
Programming Algol 68
Made Easy

Sian Mountbatten

Phœnix Engineering

TEX is a trademark of the American Mathematical Society.

Copyright © Sian Mountbatten, 1995, 1997, 2000, 2001.

This document is subject to the provisions of the GNU General Public Licence
verstion 2, or at your option, any later version.

Publishing history

� First edition published by Oxford & Cambridge Compilers Ltd in 1995.

� Second (revised) edition published by Oxford & Cambridge Compilers Ltd
in 1997.

� Third edition published by Phœnix Engineering in 2000.

� Revised by Phœnix Engineering in 2001, 2002.

� Fourth edition by Neil Matthew in 2021

Prepared in Scotland.

To

Aad van Wijngaarden

Athair na h-Algol 68

Contents

Preface x

Preface to the 4th Edition xii

1 Introduction 1
1.1 What you will need . 2
1.2 Terminology . 2
1.3 Values and modes . 2
1.4 Integers . 3
1.5 Identity declarations . 4
1.6 Characters . 6
1.7 Real numbers . 7
1.8 Program structure . 9
1.9 Comments . 11
1.10 External values . 13
1.11 Summary . 13

2 Formulæ 15
2.1 Monadic operators . 15
2.2 Dyadic operators . 16
2.3 Multiplication . 18
2.4 Division . 19
2.5 Exponentiation . 20
2.6 Mixed arithmetic . 21
2.7 Order of elaboration . 21
2.8 Changing the mode . 22
2.9 Miscellaneous operators . 23
2.10 Operators using CHAR . 23
2.11 print revisited . 23
2.12 Summary . 24

3 Repetition 26
3.1 Multiples . 27

3.1.1 Row-displays . 28
3.1.2 Dimensions . 29
3.1.3 Subscripts and bounds . 30

3.2 Slicing . 32
3.3 Trimming . 33

iv

CONTENTS v

3.4 Printing multiples . 35
3.5 Operators with multiples . 36
3.6 Ranges . 37
3.7 Program repetition . 37
3.8 Nested loops . 39
3.9 Program structure . 40
3.10 The FORALL loop . 40
3.11 Summary . 41

4 Choice 43
4.1 Boolean values . 44
4.2 Boolean operators . 44
4.3 Relational operators . 45
4.4 Compound Boolean formulæ . 47
4.5 Conditional clauses . 48

4.5.1 Pseudo-operators . 51
4.6 Multiple choice . 53
4.7 Summary . 56

5 Names 58
5.1 Assignment . 59

5.1.1 Copying values . 61
5.1.2 Assigning operators . 62

5.2 Assignments in formulæ . 64
5.3 Multiple names . 65
5.4 Assigning to multiple names . 65

5.4.1 Individual assignment . 65
5.4.2 Collective assignment . 67

5.5 Flexible names . 70
5.6 The mode STRING . 72
5.7 Reference modes in transput . 73
5.8 Dynamic names . 74
5.9 Loops revisited . 75
5.10 Abbreviated declarations . 76
5.11 Summary . 78

6 Routines 79
6.1 Routines . 79

6.1.1 Routine modes . 81
6.1.2 Multiples as parameters 81
6.1.3 Names as parameters . 82
6.1.4 The mode VOID . 82
6.1.5 Routines yielding names 83
6.1.6 Parameterless routines . 84

6.2 Operators . 85
6.2.1 Identification of operators 86
6.2.2 Operator usage . 88
6.2.3 Dyadic operators . 89
6.2.4 Operator symbols . 91

6.3 Procedures . 91

Contents Index

CONTENTS vi

6.3.1 Parameterless procedures 92
6.3.2 Procedures with parameters 95
6.3.3 Procedures as parameters 98
6.3.4 Recursion . 99
6.3.5 Standard procedures . 100
6.3.6 Other features of procedures 101

6.4 Summary . 102

7 Structures 104
7.1 Structure denotations . 104
7.2 Field selection . 106
7.3 Mode declarations . 108
7.4 Complex numbers . 111
7.5 Multiples in structures . 113
7.6 Rows of structures . 116
7.7 Transput of structures . 117
7.8 Summary . 118

8 Unions 119
8.1 United mode declarations . 119
8.2 United modes in procedures . 121
8.3 Conformity clauses . 123
8.4 Summary . 125

9 Transput 126
9.1 Books, channels and files . 126
9.2 Reading books . 127
9.3 Writing to books . 130
9.4 String terminators . 131
9.5 Events . 132

9.5.1 Logical file end . 132
9.5.2 Physical file end . 134
9.5.3 Value error . 134
9.5.4 Char error . 134

9.6 The command line . 136
9.7 Environment strings . 137
9.8 Writing reports . 139
9.9 Binary books . 141
9.10 Internal books . 143
9.11 Other transput procedures . 144
9.12 Summary . 144

10 Units 146
10.1 Phrases . 146
10.2 Contexts . 147
10.3 Coercions . 148

10.3.1 Deproceduring . 149
10.3.2 Dereferencing . 150
10.3.3 Weakly-dereferencing . 151
10.3.4 Uniting . 151

Contents Index

CONTENTS vii

10.3.5 Widening . 151
10.3.6 Rowing . 152
10.3.7 Voiding . 153
10.3.8 Legal coercions . 154

10.4 Enclosed clauses . 155
10.5 Primaries . 156
10.6 Secondaries . 158
10.7 Tertiaries . 160
10.8 Quaternaries . 160
10.9 Balancing . 162
10.10 Well-formed modes . 164
10.11 Flexible names . 167
10.12 Orthogonality . 167
10.13 Summary . 168

11 Advanced constructs 169
11.1 Bits, bytes and words . 170

11.1.1 Radix arithmetic . 170
11.2 The mode BITS . 173
11.3 Overlapping slices . 176
11.4 Completers . 178
11.5 References to names . 180
11.6 Identity relations . 182
11.7 The value NIL . 184
11.8 Queues . 186
11.9 The procedure add fan . 190
11.10 More queue procedures . 192
11.11 Trees . 194
11.12 Parallel programming . 197
11.13 Summary . 197

12 Program development 198
12.1 Writing programs . 198

12.1.1 Top-down analysis . 199
12.1.2 Program layout . 200
12.1.3 Declarations . 201
12.1.4 Procedures . 201
12.1.5 Monetary values . 201
12.1.6 Optimisation . 203
12.1.7 Testing and debugging . 204
12.1.8 Compilation errors . 205
12.1.9 Arithmetic overflow . 207
12.1.10 Documentation . 207

12.2 Non-canonical input . 208
12.3 A simple utility . 208

12.3.1 The source code . 209
12.3.2 Routines . 210
12.3.3 Dry-running example . 211
12.3.4 ALIEN procedures . 212

12.4 Summary . 214

Contents Index

CONTENTS viii

13 Standard Prelude 215
13.1 Standard modes . 216
13.2 Environment enquiries . 217

13.2.1 Arithmetic enquiries . 217
13.2.2 Character set enquiries . 221

13.3 Standard operators . 222
13.3.1 Method of description . 222
13.3.2 Standard priorities . 222
13.3.3 Operators with row operands 223
13.3.4 Operators with BOOL operands 223
13.3.5 Operators with INT operands 224
13.3.6 Operators with REAL operands 225
13.3.7 Operators with COMPL operands 227
13.3.8 Operators with mixed operands 228
13.3.9 Operators with BITS operands 229
13.3.10 Operators with CHAR operands 230
13.3.11 Operators with STRING operands 230
13.3.12 Assigning operators . 231
13.3.13 Other operators . 233

13.4 Standard procedures . 233
13.4.1 Mathematical procedures 233
13.4.2 Other procedures . 234
13.4.3 ALIEN declarations . 235
13.4.4 ALIEN routines . 236

13.5 a68toc extensions . 238
13.5.1 Modes peculiar to a68toc 238
13.5.2 a68toc constructs . 240
13.5.3 Operators . 241

13.6 Control routines . 243
13.6.1 Floating-point unit control 243
13.6.2 Terminating a process . 245
13.6.3 Garbage-collector control 245

13.7 Transput . 246
13.7.1 Transput modes . 247
13.7.2 Standard channels . 248
13.7.3 Standard files . 253
13.7.4 Opening files . 253
13.7.5 Closing files . 255
13.7.6 Transput routines . 255
13.7.7 Interrogating files . 259
13.7.8 File properties . 259
13.7.9 Event routines . 260
13.7.10 Conversion routines . 261
13.7.11 Layout routines . 262

13.8 Summary . 263

Contents Index

CONTENTS ix

A Answers 264
A.1 Chapter 1 . 264
A.2 Chapter 2 . 266
A.3 Chapter 3 . 268
A.4 Chapter 4 . 272
A.5 Chapter 5 . 275
A.6 Chapter 6 . 281
A.7 Chapter 7 . 286
A.8 Chapter 8 . 288
A.9 Chapter 9 . 289
A.10 Chapter 10 . 308
A.11 Chapter 11 . 311

Bibliography 321

Contents Index

Preface

It is a fallacy to say that progress consists of replacing the workable by the new.
The brick was invented by the Babylonians and has been used virtually unchanged
for 2500 years. Even now, despite the advent of curtain-walling, the brick is still
the primary building material. Likewise, the long-predicted revolution in computer
programming to be produced by the introduction of fourth- and fifth-generation
languages has not come to pass, almost certainly because their purported advan-
tages are outweighed by their manifest disadvantages. Third-generation languages
are still used for the bulk of the world’s programming. Algol 68 has been used as
a paradigm of third-generation languages for 32 years.

Each computer programming language has a primary purpose: C was developed
as a suitable tool in which to write the Unix operating system, Pascal was designed
specifically to teach computer programming to university students and Fortran was
designed to help engineers perform calculations. Where a programming language
is used for its design purpose, it performs that purpose admirably. Fortran, when
it first appeared, was a massive improvement over assembler languages which had
been used hitherto. Likewise, C, when restricted to its original purpose, is an
admirable tool, but it is a menace in the hands of a novice. However, novices do
not write operating systems.

According to the “Revised Report on the Algorithmic Language Algol 68” (see
the Bibliography), Algol 68 was “designed to communicate algorithms, to execute
them efficiently on a variety of different computers, and to aid in teaching them
to students”. Although this book has not been geared to any specific university
syllabus, the logical development of the exposition should permit its use in such
an environment. However, since no programming expertise is assumed, the book is
also suitable for home-study.

It is time to take a fresh approach to the teaching of computer programming.
This book breaks new ground in that direction. The concept of a variable (a term
borrowed from mathematics, applied to analogue computers and then, inappropri-
ately, to digital computers) has been replaced by the principle of value integrity:
in Algol 68, every value is a constant. All the usual paraphernalia of pointers,
statements and expressions is dispensed with. Instead, a whole new sublanguage is
provided for understanding the nature of programming.

This book covers the language as implemented by the DRA a68toc translator.
Since the last edition, a new chapter on the Standard Prelude has been added,
thereby bringing together all the references to that Prelude in the rest of the book.
This edition is an interim edition describing the QAD transput provided with the
Algol68toC package.

It has been a conscious aim of the author to reduce the amount of description

x

Preface xi

to a minimum. It is advisable, therefore, that the text be read slowly, re-reading
a point if it is not clear. This is particularly true for chapter 5 where the concept
of the name has been introduced rather carefully. The exercises are intended to be
worked. Answers to all the exercises have been given except for those which are
self-marking.

A program written for use with the book can be found in the same directory as
this book.

I should like to thank Wilhelm Klöke for bringing the Algol 68RS compiler to my
attention and James Jones and Greg Nunan for their active help in the preparation
of the QAD transput.

In 40 years of programming, I have had many teachers and mentors, and I have
no doubt that I have benefited from what they have told me, although now it is
difficult to pinpoint precisely which part of my understanding is due to which indi-
vidual. Any errors in the book are my own. If any reader should feel that the book
could be improved, I should be grateful if she would communicate her suggestions
to the publisher, so that in the event of another edition, I can incorporate those I
feel are appropriate (she includes he).

Sian Mountbatten
Inbhir Nis

Am Mart 2008

Contents Index

Preface to the 4th Edition

This 4th edition of “Programming Algol 68 Made Easy” or “PAME” to its friends
has been created to reflect changes in technology and the a68toc package since Dr.
Mountbatten’s last version in 2008.

The book, while mostly general in nature, features the Algol-68RS compiler as
a target, through the a68toc Algol 68 to C translator. Examples and exercises are
presented in the dialect supported by a68toc.

To preserve Sian’s work to the greatest extent, only very minor changes have
been made to the text: typos, references to older versions of a68toc and support
for more architectures.

The LATEX source has been updated to use the HyperTex package to provide
internal links suitable for producing a PDF with navigation. Exercises now have
working links to answers and vice versa.

Starting from a version of Dr. Mountbatten’s port of a68toc to 32-bit Linux
(v1.151), the current author has made some advances and released further versions2.
These include:

� A complete port to 64-bit systems, removing assumptions (explicit and im-
plied) about word size in the libraries and the compiler itself.

� The integration of a well-supported garbage collector (Boehm-Demers-Weiser)
as a compile-time option for the compiler (default for 64-bit systems).

� Added support for 32-/64-bit ARM processor architectures, removing im-
plicit assumptions about endianness.

� Added support for 64-bit macOS operating system versions.

� A fix for a long-standing bug in the compiling of the BY part of FOR loops.

� Production of Debian Linux binary packages for i386, amd64, armhf, arm64
architectures.

This edition of the book applies to versions of a68toc v1.22 and later.

Neil Matthew
neil@tilde.co.uk

May 2021

1While a v1.19 is known, no source of this version has been located
2Releases and work-in-progress available on GitHub:

https://github.com/coolbikerdad

xii

https://github.com/coolbikerdad

Chapter 1

Introduction

Algol 68 is a high-level, general-purpose programming language ideally suited to
modern operating systems. This book will teach you Algol 68 plus the necessary de-
velopment skills to enable you to write substantial programs which can be executed
from the command line.

In principle, you can solve any computable problem with Algol 68. You can
write programs which perform word processing, perform complicated calculations
with matrices, design graphs or bridges, process pictures, predict the weather, and
so on. Or you can write simple programs which count the number of words in a file
or list a file with line numbers.

Algol 68 is a powerful language. There are many constructs which enable you
to manipulate complicated data structures with ease, and yet it is all easy to un-
derstand because one of the guiding principles of Algol 68 was that it was designed
to be orthogonal. This means that the language is based on a few independent
ideas which are developed and applied with generality. The language was designed
in such a way that it is impossible to write ambiguous programs. The design is also
difficult to describe until it has been fully described, which means that some con-
cepts have to be introduced in a superficial manner, but later reading will deepen
your understanding.

You need to have a thorough grasp of the basic ideas if you are going to write
powerful programs in Algol 68: these ideas unfold in the first five chapters. The
chapters should be read in order, but chapter 5 is a watershed—it forms the basis of
much of the computer programming performed in the world today. Its ideas should
be mastered before continuing.

Chapter 10 draws together all the various references to grammatical points and
clarifies the limitations of the language—you will need to know these if you want to
squeeze the last ounce of power out of the language. Chapters 11 and 12 deal with
advanced topics which should not be touched until you have mastered preceding ma-
terial. Chapter 13 describes the standard prelude which, besides providing means
of determining the characteristics of an Algol 68 implementation, also provides the
transput facilities whose power are characteristic of Algol 68.

In this chapter, some aspects of Algol 68 grammar are described. Don’t worry
if they seem confusing; all will become clear later in the book. It also covers
denotations and the identity declaration, the latter having crucial importance in
the language.

1

Chapter 1. Introduction 2

1.1 What you will need

The language described in this book is that made available by the a68toc Algol 68RS
compiler developed by the Defence Research Agency (see section 1.9 for more in-
formation about what a compiler does). It implements almost all of the language
known as Algol 68, and extends that language in minor respects. To run the pro-
grams described in this book you will need a computer with a Linux, macOS1 or
Windows2 operating system and Intel/AMD i386/x86 64 or ARM armhf/aarch64
processors with a compatible C compiler (GCC and clang should be fine). The
source package will occupy ≈ 12Mb on the hard disk while the binary package will
also need ≈ 9Mb of space on the hard disk. The source package may be deleted
once the binary package has been installed.

The book expects you to be familiar with the usual commands for manipulating
files. You will need to know how to use an editor for plain text files (not a word
processor). No programming expertise is presumed.

Much program development work takes place at the command line because a
graphical user interface is usually too cumbersome to cope with the myriad com-
mands issued by the programmer. See the manual pages for ca and a68toc for
details of how to use the Algol68toC program development system.

1.2 Terminology

In describing Algol 68, it is necessary to use a number of technical terms which
have a specialist meaning. However, the number of terms used has been reduced
to a minimum. Whenever a term is introduced it will be written in bold. Parts of
programs are printed as though they had been produced by a typewriter like this:

BEGIN

Some of the terminology may seem pedantic. Describing the parts of an Algol 68
program can, and should be, precise. The power of Algol 68 derives as much from
the precision as from the generality of its ideas.

1.3 Values and modes

Two of the guiding principles of Algol 68 are the concepts of value and mode.
Typically, an Algol 68 program manipulates values to produce new values, and, in
the process, does useful work (such as word-processing). Values are such entities
as numbers and letters, but you will see in later chapters that values can be very
complicated and, indeed, can be things that you would not normally think of as a
value.

A value is characterised by its mode. Every value has only one mode, and cannot
change its mode. Therefore, if you have a mode change you must have a new value
as well (but see chapter 8). A mode defines a set of values. The number of values in
the set depends on the mode and there can be from none to potentially infinity. For
example, the whole number represented by the digits 37 has mode INT. The symbol

164-bit only
2With Windows Subsystem for Linux installed

Contents Index

Chapter 1. Introduction 3

INT is called a mode indicant. You will be meeting many more mode indicants
in the course of this book and they are all written in capital letters and sometimes
with digits. The strict definition of a mode indicant is that it consists of a series
of one or more characters which starts with a capital letter, and is continued by
capital letters or digits. No intervening spaces are allowed. There is no limit to
the length of a mode indicant although in practice it is rare to find mode indicants
longer than 16 characters. Here are some more mode indicants which you will meet
in this and later chapters:

BOOL CHAR COMPL FILE HMEAN

Section 7.3 explains how you can define your own mode indicants. Although you
can use any sequence of valid characters, meaningful mode indicants can help you
to understand your programs.

Exercises

1.1 Is there anything wrong with the following mode indicants? Ans

(a) RealNumber

(b) 2NDINT

(c) COMPL

(d) UPPER CASE

(e) ONE.TWO

1.2 What is the definition of a mode indicant? Ans

1.4 Integers

Although, strictly speaking, there is no largest positive integer, by default the
largest positive integer which can be manipulated by a68toc is the 32-bit value
2 147 483 647, and the largest negative integer is −2 147 483 647 (the first is 231 − 1
and the second is −231+1)3. The representation of a value in an Algol 68 program
is called a denotation because it denotes the value. It is important to realise
that the denotation of a value is not the same as the value itself. To be precise,
we say that the denotation of a value represents an instance of that value. For
example, three separate instances of the value denoted by the digits 31 occur in
this paragraph. All the instances denote the same value.

If you want to write the denotation of an integer in an Algol 68 program, you
must use any of the digits 0 to 9. No signs are allowed. This means that you cannot
write denotations for negative integers in Algol 68 (but this is not a problem as
you will see). Although you cannot use commas or decimal points, spaces can be
inserted anywhere. Here are some examples of denotations of integers separated by
commas (the commas are not part of the denotations):

0 , 3 , 03 , 3000000 , 2 147 483 647

3A larger 64-bit integer mode is available, see 13.1

Contents Index

Chapter 1. Introduction 4

Note that 3 and 03 denote the same value because the leading zero is not significant.
However, the zeros in the three million are significant. The mode of each of the five
denotations is INT. The following are incorrect denotations:

3,451 -2 1e6

The first contains a comma, the second is a formula, and the third contains the
letter e. You will see later on that the third expression denotes a number, but by
definition this denotation does not have mode INT.

Exercises

1.3 Write a denotation for thirty-three. Ans

1.4 What is wrong with the following integer denotations? Ans

(a) 1,234,567

(b) 5.

(c) -4

1.5 Identity declarations

Suppose you want to use the integer whose denotation is

48930767

in various parts of your program. If you had to write out the denotation each time
you wanted to use it, you would find that

� you would almost certainly make mistakes in copying the value, and

� the meaning of the integer would not be at all clear

It is imperative, particularly with large programs, to make the meaning of the
program as clear as possible. Algol 68 provides a special construct which enables
you to declare a synonym for a value (in this case, an integer denotation). It is
done by means of the construct known as an identity declaration which is used
widely in the language. Here is an identity declaration for the integer mentioned
at the start of this paragraph:

INT special integer = 48930767

Now, whenever you want to use the integer, you write

special integer

in your program.
An identity declaration consists of four parts:

<mode indicant> <identifier> = <value>

Contents Index

Chapter 1. Introduction 5

You have already met the <mode indicant>. An identifier is a sequence of one
or more characters which starts with a lower-case letter and continues with lower-
case letters or digits or underscores. It can be broken-up by spaces, newlines or
tab characters. Here are some examples of valid identifiers (they are separated by
commas to show you where they end, but the commas are not part of the identifiers):

i, algol, rate 2 pay, eigen value 3

The following are wrong:

2pairs escape.velocity XConfigureEvent

The first starts with a digit, the second contains a character which is neither a
letter nor a digit nor an underscore, and the third contains capital letters.

An identifier looks like a name, in the ordinary sense of that word, but we do
not use the term “name” in this sense because it has a special meaning in Algol 68
which will be explained in Chapter 5. The identifier can abut the mode indicant as
in

INTa = 4

but this is unusual. For clarity in your programs, ensure that a mode indicant
followed by an identifier is separated from the latter by a space.

The third part is the equals symbol =. The fourth part (the right-hand side of
the equals symbol) requires a value. You will see later that the value can be any
piece of program which yields a value of the mode specified by the mode indicant.
So far, we have only met integers, and we can only denote positive integers.

There are two ways of declaring identifiers for two integers:

INT i = 2 ; INT j=3

The semicolon ; is called the go-on symbol because it means “throw away the
value yielded by the previous phrase, and go on to the next phrase”. If this state-
ment seems a little odd, just bear with it and all will become clear later. We can
abbreviate the declarations as follows:

INT i=2, j = 3

The comma separates the two declarations, but does not mean that the i is declared
first, followed by the j. On the contrary, it is up to the compiler to determine which
declaration is elaborated first. They could even be done in parallel on a parallel
processing computer. This is known as collateral elaboration, as opposed to se-
quential elaboration determined by the go-on symbol (the semicolon). We shall be
meeting collateral elaboration again in later chapters. Elaboration means, roughly,
execution or “working-out”. The compilation system translates your Algol 68 pro-
gram into machine code. When the machine code is obeyed by the computer, your
program is elaborated. The sequence of elaboration is determined by the compiler
as well as by the structure of your program. Note that spaces are allowed almost
everywhere in an Algol 68 program.

Some values are predefined in what is called the standard prelude. You will
be learning more about it in succeeding chapters. One integer which is predefined
in Algol 68 has the identifier max int. Can you guess its value?

Contents Index

Chapter 1. Introduction 6

Exercises

1.5 What is wrong with the following identifiers? Ans

(a) INT

(b) int

(c) thirty-four

(d) AreaOfSquare

1.6 What is wrong with the following identity declarations? Ans

(a) INT thirty four > 33

(b) INT big int = 3 000 000 000

1.7 Write an identity declaration for the largest integer which the Algol 68 com-
piler can handle. Use the identifier
max int. Ans

1.6 Characters

All the symbols you can see on a computer, and some you cannot see, are known
as characters. The alphabet consists of the characters A to Z and a to z. The
digits comprise the characters 0 to 9. Every computer recognises a particular set
of characters. The character set recognised by a68toc is ASCII (which stands for
American Standard Code for Information Interchange). The mode of a character
is CHAR (read “car” because it is short for character). A character is denoted by
placing it between quote characters. Thus the denotation of the lower-case a is "a".
Here are some character denotations:

"a" "A" "3" ";" "\" "’" """" " "

Note that quote characters are doubled in their denotations. The third denotation
is "3". This value has mode CHAR. The denotation 3 has mode INT: the two values
are quite distinct, and one is not a synonym for the other. The last denotation is
that of the space character.

Here are some identity declarations for values of mode CHAR:

CHAR a = "A", zed = "z"; CHAR tilde = "~"

Note that the two sets of identity declarations are separated by a semicolon, but the
declaration for tilde is not followed by a semicolon. This is because the semicolon
; is not a terminator; it is an action. Identity declarations do not yield any value.
An identity declaration is a phrase. Phrases are either identity declarations or
units. When a phrase is elaborated, if it is a unit, it will yield a value. That is,
after elaboration, a value will be available for further use if required. Again, this
may not make much sense now, but it will become clearer as you learn the language.

Here is a piece of program with identity declarations for an INT and a CHAR:4

4The a68toc compiler insists on a semicolon between identity declarations for different
modes. In the above case, you would have to write INT ninety nine=99 ; CHAR x = "X"

Contents Index

Chapter 1. Introduction 7

INT ninety nine=99 , CHAR x = "X"

The compiler recognises 256 distinct values of mode CHAR, but most of them can
only occur in denotations. The space is declared as blank in the standard prelude.

Exercises

1.8 Write the denotations for the full-stop, the comma and the digit 8 (not the
integer 8). Ans

1.9 Write a suitable identity declaration for the question mark. Ans

1.7 Real numbers

Numbers which contain fractional parts, such as 3.5 or 0.0005623956, or numbers
expressed in scientific notation, such as 1.95× 1034 are values of mode REAL. Reals
are denoted by digits and one at least of the decimal point (which is denoted by
a full stop), or the letter e. The e means ×10some power. Just as with integers,
there are no denotations for negative reals. When the exponent is preceded by a
minus sign, this does not mean that the number is negative, but that the decimal
point should be shifted leftwards. For example, in the following REAL denotations,
the third denotation has the same value as the fourth (again, the denotations are
separated by commas, but the commas are not part of the denotations):

4.5, .9, 0.000 000 003 4, 3.4e-9, 1e6

Although the second denotation is valid, it is advisable in such a case to precede
the decimal point with a zero: 0.9. This is better because a decimal point not
preceded by an integer can be missed easily. Here are some identity declarations
for values of mode REAL:

REAL e = 2.718 281 828,

electron charge = 1.602 10 e-19,

monthly salary = 2574.43

The largest REAL which the compiler can handle is declared in the standard prelude
as max real. Its value is

1.79769313486231571e308

The value of π is declared in the standard prelude with the identifier pi and a value
of

REAL pi = 3.141592653589793238462643

It was mentioned above that in an identity declaration, any piece of program
yielding a value of the required mode can be used as the value. Here, for example,
is an identity declaration where the value has mode INT:

REAL a = 3

Contents Index

Chapter 1. Introduction 8

However, the mode required is REAL. In certain circumstances, a value of one mode
can be coerced into a value of another mode. These circumstances are known as
contexts. There are five contexts defined in the language. Each context will be
mentioned as it occurs. The right-hand side of an identity declaration has a strong
context. In a strong context, a value and its mode can be changed according to
six rules, known as coercions, defined in the language. Again, each coercion will
be explained as it occurs. The coercion which replaces a value of mode INT with
a value of mode REAL is known as widening. You will meet a different kind of
widening in section 7.4.

You can even supply an identifier yielding the required mode on the right-hand
side. Here are two identity declarations:

REAL one = 1.0;

REAL one again = one

You cannot combine these two declarations into one with a comma as in

REAL one = 1.0, one again = one

because you cannot guarantee that the identity declaration for one will be elab-
orated before the declaration for one again (because the comma is not a go-on
symbol).5

Values of modes INT, REAL and CHAR are known as plain values. We shall be
meeting another mode having plain values in chapter 4, and modes in chapter 3
which are not plain. Complex numbers are dealt with in chapter 7.

5The a68toc compiler does permit a subsequent declaration to use the value of a pre-
vious value, but it is strictly non-standard. You would be wise to restrict your programs
to Algol 68 syntax because other Algol 68 compilers will not necessarily be so lax.

Contents Index

Chapter 1. Introduction 9

Exercises

1.10 Is there anything wrong with the following identity declarations?

REAL x = 5.,

y = .5;

z = 100

Ans

1.11 Given that light travels 2.997 925×108 metres per second in a vacuum, write
an identity declaration for the identifier light year in terms of metres to
an accuracy of 5 decimal places (use a calculator). Ans

1.8 Program structure

Algol 68 programs can be written in one or more parts Here is a valid Algol 68
program:

PROGRAM firstprogram CONTEXT VOID

USE standard

BEGIN

print(20)

END

FINISH

Only the three lines starting with BEGIN and ending with END are strictly part of
the Algol 68 program. The first, second and last lines are specific to the a68toc
compiler. The first line gives the identification of the program as firstprogram

and the fact that this file contains a program. The CONTEXT VOID phrase specifies
that the program stands on its own instead of being embedded in other parts. The
phrase is a vestige of the modular compilation system originally provided by the
compiler at the heart of a68toc.

A full explanation of the print phrase will be found in chapter 9 (Transput).
For now, it is enough to know that it causes the value in the parentheses to be
displayed on the screen.6 The standard prelude must be USEd if you want to use
print. You can use any identifier for the operating system file in which to store
the Algol 68 source code of the program. Although it does not have to be the
same as the identifier of the module, it is advisable to make it so.

Both the print phrase and the denotation are units. Chapter 10 will explain
units in detail. Phrases are separated by the go-on symbol (a semicolon ;). Because
there is only one phrase in firstprogram, no go-on symbols are required. Here is
another valid program:

6When Algol 68 was first implemented there were few monitors around, so print

literally printed its output onto paper.

Contents Index

Chapter 1. Introduction 10

PROGRAM prog CONTEXT VOID

USE standard

BEGIN

INT special integer = 48930767;

print(20) ; print(special integer)

END

FINISH

The semicolon between the two print phrases is not a terminator: it is a separator.
It means “throw away any value yielded by the previous phrase and go on with the
succeeding phrase”. That is why it is called the go-on symbol. Notice that there is
no semicolon after the third phrase.

Algol 68 programs are written in free format. This means that the meaning
of your program is independent of the layout of the source program. However, it
is sensible to lay out the code so as to show the structure of the program. For
example, you could write the first program like this:

PROGRAM firstprogram CONTEXT VOID

USE standard(print(20))FINISH

which is just as valid, but not as comprehensible. Notice that BEGIN and END can be
replaced by (and) respectively. How you lay out your program is up to you, but
writing it as shown in the examples in this book will help you write comprehensible
programs.

Exercises

1.12 What is wrong with this sample program?

PROGRAM test

BEGIN

print("A"))

END

FINISH

Ans

1.13 Using an editor, key in the two sample programs given in this section, and
compile and execute them. What do they display on your screen? Ans

Contents Index

Chapter 1. Introduction 11

1.9 Comments

When you write a program in Algol 68, the pieces of program which do the work
are called “source code”. The Algol 68 compiler translates this source code into C
source code which is then translated by the GNU C compiler into “object code”.
This is then converted by a program called a linker into machine code, which is
understood by the computer. You then execute the program by typing its name at
the command-line plus any arguments needed. This is called running the program.

When you write the program, it is usually quite clear to you what the program
is doing. However, if you return to that program after a gap of several months,
the source code may not be at all clear to you. To help you understand what you
have written in the program, it is possible, and recommended, to write comments
in the source code. Comments can be put almost anywhere, but not in the middle
of mode indicants and not in the middle of denotations. A comment is ignored by
the compiler, except that comments can be nested. A comment is surrounded by
one of the following pairs:

COMMENT ... COMMENT

CO ... CO

#...#

{...}

where the . . . represent the actual comment. The paired braces are peculiar to
the a68toc compiler. Other compilers may not accept them. Here is an Algol 68
program with comments added:

PROGRAM prog CONTEXT VOID

USE standard

BEGIN

INT i = 23, # My brother’s age #

s = 27; CO My sister’s age CO

CHAR z = "&", COMMENT An ampersand

COMMENT y{acht}="y";

REAL x = 1.25;

print(i); print(s); print(z);

print(y); print(x)

END

FINISH

There are four comments in the above program. If you start a comment with CO

then you must also finish it with CO, and likewise for the other comment symbols
(except the braces). Here is a program with a bit of source code “commented out”:

PROGRAM prog CONTEXT VOID

USE standard

BEGIN

INT i = 1, j = 2 #, k = 3#;

print(i); print(j)

END

FINISH

Contents Index

Chapter 1. Introduction 12

The advantage of commenting out source is that you only have to remove two
characters and that source can be included in the program again. You can use any
of the comment symbols for commenting out. Here is another program with a part
of the program containing a comment commented-out:

PROGRAM prog CONTEXT VOID

USE standard

BEGIN

INT i = 1;

COMMENT

REAL six = 6.0, # Used subsequently #

one by 2 = 0.5;COMMENT

CHAR x = "X";

print(i); {print(six);} print(x)

END

FINISH

This is an example of nested comments. You can use any of the comment sym-
bols for this purpose as long as you finish the comment with the matching symbol.
However, if the part of your program that you want to comment out already con-
tains comments, you should ensure that the enclosing comment symbols should be
different. One way of using comment symbols is to develop a standard method.
For example, the author uses the #...# comment symbols for one line comments
in the code, CO symbols for multiline comments and COMMENT symbols for extensive
comments required at the start of programs or similar code chunks.

Exercises

1.14 Write a short program which will print the letters of your first name. You
should declare an identifier of mode CHAR for each letter, and write a print

phrase for each letter. Remember to put semicolons in the right places. Add
comments to your program to explain what the program does. Ans

Contents Index

Chapter 1. Introduction 13

1.10 External values

Values denoted or manipulated by a program are called internal values. Values
which exist outside a program and which are data used by a program or data
produced by a program (or both) are known as external values.

In the previous sections we have been learning how plain values are denoted in
Algol 68 programs. This internal display of values is not necessarily the same as
that used for external values. If you copy the following program into a file and
compile and run it you will get

␣␣␣␣␣␣␣␣+10A␣+.15000000000000000e␣+1

output on your screen.

PROGRAM test CONTEXT VOID

USE standard

BEGIN

print(10); print("A"); print(1.5)

END

FINISH

Notice that although the denotation for the first letter of the alphabet is surrounded
by quote characters, when it is displayed on your screen, the quote characters are
omitted. The rules for numbers are as follows: if a number is not the first value in
the line it is preceded by a space. Integers are always printed in the space required
by max int plus one position for the sign. Both positive and negative integers have
a sign. A real number is always printed using the print positions required by max

real, plus a sign for the number. The exponent is also preceded by a sign. If you
want extra spaces, you have to insert them.

Try the following program:

PROGRAM print2 CONTEXT VOID

USE standard

BEGIN

print(10); print(blank); print("A");

print(0.015); print(0.15); print(1.5);

print(15.0); print(150.0); print(1500.0);

print(15e15)

END

FINISH

1.11 Summary

An Algol 68 program manipulates values. A value is characterised by its mode. A
mode is indicated by a mode indicant. Plain values can be denoted. Values occur in
contexts, and can sometimes be coerced into values of different modes. Identifiers
can be linked to values using identity declarations. The values manipulated by a
program are called internal values. External values are data used by, or produced
by, a program. Comments describe a program, but add nothing to its elaboration.

Finally, here are some exercises which test you on concepts you have met in this
chapter.

Contents Index

Chapter 1. Introduction 14

Exercises

1.15 Give denotations of the following values: Ans

(a) one thousand nine hundred and ninety six.

(b) The fifth letter of the lower-case Roman alphabet.

(c) The fraction 1
7 expressed as a decimal fraction to 6 decimal places.

1.16 Is there anything wrong with the following mode indicants? Ans

(a) C H A R

(b) INT.CHAR

(c) THISISANEXTREMELYLONGMODEINDICANT

(d) 2CHAR

1.17 Write suitable identity declarations for the following identifiers: Ans

(a) fifty five

(b) three times two point seven

(c) colon

1.18 Is there anything wrong with the following identity declarations?

REAL x = 1.234,

y = x;

Ans

1.19 What is the difference in meaning between 0 and 0.0? Ans

1.20 Write a program containing print phrases to print the following values on
your screen, separated by one space between each value:

0.5 "G" 1 ":" 34000000

Ans

Contents Index

Chapter 2

Formulæ

Formulæ consist of operators with operands. Operators are predeclared pieces of
program which compute a value determined by their operands. Algol 68 is provided
with a rich set of operators in the standard prelude and you can define as many more
as you want. In this chapter, we shall examine all the operators in the standard
prelude which can take operands of mode INT, REAL or CHAR. In chapter 6, we shall
return to operators and look at what they do in more detail, as well as how to
define new ones.

Operators are written as a combination of one or more symbols, or in capital
letters like a mode indicant. We shall meet both kinds in this chapter.

2.1 Monadic operators

Operators come in two flavours: monadic and dyadic. A monadic operator has
only one operand, but a dyadic operator has two operands. A monadic operator is
written before its operand. For example, the monadic minus - reverses the sign of
its operand:

-3000

This could equally well be written - 3000 since spaces are, generally speaking, not
significant. There is, likewise, a monadic + operator which doesn’t do anything to
its operand, but is useful where you want to refer expressly to a positive number.
It has been provided for the sake of consistency. You should note that -3000 is
not a denotation, but a formula consisting of a monadic operator operating on
an operand which is a denotation. We say that the monadic operator - takes an
operand of mode INT and yields a value of mode INT. It can also take an operand
of mode REAL when it will yield a value of mode REAL.

A formula can be used as the value part of an identity declaration. Thus the
following identity declarations are both valid:

INT minus 2 = -2;

REAL minus point five = -0.5

The operator ABS takes an operand of mode INT and yields the absolute value again
of mode INT. For example, ABS -5 yields the value denoted by 5:

15

Chapter 2. Formulæ 16

INT five = ABS -5

Note that when two monadic operators are combined, they are elaborated in right-
to-left order, as in the above example. That is, the - acts on the 5 to yield -5, then
the ABS acts on -5 to yield +5. This is just what you might expect. ABS can also
take an operand of mode REAL yielding a value of mode REAL. For example:

REAL x = -1.234;

REAL y = ABS x

Another monadic operator which takes an INT operand is SIGN. This yields −1
if the operand is negative, 0 if it is zero, and +1 if it is positive. Thus you can
declare

INT res = SIGN i

if i has been previously declared.

2.2 Dyadic operators

A dyadic operator takes two operands and is written between them. The simplest
operator is dyadic +. Here is an identity declaration using it:

INT one = 1;

INT two = one + one

This operator takes two operands of mode INT and yields a result of mode INT. It
is also defined for two operands of mode REAL yielding a result of mode REAL:

REAL x = 1.4e5 + 3.7e12

The + operator performs an action quite different for REAL operands from that
performed for INT operands. Yet the meaning is essentially the same, and so the
same symbol is used for the two operators.

Before we continue with the other dyadic operators, a word of caution is in order.
As we have seen, the maximum integer which the computer can use is max int and
the maximum real is max real. The dyadic + operator could give a result which
is greater than those two values. Adding two integers such that the sum exceeds
max int is said to give “integer overflow”. Algol 68 contains no specific rules about
what should happen in such a case.1

The dyadic - operator can take two operands of mode INT or two operands of
mode REAL and yields an INT or REAL result respectively:

INT minus 4 = 3 - 7,

REAL minus one point five = 1.9 - 3.4

Note that the dyadic - is quite different from the monadic -. You can have both
operators in the same formula:

1The standard prelude supplied with the Linux port of the a68toc compiler provides a
means of specifying what should be done if integer overflow occurs, if it can be detected.
See section 13.3.13 for the details. Likewise for “floating-point overflow” and “floating-
point underflow”, see section 13.6.1.

Contents Index

Chapter 2. Formulæ 17

INT minus ten = -3 - 7

The first minus sign represents the monadic operator and the second, the dyadic.
Since a formula yields a value of a particular mode, you can use it as an operand

for another operator. For example:

INT six = 1 + 2 + 3

The operators are elaborated in left-to-right order. First the formula 1+2 is elab-
orated, then the formula 3+3. What about the formula 1-2-3? Again, the first -
operator is elaborated giving -1, then the second giving the value -4.

Instead of saying “the value of mode INT”, we shall sometimes say “the INT

value” or even “the INT”—all these expressions are equivalent.

Exercises

2.1 Write an identity declaration for the INT value -35. Ans

2.2 What is the value of each of the following formulæ? Ans

(a) 3 - 2

(b) 3.0 - 2.0

(c) 3.0 - -2.0

(d) 2 + 3 - 5

(e) -2 + +3 - -4

2.3 Given the following declarations

INT a = 3, REAL b = 4.5

what is the value of the following formulæ? Ans

(a) a+a

(b) -a-a

(c) b+b+b

(d) -b - -b + -b

Contents Index

Chapter 2. Formulæ 18

2.3 Multiplication

The operand * (often said ”star”) represents normal arithmetic multiplication and
takes INT operands yielding an INT result. For example:

INT product = 45 * 36

Likewise, * is also defined for multiplication of two values of mode REAL:

REAL real product = 2.4e-4 * 0.5

It is important to note that although the actions of the two operators are quite
different, they both represent multiplication so they both use the same symbol.

Like + and -, multiplication can occur several times:

INT factorial six = 1 * 2 * 3 * 4 * 5 * 6

the order of elaboration being left-to-right.
You can also combine multiplication with addition and subtraction. For exam-

ple, the value of the formula 2+3*4 is 14. At school, you were probably taught that
multiplication should be done before addition (your teachers may have used the
mnemonic BODMAS to show the order in which operations are done. It stands for
Brackets, Over, Division, Multiplication, Addition and Subtraction). In Algol 68,
the same sort of thing applies and it is done by operators having a priority. The
priority of multiplication is higher than the priority for addition or subtraction.
The priority of the dyadic + and - operators is 6, and the priority of the * operator
is 7.

Here are identity declarations using a combination of multiplication and addition
and subtraction:

INT i1 = 3, i2 = -7;

INT result1 = i1 * i2 - 8;

REAL r1 = 35.2, r2 = -0.04;

REAL result2 = r1 * -r2 + 12.67 * 10.0

In the elaboration of result2, the multiplications are elaborated first, and then
the addition.

Remember from chapter 1 that widening is allowed in the context of the right-
hand side of an identity declaration, so the following declaration is valid:

REAL a = 24 * -36

It is important to note that an operand is not in a strong context, so no widening
is allowed. The context of an operand is firm. Because widening is not allowed in
a firm context, it is possible for the compiler to examine the modes of the operands
of an operator and determine which declaration of the operator is to be used in the
elaboration of the formula. This also applies to monadic operators (see 6.2.1 for
details).

Looking again at the above identity declaration, the context of the denotation
36 is firm (it is the operand of the monadic -), the contexts of the 24 and the
-36 are also firm because they are the operands of the dyadic *, but the value
yielded by the formula is on the right-hand side of the identity declaration, so it is
in a strong context. It is this value which is coerced to a value of mode REAL by

Contents Index

Chapter 2. Formulæ 19

the widening. Note that the value of the formula (which has mode INT) does not
change. Instead, it is replaced by the coercion with a value of mode REAL whose
whole number part has the same value as the INT value. It is worth saying that the
value of the formula obtained by elaboration is lost after the coercion. You could
hang on to the intermediate integer value by using another identity declaration:

INT intermediate value = 24 * -36;

REAL a = intermediate value

Exercises

2.4 In this exercise, these declarations are assumed to be in force:

INT d1 = 12, d2 = -5;

REAL d3 = 4.0 * 3.5, d4 = -3.0

What is the value of each of the following formulæ? Ans

(a) ABS d2

(b) - ABS d4 + d3 * d4

(c) d2 - d1 * 3 + d2 * 4

2.4 Division

In the preceding sections, all the operators mentioned yield results which have the
same mode as the operand or operands. In this and following sections, we shall see
that this is not always the case.

Division poses a problem because division by integers can have two different
meanings. For example, 3÷ 2 can be taken to mean 1 or 1.5. In this case, we use
two different operator symbols.

Integer division is represented by the symbol %. It takes operands of mode INT

and yields a value of mode INT. It has the alternative representation OVER. The
formula 7 % 3 yields the value 2, and the formula -7 % 3 yields the value -2. The
priority of % is 7, the same as multiplication. Here are some identity declarations
using the operator:

INT r = 23 OVER 4, s = -33 % 3;

INT q = r * s % 2

Using the given values of r and s, the value of q is -27. When a formula containing
consecutive dyadic operators of the same priority is elaborated, elaboration is always
left-to-right, so in this case the multiplication is elaborated first, followed by the
integer division. Of course, % can be combined with subtraction as well as all the
other operators already discussed.

The modulo operator MOD gives the remainder after integer division. It requires
two operands of mode INT and yields a value also of mode INT. Thus 5 MOD 3 yields
2, and 12 MOD 3 yields 0. It does work with negative integers, but the results are

Contents Index

Chapter 2. Formulæ 20

unexpected. You can explore MOD with negative integers in an exercise. MOD can
also be written as %*. The priority of MOD is 7.

Division of real numbers is performed by the operator /. It takes two operands
of mode REAL and yields a REAL result. Thus the formula 3.0/2.0 yields 1.5.
Again, / can be combined with * and the other operators already discussed. It has
a priority of 7. The operator is also defined for integer operands. Thus 3/2 yields
the value 1.5. No widening takes place here since the operator is defined to yield
a value of mode REAL when its operands have mode INT.

Here are some identity declarations using the operators described so far:

REAL pi by 2 = pi / 2,

pm3 = pi - 3.0 * -4.1;

INT c = 22 % 3 - 22 MOD 3;

INT d = c MOD 6 + SIGN -36

Exercises

2.5 What is the value yielded by each of the following formulæ, and what is its
mode? Ans

(a) 5 * 4

(b) 5 % 4

(c) 5 / 4

(d) 5 MOD 4

(e) 5.0 * 3.5 - 2.0 / 4.0

2.6 Write a short program to print the results of using MOD with negative integer
operands. Try either operand negative, then both operands negative. Ans

2.7 Give an identity declaration for the identifier two pi. Ans

2.5 Exponentiation

If you want to compute the value of 3*3*3*3 you can do so using the multiplication
operator, but it would be clearer and faster if you used the exponentiation operator
**. The mode of its left operand can be either REAL or INT, but its right operand
must have mode INT. If both its operands have the mode INT, the yield will have
mode INT (in this case the right operand must not be negative), otherwise the yield
will have mode REAL. Thus the formula 3**4 yields the value 81, but 3.0**4 yields
the value 81.0. Its priority is 8. In a formula involving exponentiation as well as
multiplication or division, the exponentiation is elaborated first. For example, the
formula 3*2**4 yields 48, not 1296.

Every dyadic operator has a priority of between 1 and 9 inclusive, and all
monadic operators bind more tightly than all dyadic operators. For example, the
formula -2**2 yields 4, not -4. Here the monadic minus is elaborated first, followed
by the exponentiation.

Contents Index

Chapter 2. Formulæ 21

Exercises

2.8 Given these declarations:

INT two = 2, m2 = -2;

REAL x = 3.0 / 2.0, y = 1.0

what is the value and mode yielded by the following formulæ? Ans

(a) two ** -m2

(b) x ** two + y ** two

(c) 3 * m2 ** two

2.6 Mixed arithmetic

Up to now, the four basic arithmetic operators have always had operands of the
same modes. In practice, it is quite surprising how often you want to compute
something like 2 * 3.0. Well, fortunately, the dyadic operators +, -, * and / (but
not %) are also defined for mixed modes. That is, any combination of REAL and
INT can be used. With mixed modes the yield is always REAL. Thus the following
formulæ are all valid:

1+2.5 3.1*-4 2*3.5**3 2.4-2

The priority of the mixed-mode operators is unchanged. As we shall see later, the
priority relates to the operator symbol rather than the flavour of the operator in
use.

2.7 Order of elaboration

Even though the order of elaboration is dependent on the priority of operators, it
is often convenient to change the order. This can be done by inserting parentheses
(and) (or BEGIN and END): the formula inside the parentheses is evaluated first.
Here are two formulæ which differ only by the insertion of parentheses:

3 * 4 - 2

3 *(4 - 2)

The first has the value 10, and the second 6. Parentheses can be nested to any
depth.

REAL a = (3*a3*(xmin+eps1)**2)/4;

REAL alpha g=(ymax - ymin)/(xmax - xmin);

INT p=BEGIN 2 * 3**4 % (13-2**3) END - 4.0

It is uncommon to find BEGIN and END in short formulæ. If you use BEGIN at the
start of a formula, you must use END to complete it even though these symbols and
parentheses are equivalent.

Contents Index

Chapter 2. Formulæ 22

2.8 Changing the mode

We have seen that in a strong context, a value of mode INT can be coerced by
widening to a value of mode REAL. What about the other way round? Is it possible
to coerce a value of mode REAL to a value of mode INT? Fortunately, it is impossible
using coercion. The reason behind this is related to the fact that real numbers can
contain fractional parts. In replacing an integer by a real number there is no
essential change in the value, but when a real number is changed to an integer, in
general the fractional part will be lost. It is undesirable that data should be lost
without the programmer noticing.

If you want to convert a REAL value to an INT, you must use one of the operators
ROUND or ENTIER. The operator ROUND takes a single operand of mode REAL and
yields an INT whose value is the operand rounded to the nearest integer. Thus
ROUND 2.7 yields 3, and ROUND 2.2 yields 2. The same rule applies with negative
numbers, thus ROUND -3.6 yields -4. At the half way case, for example, ROUND 2.5,
the value is rounded away from zero if the whole number part is odd, and rounded
toward zero if it is even (zero, in this case, is taken to be an even number). This
ensures that rounding errors over a large number of cases tend to cancel out.

The operator ENTIER (French for “whole”) takes a REAL operand and likewise
yields an INT result, but the yield is the largest integer equal to or less than the
operand. Thus ENTIER 2.2 yields 2, ENTIER -2.2 yields -3.

The operator SIGN can also be used with a REAL operand. Its yield has mode
INT with the same values as before, namely: -1 if the operand is negative, 0 if it is
zero, and +1 if it is positive. We shall see in subsequent chapters that this property
of SIGN can be useful.

Exercises

2.9 What is the value and mode of the yield of each of the following formulæ?
Ans

(a) ROUND(3.0 - 2.5**2)

(b) ENTIER -4.5 + ROUND -4.5

(c) SIGN(ROUND 3.6 / 2.0) * 2.0

2.10 What is the value of the formula

(ENTIER -2.9 + 3**2)/4.0

Ans

Contents Index

Chapter 2. Formulæ 23

2.9 Miscellaneous operators

The operators MAX and MIN are defined for any combination of INT and REAL oper-
ands and yield the maximum, or minimum, of two values. They can also be com-
bined in the same formula:

INT max min = 345 MAX 249 MIN 1000

which yields 345. Like +, -, and *, they only yield a value of mode INT if both their
operands are INT. Otherwise, they yield a value of mode REAL. They both have a
priority of 9.

2.10 Operators using CHAR

This chapter has been rather heavy on arithmetic up to now. You might wonder
whether operators can have operands of mode CHAR. The answer is yes. Indeed, the
+ and * operators are so declared, and we shall meet them in chapter 3. There are
two monadic operators which involve the mode CHAR. The operator ABS (which we
have already met) can take a CHAR operand and yields the integer corresponding
to that character. For example, ABS "A" yields 65 (the number associated with
the letter "A" as defined by the ASCII standard). The identifier max abs char is
declared in the standard prelude with the value 255. Conversely, we can convert
an integer to a character using the monadic operator REPR. The formula

REPR 65

yields the value "A". REPR can act on any integer in the range 0 to max abs char.
REPR is of particular value in allowing access to control characters. For example,
the tab character is declared in the standard prelude as tab ch. Consult section
13.2.2 for the details.

2.11 print revisited

In chapter 1, we used the print phrase to convert internal values to external char-
acters. We ought to say what print is and how it works, but we don’t yet know
enough about the language. Just use it for the moment, and we shall learn more
about it later.

Besides being able to convert internal values to external characters, print can
take two parameters (see chapter 6 for the low-down on parameters) which can be
used to format your output. newline will cause following output to be displayed
on a new line, and newpage will emit a form-feed character (REPR 12). newline

and newpage will be described in detail in section 13.7.11.
If you want to print the characters emitted by your Algol 68 programs you can

use file redirection to redirect your output to a file, which you can later copy to the
printer. For example, suppose you have compiled a program called tt. To redirect
its output to a file called tt.res, which you can later copy to the printer, you issue
the command

tt > tt.res

Contents Index

Chapter 2. Formulæ 24

at the command line. Alternatively, you send the output directly to the printer
using the command

tt | lpr

at the command line. Try compiling and running the following program:

PROGRAM tt CONTEXT VOID

USE standard

BEGIN

print(newpage);

INT a = ENTIER (3.6**5);

REAL p = 4.3 / 2.7;

print(a); print(newline);

print(b); print(newline)

END

FINISH

2.12 Summary

Operators combined with operands are called formulæ. Operators are monadic or
dyadic. Monadic operators take a single operand, bind more tightly than dyadic
operators and when combined are elaborated from right to left. Dyadic operators
take two operands and have a priority of 1 to 9. Successive dyadic operators having
the same priority are elaborated from left to right. Parentheses, or BEGIN and END,
may be used to alter the order of elaboration.

A summary of all the operators described in this chapter, together with their
priorities, can be found in chapter 13.

Here are some exercises which test you on what you have learned in this chapter.
The exercises involving ABS and REPR will need to be written as small programs
and compiled and run. In fact, it would be a good idea to write all the answers as
small programs (or incorporate them all in one large program). Don’t forget to use
the print phrase with newline and newpage to separate your output.

Exercises

2.11 The following declarations are assumed to be in force for these exercises:

INT i = 13, j = -4, k = 7;

CHAR s = "s", t = "T";

REAL x = -2.4, y = 2.7, z = 0.0

What is the value of each of the following formulæ? Ans

(a) (2 + 3) * (3 - 2)

(b) j+i-k

(c) 3*ABS s

(d) ABS"t"-ABS t

(e) REPR(k**2)

Contents Index

Chapter 2. Formulæ 25

(f) ROUND(x**2-y/(x+1))

(g) z**9

2.12 Because of the kind of arithmetic performed by the compiler, division of
values of mode REAL by zero does not cause a program to fail (but see sec-
tion 13.6.1). Write a program containing the phrases REAL z=0.0/0.0; and
REAL iz=1/0; and see what happens. In practice, it’s probably a good idea
to check for division by zero. Ans

2.13 Now try the phrase print(1%0). Ans

2.14 What is wrong with the following formulæ? Ans

(a) [4-j]*3

(b) (((3-j)*x+3)*x+5.6

(c) ROUND "e"

(d) ENTIER 4 + 3.0

Contents Index

Chapter 3

Repetition

Up to now, we have dealt with plain values: that is, values with modes INT, REAL
or CHAR. In practice, plain values are of limited use when dealing with a lot of
data. For example, commercial programs are continually dealing with strings of
characters and engineers use vectors and matrices. In this chapter, we start the
process of building more complicated modes. Firstly, we consider repetition of
values.

26

Chapter 3. Repetition 27

3.1 Multiples

A multiple consists of a number of elements, each of which have the same mode
(sometimes known as the base mode). The mode of a multiple consists of the
mode indicant for each element preceded by brackets, and is said “row of mode”.
For example, here is an identity declaration of a row of CHAR multiple:

[]CHAR a = "abcd"

The phrase on the left-hand side of the equals symbol is read “row of car a”. The
phrase on the right-hand side of the equals symbol is the denotation of a value
whose mode is []CHAR. Spaces can, of course, appear before, between or after the
brackets.

Multiples of mode []CHAR are so common that this denotation was devised as
a kind of shorthand. The maximum number of elements in a multiple is equal
to the maximum positive integer (max int), although in practice, your program
will be limited by the available memory. The denotation of a []CHAR may extend
over more than one line. There are two ways of doing this. You can simply write
the denotation on more than one line in which case every character “between” the
starting and ending quote characters is included except the newline characters, or
you can split the denotation with quote characters at the end of one line and at
the start of the continuation of the denotation on the next line. Here are two
declarations which exemplify these rules:

[]CHAR long1 = "The first stage in the develo

pment of a new program consists of analysing

the problem that the program must solve.";

[]CHAR long2 = "The first stage in the "

"development of a new "

"program consists of "

"analysing the problem "

"that the program must "

"solve."

Notice that the second method is neater because you can indent the subsequent
parts of the denotation. Everything “between” the second and third quote charac-
ters and “between” the fourth and fifth quote characters is ignored, although you
should not put anything other than spaces or tabs and newlines there. If you want
to place a quote character (”) in the denotation, you must double it, just as in the
character denotation. Here are two []CHAR denotations, each containing two quote
characters:

[]CHAR rca = """Will you come today?""",

rcb = "The minority report stated "

"that ""in their opinion""";

The repeated quote characters are different from the quote characters which chain
the two parts of the denotation of rcb.

Contents Index

Chapter 3. Repetition 28

3.1.1 Row-displays

Multiples of other modes cannot be denoted as shown above, but use a construct
called a row-display. A row-display consists of none or two or more units separated
by commas and enclosed by parentheses (or BEGIN and END). Here is the identity
declaration for a written using a row-display:

[]CHAR a = ("a","b","c","d")

It is important to note that the units in the row-display could be quite complicated.
For example, here is another declaration for a multiple with mode []CHAR:

[]CHAR b = ("a","P",REPR 36,"""")

In each of these two declarations, the number of elements is 4.
Here are identity declarations for a multiple of mode []INT and a multiple of

mode []REAL:

[]INT c = (1, 2+3, -2**4, 7, -11, 2, 1);

[]REAL d = (1.0, -2.9, 3e4, -2e-2, -5)

Note that the last unit of the row-display for c has the same value as the first
unit. In a multiple of mode []INT, the individual elements can have any value of
mode INT: that is to say, any integer or formula yielding an integer. In d, the unit
yielding the last element is written as a formula yielding a value of mode INT. Since
the context of the row-display is strong (because it occurs on the right-hand side
of an identity declaration), this context is passed on to its constituent units. Thus,
the context of the formula is also strong, and so the value yielded by the formula
is widened to yield -5.0.

An empty row-display can be used to yield a flat multiple (one with no ele-
ments). For example, here is an identity declaration using an empty row-display:

[]REAL empty = ()

The denotation for a flat []CHAR is used in the identity declaration

[]CHAR none = ""

A multiple can also have a single element. However, a row-display cannot have a
single unit (because it would be an enclosed clause, which is a different construct).
In this case, we use a unit (or a formula, which is another kind of unit) for the only
element, and the value of that unit is coerced to a multiple with a single element
using the rowing coercion. For example,

[]INT ri = 4

yields a multiple with one element. An enclosed clause can be used instead:

[]INT ri1 = (4)

since an enclosed clause is also a unit (see section 10.4).
Rowing can only occur in strong contexts (and the right-hand side of an identity

declaration is a strong context). Here is another example:

[]CHAR rc = "p"

A row-display can only be used in a strong context. Because the context of an
operand is firm, a row-display cannot appear in a formula (but there is a way
round this, see section 10.5). The shorthand denotation for a []CHAR is not a
row-display and so does not suffer from this limitation.

Contents Index

Chapter 3. Repetition 29

3.1.2 Dimensions

One of the properties of a multiple is its number of dimensions. All the multiples
declared so far have one dimension. The number of dimensions affects the mode.
A two-dimensional multiple of integers has the mode

[,]INT

(said “row-row-of-int”), while a 3-dimensional multiple of reals (real numbers) has
the mode

[,,]REAL

Note that the number of commas is always one less than the number of dimensions.
In Algol 68, multiples of any number of dimensions can be declared.1

To cater for more than one dimension, each of the units of a row-display can also
be a row-display. For example, the row-display for a multiple with mode [,]INT

could be

((1,2,3),(4,5,6))

The fact that this is the row-display for a 2-dimensional multiple would be clearer
if it were written

((1,2,3),

(4,5,6))

For two dimensions, it is convenient to talk of “rows” and “columns”. Here is an
identity declaration using the previous row-display:

[,]INT e = ((1,2,3),

(4,5,6))

The first “row” of e is yielded by the row-display (1,2,3) and the second “row” is
yielded by (4,5,6). The first “column” of e is yielded by the row-display (1,4),
the second “column” by (2,5) and the third “column” by (3,6). Note that the
number of elements in each “row” is the same, and the number of elements in each
“column” is also the same, but that the number of “rows” and “columns” differ.
We say that e is a rectangular multiple. If the number of “rows” and “columns”
are the same, the multiple is said to be square. Here is an identity declaration for
a square multiple:

[,]CHAR f = (("a","b","c"),

("A","B","C"),

("1","2","3"))

All square multiples are also rectangular, but the converse is not true. Note that
in the row-display for a multi-dimensional multiple of characters, it is not possible
to use the special denotation for a []CHAR.

The base mode of a multiple can be any mode, including another row mode.
For example:

1The a68toc Algol 68 compiler supports dimensions up to three. If you try to declare
rows having more than three dimensions, the translation proceeds without error messages,
but the resulting C code will fail to compile.

Contents Index

Chapter 3. Repetition 30

[][]CHAR days =

("Monday","Tuesday","Wednesday",

"Thursday","Friday","Saturday",

"Sunday")

The mode is said “row of row of CHAR”. Note that days is one-dimensional, each
element consisting of a one-dimensional []CHAR. The shorthand denotation for a
[]CHAR can be used in this case. Because the base mode is []CHAR, the individual
[]CHARs can have different lengths. Here is another example using integers:

[][]INT trapezium = ((1,2),(1,2,3),(1,2,3,4))

3.1.3 Subscripts and bounds

Each element of a multiple has one integer associated with it for each dimension.
These integers increase by 1 from the first to the last element in each dimension.
For example, in the declaration

[]INT r1 = (90,95,98)

the integers associated with the elements are [1], [2] and [3] (see the next section
for an explanation of why the integers are written like this). Remember that the
first element in a row-display always has an associated integer of [1]. These integers
are known as subscripts2 or indexers. Thus the subscript of 98 in r1 is [3]. In the
two-dimensional multiple

[,]INT r2 = ((-40, -30, -20),

(100, 130, 160))

the subscripts for -40 are [1,1] and the subscripts for 160 are [2,3].
We say that the lower bound of r1 is 1, and its upper bound is 3. The

multiple r2 has a lower bound of 1 for both the first and second dimensions, an
upper bound of 2 for the first dimension (2 “rows”) and an upper bound of 3 for
the second dimension (3 “columns”). We shall write the bounds of r1 and r2 as
[1:3] and [1:2,1:3] respectively. The bounds of a flat multiple, unless specified
otherwise (see the section on trimming), are [1:0].

The bounds of a multiple can be interrogated using the operators LWB for the
lower bound, and UPB for the upper bound. The bounds of the first, or only,
dimension can be interrogated using the monadic form of these operators. For
example, using days defined above, LWB days yields 1, and UPB days yields 7.
Where the multiple is multi-dimensional, the bounds are interrogated using the
dyadic form of LWB and UPB: the left operand is the dimension while the right
operand is the identifier of the multiple. For example, 1 UPB r2 yields 2 and
2 UPB r2 yields 3. The priority of the dyadic operators is 8.

2From the practice of mathematicians who write x1, x2, . . .

Contents Index

Chapter 3. Repetition 31

Exercises

3.1 What is wrong with the following identity declarations? Ans

(a) ()CHAR c1 = "Today"

(b) []CHAR c2 = ’Yesterday’

(c) []INT i1 = (1, 2.0, 3)

3.2 Using the identifier first 4 odd numbers, write an appropriate identity
declaration. Ans

3.3 Given the identity declarations

[]CHAR s = "abcdefgh";

[]REAL r = (1.4e2, 3.5e-1, -4.0);

[,]INT t = ((2,3,5),

(7,11,13),

(17,19,23))

what is the value of the following: Ans

(a) UPB s

(b) LWB r

(c) 2 UPB t - 1 LWB t + 1

3.4 Write the formulæ which give the upper and lower bounds of each of the
following multiples: Ans

(a)

[,,]INT a = (((1,2,3),

(4,5,6)),

((7,8,9),

(10,11,12)))

(b) []REAL b = ()

Contents Index

Chapter 3. Repetition 32

3.2 Slicing

In the previous section, it was mentioned that a subscript is associated with every
element in a multiple. The lower-bound of the multiple for a dimension determines
the minimum subscript for that dimension and the upper-bound for that dimension
determines the maximum subscript. Thus there is a set of subscripts for each
dimension. The individual elements can be accessed by quoting all the subscripts
for that element. For example, the elements of the multiple

[]INT odds = (1,3,5)

can be accessed as odds[1], odds[2] and odds[3]. The first of these is read “odds
sub one bus” (“bus” is the opposite of “sub”). In a multi-dimensional multiple,
two or more subscripts are required to access a single element, the subscripts being
separated by commas. For example, in the multiple

[,]REAL rs = ((1.0, 2.0, 3.0),

(4.0, 5.0, 6.0))

rs[1,2] yields 2.0. Similarly, rs[2,3] yields 6.0. Thus one can declare

REAL rs12 = rs[1,2],

rs23 = rs[2,3]

Although, technically, a multiple with all its subscripts specified is called a slice,
the term is usually reserved for a multiple with less than the maximum number of
subscripts (in other words, at least one of the dimensions does not have a subscript).
For example, using rs declared above, we can write

[]REAL srs = rs[1,]

which yields the multiple denoted by (1.0,2.0,3.0). The comma must be present
in the slice on the right-hand side otherwise the compiler will report an error of
“wrong number of indices”.

Vertical slicing is also possible. The phrase rs[,2] yields the multiple (2.0,5.0).
In the context of the declaration

[,]CHAR rs2 = (("a","b","c","d"),

("e","f","g","h"),

("i","j","k","l"))

the slice rs2[,3] yields the value "cgk" with a mode of []CHAR. Note, however,
that vertical slicing is only possible for multiples with at least two dimensions. The
multiple days, declared in the previous section, is one-dimensional and so cannot
be sliced vertically.

