
nMOLDYN User’s Guide
Version 3.4

Eric Pellegrinia, Paolo Calligarib, Vania Calandrinic

Konrad Hinsenc,d, Gerald R. Knellerc,d,†

October 6, 2009

Description

The nMOLDYN User’s Guide describes how to use the various features of the Molecular
Dynamics (MD) analysis program nMOLDYN. This guide includes a description of the ca-
pabilities of the program, how to use these capabilities, the necessary input files and formats,
and a comprehensive list of the analysis available in the program and how to set up an run
these analysis.

aInstitut Laue-Langevin 6, rue Jules Horowitz BP 156 - 38042 Grenoble Cedex 9, France
bEcole Normale Supérieure 24, rue Lhomond - 75231 Paris CEDEX 5, France
cCentre de Biophysique Moleculaire, CNRS Rue Charles Sadron, 45071 Orleans, Cedex 02, France
dSynchrotron Soleil - Division Experiences, Saint Aubin - BP 48 91192 Gif sur Yvette Cedex, France
†Corresponding author. Electronic mail:kneller@cnrs-orleans.fr



Abstract

nMOLDYN is a modular program package for the analysis of Molecular Dynamics (MD) trajec-
tories, especially designed for the computation and decomposition of neutron scattering spectra.

The current release 3.0 of nMOLDYN is an upgrade of the version nMOLDYN 2.0 [1], which
extends the functionality of the original version nMOLDYN 1.0 [2]. It provides an improved user
interface (both graphical/interactive and batch), and can be used as a tool set for implementing
new analysis modules.

nMOLDYN allows one to calculate several dynamics quantities such as the mean-square
displacement, the velocity autocorrelation function as well as its Fourier Transform (the den-
sity of states) and its memory functions, the angular velocity autocorrelation function and its
Fourier transform, the reorientational correlation function . . . Moreover it can compute sev-
eral quantities related to neutron scattering such as the coherent and incoherent intermediate
scattering functions with their Fourier transforms and their memory functions, the elastic inco-
herent structure factor, the static coherent structure factor or the radial distribution function.
Additionally, the nMOLDYN package allows one to construct modified trajectories from an in-
put trajectory; rigid-body trajectories, in which the internal motions of the molecules (or parts
thereof) are eliminated, frequency-filtered trajectories, from which motions outside a specified
frequency interval are eliminated, global motion filtered trajectory where the global rotation
and translation are removed from the input trajectory . . .

All nMOLDYN calculations can be applied to a whole system or to arbitrary subsets. The
most common subsets can be selected in the graphical interface, less common selections can be
specified by Python code via the command-line interface.

As nMOLDYN 2.0, nMOLDYN 3.0 uses Molecular Modelling ToolKit (MMTK)[3, 4], an
Open Source program library for molecular simulation applications, and expects trajectories to
be in MMTK format (Network Common Data Form (NetCDF) [5, 6]). However, many tra-
jectory converters are included in the distribution of nMOLDYN. nMOLDYN 3.0, was written
by Eric Pellegrini.



Contents

Table of Contents 3

List of Figures 5

List of Tables 6

List of Acronyms 7

1 Introduction 9
1.1 New features in version 3.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2 User feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Installing nMOLDYN 12
2.1 Unix users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Windows users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Input and output files 14
3.1 NetCDF file format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 PDB file format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 nMOLDYN preference file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 nMOLDYN selection files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5 nMOLDYN autostart files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.6 nMOLDYN input files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Using nMOLDYNfrom the Graphical User Interface 16
4.1 The File menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1.1 Load NetCDF file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.2 Trajectory conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1.2.1 Amber to MMTK . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1.2.2 CHARMM/X-PLOR to MMTK . . . . . . . . . . . . . . . . . . 23
4.1.2.3 DL POLY to MMTK . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.2.4 Discover to MMTK . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1.2.5 Forcite to MMTK . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1.2.6 NAMD to MMTK . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.1.2.7 VASP to MMTK . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1.3 Frame snapshot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.1.4 Convert NetCDF to ASCII . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.1.5 Convert ASCII to NetCDF . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.1.6 Preferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1.7 Quit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

1



4.2 The Analysis menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.1 Weighting scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.2 Atom selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.2.1 Subset selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.2.2 Deuteration selection . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2.2.3 Group selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.3 Running modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2.4 The Dynamics menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.4.1 Mean-Square Displacement . . . . . . . . . . . . . . . . . . . . . 57
4.2.4.2 Root Mean-Square Deviation . . . . . . . . . . . . . . . . . . . . 62
4.2.4.3 Radius of gyration . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.4.4 Angular Correlation . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2.4.5 Velocity Autocorrelation Function . . . . . . . . . . . . . . . . . 69
4.2.4.6 Density Of States . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2.4.7 Pass-Band Filtered Trajectory . . . . . . . . . . . . . . . . . . . 76
4.2.4.8 Global Motion Filtered Trajectory . . . . . . . . . . . . . . . . . 78
4.2.4.9 Rigid-Body Trajectory . . . . . . . . . . . . . . . . . . . . . . . 80
4.2.4.10 Center Of Mass Trajectory . . . . . . . . . . . . . . . . . . . . . 85
4.2.4.11 Auto-Regressive Analysis . . . . . . . . . . . . . . . . . . . . . . 86
4.2.4.12 Quasi Harmonic Analysis . . . . . . . . . . . . . . . . . . . . . . 94
4.2.4.13 Reorientational Correlation Function . . . . . . . . . . . . . . . 98
4.2.4.14 Angular Velocity AutoCorrelation Function . . . . . . . . . . . . 102
4.2.4.15 Angular Density Of States . . . . . . . . . . . . . . . . . . . . . 105

4.2.5 The Scattering menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.2.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.2.5.2 Dynamic Coherent Structure Factor . . . . . . . . . . . . . . . . 110
4.2.5.3 Dynamic Coherent Structure Factor (AR Model) . . . . . . . . . 116
4.2.5.4 Dynamic Incoherent Structure Factor . . . . . . . . . . . . . . . 121
4.2.5.5 Dynamic Incoherent Structure Factor (AR Model) . . . . . . . . 126
4.2.5.6 Dynamic Incoherent Structure Factor (Gaussian Approximation) 131
4.2.5.7 Elastic Incoherent Structure Factor . . . . . . . . . . . . . . . . 135
4.2.5.8 Static Coherent Structure Factor . . . . . . . . . . . . . . . . . . 140
4.2.5.9 Smoothed Static Coherent Structure Factor . . . . . . . . . . . . 144

4.2.6 The Structure menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
4.2.6.1 Pair Distribution Function . . . . . . . . . . . . . . . . . . . . . 147
4.2.6.2 Coordination number . . . . . . . . . . . . . . . . . . . . . . . . 150
4.2.6.3 Spatial Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
4.2.6.4 ScrewFit analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 158

4.2.7 The NMR menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
4.2.7.1 Order Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
4.2.7.2 Order Parameter (Contact Model) . . . . . . . . . . . . . . . . . 163

4.3 The View menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
4.3.1 Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
4.3.2 Animation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
4.3.3 Effective mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

4.4 The Help menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
4.4.1 Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
4.4.2 Mailing List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
4.4.3 API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

2



4.4.4 Analysis benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
4.4.5 About nMOLDYN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

5 Using nMOLDYN from the command-line interface 175
5.1 nMOLDYN autostart files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
5.2 nMOLDYN input files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

References 180

Appendices 184

Appendix A The FCA algorithm 184

3



List of Figures

4.1 The nMOLDYN main window . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 File-Directory selection window . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 Example of a MMTK trajectory set file . . . . . . . . . . . . . . . . . . . . . . . 20
4.4 The Amber to MMTK converter dialog . . . . . . . . . . . . . . . . . . . . . . . 22
4.5 The CHARMM to MMTK converter dialog . . . . . . . . . . . . . . . . . . . . . 23
4.6 The DL POLY to MMTK converter dialog . . . . . . . . . . . . . . . . . . . . . . 24
4.7 Example of a DL POLY/FIELD file . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.8 The Discover to MMTK converter dialog . . . . . . . . . . . . . . . . . . . . . . . 26
4.9 The Forcite to MMTK converter dialog . . . . . . . . . . . . . . . . . . . . . . . 27
4.10 The NAMD to MMTK converter dialog . . . . . . . . . . . . . . . . . . . . . . . 29
4.11 The VASP to MMTK converter dialog . . . . . . . . . . . . . . . . . . . . . . . . 30
4.12 The frame extraction dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.13 The NetCDF to ASCII conversion dialog . . . . . . . . . . . . . . . . . . . . . . . 32
4.14 The ASCII to NetCDF conversion dialog . . . . . . . . . . . . . . . . . . . . . . . 34
4.15 Example of an ASCII file that can be converted to a NetCDF file . . . . . . . . . 35
4.16 The Preferences dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.17 The three preferences sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.18 Example of a preferences file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.19 The subset selection dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.20 The subset selection dialog for a selection from a selection file . . . . . . . . . . . 44
4.21 Example of a subset selection file . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.22 The subset selection dialog for a selection from the loaded trajectory . . . . . . . 45
4.23 The subset selection dialog for a selection from an expression string . . . . . . . . 47
4.24 The deuteration selection dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.25 The deuteration selection dialog for a selection from a selection file . . . . . . . . 49
4.26 Example of a deuteration selection file . . . . . . . . . . . . . . . . . . . . . . . . 49
4.27 The deuteration selection dialog for a selection from the loaded trajectory . . . . 50
4.28 The deuteration selection dialog for a selection from an expression string . . . . . 51
4.29 The group selection dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.30 The group selection dialog for a selection from a selection file . . . . . . . . . . . 53
4.31 Example of a group selection file . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.32 The group selection dialog for a selection from the loaded trajectory . . . . . . . 54
4.33 The group selection dialog for a selection from an expression string . . . . . . . . 56
4.34 Examples of calculated MSD with nMOLDYN . . . . . . . . . . . . . . . . . . . 58
4.35 The MSD analysis dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.36 The RMSD analysis dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.37 The ROG analysis dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.38 The AC analysis dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.39 The VACF analysis dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4



4.40 The DOS analysis dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.41 The PBFT analysis dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.42 The GMFT analysis dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.43 The RBT analysis dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.44 The COMT analysis dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.45 The ARA analysis dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.46 The QHA analysis dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.47 The RCF analysis dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.48 The AVACF analysis dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.49 The ADOS analysis dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.50 The DCSF analysis dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.51 The DCSFAR analysis dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.52 The DISF analysis dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.53 The DISFAR analysis dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.54 The DISFG analysis dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
4.55 The EISF analysis dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
4.56 The SCSF analysis dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
4.57 The SSCSF analysis dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
4.58 The PDF analysis dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
4.59 The CN analysis dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
4.60 The SD analysis dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
4.61 The SFA analysis dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
4.62 The OP analysis dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
4.63 The OPCM analysis dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
4.64 The plot dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
4.65 The plot settings dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
4.66 The export plot dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
4.67 The trajectory animation dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
4.68 The effective mode viewer dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
4.69 The analysis benchmark dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
4.70 The about dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

5.1 Example of autostart file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
5.2 Example of input file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

5



List of Tables

4.1 Selection keywords available in nMOLDYN . . . . . . . . . . . . . . . . . . . . . 46

5.1 nMOLDYN analysis internal names . . . . . . . . . . . . . . . . . . . . . . . . . 177

