a “consumer product”, which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer prod-
uct, doubtful cases shall be resolved in favor of coverage. For a particular

APPENDIX A. GNU AFFERO GENERAL PUBLIC LICENSE 5

product received by a particular user, “normally used” refers to a typical
or common use of that class of product, regardless of the status of the
particular user or of the way in which the particular user actually uses,
or expects or is expected to use, the product. A product is a consumer
product regardless of whether the product has substantial commercial,
industrial or non-consumer uses, unless such uses represent the only sig-
nificant mode of use of the product.

“Installation Information” for a User Product means any methods, pro-
cedures, authorization keys, or other information required to install and
execute modified versions of a covered work in that User Product from a
modified version of its Corresponding Source. The information must suf-
fice to ensure that the continued functioning of the modified object code
is in no case prevented or interfered with solely because modification has
been made.

If you convey an object code work under this section in, or with, or specif-
ically for use in, a User Product, and the conveying occurs as part of a
transaction in which the right of possession and use of the User Product is
transferred to the recipient in perpetuity or for a fixed term (regardless of
how the transaction is characterized), the Corresponding Source conveyed
under this section must be accompanied by the Installation Information.
But this requirement does not apply if neither you nor any third party
retains the ability to install modified object code on the User Product (for
example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for the
User Product in which it has been modified or installed. Access to a net-
work may be denied when the modification itself materially and adversely
affects the operation of the network or violates the rules and protocols for
communication across the network.

Corresponding Source conveyed, and Installation Information provided, in
accord with this section must be in a format that is publicly documented
(and with an implementation available to the public in source code form),
and must require no special password or key for unpacking, reading or
copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this Li-
cense by making exceptions from one or more of its conditions. Additional
permissions that are applicable to the entire Program shall be treated as
though they were included in this License, to the extent that they are
valid under applicable law. If additional permissions apply only to part of
the Program, that part may be used separately under those permissions,
but the entire Program remains governed by this License without regard
to the additional permissions.

When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own removal

APPENDIX A. GNU AFFERO GENERAL PUBLIC LICENSE 6

in certain cases when you modify the work.) You may place additional
permissions on material, added by you to a covered work, for which you
have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add
to a covered work, you may (if authorized by the copyright holders of that
material) supplement the terms of this License with terms:

(a) Disclaiming warranty or limiting liability differently from the terms
of sections 15 and 16 of this License; or

(b) Requiring preservation of specified reasonable legal notices or author
attributions in that material or in the Appropriate Legal Notices
displayed by works containing it; or

(c) Prohibiting misrepresentation of the origin of that material, or requir-
ing that modified versions of such material be marked in reasonable
ways as different from the original version; or

(d) Limiting the use for publicity purposes of names of licensors or au-
thors of the material; or

(e) Declining to grant rights under trademark law for use of some trade
names, trademarks, or service marks; or

(f) Requiring indemnification of licensors and authors of that material
by anyone who conveys the material (or modified versions of it) with
contractual assumptions of liability to the recipient, for any liability
that these contractual assumptions directly impose on those licensors
and authors.

All other non-permissive additional terms are considered “further restric-
tions” within the meaning of section 10. If the Program as you received
it, or any part of it, contains a notice stating that it is governed by this
License along with a term that is a further restriction, you may remove
that term. If a license document contains a further restriction but per-
mits relicensing or conveying under this License, you may add to a covered
work material governed by the terms of that license document, provided
that the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must
place, in the relevant source files, a statement of the additional terms that
apply to those files, or a notice indicating where to find the applicable
terms.

Additional terms, permissive or non-permissive, may be stated in the form
of a separately written license, or stated as exceptions; the above require-
ments apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly pro-
vided under this License. Any attempt otherwise to propagate or modify
it is void, and will automatically terminate your rights under this License
(including any patent licenses granted under the third paragraph of section
11).