In a 3-dimensional multiple, both 2-dimensional and 1-dimensional slices can be
produced. Here are some examples:

[,,]INT r3 = (((1,2),(3,4),((5,6),(7,8)));

[,]INT r31 = r3[1,,],

r32 = r3[,2,],

r33 = r3[,,3];

[]INT r312 = r31[2,], r4 = r31[,2]

Contents Index

Chapter 3. Repetition 33

Exercises

3.5 The declaration

[,]INT r = ((1, 2, 3, 4),

(5, 6, 7, 8),

(9,10,11,12),

(13,14,15,16))

is in force for this and the following exercise. Give the value of the following
slices: Ans

(a) r[2,2]

(b) r[3,]

(c) r[,2 UPB r]

3.6 Write slices for the following values Ans

(a) 10

(b) (5,6,7,8)

(c) (3,7,11,15)

3.3 Trimming

The bounds of a multiple can be changed using the @ construction. For example,
in the declaration

[]CHAR digits = "0123456789"[@0]

the bounds of digits are [0:9]. Bounds do not have to be non-negative. For
example,

[,]INT ii = ((1,2,3),(4,5,6));

[,]INT jj = ii[@-3,@-50]

whence the bounds of jj are [-3:-4,-50:-48]. Notice that you cannot change
the bounds of a row-display (except by using a cast—see section 10.5). For now,
always declare an identifier for the display, and then alter the bounds. The bounds
of a slice can be changed:

[,]INT ij = ((1,3,5),(7,9,11),(13,15,17));

[]INT ij2 = ij[2,][@0]

The declaration for ij2 could also be written

[]INT ij2 = ij[2,@0]

@ can also be written AT.
Wherever an integer is required in the above, any unit yielding an integer will

do. Thus it is quite in order to use the formula

Contents Index

Chapter 3. Repetition 34

(a+b) UPB r

where the parentheses are necessary if a+b is expected to yield the dimension of r
under consideration (because the priority of UPB is greater than the priority of +).

A trimmer uses the : construction. In the context of the declaration of digits
above, the phrase digits[1:3] yields the value "123" with mode []CHAR. Again,
using the declaration of r in the last set of exercises, r[1:2,1] yields (1,2), and
r[1:2,1:2] yields ((1,2),(5,6)).

Trimming is particularly useful with values of mode []CHAR. Given the declara-
tion

[]CHAR quote = "Habent sua fata libelli"

(the quotation at the start of the acknowledgements in the “Revised Report”),

quote[:6]

quote[8:10]

quote[12:15]

yield the first three words. Note that when the first subscript in a trimmer is
omitted, the lower bound for that dimension is assumed, while omission of the
second subscript assumes the corresponding upper bound. Again, any unit yielding
INT may be used for the trimmers. The context for a trimmer or a subscript is
meek.

Omission of both subscripts yields the whole slice with a lower bound of 1. So,
the upper bound of the phrase digits[:] is 10 which is equivalent to digits[@1].

The lower bound of a trimmer is, by default, 1, but may be changed by the
use of @. For example, digits[3:6] has bounds [1:4], but digits[3:6@2] has
bounds [2:5]. The bounds of quote[17:] mentioned above are [1:7].

Exercises

3.7 Write an identity declaration for months on the lines of the declaration of
days in section 3.1. Ans

3.8 Given the declarations

[,]INT i = ((1,-2,3,4),(-5,6,7,8));

[]REAL r= (1.4,0,-5.4,3.6);

[]CHAR s= "abcdefghijklmnopqrstuvwxyz"

[@ ABS"a"]

what are the values of the following phrases? Ans

(a) 2 UPB i + UPB s[@1]

(b) r[2:3]

(c) i[2,2] - r[3]

(d) i[2,2:]

(e) s[ABS"p":ABS"t"]

Contents Index

Chapter 3. Repetition 35

3.4 Printing multiples

We have already used print to convert plain values to characters displayed on your
screen. In fact, print can be supplied with a row of values to be converted, so it is
quite valid to write

[]INT i1 = (2,3,5,7,11,13); print(i1)

You can also present an actual row-display. Instead of using

print(2); print(blank); print(3)

you can write print((2,blank,3)). The doubled parentheses are necessary: the
outer pair are needed by print anyway, and the inner pair are part of the row-
display. Notice that the modes of the elements of the row-display are quite different.
We shall learn in chapter 8 how that can be so.

Here is a program which will print the answers to the last exercise.

PROGRAM test CONTEXT VOID

USE standard

BEGIN

[,]INT i = ((1,-2,3,4),(-5,6,7,8));

[]REAL r= (1.4,0,-5.4,3.6);

[]CHAR s= "abcdefghijklmnopqrstuvwxyz"

[@ ABS"a"];

print(("i=",i,newline,

"r=",r,newline,

"s=[",s,"]",newline,

"2 UPB i + UPB s[@1]=",

2 UPB i+UPB s[@1],newline,

"r[2:3]=",r[2:3],newline,

"i[2,2] - r[3]=",

i[2,2] - r[3],newline,

"i[2,2:]=",i[2,2:],newline,

"s[ABS""p"":ABS""t""]=",

s[ABS"p":ABS"t"],

newline))

END

FINISH

As you can see, print will quite happily take values of modes []CHAR, [,]INT,
[]REAL and so on3. Notice also that in order to get quote symbols in the last line
to be printed, they are doubled. A common mistake is to omit a quote symbol or a
closing comment symbol. If your editor provides lexical highlighting (usually called
“syntax” highlighting), an omitted quote or comment symbol will cause a large part
of your program to be highlighted as though it were a []CHAR or a comment. The
mistake will be very clear. If your editor does not support lexical highlighting, you
will get an odd message from the compiler (usually to the effect that it has run out
of program!).

3but a68toc supports multiples of up to three dimensions.

Contents Index

Chapter 3. Repetition 36

Exercises

3.9 Write short programs to print the answers to all the exercises in this chapter
from 3.5. You should insert multiples of CHAR at suitable points, as in the
example above, so that you can identify the printed answers. Ans

3.5 Operators with multiples

No operators are defined in the standard prelude for multiples whose elements have
modes INT or REAL. This is not a drawback as you will learn in chapter 6. Nor
are there any monadic operators in the standard prelude for multiples of CHAR.
However, multiples of CHAR occur so often, that two dyadic operators are available
for them.

The operator + is defined for all combinations of CHAR and []CHAR. Thus, the
formula

"abc" + "d"

yields the value denoted by "abcd". With these operands, + acts as a concatenation
operator. The operator has a priority of 6 as before.

Multiplication of values of mode CHAR or []CHAR is defined using the operator
*. The other operand has mode INT and the yield has mode []CHAR. For example,
in the declaration

[]CHAR repetitions = "ab" * 3

repetitions identifies "ababab". The formula could have been written with the
integer as the left operand. In both cases, the operator only makes sense with a
positive integer.

Exercises

3.10 Given the identity declarations

[]CHAR s = "Dog bites man",

t = "aeiou"

what is the value of the following formulæ? Ans

(a) "M"+s[UPB s-1:]+s[4:10]+"d"+s[2:3]

(b) s[5]*3+2*s[6]

Contents Index

Chapter 3. Repetition 37

3.6 Ranges

If you cast your mind back to the form of an Algol 68 program, you will remember
that it consists of a number of phrases enclosed by BEGIN and END (or parentheses)
preceded by a PROGRAM phrase with an optional USE phrase. The part of the program
enclosed by BEGIN and END (including the BEGIN and END) is called a closed clause.
The important point here is that a closed clause consists of one or more phrases
separated by semicolons; (the last phrase being a unit), surrounded by parentheses
(or BEGIN and END). Since a declaration is not a unit, the last phrase cannot be a
declaration. We say that the value of a closed clause is the value yielded by the
final unit. As an example, here is a closed clause with a value of mode INT:

BEGIN

INT i = 43;

print((i,newline));

i

END

An important adjunct of a closed clause is that any identifiers declared in the
clause do not exist outside the clause. We say that the range of an identifier is
confined to that section of the closed clause from its declaration to the end of the
clause.

3.7 Program repetition

Having investigated the construction and use of multiple values, it is now time
to address repetition of program actions. For example, suppose you wanted to
output 8 blank lines. You could write

print((newline,newline,newline,newline,

newline,newline,newline,newline))

A simpler way would be to write

TO 8 DO print(newline) OD

The integer following the TO can be any unit yielding an integer (not necessarily
positive) in a meek context. If the value yielded is zero or negative, then the ensuing
clause enclosed by DO and OD will not be elaborated at all. The TO . . . OD construct
is called a loop clause or, more simply, a loop.

If you omit the TO integer construct, the loop will be repeated indefinitely. In
that case, you would need some way of terminating the program inside the loop.

A more useful form of the loop clause is shown by the following example

FOR i TO 10

DO

print((i,newline))

OD

The i is an identifier, whose declaration occurs at that point and whose mode is
INT. The example will print the numbers 1 to 10, each on its own line. The range

Contents Index

Chapter 3. Repetition 38

of i is the whole of the loop clause, but does not include the unit following TO. Any
identifier may be used in place of i. When the TO part is omitted, it is as though
TO ∞ had been written.

It is possible to modify the number of times the loop is obeyed. The simplest
way is to define the starting point using the FROM construct. Here is an example:

FOR n FROM -10 TO 10 DO print((n,blank)) OD

This prints the numbers from -10 to +10 on the screen. The integer after FROM can
be any unit which yields a value of mode INT in a meek context. When FROM is
omitted, it is assumed that the first value of the identifier following FOR is 1.

This example prints the square of each of the numbers from 0.2 to 0.9:

FOR number FROM 2 TO 9

DO

REAL value = number / 10;

print((value," squared =",

value * value,newline))

In these examples, the value of the identifier has always increased by 1. The increase
can be changed using the BY construct. For example, to print the cubes of the even
numbers between 30 and 50 inclusive, you could write

FOR n FROM 30 BY 2 TO 50

DO

print((n**3,newline))

OD

The BY construct is particularly useful for decreasing the value of the identifier:

[]CHAR title =

"Programming Algol 68 Made Easy";

FOR c FROM UPB title BY -1 TO LWB title

DO

print(title[c])

OD

This last example shows how useful the loop clause can be for accessing some of or
all of the elements of a multiple. Here is another example:

[]INT hh=(7,17,27,37,47);

INT two=2;

FOR i BY 2 TO UPB hh

DO

print(hh[i] * hh[i])

OD

which will print

+49 +729 +2209

Contents Index

Chapter 3. Repetition 39

on one line. Omitting the BY construct assumes a default step of 1.
Notice how use of the LWB and UPB operators ensures that your program does

not try to use a subscript outwith the bounds of the multiple. If you try to access
an element whose subscript is greater than the upper bound (or less than the lower
bound), the program will fail at run-time with an appropriate error message.

An important use of the identity declaration is that of optimisation. In the
previous example, the computation of the ith element of hh takes a little time, and
there is no point in repeating it. In the following example, the identity declaration
computes the value of hh[i] and the print statement uses the resulting value twice:

FOR i BY 2 TO UPB hh

DO

INT hhi = hh[i];

print((hhi * hhi,newline))

OD

Everything said about multiples with elements of mode INT or CHAR applies equally
well to multiples whose elements have mode REAL. A FOR loop yields no value (cf
section 6.1.5).

Exercises

3.11 Write an Algol 68 program which will print the cubes of the numbers from 1

to 25. Ans

3.12 Write a program which will print the characters of the alphabet backwards,
all on one line. Ans

3.8 Nested loops

When dealing with two-, and higher-dimensional multiples, it is often necessary to
run a subsidiary loop. For example, suppose we wanted to print the square of each
element in the multiple declared as

[,]INT primes = ((2, 3, 5, 7),

(11,13,17,19),

(23,29,31,37),

(41,43,47,53))

with each row on one line. Here is a piece of program which will do it:

FOR i FROM 1 LWB primes TO 1 UPB primes

DO

[]INT pri=primes[i,];

FOR j FROM LWB pri TO UPB pri

DO

INT prij = pri[j];

print(prij * prij)

Contents Index

Chapter 3. Repetition 40

OD;

print(newline)

OD

Notice the optimisations. The first defines the ith “row”, and the second defines
the jth element in that “row”. The point is that any piece of program can appear
inside the loop clause. Loop clauses can be nested to any depth. Because the loop
clause is an enclosed clause, it must contain at least one phrase, and the last phrase
must be a unit (see chapter 10 for a thorough discussion of units).

Exercises

3.13 Using a nested loop, write a short program to display the first 25 letters of
the alphabet on your screen in five rows of five letters. Separate each letter
with a comma. Ans

3.14 Write a program to print the value of a 3-dimensional multiple of real numbers
which you have declared in your program. Ans

3.9 Program structure

In chapter 1, it was mentioned that the basic structure of an Algol 68 program
consists of

BEGIN

phrases

END

This is not strictly true. It is quite possible to write a program consisting solely of
a DO loop! For example:

PROGRAM dosum

USE standard

FOR i TO 5

DO

print((i**2,newline))

OD

FINISH

3.10 The FORALL loop

The FORALL loop is not part of Algol 68, but an extension introduced by the a68toc
compiler. It is similar to the FOR loop, but the identifier has the mode of an element
of the multiple under consideration. Look at this example:

[]REAL r1 = (1.0,2.0,3.0,4.0,5.0);

FORALL e IN r1 DO print(e * e) OD

Contents Index

Chapter 3. Repetition 41

In the FORALL loop, e takes the value of each element in r1 and so has mode REAL.
The compiler generates more efficient code using the FORALL loop by avoiding the
normal overheads of the subscripting mechanism. However, the FORALL loop can
only be used when all the elements of a dimension are required. If you want to limit
the processing to a few elements, you can trim the multiple or use the FOR loop.

The elements of more than one multiple can be combined simultaneously. For
example:

[]INT i = (1,2,3,4,5),

j = (11,12,13,14,15);

FORALL ii IN i, jj IN j

DO

print((ii * jj,newline))

OD

The comma between ii IN i and jj IN j means that the constructs are elabo-
rated collaterally. The bounds of i must be the same as the bounds of j.

FORALL clauses can be nested as in the case of FOR clauses. If we use l and m

declared in a previous example, then

FORALL ll IN l

DO

FORALL mm IN m

DO

print(ll * mm)

OD

OD

could be used to print the products of all the integers.

3.11 Summary

Modes of multiples start with brackets ([]). A multiple of characters has a spe-
cial denotation. All multiples can be constructed using a row-display. Rows have
bounds and dimensions. Rows can be sliced and trimmed, and their bounds can be
changed using the @ construct.

The FOR loop has the form

FOR id FROM a BY b TO c DO ... OD

where the default values of a, b and c are 1, 1 and ∞ respectively, but may take
any value of mode INT in a meek context. If c is greater than or equal to a and b

is negative, the loop will not be executed. If b is zero, the loop will be executed
indefinitely. The range of id excludes the units a, b and c. The FORALL loop has
the form

FORALL id1 IN row1 DO ... OD

We have covered a good deal of ground in this chapter, so here are some more
exercises revising what you have learnt. It is most instructive to verify your answers
by writing appropriate Algol 68 programs.

Contents Index

Chapter 3. Repetition 42

Exercises

3.15 What is wrong with the following identity declarations? Ans

(a) []REAL r1 = [2.5,-2.5,3.5]

(b) [,]INT i1 = ((1,2,3),(4,5,6,7))

(c) []CHAR s1 = "abcde’fg"

3.16 What are the upper and lower bounds of the following? Ans

(a) ((10,20,30),(-10,-20,-30))

(b) ("a","b","c")

(c) "abcdef"[3:4]

3.17 If a is declared as

[,]INT a = ((9,8,7),

(6,5,4),

(3,2,1))

what is the value and mode of Ans

(a) a[2,]

(b) a[,2]

(c) a[:2,3]

(d) a[2:,:2]

3.18 What value does "abc"*3+"defg" yield? Ans

3.19 Write a program to display every fifth letter of the alphabet’ all on one line.
Ans

Contents Index

Chapter 4

Choice

One of the essential properties of a computer program is its ability to modify
its actions depending on its circumstances and environment. In other words, its
behaviour is not predetermined, but can vary from one execution to another. In
this chapter, we shall introduce a new plain mode, describe the operators using or
yielding values of the new mode, and then investigate the program structures which
allow an Algol 68 program to choose between alternatives.

43

Chapter 4. Choice 44

4.1 Boolean values

The mode BOOL is named after George Boole, the distinguished nineteenth century
mathematician who developed the system of logic which bears his name. There are
only two values of mode BOOL, and their denotations are TRUE and FALSE. Let us
declare two identifiers:

BOOL t = TRUE,

f = FALSE

The print phrase, when fed with Boolean values prints T for TRUE, and F for FALSE,
with spaces neither before nor after. Thus

print((t,f,t,f,t))

produces TFTFT on the screen.

4.2 Boolean operators

The simplest operator which has an operand of mode BOOL is NOT. If its operand
is TRUE, it yields FALSE. Conversely, if its operand is FALSE, it yields TRUE. The
operator ODD yields TRUE if its operand is an odd integer and FALSE if it is even.
The operators can be combined, so

NOT ODD 2

yields TRUE.
ABS converts its operand of mode BOOL and yields an integer: ABS TRUE yields

1, ABS FALSE yields 0.
Boolean dyadic operators come in two kinds: those that take operands of mode

BOOL, yielding TRUE or FALSE, and those that operate on operands of other modes.
Two dyadic operators are declared in the standard prelude which take operands

of mode BOOL. The operator AND (alternative representation &) yields TRUE if, and
only if, both its operands yield TRUE, so that

t AND f

yields FALSE (t and f were declared earlier). Both the operands are elaborated
before the operator (but see the section later on pseudo-operators). The priority of
AND is 3.

The operator OR yields TRUE if at least one of its operands yields TRUE. Thus

t OR f

yields TRUE. It has no alternative representation. Again, both operands are elabo-
rated before the operator. The priority of OR is 2.

You will learn in chapter 6 how to define new operators if you need them.

Contents Index

Chapter 4. Choice 45

4.3 Relational operators

Values of modes INT, REAL, CHAR and []CHAR can be compared with each other.
The expression

3 = 1+2

yields TRUE. Similarly,

1+1=1

yields FALSE. The equals symbol = can also be written EQ. Likewise, the formula

35.0 EQ 3.5e1

should also yield TRUE, but you should be chary of comparing two REALs for equality
or inequality because the means of transforming the denotations into binary values
may yield values which differ slightly. The operator is also defined for both operands
being CHAR or []CHAR. In the latter case, the two multiples must have the same
number of elements, and corresponding elements must be equal if the operator is
to yield TRUE. Thus

"a" = "abc"

yields FALSE. Notice that the bounds do not have to be the same. So a and b

declared as

[]CHAR a = "Dodo" [@0],

b = "Dodo"

yield TRUE when compared with the equals operator. Because the rowing coercion is
not allowed in formulæ, the operator is declared in the standard prelude for mixed
modes (such as REAL and INT).

The converse of = is /= (not equal). So the formula

3 /= 2

yields TRUE, and

"r" /= "r"

yields FALSE. An alternative representation of /= is NE. The priority of both = and
/= is 4. The operands of = and /= can be any combination of values of mode INT

and REAL. No widening takes place, the operators being declared for the mixed
modes.

The ordering operators <, >, <= and >= can be used to compare values of modes
INT, REAL, CHAR and []CHAR in the same way as = and /=. They are read “less than”,
“greater than”, “less than or equal to” and “greater than or equal to” respectively.
The formula

3 < 3.1

yields TRUE.
If the identifiers b and c are declared as having mode CHAR, then the formula

Contents Index

Chapter 4. Choice 46

c < b

will yield the same value as

ABS c < ABS b

and similarly for the operator >. The operators <= and >= can both be used with
equal values. For example,

24 <= 24.0

yields TRUE.
For values of mode []CHAR, the formula

"abcd" > "abcc"

yields TRUE. Two values of mode []CHAR of different length can be compared. For
example, both

"aaa" <= "aaab"

and

"aaa" <= "aaaa"

yield TRUE. Alternative representations for these operators are LT and GT for < and >

and LE and GE for <= and >= respectively. The priority of all four ordering operators
is 5.

Note that apart from values of mode []CHAR, no operators are defined in the
standard prelude for multiples.

Exercises

4.1 What is the value of each of the following formulæ? Ans

(a) ABS NOT TRUE

(b) 3.4 + ABS TRUE

(c) -3.5 <= -13.4

(d) 2e10 >= 3e9

(e) "abcd" > "abc"

4.2 In the context of these declarations

[]INT i1 = (2,3,5,7);

[]CHAR t = "uvwxyz"

what is the value of each of the following? Ans

(a) UPB i1 < UPB t

(b) t[2:4] >= t[2:3]

(c) i1[3] < UPB t[2:]

Contents Index

Chapter 4. Choice 47

4.4 Compound Boolean formulæ

Formulæ yielding TRUE or FALSE can be combined. For example, here is a formula
which tests whether π lies between 3 and 4

pi > 3 & pi < 4

which yields TRUE. The priorities of <, > and & are so defined that parentheses are
unnecessary in this case. Likewise, we may write

"ab" < "aac" OR 3 < 2

which yields FALSE. More complicated formulæ can be written:

3.4 > 2 & "a" < "c" OR "b" >= "ab"

which yields TRUE. Because the priority of the operator & is higher than the priority
of OR, the & in the above formula is elaborated first. The order of elaboration can
be changed using parentheses.

There does not seem much point to these formulæ since everything is known
beforehand, but all will become clear in the next chapter.

Compound Boolean formulæ can be confusing. Being aware of the converse of a
compound condition helps you to ensure you have considered all possibilities. For
example, the converse of the formula

a < b & c = d

is the formula

a >= b OR c /= d

One of the formulæ would yield TRUE and the other FALSE.

Exercises

4.3 What is the value of each of the following: Ans

(a) NOT ODD 3 OR 3 < 4

(b) 3 > 2 & (5 > 12 OR 7 <= 8)

(c) (TRUE OR FALSE) AND (FALSE OR TRUE)

(d)

NOT("d">"e")

AND

FALSE

OR

NOT(ODD 5 & 3.6e12 < 0)

(e) 3<4 & 4<5 & 5<6 & 6>7

4.4 For each condition, write out its converse: Ans

(a) FALSE

(b) 4 > 2

(c) a > b AND b > c

(d) x = y OR x = z

Contents Index

Chapter 4. Choice 48

4.5 Conditional clauses

Now we can discuss clauses which choose between alternatives. We have met the
enclosed clause consisting of at least one phrase enclosed by BEGIN and END (or
parentheses) in the structure of an Algol 68 program, and also in the DO . . . OD loop
of a FOR or FORALL clause. The part of the enclosed clause inside the parentheses (or
BEGIN and END) is called a serial clause because, historically, sequential elaboration
used to be called “serial elaboration”. The value of the serial clause is the value of
the last phrase which must be a unit.

There are two kinds of clause which enable programs to modify their behaviour.
They are called choice clauses. The conditional clause allows a program to
elaborate code depending on the value of a boolean serial clause, called a BOOL

enquiry clause. Here is a simple example:

IF salary < 5000

THEN 0

ELSE (salary-allowances)*rate

FI

The enquiry clause consists of the formula

salary < 5000

which yields a value of mode BOOL. Two serial clauses, both containing a single unit
can be elaborated. If the value yielded by salary is less than 5000, the value 0 is
yielded. Otherwise, the program calculates the tax. That is, if the BOOL enquiry
clause yields TRUE, the serial clause following THEN is elaborated, otherwise the
serial clause following ELSE is elaborated. The FI following the ELSE serial clause
must be there.

The enquiry clause and the serial clauses may consist of single units or possibly
declarations and formulæ and loops. However, the last phrase in an enquiry clause
must be a unit yielding BOOL. The range of any identifiers declared in the enquiry
clause extends to the serial clauses as well. The range of any identifiers declared in
either serial clause is limited to that serial clause. For example, assuming that a
and i are predeclared, we could write:

IF INT ai = a[i]; ai < 0

THEN print((ai," is negative",newline))

ELSE print((ai," is non-negative",newline))

FI

The conditional clause can be written wherever a unit is permitted, so the previous
example could also be written

INT ai = a[i];

print((ai,IF ai < 0

THEN "is negative"

ELSE "is non-negative"

FI,newline))

The value of each of the serial clauses following THEN and ELSE in this case is []CHAR.
Here is an example with a conditional clause inside a loop:

Contents Index

Chapter 4. Choice 49

FOR i TO 100

DO

IF i MOD 10 = 0

THEN print((i,newline))

ELSE print((i,blank))

FI

OD

The ELSE part of a conditional clause can be omitted. Thus the above example
could also be written

FOR i TO 100

DO

print((i,blank));

IF i MOD 10 = 0 THEN print(newline) FI

OD

The whole conditional clause can appear as a formula or as an operand. The
short form of the clause is often used for this: IF and FI are replaced by (and
) respectively, and THEN and ELSE are both replaced by the vertical bar |1. For
example, here is an identity declaration which assumes a previous declaration for
x:

REAL xx = (x < 3.0|x**2|x**3)

If the ELSE part is missing then its serial clause is regarded as containing the single
unit SKIP. In this case, SKIP will yield an undefined value of the mode yielded by
the THEN serial clause. This is an example of balancing (explained in chapter 10).
This is particularly important if a conditional clause is used as an operand.2

Since the right-hand side of an identity declaration is in a strong context, widen-
ing is allowed. Thus, in

REAL x = (i < j|3|4)

whichever value the conditional clause yielded would be widened to a value of mode
REAL.

Since the enquiry clause is a serial clause, it can have any number of phrases
before the THEN. For example:

IF []CHAR line =

"a growing gleam glowing green";

INT sz = UPB line - LWB line + 1;

sz > 35

THEN

...

1Some editors insert a different character when you press the key marked |. Check
that the character produced is accepted by the Algol 68 compiler.

2In this case the a68toc compiler requires an ELSE part and will warn if it is missing.
It generates code which will cause a run-time fault if your program tries to execute an
ELSE part which has been omitted. You can get around this restriction by explicitly using
SKIP.

Contents Index

Chapter 4. Choice 50

Conditional clauses can be nested

IF a < 4.1

THEN

IF b >= 35

THEN print("yes")

ELSE print("no")

FI

ELSE

IF c <= 20

THEN print("perhaps")

ELSE print("maybe")

FI

FI

The ELSE IF in the above clause could be replaced by ELIF, and the final FI FI

with a single FI, giving:

IF a < 4.1

THEN

IF b >= 35

THEN print("yes")

ELSE print("no")

FI

ELIF c <= 20

THEN print("perhaps")

ELSE print("maybe")

FI

Here is another contracted example:

INT p = IF c = "a" THEN 1

ELIF c = "h" THEN 2

ELIF c = "q" THEN 3

ELSE 4

FI

The range of any identifier declared in an enquiry clause extends to any serial
clause beyond its declaration but within the overall conditional clause. Consider
this conditional clause:

IF INT p1 = ABS(c="a"); p1=1

THEN p1+2

ELIF INT p2 = p1-ABS(c="h"); p2 = -1

THEN INT i1 = p1+p2; i1+p1

ELSE INT i2 = p1+2*p2; i2-p2

FI

The range of p1 extends to the enclosing FI; likewise the range of p2. The ranges
of i1 and i2 are confined to their serial clauses.

In the abbreviated form, | : can be used instead of ELIF. For example, the above
identity declaration for p could be written

Contents Index

Chapter 4. Choice 51

INT p = (c="a"|1|:c="h"|2|:c="q"|3|4)

In both identity declarations, the opening parenthesis is an abbreviated symbol for
IF.

Sometimes it is useful to include a conditional clause in the IF part of a con-
ditional clause. In other words, a BOOL enquiry clause can be a conditional clause
yielding a value of mode BOOL. Here is an example with a and b predeclared with
mode BOOL:

IF IF a

THEN NOT b

ELSE b

FI

THEN print("First possibility")

ELSE print("Second possibility")

FI

4.5.1 Pseudo-operators

As was mentioned in chapter 2, both the operands of an operator are elaborated
before the operator is elaborated. The a68toc compiler implements the pseudo-
operator ANDTH which although it looks like an operator, has its right-hand oper-
and elaborated only if its left-hand operand yields TRUE. Compare ANDTH (which is
read “and then”) with the operator AND. The priority of ANDTH is 1. The phrase
IF p ANDTH q THEN ... FI is equivalent to

IF IF NOT p

THEN FALSE

ELIF q

THEN TRUE

ELSE FALSE

FI

THEN ...

FI

You should be chary of using ANDTH in a compound boolean expression. For
example, given the condition

UPB s > LWB s

ANDTH

s[UPB s]="-"

AND

(CHAR c=s[UPB s-1];

c>="a" & c<="z")

the intention of the compound condition is to determine whether a terminating
hyphen is preceded by a lower-case letter. Clearly, testing for a character which
precedes the hyphen can only be elaborated if there are at least two characters in
s. The first boolean formula (the left operand of ANDTH) ensures that the second
formula (the right operand of ANDTH) is only elaborated if s identifies at least two
characters. Unfortunately, because the priority of AND is greater than the priority

Contents Index

Chapter 4. Choice 52

of ANDTH and because both operands of an operator must be elaborated before the
operator is elaborated, the right-hand operand of AND will be elaborated whatever
the value of the left operand of ANDTH. In order to achieve the above aim, the
compound condition should be written

UPB s > LWB s

ANDTH

(s[UPB s]="-"

AND

(CHAR c=s[UPB s-1];

c>="a" & c<="z"))

Note the additional parentheses which ensure that the boolean formula containing
AND is treated as a whole as the right-hand operand of the pseudo-operator ANDTH.

There is another pseudo-operator OREL (read “or else”) which is similar to the
operator OR except that its right-hand operand is only elaborated if its left-hand
operand yields FALSE. Like ANDTH, the priority of OREL is 1. The remarks given
above about the use of ANDTH in compound boolean formulæ apply equally to OREL.

Neither ANDTH nor OREL are part of Algol 68.

Exercises

4.5 Write a conditional clause which tests whether a REAL value is less than π,
and prints ”Yes” if it is and ”No” otherwise. Ans

4.6 Write a conditional clause inside a loop clause to display the first 96 multiples
of 3 (including 3) in lines of 16. Use the operator MOD for the test. Ans

4.7 Replace the operator OREL in the following program with a suitable condi-
tional clause:

PROGRAM p CONTEXT VOID

USE standard

IF INT a=3, b=5, c=4;

a > b OREL b > c

THEN print("Ok")

ELSE print("Wrong")

FI

FINISH

Ans

Contents Index

Chapter 4. Choice 53

4.6 Multiple choice

Sometimes the number of choices can be quite large or the different choices are
related in a simple way. For example, consider the following conditional clause:

IF n = 1

THEN action1

ELIF n = 2

THEN action2

ELIF n = 3

THEN action3

ELIF n = 4

THEN action4

ELSE action5

FI

This sort of choice can be expressed more concisely using the case clause in which
the boolean enquiry clause is replaced by an integer enquiry clause. Here is the
above conditional clause rewritten using a case clause:

CASE n

IN

action1

,

action2

,

action3

,

action4

OUT

action5

ESAC

which could be abbreviated as

(n|action1,action2,action3,action4|action5)

Notice that action1, action2, action3 and action4 are separated by commas
(they are not terminators). Each of action1, action2 and action3 is a unit,
so that if you want more than one phrase for each action, you must make it an
enclosed clause by enclosing the action in parentheses (or BEGIN and END). If the
INT enquiry clause yields 1, action1 is elaborated, 2, action2 is elaborated and
so on. If the value yielded is negative or zero, or exceeds the number of actions
available, action5 in the OUT part is elaborated. The OUT part is a serial clause so
no enclosure is required if there is more than one unit.

In the following case clause, the second unit is a conditional clause to show you
that any piece of program which happens to be a unit can be used for one of the
cases:

CASE i IN 3,(x>3.5|4|-2),6 OUT i+3 ESAC

Contents Index

Chapter 4. Choice 54

The first action yields 3, the second yields 4 if x exceeds 3.5 and -2 otherwise, and
the third action yields 6.

Sometimes the OUT clause consists of another case clause. For example,

CASE n MOD 4

IN

print("case 1"),

print("case 2"),

print("case 3")

OUT

CASE (n-10) MOD 4

IN

print("case 11"),

print("case 12"),

print("case 13")

OUT

print("other case")

ESAC

ESAC

Just as with ELIF in a conditional clause, OUT CASE . . . ESAC ESAC can be replaced
by OUSE . . . ESAC. So the above example can be rewritten

CASE n MOD 4

IN

print("case 1"),

print("case 2"),

print("case 3")

OUSE (n-10) MOD 4

IN

print("case 11"),

print("case 12"),

print("case 13")

OUT print("other case")

ESAC

Here is a case clause with embedded case clauses:

CASE command

IN

action1,

action2,

(subcommand1

|subaction1,subaction2

|subaction3)

OUSE subcommand2

IN subaction4,

subaction5,

Contents Index

Chapter 4. Choice 55

subaction6

OUT

subaction7

ESAC

Calendar computations, which are notoriously difficult, give examples of case clauses:

INT days = CASE month IN

31,

IF year MOD 4 = 0

&

year MOD 100 /= 0

OR

year MOD 400 = 0

THEN 29

ELSE 28

FI,

31,30,31,30,31,31,30,31,30,31

OUT -1

ESAC

And here is one in dealing cards:

[]CHAR suit=(i|"spades",

"hearts",

"diamonds",

"clubs"

|"")

Like the conditional clause, if you omit the OUT part, the compiler assumes that
you wrote OUT SKIP. In the following example, when i is 4, nothing gets printed:3

PROGRAM prog CONTEXT VOID

USE standard

FOR i TO 5

DO

print((i MOD 4|"a","g","r"))

OD

FINISH

3The a68toc compiler does not support missing OUT parts that are executed. It will
warn about this and will generate a run-time error. It is good practice to ensure that at
least OUT SKIP occurs in every case clause.

Contents Index

Chapter 4. Choice 56

Exercises

4.8 What is wrong with the following identity declaration, assuming that p has
been predeclared as a value of mode BOOL:

INT i = (p|1,2,3|4)

Ans

4.9 Write a program consisting solely of a case clause which uses the SIGN op-
erator to give three different actions depending on the sign of a number of
mode REAL. Ans

4.7 Summary

There are two values having mode BOOL. Operators with operands of mode BOOL are
predeclared in the standard prelude. A conditional clause uses an enquiry clause
yielding a value of mode BOOL. A case clause uses an enquiry clause yielding a value
of mode INT. Both conditional and case clauses can be abbreviated. Extended
conditional and case clauses can be written using ELIF and OUSE respectively. Con-
ditional clauses and case clauses are sometimes grouped together and termed choice
clauses. Choice clauses are examples of enclosed clauses, and are units.

Here are some exercises which test you on the material covered in this chapter.

Exercises

4.10 Which values have the mode BOOL? Ans

4.11 What is the value of each of the following formulæ? Ans

(a) 3 < 4

(b) 4.0 >= 0.4e1

(c) 2 < 3 & 3 > 2

(d) 11 < 2 OR 10 < ABS TRUE

(e) NOT TRUE & ABS "A" < ABS "D"

(f) NOT(3 > 2 & 3 > 1 OR 10 < 6)

4.12 What is wrong with the following (m is predeclared):

IF m>4|print("ok")ELSE print(".")ESAC

Ans

4.13 What would be displayed on your screen by the following:

FOR i TO 10 DO print(ODD i) OD

Ans

Contents Index

Chapter 4. Choice 57

4.14 Use a conditional clause to print "Units" if m (which has mode INT) is less
than 10, "Tens" if it is less than 100, "Hundreds" if it is less than 1000 and
"Too big" otherwise. Ans

4.15 Use a case clause to print the value of a card in words. For example, if it is
a queen, print "Queen". Ans

Contents Index

Chapter 5

Names

Previous chapters dealt with values that have always been known when the program
was written. If a program is to be able to react to its environment, it must be able to
convert external values into internal values and then manipulate them. Analogous
to print, the conversion can be done by read which constructs internal values
from external character sequences. In order to manipulate such converted values,
we need some way of referring to them. Algol 68 can generate values which can
refer to other values. This kind of value is called a name. Although a name has a
value, it is quite different from the value referred to. The difference is rather like
your name: your name refers to you, but is quite distinct from you.

For example, suppose read is presented with the character sequence “123G” and
is expecting an integer. read will convert the digits into the number “one hundred
and twenty-three”, held in a special internal form called “2’s-complement binary”.
To manipulate that value, a name must be generated to refer to it. The mode of a
name is called a “reference mode”.

A name which can refer to a value of mode INT is said to have the mode REF INT.
Likewise, we can create names with modes

REF BOOL REF[]CHAR REF[,]REAL

As you can see, REF can precede any mode. It can also include a mode already
containing REF. Thus it is possible to construct modes such as

REF REF INT

REF[]REF REAL

REF[]REF[]CHAR

REF REF REF BOOL

but we shall defer discussion of these latter modes to chapter 11.
Names are created using generators. There are two kinds of generator: local

and global. The extent to which a name is valid is called its scope. The scope of a
local name is restricted to the smallest enclosing clause which contains declarations.
The scope of a global name extends to the whole program. In general, values have
scope, identifiers have range. We shall meet global generators in chapters 6 and 11.

The phrase LOC INT generates a name of mode REF INT which can refer to a

58

Chapter 5. Names 59

value of mode INT.1 The LOC stands for local. It is quite reasonable to write the
phrase

read(LOC INT)

Unfortunately, the created name is an anonymous name in the sense that it has
no identifier so that once the read has completed, the name disappears. We need
some way of linking an identifier with the generated name so that we can access
the name after read has finished. This is done with an identity declaration. Here
is an identity declaration with a local generator:

REF INT a = LOC INT

The value identified by a has the mode REF INT because the phrase LOC INT gen-
erates a name of mode REF INT. Thus it is a name, and it can refer to a value (as
yet undefined) of mode INT (the value referred to always has a mode of one less
REF). So now, we can write

read(a)

After that phrase has been elaborated, a identifies a name which now refers to an
integer.

Names can also be declared using a predeclared name on the right-hand side of
the identity declaration. Here is another identity declaration using a:

REF INT b = a

In this declaration, b has the mode REF INT so it identifies a name. a also has the
mode REF INT and therefore also identifies a name. The identity declaration makes
b identify the same name as a. This means that if the name identified by a refers
to a value, then the name identified by b (the same name) will always refer to the
same value.

5.1 Assignment

The process of causing a name to refer to a value is called assignment. Using the
identifier declared above, we can write

a := 3

We say “a assign 3”. Note that the mode of the name identified by a is REF INT,
and the mode of the denotation 3 is INT. After the assignment, the name identified
by a refers to the value denoted by 3.

Suppose now we want the name identified by a to refer to the value denoted by
4 (this may seem pedantic, but as you will see below, it is necessary to distinguish
between the denotation of a value and that value itself). We write

a := 4

1Historically, programmers were more interested in the value referred to than the name
(Algol 68 was the first language to distinguish clearly between a name and the value
referred to), so the generator is followed by the mode of the value to which the name will
refer.

Contents Index

Chapter 5. Names 60

Let us juxtapose these two assignments:

a := 3

;

a := 4

If you look carefully at the two assignments, a number of things spring to mind.
Firstly, an assignment consists of three parts: on the left-hand side is an identifier
of a name, in the middle is the assignment token, and on the right-hand side
is a denotation. Secondly, the left-hand side of the two assignments is the same
identifier: a. Since the identifier is the same, the value must be the same.2 That
is, in the two assignments, a is synonymous with a value which does not change.
The value is a name and has the mode REF INT (in this case). Thus the value of
the left-hand side of an assignment is a name.

Thirdly, the values on the right-hand side of the two assignments differ. Firstly,
a is assigned the value denoted by 3, then (after the go-on symbol), a is assigned
the value denoted by 4.

After the second assignment, a refers to 4. Of course, when we say “a refers
to”, we mean “the name identified by a refers to”. What has happened to the value
3? To understand this, we need to look a little more closely at what we mean by
the value 3. The denotation 3 represents the number three. Now, of course, the
number three exists independently of a computer program. When the digit 3 is
elaborated in an Algol 68 program, an instance of the number three is created.
Likewise, elaborating the digit 4 creates an instance of the number four. When a is
assigned an instance of the value four, the instance of the value three disappears.
This property of assignment is very important. Because an assignment causes data
to disappear, it is dangerous to use. You have to be careful that the data which
disappears is not data you wanted to keep. So the instance of a value can disappear,
but the value still exists (like the number three).

It is worth reiterating that however many times a name is assigned a value, the
value of the name remains unchanged. It is the value referred to which is superseded.
Outwith the realm of computers, if an individual is assigned to a department of
an organisation, clearly the department hasn’t changed. Only its members have
changed.

When an identifier for a name has been declared, the name can be made to refer
to a value immediately after the declaration. For example

REF REAL x = LOC REAL := pi

where pi is the value declared in the standard prelude. LOC REAL generates a name
of mode REF REAL.

The right-hand side of an assignment is a strong context so widening is allowed.
Thus we can write

x := 3

where the 3 is widened to 3.0 before being assigned to x. In reality, the value
denoted by 3 is not changed to the value denoted by 3.0: it is replaced by the
new value. There is an important principle here. It is called the “principle of value

2Provided that both identifiers appear in the same range.

Contents Index

Chapter 5. Names 61

integrity”: once an instance of a value has been created, it does not change until
such time as it disappears. Thus, in Algol 68, every value is a constant. Every
coercion defined in Algol 68 replaces a value of one mode with a related value of
another mode.

5.1.1 Copying values

Here is another identity declaration with an initial assignment:

REF INT c = LOC INT := 5

Using the identifier a declared earlier, we can write

a := c

and say “a assign c”. The name on the left-hand side of the assignment has mode
REF INT, so a value which has mode INT is required on the right-hand side, but what
has been provided is a name with mode REF INT. Fortunately, there is a coercion
which replaces a name with the value to which it refers. It is called dereferencing
and is allowed in a strong context. In the above assignment, the name identified
by c is dereferenced yielding an instance of the value five which is a copy of the
instance referred to by c. That new instance is assigned to a. It is important to
remember that the process of dereferencing yields a new instance of a value.

Try the following program:

PROGRAM assign CONTEXT VOID

USE standard

BEGIN

REF INT a = LOC INT,

b = LOC INT := 7;

print(("b=",b,newline));

print("Please key 123G:"); read(b);

a := b;

print(("a now refers to",a,newline,

"b now refers to",b,newline))

END

FINISH

This should convince you that dereferencing involves copying.
Every construct in Algol 68 has a value except an identity declaration. We said

above that the value of the left-hand side of an assignment is a name. In fact, the
value of the whole of the assignment is the value of the left-hand side. Because
this is a name, it can be used on the right-hand side of another assignment. For
example:

a := b := c

You should note that an assignment is not an operator. The assignments are per-
formed from right to left : firstly, c is dereferenced and the resulting value assigned
to b. Then b is dereferenced and the resulting value is assigned to a.

Contents Index

Chapter 5. Names 62

5.1.2 Assigning operators

The following assignment

a := a

does not do anything useful, but serves to remind us that the name identified by a

on the right-hand side of the assignment is dereferenced, and the resulting value is
assigned to a. However, a now refers to a new instance of the value it previously
referred to and the previous instance has now disappeared.

Now consider the phrases

c := 5; a := c+1

The right-hand side of the second assignment is now a formula. The name identified
by c is now in a firm context (it is the left-operand of the + operator). Fortunately,
dereferencing is also allowed in a firm context. Thus the value of c (a name with
mode REF INT) is replaced in the formula by a copy of the value to which it refers
(5), which is added to 1, and a is assigned the new value (6). We say “a is assigned
c plus one”.

What about the phrase

a := a+1

In exactly the same way as the previous phrase, the name on the right-hand side
is dereferenced, the new value created is added to 1, and then the same name is
assigned the new value.

One of the features of assignment is that the elaboration of the two sides is
performed collaterally. This means that the order of elaboration is undefined. This
does not matter in the last example because the value of the name identified by a

is the same on the two sides of the assignment. Remember that the value of a is a
name with mode REF INT. It is the value to which a referred which was superceded.

Assignments of this kind are so common that a special operator has been devised
to perform them. The above assignment can be written

a +:= 1

and is read “a plus-and-assign one”. The operator has the alternative representation
PLUSAB.3 Note that the left-hand operand must be a name. The right-hand operand
must be any unit which yields a value of the appropriate mode in a firm context.

The operator +:= is defined for a left-operand of mode REF INT or REF REAL, and
a right-operand of mode INT or REAL respectively. The yield of the operator is the
value of the left-operand (the name). If the left-operand has mode REF REAL, the
right-operand can also have mode INT. No widening occurs in this case, the operator
having been declared for operands having these modes. Because the operator yields
a name, that name can be used as the operand for another assigning operator. For
example

3PLUSAB stands for “plus-and-becomes”. When Algol 68 was first designed, people were
more concerned with the values referred to than the names, so PLUSAB was intended to
describe what happens to the value referred to. Bearing in mind the principle of value
integrity, the value referred to by a does not become anything, but is replaced by its value
plus 1.

Contents Index

Chapter 5. Names 63

x +:= 3.0 *:= 4.0

which results in x referring to 4.0*(x+3.0). The formula is elaborated in left-to-
right order because the operators have the same priority. The operators are more
efficient than writing out the assignments in full.

There are four other operators like +:=. They are -:=, *:=, /:=, %:= and %*:=.
Their alternative representations are respectively MINUSAB, TIMESAB, DIVAB, OVERAB
and MODAB. The operators OVERAB and MODAB are only declared for operands with
modes REF INT and INT. The priority of all the operators is 1.

The assignment operators are operators, not assignments (although they per-
form an assignment), so that the previous example is not an assignment, but a
formula.

The right-hand side of an assignment can be any unit which yields a value whose
mode has one less REF than the mode of the name on the left-hand side. Names
whose mode contains more than one REF will be considered in chapter 11.

Exercises

5.1 The following identity declarations

REF CHAR s = LOC CHAR,

REF INT i = LOC INT,

REF REAL r = LOC REAL

hold in this and the following exercises.4 What is the mode of i? Ans

5.2 After the assignment r := -2.7 has been elaborated, what is the mode of
the value referred to by r? Ans

5.3 What is wrong with the assignment i := r and how would you correct it?
Ans

4The a68toc compiler requires that you write semicolons instead of commas to separate
these three declarations.

Contents Index

Chapter 5. Names 64

5.2 Assignments in formulæ

Since an assignment yields a name, it can be used in a formula. However, the
assignment must be converted into an enclosed clause (using parentheses or BEGIN
and END) ensuring that the assignment is elaborated first. For example, in

3*(a := c+4)+2

if c refers to 3, the value of the formula will be 23 with mode INT, a will refer to
7, the value of the assignment is a name of mode REF INT and c will still refer to
3. Remember that assignment is not an operator.

Here is an example of two assignments in a conditional clause:

IF a<2 THEN x := 3.2 ELSE x := -5.0 FI

This can be written with greater efficiency as

x := IF a < 2 THEN 3.2 ELSE -5.0 FI

The left-hand side of an assignment has a soft context. In a soft context,
dereferencing is not allowed (it is the only context in which dereferencing is not
allowed). In the following phrase, the conditional clause on the left yields a name
which is then assigned the value of the right-hand side:

IF a < 2 THEN x ELSE y FI := 3.5

In the next assignment, a conditional clause appears on both sides of the assignment:

(a<2|x|y) := (b<2|x|y)

The result depends on the values referred to by both a and b as much as on the
values referred to by both x and y.

Exercises

5.4 What is wrong with the following program fragment?

REF REAL x = LOC REAL,

y = LOC REAL := 3.5;

y := 4.2+x

Ans

5.5 If x refers to 3.5 and y refers to -2.5, what is the mode and value yielded
by the following phrases: Ans

(a) x := -y

(b) ABS y

5.6 What does x refer to after

x := 1.5; x PLUSAB 2.0 DIVAB 3.0

(try it in a small program). Ans

Contents Index

Chapter 5. Names 65

5.3 Multiple names

Here is an identity declaration for a name which can refer to a multiple::

REF[]INT i7 = LOC[1:7]INT

There are two things to notice about this declaration. Firstly, the mode on the
left-hand side is known as a formal-declarer. It says what the mode of the name
is, but it says nothing about how many elements there will be in any multiple to be
assigned, nor what its bounds will be. All the identity declarations for multiples in
chapter 3 used formal-declarers on the left-hand side. In fact, only formal-declarers
are used on the left-hand side of any identity declaration.

Secondly, the generator on the right-hand side is an actual-declarer. It speci-
fies how many elements can be assigned. In fact, the trimmer represents the bounds
of the multiple which can be assigned. If the lower bound is 1 it may be omitted,
so the above declaration could well have been written

REF[]INT i7 = LOC[7]INT

which can be read as “ref row of int i7 equals loc row of seven int”. The bounds
of a multiple do not have to start from 1 as we saw in chapter 3. In this identity
declaration

REF[]INT i7 at 0 = LOC[0:6]INT

the bounds of the multiple will be [0:6].

5.4 Assigning to multiple names

We can assign values to the elements of a multiple either individually or collectively.

5.4.1 Individual assignment

You may remember from chapter 3 that we can access an individual element of a
multiple by specifying the subscript(s) of that element. For example, suppose that
we wish to access the third element of i7 as declared in the last section. The rules
of the language state that a subscripted element of a multiple name is itself a name.
In fact, the elaboration of a slice of a multiple name creates a new name. Thus the
mode of i7[3] is REF INT. We can assign a value to i7[3] by placing the element
on the left-hand side of an assignment:

i7[3]:=4

Unless you define a new identifier for the new name, it will cease to exist after the
above assignment has been elaborated (see below for examples of this).

Since each element of i7 has an associated name (created by slicing) of mode
REF INT, it can be used in a formula:

i7[2]:=3*i7[i7[1]] + ENTIER(4.0/i7[3])

Contents Index

Chapter 5. Names 66

As you can see, an element was used to compute a subscript. It has been presumed
that the value obtained after dereferencing lies between 1 and 7 inclusive. If this
were not so, a run-time error would be generated. In the above assignment, all
three elements on the right-hand side of the assignment would be dereferenced
before being used in the formula. Note that subscripting (or slicing or trimming)
binds more tightly than any operator. Thus, in the last term in the above example,
i7 would be sliced first, then the yielded name dereferenced, and finally, the new
value would be divided into 4.0.

Here is a FOR loop which assigns a value to each element of i7 individually:

FOR e FROM LWB i7 TO UPB i7

DO

i7[e]:=e**3

OD

Using the bounds interrogation operators is useful because:

1. The fact that the lower bound of i7 is 1 is masked, but the formula LWB i7

ensures that the correct value is used.

2. If the bounds of i7 are changed when the program is being maintained, the
loop clause can remain unchanged. This simplifies the maintenance of Algol
68 programs.

3. The compiler can omit bounds checking. For large multiples, this can speed
up processing considerably.

Here is a program which uses a name whose mode is REF[]BOOL. It computes
all the prime numbers less than 1000 and is known as Eratosthenes’ Sieve:

PROGRAM sieve CONTEXT VOID

USE standard

BEGIN

INT size = 1000;

REF[]BOOL flags = LOC[2:size]BOOL;

FOR i FROM LWB flags TO UPB flags

DO

flags[i] := TRUE

OD;

FOR i FROM LWB flags TO UPB flags

DO

IF flags[i]

THEN

FOR k

FROM 2*i BY i TO UPB flags

DO

flags[k] := FALSE

CO Remove multiples of i CO

OD

Contents Index

Chapter 5. Names 67

FI

OD;

FOR i FROM LWB flags TO UPB flags

DO

IF flags[i] THEN print((i,blank)) FI

OD

END

FINISH

5.4.2 Collective assignment

There are two ways of assigning values collectively. Firstly, it can be done with
a row-display or a []CHAR denotation. For example, using the declaration of i7
above:

i7:=(4, -8, 11, ABS "K",

ABS TRUE, 0, ROUND 3.4)

Notice that the bounds of both i7 and the row-display are [1:7]. In the assign-
ment of a multiple, the bounds of the multiple on the right-hand side must match
the bounds of the multiple name on the left-hand side. If they differ, a fault is
generated. If the bounds are known at compile-time, the compiler will generate
an error message. If the bounds are only known at run-time (see section 5.8 on
dynamic names), a run-time error will be generated. The bounds can be changed
using a trimmer or the @ symbol (or AT). See chapter 3 for details.

The second way of assigning to the elements of a multiple collectively is to use
an identifier of a multiple with the required bounds. For example:

[]INT i3 = (1,2,3);

REF[]INT k = LOC[1:3]INT := i3

The right-hand side has been assigned to the multiple name k.
As mentioned above, parts of a multiple can be assigned using slicing or trim-

ming. For example, given the declarations

REF[,]REAL x = LOC[1:3,1:3]REAL,

y = LOC[0:2,0:2]REAL

and the assignment

x:=((1,2,3),

(4,5,6),

(7,8,9))

we can write

y[2,0]:=x[3,2]

The multiple name y is sliced yielding a name of mode REF INT. Then5 the multiple
name x is sliced also yielding a name of mode REF INT which is then dereferenced

5But because the two sides of an assignment are elaborated collaterally, the RHS might
be elaborated before the LHS or even in parallel.

Contents Index

Chapter 5. Names 68

yielding a new instance of the value to which it refers (8) which is then assigned to
the new name on the LHS of the assignment. Here is an identity-declaration which
makes the new name permanent:

REF INT y20 = y[2,0]; y20:=x[3,2]

which has its uses (see below).
Here are some examples of slicing with (implied) multiple assignments:

y := x[@0,@0];

y[2,] := x[1,@0];

y[,1] := x[2,@0]

In the first example, the right-hand side is a slice of a name whose mode is
REF[,]REAL. Because the slice has no trimmers its mode is also REF[,]REAL. Using
the @ symbol, the lower bounds of both dimensions are changed to 0, ensuring that
the bounds of the multiple name thus created match the bounds of the multiple
name y on the left. After the assignment (and the dereferencing), y will refer to a
copy of the multiple x and the name created by the slicing will no longer exist.

In the second assignment, the multiple x has been sliced yielding a name whose
mode is REF[]REAL. It refers, in fact, to the first “row” of x. The @0 ensures that
the lower bound of the second dimension of x is 0. The left-hand side yields a name
of mode REF[]REAL which refers to the last “row” of the multiple y. The name on
the right-hand side is dereferenced. After the assignment y[2,] will refer to a copy
of the first “row” of x and the name produced by the slicing will no longer exist.

In the third assignment, the second “row” of x is assigned to the second “col-
umn” of y. Again, the @0 construction ensures that the lower bound of the second
dimension of x is zero. After the assignment, the name created by the slicing will
no longer exist.

Notice how the two declarations for x and y have a common formal-declarer on
the left-hand side, with a comma between the two declarations. This is a com-
mon abbreviation. The comma means that the two declarations are elaborated
collaterally (and on a parallel processing computer, possibly in parallel).

It was stated in the section on names that names can be put on the right-hand
side of an identity declaration. This is particularly useful for accessing elements of
rows. Consider the following:

REF[]INT r = LOC[100]INT;

FOR i FROM LWB r TO UPB r DO r[i]:=i*i OD;

FOR i FROM LWB r TO UPB r-1

DO

IF REF INT ri=r[i], ri1=ri[i+1];

ri > ri1

THEN ri:=ri1

ELSE ri1:=ri

FI

OD

This is another example of optimisation, but in this case, we need names because
the THEN and ELSE clauses contain assignments. Both ri and ri1 are used thrice

Contents Index

Chapter 5. Names 69

in the conditional clause, but the multiple r is only subscripted twice in each loop.
In the condition following the IF, both ri and ri1 would be dereferenced (but not
in the identity declarations). The values of ri and ri1 remain constant: the names
are assigned new values. You can see from the identity declarations that the modes
of the names ri and ri1 are both REF INT.

Here is a program fragment which uses a REF[]REAL identity declaration for
optimisation:

REF[,]REAL m = LOC[3,4]REAL; read(m);

FOR i FROM 1 LWB m TO 1 UPB m

DO

REF[]REAL mi = m[i,];

FOR j FROM LWB mi TO UPB mi

DO

REF REAL mij = mi[j];

mij*:=mij

OD

OD;

print((m,newline))

As you can see, read behaves just like print in that a whole multiple can be read
at one go (see chapter 3 for the use of print with multiples). The only difference
between the way read is used and the way print is used is that the values for
read must be names (or identifiers of names) whereas print can use denotations
or identifiers of names or identifiers which are not names.

Exercises

5.7 After the assignments of x to y discussed above, what is the final value of y
(careful)? Ans

5.8 Given these declarations

REF[,]INT m = LOC[3:5,-2:0]INT,

REF[]INT n = LOC[1:3]INT:=(1,2,3)

Ans

(a) What is wrong with the assignment m[1,]:=n?

(b) How would you assign the second “column” of m to its third “row”?

5.9 Modify Eratosthenes’ Sieve to compute the 365th prime. Ans

Contents Index

Chapter 5. Names 70

5.5 Flexible names

In the previous section, we declared mutliple names. The bounds of the multiple to
which the name can refer are included in the generator. In subsequent assignments,
the bounds of the new multiple to be assigned must be the same as the bounds given
in the generator. In Algol 68, it is possible to declare names which can refer to
a multiple of any number of elements (including none) and, at a later time, can
refer to a different number of elements. They are called flexible names. Here is an
identity declaration for a flexible name:

REF FLEX[]INT fn = LOC FLEX[1:0]INT

There are several things to note about this declaration. Firstly, the mode of the
name is not REF[]INT, but REF FLEX[]INT. The FLEX means that the bounds of
the multiple to which the name can refer can differ from one assignment to the
next. Secondly, the bounds of the name generated at the time of the declaration
are [1:0]. Since the upper bound is less than the lower bound, the multiple is
said to be flat; in other words, it has no elements at the time of its declaration6.
Thirdly, FLEX is present on both sides of the identity declaration (but in the last
section of this chapter we shall see a way round that).

We can now assign multiples of integers to fn:

fn:=(1,2,3,4)

The bounds of the multiple to which fn now refers are [1:4]. Again, we can write

fn:=(2,3,4)

Now the bounds of the multiple to which fn refers are [1:3]. We can even write

fn:=7

in which the right-hand side will be rowed to yield a one-dimensional multiple with
bounds [1:1], and

fn:=()

giving bounds of [1:0].
In the original declaration of fn the bounds were [1:0]. The compiler will not

ignore any bounds other than [1:0], but will generate a name whose initial bounds
are those given. So the declaration

REF FLEX[]INT fn1 = LOC FLEX[1:4]INT

will cause fn1 to have the bounds [1:4] instead of [1:0].
The lower bound does not have to be 1. In this example,

REF[]INT m1 = LOC[-1:1]INT;

FOR i FROM LWB m1 TO UPB m1 DO m1[i]:=i+3 OD;

REF FLEX[]INT f1 = LOC FLEX[1:0]INT := m1

6The Revised Report mentions a “ghost element” in this context (see section 10.11 for
details)

Contents Index

Chapter 5. Names 71

the bounds of f1 after the initial assignment are [-1:1].
If a flexible name is sliced or trimmed, the resulting name is called a transient

name because it can only exist so long as the flexible name stays the same size.
Such names have a restricted use to avoid the production of names which could
refer to nothing. For example, consider the declaration and assignation

REF FLEX[]CHAR c1 = LOC FLEX[1:0]INT;

c1:="abcdef";

Suppose now we have the declaration

REF[]CHAR lc1=c1[2:4]; #WRONG#

followed by this assignment:

c1:="z";

It is clear that lc1 no longer refers to anything meaningful. Thus transient names
cannot be assigned without being dereferenced, nor given identifiers, nor used as
parameters for a routine (whether operator or procedure). However there is nothing
to prevent them being used in an assignment. For example,

REF FLEX[]CHAR s=LOC[1:0]CHAR:=

"abcdefghijklmnopqrstuvwxyz";

s[2:7]:=s[9:14]

where the name yielded by s[9:14] is immediately dereferenced. Note that the
bounds of a trim are fixed even if the value trimmed is a flexible name. So the
assignment

s[2:7]:="abc"

would produce a run-time fault.

Exercises

5.10 The declaration

REF FLEX[]CHAR s = LOC FLEX[1:0]CHAR

applies to the following: Ans

(a) What is the value of s?

(b) After the assignment

s:="aeiou"

what are the bounds of s?

Contents Index

Chapter 5. Names 72

5.6 The mode STRING

The mode STRING is defined in the standard prelude as having the same mode as
the expression FLEX[1:0]CHAR. That is, the identity declaration

REF STRING s = LOC STRING

has exactly the same effect as the declaration

REF FLEX[]CHAR s = LOC FLEX[1:0]CHAR

You will notice that although the mode indicant STRING appears on both sides of
the identity declaration for s, in the second declaration the bounds are omitted on
the left-hand side (the mode is a formal-declarer) and kept on the right-hand side
(the actual-declarer). Without getting into abstruse grammatical explanations, just
accept that if you define a mode like STRING, whenever it is used on the left-hand
side of an identity declaration the compiler will ignore the bounds inherent in its
definition.

We can now write

s:="String"

which gives bounds of [1:6] to s. We can slice that row to get a value with mode
REF CHAR which can be used in a formula. If we want to change the bounds of s,
we must assign a value which yields a value of mode []CHAR to the whole of s as in

s:="Another string" or s:=s[2:4]

Wherever []CHAR appears in chapter 3, it may be safely replaced by STRING. This
is because it is only names which are flexible so the flexibility of STRING is only
available in REF STRING declarations.

There are two operators defined in the standard prelude which use an oper-
and of mode REF STRING: PLUSAB, whose left operand has mode REF STRING and
whose right operand has mode STRING or CHAR, and PLUSTO, whose left operand
has mode STRING or CHAR and whose right operand has mode REF STRING. Using
the concatenation operator +, their actions can be summarised as follows:

a PLUSAB b ≡ a:=a+b

a PLUSTO b ≡ b:=a+b

Thus PLUSAB concatenates b onto the end of a, and PLUSTO concatenates a to the
beginning of b. Their alternative representations are +:= and +=: respectively. For
example, if a refers to "abc" and b refers to "def", after a PLUSAB b, a refers to
"abcdef", and after a PLUSTO b, b refers to "abcdefdef" (assuming the PLUSAB

was elaborated first).

Contents Index

Chapter 5. Names 73

Exercises

5.11 Write a program which declares a name with mode REF STRING and then
consecutively assigns the rows of characters "ab", "abc", upto the whole
alphabet and prints each row on a separate line. Use a FOR loop clause. Ans

5.12 Declare a flexible name which can refer to a 2-dimensional row whose elements
have mode REAL. Assign a one-dimensional row whose elements are

5.0 10.0 15.0 20.0

Write the print phrase which will display each bound on the screen followed
by a space, all on one line. Ans

5.7 Reference modes in transput

Wherever previously we have used a value of mode INT with print, we can safely
use a name with mode REF INT, and similarly with all the other modes (such as
[,]REAL). This is because the parameters for print (the identifiers or denotations
used for print) are in a firm context and so can be dereferenced before being used.

In the preamble to this chapter, print’s counterpart read was mentioned. It is
now time to examine read more closely. Generally speaking, values displayed with
print can be input with read. The main differences are that firstly, the parameters
for read must be names. For example, we may write

REF REAL r = LOC REAL;

read(r)

and the program will skip spaces, tabs and end-of-line and new-page characters
until it meets an optional sign followed by optional spaces and at least one digit,
when it will expect to read a number. If an integer is present, it will be read,
converted to the internal representation of an integer and then widened to a real.

Likewise, read may be used to read integers. The plus and minus signs (+ and
-) can precede integers and reals. Absence of a sign is taken to mean that the
number is positive. Any non-digit will terminate the reading of an integer except
for a possible sign at the start. Reals can contain e as in 3.41e5. It is best to
ensure that each number is preceded by a sign so that the reading of any preceding
number will be terminated by that sign.

For a name of mode REF CHAR, a single character will be read, newline or
newpage being called if necessary. In fact, tabs and any other control characters
(whose absolute value is less than ABS blank) will also be skipped.

If read is used to read a []CHAR with fixed bounds as in

REF[]CHAR sf = LOC[36]CHAR;

read(sf)

then the number of characters specified by the bounds will be read, newline and
newpage being called as needed. You can call newline and newpage explicitly to
ensure that the next value to be input will start at the beginning of the next line
or page.

Contents Index

Chapter 5. Names 74

Just like print, read can take more than one parameter by enclosing them in
a row-display.

You should note that the end of a line or page will not terminate the reading of
a number. So if you want to read a number from the keyboard, you should follow
the number with a non-digit before pressing “Enter”. In this case, you don’t have
to read a newline as well, but the “Enter” generates a newline and that newline
will be pending in the input.7

The only flexible name for which read can be used is REF STRING. When reading
values for REF STRING, the reading pointer will not go past the end of the current
line.8 If the reading position is already at the end of the line, the row will have no
elements. When reading a STRING, newline must be called explicitly for transput
to continue. The characters read are assigned to the name.

Exercises

5.13 Write a program to read two real numbers and then print their sum and
product. Ans

5.14 Write a program which will input text line by line (the lines being of different
length) and which will then write out each line with the characters reversed.
For example, the line "and so on" will be displayed as "no os dna". Con-
tinue reading until a line of zero length is read. Ans

5.8 Dynamic names

Hitherto, all the names which can refer to rows were declared with bounds whose
values were given by integer denotations. In fact, the bounds given on the right-
hand side of the identity declaration can be any unit which yields an integer in a
meek context. So it is quite reasonable to write

REF INT size = LOC INT; read(size);

REF[]INT a = LOC[1:size]INT

or even

REF[]INT r=

LOC[1:(REF INT i=LOC INT;

read(i);

i)]INT

since an enclosed serial clause has the value of its last unit. The value of the clause
in the parentheses is a name of mode REF INT and since the context of the clause
is meek, dereferencing is allowed. The context is passed on to the last unit in the
clause. Thus the integer read by read will be passed to the generator.

A dynamic name is one which can refer to a multiple whose bounds are deter-
mined at the time the program is elaborated. It means that you can declare names
referring to multiples of the size you actually require, rather than the maximum
size that you might ever need.

7Console input is better handled using the kbd channel described in section 13.7.2.
8See section 9.4 for details of string terminators.

Contents Index

Chapter 5. Names 75

Exercises

5.15 Declare a name which can refer to a multiple of reals whose upper bound is
determined by reading an integer from the keyoard. Ans

5.16 Write a program which will read an integer which says how many integers
follow it. Compute the sum of all the integers and print it. Ans

5.9 Loops revisited

In section 3.7, we introduced the loop clause whose start, step and finish were
specified by integer denotations. Instead of an integer, a unit which yields a value
of mode INT in a meek context can be supplied. The principle coercions not available
in a meek context are rowing and widening. In practice, almost any unit yielding
INT will do. In particular, a name with mode REF INT can be given.