6



List of Acronyms

Angular Correlation (AC ) , 67–69

Angular Density Of States (ADOS) , 105–108

Auto-Regressive (AR) , 86, 88, 90, 116, 126

Auto-Regressive Analysis (ARA) , 86, 91–93, 173

Angular Velocity AutoCorrelation Function (AVACF) , 102, 104, 105, 173

network Common Data Language (CDL) , 32, 34, 61, 64, 66, 68, 72, 75, 93, 101, 104,
107, 115, 120, 125, 130, 134, 139, 143, 146, 150, 153, 158, 159, 163, 165

Chemistry at HARvard Macromolecular Mechanics (CHARMM) , 10, 22, 23, 29

Coordination Number (CN ) , 10, 150, 151, 153–155

Center Of Mass Trajectory (COMT) , 10, 85, 86

Dynamic Coherent Structure Factor (DCSF) , 112, 115, 173

Dynamic Coherent Structure Factor using an Auto-Regressive model (DCSFAR)
, 117, 120

Dynamic Incoherent Structure Factor (DISF) , 122, 125, 139, 173

Dynamic Incoherent Structure Factor using an Auto-Regressive model (DISFAR)
, 127, 130

Dynamic Incoherent Structure Factor using an Gaussian approximation (DISFG)
, 132, 134, 173

Density Of States (DOS) , 70, 73, 75, 76, 90, 93, 173

Elastic Incoherent Structure Factor (EISF) , 134–136, 139, 173

Fast Correlation Algorithm (FCA) , 59, 111, 122, 184

Global Motion Filtered Trajectory (GMFT) , 11, 78–80

Graphical User Interface (GUI ) , 10, 11, 16–18, 56, 175, 176, 179

Molecular Dynamics (MD) , 1, 9, 42, 58, 78, 80, 86, 94, 95, 97, 111, 121, 135, 160, 184

7



Molecular Modelling ToolKit (MMTK) , 1, 10, 12, 14, 18, 20–32, 37, 46, 51, 55, 68, 78,
80, 84, 86, 157, 162, 174

Mean-Square Displacement (MSD) , 42, 57–62, 89, 90, 93, 131, 173, 176, 179

NAnoscale Molecular Dynamics (NAMD) , 10, 28, 29

Network Common Data Form (NetCDF) , 1, 10, 14, 16, 20–23, 25, 27–35, 37, 61, 64, 66,
68–70, 72, 74–76, 78, 80, 84, 86, 92, 93, 97, 101, 103–105, 107, 115, 120, 125, 130, 134,
139, 143, 146, 150, 153, 158–160, 163, 165, 168

Order Parameter (OP) , 11, 161, 163

Order Parameter using Contact Model (OPCM ) , 11, 164, 165

Pass-Band Filtered Trajectory (PBFT) , 76, 78

Protein Data Bank (PDB) , 14, 15, 31, 44, 49, 53

Pair-Distribution Function (PDF) , 10, 147–150, 152, 154, 156

Quasi-Harmonic Analysis (QHA) , 11, 94–97, 170, 171

Rigid-Body Trajectory (RBT) , 80, 82–85, 101, 104, 107

Reorientational Correlation Function (RCF) , 100–102

Radial-Distribution Function (RDF) , 147, 149, 150

Root Mean-Square Deviation (RMSD) , 10, 62–64

Radius Of Gyration (ROG) , 10, 64–66

Static Coherent Structure Factor (SCSF) , 11, 140, 143

Spatial Density (SD) , 10, 154, 155, 157, 158, 160

ScrewFit Analysis (SFA) , 158–160

Smoothed Static Coherent Structure Factor (SSCSF) , 11, 144, 146

Total-Correlation Function (TCF) , 147, 149, 150

University Corporation for Atmospheric Research (UCAR) , 14

Velocity AutoCorrelation Function (VACF) , 69, 70, 72, 73, 87–90, 93, 116, 173

Vienna Ab-initio Simulation Package (VASP) , 10, 29, 30

Visual Molecular Dynamics (VMD) , 169–171

eXtended System Trajectory (XST) , 29

8



1. Introduction

Although Molecular Dynamics (MD) simulation techniques are widely used in physics,
chemistry and biology, their possibilities are often not fully exploited because of the lack of
easy-to-use analysis tools. This is especially true for very complex systems which force most
computational scientists to use standard program packages containing only very limited func-
tionality to analyze MD trajectories.

In this NOTE we present the new release 3.0 of the modular program package nMOLDYN,
which replaces the original version nMOLDYN 2.0, for the analysis of MD trajectories.

The program nMOLDYN was developed mainly for use in connection with neutron scatter-
ing experiment, although many of the quantities are also used in other contexts. The combi-
nation of neutron scattering experiments and MD simulations is a powerful tool to study the
structure and dynamics of complex molecular systems. Neutron scattering is sensitive to time
and space correlations of atomic positions on the ns time scale and the Å length scale [7, 8].
These are exactly the time and space domains covered by classical MD simulations. On the
length scale under consideration the neutron-target interaction can be modelled by pseudopo-
tentials with zero range which are centered on the atomic nuclei of the targets. The coupling
between neutron and target is described by so-called scattering lengths describing the strength
of the neutron-nucleus interaction [7]. The differential scattering cross section can be expressed
in terms of quantum time correlation functions of the spatially Fourier transformed particle
density. The corresponding classical time correlation function can be easily obtained from MD
simulations. This enables a direct comparison between simulated and measured neutron scat-
tering intensities for classical systems if recoil effects in the scattering process are not dominant
[9]. The experimental data can be used to test the quality of the MD force field which is the
central input for the simulations [10, 11, 12, 13]. Conversely, the simulated intensities allow a
detailed analysis of the dynamical and structural behaviour of the system under consideration
[14, 15]. The latter is particularly important for complex systems for which an interpretation
of the measured intensities in terms of simple analytical models is difficult, if not impossible.

The program package nMOLDYN allows neutron scattering intensities to be efficiently cal-
culated from MD simulations. The calculation of various space and time correlation functions
permits a detailed analysis of the structure and dynamics of the system under consideration.
nMOLDYN contains modules for the calculation of dynamics-related, scattering-related and
structure-related properties. In addition rigid body trajectories of subunits of the system can
be extracted from molecular dynamics trajectory files. These subunits can be arbitrarily de-
fined, their size can range from a few atoms to a whole domain in a macromolecule. From the
rigid body trajectories angular correlation functions and reorientational correlation functions
can be obtained.

The third generation nMOLDYN presented here, offers an interactive graphical user inter-
face for standard calculations, highly flexible script-based processing for non-standard applica-
tions and a machine-independent compact binary file format. These improvements were made
possible by the use of

1. python, a high-level object oriented langage [16, 17];

2. NumPy, a python package needed for scientific computing [18];

3. NetCDF, portable binary file format and its corresponding library [5, 6];

9



4. Scientific Python, an additional scientific computing library [20, 21];

5. MMTK, a molecular simulation library [3, 4].

All of these packages are developped and distributed following the Open Source principles [22];
anyone can use and improve them without being hindered by licensing restricitons. All the
time-consuming algorithms use efficient implementations in C or in Pyrex, a language that
allows to write code that mixes Python and C data types, and compiles it into a C extension
for Python [23].

This NOTE is organized as follows:
Section 1 gives an overview of nMOLDYN.

Section 2 gives the instruction to install nMOLDYN properly in an existing python distribution.
Section 3 describes the different nMOLDYN file formats.
Section 4 describes how to set up and run an analysis in nMOLDYN from the Graphical User
Interface (GUI ).
Section 5 describes how to set up and run an analysis in nMOLDYN from the command-line
interface.

1.1 New features in version 3.0

• Installers for MacOS X, Win32 and linux

• A new Graphical interface A brand new graphical interface is implemented with Tk library
[24].

• A new plotting engine A brand bew plotting engine is implemented using matplotlib
python library [25]. This allows to produce high quality plots directly from nMOLDYN.

• Trajectory converters Some trajectory converters are implemented and made directly ac-
cessible from nMOLDYN GUI . Those converters allows the conversion of trajectory com-
ing from Amber9 [26], Chemistry at HARvard Macromolecular Mechanics (CHARMM)
[27], DL POLY [28], MaterialsStudio [29], NAnoscale Molecular Dynamics (NAMD)
[32], Vienna Ab-initio Simulation Package (VASP) [34] and X-PLOR [35] to nMOLDYN
Molecular Modelling ToolKit (MMTK) trajectory input formats.

• Converter from NetCDF to ASCII A converter from Network Common Data Form
(NetCDF) to ASCII that wraps ncdump [36] program is implemented.

• Converter from ASCII to NetCDF A converter from ASCII to NetCDF that wraps ncgen
[37] program is implemented.

• Pair Distribution Function The Pair-Distribution Function (PDF ) analysis is imple-
mented using Pyrex code for a faster analysis.

• Coordination number The Coordination Number (CN ) analysis is implemented using
Pyrex code for a faster analysis.

• Spatial Density The Spatial Density (SD) analysis is implemented using Pyrex code for
a faster analysis.

• Radius Of Gyration The Radius Of Gyration (ROG) analysis is implemented.

• Root Mean Square Displacement The Root Mean-Square Deviation (RMSD) analysis is
implemented.

10



• Center Of Mass Trajectory The Center Of Mass Trajectory (COMT ) analysis is imple-
mented. It determines the trajectory of the center of mass of one or several group of
atoms.

• Global Motion Filter The Global Motion Filtered Trajectory (GMFT ) analysis is im-
plemented. It removes the global translation and rotation degrees of freedom from a
trajectory.

• Quasi Harmonic Analysis The Quasi-Harmonic Analysis (QHA) analysis is implemented.
It allows for the decomposition of a system into its different modes of vibration.

• Static Coherent Structure Factor The Static Coherent Structure Factor (SCSF ) analysis
is implemented. It allows for the direct computation of the static coherent structure factor.

• Smoothed Static Coherent Structure Factor The Smoothed Static Coherent Structure
Factor (SSCSF ) analysis is implemented. It allows for the direct computation of the static
coherent structure factor withtout any q-vectorsrandom generation. It is implemented
using Pyrex code for a faster analysis.

• Order parameter The Order Parameter (OP) analysis is implemented.

• Order parameter using the contact model The Order Parameter using Contact Model
(OPCM ) analysis developped by Zhang et al. [73] is implemented.

• ScrewFit analysis The ScrewFit 2D methode developped by Paolo Calligari and Gerald
Kneller [38] is implemented.

• Partial terms The partials term for all scattering-related properties are now available.

• A new atom selection engine A brand new and much more powerful atom selection engine
is implemented. When setting up an anlysis, it allows for the selection from the GUI of
almost any kind of subset.

1.2 User feedback

If you have problems installing or running nMOLDYN after reading this document, please send
a complete description of the problem by email to pellegrini@ill.fr. If you discover and fix a
problem not described in this manual we would appreciate if you would tell us about this as
well, so we can alert other users and incorporate the fix into the public distribution. Your
suggestions are welcome at pellegrini@ill.fr.

11



2. Installing nMOLDYN

When downloading nMOLDYN 3 from its website [39, 40], you will get the full Python source
code which is covered by the CeCILL License [41]. The current stable version of nMOLDYN is
3.0.4. One of the major goal of the new nMOLDYN version targeted an easier installation on
the most current platforms respectively Win32 and Unix (Linux and MacOS). This has been
done with the development of plat-form specific installers.

nMOLDYN needs the following modules/libraries in order to work properly:

1. Tcl/Tk version ≥ 8.0 [78],

2. Python version ≥ 2.4 [17],

3. Numpy version ≥ 1.2 [18],

4. matplotlib version ≥ 0.98 [25],

5. Pyro version ≥ 3.9 [19],

6. Scientific Python version ≥ 2.8 [20, 21],

7. Molecular Modelling ToolKit (MMTK) version ≥ 2.6.0 [3, 4],

8. pywin32 version ≥ 210 (for a win32 installation only) [42].