APPENDIX A. GNU AFFERO GENERAL PUBLIC LICENSE 7

However, if you cease all violation of this License, then your license from a
particular copyright holder is reinstated (a) provisionally, unless and until
the copyright holder explicitly and finally terminates your license, and (b)
permanently, if the copyright holder fails to notify you of the violation by
some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated
permanently if the copyright holder notifies you of the violation by some
reasonable means, this is the first time you have received notice of violation
of this License (for any work) from that copyright holder, and you cure
the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the li-
censes of parties who have received copies or rights from you under this
License. If your rights have been terminated and not permanently rein-
stated, you do not qualify to receive new licenses for the same material
under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a
copy of the Program. Ancillary propagation of a covered work occurring
solely as a consequence of using peer-to-peer transmission to receive a
copy likewise does not require acceptance. However, nothing other than
this License grants you permission to propagate or modify any covered
work. These actions infringe copyright if you do not accept this License.
Therefore, by modifying or propagating a covered work, you indicate your
acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives
a license from the original licensors, to run, modify and propagate that
work, subject to this License. You are not responsible for enforcing com-
pliance by third parties with this License.

An “entity transaction” is a transaction transferring control of an organi-
zation, or substantially all assets of one, or subdividing an organization,
or merging organizations. If propagation of a covered work results from
an entity transaction, each party to that transaction who receives a copy
of the work also receives whatever licenses to the work the party’s prede-
cessor in interest had or could give under the previous paragraph, plus a
right to possession of the Corresponding Source of the work from the pre-
decessor in interest, if the predecessor has it or can get it with reasonable
efforts.

You may not impose any further restrictions on the exercise of the rights
granted or affirmed under this License. For example, you may not impose
a license fee, royalty, or other charge for exercise of rights granted under
this License, and you may not initiate litigation (including a cross-claim
or counterclaim in a lawsuit) alleging that any patent claim is infringed
by making, using, selling, offering for sale, or importing the Program or
any portion of it.

11. Patents.

APPENDIX A. GNU AFFERO GENERAL PUBLIC LICENSE 8

A “contributor” is a copyright holder who authorizes use under this Li-
cense of the Program or a work on which the Program is based. The work
thus licensed is called the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or
controlled by the contributor, whether already acquired or hereafter ac-
quired, that would be infringed by some manner, permitted by this Li-
cense, of making, using, or selling its contributor version, but do not
include claims that would be infringed only as a consequence of further
modification of the contributor version. For purposes of this definition,
“control” includes the right to grant patent sublicenses in a manner con-
sistent with the requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent
license under the contributor’s essential patent claims, to make, use, sell,
offer for sale, import and otherwise run, modify and propagate the con-
tents of its contributor version.

In the following three paragraphs, a “patent license” is any express agree-
ment or commitment, however denominated, not to enforce a patent (such
as an express permission to practice a patent or covenant not to sue for
patent infringement). To “grant” such a patent license to a party means
to make such an agreement or commitment not to enforce a patent against
the party.

If you convey a covered work, knowingly relying on a patent license, and
the Corresponding Source of the work is not available for anyone to copy,
free of charge and under the terms of this License, through a publicly
available network server or other readily accessible means, then you must
either (1) cause the Corresponding Source to be so available, or (2) arrange
to deprive yourself of the benefit of the patent license for this particular
work, or (3) arrange, in a manner consistent with the requirements of this
License, to extend the patent license to downstream recipients. “Know-
ingly relying” means you have actual knowledge that, but for the patent
license, your conveying the covered work in a country, or your recipient’s
use of the covered work in a country, would infringe one or more identifi-
able patents in that country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement,
you convey, or propagate by procuring conveyance of, a covered work, and
grant a patent license to some of the parties receiving the covered work
authorizing them to use, propagate, modify or convey a specific copy of the
covered work, then the patent license you grant is automatically extended
to all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope
of its coverage, prohibits the exercise of, or is conditioned on the non-
exercise of one or more of the rights that are specifically granted under
this License. You may not convey a covered work if you are a party to
an arrangement with a third party that is in the business of distributing
software, under which you make payment to the third party based on the
extent of your activity of conveying the work, and under which the third
party grants, to any of the parties who would receive the covered work
from you, a discriminatory patent license (a) in connection with copies of