There is an extra construct which is extremely useful for controlling the execu-
tion of the DO . . . OD loop. It is very common to execute a loop while a particular
condition holds. For example, while integers are negative:

WHILE

REF INT int=LOC INT; read(int); int < 0

DO

print((ABS int,newline))

OD

In this example, no loop counter was needed and so the FOR id part was omitted.
The phrase following the WHILE must be an enquiry clause yielding BOOL. In this
case, an integer is read each time the loop is elaborated until a non-negative integer
is read. The range of any declarations in the enquiry clause extends to the DO . . . OD
loop.

It happens quite often that the WHILE enquiry clause performs all the actions
which need repeating and nothing is required in the DO part. Since the loop clause
must contain at least one unit, SKIP can be used as in

FOR i FROM LWB a TO UPB a

WHILE (sum+:=a[i]) <= max

DO

SKIP

OD

The complete loop clause thus takes the form:

FOR id FROM from-unit BY by-unit TO to-unit

WHILE boolean-enquiry-clause

DO

serial clause

OD

Contents Index

Chapter 5. Names 76

Exercises

5.17 Write a program which will read integers until zero is encountered. The
program should print the sums of the negative and positive integers. Ans

5.18 Write a program which will read lines from the keyboard and then compute
a unique code for each line as follows: if "did" is read, compute the value of

ABS"d" + ABS"i"*2 + ABS"d"*3

Display the string and its corresponding number on the screen. Terminate
the program when a zero-length line has been read (if the result exceeds max
int, you will normally not get an error: just erroneous results—see section
13.3.13). Ans

5.10 Abbreviated declarations

You have now met many identity declarations. When declaring names, it is apparent
that much of the declaration is repeated on both sides. For example:

REF[]REAL r = LOC[10]REAL

Declarations of names are very common in Algol 68 programs and abbreviated
declarations are available. The above declaration can be written

LOC[10]REAL r

or, most commonly

[10]REAL r

An abbreviated declaration uses the actual-declarer (the right-hand side of an iden-
tity declaration) followed by the identifier; and if the actual-declarer contains the
generator LOC, you can omit the LOC (see section 6.1 which explains actual-declarers
and formal-declarers).

Here are some of the declarations given as examples in this chapter rewritten in
their abbreviated form:

INT a;

REAL x:=pi;

CHAR s;

[7]INT i7;

[0:6]INT i7 at 0;

[3]INT k:=(1,2,3);

[3,3]REAL x; [0:2,0:2]REAL y;

FLEX[1:0]INT fn;

[36]CHAR sf;

[(INT i; read(i); i)]INT r

Contents Index

Chapter 5. Names 77

It is important to note that identity declarations should not be mixed with ab-
breviated name declarations because the modes are quite different. For example,
in

REAL a:=2.4;

REAL b = a+2.1

the mode of a is REF REAL, but the mode of b is REAL. In the abbreviated declaration
of a name, the mode given is that of the value to which the name will refer (the
actual-declarer).

When you declare a new object, if you do not intend assigning to it, use an
identity declaration. Only declare it as a name if you intend superseding the value
to which it will refer. Remember that assignment can be dangerous because values
are superseded.

Exercises

5.19 Write abbreviated declarations for the following:
Ans

(a) REF[]CHAR rc = LOC[1000]CHAR

(b) REF FLEX[]INT fi = LOC FLEX[1:0]INT

(c) REF BOOL b = LOC BOOL := TRUE

5.20 Write full identity declarations for the following:
Ans

(a) INT a,b,c

(b) REAL x;[5]CHAR y;[3,3]REAL z

(c) FLEX[1:0]CHAR s

Contents Index

Chapter 5. Names 78

5.11 Summary

A name is a value whose mode always begins with the mode constructor REF. A
name can refer to a value whose mode starts with one less REF than the mode of
the name. An assignment causes a name to refer to a value. The value to which
a name refers can be superseded using a further assignment. An assignment is a
kind of unit and can appear in a formula if it is enclosed by parentheses (or BEGIN
and END). Multiple assignments can be used to assign the same value to more than
one name.

A name can be generated using a local or global generator and can be made to
refer to a value in the same phrase in which it is declared.

Algol 68 provides flexible names as well as fixed names for multiples. The mode
indicant for FLEX[]CHAR is defined in the standard prelude as STRING. Names for
multiples can have bounds determined at run-time.

read will convert external character sequences into internal values. Its param-
eters must be names or newline or newpage.

Name declarations may be written as identity declarations or in an abbreviated
form.

Before continuing with chapter 6, it would be wise to revise the material in the
first five chapters since these comprise the basis of the language.

Exercises

5.21 Declare a name to refer to a multiple of 1000 integers, first as an identity
declaration, and secondly in abbreviated form. Ans

5.22 Write a program which will compute the average of a number of salaries (eg,
1010.53) read from the keyboard until the number -1 is read. Display the
average on the screen. Ans

5.23 Write a program which will read a line and then scan it, writing out the
individual words on one line apiece. The program should read the line into a
REF STRING name, then remove leading and trailing spaces and add a space
to the end. Use a boolean name called in word and make it refer to FALSE. As
you step along the line, make in word refer to FALSE if you read a space and
TRUE otherwise. Keep a track of the length of the current word. Whenever
the value in word changes from TRUE to FALSE, extract the word using an
appropriate trimmer and print it. Allow for there being more than one space
between words. Ignore the possibility of commas, brackets etc. Ans

Contents Index

Chapter 6

Routines

Routines consist of two types: operators and procedures. They have much in
common, so the first section covers their common aspects. These are followed by
a section on operators and a section on procedures. The length of this chapter
reflects the importance of routines in the language.

6.1 Routines

A routine is a number of encapsulated actions which can be elaborated in their
entirety in other parts of the program. A routine has a well-defined mode. The
value of a routine is expressed as a routine denotation. Here is an example:

([]INT a)INT:

(

INT sum:=0;

FOR i FROM LWB a TO UPB a DO sum+:=i OD;

sum

)

In this example, the header of the routine is given by

([]INT a)INT:

which could be read as “with (parameter) row of INT a yielding INT”. The mode of
the routine is given by the header, less the colon and any identifiers. So the mode
of the above routine is

([]INT)INT

We say that the routine takes one parameter of mode []INT and yields a value of
mode INT.

As you can see from the body of the routine (everything except the header),
the routine yields the sum of the individual elements of the parameter. The body
of a routine is a unit. In this case, it is an enclosed clause.

79

Chapter 6. Routines 80

We have met parameters before in a different guise. The formal definition of an
identity declaration is

<formal-mode-param> = <actual-mode-param>

The formal-mode-param consists of an identifier preceded by a formal-mode-declarer
(referred to in the last chapter as a formal-declarer). An actual-mode-param is a
piece of program which yields an internal object which henceforth is identified by
the identifier. For example, in the identity declaration

[]INT a = (2,3,5,7,11)

[]INT a is the formal (mode) parameter, []INT is the formal (mode) declarer, the
identifier is a, and the actual (mode) parameter is the row-display (2,3,5,7,11).
The word “mode” was placed in parentheses because it is common usage to omit
it. Henceforth, we shall talk about formal parameters and actual parameters.

In the header of the above routine, a is declared as a formal parameter. The
mode of a is []INT. At the time the routine is declared, a does not identify a value.
That is why it is called a “formal” parameter. It is only when the routine is used
that a will identify a value. We’ll come to that later. Any identifier may be used
for the formal parameter of a routine.

In the body of the routine, a is treated as though it has a value. Since its mode
is []INT, it is a multiple and so it can be sliced to access its individual elements.

The body of the routine written above consists of an enclosed clause. In this
case, the enclosure consists of the parentheses (and), but it might well have been
written using BEGIN and END. Inside the enclosure is a serial clause consisting of
three phrases. The first is a declaration with an initial assignment. Although an
assignment yields a name, an identity declaration with an initial assignment, even
an abbreviated one, does not. This is the only exception.

The second phrase is a FOR loop clause which yields VOID (see section 6.1.4). The
third phrase consists of the identifier sum which yields its name of mode REF INT.

Now, according to the header of the routine, the routine must yield a value of
mode INT. The context of the body of a routine is strong. Although a serial clause
cannot be coerced, the context of the serial clause is passed to the last phrase of
that clause. In this case, we have a value of mode REF INT which, in a strong
context, can be coerced to a value of mode INT by dereferencing.

Exercises

6.1 What is the formal definition of an identity declaration? Ans

6.2 Why is the parameter of a routine denotation called a formal parameter?
Ans

6.3 In the routine denotation

(REAL r)INT: ENTIER r;

Ans

(a) What is the mode of the formal parameter?

Contents Index

Chapter 6. Routines 81

(b) What is the mode of the value yielded?

(c) What is the context of the body of the routine?

(d) If the value of r were -4.6, what value would the routine yield?

6.4 Write a routine which takes a parameter of mode []INT and yields a value of
mode []CHAR, where each element of the result yields the character equivalent
of the corresponding element in the parameter (use FOR and REPR). Ans

6.1.1 Routine modes

In general, a routine may have any number of parameters, including none, as we
shall see. The mode of the parameters may be any mode, and the value yielded
may be any mode. The modes written for the parameters and the yield are always
formal declarers, so no bounds are used if the modes of the parameters or yield
involve multiples.

Here is a possible header of a more complicated routine:

(INT i,REF[,]CHAR c,REAL a,REAL b)BOOL:

A minor abbreviation would be possible in this case. The

REAL a,REAL b

could be written REAL a,b giving

(INT i,REF[,]CHAR c,REAL a,b)BOOL:

Notice that the parameters are separated by commas. This means that when the
routine is used, the actual parameters are evaluated collaterally. We shall see later
that this is important when we consider side-effects.

The order in which parameters are written in the header is of no particular
significance.

The mode of the routine whose header is given above is

(INT,REF[,]CHAR,REAL,REAL)BOOL

(“with int ref row row of car real real yielding bool”).

6.1.2 Multiples as parameters

Since a formal parameter which is a multiple has no bounds written in it, any
multiple having that mode could be used as the actual parameter. This means that
if you need to know the bounds of the actual multiple, you will need to use the
bounds interrogation operators. For example, here is a routine denotation which
finds the smallest element in its multiple parameter:

([]INT a)INT:

(

INT min:=a[LWB a];

FOR i FROM LWB a TO UPB a

DO

min:=min MIN a[i]

OD;

min

)

Contents Index

Chapter 6. Routines 82

6.1.3 Names as parameters

The second parameter in the more complicated routine header given in section 6.1.1
had the mode REF[,]CHAR. When a parameter is a name, the body of the routine
can have an assignment which makes the name refer to a new value. For example,
here is a routine denotation which assigns a value to its parameter:

(REF INT a)INT: a:=2

Notice that the unit in this case is a single phrase and so does not need to be
enclosed. Here is a routine denotation which has two parameters and which yields
a value of mode BOOL:

(REF[]CHAR rc,[]CHAR c)BOOL:

IF UPB rc - LWB rc /= UPB c - LWB c

THEN FALSE

ELSE rc[:]:=c[:]; TRUE

FI

Here, the body is a conditional clause which is another kind of enclosed clause.
Note the use of trimmers to ensure that the bounds of the multiples on each side
of the assignment match.

If a flexible name could be used as an actual parameter, then the mode of the
formal parameter must include the mode constructor FLEX. For example,

(REF FLEX[]CHAR s)INT:

(CO Code to compute the number of words CO)

Of course, in this example, the mode of s could have been given as REF STRING.

6.1.4 The mode VOID

A routine must yield a value of some mode, but it is possible to throw away that
value using the voiding coercion. The mode VOID has a single value whose denota-
tion is EMPTY. In practice, because the context of the yield of a routine is strong,
use of EMPTY is usually unnecessary (but see section 8.2). Here is another way of
writing the last routine in the previous section:

(REF[]CHAR rc,[]CHAR c)VOID:

IF UPB rc - LWB rc /= UPB c - LWB c

THEN

print(("Bounds mismatch",newline));

stop

ELSE rc[:]:=c[:]

FI

This version produces an emergency error message and terminates the program
prematurely (see section 4 for details of stop). Since the yield is VOID, any value
the conditional clause might yield will be thrown away. A FOR loop yields EMPTY
and a semicolon voids the previous unit. Declarations yield no value, not even
EMPTY.

Contents Index

Chapter 6. Routines 83

6.1.5 Routines yielding names

Since the yield of a routine can be a value of any mode, a routine can yield a
name, but there is a restriction: the name yielded must have a scope larger than
the body of the routine. This means that any names declared to be local, cannot
be passed from the routine. Names which exist outwith the scope of the routine
can be passed via a parameter and yielded by the routine. For example, here is a
routine denotation which yields the name passed by such a parameter:

(REF INT a)REF INT: a:=2

Compare this routine with the first routine denotation in section 6.1.3.
In chapter 5, we said that a new name can be declared using the generator LOC.

For example, here is an identity declaration for a name:

REF INT x = LOC INT

The range of the identifier x is the smallest enclosed clause in which it has been
declared. The scope of the value it identifies is limited to that smallest enclosed
clause because the generator used is the local generator LOC. Here is a routine
which tries to yield a name declared within its body:

(INT a)REF INT:

(REF INT x = LOC INT:=a; x) #wrong!#

This routine is wrong because the scope of the name identified by x is limited to the
body of the routine. Note, however, the a68toc Algol 68 compiler provides neither
compile-time nor run-time scope checking so that it is possible to yield a locally
declared name. However, the rest of the program would be undefined—you might
or might not get meaningful things happening. When scopes are checked, this sort
of error cannot occur.

However, there is a way of yielding a name declared in a routine. This is achieved
using a global generator. If x above were declared as

REF INT x = HEAP INT

or, in abbreviated form, HEAP INT x, then the scope of the name identified by x

would be from its declaration to the end of the program even though the range of
the identifier x is limited to the body of the routine:

(INT a)REF INT: (HEAP INT x:=a; x)

Notice that the mode of the yield is still REF INT. All that has changed is the scope
of the value yielded. Of course, you would not be able to identify the yielded name
using x, but we’ll come to that problem when we deal with how routines are used.
Notice that the global generator is written HEAP instead of GLOB as you might expect.
This is because global generators use a different method of allocating storage for
names with global scope and, historically, this different method is recorded in the
mode constructor.

The difference between range and scope is that identifiers have range, but values
have scope. Furthermore, denotations have global scope.

Contents Index

Chapter 6. Routines 84

Exercises

6.5 Write the header of a routine with a parameter of mode REF REAL and which
yields a value of mode REAL. Ans

6.6 Write the header of a routine which takes two parameters each of which is a
name of mode REF CHAR, and yields a name of mode REF CHAR. Ans

6.7 Write a routine which takes a parameter of mode STRING and yields a value
of mode []STRING consisting of the words of the parameter (use your answer
to exercises in section 5.11). Ans

6.1.6 Parameterless routines

A routine can have no parameters. In the header, the parentheses normally enclos-
ing the formal parameter list (either one parameter, or more than one separated by
commas) are also omitted. Here is a routine with no parameters and which yields
a value of mode INT:

INT: 2*3**4 - ENTIER 36.5

It would be more usual to use identifiers which had been declared in some enclosing
range. For example,

INT: 2*a**4 - ENTIER b

Routines which have no parameters and yield no value are fairly common. For
example,

VOID: print(2)

Strictly speaking, there is one value having the mode VOID, but there’s not a lot
you can do with it. In practice, VOID routines usually use identifiers declared in an
enclosing range (they are called identifiers global to the routine). For example:

VOID: (x:=a; x<=2|print(x)|print("Over 2"))

where the body is an abbreviated conditional clause, and x and a have been declared
globally with appropriate modes.

Assignment of values to names declared globally1 to the routine is known as
a side-effect. We shall deal with side-effects when we describe how routines are
used, and we shall show why side-effects are undesirable. If you write parameterless
routines, it is preferable not to put any assignments to globally-declared names in
them. In fact, it would be safer to say: “In a routine, don’t assign to names not
declared in the routine or not provided as parameters”. Side-effects are messy and
are usually a sign of badly designed programs. It is better to use a parameter (or
an extra parameter) using a name, and then assign to that name. This ensures
that values can only get into or out of your routines via the header, and results in
a much cleaner design. Cleanly designed programs are easier to write and easier to
maintain.

1The phrase “names declared globally” is intended to mean here that the names have
been declared in a range which encloses the routine, not that HEAP has necessarily been
used in the declaration. We use the phrase “a global name” in the latter case.

Contents Index

Chapter 6. Routines 85

Exercises

6.8 Write the header of a routine which yields a value of mode REAL, but takes
no parameters. Ans

6.9 Write a routine of mode VOID which prints

Hi, there

on your screen. Ans

6.2 Operators

In the preamble to this chapter, it was mentioned that routines consist of two kinds:
procedures and operators. See section 6.3 for details of procedures.

An operator has a mode and a value (its routine denotation) and, if dyadic,
a priority. The parameters to routines which are defined as operators are called
operands. Monadic operators, while not having a priority, behave as though they
had a priority greater than any dyadic operator and take one operand and yield a
value of some mode.

Here is an identity declaration of the monadic operator B:

OP(INT)INT B = (INT a)INT: a

There are several points to note.

1. The mode of the operator is OP(INT)INT. That is, it takes a single operand
of mode INT and yields a value of mode INT.

2. The symbol for the operator looks like a mode indicant. It isn’t a mode indi-
cant, but obeys the same rules (starts with an uppercase letter and possibly
continues with uppercase letters or digits, and no spaces are allowed inside
the symbol).

3. The right-hand side of the identity declaration is a routine denotation. A
special identity declaration is used for operators: instead of the mode of the
operator, the mode constructor OP is used followed by the operator symbol.
The abbreviated declaration of the operator B is

OP B = (INT a)INT: a

Chapter 2 described how operators are used in formulæ. A possible formula
using B could be

B 2

which would yield 2.

Contents Index

Chapter 6. Routines 86

6.2.1 Identification of operators

This section is more difficult than preceding sections and could be omitted on a
first reading. You are unlikely to fall afoul of what is described here unless you are
declaring many new operators.

One of the most useful properties of operators is that there can be more than one
declaration of the same operator symbol using an operand having a different mode.
This is called “operator overloading”. How does the compiler know which version of
the operator to use? Before answering this question, consider the following program
fragment:

1 BEGIN

2 OP D = (INT a)INT: a+2;

3 OP D = (REAL a)REAL: a+2.0;

4 REAL x:=1.5, a:=-2.0; INT i:=4;

5

6 x:=IF OP D = (REF REAL a)REF REAL:

7 a+:=2.0;

8 ENTIER(D a:=x) > i

9 THEN D i

10 ELSE D x

11 FI;

12

13 OP D = (REF REAL a)REF REAL: a+:=3.0;

14 x:=D a

15 END

The numbers on the left-hand side are not part of the program. As you can see,
there are four declarations of D: one with an INT operand, one with a REAL operand
and two with a REF REAL operand. If you try compiling this you will get the error

ERROR (146) more than one version of D

for the last declaration. There are two points to be made here.

1. Outside the conditional clause, there are three declarations of D: on lines 2, 3
and 13. Now, an operator is used in a formula and the context of the operand
of an operator is firm. Of the coercions we have met so far, only one, namely
dereferencing, is allowed in a firm context. If you look at the assignment on
line 14, you can see that the mode of the operand of D is REF REAL (from the
declaration of a on line 4). Now a value of mode REF REAL is firmly coercible
to REAL (by dereferencing). So there are two declarations of D which could be
used: the declaration on line 3 and the declaration on line 13 (the range of
the declaration on line 6 is confined to the conditional clause). According to
the rules for the identification of operators (see below), the compiler would
not be able to distinguish between the two declarations. Hence the error
message.

2. Why did the identical declaration of D on line 6 not cause a similar error
message? Answer: because the declaration on line 6 is at the start of a
new range: the enclosed clause starting on line 6 and extending to the FI

on line 11. Since that is a new range, any operator declarations with a

Contents Index

Chapter 6. Routines 87

mode which is firmly related to the mode of an operator declared in an
outer range makes the declaration in the outer range inaccessible. Thus, the
assignment on line 8 will use the version of D declared on line 6, the D on
line 9 identifies the D declared on line 2, and the D on line 10 again uses the
D declared on line 6.

Thus, in determining which operator to use, the compiler firstly finds a decla-
ration whose mode can be obtained from the operands in question using any of the
coercions allowed in a firm context (chapter 10 will state all the coercions allowed).
Secondly, it will use the declaration in the smallest range enclosing the formula.

The declaration of an object is known as its defining occurrence. Where the
object is used is called its applied occurrence. In practice, it is rare to find like
operator declarations in nested ranges.

Exercises

6.10 This and the following exercise use the following program fragment:

1 IF

2 OP T = (INT a)INT: a*a;

3 OP T = (CHAR a)INT: ABS a * ABS a;

4 INT p:=3, q:=4; CHAR c:=REPR 3;

5 T p < T c

6 THEN

7 OP T = (REF INT a)REF INT: a*:=a;

8 IF T 4 < T q

9 THEN "Yes"

10 ELSE T REPR 2

11 FI

12 ELSE T c > T q

13 FI

There are 3 defining occurrences of the operator T on lines 2, 3 and 7. There
are 7 applied occurrences of the operator (on lines 5, 8, 10 and 12). Which
defining occurrence is used for each applied occurrence? Ans

6.11 What is the mode and value yielded by Ans

(a) T q on line 8

(b) T q on line 12

(c) T c on line 12

(d) T REPR 2 on line 10

6.12 What is wrong with these two declarations occurring in the same range:

OP TT = ([]INT a)[]INT:

FOR i FROM LWB a TO UPB a

DO print(a[i]*3) OD;

OP TT = (REF[]INT a)[]INT:

FOR i FROM LWB a TO UPB a

DO print(a[i]*3) OD

Contents Index

Chapter 6. Routines 88

Ans

6.2.2 Operator usage

Before we go on to dyadic operators, there is one more point to consider. Given
the operator declaration

OP PLUS2 = (REAL a)REAL: a+2.0

what is the mechanism by which the formal parameter gets its value? Firstly, we
must remember that a particular version of the operator is chosen on the basis of
firmly relatedness. In other words, only coercions allowed in a firm context can
determine which declaration of the operator to use. Secondly, in elaborating the
formula

PLUS2 x

where x has the mode REF REAL, the compiler elaborates the identity declaration

REAL a = x

where REAL a is the formal parameter. Since the context of the right-hand side
of an identity declaration is strong, any of the strong coercions would normally be
allowed (all coercions, including dereferencing). However, because the version of
the operator was chosen on the basis of firmly relatedness, the coercions available
in a strong context which are not available in a firm context (that is, widening and
rowing) are not available in the context of an operand. If an operand of mode INT is
supplied to an operator requiring a REAL, the compiler will flag an error: widening
would not occur. This is the only exception to the rule that the right-hand side of
an identity declaration is a strong context.

It was pointed out in section 6.1.5 that a routine can yield a name. An operator
does not usually yield a name because subsequent use of the name usually involves
dereferencing and using the value the name refers to. However, here is an operator
declaration which yields a name of a multiple which is used in a subsequent phrase:

OP NAME = (INT a)REF[]INT:

(HEAP[2]INT x:=(a,a); x);

REF[]INT a = NAME 3

After the elaboration of the identity declaration, the name could be accessed wher-
ever necessary.

Contents Index

Chapter 6. Routines 89

Exercises

6.13 Given the declarations

OP M3 = (INT i)INT: i-3;

OP M3 = ([]INT i)[]INT:

FORALL n IN i DO n-3 OD;

INT i:=1,[3]INT j:=(1,2,3)

which operator declarations would be used for the following formulæ Ans

(a) M3 i

(b) M3 j[2]

(c) M3 j

(d) M3 j[:2]

6.2.3 Dyadic operators

The only differences between monadic and dyadic operators are that the latter
have a priority and take two operands. Therefore the routine denotation used for
a dyadic operator has two formal parameters. The priority of a dyadic operator is
declared using the indicant PRIO:

PRIO HMEAN = 7; PRIO WHMEAN = 6

The declaration of the priority of the operator uses an integer denotation in the
range 1 to 9 on the right-hand side.

Consecutive priority declarations do not need to repeat the PRIO, but can be ab-
breviated in the usual way. The priority declaration relates to the operator symbol.
Hence the same operator cannot have two different priorities in the same range,
but there is no reason why an operator cannot have different priorities in different
ranges. A priority declaration does not count as a declaration when determining
the scope of a local name.

If an existing operator symbol is used in a new declaration, the priority of the
new operator must be the same as the old if it is in the same range, so the priority
declaration should be omitted.

The identification of dyadic operators proceeds exactly as for monadic opera-
tors except that the most recently declared priority in the same range is used to
determine the order of elaboration of operators in a formula. Again, two operators
using the same symbol cannot be declared in the same range if they have firmly
related modes (see section 6.2.1).

These declarations apply to the remainder of this section:

PRIO HMEAN = 7, WHMEAN = 6;

OP HMEAN = (REAL a,b)REAL:

2.0/(1.0/a+1.0/b);

OP WHMEAN = (REAL a,b)REAL:

2.0/(1.0/a+2.0/b)

If HMEAN appears in the formula

Contents Index

Chapter 6. Routines 90

x HMEAN y

where x and y both have mode REF REAL, the compiler constructs the identity
declarations

REAL a = x, REAL b = y

Notice that the two identity declarations are elaborated collaterally (due to the
comma separating them), which could be important (see below). If x refers to 2.5

and y refers to 3.5, the formula will yield

2.0/(1.0/2.5 + 1.0/3.5)

which is 2.916̇. Likewise, the formula

x WHMEAN y

would yield 2 · 058 823 529 411 76. Now consider the formula

(x+:=1.0) WHMEAN (x+:=1.0)

which cause the value referred to by x to be incremented twice as a side-effect. The
resulting identity declarations are

REAL a = (x+:=1.0), REAL b = (x+:=1.0)

The definition of Algol 68 says that the operands of a dyadic operator should be
elaborated collaterally, so the order of elaboration is unknown. Suppose x refers to
1.0 before the formula is elaborated. There are three cases:

1. The identity declaration for a is elaborated first, giving a=2.0 and b=3.0.
The formula will yield 1.714 285 714.

2. The identity declaration for b is elaborated first, giving b=2.0 and a=3.0.
The formula will yield 1.5.

3. The identity declarations are elaborated in parallel. In this case, the result
could be indeterminate.

If you compile a program using a68toc with the declaration for WHMEAN and try to
compute the formula given above, you get the result +1.5000000000000000 which
suggests that case 2 holds.

If x refers to 1.0, then the formula

1.0/(x+:=1.0) + 1.0/(x+:=1.0)

yields +.83333333333333339e +0 which is correct provided that the two operands
are elaborated sequentially. The moral of all this is: avoid side-effects like the
plague.

What happens if the identifier of an actual parameter is the same as the identifier
of the formal parameter? There is no clash. Consider the identity declaration

INT a = a

where the a on the left-hand side is the formal parameter for a routine denotation,
and the a on the right-hand side is an actual parameter declared in some surround-
ing range. The formal parameter occurs at the start of a new range. Within that
range, the identifier a in the outer range becomes inaccessible, but at the moment
that the identity declaration is being elaborated, the formal parameter is made to
identify the value of the actual parameter which, of course, is not an identifier. So
go ahead and use identical identifiers for formal parameters and actual parameters.

Contents Index

Chapter 6. Routines 91

6.2.4 Operator symbols

Most of the operators described in chapters 2 to 5 used symbols rather than upper-
case letters. You may use any combination of the <=>*/: symbols (and any number
of them) except :=, :=: and :/=: (the latter two are described in chapter 11). Any
of the symbols +-?&% can only start a compound symbol. Of course, they can
stand on their own for an operator. In chapter 11, you will find the << and >>

operators described as well as more declarations for existing operators. Here are
some declarations of operators using the above rules:

OP *** = (INT a)INT: a*a*a;

OP %< = (CHAR c)CHAR: (c<" "|" "|c);

OP -:: = (CHAR c)INT: (ABS c-ABS"0")

We have now covered everything about operators in the language.

Exercises

6.14 Why are side-effects undesirable? Ans

6.15 What is wrong with these operator symbols: Ans

(a) M*

(b) %+/

(c) :=:

6.16 Declare an operator using the symbol PP which will add 1 to the value its
REF INT operand refers to, and which will yield the name of its parameter.
Ans

6.3 Procedures

The second way of using routines is to declare them as procedures. We have seen
that an operator can be declared and used, have a mode and a value (its routine
denotation), but apart from having an operator symbol, it cannot be identified with
an identifier in the way that a name or a denotation of a CHAR value can. Procedures
are quite different.

Firstly, here are some general remarks on the way procedures differ from op-
erators. The mode of a procedure always starts with the mode constructor PROC.
A procedure can have any number of parameters, including none. Two procedures
having the same identifier cannot be declared in the same range (so “overloading”
is not allowed). When a procedure is used, its parameters, if any, are in a strong
context. This means that rowing and widening are available.

Procedures are declared using the mode constructor PROC. Here is a procedure
which creates a range of characters:

PROC(CHAR,CHAR)[]CHAR range =

(CHAR a,b)[]CHAR:

BEGIN

Contents Index

Chapter 6. Routines 92

CHAR aa,bb;

(a<=b|aa:=a; bb:=b|aa:=b; bb:=a);

[ABS aa:ABS bb]CHAR r;

FOR i

FROM LWB r TO UPB r

DO

r[i]:=REPR i

OD;

r

END

This procedure identity declaration resembles the declaration for a multiple: much
of the mode is repeated on the right-hand side and the formal-declarer on the left-
hand side has no identifiers for the modes of the parameters. Notice that the modes
of the parameters must be repeated in the formal-declarer, but that the mode of
the procedure on the right-hand side can contain the usual abbreviation. Here is
the abbreviated header:

PROC range = (CHAR a,b)[]CHAR:

The formal-declarer is important for creating synonyms:

PROC(REAL)REAL sine = sin

Two or more procedure declarations can be separated by commas, even if the
procedures have different modes. Consider, for example:

PROC pa = (INT i)INT: i*i,

pb = (INT i)CHAR: REPR(i*i),

pc = (INT i)REAL: (i=0|0|1/i)

6.3.1 Parameterless procedures

Procedures can have no parameters. Suppose the following names have been de-
clared:

INT i,j

Here is a procedure with mode PROC INT which yields an INT:

PROC INT p1 = INT: i:=3+j

A procedure can be invoked or called by writing its identifier. For example, the
procedure p1 would be called by

p1

or

INT a = p1

Contents Index

Chapter 6. Routines 93

The right-hand side of this identity declaration requires a value of mode INT, but
it has been given a unit of mode PROC INT. This is converted into a value of mode
INT by the coercion known as deproceduring. This coercion is available in every
context (even soft).

Have you realised that print must be the identifier of a procedure? Well done!
However, we cannot talk about its parameters yet because we don’t know enough
about the language.

Here is another procedure which yields a name of mode REF INT. The mode of
the procedure is PROC REF INT:

PROC p2 = REF INT: IF i < 0 THEN i ELSE j FI

and assumes that the names identified by i and j had already been declared. Here
is an identity declaration which uses p2:

REF INT i or j = p2

Because p2 yields a name, it can be used on the left-hand side of an assignment:

p2:=4

Here, 4 will be assigned to i or j depending on the value i refers to. The left-hand
side of an assignment has a soft context in which only the deproceduring coercion
is allowed.

In procedures p1 and p2, the identifier i had been declared globally to the
procedures. Assignment to such an identifier is, as already stated, a side-effect.
Here is another procedure of mode PROC INT which uses a global identifier, but
does not assign to it:

PROC p3 = REAL:

(

[i]REAL a; read((a,newline));

REAL sum:=0.0;

FOR i FROM LWB a TO UPB a

DO

sum+:=a[i]

OD;

sum

)

and here is a call of p3:

print(p3)

In the identity declaration

REAL r = p2

p2 is deprocedured to yield a name of mode REF INT, dereferenced to yield an INT,
and then widened to yield a REAL. All these coercions are available in a strong
context (the right-hand side of an identity declaration).

The call of a procedure can appear in a formula without parentheses. Here is
an example:

Contents Index

Chapter 6. Routines 94

p2:=p1 * ROUND p3

If we call the procedure p1, declared above, its value does not have to be used. For
example, in

p1;

the value yielded by p1 has been voided by the following semicolon after the pro-
cedure had been called.

In the section on routines, we introduced the mode VOID. Here is a procedure
yielding VOID:

PROC p4 = VOID: print(p3)

and a possible use:

; p4;

where the semicolons show that the call stands on its own.
When a parameterless procedure yields a multiple, the call of that procedure

can be sliced to get an individual element. For example, suppose we declare

PROC p5 = [,]REAL:

(

[i,j]REAL a;

read((a,newline));

a

)

where i and j were declared above, and then call p5 in the formula

REAL x = p5[i-3,j] * 2

When p5 is called, it yields a two-dimensional multiple of mode [,]REAL which is
then sliced using the two subscripts (assuming that i-3 is within the bounds of the
first dimension) to yield a value of mode REAL, which is then used in the formula.

Procedure p2, declared above, yielded a name declared globally to the proce-
dure. As explained in the sections on routines, a procedure cannot yield a locally-
generated name. However, if the name is generated using HEAP, then the name can
be yielded as in p6:

PROC p6 = REF INT: (HEAP INT i:=3; i)

Here is a call of p6 where the yielded name is captured with an identity declaration:

REF INT global int = p6

Then print(global int) will display 3.
The yield of a procedure can be another procedure. Consider this program

fragment:

Contents Index

Chapter 6. Routines 95

PROC q2 = INT: max int % 2,

q3 = INT: max int % 3,

q4 = INT: max int % 4,

q5 = INT: max int % 5;

INT i; read((i,newline));

PROC q = PROC INT:

CASE i+1 IN q2,q3,q4 OUT q5 ESAC

Procedure q will yield one of the predeclared procedures depending on the value of
i. Here, the yielded procedure will not be deprocedured because the mode required
is a procedure.

One parameterless procedure is provided in the standard prelude. Its identifier
is random, and when called returns the next pseudo-random real number of a series.
If called a large number of times, the numbers yielded are uniformly distributed in
the range [0, 1).

Exercises

6.17 Write a procedure which assigns a value to a name declared globally to the
procedure. Ans

6.18 Write a procedure which reads an integer from the keyboard, then declares
a dynamic name of a multiple of one dimension, and reads that number of
integers from the keyboard. Now compute the sum of all the integers, and
yield its value as the yield of the procedure. Ans

6.19 Write a procedure which yields the name of a two dimensional multiple con-
taining characters read from the keyboard. The mode of the multiple should
be REF[,]CHAR. Ans

6.3.2 Procedures with parameters

Parameters of procedures can have any mode (including procedures). Unlike oper-
ators, procedures can have any number of parameters. The parameters are written
as a parameter list which consists of one parameter, or two or more separated by
commas.

Here is a procedure with a single parameter:

PROC(INT)CHAR p7 = (INT i)CHAR: REPR(i>0|i|0)

This is a full identity declaration for p7. It can be abbreviated to

PROC p7 = (INT i)CHAR: REPR(i>0|i|0)

The mode of p7 is PROC(INT)CHAR. That is, p7 is a procedure with a single integer
parameter and yielding a character. Here is a call of p7:

CHAR c = p7(-3)

Contents Index

Chapter 6. Routines 96

Note that the single parameter is written between parentheses. Since the context
of an actual parameter of a procedure is strong, a name of mode REF INT could be
used:

CHAR c = p7(i)

or

CHAR c = p7(ai[j])

where ai has mode REF[]INT and j has mode INT or REF INT or PROC INT (or
even PROC REF INT).

Here is a procedure which takes three parameters:

PROC char in string =

(CHAR c,REF INT p,STRING s)BOOL:

(

BOOL found:= FALSE;

FOR k FROM LWB s TO UPB s

WHILE NOT found

DO

(c = s[k] | i:=k; found:= TRUE)

OD;

found

)

The procedure (which is in the standard prelude) tests whether a character is in
a string, and if it is, returns its position in the parameter p. The procedure yields
TRUE if the character is in the string, and FALSE if not. Here is a possible call of
the procedure:

IF INT p; char in string(char,"abcde",p)

THEN ...

where char was declared in an outer range. Notice that the REF INT parameter of
char in string is not assigned a new value if the character is not found in the
string.

When calling a procedure, the call must supply the same number of actual
parameters, and in the same order, as there are formal parameters in the procedure
declaration.

If a multiple is one of the formal parameters, a row-display can be supplied
as an actual parameter (remember that a row-display can only occur in a strong
context). In this case, the row-display counts as a single parameter, but the number
of elements in the row-display can differ in successive calls since the bounds of
the multiple can be determined by the procedure using the bounds interrogation
operators. Here is an example:

PROC pb = ([]INT m)INT:

(INT sum:=0;

FOR i FROM LWB m TO UPB m DO sum+:= m[i] OD;

sum)

and here are some calls of pb:

Contents Index

Chapter 6. Routines 97

pb((1,2,3)) pb((2,3,5,7,11,13))

Again, procedures with parameters can assign to, or use, globally declared names
and other values, but it is better to include the name in the header of the procedure.
Here is a procedure which reads data into a globally declared multiple using that
multiple as a parameter:

PROC rm = (REF[]REAL a)VOID:

read((a,newline))

It could now be called by

rm(multiple)

where multiple had been previously declared as having mode REF[]REAL.
As described in section 6.1.3, a flexible name can be used as an actual parameter

provided that the formal parameter has also been declared as being flexible. For
example, here is a procedure which takes a single parameter of mode REF STRING

and which yields an INT:

PROC read line = (REF STRING s)INT:

(

read((s,newline));

UPB s #LWB is 1#

)

read line reads the next line of characters from the keyboard, assigns it to its
parameter, which is a flexible name, and yields the length of the line.

Exercises

6.20 Write a procedure which takes a REF REAL parameter, divides the value it
refers to by π, multiplies it by 180, assigns the final value to its parameter,
and yields the parameter (that is, its name). Ans

6.21 Write a procedure which takes two parameters: the first should have mode
STRING and the second mode INT. Display the string on the screen the number
of times given by the integer. If the integer is negative, display a newline
first and then use the absolute value (use the operator ABS) of the integer.
Yield the mode VOID. Ans

6.22 Write a procedure, identified as num in multiple, which does for an integer
what char in string does for a character. Ans

Contents Index

Chapter 6. Routines 98

6.3.3 Procedures as parameters

Here is a procedure which takes a procedure as a parameter:

PROC sum = (INT n,PROC(INT)REAL p)REAL:

(

REAL s:=0;

FOR i TO n DO s+:=p(i) OD;

s

)

Notice that the mode of the procedure parameter is a formal mode so no identifier
is required for its INT parameter in the header of the procedure sum. In the loop
clause, the procedure is called with an actual parameter.

When a parameter must be a procedure, there are two ways in which it can be
supplied. Firstly, a predeclared procedure identifier can be supplied, as in

PROC pa = (INT a)REAL: 1/a;

sum(34,pa)

Secondly, a routine denotation can be supplied:

sum(34,(INT a)REAL: 1/a)

A routine denotation is a unit. In this case, the routine denotation has the mode
PROC(INT)REAL, so it can be used in the call of sum. Notice also that, because the
routine denotation is an actual parameter, its header includes the identifier a. In
fact, routine denotations can be used wherever a procedure is required, so long as
the denotation has the required mode. The routine denotation given in the call is
on the right-hand side of the implied identity declaration of the elaboration of the
parameter. It is an example of an anonymous routine denotation.

Exercises

6.23 Given the declaration of sum in the text, what is the value of: Ans

(a) sum(4,(INT a)REAL: a)

(b) sum(2,(INT b)REAL: 1/(5*b))

(c) sum(0,pa) (pa is declared in the text)

Contents Index

Chapter 6. Routines 99

6.3.4 Recursion

One of the fun aspects of using procedures is that a procedure can call itself. This
is known as recursion. For example, here is a simplistic way of calculating a
factorial:

PROC factorial = (INT n)INT:

(n=1|1|n*factorial(n-1))

Try it with the call

factorial(7)

Here is another recursively defined procedure which displays an integer on the screen
in minimum space:

PROC ai = (INT i)VOID:

IF i < 0 THEN print("-"); ai(ABS i)

ELIF i < 10 THEN print(REPR(i+ABS"0"))

ELSE ai(i%10); ai(i MOD 10)

FI

In each of these two cases, the procedure includes a test which chooses between
a recursive call and phrases which do not result in a recursive call. This is nec-
essary because, otherwise, the procedure would never complete. Neither of these
procedures uses a locally declared value. Here is one which does:

PROC new fact = (INT i)INT:

IF INT n:=i-1; n = 1

THEN 2

ELSE i*new fact(n)

FI

The example is somewhat artificial, but illustrates the point. If new fact is called
by, for example, new fact(3), then in the first call, n will have the value 2, and
new fact will be called again with the parameter equal to 2. In the second call, n
will be 1, but this n this time round will be a new n, with the first n inaccessible
(it being declared in an enclosing range). new fact will yield 2, and this value will
be used in the formula on line 4 of the procedure. The first call to new fact will
then exit with the value 6.

Apart from being fun, recursive procedures can be an efficient way of program-
ming a particular problem. Chapter 11 deals with, amongst other topics, recursive
modes, and there, recursive programming comes into its own.

A different form of recursion, known as mutual recursion, is exemplified by
two procedures which call each other. You have to ensure there is no circularity. The
principal difficulty of how to use a procedure before it has been declared is overcome
by first declaring a procedure name and then assigning a routine denotation to the
procedure name after the other procedure has been declared. Here is a simple
example:2

2A compiler which implements the Algol 68 defined by the Revised Report would not
have to resort to this device because the declaration of each procedure would be available
everywhere in the enclosing range (but see section 6.3.6).

Contents Index

Chapter 6. Routines 100

PROC(INT)INT pb;

PROC pa = (INT i)INT: (i>0|pb(i-1)|i);

pb:=(INT i)INT: (i<0|pa(i+1)|i);

Then pa(4) would yield 3 and pa(-4) would yield -4. Similarly, pb(4) would yield
4 and pb(-4) would yield -3. Notice that the right-hand side of the assignment is
an anonymous routine denotation.

Exercises

6.24 Write a recursive procedure to reverse the order of letters in a value of mode
[]CHAR. It should yield a value also of mode []CHAR. Ans

6.25 Write two mutually recursive procedures which take an integer parameter and
which yield an INT. The first should call the second if the parameter is odd,
and the second should call the first if the parameter is even. The alternative
option should yield the square of the parameter for the first procedure and
the cube of the parameter for the second procedure. Use square and cube

as the procedure identifiers. Ans

6.3.5 Standard procedures

The standard prelude contains the declarations of more than 60 procedures, most
of them concerned with transput (see chapter nine). A number of procedures, all
having the mode

PROC(REAL)REAL

are declared in the standard prelude and yield the values of common mathematical
functions. These are sqrt, exp, ln, cos, sin, tan, arctan, arcsin and arccos.
Naturally, you must be careful to ensure that the actual parameter for sqrt is non-
negative, and that the actual parameter for ln is greater than zero. The procedures
cos, sin and tan expect their REAL parameter to be in radians.

New procedures using these predeclared procedures can be declared:

PROC sinh =

(REAL x)REAL: (exp(x) + exp(-x))/2

A variety of pseudo-random numbers can be produced using random int. The
mode of the procedure random int is

PROC(INT)INT

and yields a pseudo-random integer greater than or equal to one, and less than or
equal to its integer parameter. For example, here is a procedure which will compute
the percentage of each possible die throw in 10 000 such throws:

Contents Index

Chapter 6. Routines 101

PROC percentage = []REAL:

(

PROC throw = INT: random int(6);

[6]REAL result:=(0,0,0,0,0,0);

TO 10 000 DO result[throw]+:=1 OD;

FOR i FROM LWB result TO UPB result

DO result[i] /:= 10 000 OD;

result

)

Notice that percentage has another procedure (throw) declared within it. There
is no limit to such nesting.

6.3.6 Other features of procedures

Since a procedure is a value, it is possible to declare values whose modes include a
procedure mode. For example, here is a multiple of procedures:

[]PROC(REAL)REAL pr = (sin,cos,tan)

and here is a possible call:

pr2

which yields −0.416 146 836 5. We could also declare a procedure which could be
called with the expression

pr(2)[2]

but this is left as an exercise.
Similarly, names of procedures can be declared and can be quite useful. Instead

of declaring

PROC pc = (INT i)PROC(REAL)REAL: pr[i]

using pr declared above, with a possible call of pc(2) we could write

PROC(REAL)REAL pn:=pr[i]

and then use pn instead of pc. The advantage of this would be that pr would be
subscripted only once instead of whenever pc is elaborated. Furthermore, another
procedure could be assigned to pn and the procedure it refers to again called. Using
pn would usually involve dereferencing.

There are scoping problems involved with procedure names. Although the scope
of a denotation is global, procedure denotations may include an identifier whose
range is not global. For this reason, the scope of a procedure denotation is limited
to the smallest enclosing clause containing a declaration of an identifier or mode or
operator indicant which is used in the procedure denotation.

For example, in this program fragment

Contents Index

Chapter 6. Routines 102

PROC REAL pp; REAL y;

BEGIN

REAL x:=3.0;

PROC p = REAL: x:=4.0;

print(p);

pp:=p; CO wrong CO

print(x)

END;

print(("pp=",pp)) #wrong#

the assignment in line 6 is wrong because the scope of the right-hand side is less
than the scope of the left-hand side. Unfortunately, the a68toc compiler does not
perform scope checking and so will not flag the incorrect assignment.

There are times when SKIP is useful in a procedure declaration:

PROC p = REAL:

IF x<0

THEN print("Negative parameter"); stop; SKIP

ELSE sqrt(x)

FI

The yield of the procedure is REAL, so each part of the conditional clause must
yield a value of mode REAL. The construct stop yields VOID, and even in a strong
context, VOID cannot be coerced to REAL. However, SKIP will yield an undefined
value of any required mode. In this case, SKIP yields a value of mode REAL, but the
value is never used, because the program is terminated just before.

Grouping your program into procedures helps to keep the logic simple at each
level. Nesting procedures makes sense when the nested procedures are used only
within the outer procedures. This topic is covered in greater depth in chapter 12.

6.4 Summary

The fact that this is one of the longer chapters in the book reflects the importance
of routines in Algol 68 programs. Every formula uses operators, and procedures
enable a program to be written in small chunks and tested in a piecewise manner.

A routine denotation forms the basis of both operators and procedures. Routine
denotations have a well-defined mode, the value being the denotation itself. A
routine can declare identifiers within its body, including other routines (whether
operators or procedures).

Operators can have one or two operands (as the parameters are called) and
usually yield a value of some mode other than VOID. Dyadic operators have a
priority of 1 to 9. Firmly related operators cannot be declared in the same range.
The operator symbol can be a bold indicant (like a mode indicant) or one of or a
combination of various symbols.

Procedures can have none or more parameters of any mode, and can yield a
value of any mode (including VOID). Procedures can call themselves: this is known
as recursion.

Rows of procedures, names of procedures and other modes using procedure
modes can all be declared and, on occasion, can be useful.

Here are some exercises which cover some of the topics discussed in this rather
long chapter.

Contents Index

Chapter 6. Routines 103

Exercises

6.26 At the time of the call of a procedure or operator, what is the relationship
between the formal parameters and the actual parameters? Ans

6.27 Write an operator which will find the largest element in its two-dimensional
row-of-reals parameter. Ans

6.28 Write a procedure, identified by pr, which can be called by the phrase
pr(2)[2]. Ans

6.29 Write a procedure which computes the length of a line read from the key-
board. Ans

Contents Index

Chapter 7

Structures

Structures are a powerful piece of Algol 68, particularly when combined with the
unions described in the next chapter. In this chapter, we shall meet another mode
constructor, examine complex numbers and their associated operators and learn
how to construct new modes. In doing so, you will deepen your understanding of
the language.

7.1 Structure denotations

In chapter 3, we saw how a number of individual values can be collected together
to form a multiple whose mode was expressed as “row of” the base mode. The
principal characteristic of multiples is that all the elements have the same mode.
A structure is another way of grouping data elements, but in this case, the indi-
vidual parts can be, but need not be, of different modes. In general, accessing the
elements of a multiple is determined at run-time by the elaboration of a slice. In
a structure, access to the individual parts, called fields, are determined at compile
time. Structures are, therefore, an efficient means of grouping data elements.

The mode constructor STRUCT is used to create structure modes. Here is a
simple identity declaration of a structure:

STRUCT(INT i,CHAR c) s = (2,"e")

The mode of the structure is

STRUCT(INT i,CHAR c)

and its identifier is s. The i and the c are called field selectors and are part of
the mode. They are not identifiers, even though the rule for identifier construction
applies to them, because they are not values in themselves. You cannot say that
i has mode INT because i cannot stand by itself. We shall see in the next section
how they are used.

The expression to the right of the equals symbol is called a structure-display.
Like row-displays, structure-displays can only appear in a strong context. In a
strong context, the compiler can determine which mode is required and so it can
tell whether a row-display or a structure-display has been provided. We could now
declare another such structure:

104

Chapter 7. Structures 105

STRUCT(INT i,CHAR c) t = s

and t would have the same value as s.
Here is a structure declaration

STRUCT(INT j,CHAR c) ss = (2,"e")

which looks almost exactly like the first structure declaration above, except that
the field selector i has been replaced with j. The structure ss has a different mode
from s because not only must the constituent modes be the same, but the field
selectors must also be identical.

Structure names can be declared:

REF STRUCT(INT i,CHAR c) sn =

LOC STRUCT(INT i,CHAR c)

Because the field selectors are part of the mode, they appear on both sides of the
declaration. The abbreviated form is

STRUCT(INT i,CHAR c) sn

We could then write

sn:=s

in the usual way.
The modes of the fields can be any mode. For example, we can declare

STRUCT(REAL x,REAL y,REAL z) vector

which can be abbreviated to

STRUCT(REAL x,y,z)vector

and here is a possible assignment:

vector:=(1.3,-4,5.6e10)

where the value -4 would be widened to -4.0.
Here is a structure with a procedure field:

STRUCT(INT int,

PROC(REAL)REAL p,

CHAR char) method = (1,sin,"s")

Here is a name referring to such a structure:

STRUCT(INT int,

PROC(REAL)REAL p,

CHAR char) m := method

A structure can even contain another structure:

STRUCT(CHAR c,

STRUCT(INT i,j)s) double=("c",(1,2))

In this case, the inner structure has the field selector s and its field selectors are i
and j.

Contents Index

Chapter 7. Structures 106

Exercises

7.1 Declare a structure containing three integer values with field selectors i, j
and k. Ans

7.2 Declare a name which can refer to a structure containing an integer, a real
and a boolean using field selectors i, r and b respectively. Ans

7.2 Field selection

The field-selectors of a structure mode are used to “extract” the individual fields
of a structure. For example, given this declaration for the structure s:

STRUCT(INT i,CHAR c) s = (2,"e")

we can select the first field of s using the selection

i OF s

The mode of the selection is INT and its value is 2. Note that the construct OF is
not an operator. The second field of s can be selected using the selection

c OF s

whose mode is CHAR with value "e". The field-selectors cannot be used on their
own: they can only be used in a selection.

A selection can be used as an operand. Consider the formula

i OF s * ABS c OF s

In the structure method, declared in the previous section, the procedure in the
structure can be selected by

p OF method

which has the mode PROC(REAL)REAL. For a reason which will be clarified in chap-
ter 10, if you want to call this procedure, you must enclose the selection in paren-
theses:

(p OF method)(0.5)

Remembering that the context of the actual-parameters of a procedure is strong,
you could also write

(p OF method)(int OF method)

where int OF method would be widened to a real number and the whole expression
would yield a value of mode REAL.

The two fields of the structure double (also declared in the previous section),
can be selected by writing

Contents Index

Chapter 7. Structures 107

c OF double

s OF double

and their modes are CHAR and STRUCT(INT i,j) respectively. Now the fields of the
inner structure s of double can be selected by writing

i OF s OF double

j OF s OF double

and both selections have mode INT.
Now consider the structure name sn declared by

STRUCT(INT i,CHAR s) sn;

The mode of sn is

REF STRUCT(INT i,CHAR s)

This means that the mode of the selection

i OF sn

is not INT, but REF INT, and the mode of the selection

c OF sn

is REF CHAR. That is, the modes of the fields of a structure name are all preceded
by REF (they are all names). This is particularly important for recursively defined
structures (see chapter 11). Thus, instead of assigning a complete structure using a
structure-display, you can assign values to individual fields. That is, the assignment

sn:=(3,"f")

is equivalent to the assignments

i OF sn := 3;

c OF sn := "f"

except that the assignments to the individual fields are separated by the go-on
symbol (the semicolon ;) and the two units in the structure-display are separated
by a comma and so are elaborated collaterally.

Given the declaration and initial assignment

STRUCT(CHAR c,STRUCT(INT i,j)s)dn:=double

the selection

s OF dn

has the mode REF STRUCT(INT i,j), and so you could assign directly to it:

s OF dn:=(-1,-2)

as well as to one of its fields:

j OF s OF dn:=0

Contents Index

Chapter 7. Structures 108

Exercises

7.3 Given the declarations

STRUCT(STRUCT(CHAR a,INT b)c,

PROC(STRUCT(CHAR a,INT b))INT p,

INT d)st;

STRUCT(CHAR a,INT b)sta

what is the mode of Ans

(a) c OF st

(b) a OF c OF st

(c) a OF sta

(d) (p OF st)(sta)

(e) b OF c OF st * b OF sta

(f) sta:=c OF st

7.4 Declare a procedure which could be assigned to the selection p OF st in the
last question. Ans

7.3 Mode declarations

Structure declarations are very common in Algol 68 programs because they are a
convenient way of grouping disparate data elements, but writing out their modes
every time a name needs declaring is error-prone. Using the mode declaration,
a new mode indicant can be declared to act as an abbreviation. For example, the
mode declaration

MODE VEC = STRUCT(REAL x,y,z)

makes VEC synonymous for the mode specification on the right-hand side of the
equals symbol. Henceforth, new values using VEC can be declared in the ordinary
way:

VEC vec = (1,2,3);

VEC vn := vec;

[10]VEC va;

PROC(VEC v)VEC pv=CO a routine-denotation CO;

STRUCT(VEC v,w,x) tensor

Here is a mode declaration for a structure which contains a reference mode:

MODE RV = STRUCT(CHAR c,REF[]CHAR s)

but we shall consider such advanced modes in chapter 11. Using a mode declaration,
you might be tempted to declare a mode such as

MODE CIRCULAR =

STRUCT(INT i,CIRCULAR c) CO wrong CO

Contents Index

Chapter 7. Structures 109

but this is not allowed. However, there is nothing wrong with such modes as

MODE NODE = STRUCT(STRING s,

REF NODE next),

PNODE = STRUCT(STRING s,

PROC(PNODE)STRING proc)

because the NODE inside the STRUCT of its declaration is hidden by the REF. Likewise,
the PNODE parameter for proc in the declaration of PNODE is hidden by the PROC.

Suppose you want a mode which refers to another mode which hasn’t been
declared, and the second mode will refer back to the first mode. Both mode dec-
larations cannot be first. In Algol 68 proper, you simply declare both modes in
the usual way. However, the a68toc compiler is a single-pass compiler (it reads the
source program once only) and so all applied-occurrences must occur later in the
source program than the defining-occurrences. In this case, one of the modes is
declared using a stub declaration. Here is an example:

MODE MODE2,

MODE1 = STRUCT(CHAR c,REF MODE2 rb),

MODE2 = STRUCT(INT i,REF MODE1 ra)

There is nothing circular about these declarations. This is another example of
mutual recursion. Go ahead and experiment.

This raises the point of which modes are actually permissible. We shall deal
with this in chapter 10. For now, just ensure that you don’t declare modes like
CIRCULAR, and avoid modes which can be strongly coerced into themselves, such as

MODE WRONG = [1:5]WRONG

If you inadvertently declare a disallowed mode, the compiler will declare that the
mode is not legal.

Mode declarations are not confined to structures. For example, the mode STRING
is declared in the standard prelude as

MODE STRING = FLEX[1:0]CHAR

and you can write declarations like

MODE FDES = INT,

MULTIPLE = [30]REAL,

ROUTINE = PROC(INT)INT,

MATRIX = [n,n]REAL

Notice that the mode declarations have been abbreviated (by omitting MODE each
time and using commas). In the declaration of ROUTINE, notice that no identifier is
given for the parameter of the procedure. In the last declaration, the bounds will
be determined at the time of the declaration of any value using the mode MATRIX.
Here, for example, is a small program using MATRIX:

PROGRAM tt CONTEXT VOID

USE standard

BEGIN

INT n;

Contents Index

Chapter 7. Structures 110

MODE MATRIX = [n,n]REAL;

WHILE

print((newline,

"Enter an integer ",

"followed by a blank:"));

read(n);

n > 0

DO

MATRIX m;

FOR i TO 1 UPB m

DO

FOR j TO 2 UPB m

DO

m[i,j]:=random*1000

OD

OD;

FOR i TO 1 UPB m

DO

print((m[i,],newline))

OD

OD

END

FINISH

Contents Index

Chapter 7. Structures 111

Exercises

7.5 Declare a mode for a structure containing two fields, one of mode REAL and
one of mode PROC(REAL)REAL. Ans

7.6 Declare a mode for a structure which contains three fields, the first being the
mode of the previous exercise, the second a procedure which takes that mode
as a parameter and yields VOID, and the third being of mode CHAR. Ans

7.7 What is wrong with these two definitions?

MODE AMODE = STRUCT(INT i,BMODE b),

BMODE = STRUCT(CHAR c,AMODE a)

Try writing a program containing these declarations, with names of modes
AMODE and BMODE and finish the program with the unit SKIP. Ans

7.4 Complex numbers

This section describes the mode used to perform complex arithmetic. This kind of
arithmetic is useful to engineers, particularly electrical engineers. Even if you know
nothing about complex numbers, you may still find this section useful.

The standard prelude contains the mode declaration

MODE COMPL = STRUCT(REAL re,im)

You can use values based on this mode to perform complex arithmetic. Here are
declarations for values of modes COMPL and REF COMPL respectively:

COMPL z1 = (2.4,-4.6);

COMPL z2:=z1

Most of the operators you need to manipulate complex numbers have been declared
in the standard prelude.

You can use the monadic operators + and - which have also been declared for
values of mode COMPL.

The dyadic operator ** has been declared for a left-operand of mode COMPL and
a right-operand of mode INT. The dyadic operators + - * / have been declared
for all combinations of complex numbers, real numbers and integers, and so have
the boolean operators = and /=. The assigning operators TIMESAB, DIVAB, PLUSAB,
and MINUSAB all take a left operand of mode REF COMPL and a right-operand of
modes INT, REAL or COMPL. In a strong context, a real number will be widened to
a complex number. So, for example, in the following identity declaration

COMPL z3 = -3.4

z3 will have the same value as if it had been declared by

COMPL z3 = (-3.4,0)

Contents Index

Chapter 7. Structures 112

This is the only case where a real number can be widened into a structure.
The dyadic operator I takes left- and right-operands of any combination of REAL

and INT and yields a complex number. It has a priority of 9. For example, in a for-
mula, the context of operands is firm and so widening is not allowed. Nevertheless,
the yield of this formula is COMPL:

2 * 3 I 4

Some operators act only on complex numbers. The monadic operator RE takes
a COMPL operand and yields its re field with mode REAL. Likewise, the monadic
operator IM takes an operand of mode COMPL and yields its im field with mode
REAL. For example, given the declaration above of z3, RE z3 would yield -3.4, and
IM z3 would yield 0.0. Given the complex number z declared as

COMPL z = 2 I 3

then CONJ z would yield RE z I - IM z or (2.0,-3.0). The operator ARG gives
the argument of its operand: ARG z would yield 0.982 793 723 2, lying in the interval
(−π, π]. The monadic operator ABS with a complex number may be defined as

OP ABS = (COMPL z)REAL:

sqrt(RE z**2 + IM z**2)

Remember that in the formula RE z**2, the operator RE is monadic and so is
elaborated first.

As described in the previous section, the mode COMPL can be used wherever a
mode is required. In particular, procedures taking COMPL parameters and yielding
COMPL values can be declared. Structures containing COMPL can be declared as
above.

From the section on field selection, it is clear that in the declarations

COMPL z = (2.0,3.0);

COMPL w:=z

the selection

re OF z

has mode REAL (and value 2.0), while the selection

re OF w

has mode REF REAL (and its value is a name). However, the formula

RE w

still yields a value of mode REAL because RE is an operator whose single operand has
mode COMPL. In the above phrase, the w will be dereferenced before RE is elaborated.
Thus it is quite legal to write

im OF w:=RE w

or

im OF w:=re OF w

in which case the right-hand side of the assignment will be dereferenced before a
copy is assigned.

Contents Index

Chapter 7. Structures 113

Exercises

7.8 If the complex number za has the mode COMPL and the value yielded by
(2,-3), what is the value of Ans

(a) CONJ za

(b) IM za * RE za * RE za

(c) ABS za

(d) ARG za

7.9 What is the value of the formula 23 - 11 I -10? Ans

7.10 Given the declarations

COMPL a = 2 I 3;

COMPL b:= CONJ a

what is the mode and value of each of the following: Ans

(a) im OF b

(b) IM b

(c) im OF a

(d) IM a

7.5 Multiples in structures

If multiples are required in a structure, the structure declaration should only contain
the required bounds if it is an actual-declarer. For example, we could declare

STRUCT([]CHAR forename,

surname,

title)

lecturer=

("Nerissa","Leitch","Dr")

where the mode on the left is a formal-declarer (remember that the mode on the
left-hand side of an identity declaration is always a formal-declarer). We could
equally well declare

STRUCT([]CHAR forename,

surname,

title)

student=

("Tom","MacAllister","Mr")

As you can see, the bounds of the individual multiples differ in the two cases.
When declaring a name, because the mode preceding the name identifier is an

actual-declarer (in an abbreviated declaration), the bounds of the required multiples
must be included. A suitable declaration for a name which could refer to lecturer

would be

Contents Index

Chapter 7. Structures 114

STRUCT([7]CHAR forename,

[6]CHAR surname,

[3]CHAR title)

new lecturer := lecturer

but this would not be able to refer to student. A better declaration would use
STRING:

STRUCT(STRING forename,surname,title)person

in which case we could now write

person:=lecturer;

person:=student

Using field selection, we can write

title OF person

which would have mode REF STRING. Thus, using field selection, we can assign to
the individual fields of person:

surname OF person:="McRae"

When slicing a field which is a multiple, it is necessary to remember that slicing
binds more tightly than selecting (see chapter 10 for a detailed explanation). Thus
the first character of the surname of student would be accessed by writing

(surname OF student)[1]

which would have mode CHAR. The parentheses ensure that the selection is elabo-
rated before the slicing. Similarly, the first five characters of the forename of person
would be accessed as

(forename OF person)[:5]

with mode REF[]CHAR.
Consider the following program:

PROGRAM t1 CONTEXT VOID

BEGIN

MODE AMODE = STRUCT([4]CHAR a,INT b);

AMODE a = ("abcde",3);

AMODE b:=a;

SKIP

END

FINISH

In the identity declaration for a, the mode required is a formal-declarer. In this
case, the a68toc compiler will ignore the bounds in the declaration of AMODE giving
the mode

STRUCT([]CHAR a,INT b)

Contents Index

Chapter 7. Structures 115

which explains why the structure-display on the right is accepted ("abcde" has
bounds [1:5]). However, although the program compiles without errors, when it
is run, it fails with the error message

Run time fault (aborting):

ASSIGN2: bounds do not match in [] assignment

because the mode used in the declaration of the name b is an actual-declarer (it
contains the bounds given in the mode declaration) and you cannot assign a []CHAR
with bounds [1:5] to a REF[]CHAR with bounds [1:4].

With more complicated structures, it is better to use a mode declaration. For
example, we could declare

MODE EMPLOYEE =

STRUCT(STRING name,

[2]STRING address,

STRING dept,ni code,tax code,

REAL basic,overtime rate,

[52]REAL net pay,tax);

EMPLOYEE emp

and then read specific values from the keyboard (chapter 9 covers reading data from
files):

read((name OF emp,newline,

(address OF emp)[1],newline,

(address OF emp)[2],newline,

...

The modes of

name OF emp

address OF emp

net pay OF emp

are

REF STRING

REF[]STRING

REF[]REAL

respectively. The phrase

(net pay OF emp)[:10]

has the mode REF[]REAL with bounds [1:10] and represents the net pay of emp
for the first 10 weeks. Note that although the monetary values are held as REAL

values, the accuracy with which a REAL number is stored is such that no rounding
errors will ensue. See section 12.1.5 which describes which modes are suitable for
storing monetary values.

Contents Index

Chapter 7. Structures 116

Exercises

7.11 Given the declaration of emp in the text, what would be the mode of each of
the following: Ans

(a) address OF emp

(b) basic OF emp

(c) (tax OF emp)[12]

(d) (net pay OF emp)[10:12]

7.12 What are the bounds of the name in (d) above? Ans

7.6 Rows of structures

In the last section, we considered multiples in structures. What happens if we have
a multiple each of whose elements is a structure? No problem. If we had declared

[10]COMPL z4

then the selection re OF z4 would yield a name with mode REF[]REAL and bounds
[1:10].1 It would be possible, because it is a name, to assign to it:

re OF z4:=(1,2,3,4,5,6,7,8,9,10)

Selecting the field of a sliced multiple of a structure is straightforward. Since
the multiple is sliced before the field is selected, no parentheses are necessary. Thus
the real part of the third COMPL of z4 above is given by the expression

re OF z4[3]

Now consider a multiple of a structure which contains a multiple. Here is its
declaration:

[100]STRUCT(CHAR c,[5]INT i)s

Then the fourth integer in the 25th structure of s is given by

(i OF s[25])[4]

and all the characters are given by the selection

c OF s

with mode REF[]CHAR and bounds [1:100].2

1Unfortunately, there is a limitation in the a68toc compiler whereby this selection (and
similar selections) are disallowed.

2But this is not supported by the a68toc compiler.