The version number is important (and even compulsory for python) and in case where you
would decide to use older versions of those packages, we can not guarantee that nMOLDYN
will work properly or even work at all.

2.1 Unix users

The tar/zip source files of nMOLDYN can be downloaded from the site:

http://sourcesup.cru.fr/projects/nmoldyn.

The instructions to install nMOLDYN from this file are:

1. tar xzf nMOLDYN-3.x.y.tar.gz (or unzip nMOLDYN-3.x.y.zip)

2. cd nMOLDYN-3.x.y

3. python setup.py build

4. python setup.py install

The last command may require administrator privileges.

12



2.2 Windows users

Installing nMOLDYN on Windows is straightforward. The nMOLDYN windows installer can
be downloaded from the site:

http://sourcesup.cru.fr/projects/nmoldyn.

Once downloaded, to launch the nMOLDYN windows installer, just double-click on it. A
dialog will open asking for a confirmation about the place where to install nMOLDYN. By de-
fault, this should be the path for your Python installation and that value should not be changed
unless you have several Python installation on your machine (not recommended).

Currently, the only nMOLDYN Windows installer available was build with Python 2.5. If
you want to build a version of nMOLDYN compatible with python 2.4, the strategy to adopt
is a little bit different. This time, you have to

1. download the archive nMOLDYN-3.x.y.zip or nMOLDYN-3.x.y.tar.gz ;

2. uncompress it in the directory dir of your choice;

3. open a DOS shell;

4. go directory dir ;

5. enter python.exe setup.py bdist wininst, this will create a dist directory containing the
nMOLDYN Windows installer, nMOLDYN-3.x.y.win32-py2.4.exe;

6. double-click on the newly created nMOLDYN-3.x.y.win32-py2.4.exe file in the dist direc-
tory. This will install nMOLDYN

This strategy should also work with Python 2.6.

13



3. Input and output files

Almost, if not all, functionnalities provided by nMOLDYN are based on Network Common
Data Form (NetCDF) input file. However, in certain circumstances nMOLDYN can use or
produce another type of files. We will start this section by explaining in details the NetCDF
file format format introducing next the other file formats used by nMOLDYN.

3.1 NetCDF file format

NetCDF is a set of software libraries and self-describing, machine-independent data formats
that support the creation, access, and sharing of array-oriented scientific data. The project
homepage is hosted by the Unidata program at the University Corporation for Atmospheric
Research (UCAR) [43]. They are also the chief source of NetCDF -based software, standards
development, updates . . . [44]. The format is an open standard.

The data format is self-describing. This means that there is a header which describes the
layout of the rest of the file, in particular the data arrays, as well as arbitrary file metadata
in the form of name/value attributes. The format is platform independent, with issues such
as endianness being addressed in the software libraries. The data arrays are rectangular, not
ragged, and stored in a simple and regular fashion that allows efficient subsetting.

nMOLDYN expects trajectories to be in NetCDF format and follow the conventions of
Molecular Modelling ToolKit (MMTK). Trajectories that have not been produced with
MMTK or MMTK-based programs must be converted to MMTK format before they can be
analyzed with nMOLDYN. This conversion is necessary because no other common trajectory
format permits efficient access both to conformations at a given time and to one-atom trajec-
tories for all times. In addition to providing such an access, the NetCDF format has several
advantages that make it particularly suitable for archiving trajectories:

• compact files (binary storage);

• machine-independent format;

• fully self-contained, complete information about the system is stored in the trajectory file.

The conversion of the trajectories from different formats to the MMTK format can be made
directly via the nMOLDYN graphical user interface (see Section 4.1.2).

3.2 PDB file format

The Protein Data Bank (PDB) file format is used to store coordinate or velocity data. This
is the standard format for coordinate data for many bioinformatic programs. A full description
of this file format can be obtained from the PDB web site [45]. You can generate PDB files
in nMOLDYN by extracting one or several frames from a MMTK trajectory file (see Section
4.1.3). PDB files are also used in nMOLDYNwhen performing subset, deuteration or group
selection from a nMOLDYN selection file (see Sections 4.2.2.1, 4.2.2.2 and 4.2.2.3).

14



3.3 nMOLDYN preference file

This file will be used by nMOLDYN to setup the preferences (e.g. documenation style, log file
path . . . ). It is based on the ConfigParser module of the Python Standard Library [46] and
as such it must respect the corresponding format. Section 4.1.6 will explain how to build, load
or save such a file from nMOLDYN.

3.4 nMOLDYN selection files

These files allows to perform some subset selection from a PDB file when running an analysis.
Their format will be explained in Sections 4.2.2.1, 4.2.2.2 and 4.2.2.3.

3.5 nMOLDYN autostart files

These files are python scripts that allows to run a given analysis just as a classical python script.
See Section 5.1 for explanations about the format of these files.

3.6 nMOLDYN input files

These files are python scripts that allows to run a given analysis from the nMOLDYN command-
line interface. For those familiar with nMOLDYN 2, these files correspond to the input scripts
that was generated by xMOLDYN and that had to be run with pMOLDYN. See Section
5.2 for explanations about the format of these files.

15



4. Using nMOLDYNfrom the Graphical
User Interface

Through the nMOLDYN graphical user interface, you will usually open a trajectory, then
specify the parameters for the analysis you wish to perform and finally start the calculation
itself. But you can also perform some other actions such as plotting the results of an analysis,
performing some file conversions . . . The graphical interface gives access to most of the func-
tionalities of nMOLDYN. Moreover, from the graphical user interface it is possible to create
an input file for the command-line interface or an autostart analysis python script. Both kind
of files provide a convenient starting point to set up and run new analysis direclty from the
command-line interface (see Section 5).
To run nMOLDYN from the GUI , type the following command line:

python-dir/bin/nMOLDYNStart.py on unix

or

python-dir\Scripts\nMOLDYNStart.py on Windows

python-dir being the prefix of your python distribution. The command line accepts some ar-
guments that can change how nMOLDYN will start. The following arguments are currently
supported by nMOLDYN:

• -h/--help

Format: not an editable argument
Value: None
Description: displays the details of the command line arguments. Will not start
nMOLDYN in GUI mode.

• --version

Format: not an editable argument
Value: None
Description: displays the version of nMOLDYN. Will not start nMOLDYN in GUI
mode.

• -n/--netcdf=

Format: string
Value: filename
Description: starts nMOLDYN from the graphical user interface loading directly the
filename NetCDF file.

• -i/--input=

Format: string
Value: filename
Description: runs an analysis with the command-line interface using filename nMOLDYN
input file (see Section 5.2 for details). Will not start nMOLDYN in GUI mode.

16



• -c/--contents=

Format: string
Value: filename molname selkwd
Description: if file provided, displays the contents of the trajectory file file. If file
and molname provided displays the selection keywords associated to molname. If file and
molname and selkwd provided displays the selection values associated to selection keyword
selkwd. Will not start nMOLDYN in GUI mode.

• -t/--test=

Format: string
Value: testname
Description: runs one or several analysis benchmarks Will not start the GUI . The
format for testname string is

test1,test2,. . .

where test1, test2 . . . are the name of benchmark 1, 2 . . . (see Section 4.4.4 for a com-
prehensive list of the available benchmarks).

• --acroread path=

Format: string
Value: filename
Description: sets the path for Acrobat Reader executable to filename. It will overide
the preferences settings.

• --vmd path=

Format: string
Value: filename
Description: sets the path for VMD executable to filename. It will overide the prefer-
ences settings.

• --documentation style=

Format: string
Value: html or pdf
Description: sets the format for the online documentation either to HTML (html) either
to pdf (pdf ). It will overide the preferences settings.

• --ncdump path=

Format: string
Value: filename
Description: sets the path for ncdump executable to filename. It will overide the
preferences settings.

• --ncgen path=

Format: string
Value: filename
Description: sets the path for ncgen executable to filename. It will overide the prefer-
ences settings.

• --outputfile path=

Format: string
Value: dirname

17



Description: sets the directory where all the output files will be written to dirname. It
will overide the preferences settings.

• --trajfile path=

Format: string
Value: dirname
Description: sets the default MMTK trajectory input files directory search path to
dirname. It will overide the preferences settings.

• --warning acroread=

Format: string
Value: yes or no
Description: if set to yes, will warn you if acrobat reader is not found on your system.
It will overide the preferences settings.

• --warning ncdump=

Format: string
Value: yes or no
Description: if set to yes, will warn you if ncdump program is not found on your
system. It will overide the preferences settings.

• --warning ncgen=

Format: string
Value: yes or no
Description: if set to yes, will warn you if ncgen program is not found on your system.
It will overide the preferences settings.

• --warning vmd=

Format: string
Value: yes or no
Description: if set to yes, will warn you if VMD program is not found on your system.
It will overide the preferences settings.

• --progress rate=

Format: integer in [0,100]
Value: prog rate
Description: displays the progress of the analysis every prog rate percents. It will overide
the preferences settings.

When starting nMOLDYN from the GUI , the start-up window shown in figure 4.1 will pop
up. This window contains four drop down menu buttons,

• File

• Analysis

• View

• Help

and a text window.

18



Figure 4.1: The nMOLDYN main window.

Everything concerning IO manipulations are done via the drop down menu button File. The
drop down menu buttons Analysis allows to set up and start the analysis you are interested
in. The View and Help buttons allow one to inspect input/output data and ask for help
respectively. All of these menus will be described below.Finally, the text window will display
all the information concerning the loaded file and the main actions performed on it.

4.1 The File menu

Pressing the File menubutton brings up a menu from which it is possible to choose the following
options:

• Load NetCDF file

• Trajectory conversion

• Frame snapshot

• Convert NetCDF to ASCII

• Convert ASCII to NetCDF

• Preferences

• Quit

that will be described in the forthcoming sections.

4.1.1 Load NetCDF file

The Load NetCDF file option allows one to select the NetCDF file of the trajectory which
will be used to perform the analysis. Clicking on it, a file browser like the one showed in figure
4.2 pops up.

19



Figure 4.2: File-Directory selection window.

To select a directory, double click on it. By doing this, the complete pathname of the selected
directory appears on the Directory selection button at the top of the window. To select the
parent directory left-click the directory selection button. When a file in the list is highlighted
(clicked) its name is shown in the File name field. The selection is confirmed by pressing the
button Open of the browser. By doing this, the file selection window closes.

Two kind of files can be loaded in nMOLDYN, the MMTK NetCDF files and the MMTK
trajectory set files (usually with respective .nc and .ncs extensions), the latter being just an
ASCII file where each line is a link to a MMTK NetCDF file. The figure 4.3 shows an example
of a trajectory set file.

Figure 4.3: Example of a MMTK trajectory set file.

For more details about trajectory set files, please refer to the MMTK documentation [47].
Please note again that the MMTK NetCDF file format is central to nMOLDYN as it is the

20



only trajectory format that nMOLDYN can handle directly. Trajectories that have not been
produced with MMTK or MMTK-based programs must be converted to MMTK format before
they can be analyzed with nMOLDYN.

One important step that is performed by nMOLDYN when loading the trajectory is the
determination of the chemical contents of the MMTK universe corresponding to the loaded
trajectory. nMOLDYN attributes to each MMTK chemical object found in the universe a
name that is either its MMTK database name if this object is referenced in the MMTK inter-
nal database otherwise its name will be its number of atoms appended to its chemical object
type (respectively A, AC, M, NC, PC, P for Atom, AtomCluster, Molecule, NucleotideChain,
PeptideChain, Protein chemical types.). In the seldom case where the system contains some
isomers, nMOLDYN will distinguish them by appending to their name the suffix isoi’ where i
is the number of the isomer. In order to retrieve to which isomer corresponds the nMOLDYN
name, a PDB file whose name is the name of the isomer is created in the output file directory.