APPENDIX A. GNU AFFERO GENERAL PUBLIC LICENSE 9

the covered work conveyed by you (or copies made from those copies), or
(b) primarily for and in connection with specific products or compilations
that contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any
implied license or other defenses to infringement that may otherwise be
available to you under applicable patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not ex-
cuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not convey it at all. For example, if you agree to terms that obligate
you to collect a royalty for further conveying from those to whom you
convey the Program, the only way you could satisfy both those terms and
this License would be to refrain entirely from conveying the Program.

13. Remote Network Interaction; Use with the GNU General Public License.

Notwithstanding any other provision of this License, if you modify the
Program, your modified version must prominently offer all users interact-
ing with it remotely through a computer network (if your version supports
such interaction) an opportunity to receive the Corresponding Source of
your version by providing access to the Corresponding Source from a net-
work server at no charge, through some standard or customary means
of facilitating copying of software. This Corresponding Source shall in-
clude the Corresponding Source for any work covered by version 3 of the
GNU General Public License that is incorporated pursuant to the follow-
ing paragraph.

Notwithstanding any other provision of this License, you have permission
to link or combine any covered work with a work licensed under version
3 of the GNU General Public License into a single combined work, and
to convey the resulting work. The terms of this License will continue to
apply to the part which is the covered work, but the work with which it is
combined will remain governed by version 3 of the GNU General Public
License.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions
of the GNU Affero General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may differ in
detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies that a certain numbered version of the GNU Affero General Pub-
lic License “or any later version” applies to it, you have the option of
following the terms and conditions either of that numbered version or of
any later version published by the Free Software Foundation. If the Pro-
gram does not specify a version number of the GNU Affero General Public

APPENDIX A. GNU AFFERO GENERAL PUBLIC LICENSE 10

License, you may choose any version ever published by the Free Software
Foundation.

If the Program specifies that a proxy can decide which future versions of
the GNU Affero General Public License can be used, that proxy’s public
statement of acceptance of a version permanently authorizes you to choose
that version for the Program.

Later license versions may give you additional or different permissions.
However, no additional obligations are imposed on any author or copyright
holder as a result of your choosing to follow a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE
EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS
AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY
AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD
THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED
TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER
PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS
PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, IN-
CLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUEN-
TIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO
USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS
OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES
SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN
IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above
cannot be given local legal effect according to their terms, reviewing courts
shall apply local law that most closely approximates an absolute waiver
of all civil liability in connection with the Program, unless a warranty or
assumption of liability accompanies a copy of the Program in return for a
fee.

End of Terms and Conditions

APPENDIX A. GNU AFFERO GENERAL PUBLIC LICENSE 11

Appendix: How to Apply These Terms to
Your New Programs

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it free
software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach
them to the start of each source file to most effectively state the exclusion
of warranty; and each file should have at least the “copyright” line and a
pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>

Copyright (C) <textyear> <name of author>

This program is free software: you can redistribute it and/or modify

it under the terms of the GNU Affero General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License

along with this program. If not, see <https://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

If your software can interact with users remotely through a computer
network, you should also make sure that it provides a way for users to get
its source. For example, if your program is a web application, its interface
could display a “Source” link that leads users to an archive of the code.
There are many ways you could offer source, and different solutions will be
better for different programs; see section 13 for the specific requirements.

You should also get your employer (if you work as a programmer) or school,
if any, to sign a “copyright disclaimer” for the program, if necessary. For
more information on this, and how to apply and follow the GNU AGPL,
see https://www.gnu.org/licenses/.