Contents Index

Chapter 7. Structures 117

Exercises

7.13 Suppose a firm had 20 employees, and in writing one of the programs in their
payroll system, the modes of section 7.5 were used. Suppose now that we
have the declaration

[20]EMPLOYEE employee;

What would be the mode of each of the following: Ans

(a) (dept OF employee[3])[3]

(b) dept OF employee[10:12]

(c) ni code OF employee[1]

(d) net pay OF employee[15]

(e) (tax OF employee[2])[50:51]

7.7 Transput of structures

The following program fragment will print the details of the name emp declared in
section 7.5:

print((emp,newline))

For details of how this works, see the remarks on “straightening” in section 9.2.
However, the individual strings would be printed together and so, in this case, it
would be better to write the following:

print((name OF emp,newline));

FOR i TO UPB address OF emp

DO

print((address OF emp)[i],newline))

OD;

print((dept OF emp,newline,

ni code OF emp,newline,

tax code OF emp,

basic OF emp,

overtime OF emp,

net pay OF emp,

tax OF emp,newline))

In practice, it would be sensible to declare a procedure or an operator which would
print the structure and then call it as required.

Contents Index

Chapter 7. Structures 118

7.8 Summary

This chapter has significantly increased the number of different modes we can con-
struct. Structures are constructed using the mode constructor STRUCT. Complicated
structures are best declared using the mode declaration (using MODE). Structures
can have any number of fields from one up, and the fields can have any mode,
including the same modes. The mode COMPL has been declared in the standard
prelude together with the necessary operators to manipulate complex numbers.

Structures can contain procedures and multiples and multiples of structures
can be declared. Although structures containing reference modes can be declared,
they are covered in chapter 11. Operators and procedures which have structure
parameters or yield can be declared.

Here are some exercises to check what you have learned.

Exercises

7.14 Write a suitable mode for a football team which contains the names of its 11
members, the name of the team (ordinary name, not the Algol 68 meaning),
the number of games played, won and drawn, and the number of goals scored
for and against. Ans

7.15 Given the declaration

STRUCT(INT i,[3]REAL r)s

explain why parentheses are needed in the phrase

(r OF s)[2]

Ans

7.16 Given the declaration

[3]STRUCT(INT i,REAL r)s

explain why parentheses are not needed in the phrase r OF s[2]. Ans

7.17 Given the declarations

MODE S2,

S1 = STRUCT([3]CHAR n,

PROC S2 p),

S2 = STRUCT([3]CHAR m,

PROC(S1)S2 p);

S1 s1; S2 s2;

what are the modes of each of the following: Ans

(a) p OF s1

(b) p OF s2

(c) (n OF s1)[2:]

Contents Index

Chapter 8

Unions

From time to time, you have been using the procedure print to display values on
your screen. You must have noticed that it seems to be able to take a large variety
of values of different modes and that it can process more than one value in one
call. You may therefore be wondering how the parameter of print is specified. It
cannot be a structure because a structure has a fixed number of fields, but if it is a
row, how can a row have different modes for its elements? Although the elements
of a row must each have the same mode, the explanation is that print takes one
parameter which is a row of a united mode.

This very short chapter introduces the final mode constructor available in Al-
gol 68. It shows the principles behind the construction and use of united modes. It
does not and cannot show all the possible usages.

8.1 United mode declarations

UNION is used to create a united mode. Here is a declaration for a simple united
mode:

UNION(INT,STRING) u = (random < .5|4|"abc")

The first thing to notice is that, unlike structures, there are no field selectors. This
is because a united mode does not consist of constituent parts. The second thing
to notice is that the above mode could well have been written

UNION(STRING,INT) u = (random < .5|4|"abc")

The order of the modes in the union is irrelevant.1 What is important is the actual
modes present in the union. Moreover, a constituent mode can be repeated, as in

UNION(STRING,INT,STRING,INT) u =

(random < .5|4|"abc")

This is equivalent to the previous declarations.2

1However, for the a68toc compiler, this is not the case. Unions with the same modes
in a different order are distint united modes

2They are distinct for the a68toc compiler.

119

Chapter 8. Unions 120

Like structured modes, united modes are often declared with the mode decla-
ration. Here is a suitable declaration of a united mode containing the constituent
modes STRING and INT:

MODE STRINT = UNION(STRING,INT)

We could create another mode STRINTR in two ways:

MODE STRINTR = UNION(STRINT,REAL)

or

MODE STRINTR = UNION(STRING,INT,REAL)

Using the above declaration for STRINT, we could declare u by

STRINT u = (random < .5|4|"abc")

In this identity declaration, the mode yielded by the right-hand side is either INT or
STRING, but the mode required is UNION(STRING,INT). The value on the right-hand
side is coerced to the required mode by uniting.

The united mode STRINT is a mode whose values either have mode INT or mode
STRING. It was stated in chapter 1 that the number of values in the set of values
defined by a mode can be zero. Any value of a united mode actually has a mode
which is one of the constituent modes of the union. So there are no new values
for a united mode. u identifies a value which is either an INT or a STRING. Because
random yields a pseudo-random number, it is not possible to determine when the
program is compiled (that is, at compile-time) which mode the conditional clause
yields. As a result, all we can say is that the underlying mode of u is either INT or
STRING. We shall see later how to determine that underlying mode.3

Because a united mode does not introduce new values, there are no denotations
for united modes, although denotations may well exist for the constituent modes.

Almost any mode can be a constituent of a united mode. For example, here is
a united mode containing a procedure mode and VOID:

MODE PROID = UNION(PROC(REAL)REAL,VOID)

and here is a declaration using it:

PROID pd = EMPTY

The only limitation on united modes is that none of the constituent modes may
be firmly related (see the section 6.2.1) and a united mode cannot appear in its
own declaration. The following declaration is wrong because a value of one of the
constituent modes can be deprocedured in a firm context to yield a value of the
united mode:

MODE WRONG = UNION(PROC WRONG,INT)

Names for values with united modes are declared in exactly the same way as
before. Here is a declaration for such a name using a local generator:

3Note that an Algol 68 union is quite different from a C union. The latter is simply a
remapping of a piece of memory. In an Algol 68 union, where the underlying value is kept
is the business of the compiler and it cannot be remapped by the programmer.

Contents Index

Chapter 8. Unions 121

REF UNION(BOOL,INT) un = LOC UNION(BOOL,INT);

The abbreviated declaration gives

UNION(BOOL,INT) un;

Likewise, we could declare a name for the mode STRINT:

STRINT sn;

In other words, objects of united modes can be declared in the same way as other
objects.

Exercises

8.1 Write a mode declaration for the united mode BINT whose constituent modes
are BOOL and INT. Ans

8.2 Write an identity declaration for a value of mode BINT. Ans

8.3 What is wrong with the mode declaration

MODE UB = UNION(REF UB,INT,BOOL)

Ans

8.4 Declare a name for a mode united from INT, []INT and [,]INT. Ans

8.2 United modes in procedures

We can now partly address the problem of the parameters for print and read. If
we extend the answer to the last exercise, we should be able to construct a united
mode which will accept all the modes accepted by those two procedures. In fact,
the united modes used are almost the same as the two following declarations:

MODE SIMPLOUT = UNION(CHAR, []CHAR,

INT, []INT,

REAL, []REAL,

COMPL,[]COMPL,

BOOL, []BOOL,

),

SIMPLIN = UNION(REF CHAR, REF[]CHAR,

REF INT, REF[]INT,

REF REAL, REF[]REAL,

REF COMPL,REF[]COMPL,

REF BOOL, REF[]BOOL,

);

Contents Index

Chapter 8. Unions 122

As you can see, the mode SIMPLIN used for read is united from modes of names.
The modes SIMPLOUT and SIMPLIN are a little more complicated than this be-

cause they include modes we have not yet met (see chapters 9 and 11), but you
now have the basic idea.

The uniting coercion is available in a firm context. This means that operators
which accept operands with united modes will also accept operands whose modes
are any of the constituent modes. We shall return to this in the next section.

Here is an example of the uniting coercion in a call of the procedure print. If a
has mode REF INT, b has mode []CHAR and c has mode PROC REAL, then the call

print((a,b,c))

causes the following to happen:

1. a is dereferenced to mode INT and then united to mode SIMPLOUT.

2. b is united to mode SIMPLOUT.

3. c is deprocedured to produce a value of mode REAL and then united to mode
SIMPLOUT.

4. The three elements are regarded as a row-display for a []SIMPLOUT.

5. print is called with its single parameter.

print uses a conformity clause (see next section) to extract the actual value
from each element in the row.

In section 6.3.2, we gave the declaration of a procedure identified as char in string.
The header of that procedure was

PROC char in string=

(CHAR ch,REF INT pos,[]CHAR s)BOOL:

The procedure yielded TRUE if ch was present in s, in which case pos contained the
position. Otherwise, the procedure yielded FALSE. The same procedure could be
written to yield the position of ch in s if it is present, and VOID if not:

PROC ucis = (CHAR ch,[]CHAR s)

UNION(INT,VOID):

The body of the procedure has been left as an exercise.

Exercises

8.5 A procedure has the header

PROC pu = ([]UNION(CHAR,[]CHAR) up)VOID:

Explain what happens to the parameters if it is called by the phrase

pu((CHAR: REPR(ABS"a"+1),LOC[4]CHAR))

Ans

8.6 Write the body of the procedure ucis given in the text. Ans

Contents Index

Chapter 8. Unions 123

8.3 Conformity clauses

In the last section, we discussed the consequences of the uniting coercion; that is,
how values of various modes can be united to values of united modes. This raises
the question of how a value of a united mode can be extracted since its constituent
mode cannot be determined at compile-time. There is no de-uniting coercion in
Algol 68. The constituent mode or the value, or both, can be determined using
a variant of the case clause discussed in chapter 4 (see section 4.6). It is called
a conformity clause. For our discussion, we shall use the declaration of u in
section 8.1 (u has mode STRINT).

The constituent mode of u can be determined by the following:

CASE u IN

(INT): print("u is an integer")

,

(STRING): print("u is a string")

ESAC

If the constituent mode of u is INT, the first case will be selected. Notice that
the mode selector is enclosed in parentheses and followed by a colon. Otherwise,
the conformity clause is just like the case clause (in fact, it is sometimes called a
conformity case clause). This particular example could also have been written

CASE u

IN

(STRING): print("u is a string")

OUT

print("u is an integer")

ESAC

This is the only circumstance when a CASE clause can have one choice. Usually,
however, we want to extract the value. A slight modification is required:

CASE u IN

(INT i):

print(("u identifies the value",i))

,

(STRING s):

print(("u identifies the value ",s))

ESAC

In this example, the mode selector and identifier act as the left-hand side of an
identity declaration. The identifier can be used in the following unit (or enclosed
clause).

The two kinds of conformity clause can be mixed. For example, here is one way
of using the procedure ucis:

CASE ucis(c,s) IN

(VOID):

print("The character was not found"),

(INT p):

print(("The position was",p))

ESAC

Contents Index

Chapter 8. Unions 124

We mentioned in the last section that operators with united-mode operands can
be declared. Here is one such:

MODE IC = UNION(INT,CHAR);

OP * = (IC a,b)IC:

CASE a IN

(INT ai):

(b|(INT bi): ai*bi,

(CHAR bc): ai*bc),

(CHAR ac):

(b|(INT bi): ac*bi,

(CHAR bc): ABS ac*ABS bc)

ESAC

In each of the four cases, the resulting product is united to the mode IC.
You can have more than one mode in a particular case. For example:

MODE ICS = UNION(INT,CHAR,STRING);

OP * = (ICS a,INT b)ICS:

CASE a

IN

(UNION(STRING,CHAR) ic):

(ic|(CHAR c): c*b,(STRING s): s*b),

(INT n): n*b

ESAC

Note that conformity clauses do not usually have an OUT clause because the only
way of extracting a value is by using the (MODE id): construction. However, they
do have their uses. See the standard prelude for more examples of conformity
clauses.

Although read and print use united modes in their call, you cannot read a
value of a united mode or print a value of a united mode (remember that united
modes do not introduce new values). You have to read a value of a constituent
mode and then unite it, or extract the value of a constituent mode and print it.

Exercises

8.7 The modes

MODE IRC = UNION(INT,REAL,COMPL),

MIRC= UNION([]INT,[]REAL,[]COMPL)

are used in this and the following exercises.

Write a procedure which takes a single parameter of mode MIRC and which
yields the sum of all the elements of its parameter as a value with mode IRC.
Ans

8.8 Write the body of the operator * whose header is declared as

OP * = (IRC a,b)IRC:

Use nested conformity clauses. Remember that there are 9 separate cases.
Ans

Contents Index

Chapter 8. Unions 125

8.4 Summary

United modes introduce no new values. A united mode can have any mode as one
of its constituents except a mode which can be firmly coerced to itself. The uniting
coercion is available in firm contexts. Because the values supplied to print or read
are united, the context of the parameter of those procedures is firm. A conformity
clause is used to extract the constituent mode or value. The mode VOID can be
one of the constituents of a united mode and is useful to signal an exceptional yield
from a procedure. United modes are used in a variety of ways.

Exercises

8.9 Write a declaration for the united mode CRIB whose constituent modes are
CHAR, REAL, INT and BOOL. Ans

8.10 Write a declaration for the operator UABS which has a single operand of mode
CRIB and which yields the absolute value of its operand. Ans

8.11 Write four formulæ which use UABS and a denotation for each of the con-
stituent modes of CRIB. Ans

Contents Index

Chapter 9

Transput

At various points you have been reading external values from the keyboard and dis-
playing internal values on the screen. This chapter addresses the means whereby an
Algol 68 program can obtain external values from other sources and send internal
values to places other than the screen. straightening is the only new language
construct involved and all the matters discussed are available in the standard pre-
lude.

Algol 68 transput gives the first taste of “event-driven programming”. In effect,
all programs are event-driven, but simple programs are driven only by the originat-
ing event: that is, the initiation of the program. In other words, simple programs,
once started, run to completion, unless, of course, they contain errors. Event-driven
programs, however, are dependent on the occurrence of events which are outwith
the control of the program. We shall be examining later the kinds of event which
can affect your programs if they read or write data.

9.1 Books, channels and files

In Algol 68 terms, external values are held in a book. Books have various prop-
erties. They usually have an identification string. Some books can be read, some
written to and some permit both reading and writing. Some books allow you to
browse: that is, they allow you to start anywhere and read (or write) from that
point on. If browsing is allowed, you can restart at the beginning. Some books
allow you to store external values in text form (human-readable form) only, while
others allow you to store values in a compact internal form known as binary. In
the latter form, values are stored more or less in the same form as they are held in
the program. The values will not usually be human-readable, being more suited to
fast access by computer programs.

In operating-system terms, Algol 68 books are called “files” (just to confuse you,
of course), but a book has a wider meaning than an operating-system file.1 When
reading external values from the keyboard, your program is reading data from a
read-only book. When printing data, your program is writing data to a write-only
book. When accessing a device, such as /dev/ttyS2, to which you can attach a
modem, your program can both read from and write to the book, but it cannot

1In Linux, a file has the mode, more-or-less, REF BOOK.

126

Chapter 9. Transput 127

browse in it.
The data (as external values are called) in a book, or the data to be put in a

book, travels between the book and your program via a channel. Three principal
channels are provided in the standard prelude: stand in channel, stand out

channel and stand back channel. The first is used for books which can only be
read (they are “read-only”), the second for books which can only be written to (they
are “write-only”) and the last for books which permit both reading and writing.
This classification is a little over-simplified. Many books permit both reading and
writing, but you may only want your program to read it. The three standard
channels mentioned are all “buffered”. This means that when you, for example,
write data to a book, the data is collected in memory until a fixed amount has been
transput, when the collection is written to the book in its entirety. The standard
channels use a buffer of 4096 bytes. The mode of a channel is CHANNEL and is
declared in the standard prelude.

Your program keeps track of where you are in a book, which book is being
accessed and whether you have come to the end of the book by means of a special
structure which has the mode FILE. This is a complicated structure declared in the
standard prelude. The internals of values of mode FILE are likely to change from
time to time, but the methods of using them will remain the same.

9.2 Reading books

Before you can read the contents of an existing book, you need to connect the book
to your program. The procedure open with the header

PROC open = (REF FILE f,

STRING idf,

CHANNEL chan)INT:

performs that function. open yields zero if the connection is established and non-
zero otherwise. Here is a program fragment which establishes communication with
a read-only book whose identification is testdata:

FILE inf;

IF open(inf,"testdata",stand in channel)/=0

THEN

print(("Cannot open book testdata",

newline));

exit(1)

FI

Notice that the program displays a short message on the screen if for any reason
the book cannot be opened and then terminates with a suitable error number. The
procedure exit is not standard Algol 68, but is provided by a system routine whose
declaration is in the standard prelude issued with the a68toc compiler.

After a book has been opened, data can be read from the book using the proce-
dure get which transforms external values into internal values like read (you will
meet read again shortly). It has the header

PROC get=(REF FILE f,[]SIMPLIN items)VOID:

Contents Index

Chapter 9. Transput 128

The mode SIMPLIN is declared in the standard prelude as

MODE SIMPLIN=

UNION(

REF CHAR, REF[]CHAR, REF STRING,

REF BOOL, REF[]BOOL,

REF LONG BITS, REF[]LONG BITS,

REF BITS, REF[]BITS,

REF SHORT BITS, REF[]SHORT BITS,

REF SHORT SHORT BITS,

REF[]SHORT SHORT BITS,

REF LONG INT, REF[]LONG INT,

REF INT, REF[]INT,

REF SHORT INT, REF[]SHORT INT,

REF SHORT SHORT INT,

REF[]SHORT SHORT INT,

REF REAL, REF[]REAL,

REF SHORT REAL, REF[]SHORT REAL,

REF COMPL, REF[]COMPL,

REF SHORT COMPL, REF[]SHORT COMPL,

STRAIGHT SIMPLIN

),

The mode BITS is covered in chapter 11 together with LONG and SHORT modes. As
you can see, all the constituent modes of the union are the modes of names, except
for the STRAIGHT SIMPLIN and the PROC(REF FILE)VOID. The PROC mode lets you
use routines like newpage and newline as one of the parameters. The actual header
of newline is

PROC newline = (REF FILE f)VOID:

and you can call it outwith get if you want. On input, the rest of the current line is
skipped and a new line started. The position in the book is at the start of the new
line, just before the first character of that line. Here is a program fragment which
opens a book and then reads the first line and makes a name of mode REF STRING

to refer to it. After reading the string, newline is called explicitly:

FILE inf;

open(inf,"book",stand in channel);

STRING line; get(inf,line); newline(inf)

This could equally well have been written

FILE inf;

open(inf,"book",stand in channel);

STRING line; get(inf,(line,newline))

Contents Index

Chapter 9. Transput 129

There is no reason why you should not declare your own procedures with mode
PROC(REF FILE)VOID. Here is an example:

PROC nl3 = (REF FILE f)VOID:

TO 3 DO newline(f) OD;

This procedure could then be used in get, for example:

STRING line1, line2;

get(inf,(line1,nl3,line2))

where line2 would be separated by 2 skipped lines from line1.
The STRAIGHT operator converts any structure or multiple into a row of values

of the constituent fields or elements. This means that get can read directly any
structure or multiple (or even rows of structures or multiples).

There are four names of mode REF FILE declared in the standard prelude. One
of these is identified by stand in. The procedure read which you have already
used is declared as

PROC read=([]SIMPLIN items)VOID:

get(stand in,items)

in the standard prelude. As you can see, it gets data from stand in. If you want
to, you can use get with stand in instead of read. The file stand in is already
open when your program starts and should not be closed2. Note that input from
stand in is unbuffered, that is, it does not use the channel stand in channel.

When you have finished reading data from a book, you should sever the con-
nection between the book and your program by calling the procedure close. This
closes the book. Its header is

PROC close=(REF FILE f)VOID:

Exercises

9.1 Write a program called list which will read lines from a text book until a
zero length line is read. The program should display each line on the screen
on separate lines. Ans

9.2 Write a program which will read a positive integer from a text book and
which will then read that number of numbers (integer or real) from the book
and display their total. Ans

2Unless you know what you are doing!

Contents Index

Chapter 9. Transput 130

9.3 Writing to books

You should use the establish procedure to create a new book. Here is a program
fragment which creates a new book called results:

FILE outf;

IF establish(outf,

"results",

stand out channel,

0,0,0)/=0

THEN

print(("Cannot establish book results",

newline));

exit(1)

FI

As you can see, establish has a similar header to open. What are the integers
used for? The header for establish is

PROC establish = (REF FILE f,

STRING idf,

CHANNEL chann,

INT p,l,c)INT:

The p, l and c in establish determine the maximum number of pages, lines and
characters in the book which is being created. Values of 0 for all three integers mean
that the file should be established with zero length. However, they are ignored by
the stand out channel in the QAD standard prelude provided with the a68toc
compiler.

The procedure used to write data to a book is put. Its header is

PROC put=(REF FILE f,[]SIMPLOUT items)VOID:

You can examine the source of the standard prelude to see how the mode SIMPLOUT
is declared.

Again, newline and newpage can be used independently of put as in the fol-
lowing fragment:

FILE outf;

IF establish(outf,

"newbook",

stand out channel,

0,0,0)/=0

THEN

put(stand error,

("Cannot establish newbook",

newline));

exit(2)

ELSE

put(outf,("Data for newbook",newline));

FOR i TO 1000 DO put(outf,i) OD;

Contents Index

Chapter 9. Transput 131

newline(outf);

close(outf)

FI

On output, the newline character is written to the book.
newpage behaves just like newline except that a form feed character is searched

for on input, and written on output.
The procedure establish can fail if the disk you are writing to is full or you

do not have write access (in a network, for example) in which case it will return a
non-zero value.

When you have completed sending data to a book, you must close it with the
close procedure. This is particularly important with books you write to because
the channel is buffered as explained above. Using close ensures that any remaining
data in the buffer is flushed to the book.

The procedure print uses the REF FILE name stand out. So

print(("Your name",newline))

is equivalent to

put(stand out,("Your name",newline))

Again, stand out is open when your program is started and it should not be closed.
Transput via stand out is unbuffered. You cannot read from stand out, nor write
to stand in. The procedure write is synonymous with print.

Exercises

9.3 Change the second program in the last set of exercises to put its total into a
newly-created book whose identification is result. Ans

9.4 Adapt Eratosthenes’ Sieve (see section 5.4.1) to output all the prime numbers
less than 10,000 into a book called primes. Ans

9.4 String terminators

One of the really useful facilities available for reading data from books is that of
being able to specify when the reading of a string should terminate. Usually, this is
set as the end of the line only. However, using the procedure make term, the string
terminator can be a single character or any one of a set of characters. The header
of make term is

PROC make term=(REF FILE f,STRING term)VOID:

so if you want to read a line word by word, defining a word as any sequence of
non-space characters, you can make the string terminator a space by writing

make term(inf,blank)

because blank (synonymous with "␣") is rowed in the strong context of a parameter
to []CHAR. This will not remove the end-of-line as a terminator because the char-
acter lf is always added whatever characters you specify. You should remember
that when a string is read, the string terminator is available for the next read—it
has not been read by the previous read (but see 9.9).

Contents Index

Chapter 9. Transput 132

Exercises

9.5 Write a program called copy which copies its input text book to its output
text book, stopping when a blank line is read (all blanks or zero length). The
input book is called inbook and the output book outbook.Ans

9.6 Rewrite the program from exercises in section 5.11 using make term. The
data should be read from a book called lines and written to a book called
words. Write one word to a line. Terminate the lines with an asterisk (*)
on a line by itself. Ans

9.5 Events

Algol 68 transput is characterised by its use of events. In the limited transput
supplied with the a68toc compiler, only four kinds of events are detected. These
are:

1. The end of the file when reading. This is called the “logical file end”.

2. The end of the file when writing. This is called the “physical file end”.

3. A value error.

4. A character error.

The default action when an event occurs depends on the event. However, the
default action can be replaced by a programmer-defined action using one of the
“on”-procedures.

9.5.1 Logical file end

When the logical end of a file has been detected, the default action is to terminate
the program immediately. All open files will be closed by the operating system, but
any buffered output files will lose any data in the buffer. A programmer-supplied
action must be a procedure with the header

(REF FILE f)BOOL:

The yield should be TRUE if some action has been taken to remedy the end of the
file, in which case transput is re-attempted, or FALSE, when the default action will
be taken.

The procedure on logical file end has the header

PROC on logical file end=

(REF FILE f,

PROC(REF FILE)BOOL p)VOID:

and an example will help explain its use. Here is a program which will display the
contents of its text input file and print a message at its end.

Contents Index

Chapter 9. Transput 133

PROGRAM readfile CONTEXT VOID

USE standard

IF FILE inf; []CHAR infn="textbook";

open(inf,infn,stand in channel)/=0

THEN

put(stand error,

("Cannot open ",

infn,newline));

exit(1)

ELSE

on logical file end(inf,

(REF FILE f)BOOL:

(write(("End of ",

idf(f),

" read",newline));

close(f); FALSE));

STRING line;

DO

get(inf,(line,newline));

write((line,newline))

OD

FI

FINISH

The anonymous procedure provided as the second parameter to on logical file end

prints an informative message and closes the book before yielding FALSE. Since in
this case all we want is for the program to end when the input has been read,
the default action is fine. Notice also that the DO loop simply repeats the reading
of a line until the logical file end procedure is called. The procedure idf is
described in section 9.11.

You should be careful if you do any transput on the parameter f in the anony-
mous routine otherwise you could get an infinite loop (a loop which never ends).
Also, because the on logical file end procedure assigns its procedure parameter
to its REF FILE parameter, you should be wary of using on logical file end in
limited ranges. The way out of this problem is to make a local copy of the REF FILE

parameter as in:

BEGIN

FILE loc f:=stand in;

on logical file end(

f,(REF FILE f)BOOL: ...);

...

END

Any piece of program which will yield an object of mode PROC(REF FILE)BOOL

in a strong context is suitable as the second parameter of on logical file end.
If you want to reset the action to the default action, use the phrase

on logical file end(f,no file end)

Contents Index

Chapter 9. Transput 134

9.5.2 Physical file end

The physical end of a file is met on writing if, for example, the disk is full. It
can also occur when using the mem channel (see section 9.10). The default action
closes all open files (but the buffers of buffered files will not be flushed to disk) and
terminates the program with an exit value of 255.

A replacement procedure should have the mode

PROC(REF FILE)BOOL

and it should yield TRUE if the event has been remedied in some way, in which case
transput will be re-attempted, and FALSE otherwise (when the default action will
be elaborated).

The default procedure can be replaced with a procedure defined by the pro-
grammer using the procedure on physical file end which has the header:

PROC on physical file end =

(REF FILE f,

PROC(REF FILE)BOOL p)VOID:

9.5.3 Value error

This event is caused by the following circumstances:-

1. If an integer is expected, then the value read exceeds max int.

2. If a real number is expected, then the value read exceeds max real.

3. If a complex number is expected, then the value read for either the real part
or the imaginary part exceeds max real.

The procedure on value error lets the programmer provide a programmer-defined
procedure whose header must be

(REF FILE f)BOOL:

although any identifier could replace the f. Transput on the file f within the
procedure should be avoided (but see backspace below), but any other transput is
allowable, but try to ensure that a value error won’t occur!

If the programmer-supplied routine yields TRUE, transput continues, otherwise
an error message is issued to stand err and the program aborted with an exit value
of 247.

9.5.4 Char error

This event can occur when reading a number if the number is entirely absent so
that the first character is neither a sign nor a digit. In this case a default procedure
is called having the header

(REF FILE f,REF CHAR c)BOOL:

Contents Index

Chapter 9. Transput 135

The default procedure can be replaced with a programmer-defned procedure using
the procedure on char error.

The char error procedure is called with the c referring to a suggested value for
the next character. The replacement character must be a member of a particular
set of characters. The default value is 0. If the procedure returns FALSE the default
suggested character will be used, otherwise the value referred to by c will be used.
Thus the programmer-supplied procedure can not only change the default suggested
character, but can also perform such other actions as are deemed necessary (such
as logging the error).

The event can also occur when reading the digits before a possible "." for real
numbers and the digits after the ".". For complex numbers, after the real part, an
i or I is expected and its non-appearance will cause the char error procedure to
be executed. The default suggestion is i, but can be replaced by another character
and optional actions.

For a BITS3 value, whenever a character which is neither flip nor flop is met,
the char error procedure is called with flop as the suggested value. Thus the
available suggested character sets are:-

1. For digits: 0 . . . 9

2. For exponent: e E \

3. For plus i times: i I

4. For flip or flop: FT (uppercase only) respectively

Exercises

9.7 Write a program whose input book has the identification inbook and which
contains lines of differing length. Use on logical file end to specify a
procedure which establishes the output book outbook, writes the average
length and closes it and then yields FALSE. Ans

3This mode is described in section 11.2

Contents Index

Chapter 9. Transput 136

9.6 The command line

When you execute a program at the command prompt, you type the identification
of the program and then press return. You can specify parameters (sometimes
called arguments) for the program after the program identification. These can
then be accessed by the program to modify its activities.

Hitherto, the identifications of books have always been written into the actual
code. In the last exercise, the input book was called inbook and the output book
outbook. If your program could be given the identifications of the books whenever
you executed the program, then it could have a much wider applicability.

The command line is available to the program via the channel arg channel.
Here is a small program which reads its first argument and prints it on the screen:

PROGRAM arg1 CONTEXT VOID

USE standard

IF FILE args; open(args,"",arg channel)/=0

THEN

put(stand error,

("Cannot access the command line",

newline));

stop

ELSE

on logical file end(arg,

(REF FILE f)BOOL:

(put(stand error,

("No parameters",newline));

FALSE));

STRING id;

get(arg,id); write((id,newline))

FI

FINISH

Some points to note:

1. stand error is an output FILE which is usually used for error messages.

2. The identification field in the call to open is ignored by arg channel. In the
example, it is written as the empty string.

3. stop is equivalent to exit(0).

4. In Linux, the first parameter is always the full path of the identification of
the program.

You can only read via the arg channel (using get). make term has already been
set to make the string terminator blank (the last argument is always followed by
a space) so you can read the individual parameters from the command line by
reading strings. However, you should note that when you have read a string, the
next character will be the terminator of the string. So when you have read a string,
you will need to skip all characters which could possibly terminate the reading of
a string (known as terminators) otherwise the next read of a string will yield the
null string (denoted by ""). The procedure skip terminators with header

Contents Index

Chapter 9. Transput 137

PROC skip terminators=(REF FILE f)VOID:

is used for this purpose.

Exercises

9.8 Modify exercise ex9.5 (see 9.4) to get the identifiers of its input and output
books from the command line (remember that the first argument is always
the program id, so use a LOC STRING for it). Remember to cater for the end
of the input file. Ans

9.9 Write a program to replace all the spaces in its input book with the asterisk
and write out the resulting lines to its output book, the book identifiers being
given on the command line. Ans

9.7 Environment strings

In Linux, if, at the command prompt in a Bash shell, you key set followed by
return, you will get a listing of the values of all the environment strings defined in
your session. The value of the environment string PATH gives all the paths that the
operating system will search when you try to execute a program.

Each string is identified by what is called an environment variable which be-
haves rather like a name of mode REF STRING except that each string is terminated
with a nul ch. You can open a book containing the environment string using env

channel. For example:

FILE p; open(p,"PATH",env channel)

The open will fail if PATH has not been defined, so a plain open (as shown in the
above example) would be better replaced by

FILE p;

IF open(p,"PATH",env channel)/=0

THEN #code to take emergency action#

ELSE #code to perform the usual actions#

FI

If you now use make term to make the colon : the string terminator, you can get
the individual paths using get:

make term(p,":"+nul ch);

STRING path;

on logical file end(p,

(REF FILE f)BOOL:

(GOTO eof; SKIP));

DO

get(p,(skip terminators,path));

IF UPB path >= LWB path

THEN write((path,newline))

Contents Index

Chapter 9. Transput 138

FI

OD;

eof:

close(p);

You should close the book after using it. Notice the use of a GOTO followed by a
label. The actual label, which looks just like an identifier. is followed by a colon.

Exercises

9.10 Write a program which will display the individual paths in the PATH environ-
ment string, one to a line, on the screen. Ans

9.11 Write a program which will read some arguments from its command line,
each argument consisting of the identifier of an environment string termi-
nated by ”/” followed by a non-blank terminator. Using this data, read the
environment string and display its constituent parts on the screen, one to a
line. Allow for the possibility that the string might not end with the ter-
minator (the code given in the answer caters for that possibility). Try an
environment string which exists and one which doesn’t. Ans

9.12 At the command line, by using the command

ABC="12 14 16"

you create (using bash) an environment string identified by ABC. Now write
a program which will read the individual numbers from ABC and print their
total. Try changing the value of ABC to give different numbers (not in the
program). Include a test in your program to determine whether ABC is present
in the environment (verb—open— will fail if it isn’t) and terminate your
program with a useful message if not. Ans

Contents Index

Chapter 9. Transput 139

9.8 Writing reports

One of the problems of using the rather primitive facilities given so far for the
output of real and integer numbers is that although they allow numbers to be
printed in columns, the column widths are fixed. You might not always want 18
decimal places. To print reports where numbers must be neatly tabulated, it is
necessary to have some other means of controlling the size of the resulting strings.
The procedures whole, fixed and float provide this capability.

The procedure whole has the header

PROC whole = (NUMBER v, INT width)STRING:

and takes two parameters. The first is a real or integer value (modes REAL or INT)4

and the second is an integer which tells whole the field width of the output number
(the space in your output book required to accommodate a value is often called
a field). If width is zero, then the number is printed with the minimum possible
width and this will be wider for larger numbers. A positive value for width will
give numbers preceded by a ”+” if positive and a ”-” if negative and the number
output right-justified within the field with spaces before the sign. A negative value
for width will only provide a minus sign for negative numbers and the width will
be ABS width.

Try writing a program with the following fragment included:

[]INT ri = (0,99,-99,9 999,99 999);

[]CHAR wh pr = "Parameter for whole is";

FOR wi FROM -6 BY 3 TO 6

DO

print((wh pr,wi,newline));

FOR i TO UPB ri

DO

write((whole(ri[i],wi),newline))

OD

OD

Notice that where the integer is wider than the available space, the output field is
filled with the character denoted by error char (which is declared in the standard
prelude as the asterisk (*) with mode CHAR), so it is wise to ensure that your output
field is large enough to accommodate the largest number you might want to print.

If you give a real number to whole, it calls the procedure fixed with parameters
width and 0.

The procedure fixed has the header

PROC fixed = (NUMBER v,

INT width, after)STRING:

and takes three parameters. The first two are the same as those for whole and the
third specifies the number of decimal places required. The rules for width are the
same as the rules for width for whole.

When you want to print numbers in scientific format (that is, with an exponent),
you should use float which takes four parameters and has the header

4NUMBER is defined for more modes than REAL and INT which you will meet in chapter 11.

Contents Index

Chapter 9. Transput 140

PROC float = (NUMBER v,

INT width, after, exp)STRING:

The first three are the same as the parameters for fixed, while the fourth is the
width of the exponent field. The version of float supplied in the transput library
uses e to separate the exponent from the rest of the number. Thus the call

print(("[",float(pi*10,8,2,-2),"]"))

produces the output [+3.14e 1]. The parameter exp obeys the same rules as
width.

Note that the transput of data in Algol 68 is so organised that values output by
an Algol 68 program can be input by another (or the same) program.

Here are some exercises which test you on your understanding of whole, fixed
and float.

Exercises

9.13 The monthly rainfall for a particular location is given by the following figures:

6.54 12.3 10.1 13.83 5.04 9.15

14.34 16.38 13.84 10.45 8.49 7.57

Write a program which will print the figures vertically, each preceded by the
name of the month. The months and the figures should line up vertically,
the months left-justified, the figures with decimal points aligned. Ans

9.14 Write a program which will print the square roots of all the integers from 1
to 100 to 4 decimal places. Each number should be preceded by the corre-
sponding integer. So, for example, the program should print ␣2␣␣1.4142 as
a column-pair. Print the whole table in four columns with 25 entries in each
column, the numbers 1–25 being in the first column. Ans

9.15 Write a program which will list the terms in the series π, π2, π3, . . ., π10.
Each value should be written in scientific notation with 6 decimal places, and
should be preceded by the value of the power (i.e., the numbers 1 to 10). Use
a field width of 12. Ans

Contents Index

Chapter 9. Transput 141

9.9 Binary books

In section 9.1, it was mentioned that some books contain data in a compact form
which is not usually human-readable. Most large books, especially those containing
design figures in the engineering sciences as well as books containing the payroll
data for a number of employees, will be stored in this form. They are called binary
books.

Algol 68 allows you to write anything to binary books, just as for text books. In-
deed, you can write an integer and a character to a binary book and then read back
the data as a character followed by an integer. The results may not be particularly
meaningful, but you can do it.

The only difference between transput to, or from, binary books is that instead
of using the procedures put and get, you use the procedures put bin and get bin.
The modes accepted by these procedures are identical with those accepted by put

and get respectively except that you cannot transput procedures with mode

PROC(REF FILE)BOOL

Here is a program which will output the data produced by the program in the last
exercise:

PROGRAM binary CONTEXT VOID

USE standard

BEGIN

FILE f;

IF establish(f,

"pipowers",

stand out channel)/=0

THEN

put(stand error,

("Cannot create pipowers",

newline));

stop

FI;

FOR i TO 10

DO

put bin(f,(i,pi**i))

OD;

close(f)

END

FINISH

Run the program and then look at the book it has produced. Compare it with the
data produced by the program in the last exercise.

Values of mode REF STRING can be read by get bin, but you should remember
to set the string terminator using the procedure make term. However, you should
note that the string terminator will always include the character lf. Furthermore, if
set possible is FALSE for the REF FILE on which transput is being performed, the

Contents Index

Chapter 9. Transput 142

terminator will have been read when the routine get bin returns. If set possible

is TRUE for that REF FILE, then the terminator will not have been read.
Another aspect of binary books is that of being able to browse. The principal

procedure provided for this purpose is set which has the header

PROC set=(REF FILE f,INT p,l,c)VOID:

The last three parameters specify the position in the book where you want to start
browsing, whether reading or writing. The QAD transput provided with the a68toc
compiler ignores the p and l parameters because it regards a file as consisting of
one page of one line.5

There are two other related procedures. One is reset which has the header

PROC reset=(REF FILE f)VOID:

and is equivalent to set(f,0). One possible use of this procedure is to output
data to a book, then use reset followed by get to read the data from the book.
The sort of book used in this way is often called a work file (in operating system
terms). Such a book contains data of use while a program is being elaborated,
but is deleted at the end of the program. In fact, every program has such a book
whose controlling FILE is called stand back. It uses the stand back channel

and is deleted when the program has finished. However, you can write to it, reset
it, then read the contents and copy them to another book. Note that the pro-
cedure read bin is equivalent to get bin(stand back,...) and the procedure
write bin is equivalent to put bin(standback,...).

The other related procedure is logical end which has the header

PROC logical end = (REF FILE f)INT:

and yields the value of the position at the end of the book, which is the size of the
book. The position can be set to the end of the book by writing

set(f,logical end(f))

Here is a procedure which opens an existing book and sets the writing position to
its end, then writes data to the end of the book:

PROC debug=(REF FILE dbg,[]SIMPLOUT st)VOID:

(

open(dbg,idf(dbg),stand back channel);

set(dbg,logical end(dbg));

put(dbg,st);

close(dbg)

)

We shall use this procedure in chapter 12 to store data about the running of a
program while we are developing it. Notice that textual data is written to the book
even though the procedures set and logical end are used. The point is that
binary and textual data can be mixed in any book which allows binary transput.

In the QAD standard prelude, the current position in a book can be obtained
from the procedure current pos which has the header

5The start of a book in the QAD transput is zero.

Contents Index

Chapter 9. Transput 143

PROC current pos = (REF FILE f)POS:

This particular procedure is very useful if you want to store the book position of
the beginning of a group of data in a book (such a group is often called a record).
In the QAD standard prelude, POS is a synonym for INT.

Exercises

9.16 Write a program which creates a binary book containing the first 1000 whole
numbers. Use set to read every 17th number and display them on the screen,
one to a line. Ans

9.17 Write a program to read a book containing text and write each individual
word to one book, and the position of the start of each word and the length
of the word to another book. Both output books should be written using
put bin. Ans

9.10 Internal books

Sometimes it is desirable to convert information from binary to text forms and then
manipulate the resulting values. Conversely, when performing data entry (that is,
reading data from the keyboard), it is usually better to perform the actual data
entry in character format and then convert to internal values rather than converting
the external data to internal values directly. The means of accomplishing this sort
of specialised transput is provided by internal books.

Unfortunately, the QAD transput provided with the a68toc compiler does not
provide the usual Algol 68 mechanism for internal books. However, a book consist-
ing of a single line can be established using the mem channel. Here is an example:

PROGRAM memch CONTEXT VOID

USE standard

BEGIN

FILE mf;

establish(mf,"",mem channel,1,1,36);

FOR i TO 3 DO put(mf,i**3) OD;

print((file buffer(mf)[:current pos(mf)],

newline));

close(mf)

END

FINISH

When establishing a memory book using the mem channel, both the p and the
l parameters should be 1 and the c parameter should be positive indicating the
length of the line. All the transput procedures mentioned may be used on memory
books. The procedure file buffer yields the internal buffer of a file, but uses
a mode we have not yet met (see chapter 13: Standard Prelude). The procedure
current pos gives the current position of its REF FILE parameter. For examples
of files opened using the mem channel, see the example program lf described in
sections 12.3 to 12.3.3.

Contents Index

Chapter 9. Transput 144

9.11 Other transput procedures

The procedure idf has the header

PROC idf=(REF FILE f)[]CHAR:

and yields the identification of the book handled by the file f.
There are two other ways of closing a file. One is scratch and the other is lock.

Here are their headers:-

PROC scratch=(REF FILE f)VOID:

PROC lock=(REF FILE f)VOID:

The procedure scratch deletes the file once it is closed. It is often used with
work files. The procedure lock closes its file and then locks it so that it cannot
be opened without some system action. In the QAD transput supplied with the
a68toc compiler, lock removes all permissions from the file so that it cannot be
accessed without first using the program chmod.

Exercises

9.18 Write a program to print the rainfall figures given in an earlier exercise. Start
your report with a suitable heading. Ans

9.19 Write a program which will read a text file and print each line preceded by
a line number. Ans

9.12 Summary

External values (usually called data) are stored in books. A program uses an
internal structure, called a file (of mode FILE), to keep track of the process of
transferring data to or from books. The link between them is controlled by a
channel.

A number of procedures are provided in the standard prelude to facilitate the
transfer of data to and from books, as well as changing the position recorded by a
file within a book.

Books can be created and written to, or opened and read from, or both read
from and written to. A file should be closed to sever the link between itself and
its corresponding book, and to ensure that any data storage areas (usually called
buffers) are flushed to the storage medium.

Formatting of numbers can be performed with the procedures whole, fixed and
float. This facilitates the production of reports.

String terminators make it easier to read values of mode STRING. They are set
with the procedure make term.

The command line can be read just like any other book (text only) and envi-
ronment variables can be read.

Contents Index

Chapter 9. Transput 145

Exercises

9.20 Write a program to read real numbers from the keyboard, and write them to
the screen in scientific notation and 3 decimal places. Continue until zero is
read. Ans

9.21 Using the mode EMPLOYEE declared in section 7.5, write a program to read
the employee records from a binary book, and write a report of the name of
each employee, her or his net pay for the current week and the total net pay
and number of employees read. In the binary book, each string is preceded
by the length of that string as an integer. Get the book idf and the week
number from the command line. Ans

Contents Index

Chapter 10

Units

The aim of this chapter is to describe the grammar of units in a fairly rigorous
manner. The chapter covers units, contexts and coercions, as well as a number of
lesser, but still important, ideas such as casts and balancing. In describing some of
the grammatical aspects of the language in previous chapters, it has been necessary
to gloss over or distort some of the facts. The definitive truth about such matters
is in this chapter.

An Algol 68 program consists of a closed VOID clause which means that any
value yielded by the closed clause will be voided. Any closed clause can be used
including conditional and loop clauses. It is unusual to write a program which
starts other than with BEGIN (and ends other than with END), but there is nothing
in the definition of the language to preclude it. On our round tour of units, we
shall start at the bottom and work up.

10.1 Phrases

A phrase is a declaration or a unit. Declarations yield no value, even if they include
an initial assignment. Units are the parts of the language which actually manipulate
values. There are 22 different kinds of unit which can be subdivided into 5 classes
arranged in a hierarchy:

Quaternaries

Tertiaries

Secondaries

Primaries

Enclosed clauses

where each class includes the lower class. For example, all enclosed clauses are
primaries, but not all primaries are enclosed clauses.

The distinctions between different classes of units prevent the writing of am-
biguous programs and help to provide the meaning you might expect.

The units in each class are as follows:

� Quaternaries

– assignments

146

Chapter 10. Units 147

– identity relations

– routine denotations

– SKIP

� Tertiaries

– formulæ

– NIL

� Secondaries

– generators

– selections

� Primaries

– applied-identifiers

– calls

– casts

– denotations (except routine denotations)

– slices

� Enclosed clauses

– case clauses

– closed clauses

– collateral clauses

– conditional clauses

– conformity clauses

– loop clauses

– parallel clauses

– row-displays

– structure-displays

10.2 Contexts

The circumstances which allow certain coercions are called contexts. Each context
has an intrinsic strength. There are five contexts called strong, firm, meek, weak
and soft. The places in a program which have these contexts are:

� Strong contexts

– The actual-parameters of calls

– The enclosed clauses of casts

– The right-hand side of assignments

– The right-hand side of identity declarations

– The right-hand side of initialised name declarations

Contents Index

Chapter 10. Units 148

– The units of routine denotations

– VOID units

– All constituents except one of a balanced clause

– One side of an identity relation

� Firm contexts

– Operands of formulæ

– The actual parameters of transput calls

� Meek contexts

– Enquiry-clauses (including WHILE)

– Primaries of calls

– The units following FROM, BY and TO in a loop clause

– Trimmers, subscripts and bounds (must yield an INT)

� Weak contexts

– Primaries of slices

– Secondaries of selections

� Soft contexts

– The left-hand side of assignments

– The other side of an identity relation (see strong context)

10.3 Coercions

There are seven coercions in the language, namely

� voiding

� rowing

� widening

� uniting,

� deproceduring

� dereferencing

� weakly-dereferencing

Roughly speaking, the coercions can be arranged in a hierarchy within the hierarchy
of contexts thus:

� Strong context

– deproceduring

– rowing

– voiding

Contents Index

Chapter 10. Units 149

– widening

� Firm context

– uniting

� Meek context

– dereferencing

� Weak context

– weakly-dereferencing

� Soft context

– deproceduring

The only coercion not yet met is weakly-dereferencing. However, it is useful to
describe all the coercions here. Before we do so, it should be noted that one of the
limitations of the language is that you cannot specify the kind of context. Thus if
you have a weak context and you would like a firm context, you cannot specify it.
However, in any context, you can use a cast (see the section on primaries below)
which will always make a context strong and because all coercions are available in
a strong context, you can use the cast to specify the mode you require.

10.3.1 Deproceduring

This coercion is available in all contexts. Deproceduring is the process by which
a parameterless procedure is called. For example, the procedure random, declared
in the standard prelude as having mode PROC REAL, when called yields a REAL. We
can represent the coercion by

PROC REAL =⇒ REAL

The PROC is “removed”, which is why it is called deproceduring.
There are occasions when the identifier of a procedure can be written without

the procedure being called. In the program fragment

PROC REAL rnd:=random

the right-hand side of the assignment requires the mode PROC REAL because the
mode of the name identified by rnd is REF PROC REAL. Clearly, random is not called
here.

The only possible ambiguities with deproceduring are those of assignments and
casts. For example, having declared rnd above, the subsequent assignment

rnd:=random;

yields a value of mode REF PROC REAL, because the value of an assignment is the
value of the left-hand side (see section 10.8). However, the following “go-on symbol”
indicates that the assignment should now be voided. It is a rule of the language that
voiding takes place before deproceduring if the unit being voided is an assignment.
If, however, rnd had been used on its own, as in

Contents Index

Chapter 10. Units 150

rnd;

then it would have been dereferenced, then deprocedured and the resulting REAL

value voided. This would ensure that any side-effects (see sections 6.1.6 and 6.2.3)
would take effect.

Similarly, in the unit

PROC REAL(rnd);

rnd (with mode REF PROC REAL) will be dereferenced, but the resulting value of
mode PROC REAL will be voided immediately since it is clear that a REAL value is
not required. Note that all the code examples using a go-on symbol could have
been written with END or FI etc, provided that the resulting context would have
resulted in voiding.

When writing a program, it is common to make mistakes1, and one mistake is
to write the identifier of a procedure without its parameters (the primary of a call).
This is not, strictly speaking, an error. At least, not a grammatical error. However,
in such a case, the a68toc compiler will issue a warning:

Proc with parameters voided,

parameters of call forgotten perhaps

in which case the mistake should be obvious. Suppose you write the identifier of a
procedure in a formula without its parameters, as in

PROC p1 = (INT n)INT: n**2+3;

INT a:=4; a:=4+p1;

then the a68toc compiler will issue the message

op + not declared for INT and PROC (INT)INT

The error message for a procedure identifier on the right-hand side of an assignment
is

PROC (INT)INT cannot be coerced to INT

Deproceduring only occurs with parameterless procedures.

10.3.2 Dereferencing

This is the process of moving from a name to the value to which it refers (which
could also be a name—see chapter 11). For example, if x has mode REF REAL, then
in the formula

x * 3.5

the name x will be dereferenced to yield a new instance of the REAL referred to by
x. The coercion can be represented by

REF REAL =⇒ REAL

If rx has mode REF REF REAL (that is, rx can refer to a name of mode REF REAL),
then the formula

1You should expect to make one mistake every 20 lines. Congratulate yourself if you
do better!

Contents Index

Chapter 10. Units 151

rx * 3.5

will result in rx being dereferenced twice. In this case, the coercion could be
represented as

REF REF REAL =⇒ REAL

Dereferencing is available in all contexts except soft.
When a name, such as rx, is dereferenced twice, new instances of both the

values referred to (in the case of rx, the REF REAL and the REAL values) are created.
However, the new instance of the REF REAL value is discarded after the creation of
the REAL value. This has no effect on the elaboration of the program.

10.3.3 Weakly-dereferencing

This is a variant of the dereferencing coercion in which any number of REFs can be
removed except the last. Thus, in the case of rx above, weakly-dereferencing would
yield a mode of REF REAL and could be represented by

REF REF REAL =⇒ REF REAL

This coercion is only available in weak contexts. It is particularly useful in the
selection of secondaries of structure modes which contain fields whose mode starts
with REF (see section 10.6 and chapter 11).

10.3.4 Uniting

In this coercion, the mode of a value becomes a united-mode. For example, if OO is
an operator both of whose operands are UNION(INT,REAL), then in the formula

3.0 OO -2

both operands will be united to UNION(INT,REAL) before the operator is elaborated.
These coercions can be represented by

INT

REAL

}
=⇒ UNION(INT,REAL)

Uniting is available in firm and strong contexts and must precede rowing.

10.3.5 Widening

In a strong context, an integer can be replaced by a real number and a real number
replaced by a complex number, depending on the mode required. This can be
represented by

INT =⇒ REAL

REAL =⇒ COMPL

Widening is not available in formulæ (firm contexts).

Contents Index

Chapter 10. Units 152

10.3.6 Rowing

If, in a strong context, a multiple is required and a value is provided whose mode is
the base mode of the multiple, then the value will be rowed to provide the required
multiple. There are two cases to consider:

1. If the mode required is not a name and the base-mode of the multiple is the
mode of the value given, then the value will be rowed to give []base-mode.
For example, if the required mode is []INT, then the base-mode is INT. In
the identity declaration

[]INT i = 3

the value yielded by the right-hand side (an integer) will be rowed and the
coercion can be expressed as

INT =⇒ []INT

If the value given is a row mode, such as []INT, then there are two possible
rowings that can occur.

(a) In the identity declaration

[,]INT a = i

where i was declared above with mode []INT, the coercion can be
expressed as

[]INT =⇒ [,]INT

In this case, an extra dimension is added to the multiple.

(b) If the required mode is [][]INT as in

[][]INT r = i

then the value on the right-hand side is rowed to yield a one-dimensional
multiple whose base-mode is []INT. This coercion can be represented
as

[]INT =⇒ [][]INT

2. If the multiple required is a name, then a name of a non-multiple can be
supplied. For example, if the value supplied is a name with mode REF INT,
then a name with mode REF[]INT will be created. In this identity declaration

REF[]INT ni = LOC INT

the local generator yields a name with mode REF INT and the rowing coercion
yields a name with mode REF[]INT and bounds [1:1]. The coercion can be
represented by

REF INT =⇒ REF[]INT

The first kind of rowing could also occur. The identity-declaration

[]REF INT rri = LOC INT

Contents Index

Chapter 10. Units 153

produces the coercion represented by

REF INT =⇒ []REF INT

Likewise, a name of mode REF[]INT can be rowed to a name with mode
REF[,]INT or a non-name with mode []REF[]INT, depending on the mode
required. Although INT has been taken as an example, any mode could have
been used.

10.3.7 Voiding

In a strong context, a value can be thrown away, either because the mode VOID is
explicitly stated, as in a procedure yielding VOID, or because the context demands
it, as in the case of a semicolon (the go-on symbol). In this case, there are two
exceptions to the rule that the value yielded depends only on the context. Casts
and assignments are voided after the elaboration of the unit, but all other units
are subjected to the usual coercions in a strong context. The following program
illustrates this:

PROGRAM tproc CONTEXT VOID

USE standard

BEGIN

PROC INT p;

PROC pp = INT:

(

INT i=random int(6);

print(i);

i

);

p:=pp;

print((" p:=pp",newline));

pp;

print((" pp",newline));

p;

print((" p",newline));

PROC INT(p);

print((" PROC INT(p)",newline))

END

FINISH

The output is

p:=pp

+6 pp

+1 p

PROC INT(p)

In the assignment p:=pp, the mode required on the right-hand side is PROC INT so
pp is not deprocedured, and p is neither dereferenced nor deprocedured after the
assignment has been elaborated. The cast PROC INT(p) is elaborated (that is, p is
dereferenced) and then voided without the procedure p (or pp) being called.

Contents Index

Chapter 10. Units 154

10.3.8 Legal coercions

In any context, you have a unit which has, or yields, a value of some mode; and
in that context you have a mode which you need. If the value of the mode you
have can be coerced to a value of the mode you need (assuming that the two modes
differ), then the coercion is legal.

For example, suppose you have a value of mode PROC REF INT in a strong context
and the mode you want is []COMPL. The required mode can be got via

� deproceduring to mode REF INT

� dereferencing to mode INT

� widening to mode REAL

� widening to mode COMPL

� rowing to mode []COMPL

In practice, coercions are not usually as complicated as this.
Notice that deproceduring can take place before or after dereferencing, that

widening must occur before rowing and that voiding can only take place after all
other coercions. For example, you cannot coerce []INT to []REAL.

Exercises

10.1 Which coercions are available in a meek context? Ans

10.2 Which coercions are not available in a strong context? Ans

10.3 For each of the following, state whether the given mode can be coerced to
the mode to the right of the arrow: Ans

(a) Weak context: REF REF BOOL =⇒ REF BOOL

(b) Firm context: PROC INT =⇒ UNION(REAL,COMPL)

(c) Soft context: REF PROC CHAR =⇒ CHAR

(d) Meek context: PROC REF REAL =⇒ []REAL

(e) Weak context: PROC REF BOOL =⇒ BOOL

(f) Strong context: PROC INT =⇒ UNION([]INT,[]REAL)

Contents Index

Chapter 10. Units 155

10.4 Enclosed clauses

There are nine kinds of enclosed clause, most of which we have already met.2

1. The simplest is the closed clause which consists of a serial clause enclosed in
parentheses (or BEGIN and END). The range of any identifiers declared in the
closed clause is limited to the closed clause. The a68toc compiler limits the
use of any identifiers declared in the closed clause to the closed clause at and
after their declaration. Here are some examples of closed clauses:

(3)

BEGIN p + 3 END

(INT s; read(s); s)

(REAL q:=i+2; sqrt(q))

2. Collateral clauses look like row-displays: there must be at least two units.
Remember that declarations are not units. The units are elaborated collat-
erally. This means that the order is undefined and may well be in parallel.
Examples of collateral clauses are3

(m:=3, n:=-2)

((INT m:=2; m),(CHAR a=REPR i; a))

The second collateral clause has two units each of which is a closed clause.

A parallel clause looks exactly like a collateral clause preceded by PAR. The
constituent units (there must be at least two) are executed in parallel.4

The other enclosed clauses have already been discussed:

3. row-display in section 3.1.1

4. loop clause in section 3.7

5. conditional clause in section 4.5

6. case clause in section 4.6

7. structure-display in section 7.1

8. conformity clause in section 8.3

It should be noted that the enquiry clause (in a conditional- or case-clause) is in a
meek context whatever the context of the whole clause. Thus, the context of the
clause is passed on only to the final phrase (it must be a unit) in the THEN, ELSE,
IN or OUT clauses.

2Note that a serial clause is not an enclosed clause.
3The a68toc compiler does not provide collateral clauses other than row- and structure-

displays.
4The a68toc compiler does not provide parallel clauses.

Contents Index

Chapter 10. Units 156

Exercises

10.4 What kind of enclosed clause could each of the following be? Ans

(a) ((INT p:=ENTIER-4.7; p),37.5)

(b) PAR BEGIN 3, 15 END

(c) (i|3,-3|4)

(d) (si|(INT i): i,(STRING i): i)

(e) (a < 3|4|5)

(f) (a:=2; b:=-a)

10.5 Primaries

Primaries are denotations, applied identifiers, casts, calls and slices. We have met
denotations in chapters 1, 4 and 6. Only plain values, routines and a special name
(NIL) have a denotation. NIL is dealt with in the section on tertiaries and the mode
BITS is covered in chapter 11. Applied-identifiers means identifiers being used in
a context, rather than in their declarations. We have met numerous examples of
these. Routine denotations are not primaries.

A cast consists of a mode indicant followed by an enclosed clause, usually a
closed clause. Here is a formula with a cast:

3.4 * REAL (i)

where i has mode INT. The cast puts the enclosed clause in a strong context. Thus,
in the above formula, the normal context of an operand is firm (see chapter 2), but
the cast causes the value of i to be widened to a REAL. Casts are usually used in
formulæ and identity relations (see sections 10.8 and 11.6). Casts are sometimes
used to coerce a conditional or case clause where balancing is insufficient to provide
the mode required (see section 10.9 later in this chapter). The mode indicant can
be any mode and can contain any of the mode-constructors such as REF or PROC or
[] (but it should not be a generator, which is not a mode indicant). Care should
be taken when using a structured mode. For example, in this formula,

3 * STRUCT(INT k)(4)

assuming that the operator has been declared for operands of modes INT and
STRUCT(INT k), the cast must include the field selector because it is part of the
mode.

Calls were discussed in sections 6.3.1 and 6.3.2. Here is a simple example:

sqrt(0.7)

In this call, sqrt is itself a primary (it is an applied-identifier). In section 10.2, it
was mentioned that the primary of a call is in a meek context. This applies even if
the call itself (as a whole) is in a strong context. The primary of a call can be an
enclosed clause. For example,

(a>4|sqrt|sin)(x)

Contents Index

Chapter 10. Units 157

which yields sqrt(x) if a > 4 and sin(x) otherwise. In this case, the primary is

(a>4|sqrt|sin)

We discussed slices in section 3.2. They include simple subscripting. For exam-
ple, given the declaration

[,]INT r = ((1,2,3),(4,5,6))

the units r[1,] and r[2,3] are both slices. Whatever the context of the slice,
the context of the primary of the slice (r in these examples) is always weak. This
means that only weak-dereferencing is allowed. Thus, given the phrases

[2,3]INT s:=r; INT p:=s[2,1]

the slice s[2,1] is in a strong context, but the s is in a weak context, so the name
that s identifies, which has the mode REF[,]INT will not be dereferenced, though
the slice, which has mode REF INT, will be.

There is another consequence of the weak context of the primary of a slice: row-
displays can only be used in a strong context. So if you want to change the bounds
of a row-display, because the slicer will produce a weak context, the row-display
must be enclosed in a cast.

The context of subscripts and bounds in trimmers is meek and they must be
units.

All enclosed clauses are primaries, but not all primaries are enclosed clauses.

Exercises

10.5 What are the contexts of Ans

(a) p (mode REF[]REAL) in []REAL (p[3])

(b) q (mode PROC(REAL)INT) in REAL(q(0.5))

10.6 How many primaries are there in each of the following units: Ans

(a) 3 * (1.4 + r)/2**6

(b) p:=sqrt(r) - 6

(c) num:=x[3,ENTIER r]

(d) i * []CHAR("e")

Contents Index

Chapter 10. Units 158

10.6 Secondaries

We have discussed both kinds of secondary (selections and generators), but there
are other points which need mentioning.

There are two kinds of generator (see section 5.1). Occasionally, when a proce-
dure has a name parameter, the name may not be needed. Instead, therefore, of
using an identifier of a name which is used for another purpose, which would be
confusing, or declaring a name just for this purpose, which would be unnecessary,
an anonymous name can be used. For example, a possible call of the procedure
char in string could be

char in string(ch,LOC INT,str)

if you are only interested in whether the character is in the string and not in its
position.

Another case where an anonymous name is useful is in the creation of odd-shaped
multiples. Consider the program fragment:

[10]REF[]INT ri; INT j;

FOR i TO UPB ri

DO

read(j);

ri[i]:=LOC[j]INT; read(ri[i])

OD

Since there are no declarations in the loop clause, the scope of the name created
by the generator is the enclosed clause surrounding the loop clause, which includes
the declarations for ri and j. The mode of the slice ri[i] is REF REF[]INT. Thus
the value of ri[i] is a name with two REFs in its mode, and it is made to refer to
a name of mode REF[]INT, which has one REF less. Assignments of this type will
be considered in detail in the next chapter. Note that the context of a parameter
to read is firm so the parameter is dereferenced once before a value is read.

When discussing selections in section 7.2, you may have wondered about the
peculiar rules of placing parentheses when talking about rows in structures, rows
of structures and rows in rows of structures. Firstly, it should be mentioned that
in the secondary

im OF z

where z has mode COMPL or REF COMPL, the z itself is not only a secondary, it is
also a primary (it is an applied-identifier). This means that using the declarations

MODE AM = STRUCT(INT i,CHAR c),

BM = STRUCT(INT i,AM a);

BM b

the selection

c OF a OF b

is valid because

Contents Index

Chapter 10. Units 159

a OF b

is also a secondary. We shall meet extended selections like this in chapter 11.
Secondly, a primary is a secondary, but not necessarily the other way round.

Consider these declarations:

STRUCT(INT i,[3]REAL r)s1;

[3]STRUCT(INT i,REAL r)s2

The selection r OF s1 has the mode REF[]REAL. If you want to slice it, to get one
of the constituent names of mode REF REAL say, you cannot do so directly. The
reason is that in a slice, as mentioned in the previous section, what is sliced must
be a primary. To convert the secondary into a primary you have to enclose it in
parentheses thus converting it into an enclosed clause; and enclosed clauses are also
primaries (in section 10.1, it was said that the four classes of units are arranged in
a hierarchy in which each class includes the lower classes). So the second name of
r OF s1 is yielded by (r OF s1)[2].

On the other hand, considering the name identified by s2, the selection

r OF s2[2]

can be written without parentheses because s2 is not only a secondary, it is also a
primary (an applied-identifier) with mode REF[]STRUCT.... The phrase s2[2] is
perfectly valid, it having mode REF STRUCT(...). The selection r OF s2 has the
mode REF[]REAL and so it too can be sliced by writing (r OF s2)[2]. The effect
is the same for both of the cases involving s2. Note that the a68toc compiler does
not permit selection of a field from a row of structures. Doing so will yield the
following error message:-

OPERATORS - select: []struct not implemented

FATAL ERROR (661) Compiler error:

ENVIRONMENT (ASSERT) - assertion failure

To summarise, any primary can be regarded as a secondary, but not vice-versa.

Exercises

10.7 Give an example of a primary which is also a secondary. Ans

10.8 Give an example of a secondary which is not a primary. Ans

10.9 In this exercise, the following declarations hold:

MODE AM = STRUCT(CHAR a,b),

BM = STRUCT(AM a,

STRUCT(CHAR a,AM b) c,

REF BM d);

BM p

How many secondaries are there in each of the following units? Ans

(a) a OF p

(b) a OF a OF p

(c) a OF c OF p

(d) a OF a OF d OF p

Contents Index

Chapter 10. Units 160

10.7 Tertiaries

Tertiaries are formulæ and NIL. Formulæ were covered in chapter two. All that
needs to be said here is that a formula can consist solely of a single secondary or pri-
mary or enclosed clause although this is not usual. If a formula, containing at least
one operator, is to be used as a primary or a secondary, it must be enclosed in paren-
theses (or BEGIN and END). For example, in the formula next OF (H declarer),
where H = (INT)REF HAND and HAND = STRUCT(...,REF HAND next), the formula
must be surrounded by parentheses to make it into a secondary.

The only name having a denotation is NIL. Its mode is REF whatever. In other
words, it can have any mode which starts with REF. It does not refer to any value
and, although it must only occur in a strong context, it cannot be coerced. Its uses
are described in the next chapter.

10.8 Quaternaries

Quaternaries are assignments, routine denotations, identity relations and SKIP. Of
the four, the assignment is the most common. An assignment consists of three
parts. The left-hand side must be a tertiary. It is usually an applied identifier
or, less commonly, an enclosed clause. Its value must be a name. Its context is
soft, so no dereferencing is allowed unless a cast is used (see the next chapter),
but deproceduring is allowed. The second part is the assignment token. The right-
hand side (the third part) can be any quaternary (including, of course, another
assignment). Its context is strong so any coercion is permitted. The mode of its
value must contain one less REF than the mode of the left-hand side.

The right-hand side of an assignment is, most commonly, a formula which is
a tertiary (all tertiaries are quaternaries, but not vice-versa). The left-hand side
can also be a formula provided that the value yielded is a name (which is the case
with the assigning operators—see section 5.1.2). If an assignment is to be used as
a primary, a secondary or a tertiary, then it must be enclosed in parentheses(or
BEGIN and END). The value of an assignment is the value of the left-hand side: that
is, it is a name. Assignments were discussed in chapter 5.