4.1.2 Trajectory conversion

The Trajectory conversion option allows to convert a trajectory derived with a non MMTK-
based program to the NetCDF MMTK trajectory format. Pressing the button Trajectory
conversion brings up a menu from which it is possible to choose the following trajectory
converters:

• Amber NetCDF to MMTK

• CHARMM/X-PLOR to MMTK

• DL POLY to MMTK

• MaterialsStudio

• NAMD to MMTK

• VASP to MMTK

Pressing the MaterialsStudio menubutton brings up an additional menu from which it is
possible to choose the following Materials Studio converters:

• Discover module to MMTK

• Forcite module to MMTK

4.1.2.1 Amber to MMTK

This converter allows the conversion from a NetCDF trajectory generated with Amber 9 or 10
[26] to a MMTK NetCDF trajectory (unfortunately, both NetCDF files do not follow the same
convention). For version of Amber lower than 9, Amber provides some tools for the conversion
to Amber NetCDF trajectories. Pressing the Amber NetCDF to MMTK menubutton, the
dialog shown in figure 4.4 will pop up.

21



Figure 4.4: The Amber to MMTK converter dialog.

To perform the conversion, the following input fields must be filled:

• PDB input file
Format: string
Default: None
Description: a PDB file of the system must be provided for the conversion. This file is
necessary to build up the MMTK universe related to the MMTK trajectory.

• Amber NetCDF input file
Format: string
Default: None
Description: the Amber 9 or 10 NetCDF trajectory file that contains all the trajectory
frames.

• Time step (in ps)
Format: strictly positive float
Default: 1.0
Description: the time step in ps between two consecutive frames of the Amber NetCDF
trajectory. You have to provide this information because it is not contained in the Amber
NetCDF trajectory file.

• MMTK NetCDF output file
Format: string
Default: None
Description: the name of the MMTK NetCDF trajectory that will be written. Once, an
Amber NetCDF file has been loaded, a default name for the MMTK NetCDF output file
will be proposed. This default name will be file mmtk.nc if file.nc is the Amber NetCDF
trajectory file name.

22



4.1.2.2 CHARMM/X-PLOR to MMTK

This converter allows the conversion from a trajectory generated with Chemistry at HARvard
Macromolecular Mechanics (CHARMM) or X-PLOR [27, 35] to a MMTK NetCDF trajectory.
Pressing the CHARMM/X-PLOR to MMTK menubutton, the dialog shown in figure 4.5
will pop up.

Figure 4.5: The CHARMM to MMTK converter dialog.

To perform the conversion, the following input fields must be filled:

• PDB input file
Format: string
Default: None
Description: a PDB file of the system must be provided for the conversion. This file is
necessary to build up the MMTK universe related to the MMTK trajectory.

• DCD input file
Format: string
Default: None
Description: the CHARMM DCD trajectory file that stores the trajectory frames.

• MMTK NetCDF output file
Format: string
Default: None
Description: the name of the MMTK NetCDF trajectory that will be written. Once,
a DCD file has been loaded, a default name for the MMTK NetCDF output file will be
proposed. This default name will be file.nc if file.dcd is the DCD trajectory file name.

4.1.2.3 DL POLY to MMTK

This converter allows the conversion from a trajectory generated with DL POLY [28] to a
MMTK NetCDF trajectory. Pressing the DL POLY to MMTK menubutton, the dialog
shown in figure 4.6 will pop up.

23



Figure 4.6: The DL POLY to MMTK converter dialog.

To perform the conversion, the following input fields must be filled:

• FIELD input file
Format: string
Default: None
Description: the DL POLY FIELD file that stores the informations about the system.
This file is necessary to build up the MMTK universe related to the MMTK trajectory.

• HISTORY input file
Format: string
Default: None
Description: the DL POLY HISTORY file that stores the trajectory frames.

• Special atoms
Format: string
Default: None
Description: nMOLDYN will create the MMTK universe with the atom names specified
in the FIELD file. By default, nMOLDYN will interpret these names directly as if they
were a chemical symbol. If this fails, nMOLDYN will remove the last character until it
corresponds to a known chemical symbol. For example, an atom defined in the FIELD
file as CB, will first be interpreted as an atom of chemical symbol CB. As it does not
exist, nMOLDYN will interpret it as an atom of chemical symbol C, namely a carbon
atom. Usig htis procedure, it can happen that some atom names can be misunderstood
or event not understood at all by MMTKȦs an example, the figure 4.7 shows the example
of a FIELD file where one carbon atom specification (the one in red in the figure) will be
misinterpreted as a cesium atom.

24



Figure 4.7: Example of a DL POLY/FIELD file for which the Special atoms field must be
filled because one carbon atom name, CS, will be interpreted as a cesium atom.

The aim of the Special atoms field is precisely to avoid such problems. The format for
the Special atoms field is

atom name1:element1 sep atom name2:element2 . . . where sep can be a white space,
a comma or a semicolon.

In the example showed in figure 4.7, the string CS:C should be entered in the Special
atoms field. Interestingly, the Special atoms field can also be used to specify united
atoms. The syntax is exactly the same but, in that case, the element name must be
replaced by the MMTK united atom code (e.g. CH3, CH2, CH, NH, NH2, NH3, OH, SH
. . . ).

• MMTK NetCDF output file
Format: string
Default: None
Description: the name of the MMTK NetCDF trajectory that will be written.

4.1.2.4 Discover to MMTK

This converter allows the conversion from a trajectory generated with MaterialsStudio Discover
module [30] to a MMTK NetCDF trajectory. Pressing the Discover to MMTK menubutton,
the dialog shown in figure 4.8 will pop up.

25



Figure 4.8: The Discover to MMTK converter dialog.

To perform the conversion, the following input fields must be filled:

• XTD/XSD input file
Format: string
Default: None
Description: a XTD or XSD file of the system must be provided for the conversion.
This file is necessary to build up the MMTK universe related to the MMTK trajectory.
XTD or XSD files are automatically generated during a simulation performed with Ma-
terialsStudio.

• HIS input file
Format: string
Default: None
Description: the Discover HIS file file that stores the trajectory frames.

• Subselection:
Format: integer or Python expression or string
Default: None
Description: it can happen that the molecular hierarchy is not correctly set in the
XTD/XSD file or that you do not want to include all the atoms of the Discover trajectory
into the MMTK trajectory. In that case, it is possible to specify how the system should
be organized.

The format for the Subselection field can be

? a single integer that specifies the index of the atom to select in the XSD/XTD file,

? a valid python expression that will generate nested lists of integers where each
list will generate a distinct MMTK AtomCluster made of the atoms whose in-
dexes in the XSD/XTD match the integers of the list. As an example, entering
[[1,2,3,5],[10,20,21,23],[90,93]] will consider only atoms 1, 2, 3, 5, 10, 20, 21, 23, 90
and 93 of the XSD/XTD file when creating the MMTK trajectory. Moreover, those

26



atoms will be gathered such as atoms 1, 2, 3 and 5 will be in a fist AtomCluster,
atoms 10, 20, 21 and 23 will be in a second AtomCluster and atoms 90 and 93 will
be gathered in a third AtomCluster,

? a string with the following format:
min 1:max 1:skip 1 sep . . . sep min N:max N:skip N
where sep can be a white space, a comma or a semicolon and each block mini:maxi:skipi
will specify a distinct MMTK AtomCluster made of atoms whose indexes in the
XSD/XTD file ranges from min i to max i by jumps of skip i atoms. For example,
entering 2:5:1;20:30:3 will generate a first AtomCluster made of atoms 2,3,4,5 and a
second AtomCluster made of atoms 20,23,26 and 29.

• MMTK NetCDF output file
Format: string
Default: None
Description: the name of the MMTK NetCDF trajectory that will be written. Once, a
HIS has been loaded, a default name for the MMTK NetCDF output file will be proposed.
This default name will be file.nc if file.his is the HIS trajectory file name.

4.1.2.5 Forcite to MMTK

This converter allows the conversion from a trajectory generated with Materials Studio Forcite
module [31] to a MMTK NetCDF trajectory file. Pressing the Forcite to MMTK menubut-
ton, the dialog shown in figure 4.9 will pop up.

Figure 4.9: The Forcite to MMTK converter dialog.

To perform the conversion, the following input fields must be filled:

• XTD/XSD input file
Format: string
Default: None
Description: a XTD or XSD file of the system must be provided for the conversion.
This file is necessary to build up the MMTK universe related to the MMTK trajectory.

27



XTD or XSD files are automatically generated during a simulation performed with Ma-
terialsStudio.

• TRJ input file
Format: string
Default: None
Description: the Forcite TRJ file that stores the trajectory frames.

• Subselection:
Format: integer or Python expression or string
Default: None
Description: it can happen that the molecular hierarchy is not correctly set in the
XTD/XSD file or that you do not want to include all the atoms of the Discover trajectory
into the MMTK trajectory. In that case, it is possible to specify how the system should
be organized.

The format for the Subselection field can be

? a single integer that specifies the index of the atom to select in the XSD/XTD file,

? a valid python expression that will generate nesteds list of integers where each
list will generate a distinct MMTK AtomCluster made of the atoms whose in-
dexes in the XSD/XTD match the integers of the list. As an example, entering
[[1,2,3,5],[10,20,21,23],[90,93]] will consider only atoms 1, 2, 3, 5, 10, 20, 21, 23, 90
and 93 of the XSD/XTD file when creating the MMTK trajectory. Moreover, those
atoms will be gathered such as atoms 1, 2, 3 and 5 will be in a fist AtomCluster,
atoms 10, 20, 21 and 23 will be in a second AtomCluster and atoms 90 and 93 will
be gathered in a third AtomCluster,

? a string with the following format:
min 1:max 1:skip 1 sep . . . sep min n:max n:skip n
where sep can be a white space, a comma or a semicolon and each block min i:max i:skip i
will specify a distinct MMTK AtomCluster made of atoms whose indexes in the
XSD/XTD file ranges from min i to max i by jumps of skip i atoms. For example,
entering 2:5:1;20:30:3 will generate a first AtomCluster made of atoms 2,3,4,5 and a
second AtomCluster made of atoms 20,23,26 and 29.

• MMTK NetCDF output file
Format: string
Default: None
Description: the name of the MMTK NetCDF trajectory that will be written. Once,
a TRJ file has been loaded, a default name for the MMTK NetCDF output file will be
proposed. This default name will be file.nc if file.trj is the TRJ trajectory file name.

4.1.2.6 NAMD to MMTK

This converter allows the conversion from a trajectory generated with NAnoscale Molecular
Dynamics (NAMD) [32] to a MMTK NetCDF trajectory. Pressing the NAMD to MMTK
menubutton, the dialog shown in figure 4.10 will pop up.

28



Figure 4.10: The NAMD to MMTK converter dialog.

To perform the conversion, the following input fields must be filled:

• PDB input file
Format: string
Default: None
Description: a PDB file of the system must be provided for the conversion. This file is
necessary to build up the MMTK universe related to the MMTK trajectory.

• DCD input file
Format: string
Default: None
Description: the CHARMM DCD trajectory file that stores the trajectory frames.

• XST input file:
Format: string
Default: None
Description: The NAMD eXtended System Trajectory (XST) file has to be provided
to the converter.

• MMTK NetCDF output file
Format: string
Default: None
Description: the name of the MMTK NetCDF trajectory that will be written. Once,
a DCD file has been loaded, a default name for the MMTK NetCDF output file will be
proposed. This default name will be file.nc if file.dcd is the DCD trajectory file name.