Routine denotations were discussed in chapter 6.
SKIP yields an undefined value of any mode and can only occur in a strong

context. It is particularly useful in the following case. Consider the procedure

PROC p=(REAL a,b)REAL:

IF b=0

THEN print(("Division by zero",newline)):

stop; SKIP

ELSE a/b

FI

Since the yield has mode REAL, and the ELSE part of the conditional clause yields
a value of mode REAL, by the principle of balancing (see below) the THEN part also
must yield a value of mode REAL. Now the construct stop yields a value of mode
VOID which cannot be coerced to REAL in any context. If the procedure is going to
compile successfully, the THEN part must yield REAL (or, at least, a value which can
be coerced to REAL in the context of the body of the procedure which is strong)
even though the value yielded will never be used (because the stop will terminate

Contents Index

Chapter 10. Units 161

the program). The SKIP will yield an undefined value of mode REAL. Although SKIP

must occur in a strong context, it cannot be coerced.
Another use for SKIP is in row- or structure-displays where not all the units are

known at the time of a declaration. For example:

[3]INT ii:=(4,?,5)

Before the multiple ii is used, the second element should be given a value. If no
such value is assigned, and you try to print the value of ii[2] the a68toc compiler
will generate code which will print whatever value was there at the time the multiple
was generated, which may well be rubbish.

The identity relation is discussed in the next chapter, but its grammar has
important consequences. The identity relation consists of two tertiaries separated
by an identity relator (one of :=: or :/=:). Since a formula is a tertiary, it can
safely be included in an identity relation. For example, given the declarations

INT x:=3, y:=1;

PROC x or y = (REAL r)REF INT: (r<0.5|x|y)

the identity relation

x or y(random) :=: x

is legal. However, if you want to include an identity relation in a formula then you
must surround it with parentheses to make it into a tertiary, as in

IF (x or y(random) :=: x) AND x*y > 0

THEN

Since one side of an identity relation is in a soft context while the other is in a
strong context, only one side of an identity relation can be strongly-dereferenced.
The soft side can be weakly-dereferenced which means that one REF will always
be left on that side. Balancing applies to identity relations (see the discussion in
section 11.6).

This completes the general discussion of units.

Contents Index

Chapter 10. Units 162

Exercises

10.10 What kind of units are each of the following: Ans

(a) A cast.

(b) An applied-identifier.

(c) A selection.

(d) A multiple.

(e) A name.

(f) A formula.

(g) A loop clause.

(h) An assignment.

(i) A declaration.

(j) A procedure denotation.

10.11 Which units are to be found in each of the following: Ans

(a) 3.5 * (a - 2 * x)

(b) p OR q AND a = 4

(c) sin(x)

(d) a[3,2:4]

(e) x:=(c<"e"|2.4|-y)

(f) (i|x,y,z):=(p|2|-4)

(g) PAR(x:=1.2,y:=3.6)

10.9 Balancing

In section 6.1, it was pointed out that the context of a routine denotation is passed
on to the last unit in the denotation. In the example given, the body of the routine
denotation was a closed clause. The yield of the routine was a value of mode INT,
but the yield of the last unit was a name with mode REF INT. Since the context of
the body of a routine denotation is strong, the name is dereferenced to get an INT.
This principle is applicable to all enclosed clauses.

Now conditional clauses, case clauses and conformity clauses can yield one of a
number of units, and so it is quite possible for the units to yield different values
of different modes. The principle of balancing allows the context of all these units,
except one, to be promoted to strong whatever the context of the enclosed clause.
Balancing is also invoked for identity relations which are dealt with in the next
chapter.

Considering, for example, the formula

x * (a > 0|3.0|2)

the context of the conditional clause is firm which means that widening is not
allowed. Without balancing, the conditional clause could yield a REAL or an INT.
In this example, the principle of balancing would promote the context of the INT to
strong and widen it to REAL. Balancing thus means “making the modes the same”.

Contents Index

Chapter 10. Units 163

In a balanced clause, one of the yielded units is in the context of the whole
clause and all the others are in a strong context, irrespective of the actual context
of the clause. Here is an example of a balanced case clause

INT i:=3,j:=4,a:=2;

PROC ij = REF INT: (random < 0.5|i|j);

print(2 + (a|i,ij|random))

where the a yields an INT in a meek context (that of the enquiry clause). In
this example, the modes of the values that can be yielded by the case clause are
REF INT (i), PROC REF INT (ij) and PROC REAL (random). In a firm context, the
modes become INT, INT and REAL. Thus the context of random is taken to be firm,
and the context of i and ij is promoted to strong and they are both dereferenced
and widened to REAL. The result is that the case clause will yield a REAL value even
though the clause as a whole is in a firm context (it is an operand of the operator
+).

If instead, we had

PROC REAL r:=random;

(a|i,ij|j):=ENTIER r

using the declaration of ij in the previous example, then balancing would not be
needed to produce the required mode. The modes of the yielded units are REF INT,
PROC REF INT and REF INT respectively. In a soft context, these modes would
yield REF INT (no dereferencing allowed), REF INT (deproceduring is allowed) and
REF INT. Thus the case clause would yield REF INT on the left-hand side of the
assignment.

Here is an example of a conditional clause which cannot be balanced:

INT i:=2, REAL a:=3.0;

(random > 0.5|i|r):=random

In this case, the two parts of the conditional clause yield REF INT and REF REAL.
There is no coercion which will convert a REF INT into a REF REAL. When you try
to compile this, the a68toc compiler gives the following error message:

lhs of assignment must be a reference

The balancing means that one of the yields is in a strong context and so is deref-
erenced which yields a value which is not a name.

The method of determining whether balancing is possible is as follows:

1. Determine the context of the choice clause.

2. In the context found in step 1, determine the mode yielded by each unit in
the choice clause.

3. If there is a mode such that all the modes but that one can be strongly
coerced to that mode, the clause can be balanced.

Contents Index

Chapter 10. Units 164

Exercises

10.12 In each of the following clauses, state whether balancing is possible, and if
so, the mode yielded by the balanced clause. These declarations are in force:

INT i,j, REAL a,b:=random;

PROC ij = REF INT: (b>0.5|i|j);

PROC r = REAL: random * random;

UNION(INT,REAL) ri:=(random>0.6|i|b)

Ans

(a) a:=2.0*(random<0.3|i|b)

(b) (j<2|ij|b):=r

(c) a:=((ri|(INT r):r,(REAL r):r)<1|2|3)

(d) b:=2.0*(j>3|4|SKIP)

10.10 Well-formed modes

In chapter 6, the mode declaration was presented and it was pointed out that not
all possible mode declarations are allowed. The rules for determining whether a
mode declaration is well-formed are straightforward.

There are two reasons why a mode might not be well-formed:

1. the elaboration of a declaration using that mode would need an infinite
amount of memory

2. the mode can be strongly coerced to a related mode

Let us look at some examples of modes which are not well-formed. Firstly, in
the mode declaration

MODE WRONG = STRUCT(CHAR c,WRONG w)

the WRONG within the STRUCT would expand to a further STRUCT and so on ad
infinitum. Even this declaration

MODE WRONGAGAIN = STRUCT(WRONGAGAIN wa)

will not work for the same reason. However, if the mode within the STRUCT is
shielded by REF or PROC, then the mode declaration is legal:

MODE ALRIGHT = STRUCT(CHAR c,REF ALRIGHT a);

In the declaration

ALRIGHT ar = ("A",LOC ALRIGHT)

the second field of the structure is a name which is quite different from a structure.
Likewise, the declaration

MODE OKP = STRUCT(CHAR c,PROC OKP po)

Contents Index

Chapter 10. Units 165

is well-formed because in any declaration, the second field is a procedure (or a name
referring to such a procedure) which is not the original structure and so does not
require an infinite amount of storage. It should be noted, however, that a UNION

does not shield the mode sufficiently. Thus, the mode declarations

MODE MW1 = UNION(INT,MW1);

MODE MW2 = STRUCT(UNION(CHAR,MW2) u,CHAR c)

are not well-formed. In fact, the mode declaration of MW1 fails on reason 2 above.
Secondly, a mode which could be strongly coerced to a related mode would lead

to ambiguity in coercions. Thus the mode declarations

MODE WINT = PROC WINT;

MODE WREF = REF WREF;

MODE WROW = [5]WROW

are not well-formed.
All the above declarations have been recursive, but not mutually recursive. Is

it possible to declare

MODE WA = STRUCT(WB wb,INT i),

WB = STRUCT(WA wa,CHAR c)

Again, the elaboration of declarations using either mode would require an infinite
amount of storage, so the modes are not well-formed. The following pair of mode
declarations are all right:

MODE RA = STRUCT(REF RB rb,INT i),

RB = STRUCT(PROC RA pra,CHAR c)

All non-recursive mode declarations are well-formed. It is only in recursive and
mutually-recursive modes that we have to apply a test for well-formedness.

Determination of well-formedness

In any mutually-recursive mode declarations, or any recursive mode declaration,
to get from a particular mode on the left-hand side of a mode declaration to the
same mode indicant written on the right-hand side of a mode declaration, it is
necessary to traverse various mode constructors such as REF, PROC or UNION. Above
each STRUCT or set of procedure parameters write “yang”. Above each REF or PROC
write “yin”. Now trace the path from the mode in question on the left-hand side
of the mode declaration until you arrive at the same mode indicant on the right-
hand side. If you have at least one “yin” and at least one “yang”, the mode is
well-formed.

Let us try this method on the recursive mode declarations given in this section.
In the mode declaration for WRONG, write “yang” above the STRUCT. Thus to get from
WRONG on the left to WRONG on the right, a single “yang” is traversed. Thus WRONG is
not well-formed. Likewise, WRONGAGAIN is not well-formed. In mode ALRIGHT, you
have to traverse a “yang” (STRUCT) and a “yin” (REF), so ALRIGHT is well-formed.
Try it with the mode OKP.

Conversely, to get from MW1 to MW1 requires neither “yin” nor “yang”, so MW1 is
not well-formed. To get from MW2 to MW2, only a STRUCT is traversed (the UNION

Contents Index

Chapter 10. Units 166

does not count) so MW2 is also not well-formed. Similar arguments hold for WINT,
WREF and WROW.

Now consider the mutually-recursive mode declarations of WA and WB. At whichever
mode we start, getting back to that mode means traversing two “yangs” (both
STRUCT). Two “yangs” are all right, but there should be at least one “yin”, so the
modes are not well-formed. On the other hand, from RA to RA traverses a STRUCT

and a REF and, via RB, a STRUCT and a PROC giving “yang-yin-yang-yin”, so both
RA and RB are well-formed.

Remember that if you want to declare modes which are mutually-recursive, the
a68toc compiler requires that one of the modes should first be declared with a stub
declaration.

Exercises

10.13 For each of the following mode declarations, determine whether the modes
are well-formed: Ans

(a) MODE MA = INT

(b) MODE MB = PROC(MB)VOID

(c) MODE MC =[3,2]MC

(d) MODE MD = STRUCT(BOOL p,MD m)

(e) MODE ME = STRUCT(STRING s,REF ME m)

(f)

MODE MF2,

MF1 = STRUCT(REF MF2 f),

MF2 = PROC(INT)MF1

(g)

MODE MGB,

MGA = PROC(MGB)VOID,

MGB = STRUCT(MGA a)

(h)

MODE B, C,

MODE A = PROC(B)A,

MODE B = STRUCT(PROC C c,

STRUCT(B b,INT i)d),

MODE C = UNION(A,B)

(i) C = PROC(C)C

Contents Index

Chapter 10. Units 167

10.11 Flexible names

Flexible names were introduced in section 5.5, but only one-dimensional names.
What has not been made apparent in the text hitherto is that a multiple consists
of two parts: a descriptor and the actual elements. The descriptor contains the
lower and upper bounds of each dimension, the “stride” (that is, the number of
bytes between two successive elements of the dimension in question), the address
in memory of the first element of that dimension and whether the dimension is
flexible. Consider the declaration

FLEX[1:0][1:3]INT flexfix

Because the mode of flexfix is REF FLEX[][]INT, when it is subscripted, the mode
of each element is REF[]INT with bounds of [1:3]. Clearly, after the declaration,
flexfix has no elements. In practice, because the first (and only) dimension is
flexible, there must be some way of referring to a “ghost” element whose descriptor
(it is a one-dimensional multiple) will give its properties. flexfix is quite different
from

FLEX[1:0]FLEX[1:3]INT flexflex

each of whose elements (when it has any) have the mode REF FLEX[]INT with initial
bounds [1:3].

If the declaration of flexfix is followed by the assignment and slice

flexfix:=LOC[1:1][1:3]INT;

flexfix[1]:=(1,2,3)

then it is clear that the mode of flexfix[1] is REF[]INT. Note that after

flexfix:=LOC[1:4][1:3]INT

flexfix refers to a multiple of which each element has the mode []INT. However,
the single dimension of

flexfix[1]

is not flexible, which is why the assignment

flexfix:=LOC[1:4][1:4]REAL #this is wrong#

will fail5.

10.12 Orthogonality

We have come a long way and introduced many new ideas, yet all these ideas are
based on the primitive concepts of value, mode, context, coercion and phrase. These
concepts are independent of each other, but their combination provides Algol 68
with a flexibility that few programming languages possess. For example, if a value
of mode INT is required, such as in a trimmer or the bounds of the declaration of a

5The a68toc compiler will wrongly allow this last assignment both at compile-time and
run-time.

Contents Index

Chapter 10. Units 168

multiple, then any unit which will yield an integer in that context will suffice. The
consequence is that Algol 68 programs can be written in a wide variety of styles.
Here is a simple example: given the problem of printing the sum of two numbers
read from the keyboard, it could be programmed in two completely different ways.
The conventional solution would be something like

INT a,b; read((a,b));

print((a+b,newline))

but an equally valid solution is

print(((INT a,b;

read((a,b));

a+b),newline))

Provided that what you write is legal Algol 68, you can adopt any approach you
please. Orthogonality refers to the independence of the basic concepts in that you
can combine them without side-effects.

Another consequence of that independence is that there are very few exceptions
to the rules of the language. This makes the language much easier to learn.

10.13 Summary

The grammar of Algol 68 is expressed in terms of a few primitive concepts: value,
mode, context, coercion and phrase. A phrase is either a declaration or a unit.
There are 5 contexts, 7 coercions, 22 different kinds of unit and potentially an
infinite number of values and modes. The coercions available in each context have
been described. Balancing is the means by which alternatives in conditional, case
and conformity clauses and the two sides of an identity relation are coerced to a
common mode, possibly making coercions available which would not normally be
so in the context of the construct concerned.

No exercises are provided at this point.

Contents Index

Chapter 11

Advanced constructs

We have now covered most of Algol 68. All that remains is the identity relation,
the parallel clause, the mode BITS, completers, different precisions of numbers and
means of accessing operating system facilities. Most of these are deceptively simple.
The identity relation is used with modes containing multiple REFs which take up the
greater part of this chapter. The BITS mode and the parallel clause are introduced
in later sections. Different numerical precisions and access to operating system
facilities is mainly covered in chapter 12. We start with access to the machine
word.

169

Chapter 11. Advanced constructs 170

11.1 Bits, bytes and words

In our discussion of plain values (values of modes CHAR, INT, REAL, and BOOL),
we have omitted saying how these values are stored in computer memory for one
important reason: Algol 68 is a high-level programming language. A high-level
programming language is one in which the concepts of computer programming are
not expressed in terms of a computer, its instructions and its memory, but in terms
of high-level concepts such as values and modes. Basically, the manner in which
integers and characters and so on are stored in the computer are not our business.
However, since programs written in Algol 68 need to access the operating system,
it is useful to know something about memory, whether the main memory of the
computer or the storage memory found on hard disks and other devices.

Computer memory consists of millions of bits (short for binary digits) which
are grouped together as bytes or words. A bit can take two values: 0 and 1.
A word is 16, 24, 32, 36, 60, 64 or 72 bits “wide”, and a byte is 6, 8 or 9 bits
“wide”. Almost all microcomputers use 8-bit bytes. Microcomputers using the
Intel Pentium processor (or compatibles) or later chips, use a 32-bit word and an
8-bit byte. Generally speaking, a byte is used to store a character and a word is
used to store an integer. Real numbers are much more complicated than integers
and we shall not describe how they are stored in memory. Before we can understand
about the equivalences of values of mode CHAR and bytes, and values of mode INT

and words, we need to say something about radix arithmetic. If this is something
you already know, please skip the next section.

11.1.1 Radix arithmetic

Our ordinary arithmetic uses the ten digits 0, 1, . . ., 9 and expresses numbers in
powers of ten. Thus the number 1896 consists of 1 thousand, 8 hundreds, 9 tens
and 6 units. This could be written

1896 = 1× 1000 + 8× 100 + 9× 10 + 6× 1

Remembering that 100 is ten squared (102) and 1000 is ten cubed (103), we could
rewrite this equation as

1896 = 1× 103 + 8× 102 + 9× 101 + 6× 100

As you can see, the powers of ten involved are 3, 2, 1 and 0. When we write whole
numbers, we understand that the digits we use represent powers of ten. We say that
the base, or radix, of our arithmetic is ten, which is why it is frequently referred
to as “decimal arithmetic” (decimal is derived from the Latin word for ten).

Now it is quite meaningful to develop an arithmetic having a different radix.
For example, suppose we use two as the radix. We should express our numbers in
terms of powers of two and they would be written using the digits 0 and 1 only. In
an arithmetic of radix two, when we write a number, each digit would represent a
power of two. For example, the number 101 would mean

101 = 1× 22 + 0× 21 + 1× 20

in an exactly analogous way to the number 1896 in decimal arithmetic. In fact,
the decimal equivalent of 101 would be 4 + 0+ 1 = 5 (in decimal). Here is another

Contents Index

Chapter 11. Advanced constructs 171

example:

1101 = 1× 23 + 1× 22 + 0× 21 + 1× 20

= 8 + 4 + 0 + 1

= 13 (thirteen, in decimal)

We could then construct addition and multiplication tables as follows:

+ 0 1

0 0 1
1 1 10

× 0 1

0 0 0
1 0 1

As you can see from the addition table, 1 + 1 = 10 (take row 2 and column 2).
When you read this equation, you must say “one-zero” for the number after the
equals symbol. “Ten” means ten+zero units which this number definitely is not.
The number 10 in radix 2 means “two+0 units” which is what you would expect
for the sum of 1 and 1.

Two radices of particular use with computers are sixteen and two. Arithmetic
with a radix of sixteen is called hexadecimal and arithmetic with a radix of two
is called binary.

In hexadecimal arithmetic, the digits 0 to 9 are used, but digits are also required
for the numbers ten to fifteen. The first six letters of the alphabet are used for the
latter six numbers. They are commonly written in upper-case, but in Algol 68 they
are written in lower-case for a reason which will become apparent in a later section.
Thus the “digits” used for hexadecimal arithmetic are

0,1,2,3,4,5,6,7,8,9,a,b,c,d,e,f

Addition and multiplication tables could be constructed for hexadecimal arith-
metic on the same lines as those for radix two arithmetic. You should note that
when writing a number containing more than one digit with a radix other than ten,
the radix is commonly written (in decimal) as follows:

2× 3 = 124

Thus, in hexadecimal arithmetic, we could write

7× 9 = 3f16

and there are some exercises at the end of this section in which you can try your
hand at hexadecimal and other arithmetics. Writing numbers in hexadecimal is
sometimes called “hexadecimal notation”.

A byte consists of eight binary digits and can take any value from 000000002
to 111111112. The equivalent decimal value can be obtained by rewriting it as the
sum of descending powers of two:

100110112 = 1× 27 + 1× 24 + 1× 23 + 1× 21 + 1× 20

= 128 + 16 + 8 + 2 + 1 (in decimal)

= 15510

The exercises at the end of this section will give you some practice in this kind of
conversion.

Contents Index

Chapter 11. Advanced constructs 172

If you compare the number of digits used to express the same number, you will
find that hexadecimal arithmetic uses the least. For example, the decimal number
135 can be written

135 = 8716

= 20134

= 100001112

When converting numbers written in binary to hexadecimal, the simplest way is
to split the binary number into two groups of 4 bits and then convert each group
into one hexadecimal digit. Thus 00101011 can be split into 0010 and 1011, and
their hexadecimal equivalents are 2 and b. If you intend accessing machine words, it
would certainly be a good idea to learn the binary equivalents of the 16 hexadecimal
digits 0-f. To help you, here is the procedure itostr which converts a positive
value of mode INT to a value of mode STRING (with minimum width) using any
radix from 2 to 16:

[]CHAR digits="0123456789abcdef"[@0];

PROC itostr=(INT n#umber#,r#adix#)STRING:

IF n < r

THEN digits[n]

ELSE itostr(n%r,r)+digits[n MOD r]

FI

Notice how its recursive definition simplifies the code.

Exercises

11.1 Using the procedure itostr, write a program which will display the 16 in-
tegers between 0 and 15 (decimal) in decimal, hexadecimal and binary (the
binary equivalent should be displayed as 4 bits) in three columns. Ans

11.2 For each of the following, rewrite the number in the given radix: Ans

(a) 9410 ⇒ 16

(b) 1310 ⇒ 2

(c) 1111 10012 ⇒ 16

(d) 3e116 ⇒ 10

(e) 2c16 ⇒ 2

(f) 101012 ⇒ 10

11.3 Express the value of each of the following using the radix of that exercise:
Ans

(a) 1012 + 1102
(b) 3516 + ae16
(c) 178 + 378

Contents Index

Chapter 11. Advanced constructs 173

11.2 The mode BITS

A value occupying a machine word has the mode BITS. The number of binary digits
in one machine word is given by the environment enquiry (see section 13.2) bits
width which, for the a68toc compiler is 32. A BITS value can be denoted in four
different ways using denotations written with radices of 2, 4, 8 or 16. Thus the
declarations

BITS a = 2r 0000 0000 0000 0000

0000 0010 1110 1101

BITS b = 4r 0000 0000 0002 3231

BITS c = 8r 000 0000 1355

BITS d = 16r 0000 02ed

are all equivalent because they all denote the same value. Notice that the radix
precedes the r and is written in decimal. Notice also that the numbers can be
written with spaces, or newlines, in the middle of the number. However, you cannot
put a comment in the middle of the number. Since a machine word contains 32
bits, each denotation should contain 32 digits in radix 2, 16 digits in radix 4, 11
digits in radix 8 and 8 digits in radix 16, but it is common practice to omit digits
on the left of the denotation whose value is zero. Thus the declaration for d could
have been written

BITS d = 16r2ed

When discussing values of mode BITS where the values of more significant bits is
important, full denotations like the above may be more appropriate.

Monadic operators for BITS

There are many operators for BITS values. Firstly, the monadic operator BIN takes
an INT operand and yields the equivalent value with mode BITS. The operator ABS
converts a BITS value to its equivalent with mode INT. The NOT operator which you
first met in chapter 4 (section 4.2) takes a BITS operand and yields a BITS value
where every bit in the operand is reversed. Thus

NOT 2r 1000 1110 0110 0101

0010 1111 0010 1101

yields

2r 0111 0001 1001 1010

1101 0000 1101 0010

Notice that spaces have been used to make these binary denotations more compre-
hensible. NOT is said to be a bit-wise operator because its action on each bit is
independent of the value of other bits.

Contents Index

Chapter 11. Advanced constructs 174

Dyadic operators for BITS

AND and OR (both of which you also met in chapter 4) both take two BITS operands
and yield a BITS value. They are both bit-wise operators and their actions are
summarised as follows:

Left Operand Right Operand AND OR

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 1

For OR, the yield of

2r 100110 OR 2r 10101

is 2r 110111. The priority of AND is 3 and the priority of OR is 2.
The AND operator is particularly useful for extracting parts of a machine word.

For example, suppose you have a BITS value where the least-significant 8 bits are
equivalent to a character. You could write

CHAR c = REPR ABS (b AND 16rff)

Here, the operators REPR and ABS do not generate machine-code instructions, but
merely satisfy the compiler that the modes are correct. This sort of formula is, in
fact, very efficient in Algol 68.

It is possible to extract a single bit from a word using the operator ELEM which
has the header

(INT n,BITS t)BOOL:

For example, given the declaration

BITS bi = 16r 394a 2716

then each hexadecimal digit represents 4 bits: the 3 occupies bit positions 1–4, the
9 occupies bit positions 5–8, the 4, bit positions 9–12, and so on. Suppose we want
the third bit (the leftmost bit is bit-1). The following declaration is valid:

BOOL bit3 = 3 ELEM bi

Thus, if the third bit is a 1, the declaration will give the value TRUE for bit 3. In
fact, 3 written in binary is 00112, so bit 3 is 1. Thus

2 ELEM bi

would yield FALSE. The priority of ELEM is 7.
Incidentally, notice that in Algol 68 the most significant bit in a machine word

is bit-1 and the least significant bit is bit-32. This strongly suggests that comput-
ers in the 1960’s were “big-endian”. Intel microprocessors and other compatible
processors are “little-endian”1. Because the a68toc compiler translates Algol 68

1These terms come from the book by Jonathan Swift entitled “Gulliver’s Travels” and
they refer to the habit of some people of eating boiled eggs at the “big” end or the “little”
end!

Contents Index

Chapter 11. Advanced constructs 175

programs into C programs, it is quite possible for the Algol68toC system to be
implemented on a “big-endian” microprocessor, such as the Motorola 68000-series.
A “big-endian” processor stores a machine word as four bytes (each of 8-bits) with
the most significant byte at the lowest memory address. “Little-endian” processors
store the least significant byte at the lowest memory address. Whatever kind of
microprocessor is used to elaborate your programs, the most significant bit of the
word is bit-1 and the least significant bit is bit-32 in Algol 68.

The dyadic operators SHL and SHR shift a machine word to the left or to the
right respectively by the number of bits specified by their right operand. Their
priority is 8. To illustrate their action we shall suppose that they all operate on the
BITS value 16r 89ab cdef. Both the shifts are by four bits which is equivalent to
one hexadecimal digit (4 bits is half a byte and is commonly called a nibble: yes,
software engineers do possess a sense of humour!).

The result of shifting the above value by 4 bits is given by the following table:

Original value = 16r 89ab cdef

Operator Bits shifted Yield
SHL 4 9abc def0

SHL -4 089a bcde

SHR 4 089a bcde

SHR -4 9abc def0

When shifting left (SHL), bits shifted beyond the most significant part of the word
are lost. New bits shifted in from the right are always zero. When shifting right
(SHR), the reverse happens. Note that the number of bits shifted should be in the
range [−32,+32]. For SHL, if the number of bits to be shifted is negative, the BITS
value is shifted to the right and likewise for SHR. The header for SHL is

OP SHL = (BITS b,INT i)BITS:

and correspondingly for SHR. The value b is the value to be shifted and the integer
i is the number of bits to shift. UP and DOWN are synonyms for SHL and SHR

respectively. The priorities of SHL and SHR are both 8.
As well as the operators = and /= (which have the usual meaning), the operators

<= and >= are also defined for mode BITS. The formula

s >= t

yields TRUE only if for all bits in t that are 1, the corresponding bits in s are also
1. This is sometimes regarded as “s implies t”. Contrariwise, the formula

s <= t

yields TRUE only if for all bits in t which are 0, the corresponding bits in s are also
0. Likewise, this is sometimes regarded as “NOT t implies s”.

Contents Index

Chapter 11. Advanced constructs 176

Exercises

11.4 Given the declarations

BITS a = 16r 1111 1111,

b = 16r 89ab cdef

what is the value of each of the following: Ans

(a) a AND b

(b) a OR b

(c) NOT a OR b [Hint: convert each value to radix 2 and then combine]

(d) a = b

11.5 What is the value of Ans

(a) 16rab SHL 3

(b) 16rba SHR 3

11.3 Overlapping slices

Whathappens if two trimmed multiples overlap? For example, consider the program

PROGRAM slices CONTEXT VOID

USE standard

BEGIN

[4]INT r;

PROC res = VOID:

FOR n FROM LWB r TO UPB r

DO r[n]:=n OD;

PROC mpr = ([]INT m)VOID:

(

FOR i FROM LWB m TO UPB m

DO

print((whole(m[i],0),blank))

OD;

print(newline)

); #mpr#

res;

print("Original contents:"); mpr(r);

r[:UPB r-1]:=r[1+LWB r:];

print((newline,"r[:3]:=r[2:]",newline,

"Compiler does it: ")); mpr(r);

res;

Contents Index

Chapter 11. Advanced constructs 177

FOR i FROM LWB r TO UPB r-1

DO r[i]:=r[i+1] OD;

print("Forwards loop: "); mpr(r);

res;

FOR i FROM UPB r-1 BY -1 TO LWB r

DO r[i]:=r[i+1] OD;

print("Backwards loop: "); mpr(r);

res; r[1+LWB r:]:=r[:UPB r-1];

print((newline,"r[2:]:=r[:3]",newline,

"Compiler does it: ")); mpr(r);

res;

FOR i FROM 1+LWB r TO UPB r

DO r[i]:=r[i-1] OD;

print("Forwards loop: "); mpr(r);

res;

FOR i FROM UPB r BY -1 TO 1+LWB r

DO r[i]:=r[i-1] OD;

print("Backwards loop: "); mpr(r)

END

FINISH

When compiled and executed, the program gives the following output:

Original contents:1 2 3 4

r[:3]:=r[2:]

Compiler does it: 2 3 4 4

Forwards loop: 2 3 4 4

Backwards loop: 4 4 4 4

r[2:]:=r[:3]

Compiler does it: 1 1 2 3

Forwards loop: 1 1 1 1

Backwards loop: 1 1 2 3

Notice that lines 5 and 8 of the results are definitely wrong, but that the compiler
gets it right both times. The lesson is, do not worry about overlapping multiples:
the compiler will ensure you get the effect you want.

A different matter is when you want to replace a column of a square multiple
with a row. Here, the overlap is more of a “crossoverlap”. In this case you need to
be careful—see the next exercise.

Contents Index

Chapter 11. Advanced constructs 178

Exercises

11.6 Given a square two-dimensional multiple of integers, write a procedure which
uses trimmers (not necessarily overlapping) to convert its columns to rows
and its rows to columns. For example:

((1,2,3), ((1,4,7),

(4,5,6), => (2,5,8),

(7,8,9)) (3,6,9))

Your procedure should cater for any size of square multiple. Ans

11.4 Completers

Sometimes it is desirable to have more than one possible end-point of a serial clause.
This often happens when a loop needs to be prematurely terminated so that a
surrounding serial clause can yield a value which is unexpected. A completer is
so-called because it provides a completion point for a serial clause. A completer can
be placed wherever a semicolon (the go-on symbol) can appear except in enquiry
clauses (whether BOOL enquiry clauses or INT enquiry clauses). It consists of the
construct EXIT followed by a label and a colon (:). A label is formed with the
same rules as for an identifier and should not be the same as any identifier in the
current range. Here is an example of a completer:

EXIT label:

The label must be referenced by a GOTO clause within the same serial clause in
which the completer occurs, or in an inner clause (not necessarily serial). Here is
an example of such a completer:

a:=(INT i; read((i,newline));

IF i < 0 THEN GOTO negative FI;

sqrt(i) EXIT

negative:

sqrt(-i)

)

The example is artificial, but serves to illustrate the use of a completer.
A completer can sometimes save the declaration of a boolean name. For example,

here is a procedure without a completer:

PROC is in str = (STRING t, CHAR c)BOOL:

(

BOOL found := FALSE;

FOR n FROM LWB t TO UPB t

WHILE ~found

DO

found:=c = t[n]

Contents Index

Chapter 11. Advanced constructs 179

OD;

found

);

Here is the procedure with a completer:

PROC is in str = (STRING t,CHAR c)BOOL:

(

FOR n FROM LWB t TO UPB t

DO

IF c = t[n] THEN GOTO found

OD;

FALSE EXIT

found:

TRUE

)

In fact, GOTO clauses are valid almost anywhere in Algol 68. They are particularly
useful when it is required to jump out of nested clauses. Let us reconsider the
program echo in section 9.5.1 with a GOTO clause:

PROGRAM echo CONTEXT VOID

USE standard

BEGIN

FILE args;

IF open(args,"",arg channel)/=0

THEN

put(stand error,

("Cannot access the arguments",

newline));

stop

ELSE

FILE ff:=args;

on logical file end(

ff,

(REF FILE f)BOOL:

close(f); GOTO end; FALSE));

DO

STRING arg;

get(ff,(skip terminators,arg));

print((arg,newline))

OD;

end:

print(("End of arguments",newline))

FI

END

FINISH

Use of GOTO clauses should be confined to exceptions because otherwise they can
destroy the natural structure of your programs making them much more difficult
to understand and maintain.

Contents Index

Chapter 11. Advanced constructs 180

11.5 References to names

The idea that a mode can contain more than one REF, or that a mode might be
REF[]REF[]CHAR was broached at the start of chapter 5 and mentioned in sec-
tion 10.3.2. The time has now come to address this topic fully.

Any mode which starts with REF is the mode of a name. The value to which
a name refers has a mode with one REF less. Since names are values in their own
right, there is no reason at all why a name should not refer to a name. For example,
suppose we declare

INT x,y

then the mode of both x and y is REF INT. We could also declare

REF INT xx, yy

so that xx and yy both have the mode REF REF INT.
Now, according to the definition of an assignment (see section 10.8), it is per-

fectly legitimate to write

xx:=x

without any dereferencing because the identifier on the left has mode REF REF INT

and the identifier on the right has mode REF INT. Leaving aside for the moment of
how useful such declarations and assignments might be (and they are very useful,
essential even), let us give our attention to the mechanics. We could assign y to xx

and a value to y with the double assignment

xx:=y:=3

Again, no dereferencing is involved. Now, given that xx refers to y which refers to
3, how could we make y refer to 4, say? Simple. Assign 4 directly to y. However,
if the assignment to xx was

xx:=(random>0.8|x|y)

we should not know which name xx referred to. Finding out which name xx refers
to is the subject of the next section.

You may remember that the context of the left-hand side of an assignment is
soft so no dereferencing is allowed. The way to coerce a name of mode REF REF INT

to a name of mode REF INT is to use a cast:

REF INT(xx):=4

Note that the unit

print(xx)

will yield 4 with xx being dereferenced twice. There is nothing to stop us writing

REF REF INT xxx:=xx

with assignments like

Contents Index

Chapter 11. Advanced constructs 181

REF REF INT(xxx):=x

REF INT(xxx):=-2

and we shall see in a later section that names with modes REF REF REF some-mode

have a use. Although you can use as many REFs as you like, there does not seem
to be any need for more than three.

Now consider the assignments

xx:=yy:=x:=4

Both xx and yy refer to different instances of the name x, but when those instances
are dereferenced, they both yield 4. This means that if we assign 5 to x, when
xx and yy are dereferenced twice, they will both yield 5. We can represent this
relationship by the diagram

xx yy

x

5

RRI RRI

RI

where RRI and RI stand for REF REF INT and REF INT respectively. Thus, although
strictly speaking xx and yy refer to different instances of the name identified by x,
we shall regard them as both referring to x.

Exercises

11.7 Given the declaration

REF REAL xx:=LOC REAL

how would you make the anonymous name refer to 120.5? Ans

11.8 Write a declaration for rrq which has the mode REF REF REF[]CHAR and
make it refer to an anonymous name which refers to an anonymous name
which refers to a multiple of 10 characters. Ans

11.9 Write the declaration of a name which can refer to a flexible name which can
refer to a row of integers. In a separate assignment, assign the row-display
(3,-2,4) to your name. Ans

Contents Index

Chapter 11. Advanced constructs 182

11.6 Identity relations

Consider the declarations of the last section:

INT x,y; REF INT xx,yy

We had assigned a name to xx with the assignment

xx:=(random > 0.8|x|y)

and we wished to ascertain whether xx referred to x or to y. Unfortunately, we
cannot use the equals operator = for this purpose because its operands would be
completely dereferenced and the underlying integers would be compared. Instead,
we use an identity relation which is used exclusively for comparing names. The
identity relation

xx :=: x

yields TRUE if xx refers to x. The alternative representation of :=: is IS. The
identity relation

xx :/=: x

yields TRUE if xx does not refer to x. The alternative representation of :/=: is
ISNT. Here is a short program which illustrates the difference between = and IS:

PROGRAM test CONTEXT VOID

USE standard

BEGIN

REF INT xx, INT x:=2,y:=3;

TO 3

DO

xx:=(random>0.5|x|y);

print(("xx :=: x =",

(xx :=: x|"TRUE"|"FALSE"),

newline,"xx = ",xx,newline))

OD

END

FINISH

If you want to compare the names that both xx and yy refer to, it is no good writing

xx IS yy

This always yields FALSE because the names that xx and yy identify always differ
(they were created using two local generators so the names are bound to be dif-
ferent). The point is that no automatic dereferencing takes place in an identity
relation. To compare the names that both xx and yy refer to, you should place one
side or both sides in a cast:

REF INT(xx) IS yy

Contents Index

Chapter 11. Advanced constructs 183

This will ensure that the right-hand side (in this case) is dereferenced to yield a
name of the same mode as the left-hand side. This is because an identity relation
is subject to balancing: one side of the relation is in a soft context and the other
side is in a strong context. Given the cast on the left-hand side, the two sides of the
identity relation would yield REF INT and REF REF INT. Since no dereferencing is
allowed in a soft context, it can be seen that the left-hand side is in the soft context
and the right-hand side is in the strong context.

The IS and ISNT in the identity relation are not operators. Since the identity
relation is a quaternary (see section 10.8), remember to enclose it in parentheses if
you want to use it in a formula:

IF (field OF struct ISNT xx) & x>=-5

THEN field OF struct = 0

ELSE FALSE

FI

Exercises

11.10 The program fragment

REF STRING ff, ss; STRING f, s;

f:="Joan of Arc";

s:="Robert Burns";

ff:=(random<0.1|f|s);

ss:=(ff IS f|s|f)

applies to this and the following exercises.

What are the modes of f and ss? Ans

11.11 What does f refer to? Ans

11.12 Write a formula which compares the 3rd and 4th characters of the multiple
f refers to with the 7th and 8th characters of the multiple s refers to. What
are the modes of the operands of the operator? Ans

11.13 Write an expression which compares the name referred to by ff with the
name referred to by ss. Ans

Contents Index

Chapter 11. Advanced constructs 184

11.7 The value NIL

Sometimes it is desirable that a name of mode REF REF whatever should not refer
to a definite name (see, for example, the discussion of queues below). This can be
arranged by making it refer to NIL which is the only denotation of a name. The
mode of NIL is REF whatever. For example, consider

REF[]CHAR rc=NIL;

REF INT ri=NIL

The first NIL has the mode REF[]CHAR and the second has the mode REF INT.
Given the declaration

REF INT xx:=NIL

the mode of NIL is REF INT. However, although NIL is a name, you cannot assign
to it. That is, the assignment

REF INT(xx):=4

would cause the run-time error

Segmentation fault

and, very likely, a core dump, when using the a68toc compiler.
Nor can you use NIL in a formula if that would involve dereferencing. The only

use of NIL is for determining, by using an identity relation, that a name refers to
it. However, we shall see in the sections on queues and trees that this is a vital
function.

Now consider the declaration

REF REF INT rrri;

where the mode of rrri is REF REF REF INT. We could make rrri refer to NIL

directly using the assignment

rrri:=NIL

whence the mode of NIL is REF REF INT. Or we could use a NIL of mode REF INT

by using an anonymous name:

rrri:=LOC REF INT:=NIL

whence the mode of the anonymous name is REF REF INT. In the identity relation

rrri IS NIL

how can we tell which NIL is in use? Of course, we could use a cast for rrri, but
there is a simpler and more useful way. First we declare

REF INT nil ri = NIL

then balancing will ensure that the identity relation

rrri IS nil ri

Contents Index

Chapter 11. Advanced constructs 185

gives the required answer with rrri being dereferenced twice. Alternatively, with
the declaration

REF REF INT nil rri = NIL

we can ensure that the identity relation

rrri IS nil rri

will also be elaborated correctly. We shall see in the sections on queues and trees
that the declaration of nil ri is more useful.

Now consider the declarations

INT x:=ENTIER(random * 6), y;

REF INT xx,yy;

PROC x or y = REF INT: (random>0.8|x|y)

and the identity relation

CASE randint(3) IN xx,x or y, NIL ESAC

IS

CASE y IN x, SKIP, yy ESAC

The balancing of the identity relation includes balancing of the case clauses. The
modes yielded are

xx REF REF INT

x or y PROC REF INT

NIL REF whatever

x REF INT

SKIP who knows?
yy REF REF INT

In a soft context, these modes become:

REF REF INT

REF INT

REF whatever

REF INT

who knows?
REF REF INT

Thus the left-hand side is the soft context and the right-hand side (of the identity
relation) is the strong context (remember that SKIP is only allowed in a strong
context), and the final modes are all REF INT. In practice, it is rare that identity
relations are so complicated.

Contents Index

Chapter 11. Advanced constructs 186

Exercises

11.14 Given the declarations

FILE f1:=stand in, f2;

REF FILE cur file:=f2;

PROC p = REF FILE:

(cur file IS f1|f1|f2)

what is the value of Ans

(a) cur file:=f2

(b) cur file :/=: stand in

(c) p:=f1

(d) p:=:f1

11.15 Given the declarations of exercise 1, what is the mode of NIL in Ans

(a) cur file:=NIL

(b) REF REF FILE ff:=NIL

11.8 Queues

Consider the problem of representing a queue. We shall suppose that the queue
is at a football match and that each fan in the queue has a name, in the ordinary
sense, and a ticket number. Rather than just present the solution to this problem,
we shall discuss the problem in detail and show why the solution is what it is.

A suitable mode for the fan would beFAN:

MODE FAN = STRUCT(STRING name,INT ticket)

but what would be a suitable declaration for a queue? At first sight, it would
appear that a flexible name which can refer to a multiple of fans would be suitable:

MODE QUEUE = FLEX[1:0]FAN

but there are difficulties. Firstly, the only way a new fan could be added to the
queue would be to assign a whole new multiple to a name (in the Algol 68 sense)
referring to the queue:

QUEUE q; q:=q+FAN("Jim",1)

assuming that the operator + has been declared with the header

OP + = ([]QUEUE a,FAN b)[]QUEUE:

If the queue were long, this would be very inefficient. Secondly, given a particular
fan, how would we find the fan behind him or her? Knowing the subscript of the
fan would seem to be the answer, but what happens if someone joins the queue
somewhere in front of the fan in question? Given that there might be several fans
under consideration, the program would have to update all the relevant subscripts
and keep a record of which subscripts would be relevant.

The solution is to represent a queue as a recursive structure:

Contents Index

Chapter 11. Advanced constructs 187

MODE QUEUE=STRUCT(FAN fan,REF QUEUE next)

Then a queue with two fans in it could be represented by the diagram

Q
F RQ
fan next

F
Q

RQ
fan next

where the mode of each box is QUEUE and F and RQ stand for FAN and REF QUEUE

respectively. Notice that the next field of the first structure refers to the structure
on its right. The next field of the second structure does not refer to anything.

From the declaration of the mode QUEUE, we can see that the next field of the
structure is a name with mode REF QUEUE. It would appear that it is possible to
construct a queue in the way depicted by the last diagram: each next field of each
structure would refer to the next structure (of mode QUEUE) and the last next field
would have the mode REF QUEUE and value NIL.

Now consider adding another QUEUE to the right-hand end of the queue. We
immediately run into a difficulty. The value of the next field of the last QUEUE is
NIL with mode REF QUEUE. However, we cannot assign to NIL, nor can we replace
the name NIL with another name to make it refer to a new QUEUE. The reason is
that a name of mode REF QUEUE can only be replaced by another name of mode
REF QUEUE if the first name is referred to by a name of mode REF REF QUEUE.
In other words, instead of making the structures have mode QUEUE, we should
make them have mode REF QUEUE. In section 7.2, on field selection, we pointed out
that the modes of the fields of a structure name are all preceded by a REF. This
also applies to a recursively-defined structure. In this case, the mode of the next

field becomes REF REF QUEUE and could refer to NIL (with mode REF QUEUE) or to
another structure of mode REF QUEUE. We can depict this as

fan next fan next

RQ
RF RRQ

RQ
RF RRQ

NIL

where RQ, RRQ and RF represent the modes REF QUEUE, REF REF QUEUE and REF FAN

respectively.
Now let us consider how such a queue could be created. Since the length of the

queue at the time the program is written is unknown (and will change as fans join
or leave the queue), it is not possible to have an identifier for each structure forming
the queue. Instead, we can create anonymous names using a generator. However,
we must be able to refer to the queue in order to manipulate it. Let us declare a
name, identified by head, to refer to the beginning of the queue:

REF QUEUE head:=NIL

We have made it refer to NIL (with mode REF QUEUE) because the queue is currently
empty. Using the suggestion of the last section, we shall declare

REF QUEUE nilq = NIL;

REF QUEUE head:=nilq

where head has the mode REF REF QUEUE.
Let us assign the first fan to the queue:

Contents Index

Chapter 11. Advanced constructs 188

head:=LOC QUEUE:=(("Jim",1),nilq)

We can represent this by the diagram

RRQ

fan

head

next

"Jim" 1

FAN

nilq
RQ

We can now assign another fan to the queue:

next OF head:=LOC QUEUE:=(("Fred",2),nilq)

Let us be quite clear what is happening here. The mode of head is REF REF QUEUE.
It is a name which refers to a name so it has no fields. We can select fields only
from a QUEUE or a REF QUEUE. However, the context of a selection is weak(see
section 10.3) and so only weak-dereferencing is allowed. Thus in

next OF head

head is dereferenced to mode REF QUEUE and the next field selected (with mode
REF REF QUEUE). The anonymous name LOC QUEUE has mode REF QUEUE, so the
structure display (with mode QUEUE) is assigned to it, and it in turn is assigned to
next OF head without dereferencing. This means that the nilq which next OF head

referred to after the first fan ("Jim",1) was added to the queue has been replaced
by the second LOC QUEUE which is what we wanted. We can now depict the queue
by

RRQ

fan

head

next

"Jim" 1

FAN

RQ
nilq

fan next

RQ

FAN

"Sam" 2

We could now extend the queue by writing

next OF next OF queue:=LOC QUEUE

but since we do not know how long the queue might become, clearly we cannot go
on writing

Contents Index

Chapter 11. Advanced constructs 189

next OF next OF ...

What we need is some way of referring to the tail of the queue without lots of
selections. Because the tail of the queue always has mode REF REF QUEUE (it is the
next field of a REF QUEUE), what we need is a name of mode REF REF REF QUEUE

(yes, three REFs). Here it is:

REF REF QUEUE tail;

but again we run into a difficulty (the last one). When the queue is empty, head
refers to nilq, but what does tail refer to since we cannot select from nilq (be-
cause it is NIL)? The solution is to make head have the mode REF REF REF QUEUE

as well as tail and generate a name of mode REF REF QUEUE to refer to nilq!
(bear with it, we’re almost there):

tail:=head:=LOC REF QUEUE:=nilq

In this triple assignment, only head is dereferenced. We can depict this as

head

nilq

RQ

RRQ

RRRQ

tail

Now we can assign the first fan to the head of the queue:

REF REF QUEUE(head):=LOC QUEUE:=

(("Jim",1),nilq))

and make tail refer to the tail of the queue with

tail:=next OF head

in which head is dereferenced twice, but the selection is not dereferenced at all.

Contents Index

Chapter 11. Advanced constructs 190

The queue can now be depicted as shown below.

head

RRQ

tail

RRRQ

fan next
nilq

RQ

"Jim" 1

FAN

A queue is one example of what is called a linked-list.

Exercises

11.16 Extend the queue by assigning another REF QUEUE to tail. Ans

11.17 Now make tail refer to the tail of the queue again. Ans

11.18 Has the name referred to by head changed after adding the new REF QUEUE?
Ans

11.9 The procedure add fan

We are now ready to develop a procedure to add a fan to the end of the queue.
Clearly, there are two different situations: an empty queue and a non-empty queue.
Although we only need tail to extend the queue, we need head to determine
whether the queue is empty. So here is the header:

PROC add fan = (REF REF REF QUEUE head,tail,

REF FAN fan)VOID:

Firstly, we need to test whether the queue is empty:

IF head IS nilq

Remember that the mode of head is REF REF REF QUEUE, so in the identity relation
head is dereferenced twice.

Secondly, if the queue is empty, we assign an anonymous REF QUEUE to the name
head refers to and assign (fan,nilq) to the REF QUEUE:

THEN REF REF QUEUE(head):=

LOC QUEUE:=(fan,nilq)

Contents Index

Chapter 11. Advanced constructs 191

but this will not work because the scope of the LOC QUEUE is limited to the routine
denotation. We must use a global generator:

THEN REF REF QUEUE(head):=

HEAP QUEUE:=(fan,nilq)

Then we have to ensure that tail refers to the tail of the queue:

tail:=next OF head

If the queue is not empty, we assign an anonymous REF QUEUE to the name that
tail points to:

ELSE REF REF QUEUE(tail):=

HEAP QUEUE:=(fan,nilq)

and make tail refer to the new tail:

tail:=next OF tail

Here is the complete procedure:

PROC add fan = (REF REF REF QUEUE head,tail,

REF FAN fan)VOID:

IF head IS nilq

THEN #the queue is empty#

REF REF QUEUE(head):=

HEAP QUEUE:=(fan,nilq);

tail:=next OF head

ELSE

REF REF QUEUE(tail):=

HEAP QUEUE:=(fan,nilq);

tail:=next OF tail

FI #add fan#

Exercises

11.19 It looks as though add fan could be optimised. Rewrite the body of add fan

so that the overall structure is

tail:=next OF (REF REF QUEUE

CO IF ... FI plus two assignments CO

)

Ans

11.20 Write a program containing the necessary declarations and loop to create a
queue containing 1000 fans—alternate the names of the fans between Iain

and Fiona and increment the ticket numbers by 1. Compile and run the
program to check that there are no errors (no output will be produced). Ans

Contents Index

Chapter 11. Advanced constructs 192

11.10 More queue procedures

We can now address three more procedures: how to insert a fan into a queue, how
to remove a fan from the queue, and how to print the queue. Let us take the
printing procedure first. Here it is:

PROC print queue = (REF REF QUEUE head)VOID:

IF head IS nilq

THEN print(("NIL",newline))

ELSE print((newline,

"(",name OF fan OF head,",",

whole(ticket OF fan OF head,0),

")=>"));

print queue(next OF head)

FI

By not using the triple REF name for the head of the queue, we can use recursion
to simplify the procedure. Recursion is common in procedures for linked-lists.

Inserting a fan is a little more difficult. There are several possibilities: the queue
can be empty or non-empty. If it is non-empty, the fan can be inserted at the head
of the queue, or if there are at least two fans in the queue, the fan could be inserted
somewhere between the head and the tail. The question is, how many parameters
are required for the procedure? Clearly, we need head to determine whether the
queue is empty, tail to be updated in case it is or if the fan is to be added to the
end of the queue. Here is a possible header:

PROC insert fan=(REF REF REF QUEUE head,tail,

REF FAN fan)VOID:

We need a criterion for determining where in the queue a fan should be inserted.
Here is one: the fans should be inserted in the order of ticket number (using a queue
is not an efficient way of doing this, but this criterion will do for our purposes).
Here is insert fan with a diagram to help you understand it:

PROC insert fan=(REF REF REF QUEUE head,tail,

REF FAN fan)VOID:

IF head IS nilq

THEN #the queue is empty#

REF REF QUEUE(head):=

HEAP QUEUE:=(fan,nilq);

tail:=next OF head

ELIF ticket OF fan < ticket OF fan OF head

THEN

#insert the fan at the head of the queue#

REF REF QUEUE(head):=

HEAP QUEUE:=(fan,head)

ELIF next OF head IS nilq

THEN #add the fan after the head#

REF REF QUEUE(tail):=

HEAP QUEUE:=(fan,nilq);

tail:=next OF tail

Contents Index

Chapter 11. Advanced constructs 193

ELIF REF QUEUE marker:=head;

WHILE

IF (next OF marker ISNT nilq)

THEN

ticket OF fan

>

ticket OF fan OF next OF marker

ELSE FALSE

FI

DO marker:=next OF marker OD;

next OF marker IS nilq

THEN

#add the fan to the end of the queue#

REF REF QUEUE(tail):=

HEAP QUEUE:=(fan,nilq);

tail:=next OF tail

ELSE

CO insert the fan between ‘marker’

and ‘next of marker’ CO

next OF marker:=

HEAP QUEUE:=(fan,next OF marker)

FI

fan next fan next

fan next

Existing list of
REF QUEUEs

REF QUEUE to be inserted

RRQ
marker

There are three lines where you need to look carefully at the modes and values
involved:

� the line which ends in (fan,head),

� the line which ends in (fan,next OF marker),

� the line containing the > operator.

Discussion of this procedure completes our examination of queues.

Contents Index

Chapter 11. Advanced constructs 194

Exercises

11.21 In the procedure insert fan, explain the circumstances in which the loop
will terminate. Ans

11.22 Using the procedure print queue, confirm that the procedure insert fan

works. Ans

11.23 Write the procedure delete fan which will delete a fan with a given ticket
number from the queue. It should yield the fan if it has been deleted and
FALSE if it cannot be found. This diagram should help you:

("Fiona", n-1)

("Fiona", n-1)

("Fiona", n+1

("Fiona", n+1

("Iain", n

("Iain", n

))

)

)

garbage

Include the procedure in a program and test it. Ans

11.11 Trees

Both queues and trees are examples of recursive structures. Queues contain only one
link between individual structures, trees contain at least two. Trees are another
kind of linked-list and are interesting because they give more examples of how
recursive procedures are used to manipulate recursively-defined data structures.

There are two principal kinds of trees in common use: B-trees and binary trees.
B-trees (sometimes called balanced trees) are too advanced to be described here.

A binary tree consists of a number of forks, usually called nodes, which are
linked with two links per node.

Here is an example of a small tree:

Contents Index

Chapter 11. Advanced constructs 195

1there

1was1a

1lady 1young

1of

1Ryde

The topmost node is called the root (trees are usually depicted upside-down2).
Each node consists of three parts: the data which each node bears and left and
right references which can refer to other nodes. In the small tree shown above,
there are seven nodes on five levels. There are 4 nodes on the left branch of the
root and 2 on the right, so that the tree is unbalanced.

A binary tree is particularly suitable for the ordering of data: that is, for arrang-
ing data in a predefined order3. In the previous section, in procedure insert fan,
we considered inserting a fan into a queue in ascending order of ticket number.
This is an inefficient way of ordering data. For example, suppose there are 100
fans in the queue. Then, on average, we can expect to insert a fan halfway down
the queue; which means 50 comparisons of ticket numbers. If the fans were stored
as a balanced binary tree, the maximum number of comparisons would be only 7
(because 26 < 100 < 27). For larger numbers, the difference between the two kinds

2The remainder of the intriguing limerick runs as follows:-

Who ate sour apples and died.
The apples fermented inside the lamented
and made cider inside ’er inside.

3but only if the tree is reasonably balanced

Contents Index

Chapter 11. Advanced constructs 196

of linked-list is even more marked. For 1000 fans, a queue would need 500 compar-
isons on average, whereas a balanced binary tree would need 10 at most. While it
is true that these figures are minima (they assume that the tree is balanced, that
is, that there are as many nodes to the left of the root as to the right), nevertheless,
on average, a binary tree is much more efficient than a queue for ordering data.

Here is a typical mode declaration for a binary tree:

MODE WORD = STRUCT(STRING wd,

INT ct,

REAL fq),

TREE = STRUCT(REF WORD w,

REF TREE left,right);

The mode of the data in the declaration of TREE is REF WORD so that if an item of
data is moved around, it is only the reference which is moved. This is more efficient
than moving the data item itself.

We shall give two example tree procedures: adding an item of data to the tree
and printing the tree. We need to check whether the tree at some node is empty.
For this, we use the declaration

REF TREE leaf = NIL

Here is the procedure add word:

PROC add word = (REF REF TREE root,

REF WORD w)VOID:

IF root IS leaf

THEN root:=HEAP TREE:=(w,leaf,leaf)

ELIF wd OF w < wd OF w OF root

THEN add word(left OF root,w)

ELIF wd OF w > wd OF w OF root

THEN add word(right OF root,w)

ELSE ct OF w OF root+:=1

FI

The ordering relation in add word is the alphabetical ordering of the string in each
data item. When the string in the data item to be added to the tree has been found
in the tree, the occurrence number is incremented by 1 (see the ELSE clause above).
Note the use of recursion.

Printing the tree follows a similar pattern, but when the “root” under consid-
eration is a leaf, nothing happens:

PROC print tree=(REF FILE f,

REF REF TREE root)VOID:

IF root ISNT leaf

THEN print tree(f,left OF root);

put(f,(wd OF w OF root,

ct OF w OF root,

newline));

print tree(f,right OF root)

FI

Contents Index

Chapter 11. Advanced constructs 197

As you can see, recursion is vital here. Although it is true that recursion can be
avoided by using a loop, recursion is better because it clarifies the logic.

The allocation and release of memory for linked-lists (including trees) are quite
transparent to the program. When a tree is read, and nodes possibly deleted, all
the lost memory is collected every so often by a garbage collector. You do not
have to worry about the details of memory maintenance—it is all done for you by
the compiler and the run-time system. If you write a program which relies heavily
on global generators, then you should allocate extra memory to the heap (see the
on-line information for details of how to use the Algol 68 compilation system).

Exercises

11.24 Write a program which reads a text book and creates a binary tree containing
the number of occurrences of each of the letters A–Z and a–z (that is, case is
significant). Print a report with the frequency of occurrence represented by
a percentage of the total number of letters in the book to 2 decimal places.
You should print the letters going downwards with 13 lines for each column:
first the upper case letters, then the lower case. Only print lines for those
letters which occur in the book (use mem channel to build the complete table
in memory before printing).Ans

11.12 Parallel programming

Unfortunately, the a68toc compiler does not provide parallel programming, so this
section has been removed from the third edition of this book.

11.13 Summary

A machine word is accessed using the mode BITS and a number of operators. A
value of mode BITS can be denoted using binary, quaternary (radix 4), octal or
hexadecimal digits. Names which refer to names form the basis of self-referential
modes (via STRUCT and REF) from which we can construct queues and trees. Some
of the basic procedures were covered which manipulate these data structures.

Contents Index

Chapter 12

Program development

Of course, there is more to writing programs than learning a programming lan-
guage. Although you will find many books on programming languages, you will
not find many on computer programming as such. That is because it is very much
a craft. Be aware that this book does not, and cannot, train you to become a pro-
fessional programmer. Only on-the-job training and experience can do that—but
after working through this chapter, you will have an idea of some of the activities
a professional programmer does.

In the computer industry, there is a widespread attitude that program main-
tenance helps build good programmers. There are sound reasons for this. One is
that reading other people’s programs helps you learn how to lay out programs, how
to organise the source, how to write structured code and how to solve the sort of
problems that a programmer meets daily. Another reason is that program mainte-
nance usually involves either removing errors (usually called bugs) or making small
changes to the program to adapt it to changing requirements. You have to learn
how a program works before you change it and reading someone else’s program
means that the philosophy of the program (the approach of the program to solving
a problem) is already there—you do not have to create it.

However, there is no substitute for writing your own programs. The first section
of this chapter is concerned with how to write your own programs, from problem
analysis to documentation. The next topic discusses how to access operating system
procedures. This introduces almost all those aspects of Algol 68 which involve direct
machine access apart from the mode BITS and its associated operators which were
covered in chapter 11.

Next, we turn to the first aspect of program maintenance: how to understand a
program. A small utility (lf) is provided with the Algol68toC compilation system
documentation. This section looks at lf and analyses its functioning.

12.1 Writing programs

The first stage in the development of a new program consists of analysing the
problem that the program must solve. Unfortunately, there is no known method or
methodology which will solve any kind of problem. However, a particularly good
book on problem solving was written by George Pólya(see the Bibliography) and
although the book is geared towards mathematical problems, it will help you solve

198

Chapter 12. Program development 199

most technical problems.
Problem analysis is not usually taught to beginners at computer programming

because, so far as we know, it is mainly an intuitive activity (it is a branch of
Heuristics). Learning to analyse a problem with the intention of writing a computer
program is largely accomplished by writing simple programs followed by programs
of increasing sophistication—this is sometimes called “learning by doing”. When
we start analysing actual programs later in the chapter, each such analysis will
be preceded by a problem analysis. You will be able to see how the program, as
presented, accords with that analysis.

Nevertheless, even though no definitive method can be given, there are guide-
lines which help you to appreciate and analyse problems suitable for computer
solution. In the field of systems analysis, you will find various methodologies (such
as SSADM). These are usually geared towards large-scale systems and are designed
to prevent systems designers from forgetting details. In the context of program
design, knowing the data to be used by the program and the data to be produced
by the program is the principal guide to knowing what manipulations the program
must perform. Data knowledge specifies the books accessed by the program and
usually constitutes a substantial part of the program’s documentation.

Once you know the data your program operates on, you can determine the
actual manipulations, or calculations, required. At this stage, you should be able
to determine which data structures are suitable for the solution of your problem.
The data structures in turn lead you to the mode declarations. The kind of data
structure also helps to determine the kind of procedures required. Some examples:
if your data structures include a queue, then queue procedures will be needed; or,
if you are using multiples (repeated data), then you will almost invariably be using
loops. Again, if an input book contains structured data, such as an item which is
repeated many times, then again your program will contain a processing loop. The
Jackson programming methodology is a useful way of specifying procedures given
the data structures to be manipulated (see the bibliography).

12.1.1 Top-down analysis

After you have determined suitable modes and procedures, you need to analyse
the problem in a top-down manner. Basically, top-down analysis consists of
determining the principal actions needed to perform a given action, then analysing
each of the principal actions in the same way. For example, suppose we wished to
write a program to copy a book whose identifier is given on the command line. The
topmost statement of the problem could be

copy an identified book

The next stage could be

get the book identifier

open the book

establish the output copy book

copy the input book to output

close both books

At this stage, the process “copy the input book to output” will depend on the
structure of the input book. If it is text, with lines of differing length, you could

Contents Index

Chapter 12. Program development 200

use a name of mode REF STRING. If the book contains similar groupings of data,
called records, then it would be more appropriate to declare a structured mode
and write appropriate input and output procedures:

DO

get record from input book

put record to output book

OD

The analysis is continued until each action can be directly coded.

12.1.2 Program layout

Before you start coding the program (writing the actual Algol 68 source program),
you should be aware of various programming strategies besides the different means
of manipulating data structures. The first to address is the matter of source pro-
gram layout.

In the examples given in this book, code has been indented to reflect program
structure, but even in this matter, there are choices. For example, some people
indent the THEN and ELSE clauses of an IF clause:

IF ...

THEN ...

ELSE ...

FI

instead of

IF ...

THEN ...

ELSE ...

FI

Others regard the parts of the IF clause as some kind of bracketing:

IF

...

THEN

...

ELSE

...

FI

Some people write a procedure as:

PROC ...

BEGIN

...

END

Others never use BEGIN and END, but only use parentheses.
Another point is whether to put more than one phrase on the same line. And

what about blank lines—these usually improve a program’s legibility. Whatever
you decide, keep to your decision throughout the program (or most of the program)
otherwise the format of the code may prove confusing. Of course, you will learn by
your mistakes and usually you will change your programming style over the years.

Contents Index

Chapter 12. Program development 201

12.1.3 Declarations

Another matter is whether to group declarations. Unlike many programming lan-
guages, Algol 68 allows you to place declarations wherever you wish. This does not
mean that you should therefore sprinkle declarations throughout your program,
although there is something to be said for declarations being as local as possible.
There are also advantages in grouping all your global declarations so that they can
be found easily. Generally speaking, it is a good idea to group all global names
together (those in the outermost range) and within that grouping, to declare to-
gether all names which use the same base mode (for example, group declarations of
modes CHAR, []CHAR and STRING). Some of the exercises in this book only declare
names when they are immediately followed by related procedures. If your program
needs many global names, it makes sense to declare them near the beginning of
the program, after mode declarations, so that if subsequent changes are required,
you know that all the global name declarations are together and therefore you are
unlikely to miss any.

12.1.4 Procedures

The next consideration is breaking your code into procedures. As you analyse the
problem, you will find that some of the processing can be specified in a single line
which must be analysed further before it can be directly coded. Such a line is a good
indication that that process should be written as a procedure. Even a procedure
which is used once only is worth writing if the internal logic is more than a couple
of conditional clauses, or more than one conditional clause even.

You also have to decide between repeating a procedure in a loop, or placing
the loop in the procedure. Deciding the level at which logic should be put in a
procedure is largely the product of experience—yours and other people’s—another
reason for maintaining existing programs.

When you have decided where to use procedures, you should then consider the
interface between the procedure and the code that calls it. What parameters should
it have, what yield, should you use a united mode for the yield, and so on. Try
to have as few parameters as possible, but preferably use parameters rather than
assign to names global to the procedure. The design of individual procedures is
similar to the design of a complete program.

When you are coding a procedure, be especially careful with compound Boolean
formulæ. From experience, this is where most mistakes arise. If you are writing a
procedure which manipulates a linked list, draw a diagram of what you are trying
to do. That is much easier than trying to picture the structures in your head.

12.1.5 Monetary values

Problems can arise when dealing with money in computer programs because the
value stored must be exact. For this reason, it is usually argued that only integers
should be used. In fact, real numbers can be used provided that the precision of
the mantissa is not exceeded. Real numbers are stored in two parts: the mantissa,
which contains the significant digits of the value, and the exponent, which multiplies
that value by a power of 2. In other words, using decimal arithmetic, the number
3 · 14159 × 10−43 has 3 · 14159 as a mantissa and −43 as an exponent. Because

Contents Index

Chapter 12. Program development 202

real numbers are stored in binary (radix 2), the mantissa is stored as a value in the
range 1 ≤ value < 2 with the exponent adjusted appropriately.

There are a number of identifiers declared in the standard prelude, known as
environment enquiries, which serve to determine the range and precision of real
numbers. The real precision is the number of bits used to store the mantissa,
while the value max exp real is the maximum exponent which can be stored for
a binary mantissa (not the number of bits, although it is a guide to that number).
The real width and exp width say how many decimal digits can be written for
the mantissa and the exponent. The values max real and min real are the maxi-
mum and minimum real numbers which can be stored in the computer. All these
values are specified by the IEEE 754–1985 standard on “Binary Floating-Point
Arithmetic” which is implemented by most microprocessors today.

The value of real width is 15 meaning that 15 decimal digits can be stored
accurately. Leaving a margin of safety, we can say that an integer with 14 digits
can be stored accurately, so that the maximum amount is

99, 999, 999, 999, 999

units. If the unit of currency is divided into smaller units, such as the sterling pound
into pence, or the dollar into cents, then the monetary value should be stored in the
smaller unit unless it is known that the smaller unit is not required. Thus the great-
est sterling amount that can be handled would appear to be £999,999,999,999.99.

However, Algol 68 allows arithmetic values to be stored to a lesser or greater
precision. The modes INT, REAL, COMPL and BITS can be preceded by any number
of SHORTs or LONGs (but not both). Thus

LONG LONG LONG REAL r;

is a valid declaration for a name which can refer to an exceptionally precise real.
When declaring identifiers of other precisions, denotations of the required precision
can be obtained by using a cast with the standard denotation of the value as in

LONG REAL lr = LONG REAL(1);

One alternative is to use LONG with the denotation:

LONG REAL lr = LONG 1.0;

Another is to use the LENG operator, which converts a value of mode INT or REAL
to a value of the next longer precision, as in

LONG REAL lr = LENG 1.0;

SHORTEN goes the other way.

SHORT SHORT INT ssi = SHORTEN SHORTEN 3;

All the arithmetic operators are valid for all the LONG and SHORT modes. Although
you can write as many LONGs or SHORTs as you like, any implementation of Algol 68
will provide only a limited number. The number of different precisions available
is given by some identifiers in the standard prelude called environment enquiries.
They are

Contents Index

Chapter 12. Program development 203

� int lengths

� int shorths

� real lengths

� real shorths

� bits lengths

� bits shorths

The values for complex numbers are the same as those for reals. For integers,
where int lengths is greater than 1, long max int and so on are also declared,
and similarly for short max int. If int lengths is 1, then only the mode INT is
available.

For the a68toc compiler

int lengths=2

int shorths=3

Thus it is meaningful to write

LONG INT long int:=long max int;

INT int:=max int;

SHORT INT sh int:=short max int;

SHORT SHORT INT sh sh int:=

short short max int;

The same applies to the mode BITS. Try writing a program which prints out the
values of the environment enquiries mentioned in this section. The transput pro-
cedures get, put, get bin and put bin all handle the available LONG and SHORT

modes.
Although you can still write

LONG LONG INT lli=LONG LONG 3;

the actual value created may not differ from LONG INT depending on the value of
int lengths. Note that you cannot transput a value which is not covered by the
available lengths/shorths. Use LENG or SHORTEN before trying to transput.

For monetary values, LONG INT is available with the value of long max int

being

9,223,372,036,854,775,807

which should be big enough for most amounts.

12.1.6 Optimisation

There are two well-known rules about optimisation:

1. Don’t do it.

2. Don’t do it now.

Contents Index

Chapter 12. Program development 204

However, often there is a great temptation to optimise code, particularly if two
procedures are very similar. Using identity declarations is a good form of optimi-
sation because not only do they save some writing, they also lead to more efficient
code. However, you should avoid procedure optimisation like the plague because
it usually leads to more complicated or obscure code. A good indicator of bad
optimisation is the necessity of extra conditional clauses. In general, optimisation
is never a primary consideration: you might save a few milliseconds of computer
time at the expense of a few hours of programmer time.

12.1.7 Testing and debugging

When writing a program, there is a strong tendency to write hundreds of lines of
code and then test it all at once. Resist it. The actual writing of a program rarely
occupies more than 30% of the whole development time. If you write your overall
logic, test it and it works, you will progress much faster than if you had written the
whole program. Once your overall logic works, you can code constituent procedures,
gradually refining your test data (see below) so that you are sure your program
works at each stage. By the time you complete the writing of your program, most
of it should already be working. You can then test it thoroughly. The added
advantage of step-wise testing is that you can be sure of exercising more of your
code. Your test data will also be simpler.

The idea behind devising test data is not just giving your program correct data
to see whether it will produce the desired results. Almost every program is designed
to deal with exception conditions. For example, the lf program has to be able to
cope with blank lines (usually, zero-length lines) so the test data should contain
not one blank line, but also two consecutive blank lines. It also has to be able to
cope with extra-long lines, so the test data should contain at least one of those.
Programs which check input data for validity need to be tested extensively with
erroneous data.

It is particularly important that you test your programs with data designed to
exercise boundary conditions. For example, suppose the creation of an output book
fails due to a full hard disk. Have you tested it, and does your program terminate
sensibly with a meaningful error message? You could try testing your program with
the output book being created on a floppy disk which is full.

Sometimes a program will fault with a run-time error such as

Run time fault (aborting):

Subscript out of bounds

or errors associated with slicing or trimming multiples. A good way of discovering
what has gone wrong is to write a monitor procedure on the lines of

PROC monitor=(INT a,

[]UNION(SIMPLOUT,

PROC(REF FILE)VOID)r

)VOID:

BEGIN

print(("*** ",whole(a,0)));

print(r)

END

Contents Index

Chapter 12. Program development 205

and then call monitor with an identifying number and string at various points in
the program. For example, if you think a multiple subscript is suspect, you could
write

monitor(20,("Subscript=",whole(subscript,0)))

By placing monitors at judicious points, you can follow the action of your program.
This can be particularly useful for a program that loops unexpectedly: monitors will
tell you what has gone wrong. If you need to collect a large amount of monitors, it
is best to send the output to a book. The disadvantage of this is that the operating
system does not register a book as having a size until it has been closed after
creating. This means that if your program creates a monitoring book, writes a
large amount of data to it and fails before the book is closed, you will not be able
to read any of the contents because, according to most operating systems, there
will not be any contents. A way round this problem is to open the book whenever
you want to write to it, position the writing position at the end of the book, write
your data to it and then close the book. This will ensure that the book will have
all the executed monitors (unless, of course, it is a monitor which has caused the
program to fail!). The procedure debug given in section 9.9 will do this.

An alternative method of tracing the action of a program at run-time is to
use a source-level debugger. The ddd or gdb programs can help you debug the
C source program produced by the a68toc compiler, but unless you understand the
C programming language and the output of the a68toc compiler, you will not find
it useful. Monitors, although an old-fashioned solution to program debugging, are
still the best means of gathering data about program execution.

Another proven method of debugging (the process of removing bugs) is dry-
running. This involves acting as though you are the computer and executing a
small portion of program accordingly. An example will be given in the analysis of
the lf program later.

Sometimes, no matter what you do, it just seems impossible to find out what
has gone wrong. There are three ploys you can try. The first, and easiest, is to
imagine that you are explaining your program to a friend. The second is to actually
explain it to a friend! This finds most errors. Finally, if all else fails, contact the
author.

12.1.8 Compilation errors

You can trust the compiler to find grammatical errors in your program if any are
there. The compiler will not display an error message for some weird, but legal,
construction. If your program is syntactically correct (that is, it is legal according
to the rules of the language), then it will parse correctly.

When compiling a program of more than a hundred lines, say, you can use the
parsing option (-check) which will more than double the speed of compilation.
When your program parses without error, then it is worth doing a straight com-
pilation (see the online documentation for program mm in the a68toc compilation
system).

A definitive list of error messages can be found in the compiler source code file

algol68toc-1.xx/src/message.a68

Contents Index

Chapter 12. Program development 206

You will find that most of the messages are easy to understand. Occasionally, you
will get a message which seems to make no sense at all. This is usually because
the actual error occurs much earlier in your program. By the time the compiler
has discovered something wrong, it may well have compiled (or tried to compile)
several hundred lines of code. A typical error of this sort is starting a comment
and not finishing it, especially if you start the comment with an opening brace ({),
which gives rise to the following error message:

ERROR (112) end of file inside

comment or pragmat

If you start a comment with a sharp (#) and forget to finish it likewise, the next time
a sharp appears at the beginning of another comment, the compiler will announce
all sorts of weird errors.1

Another kind of troublesome error is to insert an extra closing parenthesis or
END. This can produce lots of spurious errors. For example:

ERROR (118) FI expected here

(at character 48)

ERROR (203) ELSE not expected here

(at character 4)

ERROR (140) BOOL, INT or UNION required here,

not VOID

ERROR (116) brackets mismatch

(at character 2)

ERROR (159) elements of in-parts

must be units

ERROR (117) FINISH expected here

(at character 3)

Omitting a semicolon, or inadvertently inserting one will also cause the appearance
of curious error messages. Messages about UNIONs usually mean that you should
use a cast to ensure that the compiler knows which mode you mean. If, for example,
you have a procedure which expects a multiple of mode

[]UNION(STRING,[]INT)

and you present a parameter like

((1,2),(4,2),(0,4))

then the compiler will not know whether the display is a row-display or a structure-
display. Either you should precede it with a suitable mode, or modify your proce-
dure to take a single []INT and loop through it in twos. Having to modify your
program because the compiler does not like what you have written is rare however.

1One way of avoiding this sort of error is to use “lexical” highlighting with your favourite
editor. A missing quote or sharp will cause large amounts of your program to be displayed
as a string denotation or a comment.

Contents Index

Chapter 12. Program development 207

12.1.9 Arithmetic overflow

Sometimes your program will fail at the time of elaboration or “run-time” due to
arithmetic overflow. If, during a calculation, an intermediate result exceeds the
capacity of an INT, no indication will be given other than erroneous results.

On some platforms, overflow of REAL numbers can be detected by the floating-
point unit. The standard prelude contains the value fpu cw algol 68 round of
mode SHORT BITS and the procedure

PROC set fpu cw = (SHORT BITS cw)VOID:

The small test program testov (to be found with the a68toc compilation system
documentation) illustrates testing for overflow both with integers and real numbers.

12.1.10 Documentation

The most tedious aspect of writing a program is documenting it. Even if you
describe what the program is going to do before you write it, but after you have
designed it, documentation is not usually a vitally interesting task. Large program-
ming teams often have the services of a technical writer whose job it is to ensure
that all program documentation is completed.2

Existing programs are usually documented and there is no doubt that the best
way of learning to document a program is to see how others have done it. There
are several documentation standards in use, although most large companies have
their own. Generally speaking, the documentation for a program should contain at
least the following

� the program name

� the language used to write the program

� a short description of what the program does

� the details of all books used by, or produced by, the program, including the
screen and the printer

� an analysis of how the program works, particularly any special algorithms or
data structures (queues and trees are examples)

� who wrote the program, and when

� the location of the source code

� the latest listing of the source code

but not necessarily in the order given above. The aim of program documentation
is to make it easy to amend the program, or to use it for a subsequent rewrite.

Lastly, it is worthwhile saying “don’t be rigid in program design”. If, as you
reach the more detailed stages of designing your program, you discover that you
have made a mistake in the high-level design, be willing to backtrack and revise it.
Design faults are usually attributable to faulty analysis of the problem.

2Various schemes have been developed for documenting a program as it is written,
They are often called “literate programming”.

Contents Index

Chapter 12. Program development 208

12.2 Non-canonical input

The noncanon program provides a means of entering data via the keyboard without
echoing it to the screen. This is known as non-canonical input mode, the usual
echoing of input being canonical input mode. The general details of terminal control
are very complex, but simple access has been provided with the kbd channel.

Here is a sample program which may be used to test the effect of kbd channel:

PROGRAM noncanon CONTEXT VOID

USE standard

BEGIN

STRING password;

FILE kbd; open(kbd,"",kbd channel);

WHILE

CHAR ch; get bin(kbd,ch);

ch /= REPR lf

DO

password+:=ch;

print("*")

OD;

close(kbd);

print(("You entered [",

password,"]",

newline))

END

FINISH

Notice that the program cannot be aborted by pressing ^C. Ensure you close the
FILE opened with the kbd channel after use otherwise you’ll find all your com-
mands at the command prompt unechoed. If that happens, issue the following
command at the prompt:

$ stty sane

when normal echoing will be restored.

12.3 A simple utility

When you are writing computer programs, it is very useful to be able to copy your
Algol 68 source programs to a printer with line numbers. Many editors, including
vim, Emacs and FTE, use line numbers. When the Algol 68 compiler finds an error
in your program, it displays the offending line together with its number and a
descriptive message on the screen and the number of the character in the line
where the error occurred. However, it is insufficient to merely copy the contents
of a file to the printer (unless you are using the spooling facility of a header file)
because the output will not contain any identifying information.

What is required is a small program which will optionally write line numbers
and which will write the name of the file being printed together with the date and
time at which the file was last modified. A page number is another useful item as
it prevents pages being lost when the listing is made on separate sheets of paper.

Contents Index

Chapter 12. Program development 209

It would also be very useful to be able to specify where in a file a listing should
start and where it should finish. Such a program is called a utility. Notice that
the program must be able to handle zero-length lines as well as lines which are too
long to be printed on one line alone. Lastly, some editors allow you to insert tab
characters into your document, so the utility must be able to print the file with the
correct indentation.

The preceding problem analysis shows that we could write such a program if
we knew how to obtain the date and time of last modification of a file from the
operating system. In the directory /usr/share/doc/algol68toc/, you will find
the source of the program lf which solves the problem described above for the
Linux operating system. The source of lf is 520 lines long. Compile it and run it
with the argument -h. The help information displayed by the program should be
displayed by every program you write which is used at the command line: it prevents
accidental use from causing damage to your operating system files or directories.

12.3.1 The source code

There are many ways of tackling the understanding of a program, but here is a
method which does help with Algol 68 programs. In summary,

1. See what the program does.

2. Look at the principal processing.

3. Examine the mode declarations.

4. Examine the routines.

5. Repeat steps 2–4 for each routine.

Stage one of examining a program is to see what it does. Examples of its
output, and possibly its input, help you to identify the actions of various parts of
the program. Documentation of the input and output would suffice, but neither
exists in this case because the input is a plain text file and the output is better seen
than described. Compile the Algol 68 example program lf in

/usr/share/doc/algol68toc/

and use it to list the file test.lf (in the same directory) with line numbers on your
printer using the command

lf -pg -n test.lf | lpr

to pipe the output to the printer unless you have a LaserJet 4 or 6L when you can
omit the -pg argument. Notice that the time and date the file was last modified
appears at the top of each page, together with the identifier of the file and the
page number. If you used the -n parameter to print the test file, each line will
be preceded by a line number and a colon. If you did not list the file with line
numbers, do so now because the line numbers will highlight another feature of the
program. The first line in test.lf is too long to be printed on one line, so the
program breaks it into two parts. The second part does not have a line number
since it is part of the same line in the input.

The second stage in understanding a program is to look at the principal process-
ing. Since procedures and other values must be declared before use in the a68toc
compiler, the last part of the program contains the main processing logic. Now
print (or display) the source of lf.a68 using the command

Contents Index

Chapter 12. Program development 210

lf -n /usr/share/doc/algol68toc/lf.a68

In the source, the main processing logic is on lines 427–517. Examine those lines
now.

Before processing any command line arguments, the program defines the actions
to take when the last argument has been read. In other words, what should be done
when the logical end of file has been reached for comm line. The default action is to
terminate the program immediately with a suitable error message. In lf, no iden-
tification is given for comm line in the open procedure, because it isn’t relevant,
but if you insert such an identification, for example, command line file, then any
error message issued by the transput system will include it. Notice that although
the anonymous procedure used as the second parameter for on logical file end

on line 448 occurs within the IF ... FI clause, because it is a denotation (a pro-
cedure denotation) it has global scope. That is one of the reasons why anonymous
procedures are so useful. Also note the use of SKIP to yield a value of mode BOOL:
in fact, it will never be used because stop is a synonym for GOTO end of program.

In lines 442–517, the program processes the command line argument by argu-
ment. If an argument starts with “-” it is assumed to be an option otherwise it is
assumed to be a filename. Note the use of skip terminators to skip spaces in the
command line. Options that require a number (-s and -t) expect it to follow the
option directly (see lines 493 and 495). Lines 500–506 process a solitary - to mean
“list the standard input”. Lines 507–516 process a named file. As you examine the
code, underline the identifiers of all procedure calls.

The next stage in understanding a program is to look at all the mode declara-
tions. There are three in this program: PRINTER, SEC and STAT. You should scan
the program to see what identifiers have that or a related mode and where they are
used.

12.3.2 Routines

Finally, you need to examine the routines declared. It is a good idea, especially
in a more complicated program, to list the identifiers of all procedures with nested
declarations of procedures indented under their parent procedure identifiers. This
helps to fix the structure of the program in your mind. Then you should examine
the procedures used in the main processing loop. In lf, they are:

char in string close

disp error get

get mtime get numeric arg

get sections help

open print

print file process file name

reset parameters skip terminators

When you examine each procedure, do the same as you did for the whole program:
first the main logic, then the modes, then the procedures and operators. You will
need to backtrack several times in a large program. If a lot of names are declared,
prepare a list together with a description of what each name is used for, where it is
declared and the places where it is used. A cross-reference program would be really
useful, but it is not a simple program to write for Algol 68.

Contents Index

Chapter 12. Program development 211

The principle processing is performed by the procedure print file on lines 258–
322. Firstly, tab stops are set according to the current value of tabs, then lines

is initialised and an initialisation string output to the printer. If letter quality
has been chosen (option -q), a special string is sent to the printer accordingly.
Then the logical file end event procedure is set. Each section specified on the
command line (or the default section if no sections were specified) is then printed
using the procedure do line. Each line is input using get line whose principal
function is to expand tab characters to the required number of spaces (3 unless
set by the -t option). Lines are not output until the beg OF ss line is reached (1
unless set by the -s option). Notice the code following FROM in the preamble to the
inner DO ... OD loop (on lines 313–316) which ensures that the file is reset if the
sections to be printed are not ordered (the definition of ordered is in the procedure
get sections (lines 381–425).

Similar to your list of nested procedures, prepare a list of procedures where
indented procedures identify procedures called by the parent procedure. Here is
part of the list for lf:

fstat

linux fstat

help

exit, newline, put

reset parameters

lf print

ODD, print

get mtime

fstat, linux ctime

get sections

+:=

add section

char in string

get numeric arg

char in string

12.3.3 Dry-running example

The procedure get line (lines 232–250) and its associated procedures set tabs

(lines 220–224) and tab pos (lines 226–227) are worth examining in detail. The
best way to see how they work is to dry-run them. Take a blank sheet of paper
and make a vertical list of all the names, both local and global, used by the proce-
dures. Opposite in line, write a piece of text containing tab characters (a piece
of indented program, for example). Then work your way through the procedure,
marking the value referenced by each name as you complete each step. You should
also note the value of each non-name; for example, the loop identifier i. Here is
what your list could look like after going 3 times round the outer loop (the inner
loop is on lines 241–244):

tabstops FFTFFTFFTFFTFFTFFTFFTFFT. . .
line(ln) ␣␣␣␣T
in line →␣THEN␣ch:="A"

op ̸ 1 ̸ 2 ̸ 3 ̸ 4 ̸ 5 6

Contents Index

Chapter 12. Program development 212

i ̸ 1 ̸ 2 3
c ̸↛ ␣ T

Struck-out values have been superceded and ␣ denotes a space. Dry-running is a
very useful method, if laborious and time-consuming, of finding bugs. tab ch is
declared in the standard prelude.

This utility program (lf) is quite short, but we have analysed its working in
detail so that you can see how it is done.

12.3.4 ALIEN procedures

The utility lf uses some of the extensions provided by the a68toc compiler, in par-
ticular, the ALIEN construct which provides access to procedures compiled by other
compilers. In this section we shall look at the get cwd and the fstat procedures.

The procedure fstat

The procedure fstat is on lines 100–105. It depends on a call of the linux fstat

procedure whose second parameter is a name referring to a value of mode STAT.
The declaration of STAT is on lines 24–41.

If you investigate the file /usr/include/bits/stat.h, you will find the C defini-
tion of the stat structure therein. The STAT mode accurately reflects this structure
using LONG or SHORT as appropriate. Briefly, a C unsigned int is equivalent to
an Algol 68 BITS. For historical reasons, the C unsigned long int has the same
meaning as an unsigned int so BITS could have been used for those fields as well.
However, because the value is required as an integer (and is stored as a positive
integer), it is possible to regard them as having mode INT. Some of the C modes3

are hidden by further mode declarations4, but if you hunt for __dev_t you will find
it is an unsigned long long int which is equivalent to the Algol 68 LONG BITS

or, as is used in STAT, LONG INT.
Now look at the declaration of linux fstat on lines 85–89. Most of this con-

struction is C source code. The ALIEN construct may be written as

<mode> <identifier> = ALIEN "<symbol>"

"<C source code>";

where the angle brackets denote items to be replaced. In the declaration for
linux fstat we have

� <mode> = PROC(INT,REF STAT)INT

� <identifier> = linux fstat

� <symbol> = FSTAT

followed by three lines of C source code. It is not my intention to delve into
the mysteries of C. If you don’t understand that language, consult someone who
does. However, the point of the declaration is to map the Algol 68 modes onto
the C equivalents. The C procedure fstat takes two parameters: the first has
mode int (equivalent to INT) and the second of mode struct stat* which is

3C people call them types.
4typedefs

Contents Index

Chapter 12. Program development 213

equivalent to REF STAT. The cast in C consists of a mode in parentheses (compare
with the Algol 68 cast in section 10.5) so the third line of C code ensures that the
second parameter of the Algol 68 procedure linux fstat has the right mode. The
A_int_INT(...) construct is a C language macro5 for a cast which ensures that
the yielded C integer is equivalent to the Algol 68 INT. If you want to see what the
a68toc compiler generates, look for FSTAT in the file lf.c.

Reverting to line 102, the field sys file OF f has the correct mode for use
as the “file descriptor” for fstat. You should check the manual page of fstat
(in section 2 of the Linux Programming Manual) for details of its functioning and
yield.

The procedure get cwd

The procedure get cwd is more complicated because it uses several facilities pro-
vided by the standard prelude as well as another extension provided by the a68toc
compiler. Firstly, look at the ALIEN declaration of linux getcwd on lines 91–93.
The mode VECTOR[]CHAR is similar to the mode []CHAR, but the lower bound is
always 1 and is omitted from the generated construct. In fact, a68toc translates
this mode into the C equivalent of

STRUCT(REF CHAR data, INT gc, upb)

The gc field is an integer provided for the garbage-collector (the run-time memory
management system which looks after the heap). The data field is a reference to
the actual data (in fact it is a memory address)6.

The C procedure getcwd requires two parameters: a reference to an area which it
can use to return the full path of the current working directory and an integer which
states how big that area is. The C source code in the declaration for linux getcwd

contains the C macro

A_VC_charptr(buf)

which expands into buf.data (equivalent to the Algol 68 expression data OF buf)
and the C macro A_INT_int which converts an Algol 68 INT into a C int (directly
equivalent on Linux).

The yield of linux getcwd is a reference to the area in which the current work-
ing directory path has been put. Strictly speaking, this is identical to the first
parameter of the C procedure getcwd, but the GNU C compiler complains if it is
used as such. To get around this, the author used the cast (void *) which effec-
tively causes the reference to be a reference to an anonymous piece of memory. The
Algol 68 equivalent is CPTR which is defined in the standard prelude as REF BITS.

Now comes the clever bit. Look at line 98. The value of mode CPTR (REF BITS)
is converted by the operator CPTRTOCSTR into a value of mode CSTR (declared in
the standard prelude as REF STRUCT 16000000 CHAR). Now look at the definition
of that operator (on line 95)! BIOP stands for “built-in operator” and BIOP 99 is
the only built-in operator implemented by the a68toc translator. BIOP 99 maps its
parameter (of one mode) onto its yield (of another mode). It effectively acts as a cast

5A synonym for another piece of text which is expanded by the C preprocessor
6The VECTOR mode is not limited to CHAR. You can use it for any mode. See section

13.5.1 for details

Contents Index

Chapter 12. Program development 214

(in this case) from one REF mode to another REF mode. Have a look at the C source
code in lf.c if you are interested in the details. Then the value of mode CSTR is
converted using the operator CSTRTORVC to a value of mode REF VECTOR[]CHAR

which is dereferenced and then coerced to a value of mode STRING. In fact, the
a68toc compiler will silently coerce values of mode REF STRUCT i MODE to mode
REF VECTOR[]MODE and thence to REF[]MODE. Notice that you cannot coerce a value
of mode REF VECTOR[]MODE to REF FLEX[]MODE. The mode STRING has no flexibility
(it is equivalent to []CHAR).

Lastly, note that the parameter of linux getcwd is an anonymous VECTOR[]CHAR
whose scope is limited to the scope of get cwd (the Algol 68 procedure).

If you want to examine the other macros used for the translated C source, have
a look at the files either of the directories (depending on platform):

/usr/include/algol68/

/usr/local/include/algol68

12.4 Summary

In this chapter, we have covered most of the activities relating to program devel-
opment, whether it be the maintenance of existing programs or the development of
new programs. The constructor ALIEN is used to introduce procedures compiled by
other compilation systems (such as C). We have described one program and have
shown how to analyse the workings of a program.

Contents Index

Chapter 13

Standard Prelude

The function of this chapter is to describe all the facilities in the standard prelude
supplied with the Linux port of the a68toc compiler. The standard prelude con-
tains both implicit declarations (facilities provided by the compiler) and explicit
declarations (those defined in, and made available by, the QAD standard prelude1).
They are classified and dealt with as follows:-

1. Standard modes
These are the modes defined by the Algol 68 Revised Report, which defines
the language, plus modes required by the transput.

2. Environment enquiries
Some of these are defined in the Revised Report.

3. Standard operators
There are a large number of these, all defined in the Revised Report and
classified by the modes of their operands. They are preceded by a subsection
giving their priorities.

4. Other operators
Some operators are provided which are not in the Revised Report. They
are described in this section. However, operators peculiar to the a68toc
implementation are described in the section on a68toc extensions.

5. Standard procedures
Only those procedures not used in transput and process control are defined
here. They all appear in the Revised Report.

6. Other procedures
Procedures which appear neither in the Revised Report nor in any other
section appear here.

7. ALIEN declarations This section includes all the ALIEN declarations made
available by the standard prelude.

1QAD stands for “quick-and-dirty” and was supposed to represent the provided stan-
dard prelude. While it is not entirely standard (as far as Algol 68 is concerned), it was
certainly not implemented quickly!

215

Chapter 13. Standard Prelude 216

8. a68toc extensions
All the extensions to the language are described in this section including
modes, constructs, operators and procedures.

9. Process control
These declarations provide control over the working of the floating-point
unit, integer overflow and signal handling. They include declarations for
controlling the Algol 68 garbage collector.

10. Transput
This very large section provides specifications for all the transput declarations
available in the Standard Prelude, but omits those operators and procedures
which are intended for internal use only.

See the bibliography for details of the Revised Report.

13.1 Standard modes

Many of the modes available in the standard prelude are built from the standard
modes of the language which are all defined in the Revised Report.

1. VOID

This mode has one value: EMPTY. It is mainly used as the yield of routines
and in unions.

2. BOOL

This mode has two values, namely TRUE and FALSE.

3. INT

This is the basic arithmetic mode. Various precisions are available:-

(a) LONG INT 64-bit integer

(b) INT 32-bit integer

(c) SHORT INT 16-bit integer

(d) SHORT SHORT INT 8-bit integer

4. REAL

This mode is used mainly for approximate calculations although exact val-
ues can be manipulated provided that the number of significant digits does
not exceed the precision of the mantissa (see section 13.2.1). The following
precisions are available:-

(a) REAL 64-bit real

(b) SHORT REAL 32-bit real

5. COMPL

Strictly speaking, this is not a fundamental mode because it is regarded as a
structure with two fields:-

MODE COMPL = STRUCT(REAL re,im)

However, the widening coercion will convert a REAL value into a COMPL value
and COMPL values are not straightened (see section 13.7.6). Like REALs, the
following precisions are available:-

Contents Index

Chapter 13. Standard Prelude 217

(a) COMPL 128-bit

(b) SHORT COMPL 64-bit

6. CHAR

This mode is used for most character operations. See section 13.2.2 for further
details.

7. BITS

This mode is equivalent to a computer word regarded as a group of bits
(binary digits) numbered 1 to bits width (see section 13.2.1). Various pre-
cisions are available:-

(a) LONG BITS 64-bit

(b) BITS 32-bit

(c) SHORT BITS 16-bit

(d) SHORT SHORT BITS 8-bit

8. BYTES

The Revised Report describes the mode, but the a68toc compiler does not
implement it.

9. STRING

This mode is defined as

MODE STRING = FLEX[1:0]CHAR

and is provided with a shorthand construct for denotations of such values
(see section 3.1).

13.2 Environment enquiries

Algol 68 was the first programming language to contain declarations which enable a
programmer to determine the characteristics of the implementation. The enquiries
are divided into a number of different groups. The actual values of the Linux port
of the a68toc compiler are placed in square brackets. Those defined in the Revised
Report are marked with (RR).

13.2.1 Arithmetic enquiries

These enquiries are so numerous that they are further subdivided.

Enquiries about precisions

Any number of LONG or SHORT can be given in the mode specification of numbers,
but only a few such modes are distinguishable in any implementation. The following
environment enquiries tell which modes are distinguishable. Note particularly that
there are more distinguishable precisions available for INT and BITS than there are
for REAL and COMPL in the a68toc implementation.

1. INT int lengths (RR) [2]
1+ the number of extra lengths of integers.

Contents Index

Chapter 13. Standard Prelude 218

2. INT int shorths (RR) [3]
1+ the number of short lengths of integers.

3. INT real lengths (RR) [1]
1+ the number of extra lengths of real numbers.

4. INT real shorths (RR) [2]
1+ the number of short lengths of real numbers.

5. INT bits lengths (RR) [2]
1+ the number of extra lengths of BITS.

6. INT bits shorths (RR) [3]
1+ the number of short lengths of BITS.

7. INT bytes lengths (RR) [0]
Bytes are not implemented by the a68toc compiler.

8. INT bytes shorths (RR) [0]
Bytes are not implemented by the a68toc compiler.

Enquiries about ranges

1. SHORT SHORT INT short short max int (RR) [127]
The maximum value of mode SHORT SHORT INT.

2. SHORT INT short max int (RR) [32 767]
The maximum value of mode SHORT INT.

3. INT max int (RR) [2 147 483 647]
The maximum value of mode INT.

4. LONG INT long max int (RR)
[9 223 372 036 854 775 807]
The maximum value of mode LONG INT.

5. SHORT REAL short min real [0.117 55e− 37]
The smallest representable short real. It should not be confused with short small real.

6. SHORT REAL short max real (RR) [0.340 28e+ 39]
The largest short real value storable.

7. SHORT REAL short small real (RR)
[1.192 09e− 7]
The smallest short real which, when added to 1.0 makes a discernible differ-
ence.

8. REAL min real [0.197 626 258 336 50e− 322]
The smallest representable real. It should not be confused with small real.

9. REAL max real (RR) [0.179 769 313 486 23e+ 309]
The largest real value storable.

10. REAL small real (RR) [0.222 044 604 925 031e− 15]
The smallest real which, when added to 1.0, makes a discernible difference.

11. INT bytes per bits (RR) 0

Contents Index

Chapter 13. Standard Prelude 219

Internal sizes of modes

1. INT short short int width [3]
The maximum number of decimal digits expressible by a value of mode
SHORT SHORT INT.

2. INT short int width [5]
The maximum number of decimal digits expressible by a value of mode
SHORT INT.

3. INT int width [10]
The maximum number of decimal digits expressible by a value of mode INT.

4. INT long int width [19]
The maximum number of decimal digits expressible by a value of mode
LONG INT.

5. INT short short bits width (RR) [8]
The number of bits required to hold a value of mode SHORT SHORT BITS.

6. INT short bits width (RR) [16]
The number of bits required to hold a value of mode SHORT BITS.

7. INT bits width (RR) [32]
The number of bits required to hold a value of mode BITS.

8. INT long bits width (RR) [64]
The number of bits required to hold a value of mode LONG BITS.

9. INT bytes width (RR) [0]
The mode BYTES is not implemented.

10. INT short real precision [24]
The number of bits used for the mantissa of a short real.

11. INT short real width [6]
The maximum number of significant decimal digits in a small real.

12. INT short min exp [−125]
The minimum exponent of a short real.

13. INT short max exp [128]
The maximum exponent of a short real.

14. INT short exp width [2]
The maximum number of decimal digits in the exponent of a short real. This
can be less than the number of digits occupied by short max exp because
any decimal digit can be represented. For example, 99 but not 999.

15. INT real precision [53]
The number of bits used for the mantissa of a real.

16. INT real width [15]
The maximum number of significant decimal digits in a real.

17. INT min exp [−1021]
The minimum exponent of a real.

Contents Index

Chapter 13. Standard Prelude 220

18. INT max exp [1024]
The maximum exponent of a real.

19. INT exp width [3]
The maximum number of decimal digits in the exponent of a real. See also
short exp width.

Sizes used in binary transput

These values give the sizes of each mode when transput using put bin or get bin.

1. INT long bits bin bytes [8]

2. INT bits bin bytes [4]

3. INT short bits bin bytes [2]

4. INT short short bits bin bytes [1]

5. INT bool bin bytes [4]

6. INT long int bin bytes [8]

7. INT int bin bytes [4]

8. INT short int bin bytes [2]

9. INT short short int bin bytes [1]

10. INT real bin bytes [8]

11. INT short real bin bytes [4]

12. INT compl bin bytes [16]

13. INT short compl bin bytes [8]

14. INT char bin bytes [1]

Particular arithmetic values

1. REAL infinity

Defined by the C mathematics library as HUGE_VAL.

2. SHORT REAL short pi [3.14159]

3. REAL pi [3.141 592 653 589 79]

4. REAL log2 [0.301 029 995 663 981]
This is the value of log10 2.

Contents Index

Chapter 13. Standard Prelude 221

13.2.2 Character set enquiries

The a68toc implementation of Algol 68 is bedevilled by the peculiar limitations of
the C programming language in which a character is actually an integer and indis-
tinguishable from such. Furthermore, a C ‘character’ is a signed integer, equivalent
to a value of mode SHORT SHORT INT. Thus C ‘characters’ range from −128 to
+127. Algol 68, on the other hand, has the mode CHAR which, at a high level, is
distinct from values of both mode INT and mode SHORT SHORT INT. The absolute
value of Algol 68 characters range from 0 to the value of max abs char. Further-
more, the operator REPR will convert any INT upto max abs char to a character.
Be warned that the C value of REPR 225, for example, is −31! What character is
represented by REPR 225 will depend on the character set used by the displaying
device. An ISO 8859-1 character set, for example, will display ‘á’. The environment
enquiries in this section are limited to a range enquiry and the values of commonly
required characters.

1. INT max abs char (RR) [255]
The largest positive integer which can be represented as a character.

2. CHAR null character (RR) [REPR 0]

3. CHAR nul ch [REPR 0]
This is a synonym for null character.

4. CHAR blank (RR) [REPR 32]
This is a space character.

5. CHAR error char (RR) [∗]
This character is used by the conversion routines for invalid values.

6. CHAR flip (RR) [T]
This character is used to represent TRUE as an external value.

7. CHAR flop (RR) [F]
This character is used to represent FALSE as an external value.

8. CHAR cr [REPR 13]
This character is sometimes used as a line terminator, usually in association
with lf.

9. CHAR lf [REPR 10]
This character terminates lines on Linux.

10. CHAR ff [REPR 12]
This character is the “form-feed” character often used for continuous sta-
tionery.

11. CHAR tab ch [REPR 9]
This character is used to provide crude formatting of text files, particularly
those which mimic documents produced by typewriters.

12. CHAR esc [REPR 27]
This character is mainly used to introduce “escape sequences” which control
the format and colour of output on Linux virtual terminals (VTs) and xterm
windows.2

2See the file /usr/share/doc/xterm/ctlseqs.txt.gz for the latter.

Contents Index

Chapter 13. Standard Prelude 222

13. CHAR eof char [REPR 26]
This character was used to denote the end of a plain text file in the MS-DOS
operating system.

13.3 Standard operators

The number of distinct operators is vastly increased by the availability of SHORT
and LONG modes. Thus it is imperative that some kind of shorthand be used to
describe the operators. Following the subsection on the method of description are
sections devoted to operators with classes of operands. The end of this section
contains tables of all the operators.

13.3.1 Method of description

Where an operator has operands and yield which may include LONG or SHORT, the
mode is written using L. For example,

OP + = (L INT, L INT)L INT:

is a shorthand for the following operators:-

OP + = (LONG INT,LONG INT)LONG INT:

OP + = (INT,INT)INT:

OP + = (SHORT INT,SHORT INT)SHORT INT:

OP + = (SHORT SHORT INT,SHORT SHORT INT)

SHORT SHORT INT:

Ensure that wherever L is replaced by SHORTs or LONGs, it should be replaced by the
same number of SHORTs or LONGs throughout the definition of that operator. This is
known as “consistent substitution”. Note that any number of SHORTs or LONGs can
be given in the mode of any value whose mode accepts such constructs (INT, REAL,
COMPL and BITS), but the only modes which can be distinguished are those specified
by the environment enquiries in section 13.2.1. However, you should note that even
though values of modes LONG REAL and LONG LONG REAL cannot be distinguished
internally, the Algol 68 compiler still regards them as having unique modes and
you will need to use the LENG operator to convert a value of mode LONG REAL to a
value of mode LONG LONG REAL.

The priority of an operator is independent of the mode of the operator and so is
given in a separate subsection. Each operator is accompanied by a short description
of its function.

13.3.2 Standard priorities

The priority of declarations of the standard operators can be changed in subsidiary
ranges using the PRIO declaration (see section 6.2.3). Each of the following enu-
merated nine sections contains a list of those operators which have that priority.
Operators in parentheses are not defined in the Revised Report. See section 13.6
for their details.

Contents Index

Chapter 13. Standard Prelude 223

1. +:=, -:=, *:=, /:=, %:=, %*:=, +=:
PLUSAB, MINUSAB, TIMESAB, DIVAB, OVERAB, MODAB, PLUSTO

2. OR

3. &, AND

4. =, /=, EQ, NE

5. <, <=, >=, >
LT, LE, GE, GT

6. -, +,

7. *, /, %, %*,
OVER, MOD, ELEM,

8. **, UP, DOWN, SHL, SHR, LWB, UPB

9. +*, I, (MIN, MAX)

13.3.3 Operators with row operands

Both monadic and dyadic forms are available. We shall use the mode ROW to denote
the mode of any multiple.

1. Monadic.
OP LWB = (ROW)INT:

OP UPB = (ROW)INT:

Yields the lower or upper bound of the first or only dimension of its operand.

2. Dyadic.
OP LWB = (INT n,ROW r)INT:

OP UPB = (INT n,ROW r)INT:

Yields the lower or upper bound of the n-th dimension of the multiple r.

13.3.4 Operators with BOOL operands

1. OP OR = (BOOL a,b)BOOL:

Logical OR.

2. OP & = (BOOL a,b)BOOL:

Logical AND (synonym AND).

3. OP NOT = (BOOL a)BOOL:

Logical NOT: TRUE if a is FALSE and vice versa.

4. OP = =(BOOL a,b)BOOL:

TRUE if a equals b (synonym is EQ).

5. OP /= =(BOOL a,b)BOOL:

TRUE if a not equal to b (synonym is NE).

6. OP ABS = (BOOL a)INT:

ABS TRUE is 1 and ABS FALSE is 0.

Contents Index

Chapter 13. Standard Prelude 224

13.3.5 Operators with INT operands

Most of these operators take values of any precision. The L shorthand is used for
those that can.

Monadic operators

Consistent substitution applies to all those operators in this section which use the
L shorthand: apart from LENG and SHORTEN, the precision of the yield is the same
as the precicion of the operand.

1. OP + = (L INT a)L INT:

The identity operator. Does nothing.

2. OP - = (L INT a)L INT:

The negation operator.

3. OP ABS = (L INT a)L INT:

The absolute value. ABS -3 = +3

4. OP SIGN = (L INT a)INT:

Yields −1 for a negative operand, +1 for a positive operand and 0 for a zero
operand.

5. OP ODD = (L INT a)BOOL:

Yields TRUE if the operand is odd.

6. OP LENG = (L INT a)LONG L INT:

OP LENG = (SHORT L INT a)L INT:

Converts its operand to the next longer precision. Note that you cannot use
both SHORT and LONG in the same mode.

7. OP SHORTEN = (L INT a)SHORT L INT:

OP SHORTEN = (LONG L INT a)L INT:

Converts its operand to the next shorter precision. If the value exceeds
l max int for the next shorter precision, the value will be truncated. This
can lead to erroneous results. See also LENG.

Dyadic operators

In this section, consistent substitution is used wherever the L shorthand is used.
For operators with mixed operands, see section 13.3.8.

1. OP + = (L INT a,L INT b)L INT:

Arithmetic addition: a+ b. No check is made for integer overflow.

2. OP - = (L INT a,L INT b)L INT:

Arithmetic subtraction: a− b. No check is made for integer overflow.

3. OP * = (L INT a,L INT b)L INT:

Arithmetic multiplication: a× b. No check is made for integer overflow.

4. OP / = (L INT a,L INT b)L REAL:

Arithmetic fractional division. Even if the result is a whole number (for
example, 6/3), the yield always has mode L REAL. Where a result of mode
L REAL needs to be output, but cannot be output due to the limitations built

Contents Index

Chapter 13. Standard Prelude 225

into the definition of the mode SIMPLOUT, the operators LENG or SHORTEN

should be used. Floating-point overflow can be checked (see section 13.6.1).

5. OP % = (L INT a,L INT b)L INT:

Arithmetic integer division. Division by zero in the a68toc implementation
produces a floating-point exception paradoxically (synonym OVER).

6. OP ** = (L INT a,INT b)L INT:

Computes ab for b ≥ 0.

7. OP %* = (L INT a,L INT b)L INT:

Arithmetic modulo (synonym MOD). For example

5 MOD 3 = 2

8. OP +* = (L INT a,L INT b)L COMPL:

Converts two integers into a complex number of the same precision (synonym
I).

9. OP < = (L INT a,L INT b)BOOL:

Arithmetic “less than”: a < b (synonym LT).

10. OP <= = (L INT a,L INT b)BOOL:

Arithmetic “less than or equals”: a ≤ b (synonym LE).

11. OP >= = (L INT a,L INT b)BOOL:

Arithmetic “greater than or equals”: a ≥ b (synonym GE).

12. OP > = (L INT a,L INT b)BOOL:

Arithmetic “greater than”: a > b (synonym GT).

13. OP = = (L INT a,L INT b)BOOL:

Arithmetic equality: a = b (synonym EQ).

14. OP /= = (L INT a,L INT b)BOOL:

Arithmetic inequality: a ̸= b (synonym NE).

13.3.6 Operators with REAL operands

Most of these operators can have operands of any precision. The L shorthand is
used for them.

Monadic operators

1. OP + = (L REAL a)L REAL:

Arithmetic identity. Does nothing.

2. OP - = (L REAL a)L REAL:

Arithmetic negation: −a.

3. OP ABS = (L REAL a)L REAL:

The absolute value. ABS -3.0 = +3.0

4. OP SIGN = (L REAL a)INT:

Yields −1 for negative operands, +1 for positive operands and 0 for a zero
operand (0.0).

Contents Index

Chapter 13. Standard Prelude 226

5. OP ROUND = (REAL a)INT:

Rounds its operand to the nearest integer. If the value ends with .5, it
is rounded to the nearest even number. This is contrary to normal Linux
C library practice, but is an internationally accepted standard which ensures
that rounding errors do not accumulate. The operator checks for integer
overflow (see section 13.6.1 for details).

6. OP ROUND = (L REAL a)L INT: (for any precision except REAL)
Rounds its operand to the nearest integer. Does not check integer overflow. If
its operand exceeds l max int, an erroneous result will ensue. ROUND should
be used for a REAL operand if you want to check for integer overflow (see
section 13.6.1 for details of floating-point overflow checking).

7. OP ENTIER = (REAL a)INT:

Truncates its operand to the next lowest integer. The operator checks for
integer overflow (see section 13.6.1 for details).

8. OP ENTIER = (L REAL a)L INT: (for any precision except REAL)
Truncates its operand to the next lowest integer. The operator does not check
integer overflow. If its operand exceeds l max int, an erroneous result will
ensue. Use ENTIER for a REAL operand if you want to check for integer
overflow (see section 13.6.1 for details of floating-point overflow checking).

9. OP LENG = (L REAL a)LONG L REAL:

OP LENG = (SHORT L REAL a)L REAL:

Converts its operand to the next longer precision. Note that you cannot use
both SHORT and LONG in the same mode.

10. OP SHORTEN = (L REAL a)SHORT L REAL:

OP SHORTEN = (LONG L REAL a)L REAL:

Converts its operand to the next shorter precision. If a value exceeds l max real

for the next shorter precision, the value will be truncated leading to an erro-
neous result. The mantissa will always be truncated.

Dyadic operators

In this section, consistent substitution is used wherever the L shorthand appears.
For operators with mixed operands, see section 13.3.8.

1. OP + = (L REAL a,L REAL b)L REAL:

Floating-point addition: a+b. Floating-point overflow will cause a trappable
signal (see section 13.6.1).

2. OP - = (L REAL a,L REAL b)L REAL:

Floating-point subtraction: a− b. Floating-point overflow will cause a signal
which can be trapped (see section 13.6.1).

3. OP * = (L REAL a,L REAl b)L REAL:

Floating-point multiplication: a × b. Floating-point overflow will cause a
signal which can be trapped (see section 13.6.1).

4. OP / = (L REAL a,L REAL b)L REAL:

Floating-point divison: a/b. Floating-point overflow and divide-by-zero will
cause a trappable signal (see section 13.6.1). Where a result of mode L REAL

Contents Index

Chapter 13. Standard Prelude 227

needs to be output, but it cannot be output due to the limitations built into
the definition of the mode SIMPLOUT, the operators LENG or SHORTEN should
be used.

5. OP +* = (L REAL a,L REAL b)L COMPL:

Converts two reals into a complex number of the same precision (synonym
I).

6. OP < = (L REAL a,L REAL b)BOOL:

Floating-point “less than”: a < b (synonym LT).

7. OP <= = (L REAL a,L REAL b)BOOL:

Floating-point “less than or equals”: a ≤ b (synonym LE).

8. OP >= = (L REAL a,L REAL b)BOOL:

(synonym GE)
Floating-point “greater than or equals”: a ≥ b.

9. |OP > = (L REAL a,L REAL b)BOOL:

Floating-point “greater than”: a > b (synonym GT).

10. OP = = (L REAL a,L REAL b)BOOL:

Floating-point equality: a = b (synonym EQ).

11. OP /= = (L REAL a,L REAL b)BOOL:

Floating-point inequality: a ̸= b (synonym NE).

13.3.7 Operators with COMPL operands

Algol 68 is one of the few programming languages which have a built-in mode for
complex numbers. It is complemented by a rich set of operators, some of which are
only available for values of mode COMPL. Again, consistent substitution is applicable
to all operators using the L shorthand.

Monadic operators

1. OP RE = (L COMPL a)L REAL:

Yields the real component: re OF a.

2. OP IM = (L COMPL a)L REAL:

Yields the imaginary component: im OF a.

3. OP ABS = (L COMPL a)L REAL:

Yields
√
RE a2 + IM a2.

4. OP ARG = (L COMPL a)L REAL:

Yields the argument of the complex number.

5. OP CONJ = (L COMPL a)L COMPL:

Yields the conjugate complex number.

6. OP + = (L COMPL a)L COMPL:

Complex identity. Does nothing.

7. OP - = (L COMPL a)L COMPL:

Complex negation.

Contents Index

Chapter 13. Standard Prelude 228

8. OP LENG = (L COMPL a)LONG L COMPL:

OP LENG = (SHORT L COMPL a)L COMPL:

Converts its operand to the next longer precision. Note that you cannot use
both SHORT and LONG in the same mode. Unfortunately, although a68toc will
translate a program containing this operator apparently without errors, the
resulting C file will not compile. The error produced will be “conversion to
non-scalar type requested”. You should use the following code instead:-

(LENG RE z,LENG IM z)

9. OP SHORTEN = (L COMPL a)SHORT L COMPL:

OP SHORTEN = (LONG L COMPL a)L COMPL:

Converts its operand to the next shorter precision. Note that you cannot
use both SHORT and LONG in the same mode. Unfortunately, the a68toc
translator will generate incorrect code (see the note for the operator LENG).
Use the following code instead:-

(SHORTEN RE z,SHORTEN IM z)

If either of the components of the complex number exceeds l max real for
the next shorter precision, an erroneous result will ensue, but no error will
be generated.

Dyadic operators

The remarks in section 13.3.6 concerning floating-point overflow apply doubly here.

1. OP + = (L COMPL a,L COMPL b)L COMPL:

Floating-point addition for both components.

2. OP - = (L COMPL a,L COMPL b)L COMPL:

Floating-point subtraction for both components.

3. OP * = (L COMPL a,L COMPL b)L COMPL:

Standard complex multiplication with floating-point arithmetic.

4. OP / = (L COMPL a,L COMPL b)L COMPL:

Standard complex division with floating-point arithmetic.

5. OP = = (L COMPL a,L COMPL b)BOOL:

Complex equality with floating-point arithmetic (synonym EQ).

6. OP /= = (L COMPL a,L COMPL b)BOOL:

Complex inequality with floating-point arithmetic (synonym NE).

13.3.8 Operators with mixed operands

Consistent substitution is applicable to all operators using the L shorthand. Addi-
tional shorthands are used as follows:-

� The shorthand P stands for +, -, * or /.

� The shorthand R stands for <, <=, =, /=, >=, >,
or LT, LE, EQ, NE, GE, GT.

Contents Index

Chapter 13. Standard Prelude 229

� The shorthand E stands for = /=,
or EQ or NE.

1. OP P = (L INT a,L REAL b)L REAL:

2. OP P = (L INT a,L COMPL b)L COMPL:

3. OP P = (L REAL a,L COMPL b)L COMPL:

4. OP P = (L REAL a,L INT b)L REAL:

5. OP P = (L COMPL a,L INT b)L COMPL:

6. OP P = (L COMPL a,L REAL b)L COMPL:

7. OP R = (L INT a,L REAL b)BOOL:

8. OP R = (L REAL a,L INT b)BOOL:

9. OP E = (L INT a,L COMPL b)BOOL:

10. OP E = (L REAL a,L COMPL b)BOOL:

11. OP E = (L COMPL a,L INT b)BOOL:

12. OP E = (L COMPL a,L REAL b)BOOL:

13. OP ** = (L REAL a,INT b)L REAL:

OP ** = (L COMPL a,INT b)L COMPL:

Exponentiation: ab (synonym UP).

14. OP +* = (L INT a,L REAL b)L COMPL:

OP +* = (L REAL a,L INT b)L COMPL:

(synonym I)

13.3.9 Operators with BITS operands

Consistent substitution applies to all operators using the L shorthand.

Monadic operators

1. OP BIN = (L INT a)L BITS:

Mode conversion which does not change the internal value.

2. OP ABS = (L BITS a)L INT:

Mode conversion which does not change the internal value.

3. OP NOT = (L BITS a)L BITS:

Yields the bits obtained by inverting each bit in the operand. That is, 0 goes
to 1, 1 goes to 0.

4. OP LENG = (L BITS a)LONG L BITS:

OP LENG = (SHORT L BITS a)L BITS:

Converts a bits value to the next longer precision by adding zero bits to the
more significant end. Note that you cannot use both SHORT and LONG in the
same mode.

5. OP SHORTEN = (L BITS a)SHORT L BITS:

OP SHORTEN = (LONG L BITS a)L BITS:

Truncates a bits value to a value of the next shorter precision. The more
significant bits are simply ignored.

Contents Index

Chapter 13. Standard Prelude 230

Dyadic operators

1. OP & = (L BITS a,L BITS b)L BITS:

(synonym AND)
The logical “and” of each pair of binary digits in a and b.

2. OP OR = (L BITS a,L BITS b)L BITS:

The logical “or” of each pair of binary digits in a and b.

3. OP SHL = (L BITS a,INT b)L BITS:

The left operand shifted left by the number of bits specified by the right
operand. New bits shifted in are all zero. If the right operand is negative,
shifting is to the right (synonym UP).

4. OP SHR = (L BITS a,INT b)L BITS:

(synonym DOWN)

5. OP ELEM = (INT a,L BITS b)BOOL:

Yields TRUE if bit a is 1.

6. OP = = (L BITS a,L BITS b)BOOL:

Logical equality (synonym EQ).

7. OP /= = (L BITS a,L BITS b)BOOL:

Logical inequality (synonym NE).

8. OP <= = (L BITS a,L BITS b)BOOL:

Yields TRUE if each bit in the left operand implies the corresponding bit in
the right operand (synonym LE).

9. OP >= = (L BITS a,L BITS b)BOOL:

Yields TRUE if each bit in the right operand implies the corresponding bit in
the left operand (synonym GE).

13.3.10 Operators with CHAR operands

The shorthands in section 13.3.8 apply here.

1. OP ABS = (CHAR a)INT:

The integer equivalent of a character.

2. OP REPR = (INT a)CHAR:

The reverse of ABS. The operand should be in the range [0:max abs char].

3. OP + = (CHAR a,CHAR b)STRING:

The character b is appended to the character a (concatenation).

4. OP E = (CHAR a,CHAR b)BOOL:

Comparison of the arithmetic equivalents of a and b.

13.3.11 Operators with STRING operands

1. OP + = (STRING a,STRING b)STRING:

String b is appended to string a (concatenation).

2. OP + = (CHAR a,STRING b)STRING:

String b is appended to character a.

Contents Index

Chapter 13. Standard Prelude 231

3. OP + = (STRING a,CHAR b)STRING:

Character b is appended to string a.

4. OP * = (INT a,STRING b)STRING:

Yields a lots of string b concatenated.

5. OP * = (STRING a,INT b)STRING:

Yields b lots of string a concatenated.

6. OP * = (INT a,CHAR b)STRING:

Yields a lots of character b concatenated.

7. OP * = (CHAR a,INT b)STRING:

Yields b lots of character a concatenated.

8. OP < = (STRING a,STRING b)BOOL:

The absolute value of each character of a is compared with the absolute value
of the corresponding character in b (for the purpose of the comparison, the
lower bounds of both strings are regarded as equal to 1). If the strings are
equal upto the end of the shorter of the strings, then the longer string is the
greater (synonym LT).

9. OP <= = (STRING a,STRING b)BOOL:

(synonym LE)
The text for the operator < in this section applies.

10. OP >= = (STRING a,STRING b)BOOL:

(synonym GE)
The text for the operator < in this section applies.

11. OP > = (STRING a,STRING b)BOOL:

(synonym GT)
The text for the operator < in this section applies.

12. OP = = (STRING a,STRING b)BOOL:

If the strings differ in length, they are unequal, else they are compared as for
the operator < in this section (synonym EQ).

13. OP /= = (STRING a,STRING b)BOOL

(synonym NE)
If the strings differ in length, they are unequal, else they are compared as for
the operator < in this section.

14. OP E = (STRING a,CHAR b)BOOL:

OP E = (CHAR a,STRING b)BOOL:

The shorthand E as described in section 13.3.8 applies for these cases.

13.3.12 Assigning operators

Consistent substitution applies to all operators containing the L shorthand.

Contents Index

Chapter 13. Standard Prelude 232

1. +:= (synonym PLUSAB)
The operator is a shorthand for a:=a+b.
Left operand Right operand Yield
REF L INT L INT REF L INT

REF L REAL L INT REF L REAL

REF L COMPL L INT REF L COMPL

REF L REAL L REAL REF L REAL

REF L COMPL L REAL REF L COMPL

REF L COMPL L COMPL REF L COMPL

REF STRING CHAR REF STRING

REF STRING STRING REF STRING

2. +=: (synonym PLUSTO)
The operator is a shorthand for b:=a+b.
Left operand Right operand Yield
STRING REF STRING REF STRING

CHAR REF STRING REF STRING

3. -:= (synonym MINUSAB)
The operator is a shorthand for a:=a-b.
Left operand Right operand Yield
REF L INT L INT REF L INT

REF L REAL L INT REF L REAL

REF L COMPL L INT REF L COMPL

REF L REAL L REAL REF L REAL

REF L COMPL L REAL REF L COMPL

REF L COMPL L COMPL REF L COMPL

4. *:= (synonym TIMESAB)
The operator is a shorthand for a:=a*b.
Left operand Right operand Yield
REF L INT L INT REF L INT

REF L REAL L INT REF L REAL

REF L COMPL L INT REF L COMPL

REF L REAL L REAL REF L REAL

REF L COMPL L REAL REF L COMPL

REF L COMPL L COMPL REF L COMPL

REF STRING INT REF L COMPL

5. /:= (synonym DIVAB)
The operator is a shorthand for a:=a/b.
Left operand Right operand Yield
REF L REAL L INT REF L REAL

REF L REAL L REAL REF L REAL

REF L COMPL L INT REF L COMPL

REF L COMPL L REAL REF L COMPL

REF L COMPL L COMPL REF L COMPL

6. OP %:= = (REF L INT a,L INT b)REF L INT:

(synonym OVERAB)
The operator is a shorthand for a:=a%b.

Contents Index

Chapter 13. Standard Prelude 233

7. OP %*:= = (REF L INT a,L INT b)REF L INT:

(synonym MODAB)
The operator is a shorthand for a:=a%*b.

13.3.13 Other operators

This section contains those operators which appear neither in the Revised Report
nor in the section concerning a68toc extensions (section 13.5).

1. OP &* = (REAL r,INT e)REAL:

Multiply r by 2e. The routine does not use multiplication, but simply incre-
ments the exponent of r accordingly.

2. OP ELEM = (INT a)BITS:

The operator yields a value with all bits zero except the bit specified by the
operand.

3. OP MIN = (L INT a,L INT b)L INT:

OP MIN = (L REAL a,L REAL b)L REAL:

OP MIN = (L INT a,L REAL b)L REAL:

OP MIN = (L REAL a,L INT b)L REAL:

The lesser of the two operands.

4. OP MAX = (L INT a,L INT b)L INT:

OP MAX = (L REAL a,L REAL b)L REAL:

OP MAX = (L INT a,L REAL b)L REAL:

OP MAX = (L REAL a,L INT b)L REAL:

The greater of the two operands.

5. OP VALID = (REAL r)BOOL:

Whether the real value r is a valid real in terms of the IEEE standard.

13.4 Standard procedures

These mainly consist of mathematical procedures. All the procedures associated
with interfacing with alien procedures appear in the a68toc section and all the
transput procedures appear in the transput section. Procedures associated with
floating-point, process and garbage-collector control appear in section 13.6.

13.4.1 Mathematical procedures

Strictly speaking, there are as many precisions of each of the mathematical functions
as there are for real numbers. However, in the standard prelude provided with the
a68toc compiler, the only extra precision implemented is that for short real. The
L shorthand is used to simplify the list of procedures. All these procedures depend
on the corresponding C library functions, so consult the manual pages for details.

1. PROC l sqrt = (L REAL x)L REAL:

Yields the square root of x provided that x ≥ 0.

2. PROC l exp = (L REAL x)L REAL:

Yields ex if such a value exists.

Contents Index

Chapter 13. Standard Prelude 234

3. PROC l ln = (L REAL x)L REAL:

Yields the natural (or Napierian) logarithm of x provided that x > 0, other-
wise the procedure fails and errno is set (see section 13.6 for details).

4. PROC l log = (L REAL x)L REAL:

Yields the logarithm of x to base 10.

5. PROC l cos = (L REAL x)L REAL:

Yields the cosine of x, where x is in radians.

6. PROC l arccos = (L REAL x)L REAL:

Yields the inverse cosine of x as a value between L 0 and 2 l pi inclusive.
If ABS x > 1 then the procedure yields an erroneous result, but errno is set
(see section 13.6 for details).

7. PROC l sin = (L REAL x)L REAL:

Yields the sine of x, where x is in radians.

8. PROC l arcsin = (L REAL x)L REAL:

Yields the inverse sine of x as a value between L 0 and 2 l pi inclusive. If
ABS x > 1 then the procedure yields an erroneous result, but errno is set
(see section 13.6 for details).

9. PROC l tan = (L REAL x)L REAL:

Yields the tangent of x, where x is in radians.

10. PROC l arctan = (L REAL x)L REAL:

Yields the inverse tangent of x as a value between L 0 and 2 l pi inclusive.

11. PROC next random = (REF INT a)REAL:

The next INT value after a in a pseudo-random sequence uniformly dis-
tributed in the range L 0 to max int is assigned to a. The yield x is in
the range 0 ≤ x < 1 obtained by a uniform mapping of a.

12. INT last random

LONG INT long last random

Names initialised to fixed values and used by other random procedures as a
seed.

13. PROC random = REAL:

A call of next random(last random).

14. PROC short random = SHORT REAL:

As for random with the yield shortened.

15. PROC l random int = (L INT n)L INT:

Yields a pseudo-random sequence of integers in the range 1 ≤ x ≤ n.

13.4.2 Other procedures

The procedures whole, fixed and float are dealt with in the transput section
(13.7).

1. PROC l bits pack = ([]BOOL a)L BITS:

Packs l bits width booleans into a value of mode L BITS.

Contents Index

Chapter 13. Standard Prelude 235

2. PROC char in string =

(CHAR c,REF INT i,STRING s)BOOL:

If the character c occurs in the string s, the procedure yields TRUE and assigns
the position of c in s to i, otherwise it yields FALSE when no assignment to i
takes place.

13.4.3 ALIEN declarations

This section contains all those values which are declared as ALIEN values, but which
are not mentioned in the Revised Report.

1. erange err is one Linux system error used in the QAD standard prelude.

2. The following integer values are used in the transput.

(a) INT posix seek cur

Used in posix lseek to specify the current position.

(b) INT posix seek end

Used in posix lseek to specify the end of the file.

(c) INT posix seek set

Used in posix lseek to specify a direct offset.

3. These values are used in the manipulation of the kbd channel.

(a) INT termios vtime

The offset in the termios structure.

(b) INT termios vmin

The offset in the termios structure.

(c) INT tcsanow

Used in the call to linux tc set attr.

(d) INT isig

Used in the call to linux tc set attr.

(e) INT icanon

Used in the call to linux tc set attr.

(f) INT echo

Used in the call to linux tc set attr.

4. nil func ptr has mode CPTR and is used to provide a NIL pointer to C
functions.

5. null c charptr is equivalent to the C value NULL.

6. prelude is a dummy declaration used to access the parameters provided to
a program when called. It should not be used.

7. The signal names in Linux are given in the following table:

Contents Index

Chapter 13. Standard Prelude 236

sighup sigstkflt sigint sigchld
sigquit sigcont sigill sigstop
sigtrap sigtstp sigabrt sigttin
sigbus sigttou sigfpe sigurg
sigkill sigxcpu sigusr1 sigxfsz
sigsegv sigvtalrm sigusr2 sigprof
sigpipe sigwinch sigalrm sigio
sigterm sigpwr

See signal(7) for details of each signal.

8. errno identifies a value of mode REF INT and contains the error number of
the latest Linux system error.

13.4.4 ALIEN routines

All the ALIEN routines made available by the QAD standard prelude can be found
in this section. No attempt has been made to give details of their function: consult
the “man” pages on your Linux system for that (the appropriate page is given after
the header of each routine with the section of the Linux programming manual given
in parentheses). The ALIEN declarations have been classified by the first word of
their identifiers which gives the standard which specifies them. For example, the
routine bsd mkstemp is specified by the BSD4.4 standard.

Many of the routines are used in the definition of other, higher-level routines.
They are made available so that implementers of other preludes will not have to
redefine them.

Routines conforming to Ansi C

1. PROC(INT)INT ansi raise

See raise(3).

2. PROC(INT,CPTR)CPTR ansi signal

See signal(2).

3. PROC(VECTOR[]CHARJ)REAL ansi strtod

See strtod(3).

Routines conforming to BSD4.4

1. PROC(INT,VECTOR[]CHAR,REF INT)INT bsd accept

See accept(2).

2. PROC(INT,VECTOR[]CHAR,INT)INT bsd bind

See bind(2).

3. PROC(VECTOR[]CHAR,INT)INT bsd chmod

See chmod(2).

4. PROC(INT,VECTOR[]INT,INT)INT bsd connect

See connect(2).

5. PROC(INT,INT)INT fchmod

See fchmod(2).

Contents Index

Chapter 13. Standard Prelude 237

6. PROC(VECTOR[]CHAR)CCHARPTRPTR bsd gethostbyname

See gethostbyname(3).

7. PROC(VECTOR[]CHAR,REF BITS)INT bsd inet aton

See inet_aton(3).

8. PROC(INT)INT bsd is a tty

See isatty(3).

9. PROC(INT,INT)INT bsd listen

See listen(2).

10. PROC(VECTOR[]CHAR)INT bsd mkstemp

See mkstemp(3).

11. PROC(VECTOR[]CHAR,VECTOR[]CHAR,REAL,INT,INT)INT bsd real snprintf

Although the underlying routine can be used for the transput of any plain
value, it is used here for the transput of a REAL only. See snprintf(3).

12. PROC(INT,INT)INT bsd shutdown

See shutdown(2).

13. PROC(INT,INT,INT)INT bsd socket

See socket(2).

Routines conforming to an ISO standard

1. PROC(CPTR)INT iso at exit

See atexit(3).

Routines peculiar to Linux

1. PROC(CPTR,CSTR)INT linux on exit

See on_exit(3).

2. PROC(INT,CCHARPTR)INT linux tc get attr

See tcgetattr(3).

3. PROC(INT,BITS,CCHARPTR)INT linux tc set attr

See tcsetattr(3).

Routines conforming to POSIX

1. PROC(INT)INT posix close

See close(2).

2. PROC(VECTOR[]CHAR,INT)INT posix creat

See creat(2).

3. PROC(INT)VOID posix exit

See exit(2).

4. PROC(VECTOR[]CHAR)CSTR posix get env

See getenv(3).

5. PROC INT posix getpid

See getpid(2).

Contents Index

Chapter 13. Standard Prelude 238

6. PROC(INT,INT,INT)INT posix lseek

See lseek(2).

7. PROC(VECTOR[]CHAR,INT,INT)INT posix open

See open(2).

8. PROC(INT,VECTOR[]CHAR,INT)INT posix read

See read(2).

9. PROC(VECTOR[]CHAR,VECTOR[]CHAR)INT posix rename

See rename(2).

10. PROC(INT)CSTR posix strerror

See strerror(3).

11. PROC(CSTR)INT posix strlen

See strlen(3).

12. PROC(REF INT)INT posix time

See time(2).

13. PROC(VECTOR[]CHAR)INT posix unlink

See unlink(2).

14. PROC(INT,VECTOR[]CHAR,INT)INT posix write

See write(2).

Local routines

1. PROC(REF SHORT BITS)VOID get fpu cw

Gets the control word of the floating point unit.

2. PROC(SHORT BITS)VOID set fpu cw

Sets the control word of the floating point unit.

3. PROC(REAL,REF INT)VOID ph round

Rounds a REAL to an INT.

13.5 a68toc extensions

The a68toc manual describes the language restrictions of the translator. Chapter 3
contains details of the FORALL construct. This section is intended to document
those extensions used in the QAD standard prelude.