4.1.2.7 VASP to MMTK

This converter allows the conversion from a trajectory generated with Vienna Ab-initio Simulation
Package (VASP) [34] to a MMTK NetCDF trajectory. Pressing the VASP to MMTK
menubutton, the dialog shown in figure 4.11 will pop up.

29



Figure 4.11: The VASP to MMTK converter dialog.

To perform the conversion, the following input fields must be filled:

• CONTCAR/POSCAR input file
Format: string
Default: None
Description: the VASP CONTCAR or POSCAR file that stores the informations about
the system. This file is necessary to build up the MMTK universe related to the MMTK
trajectory.

• XDATCAR input file
Format: string
Default: None
Description: the VASP XDATCAR file that stores the trajectory frames.

• Atom contents
Format: string
Default: None
Description: the CONTCAR file contains the number of atoms of each element in the
system but does not tell the elements the system is made of. This information has to
provided using the Atom contents field.

The format for the Atom contents field is

element1 sep element2 . . . where sep can be a white space, a comma or a semicolon
and element1, elemnt2 . . . are the chemical symbols of element 1, 2 . . .

Interestingly, the Atom contents field can also be used to specify united atoms. The
syntax is exactly the same but, in that case, the element name must be replaced by the
MMTK united atom code (e.g. CH3, CH2, CH, NH, NH2, NH3, OH, S . . . ).

30



• MMTK NetCDF output file
Format: string
Default: None
Description: the name of the MMTK NetCDF trajectory that will be written.

4.1.3 Frame snapshot

The Frame snapshot option allows the extraction of one or several frames in PDB format
from a MMTK NetCDF trajectory. Clicking on it, the dialog shown in figure 4.12 will pop up.

Figure 4.12: The dialog used to export trajectory frames to a PDB file.

To perform the frame extraction, the following input fields must be filled:

• NetCDF input file
Format: string
Default: None
Description: a MMTK NetCDF trajectory file of the system must be provided for the
extraction. If a trajectory is currently loaded, it will be proposed by default for the frame
extraction.

• Selected frames
Format: integer or Python expression or string
Default: 1
Description: this field will store the frames selected for extraction. The format for the
Selected frames field can be:

? an integer specifying the index of a single frame to extract

? a valid Python expression that will generate a list of integers where each integer
specify the index of a frame to extract.

? a string with the following format:
min 1:max 1:skip 1 sep . . . sep min N:max N:skip N
where sep can be a white space, a comma or a semicolon and each block min i:max
i:skip i will specify a range of frames including frame min i to frame max i by jump
of skip i frames.

31



• PDB output file
Format: string
Default: None
Description: this field will store the name of the PDB output file that will contain the
extracted frames. The line

REMARK Frame i

will be written before each written frame i.

4.1.4 Convert NetCDF to ASCII

The Convert NetCDF to ASCII option allows the conversion of any kind of NetCDF file to
a network Common Data Language (CDL) file [77]. Clicking on it, the dialog shown in figure
4.13 will pop up.

Figure 4.13: The dialog used to convert files in NetCDF format to CDL format.

To use this functionnality, the ncdump program [36] provided with the NetCDF library
must be installed and the path to the ncdump executable must be defined in the nMOLDYN
preferences. If ncdump is not installed, this functionnality will be disabled.

To perform the conversion, the following input fields must be filled:

• NetCDF file
Format: string
Default: None
Description: a NetCDF file must be provided for the conversion. If a NetCDF file is
currently loaded (a MMTK trajectory or other kind of NetCDF file), it will be proposed

32



by default for conversion. Once the NetCDF file is loaded all the variables found in the
NetCDF file will be displayed in the Available variables field.

• Available variables
Format: Not an editable field
Default: None
Description: this field displays all the variables contained in the NetCDF file. It con-
tains two columns: the first one displays the checkbuttons that will allow to unselect/select
which NetCDF variable (displayed on the right column) should be considered for conver-
sion.

• Float precision
Format: integer
Default: 9
Description: this field stores the precision at which floating numbers will be written in
the ASCII/CDL output file.

• Double precision
Format: integer
Default: 17
Description: this field stores the precision at which double numbers will be written in
the ASCII/CDL output file.

• ASCII/CDL output file
Format: string
Default: None
Description: this field stores the name of the ASCII/CDL output file.

4.1.5 Convert ASCII to NetCDF

The Convert ASCII to NetCDF option allows the conversion of from an ASCII file to a
NetCDF file. Clicking on it, the dialog shown in figure 4.1.5 will pop up.

33



Figure 4.14: The dialog used to convert files in ASCII/CDL format to NetCDF format.

To use this functionnality, the ncgen program [37] provided with the NetCDF library must
be installed and the path to the ncgen executable must be defined in the nMOLDYN prefer-
ences. If ncgen is not installed, this functionnality will be disabled.

To perform the conversion, the following input fields must be filled:

• ASCII input file
Format: string
Default: None
Description: this field stores the name of the ASCII input file that will be used for the
conversion. Two possible ASCII file formats are compatible for the conversion. The first
one is the CDL file format [77] and the second one is a simpler but less general format
where only numeric data can be converted. The latter format must contain white spaces
separated columns where each column will be interpreted as a NetCDF unidimensional
array of double. The file can contain header lines that must start with ’#’ character. The
rest of the line will be stored in the NetCDF global attribute ’comment’. Some NetCDF
global variables can also be specified for the conversion. They must be declared one after
the other inside the header using the following format;

# global name = value

Finally, a name and some additional NetCDF variable attributes (units . . . ) can be
given to the columns that will be converted. Column names must be declared one after
the other inside the header using the following format:

# variable name = value ; attribute1 = value1 ; attribute2 = value2 ...

In such a case the number of variable declaration must be exactly the same than the
number of columns. Otherwise the NetCDF variable name will be Columni where i is the
column index.

The figure 4.15 shows an example of such file.

34



Figure 4.15: Example of an ASCII file that can be converted to a NetCDF file.

The output NetCDF file resulting from its conversion will contain:

? a NetCDF dimension ’nvalues’ whose value corresponds to the length of the columns
to convert (in that case 10),

? a global attribute ’comment’ whose value is ’ The sun is shinning. I’m happy’,

? a global attribute ’toto’ whose value is ’300000’,

? a global attribute ’tata’ whose value is ’yipee’,

? a NetCDF variable ’time’ of dimension ’nvalues’ with an additional attribute ’units’
whose value is ’fs’,

? a NetCDF variable ’velocity’ of dimension ’nvalues’ with additional attributes ’units’
and ’theory’ whose values are respectively ’m/s’ and ’can not be faster than light’,

? a NetCDF variable ’acceleration’ of dimension ’nvalues’ with an additional attribute
’units’ whose value is ’m/s2’,

• NetCDF output file
Format: string
Default: None
Description: this field stores the name of the NetCDF output file.

4.1.6 Preferences

The Preferences option allows to set the nMOLDYN preferences using the ConfigParser
Python-module mechanism [46]. In nMOLDYN the preferences are classified in the three
following sections:

• File handling: contains the preferences variables related to the file handled by nMOLDYN
(log file, output file . . . ),

• External programs: contains the preferences variables related to the actions performed
by nMOLDYN that require an external program (e.g. displaying the documentation,
animating a trajectory, converting NetCDF to ASCII or ASCII to NetCDF . . . ),

35



• Miscellaneous: contains the other preferences variables that could not be classified elsse-
where.

Pressing the Preferences menubutton will pop up the dialog shown in figure 4.16.

Figure 4.16: The dialog used to set up nMOLDYN preferences.

By default, the dialog for File handling section is displayed. Clicking on the File han-
dling, External programs or Miscellaneous radiobutton will display the dialog correspond-
ing to the selected section (see Figure 4.17).

Figure 4.17: The three preferences sections dialogs available in nMOLDYN. On the left, the
file handling section, on the middle the external programs section and on the right, the
miscellaneous section.

36



Each preference section dialog contains an entry for each of its associated preferences variable
initialized with a default value. Here is the list of the nMOLDYN preferences variables:

• Logfile path
Section: File handling
Preferences variable name: logfile path
Format: string
Default: The user $HOME directory
Description: The path for the directory where the nMOLDYN log files will be written.

• Trajectory file path
Section: File handling
Preferences variable name: trajfile path
Format: string
Default: The user $HOME directory
Description: The path for the directory where the MMTK NetCDF trajectories will be
loaded by default.

• Output file path
Section: File handling
Preferences variable name: outputfile path
Format: string
Default: The user $HOME directory
Description: The path for the directory where the nMOLDYN output files will be
written.

• Acrobat reader path
Section: External programs
Preferences variable name: acroread path
Format: string
Default: None
Description: The path for the acrobat reader executable. If this path is not set, it will
not be possible to display the documentation in pdf format.

• VMD molecular viewer path
Section: External programs
Preferences variable name: vmd path
Format: string
Default: None
Description: The path for the VMD molecular viewer executable [33]. If this path is
not set, the Animate and Effective mode options of the View menu will be disabled.

37



• ncdump path
Section: External programs
Preferences variable name: ncdump path
Format: string
Default: None
Description: The path for the ncdump executable. If this path is not set, the Convert
NetCDF to ASCII option of the File menu will be disabled.

• ncgen path
Section: External programs
Preferences variable name: ncgen path
Format: string
Default: None
Description: The path for the ncgen executable. If this path is not set, the Convert
ASCII to NetCDF option of the File menu will be disabled.

• Progress rate
Section: Miscellaneous
Preferences variable name: progress rate
Format: not an editable entry
Default: 10
Description: The rate at which the progress of a nMOLDYN analysis will be displayed
on the console and written in the nMOLDYN log file.

• Documentation style
Section: Miscellaneous
Preferences variable name: documentation style
Format: not an editable entry
Default: html
Description: The format for the nMOLDYN users guide when clicking on Help –> Help
item and for the online help. HTML if html is selected, PDF if pdf is selected.

• ncdump missing
Section: Miscellaneous
Preferences variable name: warning ncdump
Format: no an editable entry
Default: yes
Description: If set to yes, you will be informed if ncdump was not found at each
nMOLDYN start and each time the Preferences dialog is closed.

• ncgen missing
Section: Miscellaneous
Preferences variable name: warning ncgen

38



Format: no an editable entry
Default: yes
Description: If set to yes, you will be informed if ncgen was not found at each
nMOLDYN start and each time the Preferences dialog is closed.

• VMD missing
Section: Miscellaneous
Preferences variable name: warning vmd
Format: no an editable entry
Default: yes
Description: If set to yes, you will be informed if VMD was not found at each
nMOLDYN start and each time the Preferences dialog is closed.

• acrobat reader missing
Section: Miscellaneous
Preferences variable name: warning acroread
Format: no an editable entry
Default: yes
Description: If set to yes, you will be informed if acrobat reader was not found at
each nMOLDYN start and each time the Preferences dialog is closed.

The Actions frame contains four buttons which are respectively:

• Cancel

• Save

• Load

• OK

Pressing the Cancel button will cancel the preferences settings and close the preferences dialog
leaving the preferences in the state they were when opening the Preferences dialog. Pressing
the Save button will pop up a file browser from which you will select a location to save the
preferences. By default, the preferences file name is:

$USERPROFILE\Application Data\nMOLDYN\nMOLDYN.ini on Windows,

$HOME/.nMOLDYN on Unix and,

$HOME/Library/Preferences/nMOLDYN.pref on MacOS

If those paths does not exist, they will be created. These default paths will be the ones that
will be searched when nMOLDYN is started. Pressing the Load button will load a preferences
file through a dialog. OK will use the settings for the running session of nMOLDYN but will
not save them.

The figure 4.18 shows an example of a nMOLDYN preferences file built under a linux
workstation. Please note the format that must be strictly respected.

39



Figure 4.18: Example of a nMOLDYN preferences file.