13.5.1 Modes peculiar to a68toc

The principal extensions to Algol 68 modes are the introduction of multiple modes
whose housekeeping overhead is less than the standard row modes.

1. STRUCT n MODE

This mode is called an “indexable structure”. The n, a non-negative integer,
is built into the mode and must be an integer denotation. The base mode can
be any mode. It is equivalent to a C language “array”. Here is a list of modes
used in the QAD standard prelude which are either indexable structures or
references to such:-

Contents Index

Chapter 13. Standard Prelude 239

(a) CSTR=REF STRUCT 16000000 CHAR

This is a reference mode and is equivalent to the C type char *. It is
used in the ALIEN (see section 12.3.4) definitions of linux getenv, for
example, to reference data.

(b) CCHARPTRPTR=REF STRUCT 16000000 CSTR

Again, this is a reference mode and is equivalent to the C type char **.
It is used to access the program’s arguments.

A considerable number of operators use indexable structures for converting
values of one mode to another using memory mapping (see section 13.5.3).

2. VECTOR[n]MODE

The VECTOR mode has less overhead than a row mode because its lower bound
is always one. It is commonly used to provide strings to C procedures. The
following modes are defined using VECTOR:-

(a) STR=VECTOR[0]CHAR

Due to the way in which C multiples are defined (without bounds), the
mode STR can be used for any length VECTOR.

(b) RVC=REF STR

This mode is used in a number of operators, such as

OP MAKERVC = ([]CHAR s)RVC:

It is also used to construct other modes such as BOOK (see section 13.7).

3. Coercions provided by a68toc
A value of mode STRUCT n MODE can be coerced directly to a value of mode
VECTOR[]MODE. Likewise, a value of the latter mode can be coerced to a value
of mode []MODE. Therefore, preferably use the mode []MODE for a parameter
to a procedure.

4. Other modes used by a68toc
Some modes are provided to make interfacing with C library procedures
easier. Here are the ones provided by the QAD standard prelude:-

(a) CPTR=REF BITS

This mode is equivalent to the C type void *.

(b) CINTPTR=REF INT

Equivalent to the C type int *.

(c) CCHARPTR=REF CHAR

Equivalent to the C type char *.

(d) GCPARAM=STRUCT(STR name,INT value)

Used to access parameters of the garbage-collector (see section 13.6.3
below).

(e) PDESC=STRUCT(CPTR cp,CSTR env)

This represents the structure created by a68toc for every Algol 68 proce-
dure. The field cp contains the actual memory address of the procedure
and the field env contains data used by the procedure.

Contents Index

Chapter 13. Standard Prelude 240

(f) VDESC=STRUCT(CCHARPTR data,BITS gc,

INT upb)

This mode represents the housekeeping overhead of a VECTOR. The data
field is the actual memory address of the start of the data and the upb
field is the upper bound of the vector. The gc field is used by the
garbage-collector (the heap manager).

13.5.2 a68toc constructs

This section describes those constructs which are either peculiar to a68toc or which
are in some way different from standard Algol 68.

1. FORALL

FORALL is described in section 3.10.

2. ALIEN and CODE

Both ALIEN and CODE are described in the a68toc manual. ALIEN is also
described in section 12.3.4. All ALIEN declarations used in the QAD standard
prelude appear in the file spaliens.a68 which you should consult for further
details. You should note that the ALIEN declarations were established by
trying various modes until a definition was found which a68toc translated to
a compilable C source file. The declarations for get fpu cw, set fpu cw and
the like, use the __asm__ construct of the GNU C compiler: this provides
a means of incorporating short sequences of assembler instructions into a
C program. This is platform-specific. Consult the node Extended Asm in
info file gcc.info for details.

As described in the a68toc manual, source files may contain either a PROGRAM
module or a DECS module. The latter may contain declarations and CODE

clauses only. See the file transput.a68, lines 1185–92, for an example of
how to execute code when a DECS module is being elaborated.

3. USE lists
The USE list of a DECS or a PROGRAM module generates calls to the relevant
initialiser PROCs (see the generated C file for standard.a68 for an example)
in the reverse order of the given modules. Therefore, if the order matters,
ensure that the USE clause mentions each module in the proper order.

4. The default case in a CASE clause
If in a CASE clause, whether a simple CASE or a conformity CASE clause (one
which determines the mode of the value in its enquiry clause), the default
clause can occur, then you must include at least OUT SKIP, otherwise you
will get a run-time fault.

5. BIOP 99

In Algol 68, a UNION (see section 8.1) is a well-defined mode composed of
constituent modes. A value of one of the constituent modes may be assigned
to a name of the united mode and only that value (with its original mode)
can be extracted. In the C language, however, a “free union” or just “union”
is a piece of memory which can have different interpretations. The BIOP 99

construct enables the operand of an operator using it to be re-interpreted
as a value of the mode given in the yield. for example, the operator FLAT

declared as

Contents Index

Chapter 13. Standard Prelude 241

OP(REAL)STRUCT 8 CHAR FLAT = BIOP 99;

accepts a REAL parameter which, as the yield, is regarded as an indexable
structure of 8 characters each of which can be accessed separately. See section
13.5.3 for operators using this construct.

13.5.3 Operators

These are largely operators using the BIOP 99 construct, but there are a number
of other operators which ease the task of interfacing with C library procedures.

Operators using BIOP 99

Most of the operators used in the QAD standard prelude which are defined using the
BIOP 99 construct are for internal use only. In the following list, the full declaration

OP(CPTR)CSTR TOCSTR = BIOP 99;

is abbreviated to

OP TOCSTR=(CPTR)CSTR:

Here is a list of operators using the BIOP 99 construct which are made available
by the QAD standard prelude:-

1. OP CCHARPTRTOCSTR=(CCHARPTR)CSTR:

This operator is used to define the on exit procedure.

2. OP CSTRTOCCHARPTR=(CSTR)CCHARPTR:

This operator converts in the opposite direction.

3. OP TOCPTR=(INT)CPTR:

4. OP TOCSTR=(CPTR)CSTR:

5. TOPDESC=(PROC VOID)PDESC:

This operator provides a means of getting the address of a procedure and
is used to provide the identifier of an Algol 68 procedure which must be
elaborated by an ALIEN procedure (such as a C library routine).
OP TOPDESC=(PROC(INT,CPTR)VOID)PDESC:

OP TOPDESC=(PROC(INT)VOID)PDESC:

OP TOPDESC=(PROC(INT,RVC)PDESC:

You can define as many TOPDESC operators as you wish with operands of
procedures you will need. You will certainly need more definitions of TOPDESC
if you write wrapper procedures for X Window System procedures which
have procedural parameters. See the file transput.a68 for details of how
this operator is used.

6. OP TORPDESC=(REF PROC VOID)RPDESC:

This operator converts a reference to a PROC VOID to a reference to a value
of mode PDESC.

7. OP TOVDESC=(STR)VDESC:

This operator provides a means of getting the address of the STR in a form
suitable as a parameter to C library routines.

Contents Index

Chapter 13. Standard Prelude 242

8. OP TOVBDESC=(VECTOR[]BITS)VBDESC

This operator provides a means of getting the address of the VECTOR[]BITS.

9. OP TOVIDESC=(VECTOR[]INT)VIDESC

Exactly as for the previous routine, but for a VECTOR[]INT.

Other operators

Here is a list of operators not using the BIOP 99 construct:-

1. OP CPTRTORVC=(CPTR)RVC:

Used to cast the C type void * to the type char *.

2. OP CSTRTORVC=(CSTR)RVC:

Converts a C string to an RVC using the standard RS Algol 68 coercion

REF STRUCT n CHAR => REF VECTOR[]CHAR

It is mainly used to access C strings yielded by C library routines. The
parameter must be terminated by a null character.

3. OP FLATRVB=(RVC)BITS:

Converts a VECTOR[4]CHAR into a BITS.

4. OP FLATRVLB=(RVC)LONG BITS:

Converts a VECTOR[8]CHAR into a LONG BITS.

5. OP FLATRVSB=(RVC)SHORT BITS:

Converts a VECTOR[2]CHAR into a SHORT BITS.

6. OP FLATRVSSB=(RVC)SHORT SHORT BITS:

Converts a BECTOR[1]CHAR into a SHORT SHORT BITS.

7. OP FLATRVR=(RVC)REAL:

Converts a VECTOR[8]CHAR into a REAL.

8. OP FLATRVSR=(RVC)SHORT REAL:

Converts a VECTOR[4]CHAR into a SHORT REAL.

9. OP MAKERVC=(CHAR)RVC:

OP MAKERVC=(STR)RVC:

OP MAKERVC=([]CHAR)RVC:

10. OP VBTOCPTR=(VECTOR[]BITS)CPTR:

This operator gets the address of the VECTOR[]BITS in a form suitable as a
parameter to a C library routine.

11. OP VCTOCHARPTR=(STR)CCHARPTR:

Yields the C pointer from a a68toc descriptor. If a C string is expected, a
null character must be appended to the data before the routine is called.
This need not be done for string denotations. This routine may be used to
yield a C pointer from an RVC, as the C representation is the same.

12. OP VITOINTPTR=(VECTOR[]INT)CINTPTR:

Yields the address of the VECTOR[]INT in a form suitable for use as a par-
ameter of a C library routine.

Contents Index

Chapter 13. Standard Prelude 243

13. OP STRTOCSTR=(STR)CSTR:

The operator combines the action of the operators CCHARPTRTOCSTR and
VCTOCHARPTR.

14. OP Z=(STR str)STR:

Yields a null-terminated STR from a STR for use with the C library.

13.6 Control routines

Three groups of procedures and operators are provided to control various aspects
of the run-time environment. These are floating-point control, process termination
control and garbage-collector control.

13.6.1 Floating-point unit control

The Intel Pentium microprocessors all have a floating-point unit (FPU) as an in-
tegral part of the microprocessor. The action of the FPU is determined by the
contents of a 16-bit register called the “control word register”. Details of the reg-
ister can be found in the file

/usr/include/fpu_control.h

Details of the working of the FPU, as controlled by the control word register can
be found in the three volumes of the “Intel Architecture Software Developer’s Man-
ual”. The control word contains bits which control rounding, precision and whether
floating-point errors should cause an exception. The QAD standard prelude pro-
vides two procedures which enable you to get and set the control word register:-

1. PROC get fpu cw = (REF SHORT BITS cw)VOID:

After calling get fpu cw, the current value of the FPU control word will be
assigned to the parameter.

2. PROC set fpu cw = (SHORT BITS cw)VOID:

After calling set fpu cw, the current value of the FPU control word will
have been set to the value of the parameter.

The QAD standard prelude provides three values of mode SHORT BITS which enable
you to control how rounding is performed. They are:-

1. fpu cw ieee

This value enables you to reset the FPU control word to the standard value
for the C library.

2. fpu cw algol68 round

This value ensures that the FPU will perform rounding to the nearest number.
A REAL value ending in 0 ·5 will be rounded to the nearest even number. This
ensures that rounding errors in random values will not accumulate.

3. fpu cw algol68 entier

This value ensures that the FPU will truncate REAL numbers towards −∞
when converting to an integer of the equivalent precision.

These values are used as masks. Here, for example, is the source code for the
operator ROUND:-

Contents Index

Chapter 13. Standard Prelude 244

OP ROUND = (REAL r)INT:

(

INT n;

SHORT BITS ocw; get fpu cw(ocw);

set fpu cw(ocw & fpu cw algol68 round);

ph round(r,n);

set fpu cw(ocw);

n

)

Notice how the FPU control word is reset to its original value before the end of the
operator.

The FPU control word is also used to control whether overflow should be de-
tectable. The standard mode of operation is to ignore integer overflow. The control
word masks mentioned above ensure that integer overflow can be detected using a
signal. The procedure on signal is declared as follows:-

PROC on signal=(INT sig,

PROC(INT)VOID handler)VOID:

The example program testov.a68 shows how on signal can be used. The Algol 68
identifiers for all the Linux signals are the same as the Linux signal identifiers, but
in lower case. For example, the signal used in FPU control is sigfpu. The signal
generated by keying Ctrl-C (sometimes depicted as ^C) on program input is sigint.
Here is a short program which illustrates signal trapping:-

PROGRAM sig CONTEXT VOID

USE standard

BEGIN

on signal(sigint,

(INT sig)VOID:

(write(("sigint trapped",

newline));

exit(1)));

write("Please key ^C: "); read(LOC CHAR);

write(("No signal trapped",newline))

END

FINISH

Usually, when you trap a signal such as sigint, your program could close down
processing in an orderly manner: files could be closed properly, a message to the
user could be issued, and so on. You can do anything you want in the procedure
provided as a parameter to on signal. You can also predeclare the procedure and
simply provide its identifier in the on signal call.

Integer overflow is ignored by the microprocessor. So the formula max int + 3

simply yields an incorrect value.
The procedure ansi raise will cause any specified signal to occur. Here is the

mode of ansi raise:

PROC ansi raise = (INT sig)INT:

Contents Index

Chapter 13. Standard Prelude 245

13.6.2 Terminating a process

As well as raising and trapping signals, it is sometimes useful to specify proce-
dures to be elaborated when your program has finished, for whatever reason. Four
procedures are provided for process termination:-

1. PROC iso at exit=(PROC VOID p)INT:

The procedure p is registered to be elaborated when the program terminates
normally or when the procedure exit (see procedure 3) is called. Registered
procedures are elaborated in the reverse order of being registered, so that the
procedure registered last is elaborated first. The procedure at exit yields 0
for success, −1 for an error.

2. PROC on exit=(PROC(INT,CPTR)VOID p,

[]CHAR arg)INT:

Unlike the procedure at exit (see above), on exit allows you to register
a procedure which takes two parameters. The first is the integer parameter
given to the exit procedure (or 0 for normal termination) and the second is
a []CHAR which the procedure p can use. on exit yields 0 for success and
−1 for an error.

3. PROC exit = (INT status)VOID:

This procedure terminates the program immediately. Any procedures reg-
istered using at exit or on exit will be elaborated in the reverse order of
registration. Any open files will be closed, but Algol 68 buffers will not be
flushed. The value of status will be passed to the parent process of the
program.

4. PROC stop = VOID:

This is a synonym for exit(0).

The example program testexit.a68 shows one way in which at exit and on exit

may be used.

13.6.3 Garbage-collector control

The garbage-collector manages the run-time heap. The term “garbage” is used
to designate memory on the heap which is no longer referenced. Although the
garbage-collector is usually called whenever space on the heap is required, a number
of routines are provided for explicit garbage collection or for fine control of the
garbage-collector.

1. PROC garbage collect = VOID:

The garbage-collector can be called explicitly by an Algol 68 program using
this procedure.

2. PROC disable garbage collector = VOID:

Disables the garbage-collector.

3. PROC enable garbage collector = VOID:

Enables the garbage-collector.

4. PROC gc param = (VECTOR[]CHAR cmd,INT v)INT:

This routine is used to set or get the values of a number of parameters which
control the garbage-collector. The cmd should consist of GET␣ or SET␣ followed

Contents Index

Chapter 13. Standard Prelude 246

by the string identifying the required parameter followed by a nul ch. The
available strings are

(a) COLLECTION THRESHOLD The number of bytes in use before the next
garbage collection is allowed.

(b) HEAP INCREMENT The number of bytes by which the heap should be
increased in size whenever the heap is grown.

(c) MAX HEAP SIZE The maximum size of the heap in bytes.

(d) MIN HEAP SIZE The minimum size of the heap in bytes.

(e) MAX SEGMENT SIZE The maximum size of a memory segment acquired
for the heap.

(f) MIN SEGMENT SIZE The minimum size of a memory segment acquired
for the heap.

(g) POLICY The heap policy. Three values are provided for setting the heap
policy:-

i. INT always collect

The garbage-collector will always be called if space is required.

ii. INT always grow heap

The garbage-collector will never be called even if space is required.

iii. INT default policy

The garbage-collector will be called if there is insufficient space in
the heap for the memory required. Extra space will be acquired if
garbage-collection does not yield the spaced needed.

Whether the heap is grown or whether garbage-collection takes place
depends on the current policy which is usually specified by the environ-
ment string A68 GC POLICY.

5. PROC get gc param = (VECTOR[]CHAR param)INT:

Gets the current value of the garbage-collector parameter (any one of the
strings given in this section).

6. PROC set gc params = (VECTOR[]GCPARAM gcpar)VOID:

Sets the value of the garbage-collector parameter (any one of the strings given
in this section).

For further details about the garbage-collector, consult the code in the library
directory in the a68toc source tree.

13.7 Transput

If you are unclear about the working of Algol 68 transput, consult chapter 9. The
function of this section is to document all the transput declarations so that you can
use it as a reference manual.

The declarations will be covered in the following order:-

1. Modes

2. Standard channels

3. Standard files

Contents Index

Chapter 13. Standard Prelude 247

4. Opening files

5. Closing files

6. Transput routines

7. Interrogating files

8. File properties

9. Event routines

10. Conversion routines

11. Layout routines

In the sequel, transput errors are mentioned using identifiers whose values appear
in the following table:-

physical file end not mended 255
logical file end not mended 254
stand in redirected 253
environment string unset 252
environment string estab err 251
estab invalid parameters 250
open invalid parameters 249
no program args 248
value error not mended 247

Identifiers for transput errors

13.7.1 Transput modes

Only five modes are available:-

FILE A structure containing details of a a book accessed by the program.

CHANNEL A structure containing procedures for accessing books.

SIMPLIN A union of names of all plain modes, rows of plain modes, structures of
plain modes and their combinations.

SIMPLOUT A union of all plain modes, rows of plain modes, structures of plain
modes and their combinations.

BUFFER A synonym for RVC. It is used as the yield of the procedure file buffer

(see section 13.7.7).

The mode NUMBER is used as a parameter of the procedures whole, fixed and float,
but because it is the union of all number modes, it is unnecessary to specify it and
so has not been made available for general use.

Contents Index

Chapter 13. Standard Prelude 248

13.7.2 Standard channels

For each channel in this section, the general properties are first given, followed by
a table giving the properties of books opened on the channel and then a list of
specific properties for the following procedures where applicable:-

establish
open
create
close
lock
scratch
set
logical end
reidf

1. CHANNEL stand in channel

CHANNEL stand out channel

CHANNEL stand back channel

These three channels have similar properties because they use the same ac-
cess procedures. The standard buffered input channel is stand in channel.
Books on this channel have the following properties:-

stand in channel
bin possible TRUE

put possible FALSE

get possible TRUE

set possible TRUE

reidf possible FALSE

and are available as the stand in book.

The stand out channel is the standard buffered output channel. Books on
this channel have the following properties:-

stand out channel
bin possible TRUE

put possible TRUE

get possible FALSE

set possible TRUE

reidf possible FALSE

and are available as the stand out book.

The stand back channel is the standard buffered input/output channel.
Books on this channel have the following properties:-

stand back channel
bin possible TRUE

put possible TRUE

get possible TRUE

set possible TRUE

reidf possible TRUE

Contents Index

Chapter 13. Standard Prelude 249

and are available as the stand back book.

The channels have the following properties:-

establish You must have write access to the file. If it already exists, it
will be truncated to zero length. The default mode is 8r644. If the
file cannot be established, the routine will return the value errno (the
system error name) refers to.

open the file will be opened with a default mode of 8r444. If the file cannot
be opened, the routine will return the value errno refers to.

create A zero length file with a unique identification will be created using
the default mode of 8r644.

close The file will be closed. For the stand out channel and the stand

back channel, the buffer will be flushed.

lock The file will be closed and then all permissions will be removed from
the file provided you have write access to the directory containing the
file.

scratch The file will be closed and then unlinked.

set The current position will be set to any legal position in the book (non-
negative positions only). If the position is set beyond the current logical
end, a sparse file will be created.

logical end The position will be set to just beyond the last byte in the file.

reidf For the stand back channel only. When the file is closed, it will be
renamed. If the rename fails (an already existing file with that name,
for example), an error message will be output on the stand error file
giving a description of the error and identifying the file.

2. CHANNEL arg channel

The arg channel gives access to the program arguments including the actual
call of the program which precedes the program arguments. Arguments are
separated by a single space. A name of mode REF FILE opened with this
channel has blank as the string terminator. The arguments, as a book, have
the following properties:-

arg channel

bin possible FALSE

put possible FALSE

get possible TRUE

set possible TRUE

reidf possible FALSE

The channel has the following properties:-

establish Same as open.

open The program arguments will be made available. If the arguments are
unavailable, the routine will return no program args.

create Same as open.

close No action.

Contents Index

Chapter 13. Standard Prelude 250

lock No action.

scratch No action.

set Provided that the required position lies between the beginning and the
end of the arguments, the position will be set accordingly.

logical end The position will be set to just beyond the last character of
the last argument.

reidf Inapplicable.

The procedure make term can be used to set the string delimiter to any re-
quired value to facilitate searching for quote-delimited or otherwise delimited
arguments.

3. CHANNEL env channel

The env channel gives read-only access to environment strings (referred to in
Linux documentation as “environment variables”). The environment string,
as a book, has the following properties:-

env channel

bin possible FALSE

put possible FALSE

get possible TRUE

set possible TRUE

reidf possible FALSE

The channel has the following properties:-

establish Yields an error of value
environment string estab err.

open If the environment string is the null string or is unset, open yields an
error of value
environment string unset. Otherwise, the string is available as a
book.

create Yields an error of value
environment string estab err.

close No action.

lock The routine will attempt to remove all permissions from a file of the
same identification as the environment string identification.

scratch The routine will attempt to unlink a file of the given identification.

set Provided that the required position lies between the beginning and the
end of the string, the position will be set accordingly.

logical end The position will be set to just beyond the last character.

reidf Inapplicable.

The default string terminator is nul ch. You should set the string terminator
using make term.

Contents Index

Chapter 13. Standard Prelude 251

4. CHANNEL kbd channel

The kbd channel provides access to unechoed keystrokes (also referred to as
“non-canonical input”). Be warned that if a file opened with this channel is
not closed and the program ends prematurely, none of your keystrokes will
be echoed! You can reset to canonical input using the command

stty sane

The keyboard is made available as a book having the following properties:-

kbd channel

bin possible TRUE

put possible FALSE

get possible TRUE

set possible FALSE

reidf possible FALSE

The channel is usually used to access the characters input by control and
function keys as well as normal keystrokes, so it is advisable to use get bin

rather than get. The channel has the following properties:-

establish Same as open.

open You should use the null string "" for the identification. The routine
checks to see whether stand in has been redirected and yields the error
stand in redirected if so. Otherwise, the characteristics of stand in

are changed to wait for a single character with no minimum waiting time
and with no echo of the input.

create Same as open.

close The routine resets stand in to the condition it was in previously.

lock Same as close.

scratch Same as close.

set Inapplicable.

logical end Inapplicable.

reidf Inapplicable.

5. CHANNEL mem channel

The mem channel provides a memory buffer with access to all transput fa-
cilities. It is similar to the standard Algol 68 associate except that binary
transput is also allowed. The buffer behaves as a book with the following
properties:-

mem channel

bin possible TRUE

put possible TRUE

get possible TRUE

set possible TRUE

reidf possible FALSE

The channel has the following properties:-

Contents Index

Chapter 13. Standard Prelude 252

establish If the values of p and l are both 1 and the value of c is a posi-
tive integer then c is taken to be the size of the buffer. Otherwise, the
routine yields estab invalid parameters as error value. The identi-
fication should be "".

open The routine should be called with an identification of mode RVC (see
section 2b). The identification will be used as the memory buffer.

create The value estab invalid parameters will be returned.

close No action.

lock Inapplicable.

scratch Inapplicable.

set Provided the position lies in or just beyond the end of the buffer, the
position will be set.

logical end The position will be set to just beyond the end of the buffer.

reidf Inapplicable.

The channel can be used to access individual characters of integers and reals.
make term can also be used.

6. CHANNEL client socket channel

CHANNEL server socket channel

These channels provide UNIX- or Internet-type sockets in the form of stan-
dard Algol 68 files. Sockets behave as books with the following properties:-

client/server socket channel

bin possible TRUE

put possible TRUE

get possible TRUE

set possible FALSE

reidf possible FALSE

The channels have the following properties:-

establish The p should be the family of socket (either af unix or af inet).
If the latter, the l should be the port. The c should be the MTU (max-
imum transport unit). This governs the size of the buffer associated
with the socket. No checks are performed on its value. If p is neither
af unix nor af inet, the routine returns estab invalid parameters

as error value. The server socket should be established before the client
socket.

open Yields an error of open invalid parameters for both channels.

create Inapplicable.

close The buffer is flushed and the socket closed.

lock The buffer is flushed, the socket closed and then all access permis-
sions removed (provided that write access is available to the directory
containing the socket).

scratch The buffer is flushed, the socket closed and then unlinked.

set Inapplicable.

Contents Index

Chapter 13. Standard Prelude 253

logical end Inapplicable.

reidf Inapplicable.

An extra procedure accept, which mirrors the C library procedure, has the
following header

PROC accept = (REF FILE socket)REF FILE:

and is used by the server to accept a client socket, thereby yielding a
REF FILE name which can be used to communicate with the client.

The example programs client1, server1, client2 and server2 (whose
source can be found in the examples directory) demonstrate simple use of
sockets.

13.7.3 Standard files

Four standard files are provided:-

1. REF FILE stand in

This file corresponds to the C stdin. Books connected via stand in differ
from those connected via the channel stand in channel: set possible

returns FALSE. Thus this file must be regarded as a simple stream of bytes.
When the kbd channel is being used, stand in is unavailable.

2. REF FILE stand out

This file corresponds to the C stdout. Books connected via stand out differ
from those connected via the channel stand out channel: set possible

returns FALSE. Thus this file must be regarded as a simple stream of bytes.

3. REF FILE stand error

This file corresponds to the C stderr and behaves like the file stand out.

4. REF FILE stand back

This file accesses a workbook which is deleted on termination of the program.
All kinds of transput are allowed on this file.

13.7.4 Opening files

Three procedures are available for opening files:-

1. PROC establish=

(REF FILE f,STRING idf,

CHANNEL chann,INT p,l,c)INT:

In standard Algol 68, this procedure creates a new file with p pages, each page
containing l lines, each line containing c characters. In the QAD standard
prelude, the mem channel (see section 5) takes notice of p, l and c and both
p and l must be 1. The socket channels (see section 6) use p for the socket
family, l for the port if the family is af inet and c for the size of the MTU.
For other channels, the values of p, l and c are ignored. The procedure yields
zero on success, otherwise an integer denoting an error (see section 13.7.2).

Contents Index

Chapter 13. Standard Prelude 254

2. PROC open=(REF FILE f,

UNION(CHAR,STRING,RVC) idf,

CHANNEL chann)INT

In standard Algol 68, the second parameter of this procedure has mode
STRING. The above union ensures that an RVC parameter can be used to open
an existing memory buffer with the memory channel. This is particularly
useful for performing transput on buffers obtained from C library routines.
The procedure yields zero on success, otherwise an integer denoting an error
(see section 13.7.2).

3. PROC create=(REF FILE f,CHANNEL chann)INT:

Creates a work file with a unique identification in the directory /tmp using
the given channel.

Contents Index

Chapter 13. Standard Prelude 255

13.7.5 Closing files

Three procedures are provided:-

1. PROC close=(REF FILE f)VOID:

This is the standard procedure for closing a file. It is standard practice to
close every opened file. The procedure checks to see whether the file is open.
If the reidf procedure has been called, after closing the file, the procedure
renames the file to the identification given in the reidf field.

2. PROC lock=(REF FILE f)VOID:

The Algol 68 Revised Report requires that the file be closed in such a manner
that some system action is required before it can be reopened. In this case,
the file is closed and then all access permissions removed. Before the file can
be reopened, the user will have to use chmod.

3. PROC scratch=(REF FILE f)VOID:

The file is closed and then unlinked.

13.7.6 Transput routines

The procedures in this section are responsible for the transput of actual values.
Firstly, formatless transput is covered and then binary transput. The a68toc com-
piler does not support formatted transput. In each section, the shorthand L is used
for the various precisions of numbers and bits values.

Straightening

The term straightening is used in Algol 68 to mean the process whereby a complex
mode is separated into its constituent modes. For example, the mode

MODE X=STRUCT(INT a,

CHAR b,

UNION(REAL,VOID) u)

would be straightened into values of the following modes:-

� INT

� CHAR

� UNION(REAL,VOID)

The mode REF[]X would be straightened into a number of values each having the
mode REF X, and then each such value would be further straightened into values
having the modes

� REF INT

� REF CHAR

� REF UNION(REAL,VOID)

However, a value of mode COMPL is not straightened into two values both of mode
REAL. Instead, the real part is transput, then an "I" read or written followed by
the imaginary part.

Contents Index

Chapter 13. Standard Prelude 256

Formatless transput

Formatless transput converts internal values into strings of characters or strings of
characters into internal values.

1. PROC write=([]UNION(SIMPLOUT,

PROC(REF FILE)VOID) x)VOID:

This is equivalent to put(stand out,x) (synonym print).

2. PROC put=(REF FILE f,

[]UNION(SIMPLOUT,

PROC(REF FILE)VOID) x)VOID:

The parameter x is straightened and the resulting values are output. Each
plain mode is output as follows:-

CHAR Output a character to the next logical position in the file. For []CHAR,
output all the characters on the current line.

BOOL Output flip or flop for TRUE or FALSE respectively. For []BOOL,
output flip or flop for each BOOL.

L BITS Output flip for each bit equal to one and flop for each bit equal
to zero. l bits width characters are output in all. No newline or
newpage is output. For []L BITS, each BITS value is output as above
with no intervening spaces.

L INT Output a space character if the logical position is not at the start of
a line. Then output the integer using the call

whole(i,1+l int width)

which will right-justify the integer in

1+l int width

positions with a preceding sign. For []L INT, each integer is output as
described above, preceded by a space if it is not at the beginning of the
line. No newlines or newpages are output.

L REAL A space is output if the logical position is not at the start of a line
and then the number is output space-filled right-justified in

l real width+l exp width+3

positions in floating-point format and preceded by a sign. For a value
of mode []L REAL, each REAL value is output as described above.

L COMPL The complex value is output as two real numbers in floating-point
format separated by ␣i␣. For []L COMPL, each complex value is output
as described above.

PROC(REF FILE)VOID: An lf character is output if the routine is newline
and an ff character if the routine is newpage. User-defined routines
with this mode can be used.

3. PROC read=([]UNION(SIMPLIN,

PROC(REF FILE)VOID) x)VOID:

This is equivalent to get(stand in,. . .).

Contents Index

Chapter 13. Standard Prelude 257

4. PROC get=(REF FILE f,

[]UNION(SIMPLIN,

PROC(REF FILE)VOID x)VOID:

This procedure converts strings of characters into internal values. Inputting
data is covered for each plain mode and REF STRING. In each case, if the end
of the file is detected while reading characters, the logical file end procedure
is called:-

REF CHAR

Any characters c where c < blank are skipped and the next character
is assigned to the name.

If a REF[]CHAR is given, then the above action occurs for each of the
required characters of the multiple.

REF STRING

All characters, including any control characters, are assigned to the
name until any character in the character set specified by the string term

field of f is read. The file is then backspaced so that the string termi-
nator will be available for the next get.

REF BOOL

The next non-space character is read and, if it is neither flip nor
flop, the char error procedure is called with flop as the suggestion.
For REF[]BOOL, each REF BOOL name is assigned a value as described
above.

REF L BITS

The action for REF BOOL is repeated for each bit in the name. For
REF[]L BITS, each REF L BITS name is assigned a value as described
above.

REF L INT

If the next non-control character (ie, a character which is neither a
space, a tab character, a newline or newpage character or other control
character) is not a decimal digit, then the char error procedure is called
with "0" as the suggestion. Reading of decimal digits continues until
a character which is not a decimal digit is encountered when the file
is backspaced. If during the reading of decimal digits, the value of
l max int would be exceeded, reading continues, but the input value
is not increased. For REF[]L INT, each integer is read as described
above.

REF L REAL

A real number consists of 3 parts:-

� an optional sign possibly followed by spaces

� an optional integral part

� a "." followed by any number of control characters (such as newline
or tab characters) and the fractional part

� an optional exponent preceded by a character in the set "Ee\".
The exponent may have a sign. Absence of a sign is taken to mean
a positive exponent

The number may be preceded by any number of control characters or
spaces. For REF[]L REAL, each REAL value is read as described above.

Contents Index

Chapter 13. Standard Prelude 258

REF L COMPL

Two real numbers separated by "i" are read from the file. Newlines or
newpages or other control characters can precede each real. The first
number is regarded as the real part and the second the imaginary part.
For REF[]L COMPL, each REF L COMPL is read as described above.

Binary transput

Binary transput performs no conversion on internal values, thus providing a means
of storing internal values in a compact form in books or reading such values into a
program.

1. PROC write bin=([]SIMPLOUT x)VOID:

This is equivalent to put bin(stand back,x).

2. PROC put bin=(REF FILE f,

[]SIMPLOUT x)VOID:

This procedure outputs internal values in a compact form. Then external
size is the same as the internal size.

3. PROC read bin=([]SIMPLIN x)VOID:

This procedure is equivalent to

get bin(stand back,x)

4. PROC get bin=(REF FILE f,[]SIMPLIN x)VOID:

This procedure transfers external values in a compact form directly into in-
ternal values.

In all the above procedures, the transput is direct with no code conversion. It should
also be noted that the procedure make term, although usually used with formatless
transput, can also be used with binary transput in the QAD standard prelude for
inputting a STRING terminated by any of a number of characters. You should note
that if set possibleor the channel concerned, then the terminator (which will always
include the lfharacter) will not have been read when get bineturns. However, if not
set possible for the channel (and neither stand in nor stand out can be set),
then no backspace is possible for binary transput and so the terminating character
will have been read.

Other procedures

A number of miscellaneous procedures fall into this category.

1. PROC file buffer = (REF FILE f)BUFFER:

Yields the buffer of a REF FILE value.

2. PROC flush buffer = (REF FILE f) VOID:

This procedures empties the buffer if it has been changed by a put or a
put bin.

3. PROC no file end=(REF FILE f)BOOL:

One of the default procedures in default io procs.

4. PROC ignore value error = (REF FILE f)BOOL:

One of the default procedures in default io procs.

Contents Index

Chapter 13. Standard Prelude 259

5. PROC ignore char error = (REF FILE f, REF CHAR ch)BOOL:

One of the default procedures in default io procs.

13.7.7 Interrogating files

A number of procedures are available for interrogating the properties of files:-

1. Properties of the book:-

(a) PROC bin possible=(REF FILE f)BOOL:

Yields TRUE if binary transput is possible.

(b) PROC put possible=(REF FILE f)BOOL:

Yields TRUE if data can be sent to the book.

(c) PROC get possible=(REF FILE f)BOOL:

Yields TRUE if data can be got from the book.

(d) PROC set possible=(REF FILE f)BOOL:

Yields TRUE if the book can be browsed: that is, if the position in the
book for further transput can be set.

(e) PROC reidf possible=(REF FILE f)BOOL:

Yields TRUE if the identification of the book can be changed.

2. PROC current pos=(REF FILE f)INT:

The standard Algol 68 procedure yields a triple giving the page, line and
character number. However, the QAD standard prelude does not use pages,
lines and characters, so this procedure yields the current character position
within the book for the next transput operation.

3. PROC file buffer=(REF FILE f)BUFFER:

Yields the memory buffer associated with the file f.

4. PROC idf=(REF FILE f)RVC:

Yields the current identification of the book.

5. PROC logical end=(REF FILE f)INT:

The current length of the book connected to f.

13.7.8 File properties

Three procedures are provided for altering the properties of files:-

1. PROC make term=(REF FILE f,

STRING term)VOID:

Makes term the current string terminator.

2. PROC reidf=(REF FILE f,STRING new idf)VOID:

Changes the reidf field of f to the given value so that when the file is closed,
the book will be renamed.

3. PROC set flush after put=(REF FILE f)VOID:

Ensures that the buffer of a file is flushed whenever data is written to the
file.

Contents Index

Chapter 13. Standard Prelude 260

13.7.9 Event routines

Four event routines are provided. For each routine, the default behaviour will be
described. In each case, if the user routine yields FALSE, the default action will be
elaborated. If it yields TRUE, the action depends on the event.

1. PROC on char error=(REF FILE f,

PROC(REF FILE,

REF CHAR)BOOL p)VOID:

This procedure assigns the procedure p, which may be an identifier or an
anonymous procedure, to the char error mended field of f. The actions on
character error are:-

Default action Use the default character for the particular situation.

User action A character may be assigned to the REF CHAR parameter and
will be used if it is in the particular character set involved.

The relevant situations are:-

(a) When reading an integer of any precision, first character, possibly fol-
lowing an optional sign with following spaces, is not a digit. Any deci-
mal digit can be substituted. The default is "0".

(b) When reading a real of any precision, the first non-space character,
optionally preceded by a decimal point ".", is not a digit. Any decimal
digit can be substituted. The default is "0".

(c) When reading a real of any precision, an exponent is present (the char-
acter "e" or "E" or "\" has been read), and the first non-space character
is not a digit. Any decimal digit can be substituted. The default is "0".

(d) When reading a complex number, the first non-space character following
the first real is not in the set iI. The default is "i".

2. PROC on logical file end=

(REF FILE f,PROC(REF FILE)BOOL p)VOID:

This procedure assigns the procedure p, which may be an identifier or an
anonymous procedure, to the logical file mended field of f. The actions
on logical file end are:-

Default action On any channel, if the end of the file has been reached or,
in unformatted character transput, an eof char is read then the error
message logical file end not mended will be issued and the pro-
gram terminated with the exit value logical file end not mended.

User action Any action as specified. Care should be taken if transput is
performed on the file in question as an infinite loop could occur.

3. PROC on physical file end=

(REF FILE f,PROC(REF FILE)BOOL p)VOID:

This procedure assigns the procedure p, whether an identifier or an anony-
mous procedure, to the

physical file mended

field of f. The actions on physical file end are:-

Contents Index

Chapter 13. Standard Prelude 261

Default action On any channel, if there is no more room on the physical
medium, the program issues the error message

physical file end not mended

and then terminates the program with the exit value physical file

end not mended.

User action Any action as specified. Care should be taken if transput is
performed on the file in question as an infinite loop could occur.

4. PROC on value error=

(REF FILE f,PROC(REF FILE)BOOL p)VOID:

This procedure assigns procedure p to the value error mended field of f.
The actions taken on a value error are:-

Default action The program issues the error message value error not mended

and then terminates with the same exit value.

User action Transput continues.

The error occurs in the following situations:-

(a) When an integer on input exceeds max int for the precision concerned.

(b) The size of the exponent of a real number exceeds max int.

(c) An input real number is ±∞ or greater than max real or is less than
min real for the precision concerned.

13.7.10 Conversion routines

The conversion routines consist of three procedures conversion of numbers to strings
of characters, one operator and the procedure char in string. All the procedures
whole, fixed and float will return a string of error char if the number to be
converted is too large for the given width, or, if the number is a real, if it is infinite
or otherwise invalid.

1. PROC char in string=

(CHAR c,REF INT p,STRING s)BOOL:

If the character c occurs in the string s, its index is assigned to p and the
procedure yields TRUE, otherwise no value is assigned to p and the procedure
yields FALSE.

2. PROC whole=(NUMBER v,INT width)STRING:

The procedure converts integer values. Leading zeros are replaced by spaces
and a sign is included if width>0. If width is zero, the shortest possible
string is yielded. If a real number is supplied for the parameter v, then the
call fixed(v, width, 0) is elaborated.

3. PROC fixed=(NUMBER v,

INT width,after)STRING:

The procedure converts real numbers to fixed point form, that is, without
an exponent. The total number of characters in the converted value is given
by the parameter width whose sign controls the presence of a sign in the
converted value as for whole. The parameter after specifies the number of

Contents Index

Chapter 13. Standard Prelude 262

required digits after the decimal point. From the values of width and after,
the number of digits in front of the decimal point can be calculated. If the
space left in front of the decimal point is insufficient to contain the integral
part of the value being converted, digits after the decimal point are sacrificed.

4. PROC float=(NUMBER v,

INT width,after,exp)STRING:

The procedure converts reals to floating-point form (“scientific notation”).
The total number of characters in the converted value is given by the param-
eter width whose sign controls the presence of a sign in the converted value
as for whole. Likewise, the sign of exp controls the presence of a preceding
sign for the exponent. If exp is zero, then the exponent is expressed in a
string of minimum length. In this case, the value of width must not be zero.
Note that float always leaves a position for the sign. If there is no sign, a
blank is produced instead. The values of width, after and exp determine
how many digits are available before the decimal point and, therefore, the
value of the exponent. The latter value has to fit into the width specified
by exp and so, if it cannot fit, decimal places are sacrificed one by one until
either it fits or there are no more decimal places (and no decimal point). If
it still doesn’t fit, digits before the decimal place are also sacrificed. If no
space for digits remains, the whole string is filled with error char.

5. OP HEX=(L BITS v)[]CHAR:

The operator HEX converts a value of mode L BITS into a row of hexadec-
imal digits. The total number of digits equals l bits width OVER 4. For
example, HEX 4r3 yields 00000003.

13.7.11 Layout routines

These routines provide formatting capability on both input and output.

1. PROC space=(REF FILE f)VOID:

The procedure advances the position in file f by 1 byte. It does not read or
write a blank.

2. PROC backspace=(REF FILE f)VOID:

The procedure advances the position in file f by -1 bytes. It does not read
or write a backspace. Note that not every channel permits backspacing more
than once consecutively.

3. PROC newline=(REF FILE f)VOID:

On input, skips any remaining characters on the current line and positions
the file at the beginning of the next line. This means that all characters on
input are skipped until a linefeed character lf is read. On output, emits a
linefeed character. This is non-standard behaviour.

4. PROC newpage=(REF FILE f)VOID:

On input, skips any remaining characters on the current page and positions
the file at the beginning of the next page. This means that all characters
on input are skipped until a formfeed character ff is read. Note that if the
character following a number is a formfeed character, then that character will
have been read during the read of the number. Hence, the skip to formfeed

Contents Index

Chapter 13. Standard Prelude 263

character will skip the whole of the following page. On output, a formfeed
character is emitted immediately.

5. PROC skip terminators=(REF FILE f)VOID:

Any STRING terminators are skipped on input and the file positioned at
the next non-terminating character. The procedure is usually called after
a STRING has been read.

13.8 Summary

The whole of the standard prelude has been described in the above sections. Apart
from the built-in operators implemented by the a68toc compiler, the whole of the
standard prelude is implemented by Algol 68 source code.

Contents Index

Appendix A

Answers

A.1 Chapter 1

Ex 1.1

(a) Yes, it contains lower-case letters.

(b) Yes, it starts with a digit.

(c) No.

(d) Yes, a space is included.

(e) Yes, a full stop is included.

Ex 1.2 It starts with a capital letter and continues with capital letters, digits or
underscores with no intervening spaces, tab characters or newline characters.

Ex 1.3 33

Ex 1.4

(a) It contains commas.

(b) It contains a decimal point.

(c) It is not a denotation: it is a formula (see chapter 2).

Ex 1.5

(a) It is not an identifier: it is a mode-indicant.

(b) Nothing—it’s all right.

(c) It contains a minus symbol.

(d) It contains upper-case letters.

Ex 1.6

(a) The > symbol should be =.

(b) The integer denotation is larger than the largest integer that the com-
piler can handle.

Ex 1.7 INT max int = 2 147 483 647

264

Appendix A. Answers 265

Ex 1.8 "." "," "8"

Ex 1.9 CHAR question mark = "?"

Ex 1.10 The 5. should be 5.0. Either the semicolon should be replaced by a
comma, or z should be preceded by REAL or INT.

Ex 1.11 REAL light year = 9.454 26 e15

(assuming 365 days per year).

Ex 1.12 The print phrase has one opening parenthesis and two closing ones and
there is no CONTEXT VOID USE standard preceding the BEGIN.

Ex 1.13 The first displays 20 at the start of the line. The second displays ␣␣␣␣␣␣␣␣+20␣␣␣+48930767
on one line.

Ex 1.14 It should display your name without quote symbols on the screen. Here
is an example program:-

PROGRAM ex1 14 CONTEXT VOID

USE standard

BEGIN

CHAR s="S", i="i", a="a", n="n";

CO Letters of my first name CO

print(s); print(i);

print(a); print(n)

END

FINISH

which will display Sian on the screen.

Ex 1.15

(a) 1996

(b) "e"

(c) 0.142857

Ex 1.16

(a) Yes, it contains spaces.

(b) Yes, it contains a decimal point.

(c) No.

(d) Yes, it starts with a digit.

Ex 1.17

(a) INT fifty five = 55

(b) REAL three times two point seven = 8.1

Contents Index

Appendix A. Answers 266

(c) CHAR colon=":"

Ex 1.18 Yes, you cannot guarantee that the declaration for x will be elaborated
before the declaration of y. The declarations should be written

REAL x = 1.234;

REAL y = x

Ex 1.19 0 denotes an integer with mode INT, 0.0 denotes a real number with
mode REAL.

Ex 1.20

PROGRAM ex1 20 CONTEXT VOID

USE standard

BEGIN

print(0.5); print(blank);

print("G"); print(1);

print(blank);print(":");

print(34 000 000)

END

FINISH

A.2 Chapter 2

Ex 2.1 INT minus thirty five = -35

Ex 2.2

(a) 1

(b) 1.0

(c) 5.0

(d) 0

(e) 5

Ex 2.3

(a) 6

(b) -6

(c) 13.5

(d) 4.5

Ex 2.4

(a) 5

(b) -45.0

(c) -61

Contents Index

Appendix A. Answers 267

Ex 2.5

(a) 20 INT

(b) 1 INT

(c) 1.25 REAL

(d) 1 INT

(e) 17.0 REAL

Ex 2.6 Your answer should be something like this:-

PROGRAM ex2 6 CONTEXT VOID

USE standard

BEGIN

print(-7 MOD 3);

print(7 MOD -3);

print(-7 MOD -3)

END

FINISH

This will display

␣␣␣␣␣␣␣␣␣+2␣␣␣␣␣␣␣␣␣␣+1␣␣␣␣␣␣␣␣␣␣+2

on your screen.

Ex 2.7 REAL two pi = 2 * pi

Ex 2.8

(a) 4 INT

(b) 3.25 REAL

(c) 12 INT

Ex 2.9

(a) -3 INT

(b) -9 REAL

(c) 2.0 REAL

Ex 2.10 1.5

Contents Index

Appendix A. Answers 268

Ex 2.11

(a) 5

(b) 2

(c) 345

(d) 32

(e) "1"

(f) 8

(g) 0.0

Ex 2.12 The first print phrase displays

0.0000000000000000

(16 zeros) and the second displays +infinity.

Ex 2.13 The compiler detects the error and rejects it.

Ex 2.14

(a) The brackets should be replaced with parentheses.

(b) There are more opening than closing parentheses. The first opening
parenthesis should be deleted.

(c) The operator ROUND has not been declared to use an operand with mode
CHAR.

(d) The operator ENTIER has not been declared for use with an operand
with mode INT.

A.3 Chapter 3

Ex 3.1

(a) Strictly speaking, the definition of Algol 68 allows parentheses wherever
brackets ([and]) are allowed. The a68toc compiler does not support
this and will flag it as an error.

(b) The apostrophes should be replaced by quote symbols.

(c) The value 2.0 in the row-display cannot be coerced to a value of mode
INT in a strong context (or any context, for that matter).

Ex 3.2 []INT first 4 odd numbers = (1,3,5,7)

Ex 3.3

(a) 8

(b) 1

(c) 3

Ex 3.4

(a) 1 LWB a, 1 UPB a, 2 LWB a, 2 UPB a, 3 LWB a, 3 UPB a

(b) LWB b, UPB b

Contents Index

Appendix A. Answers 269

Ex 3.5

(a) 6

(b) (9,10,11,12)

(c) (4,8,12,16)

Ex 3.6

(a) r[3,2]

(b) r[2,]

(c) r[,3]

Ex 3.7

[][]CHAR months=

("January","February","March",

"April","May","June",

"July","August","September",

"October","November","December")

Ex 3.8

(a) 30

(b) (0.0,-5.4)

(c) 11.4

(d) (6,7,8)

(e) "pqrst"

Ex 3.9 This exercise is self-marking, but here is a program to print the answer to
the first exercise:-

PROGRAM ex3 5 CONTEXT VOID

USE standard

BEGIN

[,]INT r = ((1,2,3,4),(5,6,7,8),

(9,10,11,12),(13,14,15,16));

print(("r[2,2]=",r[2,2],newline,

"r[3,]=",r[3,],newline,

"r[,2 UPB r]=",r[,2 UPB r],

newline))

END

FINISH

Ex 3.10

(a) Man bites dog

(b) bbbii

Contents Index

Appendix A. Answers 270

Ex 3.11

PROGRAM ex3 11 CONTEXT VOID

USE standard

BEGIN

FOR num TO 25

DO

print((num^3,newline))

OD

END

FINISH

Ex 3.12

PROGRAM ex3 12 CONTEXT VOID

USE standard

BEGIN

FOR c FROM ABS "Z" BY -1 TO ABS "A"

DO

print(REPR c)

OD

END

FINISH

Ex 3.13 The main difficulty lies in computing the letter to print. The first solution
uses numbers and REPR:-

PROGRAM ex3 13a CONTEXT VOID

USE standard

BEGIN

FOR row TO 5

DO

FOR letter TO 4

DO

print((REPR((row-1)*5

+letter+ABS"@"),",")

OD;

print((REPR(row*5 + ABS "@"),

newline))

OD

END

FINISH

The second solution uses an actual alphabet and a modified inner loop. Note
that the formulæ in the FROM and TO constructs are elaborated once only:
before the inner loop is elaborated for the first time in each elaboration of
the outer loop:-

PROGRAM ex3 13b CONTEXT VOID

USE standard

Contents Index

Appendix A. Answers 271

BEGIN

[]CHAR alphabet =

"ABCDEFGHIJKLMNOPQRSTUVWXYZ"[@1];

FOR row TO 5

DO

INT row5 = row*5;

FOR letter FROM row5-4 TO row5-1

DO

print((alphabet[letter],","))

OD;

print((alphabet[row5],newline))

OD

END

FINISH

Ex 3.14 The most difficult part is in declaring the multiple. print will quite
happily take the 3-dimensional multiple as its parameter:

PROGRAM ex3 14 CONTEXT VOID

USE standard

BEGIN

[,,]REAL m=(((1e-7,1e-6),

(1e-5,1e-4)),

((1e-3,1e-2),

(1e-1,1.0)));

print(m)

END

FINISH

Ex 3.15

(a) The brackets for the row-display should be replaced by parentheses.

(b) The number of integers in each row should be the same.

(c) Nothing. The denotation of an apostrophe is not doubled.

Ex 3.16

(a) [1:2,1:3]

(b) [1:3]

(c) [1:2]

Ex 3.17

(a) (6,5,4) []INT

(b) (8,5,2) []INT

Contents Index

Appendix A. Answers 272

(c) (7,4) []INT

(d) ((6,5),(3,2)) [,]INT

Ex 3.18 "abcabcabcdefg"

Ex 3.19

PROGRAM ex3 19 CONTEXT VOID

USE standard

BEGIN

[]CHAR alphabet =

"abcdefghijklmnopqrstuvwxyz";

[]INT by = (1,6,11,16,21,26);

FOR c BY 5 TO UPB alphabet

DO

print(alphabet[c])

OD

END

FINISH

A.4 Chapter 4

Ex 4.1

(a) 0

(b) 4.4

(c) FALSE

(d) TRUE

(e) TRUE

Ex 4.2

(a) TRUE

(b) TRUE

(c) FALSE (the UPB t[2:] is 5

Contents Index

Appendix A. Answers 273

Ex 4.3

(a) TRUE

(b) TRUE

(c) TRUE

(d) TRUE. It is inadvisable to created compuound conditions with this sort
of complexity simply because the condition is so difficult to understand.
You should particularly avoid compound conditions with NOT in front
of the various parts.

(e) FALSE

Ex 4.4

(a) TRUE

(b) 4 <= 2

(c) a <= b OR b <= c

(d) x /= y AND x /= z

Ex 4.5

IF x < pi

THEN print("Yes")

ELSE print("No")

FI

Ex 4.6

FOR i TO 96

DO

print(i*3);

IF i MOD 16 = 0

THEN print(newline)

FI

OD

Ex 4.7 The second operand of OREL is only elaborated if the first yields FALSE.

PROGRAM p CONTEXT VOID

USE standard

BEGIN

INT a = 3, b = 5, c = 4;

IF

IF a > b

THEN TRUE

ELSE b > c

FI

THEN print("Ok")

Contents Index

Appendix A. Answers 274

ELSE print("Wrong")

FI

END

FINISH

Ex 4.8 The right-hand side of the identity declaration is clearly an abbreviated
case clause, so p must yield INT, not BOOL.

Ex 4.9

PROGRAM ex4 9 CONTEXT VOID

USE standard

CASE SIGN x + 2

IN

print("x < 0.0"),

print("x = 0.0"),

print("x > 0.0")

ESAC

FINISH

Ex 4.10 TRUE and FALSE

Ex 4.11

(a) TRUE

(b) TRUE

(c) TRUE

(d) FALSE

(e) FALSE

(f) FALSE

Ex 4.12 You cannot mix full and abbreviated conditional clauses. Replace the
vertical bar with THEN. Also replace the ESAC with FI.

Ex 4.13 TFTFTFTFTF

Ex 4.14

IF m < 10

THEN print("Units")

ELIF m < 100

THEN print("Tens")

ELIF m < 1000

THEN print("Hundreds")

ELSE print("Too big")

FI

Ex 4.15

Contents Index

Appendix A. Answers 275

print((card|"Ace","two","three",

"four","five","six",

"seven","eight","nine",

"ten","Jack","Queen",

"King"))

A.5 Chapter 5

Ex 5.1 REF INT

Ex 5.2 REAL

Ex 5.3 The right-hand side of the identity declaration should yield a value of mode
INT. Insert ENTIER or ROUND before the r.

Ex 5.4 No value has been assigned to x when the second assignment is elaborated.

Ex 5.5

(a) A name with mode REF REAL.

(b) The real number denoted by 2.5 with mode REAL.

Ex 5.6 1.166666. . .

Ex 5.7 A name with mode REF[,]REAL.

Ex 5.8

(a) The bounds of the slice on the left-hand side of the assignment are
[-2:0], but the bounds of n are [1:3]. The assignment will cause a
run-time error.

(b) You could write m[5,]:=m[,-1], but it is unlikely that you would get
what you wanted because the second column overlaps the third row.
Here is a solution guaranteed to work:-

[]INT temp = m[,-1];

m[5,]:=temp[@-2]

Ex 5.9 There is no known formula which will tell you how big the sieve must be
to find the 365th prime; you just have to guess. A sieve with size equal to
5000 suffices. You need a counter for the primes. The complete program is:-

PROGRAM sieve CONTEXT VOID

USE standard

BEGIN

INT size=5000;

REF[]BOOL flags = LOC[2:size]BOOL;

FOR i FROM LWB flags TO UPB flags

DO

Contents Index

Appendix A. Answers 276

flags[i]:=TRUE

OD;

FOR i FROM LWB flags TO UPB flags

DO

IF flags[i]

THEN

FOR k FROM i*2 BY i TO UPB flags

DO

flags[k]:=FALSE

CO Remove multiples of i CO

OD

FI

OD;

REF INT count = LOC INT:=0;

FOR i FROM LWB flags TO UPB flags

DO

IF flags[i] ANDTH (count+:=1)=365

THEN print(i)

FI

OD

END

FINISH

Ex 5.10

(a) A name of mode REF FLEX[]CHAR.

(b) 1 and 5.

Ex 5.11

PROGRAM ex5 11 CONTEXT VOID

USE standard

BEGIN

REF STRING ss = LOC STRING;

FOR c FROM ABS "a" TO ABS "z"

DO

ss:="a"-REPR c; print((ss,newline))

OD

END

FINISH

Ex 5.12

REF FLEX[,]REAL f=

LOC FLEX[1:0,1:0]REAL;

f:=(5.0,10.0,15.0,20.0);

Contents Index

Appendix A. Answers 277

print((1 LWB f,1 UPB f,

2 LWB f,2 UPB f))

Ex 5.13

PROGRAM ex5 13 CONTEXT VOID

USE standard

BEGIN

REF REAL a = LOC REAL,

b = LOC REAL;

print(Enter two real numbers->");

read((a,b,newline));

print(("Their sum is",a+b,newline,

"Their product is",a*b))

END

FINISH

Ex 5.14

PROGRAM ex5 14 CONTEXT VOID

USE standard

BEGIN

REF STRING line = LOC STRING;

DO

read((line,newline));

IF UPB line = 0

THEN stop #terminate the program#

ELSE

FOR i

FROM UPB line BY -1 TO LWB line

DO

print(line[i])

OD;

print(newline)

FI

OD

END

FINISH

Contents Index

Appendix A. Answers 278

Ex 5.15

REF[]REAL r=

LOC[(REF INT s=LOC INT; read(s); s)]REAL

Ex 5.16

PROGRAM ex5 16 CONTEXT VOID

USE standard

BEGIN

REF INT number=LOC INT;

read(number);

REF[]INT multiple=LOC[number]INT;

read(multiple);

REF INT sum=LOC INT:=0;

FOR i TO number

DO

sum+:=multiple[i]

OD;

print(sum)

END

FINISH

Ex 5.17

PROGRAM ex5 17 CONTEXT VOID

USE standard

BEGIN

REF INT neg = LOC INT:=0,

pos = LOC INT:=0;

WHILE

REF INT i=LOC INT;

read((i.newline));

i /= 0

DO

(i < 0|neg|pos) +:= i

OD;

print(("Sum of negative integers =",

neg,newline,

"Sum of positive integers =",

pos,newline))

END

FINISH

Ex 5.18

Contents Index

Appendix A. Answers 279

PROGRAM ex5 18 CONTEXT VOID

USE standard

BEGIN

REF STRING line = LOC STRING;

WHILE

read((line,newline));

UPB line /= 0

DO

REF INT v=LOC INT:=0;

FOR i TO UPB line

DO

v+:=ABS line[i]*i

OD;

print((line,v,newline))

OD

END

FINISH

Ex 5.19

(a) [100]CHAR rc

(b) FLEX[1:0]INT fi

(c) BOOL b:=TRUE

Ex 5.20

(a) REF INT a=LOC INT, b=LOC INT, c=LOC INT

(b) REF REAL x=LOC REAL;

REF[]CHAR y=LOC[5]CHAR;

REF[,]REAL z=LOC[3,3]REAL

(c) REF FLEX[]CHAR s=LOC FLEX[1:0]CHAR

Contents Index

Appendix A. Answers 280

Ex 5.21 REF[]INT m=LOC[1000]INT; [1000]INT m

Ex 5.22

PROGRAM ex5 22 CONTEXT VOID

USE standard

BEGIN

REAL sum:=0.0, salary, INT num:=0;

WHILE read(salary); salary /= -1.00

DO

sum+:=salary; num+:=1

OD;

print(("Average salary=",sum/num))

END

FINISH

Ex 5.23 When writing a program as involved as this, do not expect to get it right
first time. In practice, a programmer adds fine details to a program after she
has designed the main structure.

PROGRAM ex5 23 CONTEXT VOID

USE standard

BEGIN

BOOL in word:=FALSE,

STRING line;

INT line start, line finish;

INT word start, word finish;

read((line,newline));

line start:=LWB line;

line finish:=UPB line;

WHILE line[line start]=blank

&

line start<=UPB line

DO

line start+:=1

OD;

WHILE line[line finish]=blank

&

line finish>=line start

DO

line finish-:=1

OD;

line:=line[line start:line finish]

+blank;

Contents Index

Appendix A. Answers 281

FOR c FROM LWB line

WHILE c <= UPB line

DO

CHAR lc = line[c];

IF lc /= blank & NOT in word

THEN word start:=c; in word:=TRUE

ELIF lc = blank & NOT in word

THEN SKIP

ELIF lc /= blank & in word

THEN SKIP

ELSE #lc = blank & in word#

word finish:=c-1;

in word:=FALSE;

print((line[

word start:word finish],

newline))

FI

OD

END

FINISH

Notice that both word start and word finish are made to refer to new
values before being used. This is a good check that you are writing the
program properly. Notice also that the four possible states of the compound
condition on line 26 are carefully spelled out on lines 28, 30 and 32.

A.6 Chapter 6

Ex 6.1 An identity declaration is

<formal-mode-param> = <actual-mode-param>

Ex 6.2 Because it is an identifier with a mode, but no associated value.

Ex 6.3

(a) REAL

(b) INT

(c) Strong

(d) -5

Ex 6.4 Using a loop:-

([]INT i)[]CHAR:

(

[LWB i:UPB i]CHAR s;

FOR n FROM LWB i TO UPB i

Contents Index

Appendix A. Answers 282

DO

s[n]:=REPR ii

OD;

s

)

Ex 6.5 (REF REAL id)REAL:

Ex 6.6 (REF CHAR a,b)REF CHAR:

Ex 6.7

(STRING s)[]STRING:

BEGIN

FLEX[1:0]STRING r:="";

#rowing coercion#

BOOL in word:=FALSE;

INT st:=LWB s,fn:=UPB s;

WHILE s[st]=blank & st<=UPB line

DO

st+:=1

OD;

WHILE s[fn]=blank & fn>=st

DO

fn-:=1

OD;

STRING ss:=s[st:fn]+blank;

FOR c FROM LWB ss UNTIL c > UPB ss

DO

CHAR ssc=ss[c];

IF ssc/=blank & NOT in word

THEN st:=c; in word:=TRUE

ELIF ssc=blank & NOT in word

THEN SKIP

ELIF ssc/=blank & in word

THEN SKIP

ELSE #ssc=blank & in word#

fn:=c-1; in word:=FALSE;

[UPB r+1]STRING rr;

rr[:UPB r]:=r;

rr[UPB rr]:=ss[st:fn];

r:=rr

#The word has been added to r#

FI

OD;

Contents Index

Appendix A. Answers 283

r[2:] #Omit the null string#

END

Ex 6.8 REAL:

Ex 6.9 VOID: print("Hi, there")

Ex 6.10 This table summaries the occurrences:-

Occurrences
Line Applied Defining

5 T p 2
5 T c 3
8 T 4 2
8 T q 7
10 T REPR 2 3
12 T c 3
12 T q 2

Ex 6.11

(a) A name of mode REF INT.

(b) The integer denoted by 16 of mode INT.

(c) The integer nine of mode INT.

(d) The integer four of mode INT.

Ex 6.12 The two declarations are firmly related because, in a firm context, a name
of mode REF[]INT can be dereferenced to a multiple of mode []INT.

Ex 6.13

(a) 1.

(b) 1.

(c) 2.

(d) 2.

Ex 6.14 These reasons are the most important:-

1. Because their actions are not clear from the program code.

2. They can cause indeterminate states to occur.

Ex 6.15

(a) You cannot mix letters and symbols.

(b) The symbol should start with + which has already been declared as a
monadic operator.

(c) This symbol is used for the identity relation (see section 11.6) and is not
an operator.

Ex 6.16 OP PP = (REF INT a)REF INT: a+:=1

Contents Index

Appendix A. Answers 284

Ex 6.17 PROC p = VOID: a:=3

Ex 6.18

PROC p = INT:

BEGIN

[(INT i; read((i,newline)); i)]INT a;

read(a);

INT sum:=0;

FOR i TO UPB a DO sum+:=a[i] OD;

sum

END

Ex 6.19

PROC p = REF[,]CHAR:

(

HEAP[3,20]CHAR n;

read((n,newline));

n

)

Ex 6.20

PROC p=(REF REAL r)REF REAL:

r:=r/pi*180

Ex 6.21

PROC p = (STRING s,INT i)VOID:

(

INT ii = IF i < 0

THEN print(newline); ABS i

ELSE i

FI;

TO ii DO print(s) OD

)

Ex 6.22

PROC num in multiple=(INT i,

[]INT m,

REF INT p)BOOL:

(

INT pos:=LWB m - 1;

FOR j FROM LWB m TO UPB m

WHILE pos < LWB m

DO

(i=m[j]|pos:=j)

OD;

Contents Index

Appendix A. Answers 285

IF pos < LWB m

THEN FALSE

ELSE p:=pos; TRUE

FI

)

Ex 6.23

(a) 10.0

(b) 0.3

(c) 0.0.

Ex 6.24

PROC reverse = ([]CHAR s)[]CHAR:

(SIZE s=1|s|s[UPB s]+reverse(s[:UPB s-1]))

Ex 6.25

PROC(INT)INT cube;

PROC square=(INT p)INT:

(ODD p|cube(p)|p^2);

cube:=(INT p)INT: (ODD p|p^3|square(p))

Ex 6.26 They form the two sides of an identity declaration.

Ex 6.27

OP LARGEST = ([,]REAL a)REAL:

(

REAL largest:=a[1 LWB a,2 LWB a];

FOR i FROM 1 LWB a TO 1 UPB a

DO

FOR j FROM 2 LWB a TO 2 UPB a

DO

largest:=largest MAX a[i,j]

OD

OD;

largest

)

Ex 6.28

PROC pr = (INT n)REF[]INT: HEAP[n]INT

Ex 6.29

Contents Index

Appendix A. Answers 286

PROC leng = INT:

(STRING s;

read((s,newline));

UPB s)

A.7 Chapter 7

Ex 7.1 STRUCT(INT i,j,k) s1 = (1,2,3)

Ex 7.2 STRUCT(INT i,REAL r,BOOL b)s2

Ex 7.3

(a) REF STRUCT(CHAR a,INT b)

(b) REF CHAR

(c) REF CHAR

(d) INT, provided that a procedure had been assigned to p OF st.

(e) INT

(f) REF STRUCT(CHAR a,INT b)

Ex 7.4

PROC p1=(STRUCT(CHAR a,INT b)s)INT:

ABS a OF s * b OF s

Ex 7.5

MODE EX_7_3_1=STRUCT(REAL r,

PROC(REAL)REAL p)

Ex 7.6

MODE EX_7_3_2=

STRUCT(EX_7_3_1 e,

PROC(EX_7_3_1)VOID p,

CHAR c)

Ex 7.7 One of the BMODE and AMODE structures is insufficiently shielded. You will
get an error for BMODE saying it is not a legal mode and another error for
the declaration of a REF AMODE saying that the mode AMODE has not been
declared.