As can be seen from that figure, the file must start with the line ’[nmoldyn]’ followed by th
declaration of each preferences variables. For the vairables that may be missing in that file or
with an empty value (e.g. ncdump path in figure 4.18), the default value will be used.

4.1.7 Quit

Pressing the Quit menubutton will close nMOLDYN.

4.2 The Analysis menu

Pressing the Analysis menubutton brings up a menu from which it is possible to choose the
following menus:

• Dynamics

• Scattering

• Structure

• NMR

In this section we will review each of these menus. However, we will first introduce three
concepts that are common to almost all the analysis available in nMOLDYN which are:

• weighting scheme

• atom selection

• nMOLDYN running modes

40



4.2.1 Weighting scheme

In quantities that are averages over all atoms, nMOLDYN gives the possibility to choose between
differents atomic weighting schemes. Presently, nMOLDYN implements the following schemes:

• Equal weighting:

ωα =
1

Natoms
(4.1)

• Mass weighting:

ωα =
mα∑Natoms

α=1 mα

(4.2)

• Atomic number weighting:

ωα =
Zα∑Natoms

α=1 Zα
(4.3)

• Incoherent neutron scattering:

ωα =
b2α,inc∑Natoms

α=1 b2α,inc

(4.4)

• Coherent neutron scattering:

√
ωα =

bα,coh√∑Natoms
α=1 b2α,coh

(4.5)

where ωα is the weight for atom α, Natoms is the number of (selected) atoms in the system
(or in the subsystem) for which the analysis is performed and mα, Zα, bα,inc, and bα,coh are
respectively the mass, the atomic number, the incoherent scattering length and the coherent
scattering length of atom α where

bα,coh = bα (4.6)

bα,inc =

√
b2α − bα

2
(4.7)

the average being done over isotopes and relative spin orientations of neutrons and nucleus.
Using such a definition, we have

∑N
α=1 ωα = 1.

If we now group atoms into their different species A, B . . . (e.g. oxygens, hydrogens . . . )
such that:

N =

Nspecies∑

I=1

nI (4.8)

where Nspecies is the total number of selected species and nI is the number of atoms of specie
I. Then, we can define the weight for a given atomic specie I as:

• Equal weighting (per specie):

WI =
nI

Natoms
(4.9)

• Mass weighting (per specie):

WI =
nImI

∑Nspecies
I=1 nImI

(4.10)

41



• Atomic number weighting:

WI =
nIZI

∑Nspecies
I=1 nIZI

(4.11)

• Incoherent neutron scattering:

WI =
nIb

2
I,inc

∑Nspecies
I=1 b2I,inc

(4.12)

• Coherent neutron scattering:

√
WI =

nIbI,coh√∑Nspecies
I=1 b2I,coh

(4.13)

and we have
∑Nspecies
I=1 WI =

∑Nspecies
I=1

∑nI
α=1 ωα,I = 1 where ωα,I is the atomic weight of atom α

of specie I defined in equations 4.1 to 4.2. The weigthing scheme based on specie will be useful
when dealing with analysis for which partial terms can be defined.

4.2.2 Atom selection

It is sometimes necessary to define a subset of atoms on which a given action or analysis will be
performed. nMOLDYN provided this possibility by a general mechanism that can be applied
to several selection types such as:

• Subset selection: selection of a subset of atoms on which an analysis will be performed,

• Deuteration selection: definition of a subset of hydrogen atoms whose parameters will
be the ones of deuterium. This allows to account for isotopic deuteration replacement
performed in neutron experiments,

• Group selection: definition of one or several groups of atoms on which a given action will
be performed collectively.

Albeit different in their nature, we will see in the following sections, that all these selections
use the same syntax what is quite convenient from a user point of view.

4.2.2.1 Subset selection

This kind of selection is used when one wants to narrow an analysis on a given subset of atoms
of the system. For instance, assuming that you performed a MD of a protein in a water box and
that you are interested in calculating the diffusion constant of the protein via a Mean-Square
Displacement (MSD) analysis. In that case, it will be necessary to perform the analysis only
on the atoms of the protein.

42



By default, nMOLDYN consider all the atoms for an analysis. The dialog from which a
subset selection is performed is displayed in figure 4.19.

Figure 4.19: The dialog from where a subset selection is performed.

At the bottom of the dialog, the Actions frame contains the Cancel button to cancel the
selection and the OK button to validate the selecton.

On the top of the dialog, three radiobuttons allows to select from which media the selection
will be performed. This can be:

• from a selection file: this will perform the selection from a nMOLDYN subset selection
file,

• from the loaded trajectory: this will perform the selection directly from the contents
of the universe contained in the loaded trajectory,

• from an expression string: this will perform the selection from a valid python expres-
sion declaring a list of atoms to include in the selection.

When clicking on one of these radiobutton, a media-specific dialog will be displayed in the
underneath frame.

selection from a selection file
To perform a subset selection from a selection file, you have to click on the from a selection

file radiobutton. A dialog will be displayed in the underneath frame from which you will be
asked for a subset selection file (see Fig. 4.20).

43



Figure 4.20: The subset selection dialog for a selection from a selection file.

The format of a nMOLDYN selection file is quite simple. It is an ASCII file with the .nms
extension whose contents is a python script made of two lines. The first line must set the
variable pdb to the path of a PDB file of the first frame of the trajectory being processed (it can
be obtained using the frame extractor tool described in Section 4.1.3 for example).The second
line must set the variable subset to a list of integers where each integers represents the PDB
serial number of the atoms to select. An example of a subset selection file is shown in figure
4.21.

Figure 4.21: Example of a subset file.

Once a selection file has been loaded, the constructed selection string that will be used by
nMOLDYN for this kind of selection is displayed in the Selection preview entry at the bottom
of the dialog with highlighted keywords.

selection from the loaded trajectory
To perform a subset selection from the loaded trajectory, you have to click on the from

the loaded trajectory radiobutton. A dialog will be displayed in the underneath frame from

44



which you will construct your selection directly from the contents of the universe related to the
loaded trajectory (see Fig. 4.22).

Figure 4.22: The subset selection dialog for a selection from the loaded trajectory.

To construct the selection, it is compulsory to proceed in the following order:

1. select an object name among the ones displayed in the Object name listbox. This
will display in the Selection keywords listbox the selection keywords associated to the
selected object.

2. select a selection keyword among the ones displayed in Selection keywords listbox. This
will display in the Selection value listbox the values associated to the selected keyword.

3. unselect/select one or several values among the ones displayed in the Selection value
listbox.

By doing so, you will construct a selection string with the following format:

objectname name keyword value1,value2, . . .

where name is the selected object name (step 1), keyword is the selected keyword (step 2)
and value1,value2,. . . are the selected values (step 3). This constructed selection string, that
will be used by nMOLDYN, is displayed in the Selection preview entry at the bottom of the
dialog with highlighted keywords.

You can associate several selection keywords to a given selected object by repeating steps
2,3. In that case, the constructed selection string will have the following format:

objectname name keyword1 value1,value2,. . . OR keyword2, value1,value2,value3. . .

where the keyword OR will be interpreted by nMOLDYN as an union operator in the sense that
it will take the union between the set of atoms generated by keyword1 value1,value2, keyword2
value1,value2,value3 . . .

You can also include several objects in the selection by repeating steps 1,2,3. In that case,
the constructed selection string will have the following format:

45



objectname name1 keyword1 value1,. . . OR keyword2, value1,value2, . . . OR objectname name2
keyword1 value1 . . .

Finally, using the buttons within the Linkers frame each time a step 3 is completed allows
to construct more complex selection strings using the (, ), AND, OR linkers, the AND linker
acting as an intersection operator while the OR link, described above, acts as an union operator.
The button Clear clears up the selection string under construction.

The table 4.1 lists the selection keywords and values depending on the MMTK type of the
object being processed.

Object MMTK type Selection keyword Selection value
Atom name the object MMTK name
AtomCluster atomelement the element name (e.g. hydrogen)

atomname the atom MMTK name
name the object MMTK name

Molecule chemfrag the chemical fragment name. One of amine, hydroxy,
methyl or thiol

atomelement the element name (e.g. hydrogen)
atomname the atom MMTK name

NucleotideChain atomelement the element name (e.g. hydrogen)
atomname the atom MMTK name
atomtype the atom MMTK type

misc one of backbone or bases
name the object MMTK name

nuclname the nucleotide MMTK name.
nucltype the nucleotide MMTK type

PeptideChain chemfrag the chemical fragment name. One of amine, c alphas,
hydroxy, methyl or thiol

atomelement the element name (e.g. hydrogen)
atomname the atom MMTK name
atomtype the atom MMTK type

misc one of backbone or sidechains
name the object MMTK name

resclass the residue class. One of acidic, aliphatic, aromatic,
basic, charged, hydrophobic, polar or small

resname the residue MMTK name
restype the residue MMTK type

Protein chemfrag one of amine, c alphas, hydroxy, methyl or thiol
atomelement the element name (e.g. hydrogen)
atomname the atom MMTK name
atomtype the atom MMTK type
chainname the chain MMTK name

misc one of backbone or sidechains
name the object MMTK name

resclass the residue class. One of acidic, aliphatic, aromatic,
basic, charged, hydrophobic, polar or small

resname the residue MMTK name
restype the residue MMTK type

Table 4.1: List of selection keywords and their associated values according to the MMTK type
of the selected object.

46



Here are some examples of subset selection strings constructed from a protein whose name
is P892:

• objectname P892 atomelement carbon: will select only the carbon atoms,

• objectname P892 atomelement carbon,hydrogen: will select only the carbon and hydrogen
atoms,

• objectname P892 atomelement oxygen and restype Ala,Arg : will select only the oxygen
atoms of Alanine and Arginine residues,

• objectname P892 atomelement carbon OR resclass acidic: will select all the carbon atoms
plus the all the atoms of the acidic residues.

selection from an expression string
To perform a subset selection from an expression string, you have to click on the from an

expression string radiobutton. A dialog will be displayed in the underneath frame from which
you will enter a valid Python expression that must declare the selection variable as a list of
atoms of the loaded universe. The variable self.universe will be used as a reference for that
universe (see Fig. 4.23).

Figure 4.23: The subset selection dialog for a selection from an expression string.

Once an expression string has been entered press Return to register it. The constructed
selection string that will be used by nMOLDYN for this kind of selection will be displayed in
the Selection preview entry at the bottom of the dialog with highlighted keywords.

Here are some examples of valid expression strings that can be entered:

• selection = self.universe.atomList()[0:10] : will select the ten first atoms of the universe,

• selection = [at for at in self.universe if at. mass ≥ 10] : will select only the atoms of the
universe whose mass is greater than 10 amu.

47



4.2.2.2 Deuteration selection

This kind of selection is useful for analysis if you want to change the parameters (e.g. mass,
scattering lengths) of some hydrogens atoms to the ones of deuterium. This allows to simulate
the system in a fully or partially deuterated state.

By default, nMOLDYN does not select any hydrogen atom for deuteration for an analysis.
The dialog from which a deuteration selection is performed is displayed in figure 4.24.

Figure 4.24: The dialog from where a deuteration selection is performed.

As can be seen from that figure, the deuteration dialog is exactly the same that the subset
selection dialog. At the bottom of the dialog, the Actions frame contains the Cancel button
to cancel the selection and the OK button to validate the selecton.

On the top of the dialog, three radiobuttons allows to select from which media the selection
will be performed. This can be:

• from a selection file: this will perform the selection from a nMOLDYN deuteration
selection file,

• from the loaded trajectory: this will perform the selection directly from the contents
of the universe contained in the loaded trajectory,

• from an expression string: this will perform the selection from a valid python expres-
sion declaring a list of atoms to include in the selection.

When clicking on one of these radiobutton, a media-specific dialog will be displayed in the
underneath frame.

selection from a selection file
To perform a deuteration selection from a selection file, you have to click on the from a

selection file radiobutton. A dialog will be displayed in the underneath frame from which you
will be asked for a deuteration selection file (see Fig. 4.25).

48



Figure 4.25: The deuteration selection dialog for a selection from a selection file.

The format of a nMOLDYN deuteration selection file is quite simple. It is an ASCII file with
the .nms extension whose contents is a python script made of two lines. The first line must set
the variable pdb to the path of a PDB file of the first frame of the trajectory being processed
(it can be obtained using the frame extractor tool described in Section 4.1.3 for example).The
second line must set the variable deuteration to a list of integers where each integers represents
the PDB serial number of the atoms to select. An example of a deuteration selection file is
shown in figure 4.26.

Figure 4.26: Example of a deuteration file.

Once a selection file has been loaded, the constructed selection string that will be used by
nMOLDYN for this kind of selection is displayed in the Selection preview entry at the bottom
of the dialog with highlighted keywords.

49



selection from the loaded trajectory
To perform a deuteration selection from the loaded trajectory, you have to click on the from

the loaded trajectory radiobutton. A dialog will be displayed in the underneath frame from
which you will construct your selection directly from the contents of the universe related to the
loaded trajectory (see Fig. 4.27).

Figure 4.27: The deuteration selection dialog for a selection from the loaded trajectory.

To construct the selection, it is compulsory to proceed in the following order:

1. select an object name among the ones displayed in the Object name listbox. This
will display in the Selection keywords listbox the selection keywords associated to the
selected object.

2. select a selection keyword among the ones displayed in Selection keywords listbox. This
will display in the Selection value listbox the values associated to the selected keyword.

3. unselect/select one or several values among the ones displayed in the Selection value
listbox.

By doing so, you will construct a selection string with the following format:

objectname name keyword value1,value2, . . .

where name is the selected object name (step 1), keyword is the selected keyword (step 2)
and value1,value2,. . . are the selected values (step 3). This constructed selection string, that
will be used by nMOLDYN, is displayed in the Selection preview entry at the bottom of the
dialog with highlighted keywords.

You can associate several selection keywords to a given selected object by repeating steps
2,3. In that case, the constructed selection string will have the following format:

objectname name keyword1 value1,value2,. . . OR keyword2, value1,value2,value3. . .

where the keyword OR will be interpreted by nMOLDYN as an union operator in the sense that
it will take the union between the set of atoms generated by keyword1 value1,value2, keyword2
value1,value2,value3 . . .

50



You can also include several objects in the selection by repeating steps 1,2,3. In that case,
the constructed selection string will have the following format:

objectname name1 keyword1 value1,. . . OR keyword2, value1,value2, . . . OR objectname name2
keyword1 value1 . . .

Finally, using the buttons within the Linkers frame each time a step 3 is completed allows
to construct more complex selection strings using the (, ), AND, OR linkers, the AND linker
acting as an intersection operator while the OR link, described above, acts as an union operator.
The button Clear clears up the selection string under construction.

The table 4.1 lists the selection keywords and values depending on the MMTK type of the
object being processed.

selection from an expression string
To perform a deuteration selection from an expression string, you have to click on the from

an expression string radiobutton. A dialog will be displayed in the underneath frame from
which you will enter a valid Python expression that must declare the selection variable as a list
of atoms of the loaded universe. The variable self.universe will be used as a reference for that
universe (see Fig. 4.28).

Figure 4.28: The deuteration selection dialog for a selection from an expression string.

Once an expression string has been entered press Return to register it. The constructed
selection string that will be used by nMOLDYN for this kind of selection will be displayed in
the Selection preview entry at the bottom of the dialog with highlighted keywords.

Whatever the selection media used, in case where non-hydrogens atoms were accidently
introduced in the deuteration selection, nMOLDYN will filtered them out from the resulting
selection.

51



4.2.2.3 Group selection

This kind of selection is especially desgned for analysis based on group of atoms on which a
given operation is performed collectively. By collectively, we mean that the selected group of
atoms will be treated as it was one object. For example, in rigid-body based analysis, selecting
a group of atoms will mean that this group will be considered as a single rigid-body that will
be used to derve the rigid-body trajectory. Another example, the study where one needs to
define the center of mass of a group of atoms in order to derive a property such as coordination
number or spatial density (see Sections 4.2.6.2 and 4.2.6.3). In that case, a center of mass will
be defined for each selected group of atoms.

By default, nMOLDYN consider all the atoms for a group selection. The dialog from which
a group selection is performed is displayed in figure 4.29.

Figure 4.29: The dialog from where a group selection is performed.

At the bottom of the dialog, the Actions frame contains the Cancel button to cancel the
selection and the OK button to validate the selecton.

On the top of the dialog, three radiobuttons allows to select from which media the selection
will be performed. This can be:

• from a selection file: this will perform the selection from a nMOLDYN group selection
file,

• from the loaded trajectory: this will perform the selection directly from the contents
of the universe contained in the loaded trajectory,

• from an expression string: this will perform the selection from a valid python expres-
sion declaring a list of atoms to include in the selection.

When clicking on one of these radiobutton, a media-specific dialog will be displayed in the
underneath frame.

52



selection from a selection file
To perform a group selection from a selection file, you have to click on the from a selection

file radiobutton. A dialog will be displayed in the underneath frame from which you will be
asked for a group selection file (see Fig. 4.30).

Figure 4.30: The group selection dialog for a selection from a selection file.

The format of a nMOLDYN group selection file is quite simple. It is an ASCII file with
the nms extension whose contents is a python script made of two lines. The first line must set
the variable pdb to the path of a PDB file of the first frame of the trajectory being processed
(it can be obtained using the frame extractor tool described in Section 4.1.3 for example).The
second line must set the variable deuteration to nested lists of integers where each nested list
will generate a group of atoms whose PDB serial number match the integer of the nested list.
An example of a deuteration selection file is shown in figure 4.31.

Figure 4.31: Example of a group file.

This example will create three groups. The first one made of atoms 1, 4, 9, 78, 101 and 134
of the PDB file, the second one made of the atoms 12, 23 and 192 and the third one made of
the atoms 11, 26, 1023, 245 and 234.

53



Once a selection file has been loaded, the constructed selection string that will be used by
nMOLDYN for this kind of selection is displayed in the Selection preview entry at the bottom
of the dialog with highlighted keywords.

selection from the loaded trajectory
To perform a group selection from the loaded trajectory, you have to click on the from the

loaded trajectory radiobutton. A dialog will be displayed in the underneath frame from
which you will construct your selection directly from the contents of the universe related to the
loaded trajectory (see Fig. 4.32).

Figure 4.32: The group selection dialog for a selection from the loaded trajectory.

To construct the selection, it is compulsory to proceed in the following order:

1. create a new type of group by clicking on New group button or overwrite an existing
one by selecting it in the Group number listbox,

2. select an object name among the ones displayed in the Object name listbox. This will
display the grouping levels associated to the selected object in the Grouping level listbox
and the selection keywords associated to the selected object in the Selection keywords
listbox,

3. select a grouping level among the ones displayed in the Grouping level listbox. This is
specific to group selection as when selecting a group of atoms, you must specify at which
level the selected atoms will be grouped. For example, if you perform a group selection
on a protein. If you set the grouping level to protein, then the group will be the whole
protein. But, if you set the grouping level to residue, then the group selection will results
on a set of Nresidues group where Nresidues is the number of residues of the protein.

4. select a selection keyword among the ones displayed in Selection keywords listbox. This
will display in the Selection value listbox the values associated to the selected keyword.

5. unselect/select one or several values among the ones displayed in the Selection value
listbox.

54



By doing so, you will construct a selection string with the following format:

group1 groupinglevel level objectname name keyword value1,value2, . . .

where group1 is the name of the group, level is the selected grouping level, name is the se-
lected object name (step 1), keyword is the selected keyword (step 2) and value1,value2,. . . are
the selected values (step 3). This constructed selection string is displayed in the Selection
preview entry at the bottom of the dialog with highlighted keywords.

You can associate several selection keywords to a given selected object by repeating steps
2,3. In that case, the constructed selection string will have the following format:

group1 groupinglevel level objectname name keyword1 value1,value2,. . . OR keyword2, value1,value2,value3. . .

where the keyword OR will be interpreted by nMOLDYN as an union operator in the sense that
it will take the union between the set of atoms generated by keyword1 value1,value2, keyword2
value1,value2,value3 . . .

You can also include several objects in the selection by repeating steps 1,2,3. In that case,
the constructed selection string will have the following format:

group1 groupinglevel level objectname name1 keyword1 value1,. . . OR keyword2, value1,value2,
. . . OR objectname name2 keyword1 value1 . . .

Finally, using the buttons within the Linkers frame each time a step 3 is completed allows
to construct more complex selection strings using the (, ), AND, OR linkers, the AND linker
acting as an intersection operator while the OR link, described above, acts as an union operator.
The button Clear clears up the selection string under construction.

The table 4.1 lists the selection keywords and values depending on the MMTK type of the
object being processed.

Here are some examples of group selection strings constructed from a protein whose name
is P892 and whose number of residues is 58:

• group1 groupinglevel residue objectname P892 atomelement carbon: will create 58 groups
made of the carbon atoms of each residue,

• group1 groupinglevel protein objectname P892 atomelement carbon,hydrogen: will create
1 group made of the carbon and hydrogens of the whole protein,

• group1 groupinglevel amine objectname P892 atomelement nitrogen group2 groupinglevel
hydroxy objectname P892 atomelement oxygen: will create two families of groups. The
first one contains groups made of the nitrogen atom of the each amine group of the protein.
The second one contains groups made of the oxygen atom of the each hydroxy group of
the protein.

selection from an expression string
To perform a group selection from an expression string, you have to click on the from an

expression string radiobutton. A dialog will be displayed in the underneath frame from which
you will enter a valid Python expression that must declare the selection variable as nested lists
of atoms of the loaded universe. The variable self.universe will be used as a reference for that
universe (see Fig. 4.33).

55



Figure 4.33: The group selection dialog for a selection from an expression string.

Here are some examples of valid expression strings that can be entered:

• selection = self.universe.objectList[0].atomList(): will pack all the atoms of the first object
of the universe in one group,

• selection = [o.atomList()[0:10] for o in self.universe.objectList()] : will create a distinct
group for each object of the universe with its ten first atoms.

Once an expression string has been entered press Return to register it. The constructed
selection string that will be used by nMOLDYN for this kind of selection will be displayed in
the Selection preview entry at the bottom of the dialog with highlighted keywords.

4.2.3 Running modes

All the analysis dialogs in nMOLDYN contains a frame called Actions located at the bottom
of the dialog. That frame contains the buttons

• Cancel,

• Estimate,

• Save,

• Run,

• Save And Run.

The Cancel button cancel the analysis and close the dialog. The Estimate button performs
just a single step of the analysis and pops up a message box with the estimated time for the
full analysis. Not all the analysis can be estimated. In that case, the popped up message will
inform you that the analysis is not estimable. The Save button pops up a dialogs from where
you can save the analysis settings either to a nMOLDYN autostart file either to a nMOLDYN
input file. The Run button runs the analysis directly from the GUI and finally the Save &
and Run combinates the actions of Save and Run buttons.