Contents Index

Appendix A. Answers 287

Ex 7.8

(a) (2.0,3.0)

(b) -12.0

(c) Write a short program to get

3.6055512754639891

(d) 0.982 793 723 247 329 1

Ex 7.9 The value denoted by (12.0,-10.0).

Ex 7.10

(a) REF REAL, a name.

(b) REAL -3.0

(c) REAL 3.0

(d) REAL 3.0

Ex 7.11

(a) REF[]STRING

(b) REF REAL

(c) REF REAL

(d) REF[]REAL

Ex 7.12 [1:3].

Ex 7.13

(a) REF CHAR

(b) REF[]STRING

(c) REF STRING

(d) REF[]REAL

(e) REF[]REAL

Ex 7.14

MODE TEAM=STRUCT([11]STRING name,

STRING team,

INT played, won, drawn,

for, against)

Ex 7.15 Slicing binds more tightly than selecting, so the selection must be enclosed
in parentheses (see section 10.6 for the full explanation).

Ex 7.16 The slicing takes place before the selection so no parentheses are needed.

Ex 7.17

(a) REF PROC S2

(b) REF PROC(S1)S2

(c) REF[]CHAR

Contents Index

Appendix A. Answers 288

A.8 Chapter 8

Ex 8.1 MODE BINT = UNION(BOOL,INT)

Ex 8.2 BINT b = TRUE

Ex 8.3 One of the constituent modes of the union is firmly-related to the united
mode. In other words, in a firm context, REF UB can be dereferenced to UB.

Ex 8.4 UNION(INT,[]INT,[,]INT) mint

Ex 8.5 The first parameter is deprocedured to mode CHAR before being united.
The second is dereferenced to mode []CHAR and then united. The two values
of the united mode are regarded as a row-display and the procedure is then
called. The second parameter is an example of an anonymous name—no
identifier is attached.

Ex 8.6

PROC ucis=(CHAR ch,[]CHAR s)

UNION(INT,VOID):

IF INT p = ch FIND s; p >= LWB s

THEN p

ELSE EMPTY

FI

Ex 8.7

PROC p = (MIRC m)IRC:

CASE m IN

([]INT i): (INT sum:=0;

FOR j FROM LWB i TO UPB i

DO sum+:=i[j] OD;

sum),

([]REAL r):(REAL sum:=0;

FOR j FROM LWB r TO UPB r

DO sum+:=r[j] OD;

sum),

([]COMPL c):(COMPL sum:=0;

FOR j FROM LWB c TO UPB c

DO sum+:=c[j] OD;

sum)

ESAC

Ex 8.8

OP * = (IRC a,b)IRC:

CASE a IN

(INT i): CASE b IN

(INT j): i*j,

(REAL j): i*j,

Contents Index

Appendix A. Answers 289

(COMPL j): i*j

ESAC,

(REAL i): CASE b IN

(INT j): i*j,

(REAL j): i*j,

(COMPL j): i*j

ESAC,

(COMPL i):CASE b IN

(INT j): i*j,

(REAL j): i*j,

(COMPL j): i*j

ESAC

ESAC

Ex 8.9 MODE CRIB = UNION(CHAR,REAL,INT,BOOL)

Ex 8.10

OP UABS = (CRIB c)UNION(INT,REAL):

CASE c IN

(CHAR a): ABS a,

(REAL a): ABS a,

(INT a): ABS a,

(BOOL a): ABS a

ESAC

Ex 8.11 UABS "c"; UABS -4.0; UABS -3; UABS TRUE

A.9 Chapter 9

Ex 9.1

PROGRAM list CONTEXT VOID

USE standard

BEGIN

FILE f;

IF open(f,

"textbook",

stand in channel)/=0

THEN

print("Cannot open textbook");

exit(1)

FI;

STRING s;

WHILE get(f,(s,newline)); UPB s /= 0

DO

print((s,newline))

OD;

Contents Index

Appendix A. Answers 290

close(f)

END

FINISH

Ex 9.2

PROGRAM ex9 2 CONTEXT VOID

USE standard

BEGIN

FILE f;

IF open(f,

"textbook",

stand in channel)/=0

THEN

print("Cannot open textbook");

exit(1)

FI;

REAL r, sum:=0, INT n; get(f,n);

TO n DO get(f,r); sum+:=r OD;

print(sum); close(f)

END

FINISH

Ex 9.3

PROGRAM ex9 3 CONTEXT VOID

USE standard

BEGIN

FILE inf,outf;

IF open(inf,

"textbook",

stand in channel)/=0

THEN

print("cannot open textbook");

exit(1)

ELIF establish(outf,

"result",

stand out channel,

0,0,0)/=0

THEN

print("Cannot create result");

exit(2)

FI;

REAL sum:=0, r, INT n;

Contents Index

Appendix A. Answers 291

get(inf,n);

TO n

DO

get(inf,r); sum+:=r

OD;

put(outf,sum);

close(inf); close(outf)

END

FINISH

Ex 9.4

PROGRAM ex9 4 CONTEXT VOID

USE standard

BEGIN

INT size = 10 000;

[2:size]BOOL flags;

FOR i

FROM LWB flags TO UPB flags

DO flags[i]:=TRUE OD;

FOR i

FROM LWB flags TO UPB flags

DO

IF flags[i]

THEN

FOR k

FROM i+i BY i TO UPB flags

DO

flags[k]:=FALSE

OD

FI

OD;

#Now the file is needed#

FILE f;

IF establish(f,

"primes",

stand out channel,

0,0,0)/=0

THEN

print("Cannot create primes");

exit(1)

FI;

FOR i FROM LWB flags TO UPB flags

DO

IF flags[i]

Contents Index

Appendix A. Answers 292

THEN put(f,(i,newline))

FI

OD;

close(f)

END

FINISH

Ex 9.5 Notice that the processing of a line is done entirely within the WHILE clause.

PROGRAM ex9 5 CONTEXT VOID

USE standard

BEGIN

FILE inf, outf;

IF open(inf,

"inbook",

stand in channel)/=0

THEN

print("Cannot open inbook");

exit(1)

ELIF establish(outf,

"outbook",

stand out channel,

0,0,0)/=0

THEN

print("Cannot create outbook");

exit(2)

FI;

STRING line;

WHILE

get(inf,(line,newline));

put(outf,(line,newline));

IF UPB line = 0

THEN FALSE

ELSE line /= UPB line * blank

FI

DO SKIP OD;

close(inf); close(outf)

END

FINISH

Ex 9.6

PROGRAM ex9 6 CONTEXT VOID

USE transput

BEGIN

Contents Index

Appendix A. Answers 293

FILE inf, outf;

IF open(inf,

"lines",

stand in channel)/=0

THEN

print("Cannot open book lines");

exit(1)

ELIF establish(outf,

"words",

stand out channel,

0,0,0)/=0

THEN

print("Cannot create book words");

exit(2)

FI;

[]CHAR terminators=" *"+cr+lf;

make term(inf,terminators);

STRING word, CHAR ch:=blank;

WHILE

get(inf,word);

IF ch/=blank

THEN ch PLUSTO word

FI;

WHILE

get(inf,ch);

CO String terminator,

but cr/lf ignored CO

ch = blank

DO SKIP OD; #Skip spaces#

put(outf,(word,newline));

ch /= "*"

DO SKIP OD;

close(inf); close(outf)

END

FINISH

Contents Index

Appendix A. Answers 294

Ex 9.7 If the on logical file end procedure yields FALSE, the standard prelude
causes an error message to be displayed and the program itself exits with an
equivalent error number. Here is the code for the program:-

PROGRAM tt CONTEXT VOID

USE standard

IF FILE inf;

STRING line; INT n,sum:=0;

open(inf,

"inbook",

stand in channel)/=0

THEN

print(("Cannot open inbook",

newline));

exit(1)

ELSE

on logical file end(inf,

(REF FILE f)BOOL:

IF FILE ouf;

establish(ouf,

"outbook",

stand out channel,

0,0,0)/=0

THEN

print(("Cannot establish ",

"outbook",newline));

exit(2); SKIP

ELSE

put(ouf,(sum/n,newline));

close(ouf); FALSE

FI);

FOR i

DO

get(inf,(line,newline));

n:=i; sum+:=UPB line

OD

FI

FINISH

Contents Index

Appendix A. Answers 295

Ex 9.8 In the following solution, note how skip terminators is called immediately
after reading the first argument (the full path of the program):-

PROGRAM ex9 8 CONTEXT VOID

USE standard

IF FILE arg, inf, ouf;

STRING line, infn, oufn;

INT n,sum:=0;

open(arg,"",arg channel)/=0

THEN

put(stand error,

("Cannot access the ",

"program arguments",

newline));

exit(1)

ELIF

on logical file end(arg,

(REF FILE f)BOOL:

(put(stand error,

("Insufficient arguments",

newline));

stop; SKIP));

get(arg,(LOC STRING,skip terminators,

infn,skip terminators,

oufn));

open(inf,infn,stand in channel)/=0

THEN

print(("Cannot open ",infn,newline));

exit(2)

ELSE

on logical file end(inf,

(REF FILE f)BOOL:

IF establish(ouf,

oufn,

stand out channel,

0,0,0)/=0

THEN

print(("Cannot establish ",

oufn,

newline));

exit(3); SKIP

ELSE

put(ouf,("Average=",sum/n,

newline));

close(ouf);

FALSE

FI);

FOR i

Contents Index

Appendix A. Answers 296

DO

get(inf,(line,newline));

n:=i; sum+:=UPB line

OD

FI

FINISH

Ex 9.9 Notice that the physical file end of the output file has also been covered:-

PROGRAM ex9 9 CONTEXT VOID

USE standard

IF FILE arg, inf, ouf;

STRING line, infn, oufn;

open(arg,"",arg channel)/=0

THEN

put(stand error,

("Cannot access the arguments",

newline));

exit(1)

ELIF

on logical file end(arg,

(REF FILE f)BOOL:

(put(stand error,

("Insufficient arguments",

newline)); stop; SKIP));

get(arg,(LOC STRING,

skip terminators,

infn,skip terminators,

oufn));

open(inf,infn,stand in channel)/=0

THEN

print(("Cannot open ",infn,newline));

exit(2)

ELIF

establish(ouf,

oufn,

stand out channel,

0,0,0)/=0

THEN

print(("Cannot establish ",oufn,

newline));

exit(3)

ELSE

on logical file end(inf,

(REF FILE f)BOOL:

(close(ouf); close(inf);

stop; SKIP));

on physical file end(ouf,

(REF FILE f)BOOL:

(put(stand error,

Contents Index

Appendix A. Answers 297

("Write error on ",idf(ouf),

newline));

exit(4); SKIP));

DO

get(inf,(line,newline));

FOR i FROM LWB line TO UPB line

DO

REF CHAR li=line[i];

IF li=blank THEN li:="*" FI

OD;

put(ouf,(line,newline))

OD

FI

FINISH

Ex 9.10

PROGRAM ex9 10 CONTEXT VOID

USE standard

IF FILE env;

open(env,"PATH",env channel)=0

THEN

on logical file end(env,

(REF FILE e)BOOL: (stop; SKIP));

make term(env,":"+nul ch);

STRING s;

DO

get(env,s);

IF UPB s >= LWB s

THEN print((s,newline))

FI;

skip delimiters(env)

OD;

close(env)

FI

FINISH

Ex 9.11

PROGRAM ex9 11 CONTEXT VOID

USE standard

IF FILE arg;

open(arg,"",arg channel)/=0

THEN

put(stand error,

("Cannot access arguments",

newline));

exit(1)

ELSE

on logical file end(arg,

Contents Index

Appendix A. Answers 298

(REF FILE a)BOOL: (stop; SKIP));

get(arg,(LOC STRING,

LOC CHAR,

skip terminators));

DO

make term(arg,"/");

STRING env name;

CHAR terminator:=nul ch;

get(arg,

(env name,

skip terminators,

terminator));

IF FILE env;

open(env,

env name,

env channel)/=0

THEN

print((env name," undefined",

newline))

ELSE

make term(env,

terminator+nul ch);

STRING s;

on logical file end(

env,

(REF FILE f)BOOL:

(GOTO continue; SKIP));

DO

get(env,s);

IF UPB s >= LWB s

THEN print((s,newline))

FI;

skip terminators(env)

OD;

continue:

close(env)

FI;

make term(arg,blank);

skip terminators(arg)

OD

FI

FINISH

Notice the addition of nul ch to cater for the lack of a specific terminator in
the environment string.

Ex 9.12

PROGRAM ex9 12 CONTEXT VOID

USE standard

IF FILE abc;

Contents Index

Appendix A. Answers 299

open(abc,"ABC",env channel)/=0

THEN

print(("Environment string ABC",

"is undefined",newline));

stop

ELSE

INT sum:=0, n;

on logical file end(

abc,

(REF FILE f)BOOL:

(close(f);

print(("Total=",sum,newline));

stop; SKIP));

DO

get(abc,n);

sum+:=n

OD

FI

FINISH

Ex 9.13 Notice how the size of the month denotation is used to ensure that the
rainfall is aligned appropriately.

PROGRAM ex9 13 CONTEXT VOID

USE standard

BEGIN

[]STRING months=

("January","February","March",

"April","May","June","July",

"August","September",

"October","November",

"December");

[]REAL rainfall=

(6.54, 12.3, 10.1, 13.83,

5.04, 9.15, 14.34, 16.38,

13.84, 10.45, 8.49, 7.57);

FOR m TO UPB months

DO

STRING mm=months[m];

print((mm,(12-UPB mm)*blank,

fixed(rainfall[m],-5,2),

newline))

OD

END

FINISH

Ex 9.14 The difficult part is calculating which number to print at each position.

Contents Index

Appendix A. Answers 300

PROGRAM ex9 14 CONTEXT VOID

USE standard

BEGIN

print(("Table of square roots ",

"1 to 100",

newline,newline));

FOR i TO 25

DO

FOR j TO 4

DO

INT number = (j-1)*25+i;

print((whole(number,-6),

fixed(sqrt(number),

-8,4)))

OD;

print(newline)

OD

END

FINISH

Ex 9.15

PROGRAM ex9 15 CONTEXT VOID

USE standard

BEGIN

REAL pi power:=1;

print(("Table of powers of pi",

" 1 to 10",

newline,newline));

FOR i TO 10

DO

pi power*:=pi;

print((whole(i,-3)," ",

float(pi power,

12,6,2),

newline))

OD

END

FINISH

Contents Index

Appendix A. Answers 301

Ex 9.16 To write this program, you need to know how many bytes Algol 68 uses
to store an integer in a binary book. In the program below, that number is
presumed to be identified by int bin bytes. You will need to write a short
program to output a couple of integers to a binary book and then see how
long it is (and you might find its contents of interest).

PROGRAM ex9 16 CONTEXT VOID

USE standard

BEGIN

FILE work;

IF establish(work,

"ex9 16.tmp",

stand back channel,

0,0,0)/=0

THEN

print("Cannot create workbook");

exit(1)

FI;

FOR i TO 1000 DO put bin(work,i) OD;

INT int bin bytes=?;

CO Your value replaces ? CO

FOR i FROM 17 BY 17 TO 1000

DO

set(work,0,0,(i-1)*int bin bytes);

INT n; get bin(work,n);

print((n,newline))

OD;

close(work)

END

FINISH

Ex 9.17 Reading the words should not present any problems to you. The only
new bit is the output. However, for the sake of completeness, here is the
whole program.

PROGRAM ex9 17 CONTEXT VOID

USE standard

BEGIN

FILE inf, out1, out2;

IF open(inf,

"inbook",

stand in channel)/=0

THEN

print("Cannot open inbook");

Contents Index

Appendix A. Answers 302

exit(1)

ELIF establish(out1,

"outbook1",

stand out channel,

0,0,0)/=0

THEN

print("Cannot create outbook1");

exit(2)

ELIF establish(out2,

"outbook2",

stand out channel,

0,0,0)/=0

THEN

print("Cannot create outbook2");

exit(3)

FI;

make term(inf, blank+cr+lf);

STRING word; CHAR ch:=blank;

on logical file end(inf,

(REF FILE f)BOOL:

(close(out1);

close(out2);

close(f);

stop; SKIP));

DO

get(inf,(word,

skip terminators));

IF UPB word > 0

THEN

put bin(out2,

(current pos(out1),

UPB word));

put bin(out1,word)

FI

OD

END

FINISH

Contents Index

Appendix A. Answers 303

Ex 9.18 A useful wrinkle is to end your report with the words END OF REPORT so
that your reader knows that there are no pages of the report which could
have been lost. In a professionally written program, you would put a page
number and the date of the report, but we have not yet covered how that
can be done (see chapter 12).

PROGRAM ex9 18 CONTEXT VOID

USE standard

IF []STRING

months =

("January","February","March",

"April","May","June",

"July","August","September",

"October","November","December");

[]REAL

rainfall =

(6.54, 12.30, 10.10, 13,83,

5.04, 9.15, 14.34, 16.38,

13.84, 10.45, 8.49, 7.57);

FILE prn;

establish(prn,

"rainfall.out",

stand out channel,

0,0,0)/=0

THEN

put(stand error,

("Cannot establish rainfall.out",

newline)); stop

ELSE

put(prn,

("Rainfall figures in 1995",

newline,newline,

"Month",7*blank,

"Rainfall in mm",

newline));

FOR m TO UPB months

DO

STRING mm = months[m];

put(prn,

(mm,(12-UPB mm)*blank,

fixed(rainfall[m],-5,2),

newline))

OD;

put(prn,

(newline,

"END OF REPORT",

newline));

close(prn)

END

Contents Index

Appendix A. Answers 304

FINISH

Ex 9.19 You will need to get the identification of the file from the argument line.

PROGRAM ex9 19 CONTEXT VOID

USE standard

IF STRING in idf; FILE arg, inf, prn;

open(arg,"",arg channel)/=0

THEN

put(stand error,

("Cannot access arguments",

newline));

exit(1)

ELIF

on logical file end(arg,

(REF FILE f)BOOL:

(put(stand error,

("Usage: tt idf",

newline));

stop; SKIP));

get(arg,(LOC STRING,skip terminators,

in idf));

close(arg);

open(inf,in idf,stand in channel)/=0

THEN

put(stand error,

("Cannot open ",in idf,

newline));

exit(2)

ELIF

establish(prn,"tt.out",

stand out channel,

0,0,0)/=0

THEN

put(stand error,

("Cannot establish tt.out",

newline));

exit(3)

ELSE

STRING line;

on logical file end(inf,

(REF FILE f)BOOL:

(close(f); close(prn);

stop; SKIP));

FOR i

DO

get(inf,(line,newline));

put(prn,(whole(i,-6),": "));

IF UPB line > 0

Contents Index

Appendix A. Answers 305

THEN put(prn,line)

FI;

newline(prn)

OD

FI

FINISH

Ex 9.20

PROGRAM ex9 20 CONTEXT VOID

USE standard

BEGIN

REAL r;

WHILE read(r); r/=0.0

DO

print((float(r,-12,3,-2),newline))

OD

END

FINISH

Ex 9.21 This program is not all that difficult. Take it slowly, step by step. Al-
though reading an employee record only appears once in the program, it is
better to write it as a procedure so as not to obscure the main logic. Like-
wise, printing each line of the report is also declared as a procedure. Notice
how the given solution checks for errors.

PROGRAM ex9 21 CONTEXT VOID

USE standard

BEGIN

FILE arg, emp, prn;

STRING emp idf;

INT week:=0;

IF open(arg,"",arg channel)/=0

THEN

put(stand error,

("Cannot access the arguments",

newline));

exit(1)

ELIF

on logical file end(arg,

(REF FILE f)BOOL:

(put(stand error,

("Usage: tt emp-book week-no",

newline));

exit(2); SKIP));

get(arg,

(LOC STRING,LOC CHAR,

emp idf,week));

Contents Index

Appendix A. Answers 306

week < 1 OR week > 53

THEN

put(stand error,

("Invalid week number",

newline));

exit(3)

ELIF open(emp,

emp idf,

stand in channel)/=0

THEN

put(stand error,

("Cannot open ",emp idf,

newline));

exit(4)

ELIF

establish(prn,

"report",

stand out channel,

0,0,0)/=0

THEN

put(stand error,

("Cannot establish report",

newline));

exit(5)

FI;

MODE

EMPLOYEE=STRUCT(STRING name,

[2]STRING address,

STRING dept,

ni code,

tax code,

REAL basic,

overtime,

[52]REAL

net pay,tax);

PROC get emp=(REF FILE f,

REF EMPLOYEE e)VOID:

BEGIN

[80]CHAR s;

PROC get str=[]CHAR:

(

INT len; get bin(f,len);

[len]CHAR s;

get bin(f,s);

s

); \#get str\#

Contents Index

Appendix A. Answers 307

IF (name OF e:=get str) /= ""

THEN

FOR i TO UPB address OF e

DO

(address OF e)[i]:=get str

OD;

dept OF e:=get str;

ni code OF e:=get str;

tax code OF e:=get str;

get bin(f,(basic OF e,

overtime OF e,

net pay OF e,

tax OF e))

FI

END #get emp#;

PROC put emp=(REF FILE f,

REF EMPLOYEE e)VOID:

put(f,(name OF e,

(40-UPB name OF e)*blank,

fixed((net pay OF e)[week],

-8,2),

newline));

INT line:=60, page:=0;

PROC heading = (REF FILE f)VOID:

IF line = 60

THEN line:=0; #reset the line count#

put(f,

(newpage,

"Report of net pay for week ",

whole(week,0),

40*blank,"Page ",

whole(page+:=1,0),

newline,newline,

"Employee name",

28*blank,"Net pay",

newline,newline))

FI #heading#;

EMPLOYEE employee;

REAL total pay:=0; INT n:=0;

on logical file end(emp,

(REF FILE f)BOOL:

(put(prn,

("Total net pay for ",

Contents Index

Appendix A. Answers 308

whole(n,0),

" employees =",

fixed(total pay,-11,2),

newline,

newline,

"End of report",newline));

close(f); close(prn); stop;

SKIP));

DO

heading(prn);

get emp(emp,employee);

IF name OF employee /= ""

THEN

total pay+:=

(net pay OF employee)[week];

n+:=1;

#count of total employees#

put emp(prn,employee);

line+:=1

FI

OD

END

FINISH

A.10 Chapter 10

Ex 10.1 Deproceduring and dereferencing (not weakly-dereferencing).

Ex 10.2 None.

Ex 10.3

(a) Yes.

(b) No (cannot widen).

(c) No (cannot dereference).

(d) No (cannot row).

(e) No (cannot dereference).

(f) No (cannot unite after rowing).

Contents Index

Appendix A. Answers 309

Ex 10.4

(a) Row-display, structure-display, collateral clause.

(b) Parallel clause.

(c) Case clause.

(d) Conformity clause.

(e) Conditional clause.

(f) Closed clause or enclosed clause.

Ex 10.5

(a) Weak.

(b) Meek.

Ex 10.6

(a) 6 (4 denotations, 1 applied-identifier, 1 closed clause).

(b) 5 (1 denotation, 3 applied-identifiers, 1 call).

(c) 5 (1 denotation, 3 applied-identifiers, 1 slice).

(d) (1 denotation, 1 closed clause, 1 cast, 1 applied-identifier).

Ex 10.7 The identifier of a structure or a name referring to a structure.

Ex 10.8 A selection.

Ex 10.9

(a) 2.

(b) 3.

(c) 3.

(d) 4.

Contents Index

Appendix A. Answers 310

Ex 10.10

(a) A primary.

(b) A primary.

(c) A secondary.

(d) A primary.

(e) A primary.

(f) Tertiary.

(g) Enclosed clause.

(h) A quaternary.

(i) It is not a unit.

(j) A quaternary.

Ex 10.11

(a) 2 denotations + 2 applied-identifiers = 4 primaries. 1 closed clause.
3 formulæ = 3 tertiaries.

(b) 1 denotation + 3 applied-identifiers = 4 primaries. 3 formulæ = 3 ter-
tiaries.

(c) 2 applied-identifiers + 1 call = 3 primaries.

(d) 3 denotations + 1 applied-identifier + 1 slice = 5 primaries.

(e) 2 denotations + 3 applied-identifiers = 5 primaries; 1 conditional clause
= 1 enclosed clause, 2 formulæ = 2 tertiaries, 1 assignment = 1 qua-
ternary.

(f) 2 denotations + 5 applied-identifiers = 7 primaries, 1 formula = 1 ter-
tiary, 1 assignation = 1 quaternary, 1 case clause + 1 conditional clause
= 2 enclosed clauses.

(g) 2 denotations + 2 applied-identifiers = 4 primaries, 2 assignments = 2
quaternaries, 1 parallel clause = 1 enclosed clause.

Ex 10.12

(a) The conditional clause can yield a value of mode REF INT or REF REAL.
In a firm context, these can be coerced to INT and REAL. Thus the INT
is widened to REAL and the balanced clause yields a value of mode REAL.

(b) The conditional clause in a soft context will yield REF INT or REF REAL.
Neither can be coerced to the other in a strong context, so the clause
cannot be balanced. The error message from the compiler arises from
the coercions applied in a strong context for the attempted balancing.

(c) The conformity clause yields INT or REAL. In a strong context, INT can
be widened to REAL. Thus the balanced clause will yield REAL.

(d) The conditional clause yields INT or whatever. In a strong context, SKIP
will yield INT. Thus the balanced clause yields INT. However, the result
will be undefined if the SKIP is used in the assignment.

Contents Index

Appendix A. Answers 311

Ex 10.13

(a) Yes.

(b) Yes.

(c) No.

(d) No.

(e) Yes.

(f) Yes.

(g) Yes.

(h) No.

(i) Yes! It’s an example in the “Revised Report”.

A.11 Chapter 11

Ex 11.1

PROGRAM ex11 1 CONTEXT VOID

USE standard

BEGIN

[]CHAR digits =

"0123456789abcdef"[@0];

PROC itostr = (INT n,r#adix#)STRING:

IF n<r

THEN digits[n]

ELSE itostr(n%r,r)+digits[n%*r]

FI;

print(("Table of numbers 0--15",

newline,newline,

"Dec. Hex. Binary",newline));

FOR i FROM 0 TO 15

DO

STRING bin = itostr(i,2),

dec = itostr(i,10),

hex = digits[i];

#only one digit#

print(((4-UPB dec)*blank,

dec,3*blank,hex,

4*blank,(4-UPB bin)*"0",

bin,newline))

OD

END

FINISH

Ex 11.2

Contents Index

Appendix A. Answers 312

(a)

9410 = 5× 161 + 14× 160

= 5e16

(b)

1310 = 1× 23 + 1× 22 + 0× 21 + 1× 20

= 11012

(c)

1111 10012 = f916

(d)

3e116 = 3× 162 + e× 161 + 1× 160

= 3× 256 + 14× 16 + 1

= 768 + 224 + 1

= 99310

(e) 2c16 = 0010 11002.

(f)

101012 = 1× 24 + 1× 22 + 1× 20

= 16 + 4 + 1

= 2110

Ex 11.3

(a) 10112

(b) e316

(c) 568

Ex 11.4

(a) 16r 0101 0101

(b) 16r 99bb ddff

(c) 16r 6745 2301

(d) FALSE

Ex 11.5

(a) 16r 558

(b) 16r 17

Contents Index

Appendix A. Answers 313

Ex 11.6

PROC transpose=(REF[,]INT m)VOID:

IF 1 UPB m - 1 LWB m

=

2 UPB m - 2 LWB m

THEN #m is square#

REF[,]INT mm=m[@1,@1]; #a precaution#

FOR i TO 1 UPB mm - 1

DO

REF[]INT mr=mm[i,i+1:],

mc=mm[i+1:,i];

[]INT temp=mr;

mr:=mc; mc:=temp

OD

FI

Ex 11.7 Use a cast: REF REAL(xx):=120.5

Ex 11.8

REF REF[]CHAR rrq;

[]CHAR m = "ABCDEFGHIJ";

rrq:=LOC REF[]CHAR:=LOC[10]CHAR:=m[@1];

Ex 11.9

REF FLEX[]INT rfi;

rfi:=FLEX[1:0]INT:=(3,-2,4)

Ex 11.10 f has the mode REF STRING and ss has the mode REF REF STRING.

Ex 11.11 The multiple of mode STRING whose value is "Joan of Arc".

Ex 11.12 f[3:4]=s[7:8]. The modes are both STRING.

Ex 11.13 Here are three possible answers:

REF STRING(ff) IS ss

ff IS REF STRING(ss)

REF STRING(ff) IS REF STRING(ss)

You could also use ISNT, :=: or :/=:.

Contents Index

Appendix A. Answers 314

Ex 11.14

(a) A name of mode REF REF FILE.

(b) TRUE BOOL.

(c) A name of mode REF FILE.

(d) FALSE BOOL.

Ex 11.15

(a) REF FILE

(b) REF REF FILE

Ex 11.16 REF REF QUEUE(tail):=

LOC QUEUE:=(("Barbara",3),nilq)

Ex 11.17 tail:=next OF tail

Ex 11.18 No.

Ex 11.19

PROC add fan=(REF REF REF QUEUE

head,tail,

REF FAN fan)VOID:

tail:=next OF (REF REF QUEUE

(head IS nilq|head|tail):=

HEAP QUEUE:=(fan,nilq))

Ex 11.20

PROGRAM ex11 20 CONTEXT VOID

USE standard

BEGIN

MODE FAN = STRUCT(STRING name,

INT ticket),

QUEUE = STRUCT(FAN fan,

REF QUEUE next);

REF QUEUE nilq = NIL;

PROC add fan=(REF REF REF QUEUE

head,tail,

REF FAN fan)VOID:

tail:=next OF

(REF REF QUEUE

(head IS nilq|head|tail)

:=HEAP QUEUE

:=(fan,nilq);

REF REF QUEUE head,tail;

Contents Index

Appendix A. Answers 315

head:=tail:=LOC REF QUEUE:=nilq;

FOR q TO 1000

DO

add fan(head,tail,

LOC FAN:=(IF ODD q

THEN "Iain"

ELSE "Fiona"

FI,

q))

OD

END

FINISH

The generator LOC FAN is used because add fan requires a parameter of
mode REF FAN. The scope of the generated name is from the declarations
of head and tail to the end of the program because there are no identity
declarations in the FOR loop clause (therefore it is not a range).

Ex 11.21 Because marker has mode REF REF QUEUE, it is made to refer to each
REF QUEUE name in the linked-list. The condition

next OF marker ISNT nilq

ensures that marker is not currently referring to the last REF QUEUE in the
list. The loop will terminate when marker refers to the last REF QUEUE in
the list or the number of the ticket of the fan to be inserted in the queue
does not exceed the number of the ticket of the fan referred to by marker.
If the operator AND had been used, both operands would have been elab-

orated before the operator; in which case, if the left operand had yielded
FALSE, elaboration of the right operand would have caused the run-time er-
ror "Selection from NIL".

Ex 11.22 This can best be done by writing a program. Here is a possible solution:-

PROGRAM ex11 22 CONTEXT VOID

USE standard

BEGIN

MODE FAN = STRUCT(STRING name,

INT ticket),

QUEUE = STRUCT(FAN fan,

REF QUEUE next);

REF QUEUE nilq = NIL;

PROC insert fan = . . .

. . .

PROC print queue = . . .

. . .

REF REF QUEUE head,tail;

head:=tail:=LOC REF QUEUE:=nilq;

Contents Index

Appendix A. Answers 316

INT max ticket = 1000;

INT tickets issued:=0;

[max ticket]BOOL ticket issued;

FOR i

FROM LWB ticket issued

TO UPB ticket issued

DO FALSE OD;

WHILE tickets issued < max ticket

DO

INT i=random int(max ticket);

IF REF BOOL ti=ticket issued[i];

NOT ti

THEN

ti:=TRUE;

insert fan(head,tail,HEAP FAN:=

((ODD i

|"Iain"

|"Fiona"

),i));

tickets issued+:=1

FI

OD #fans added to the queue#;

print queue(head)

END FINISH

Instead of sending the output to stand out, it would be better to direct it
to an output book so that the results could be examined at leisure. Alterna-
tively, command line redirection could be used. The use of ticket issued

ensures that unique ticket numbers are added to the queue since insert fan

does not cater explicitly for duplicate ticket numbers.

Ex 11.23 The procedure has to find the fan concerned and must keep track of the
reference to that fan.

PROC delete fan=(REF REF QUEUE q,

INT t#icket#

)UNION(REF FAN,BOOL):

IF q IS nilq

THEN FALSE #empty queue#

ELIF next OF q IS nilq

THEN #last fan in the queue#

IF ticket OF q = t

THEN REF FAN rf = q;

q:=nilq; #delete last fan#

rf

ELSE FALSE

FI

ELIF ticket OF next OF q < t

Contents Index

Appendix A. Answers 317

THEN delete fan(next OF q,t)

ELIF ticket OF next OF q > t

THEN #not found# FALSE

ELSE REF FAN rf = next OF q;

next OF q:=next OF next OF q;

rf

FI #delete fan#;

In the assignment, the mode of next OF q is REF REF QUEUE, so the mode of
next OF next OF q must be REF QUEUE. Look at the required dereferencing
to see what is assigned to next OF q.

Ex 11.24

PROGRAM ex11 24 CONTEXT VOID

USE standard

BEGIN

MODE

LETTER=STRUCT(CHAR c,INT o),

TREE=STRUCT(REF LETTER l,

REF TREE left,right);

REF TREE leaf=NIL;

REF TREE root:=leaf;

PROC get letter=(REF FILE f)

REF LETTER:

IF CHAR ch; get(f,ch);

ch>="A" & ch<="Z"

OR

ch>="a" & ch<="z"

THEN HEAP LETTER:=(ch,1)

ELSE get letter(f) #skip non-letters#

FI #get letter#;

PROC add letter=

(REF REF TREE root,

REF LETTER let)VOID:

IF root IS leaf

THEN root:=HEAP TREE:=(let,leaf,leaf)

ELIF c OF l OF root > c OF let

THEN add letter(left OF root,let)

ELIF c OF l OF root < c OF let

THEN add letter(right OF root,let)

ELSE o OF l OF root+:=1

FI #add letter#;

FILE inf, arg;

STRING in bk;

Contents Index

Appendix A. Answers 318

INT max row=13;

[max row,81]CHAR out page;

INT row:=max row, col:=0;

FOR i TO max row

DO

out page[i,:80]:=80*blank;

out page[i,81]:=lf

OD #initialise out page#;

INT num letters:=0;

PROC put letter=(REF LETTER let)VOID:

BEGIN

IF row=max row

THEN col+:=1; row:=1

ELSE row+:=1

FI;

FILE f;

establish(f,

"",

mem channel,

1,1,20);

put(f,(c OF let,

fixed(o OF let/

num letters*100,

-7,2),blank*12));

out page[row,(col-1)*20+1:col*20]

:=file buffer(f);

close(f)

END #put letter#;

PROC print tree=

(REF REF TREE root)VOID:

IF root ISNT leaf

THEN

print tree(left OF root);

IF o OF l OF root > 0

THEN put letter(l OF root)

FI;

print tree(right OF root)

FI #print tree#;

IF open(arg,"",arg channel)/=0

THEN

put(stand error,

("Cannot access arguments",

newline));

stop

Contents Index

Appendix A. Answers 319

ELIF

on logical file end(arg,

(REF FILE f)BOOL:

(put(stand error,

("Usage: tt in-book",

newline)); stop; SKIP));

get(arg,(LOC STRING,

LOC CHAR,

in bk));

open(inf,

in bk,

stand in channel)/=0

THEN

put(stand error,

("Cannot open book ",in bk,

newline));

stop

ELSE

on logical file end(inf,

(REF FILE f)BOOL:

(

print tree(root);

print((

"Frequency of occurrence ",

"of letters in the book ",

idf(f),newline,

newline,out page,newline,

"Total letters read: ",

whole(num letters,0),

newline));

stop; SKIP

))

FI;

FOR i TO 26 #letters in the alphabet#

DO

add letter(

root,

HEAP LETTER:=

(REPR(ABS("A")-1+i),0));

add letter(

root,

HEAP LETTER:=

(REPR(ABS("a")-1+i),0))

OD #all letters are now in the tree#;

DO

add letter(root,get letter(inf));

num letters+:=1

Contents Index

Appendix A. Answers 320

OD

END

FINISH

Contents Index

Bibliography

For a thorough treatment of the language from a more old-fashioned point of view,
I can recommend this book:-

� Lindsey, C. H. and van der Meulen, S. G., Informal Introduction to Algol 68,
North-Holland (1977).

The original report is not for the faint-hearted, but it is the final arbiter of what
constitutes Algol 68. Do not make the mistake of the many detractors of Algol 68
who confused the method of description (a two-level grammar) with the language
itself. If you have read as far as here, you will know that Algol 68 is easier to learn
than to describe:-

� van Wijngaarden, A., Mailloux, B. J., Peck, J. E. L., Koster, C. H. A., Sint-
zoff, S., Lindsey, C. H., Meertens, L. G. L. T. and Fisker, R. G. (eds), Revised
Report on the Algorithmic Language Algol 68, Springer-Verlag (1976).

This little book contains much wisdom about solving problems. It is geared towards
mathematical problems, but you should not find it too difficult to apply to a whole
range of other problems. It used to be the set book for the Foundation Course in
Mathematics at the Open University:-

� Pólya, G., How to Solve It, 2nd ed., Penguin Books (1985).

Jackson’s original book is well worth reading if you are considering taking up pro-
gramming seriously or even if you are already a professional programmer:-

� Jackson, M. A., Principles of Program Design, Academic Press (1975).

Details of the floating-point processor within the Intel Pentium microprocessor were
taken from the following books:-

� Intel Architecture Software Developer’s Manual, Volume I, Basic Architec-
ture, Intel Corporation, 1999.

� Intel Architecture Software Developer’s Manual, Volume II, Instruction Set
Reference, Intel Corporation, 1999.

321

Index

", 27
| :, 50
%, see OVER

%*, see MOD

%*:=, see MODAB

%:=, see OVERAB

&, see AND

&*, 233
(, 21, 49
), 21, 49
*, 18, 23, 36, 223, 224, 226, 228

STRING, 231
**, 20, 111, 223, 225, 229
*:=, see TIMESAB

+, 23, 36, 72, 111, 223
dyadic, 16, 224, 226, 228
CHAR, 230

monadic, 15, 224, 225, 227
STRING, 230

+*, 225, 227, 229
+*, see I

+:=, see PLUSAB

+=:, see PLUSTO

,, see comma
-, 111, 223

dyadic, 16, 224, 226, 228
monadic, 15, 224, 225, 227

-:=, see MINUSAB

/, 20, 223, 224, 226, 228
/:=, see DIVAB

/=, 45, 111, 223, 225, 227, 228, 230
CHAR, 230
STRING, 231

:, 34, 137, 138
:/=:, 161, 182
:=:, 161, 182
;, 5, 6, 9, 10, 37, 107, 153, 178
<, 45, 223, 225, 227, 228

CHAR, 230
STRING, 231

<=, 45, 223, 225, 227, 228, 230
CHAR, 230
STRING, 231

=, 5, 45, 111, 223, 225, 227, 228, 230
CHAR, 230
STRING, 231

>, 45, 223, 225, 227, 228
CHAR, 230
STRING, 231

>=, 45, 223, 225, 227, 228, 230
CHAR, 230
STRING, 231

@, see AT

BUFFER, 259
RVC, 259
2’s-complement binary, 58

A68 GC POLICY, 246
a68toc, 63, 143, 174, 255, 268

ALIEN, 212
balancing, 163
bits width, 173
BYTES, 218
charset, 221
collateral clauses, 155
comments, 11
debugger, 205
declarations, 6, 8, 209
dimensions, 29, 35
directives, 9
division by zero, 225
ELSE SKIP, 49
establish, 130
events, 132
FORALL, 40
FSTAT, 213
identifier range, 155
ignoring bounds, 114
int lengths, 203
int shorths, 203
LENG, 228

322

INDEX 323

lock, 144
mm, 205
mode declaration, 166
NIL, 184
OP error, 150
parallel clauses, 155
precisions, 217
recursive modes, 109
requirements, 2
scope checking, 83, 102
selections, 116, 159
set, 142
SHORTEN, 228
standard prelude, 215
test program, 207
unassigned names, 161
UNION, 119
VECTOR, 213
voiding error, 150

ABS, 15, 23, 44, 112, 173, 174, 223,
225, 227, 229

CHAR, 230
accept, 253
actual-declarer, 65, 72, 76, 113, 115
af inet, 252
af unix, 252
Algol68toC, 198
ALIEN, 215, 240
alternative representation, 19
always collect, 246
always grow heap, 246
AND, 44, 51, 174, 223, 230
anonymous, 98
anonymous name, 158, 181
ansi raise, 236, 244
ansi signal, 236
ansi strtod, 236
applied identifier, 160
arccos, 100, 234
arcsin, 100, 234
arctan, 100, 234
ARG, 112, 227
arg channel, 136, 249
argument, 136, 209
arithmetic

mixed, 21
ASCII, 6, 23
assigning operators, 160
assignment, 59, 68, 153, 160, 163, 180

initial, 146
assignment operators, 63
assignment token, 60, 160
AT, 33, 67
at exit, 245

B-trees, 194
backspace, 262
balanced trees, 194
balancing, 49, 156, 160–162, 183, 184
base mode, see mode
BEGIN, 21, 28, 48, 53, 80, 155, 160
BIN, 173, 229
bin possible, 259
binary, 126, 171, 174, 202
binary transput, 142
BIOP 99, 240
bit-wise operator, 173
BITS, 173, 174, 202, 217
bits bin bytes, 220
bits lengths, 203, 218
bits pack, 234
bits shorths, 203, 218
bits width, 173, 219
blank, 7, 136, 221, 249
blank lines, 200
BODMAS, 18
book, 126

binary, 141
internal, 143
read-only, 126
write-only, 126

BOOL, 44, 216
bool bin bytes, 220
Boole, George, 44
Boolean, 44
boolean serial clause, see clause, boolean
bound

lower, 30
upper, 30

boundary conditions, 204
bounds, 41, 65, 67, 70, 71, 82

interrogation, 30
bounds interrogation, 81
browsing, 126, 142
bsd accept, 236
bsd bind, 236
bsd chmod, 236
bsd connect, 236
bsd gethostbyname, 237

Contents Index

INDEX 324

bsd inet aton, 237
bsd is a tty, 237
bsd listen, 237
bsd mkstemp, 236
bsd real snprintf, 237
bsd shutdown, 237
bsd socket, 237
BUFFER, 247
bugs, 198
bus, 32
BY, 38
BYTES, 217
bytes, 170
bytes lengths, 218
bytes per bits, 218
bytes shorths, 218
bytes width, 219

c, 258
C macro, 213
call, see procedure, call
canonical input mode, 208
CASE, 53
case clause, see clause, case
CASE default, 240
cast, 149, 156, 160, 182
CCHARPTR, 239
CCHARPTRPTR, 239
CCHARPTRTOCSTR, 241
CHANNEL, 127, 247
CHAR, 6, 217
char bin bytes, 220
char in string, 235, 261
character set, 6
characters, 6
choice clause, see clause, choice
CINTPTR, 239
clause

boolean, 48
case, 53, 155, 163, 185
closed, 37, 155, 160, 162
collateral, 155
conditional, 48, 64, 69, 82, 86,

102, 155, 163
nested, 50
short form, 49

conformity, 122, 123, 155
enclosed, 28, 40, 48, 53, 64, 79,

80, 82, 123, 155
enquiry, 48–50, 53, 75

GOTO, 178
loop, 37, 38, 40, 66, 75, 80, 155,

158
parallel, 155
serial, 48, 53, 80, 178

client socket, 253
client socket channel, 252
close, 129, 131, 249–252
closed clause, see clause, closed
CODE, 240
code

indentation, 200
machine, 11
object, 11
source, 9, 11

code optimisation, see optimisation
coercion, 8, 19, 61, 167

deproceduring, 93, 122, 148, 149,
153, 160

dereferencing, 61, 62, 66, 73, 74,
80, 86, 101, 122, 149, 150,
153, 180, 181, 190

rowing, 28, 45, 70, 148, 152
uniting, 120, 123, 149
voiding, 82, 94, 148, 153
weakly-dereferencing, 149, 151, 157,

161, 188
widening, 8, 18, 20, 22, 28, 45,

49, 60, 73, 105, 106, 111, 149
collateral

elaboration, 81
collateral clause, see clause
collateral elaboration, see elabora-

tion
COLLECTION THRESHOLD, 246
columns, 29
comma, 5, 8, 32, 41, 53

dimensions, 29
command line, 2
command prompt, 136
comment, 11
compiler, 5
COMPL, 111, 112, 202, 217
compl bin bytes, 220
completer, 178
complex numbers, 111
compound expression, 51
concatenation, 36, 72
conditional clause, see clause, condi-

Contents Index

INDEX 325

tional
conformity case clause, 123
conformity clause, see clause, confor-

mity
CONJ, 112, 227
consecutive operators, 19
constant, 61
constituent mode, see mode, constituent
constituent unit, see unit, constituent
context, 8, 167

firm, 18, 28, 62, 73, 86, 88, 120,
122, 148, 151

meek, 34, 37, 38, 74, 75, 148,
155–157, 163

soft, 64, 93, 148, 160, 161, 163,
180, 183

strong, 8, 18, 28, 49, 60, 61, 80,
93, 96, 102, 104, 111, 131,
147, 151, 153, 157, 160, 161,
183

exception, 88
weak, 148, 151, 157, 188

converse condition, 47
cos, 100, 234
CPTR, 239
CPTRTORVC, 242
cr, 221
create, 249–252
CSTR, 239
CSTRTOCCHARPTR, 241
CSTRTORVC, 242
current pos, 142, 259

data, 127
knowledge, 199
structure, 199

debug, 205
debugging, 204, 205

ploys, 205
decimal, 170
declaration, 5, 146

abbreviated, 76, 121
grouping, 201
identity, 4, 7, 15, 18, 28, 29, 65,

152
[]CHAR, 27, 28
CASE, 123
FLEX, 70
formal definition, 80
LOC, 59

optimisation, 39
REF, 72
routine, 85
routine call, 90
STRUCT, 104

mode, 111, 115, 120, 164
priority, 89
structure, 108, 113
stub, 109, 166

DECS, 240
default io procs, 258, 259
default policy, 246
denotation, 3, 9, 13, 15, 83, 147, 156

[]CHAR, 27
BITS, 173
character, 6
integer, 3
real, 7
routine, 79, 81, 85, 98, 147, 160,

162
deproceduring, see coercion
dereferencing, see coercion
descriptor, 167
dimensions, 29
disable garbage collector, 245
displaying values, see value, display-

ing
DIVAB, 63, 111, 223, 232
division

real, 20
DO, see clause, loop
documentation, 207
DOWN, see SHR

dry-running, 205, 211
dyadic, see operator, dyadic
dynamic names, see name, dynamic

echo, 235
elaboration, 153, 164

collateral, 5, 41, 62, 90, 107
order of, 16, 18, 89
sequence of, 5
sequential, 5

ELEM, 174, 223, 230
BITS, 233

elements, 27
ELIF, 50
ELSE, 48
ELSE IF, 50
EMPTY, 82

Contents Index

INDEX 326

enable garbage collector, 245
enclosed clause, see clause, enclosed
enclosing range, 99
END, 21, 28, 48, 53, 80, 155, 160
end-of-line, 131
enquiry clause, see clause, enquiry
ENTIER, 22, 226
env channel, 137, 250
environment enquiry, 173, 202
environment string, 137
environment string estab err, 247,

250
environment string unset, 247, 250
eof char, 222
EQ, see =

erange err, 235
Eratosthenes’ Sieve, 66
errno, 236
error

compilation, 205
run-time, 66, 71, 204

error char, 139, 221
ESAC, 53
esc, 221
estab invalid parameters, 247, 252
establish, 130, 249–253
event-driven programming, 126
execution, see elaboration
EXIT, 178
exit, 245
exp, 100, 233
exp width, 202, 220
exponent, 201
external values, see value, external

f, 258
FALSE, 44, 141, 216
FAN, 186
fchmod, 236
ff, 221
FI, 48
field, 139
field selection, 106, 188
field selector, 104, 105, 156
fields, 104
FILE, 127, 247
file buffer, 247, 258, 259
file redirection, 23
files, 126
firm context, see context, firm

firmly coercible, 86
firmly related, 87–89, 120
fixed, 139, 140, 261
flat multiple, see multiple, flat
FLATRVB, 242
FLATRVLB, 242
FLATRVR, 242
FLATRVSB, 242
FLATRVSR, 242
FLATRVSSB, 242
FLEX, 70, 72, 82
flexibility, 167
flexible, 70
flexible name, see name, flexible, 97,

181
flip, 221
float, 139, 140, 262
floating-point standard, 202
flop, 221
flush buffer, 258
FOR loop, see clause, loop
FORALL loop, 40
formal mode, see mode, formal
formal parameter, see parameter
formal-declarer, 65, 68, 72, 80, 92, 113,

114
formal-mode-declarer, 80
formula, 4, 28, 160, 161
fpu cw algol68 entier, 243
fpu cw algol68 round, 243
fpu cw ieee, 243
fractional part, 22
free format, 10
FROM, 38

garbage collector, 197
garbage collect, 245
gc param, 245
GCPARAM, 239
GE, see >=

generator, 58, 156, 158, 187
anonymous, 214
global, 58, 83
local, 58, 83, 120, 152

get, 127–129, 136, 137, 141, 257
get bin, 141, 142, 220, 258
get fpu cw, 238, 243
get possible, 259
get gc param, 246
global

Contents Index

INDEX 327

generator, see generator
global names, 201
go-on, 60
go-on symbol, see ;

grouping of declarations, see decla-
ration, grouping

GT, see >

header, 79
HEAP, 83, 94
HEAP INCREMENT, 246
Heuristics, 199
HEX, 262
hexadecimal, 171

arithmetic, 171
notation, 171

I, 112, 223, 225, 227
icanon, 235
identification, 126
identifier, 5, 37, 80, 90, 123

applied, 156, 158
global, 84

identity
declaration

formal-declarer, 113
relation, 147, 148, 156, 160–162,

182–184, 190
relator, 161

identity declaration, see declaration
idf, 144, 259
ignore char error, 259
ignore value error, 258
IM, 112, 227
IN, 40, 53
indentation, see code
indeterminate result, 90
indexable structure, 238
infinity, 220
initial assignment, 61, 80
instance, 60, 181
INT, 2, 4, 15, 16, 37, 202, 216
int bin bytes, 220
int lengths, 203, 217
int shorths, 203, 218
int width, 219
integer, 3

largest negative, 3
largest positive, 3

integer denotation, see denotation

integer division, 19
internal representation, 73
internal value, see value, internal
IS, 182
isig, 235
ISNT, 182
iso at exit, 237, 245
itostr, 172

Jackson methodology, 199

kbd channel, 235, 251, 253
keyboard, 126

label, 138, 178
last random, 234
LE, see <=

leading zero, 4
learning by doing, 199
LENG, 202, 224, 226, 228, 229
lf, 141, 221
linked-list, 190, 192–194
linker, 11
linux on exit, 237
linux tc get attr, 237
linux tc set attr, 235, 237
ln, 100, 234
LOC, 59, 83
local

generator, see generator
name, 58

lock, 144, 249–252
log, 234
log2, 220
logic level, 201
logical end, 142, 249–253, 259
logical file end, 132
logical file end not mended, 247
LONG, 202
LONG BITS, 217
long bits bin bytes, 220
long bits pack, 234
long bits width, 219
LONG INT, 216
long int bin bytes, 220
long int width, 219
long last random, 234
long max int, 203, 218
long random int, 234
loop clause, see clause, loop

Contents Index

INDEX 328

lower bound, see bound, lower, 68
LT, see <

LWB, 30, 38, 223
dyadic, 223
monadic, 223

machine code, see code, machine, 5
machine word, 173
macro, see C macro
main processing logic, 209
make term, 131, 136, 137, 141, 250,

252, 258, 259
MAKERVC, 242
mantissa, 201
MAX, 23, 223, 233
max abs char, 23, 221
max exp, 220
max exp real, 202
MAX HEAP SIZE, 246
max int, 5, 13, 27, 218
max real, 7, 13, 202, 218
MAX SEGMENT SIZE, 246
meek context, see context, meek
mem channel, 251, 253
memory, 170
memory control, 197
MIN, 23, 223, 233
min exp, 219
MIN HEAP SIZE, 246
min real, 202, 218
MIN SEGMENT SIZE, 246
MINUSAB, 63, 111, 223, 232
mixed modes, 45
mkstemp, 237
MOD, 19, 52, 223, 225
MODAB, 63, 223, 233
mode, 2, 4, 27, 167

base, 27, 29, 152
constituent, 105, 123, 124
formal, 98
indicant, 5, 11, 15, 27, 72, 85,

108, 156, 165
definition, 3

INT, 15
recursion, 164
routine, 79
selector, 123
shielding, 164
united, 119
well-formed, 164

mode declaration, 108
mode declarations, 199, 210
mode indicant, see mode, indicant
monadic, see operator, monadic
monetary values, 201
monitors, 205
multiple, 27, 65

flat, 28, 70
rectangular, 29
square, 29

multiplication, 18
mutual recursion, 99, 109

name, 58, 60, 83, 152, 160, 180, 187
anonymous, 190
dynamic, 74
flexible, 72, 186
global, 201

NE, 45
NE, see /=

nested, 41
nesting, 21
newline, 23, 73, 128, 130, 262
newpage, 23, 73, 128, 130, 262
next random, 234
nibble, 175
NIL, 147, 184, 187
nil func ptr, 235
no file end, 258
no program args, 247
nodes, 194
NOT, 44, 173, 223, 229
nul ch, 137, 221, 250
null c charptr, 235
null character, 221
null string, 136

object code, see code
occurrence

applied, 87
defining, 87

ODD, 44, 224
OF, 106
on char error, 260
on exit, 245
on logical file end, 260
on physical file end, 260
on signal, 244
on value error, 261
OP, 85

Contents Index

INDEX 329

open, 127, 137, 249–252, 254
open invalid parameters, 247
operand, 15, 17, 49, 85
operating-system, 126
operator, 15

combining, 16
dyadic, 15, 20, 30, 44, 85, 89

identification, 89
exponentiation, see **

mixed modes, 21
mode, 85
modulo, 19
monadic, 15, 20, 30, 85
priority, 85, 89
symbol, 85, 89, 91
value, 85
yield, 85

optimisation, 39, 68, 191
code, 204

OR, 44, 47, 52, 174, 223, 230
order of elaboration, see elaboration,

order of, 21
order of modes, 119
ordering operators, 46
OREL, 52
orthogonality, 1, 167
OUSE, 54
OUT, 53
OUT CASE, 54
OUT clause, 54
OVER, 19, 223, 225
OVERAB, 63, 223, 232
overflow

arithmetic, 207
integer, 16

overlapping multiples, see multiples
overloading, 86, 91

parallel
clause, see clause
processing, 5

parameter, 23, 73, 79
actual, 80, 81, 90, 96
formal, 80, 81, 84, 88, 90, 96
list, 95
procedure, 98

parentheses, 21, 28, 48, 53, 96, 106,
159, 160, 183

nesting of, 21
PDESC, 239

ph round, 238
phrase, 5, 6, 9, 37, 40, 48, 82, 146, 167
physical file end, 132
physical file end not mended, 247
pi, 7, 220
plain value, see value, plain
PLUSAB, 62, 72, 111, 223, 232
PLUSTO, 72, 223, 232
POLICY, 246
Pólya, George, 198
posix close, 237
posix creat, 237
posix exit, 237
posix getenv, 237
posix getpid, 237
posix lseek, 238
posix open, 238
posix read, 238
posix rename, 238
posix seek cur, 235
posix seek end, 235
posix seek set, 235
posix strlen, 238
posix time, 238
posix unlink, 238
posix write, 238
posx strerror, 238
prelude, 235
primary, 159, 160
primitive concepts, 167
principle of value integrity, 62
print, 9, 23, 35, 44, 69, 73, 119, 121,

124, 131, 256
PRIO, 89, 222
priority, 18, 19, 21, 34, 36, 44, 45, 47,

63
problem analysis, 199
problem solving, 198
PROC, 91
procedure, 91, 199, 201

call, 92, 95, 156
identifier, 98
interface, 201
mode, 91
multiple, 101
name, 101
nesting, 101, 102
parameterless, 94
parameters, 95

Contents Index

INDEX 330

recursive, 194
yield, 94

PROGRAM, 37, 240
program, 9

design, 199
documentation, 207
layout, 200
maintenance, 198
running, 11
structure, 5, 9

programming, 198
pseudo-operator, 51
put, 130, 141, 256
put bin, 141, 220, 258
put possible, 259

quaternary, 183
QUEUE, 187
queue procedures, 192
queues, 186, 193
quote, see "

r, 258
radix, 170, 173

arithmetic, 170
conversion, 172

random, 95, 120, 149, 234
random int, 100, 234
range, 37, 48, 50, 58, 83, 86, 155, 178
RE, 112, 227
read, 58, 69, 73, 97, 121, 124, 127,

129, 256
read bin, 258
read-only, 127
reading, 126

books, 127
REAL, 7, 15, 16, 202, 216
real bin bytes, 220
real lengths, 203, 218
real precision, 202, 219
real shorths, 203, 218
real width, 202, 219
record, 143, 200
rectangular multiple, see multiple
recursion, 99, 192, 196

mutual, 165
recursive call, 99
REF, 59, 60, 65, 67, 69, 70, 107, 180
REF FILE, 141, 142
REF REF, 180

reidf, 249–253, 259
reidf possible, 259
remainder, 19
repetition, 37
REPR, 23, 174, 230
reset, 142
restart, 126
Revised Report, 216
root, 195
ROUND, 22, 226
rounding, 22
routine, 79

body, 79
context, 80
denotation, see denotation
header, 79, 81
yield, 79

row, 29
display, 28, 29, 35, 67, 74, 80, 96,

155, 161, 206
empty, 28

rowing, see coercion
RPDESC, 241
run-time error, see error
running, see program
RVC, 239, 247, 254

scientific format, 139
scope, 58, 83, 89, 158
scope checking, 83
scratch, 144, 249–252
secondary, 151, 158–160
selection, 106, 158, 188, 189
sequential elaboration, see elabora-

tion
serial clause, see clause
serial elaboration, see elaboration
server socket channel, 252
set, 142, 249–252
set flush after put, 259
set fpu cw, 238, 243
set possible, 141, 142, 253, 258, 259
set gc params, 246
shift operators, 175
SHL, 175, 223, 230
SHORT, 202
short arccos, 234
short arcsin, 234
short arctan, 234
SHORT BITS, 217

Contents Index

INDEX 331

short bits bin bytes, 220
short bits pack, 234
short bits width, 219
SHORT COMPL, 217
short compl bin bytes, 220
short cos, 234
short exp, 233
short exp width, 219
SHORT INT, 216
short int bin bytes, 220
short int width, 219
short ln, 234
short log, 234
short max exp, 219
short max int, 203, 218
short max real, 218
short min exp, 219
short min real, 218
short pi, 220
short random, 234
short random int, 234
SHORT REAL, 216
short real precision, 219
short real width, 219
SHORT SHORT BITS, 217
short short bits bin bytes, 220
short short bits pack, 234
short short bits width, 219
SHORT SHORT INT, 216
short short int bin bytes, 220
short short int width, 219
short short max int, 218
short short random int, 234
short sin, 234
short small real, 218
short sqrt, 233
short tan, 234
SHORTEN, 202, 224, 226, 228, 229
SHR, 175, 223, 230
side-effect, 81, 84, 90, 93
sigint, 244
SIGN, 16, 22, 224, 225
sign, 73
signal, 244
SIMPLIN, 122, 128, 247
SIMPLOUT, 122, 247
sin, 100, 234
SKIP, 49, 55, 75, 102, 147, 160, 161,

210

skip terminators, 136, 263
slice, 32, 34, 67, 72, 94, 114, 157, 159

overlapping, 176
small real, 218
source code, see code
source-level debugger, 205
space, 262
sqrt, 100, 233
SSADM, 199
stand back, 253
stand back book, 249
stand back channel, 127, 248, 249
stand error, 249, 253
stand in, 129, 251, 253, 258
stand in book, 248
stand in channel, 127, 248, 253
stand in redirected, 247, 251
stand out, 131, 253, 258
stand out book, 248
stand out channel, 127, 248, 249,

253
standard prelude, 5, 7, 15, 23, 44,

45, 60, 72, 95, 100, 111, 126,
127, 149, 202

step-wise testing, 204
stop, 82, 136, 210, 245
STR, 239
STRAIGHT, 129
straightening, 117, 255
STRING, 72, 97, 109, 114, 217
string terminator, 131
STRTOCSTR, 243
STRUCT, 104
structure, 104

display, 104, 107, 155, 161, 206
mode, 106
multiple, 116
nested, 105
procedure field, 105
recursive, 186, 194

stub declaration, see declaration
sub, 32
subscript, 30, 66, 94
subsidiary loop, see clause, loop
symbols, 6

tab ch, 23, 212, 221
tan, 100, 234
tcsanow, 235
terminators, 136

Contents Index

INDEX 332

termios vmin, 235
termios vtime, 235
tertiary, 160, 161
testing, 204

data, 204
THEN, 48
TIMESAB, 63, 111, 223, 232
TO, 37
TOCPTR, 241
TOCSTR, 241
top-down analysis, 199
TOPDESC, 241
TOVBDESC, 242
TOVDESC, 241
TOVIDESC, 242
transient name, 71
tree, 194

balanced, 196
trimmer, 34, 65
trimming, 67, 176
TRUE, 44, 142, 216

UNION, 119, 165, 206
unit, 6, 9, 28, 37, 38, 40, 62, 63, 79,

82, 98, 123, 146
constituent, 28

uniting, 151
UP, see SHL

UPB, 30, 38, 223
dyadic, 223
monadic, 223

upper bound, see bound, upper
USE, 9, 37, 240
utility, 209

VALID, 233
value, 2, 5, 61, 167

displaying, 13
external, 13
instance, 3
internal, 13
of a closed clause, 37
plain, 26, 170
yield, 18

value error not mended, 247
value integrity

principle of, 61
values

plain, 156
VBTOCPTR, 242

VCTOCHARPTR, 242
VDESC, 240
VECTOR, 239
vertical slicing, 32
VITOINTPTR, 242
VOID, 82, 84, 94, 122, 153, 216
voiding, see coercion

WHILE, 75
whole, 139, 140, 261
widening, see coercion
words, 170
work file, 142
write, 256
write bin, 258
write-only, 127
writing, 126

yang, 165
yield, 6, 15, 83, 162
yin, 165

Z, 243

Contents Index

	Preface
	Preface to the 4th Edition
	Introduction
	What you will need
	Terminology
	Values and modes
	Integers
	Identity declarations
	Characters
	Real numbers
	Program structure
	Comments
	External values
	Summary

	Formulæ
	Monadic operators
	Dyadic operators
	Multiplication
	Division
	Exponentiation
	Mixed arithmetic
	Order of elaboration
	Changing the mode
	Miscellaneous operators
	Operators using CHAR
	print revisited
	Summary

	Repetition
	Multiples
	Row-displays
	Dimensions
	Subscripts and bounds

	Slicing
	Trimming
	Printing multiples
	Operators with multiples
	Ranges
	Program repetition
	Nested loops
	Program structure
	The FORALL loop
	Summary

	Choice
	Boolean values
	Boolean operators
	Relational operators
	Compound Boolean formulæ
	Conditional clauses
	Pseudo-operators

	Multiple choice
	Summary

	Names
	Assignment
	Copying values
	Assigning operators

	Assignments in formulæ
	Multiple names
	Assigning to multiple names
	Individual assignment
	Collective assignment

	Flexible names
	The mode STRING
	Reference modes in transput
	Dynamic names
	Loops revisited
	Abbreviated declarations
	Summary

	Routines
	Routines
	Routine modes
	Multiples as parameters
	Names as parameters
	The mode VOID
	Routines yielding names
	Parameterless routines

	Operators
	Identification of operators
	Operator usage
	Dyadic operators
	Operator symbols

	Procedures
	Parameterless procedures
	Procedures with parameters
	Procedures as parameters
	Recursion
	Standard procedures
	Other features of procedures

	Summary

	Structures
	Structure denotations
	Field selection
	Mode declarations
	Complex numbers
	Multiples in structures
	Rows of structures
	Transput of structures
	Summary

	Unions
	United mode declarations
	United modes in procedures
	Conformity clauses
	Summary

	Transput
	Books, channels and files
	Reading books
	Writing to books
	String terminators
	Events
	Logical file end
	Physical file end
	Value error
	Char error

	The command line
	Environment strings
	Writing reports
	Binary books
	Internal books
	Other transput procedures
	Summary

	Units
	Phrases
	Contexts
	Coercions
	Deproceduring
	Dereferencing
	Weakly-dereferencing
	Uniting
	Widening
	Rowing
	Voiding
	Legal coercions

	Enclosed clauses
	Primaries
	Secondaries
	Tertiaries
	Quaternaries
	Balancing
	Well-formed modes
	Flexible names
	Orthogonality
	Summary

	Advanced constructs
	Bits, bytes and words
	Radix arithmetic

	The mode BITS
	Overlapping slices
	Completers
	References to names
	Identity relations
	The value NIL
	Queues
	The procedure add fan
	More queue procedures
	Trees
	Parallel programming
	Summary

	Program development
	Writing programs
	Top-down analysis
	Program layout
	Declarations
	Procedures
	Monetary values
	Optimisation
	Testing and debugging
	Compilation errors
	Arithmetic overflow
	Documentation

	Non-canonical input
	A simple utility
	The source code
	Routines
	Dry-running example
	ALIEN procedures

	Summary

	Standard Prelude
	Standard modes
	Environment enquiries
	Arithmetic enquiries
	Character set enquiries

	Standard operators
	Method of description
	Standard priorities
	Operators with row operands
	Operators with BOOL operands
	Operators with INT operands
	Operators with REAL operands
	Operators with COMPL operands
	Operators with mixed operands
	Operators with BITS operands
	Operators with CHAR operands
	Operators with STRING operands
	Assigning operators
	Other operators

	Standard procedures
	Mathematical procedures
	Other procedures
	ALIEN declarations
	ALIEN routines

	a68toc extensions
	Modes peculiar to a68toc
	a68toc constructs
	Operators

	Control routines
	Floating-point unit control
	Terminating a process
	Garbage-collector control

	Transput
	Transput modes
	Standard channels
	Standard files
	Opening files
	Closing files
	Transput routines
	Interrogating files
	File properties
	Event routines
	Conversion routines
	Layout routines

	Summary

	Answers
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11

	Bibliography