56



4.2.4 The Dynamics menu

Pressing the button Dynamics brings up a menu from which it is possible to choose the
following analysis:

• Mean-Square Displacement

• Root Mean-Square Displacement

• Radius Of Gyration

• Velocity AutoCorrelation Function

• Density Of States

• Pass-Band Filtered Trajectory

• Global Motion Trajectory

• Center Of Mass Trajectory

• Rigid-Body Trajectory

• Center Of Mass Trajectory

• Auto-Regressive Analysis

• Quasi-Harmonic Analysis

• Reorientational Correlation Function

• Angular Velocity AutoCorrelation Function

• Angular Density Of States

4.2.4.1 Mean-Square Displacement

Theory and implementation
Molecules in liquids and gases do not stay in the same place, but move constantly. This

process is called diffusion and it happens quite naturally in fluids at equilibrium. During this
process, the motion of an individual molecule does not follow a simple path [48]. As it travels,
the molecule undergoes some collisions with other molecules which prevent it from following a
straight line. If the path is examined in close detail, it will be seen to be a good approximation
to a random walk. Mathematically, a random walk is a series of steps where each step is taken
in a completely random direction from the one before. This kind of path was famously analysed
by Albert Einstein in a study of Brownian motion. He showed that the MSD of a particle
following a random walk is proportional to the time elapsed. This relationship can be written
as

< r2 >= 6Dt+ C (4.14)

where < r2 > is the MSD and t is the time. D and C are constants. The constant D defines
the so-called diffusion coefficient.

57



The figure 4.34 shows an example of a MSD analysis performed on a waterbox of 768 water
molecules.

Figure 4.34: MSD calculated for a 100 ps MD simulation of 256 water molecules using NPT
condition at 1 bar and 300 K.

To get the diffusion coefficient out of this plot, the slope of the linear part of the plot should
be calculated.

Defining,
dα(t, t0)

.
= Rα(t0 + t)−Rα(t0). (4.15)

the MSD of particle α can be defined as:

∆2
α(t) =

〈
d2
α(t, t0)

〉
t0

(4.16)

where Rα(t0) and Rα(t0 + t) are respectively the position of particle α at times t0 and t0 + t.
One can introduce a MSD with respect to a given axis n:

∆2
α(t, t0; n)

.
=
〈
d2
α(t, τ ; n)

〉
t0

(4.17)

with
dα(t, t0; n)

.
= n · dα(t, t0). (4.18)

The calculation of MSD is the standard way to obtain diffusion coefficients from MD simulations.
Assuming Einstein-diffusion in the long time limit one has for isotropic systems

Dα = lim
t→∞

1

6t
∆2
α(t). (4.19)

There exists also a well-known relation between the MSD and the velocity autocorrelation
function. Writing dα(t) =

∫ t
0 dτ vα(τ) in Eq. (4.16) one can show (see e.g. [50]) that

∆2
α(t) = 6

∫ t

0
dτ (t− τ)Cvv;αα(τ). (4.20)

58



Using now the definition (4.19) of the diffusion coefficient one obtains the relation

Dα =

∫ t

0
dτ Cvv;αα(τ). (4.21)

With Eq. (4.41) this can also be written as

Dα = πC̃vv;αα(0). (4.22)

Computationally, the MSD is calculated using the Fast Correlation Algorithm (FCA) [51].
In this framework, in the discrete case, the mean-square displacement of a particle is given by

∆2(m) =
1

Nt −m
Nt−m−1∑

k=0

[r(k +m)− r(k)]2, m = 0 . . . Nt − 1, (4.23)

where r(k) is the particle trajectory and Nt is the the number of frames of the trajectory. We
define now the auxiliary function

S(m)
.
=

Nt−m−1∑

k=0

[r(k +m)− r(k)]2, m = 0 . . . Nt − 1, (4.24)

which is splitted as follow:

S(m) = SAA+BB(m)− 2SAB(m), (4.25)

SAA+BB(m) =
Nt−m−1∑

k=0

[r2(k +m) + r2(k)], (4.26)

SAB(m) =
Nt−m−1∑

k=0

r(k) · r(k +m). (4.27)

The function SAB(m) can be computed using the FCA method described in Section A. For
SAA+BB(m) the following recursion relation holds:

SAA+BB(m) = SAA+BB(m− 1)− r2(m− 1)− r2(Nt −m), (4.28)

SAA+BB(0) =
Nt−1∑

k=0

r2(k). (4.29)

This allows one to construct the following efficient scheme for the computation of the MSD :

1. Compute DSQ(k) = r2(k), k = 0 . . . Nt − 1; DSQ(−1) = DSQ(Nt) = 0.

2. Compute SUMSQ = 2 ·∑Nt−1
k=0 DSQ(k).

3. Compute SAB(m) using the FFT method.

4. Compute MSD(m) in the following loop:

SUMSQ ← SUMSQ−DSQ(m− 1)−DSQ(Nt −m)
MSD(m) ← (SUMSQ− 2 · SAB(m)/(Nt −m)
m running from 0 to Nt − 1

It should be noted that the efficiency of this algorithm is the same as for the FCA computation
of time correlation functions since the number of operations in step (1), (2), and (4) grows
linearly with Nt.

59



Parameters
Pressing the Mean-Square Displacement button will pop up the dialog shown on figure

4.35

Figure 4.35: The dialog from where the MSD analysis will be set up and run.

The following input fields controls the parameters for the MSD analysis:

• Trajectory file
Format: Not an editable entry
Default: traj file where traj file is the name of the loaded trajectory
Description: the value of this widget can not be changed. It just recalls for information
purpose the name of the trajectory file loaded for the analysis.

• Frame selection
Format: string
Default: 1:traj length:1 where traj length is the number of frames of the trajectory.
Description: this widget allows to select the trajectory frames that will be used for the
analysis. This must be a string of the form:

first:last:step

60



where first is an integer specifying the first frame number to consider, last is an inte-
ger specifying the last frame number to consider and step is an integer specifying the step
number between two frames.

For example,

? 2:10:3 will select the frames 2, 5 and 8.

? 1:5:1 will select the frames 1, 2, 3, 4 and 5.

• Project displacement on
Format: string
Default: no
Description: this widget allows to specify a vector along which the MSD will be com-
puted. This vector does not need to be normalized as nMOLDYN will perform the
normalization when processing it. The entered value must have the following format:

vx:vy:vz

where vx, vy and vz are floats that represent respectively the x, y and z coordinates
of the vector.

• Subset selection
Format: subset selection string
Default: all
Description: this widget allows the selection of a subset of the system for the analysis.
See Section 4.2.2.1 for more details.

• Deuteration selection
Format: deuteration selection string
Default: no
Description: this widget allows the selection of a subset hydrogen atoms that will take
the atomic parameters of deuterium. See Section 4.2.2.2 for more details.

• Weights
Format: string equal to equal, mass, coherent, incoherent or atomicNumber
Default: equal
Description: this widget allows the selection of the weighting scheme to apply on each
atomic contribution to the MSD . See Section 4.2.1 for more details.

• MSD output file
Format: string
Default: MSD traj file.nc where traj file.nc is the name of the input trajectory
Description: this widget allows to enter the name of the NetCDF output file of the MSD
analysis. A CDL version of the NetCDF output file is also automatically created with
MSD traj file.cdl name.

61



Output
The results of a MSD analysis are stored in a NetCDF file whose main variables are namely:

• time: the times in ps at which the MSD was evaluated,

• msd: the corresponding MSD in nm2.

4.2.4.2 Root Mean-Square Deviation

Theory and implementation
The Root Mean-Square Deviation (RMSD) is maybe the most popular estimator of struc-

tural similarity. It is a numerical measure of the difference between two structures that can be
defined as:

RMSD(t) =

√∑Nα
α=1(rα(t)− rα(tref ))

Nα
(4.30)

where Nα is the number of atoms of the system, and rα(t) and rα(tref ) are respectively the
position of atom α at time t and tref where tref is a reference time usually choosen as the
first step of the simulation. Typically, RMSD is used to quantify the structural evolution of the
system during the simulation. It can provide precious information about the system especially if
it reached equilibrium or conversely if major structural changes occured during the simulation.

In nMOLDYN, RMSD is computed using the discretized version of equation 4.30:

RMSD(n ·∆t) =

√∑Nα
α=1(rα(t)− rref (t))

Nα
, n = 0 . . . Nt − 1. (4.31)

where Nt is the number of frames and ∆t is the time step.

Parameters
Pressing the Root Mean-Square Displacement button will pop up the dialog shown on

figure 4.36
The following input fields controls the parameters for the RMSD analysis:

• Trajectory file
Format: Not an editable entry
Default: traj file where traj file is the name of the loaded trajectory
Description: the value of this widget can not be changed. It just recalls for information
purpose the name of the trajectory file loaded for the analysis.

• Frame selection
Format: string
Default: 1:traj length:1 where traj length is the number of frames of the trajectory.
Description: this widget allows to select the trajectory frames that will be used for the
analysis. This must be a string of the form:

first:last:step

where first is an integer specifying the first frame number to consider, last is an inte-
ger specifying the last frame number to consider and step is an integer specifying the step
number between two frames.

For example,

62



Figure 4.36: The dialog from where the RMSD analysis will be set up and run.

? 2:10:3 will select the frames 2, 5 and 8.

? 1:5:1 will select the frames 1, 2, 3, 4 and 5.

• Reference frame
Format: integer in [1,traj length] where traj length is the number of frames of the input
trajectory
Default: 1
Description: this widget allows to specify which frame should be the reference for the
RMSD analysis. The value entered should be an integer ranging from 1 to traj length
where traj length is the number of rames of the input trajectory.

• Subset selection
Format: subset selection string
Default: all
Description: this widget allows the selection of a subset of the system for the analysis.
See Section 4.2.2.1 for more details.

63



• Deuteration selection
Format: deuteration selection string
Default: no
Description: this widget allows the selection of a subset hydrogen atoms that will take
the atomic parameters of deuterium. See Section 4.2.2.2 for more details.

• Weights
Format: string equal to equal, mass, coherent, incoherent or atomicNumber
Default: equal
Description: this widget allows the selection of the weighting scheme to apply on each
atomic contribution to the RMSD . See Section 4.2.1 for more details.

• RMSD output file
Format: string
Default: RMSD traj file.nc where traj file.nc is the name of the input trajectory
Description: this widget allows to enter the name of the NetCDF output file of the
RMSD analysis. A CDL version of the NetCDF output file is also automatically created
with RMSD traj file.cdl name.

Output
The results of a RMSD analysis are stored in a NetCDF file whose main variables are namely:

• time: the times in ps at which the RMSD was evaluated,

• rmsd: the corresponding RMSD in nm.

4.2.4.3 Radius of gyration

Theory and implementation
Radius Of Gyration (ROG) is the name of several related measures of the size of an object,

a surface, or an ensemble of points. It is calculated as the Root Mean Square Distance between
the system and a reference that can be either the center of gravity of the system either a given
axis. In nMOLDYN, the reference is choosen to be the center of gravity of the system under
study. Mathematically, it can be defined as:

ROG(t) =

√∑Nα
α=1(rα(t)− rcms(t))

Nα
(4.32)

where Nα is the number of atoms of the system, and rα(t) and rcms(t) are respectively the
position of atom α and the center of mass of the system at time t.

ROG describes the overall spread of the molecule and as such is a good measure for the
molecule compactness. For example, it can be useful when monitoring folding process.

In nMOLDYN, ROG is computed using the discretized version of equation 4.32:

ROG(n ·∆t) =

√∑Nα
α=1(rα(t)− rcms(t))

Nα
, n = 0 . . . Nt − 1. (4.33)

where Nt is the number of frames and ∆t is the time step.

64



Parameters
Pressing the Radius Of Gyration button will pop up the dialog shown on figure 4.37

Figure 4.37: The dialog from where the ROG analysis will be set up and run.

The following input fields controls the parameters for the ROG analysis:

• Trajectory file
Format: Not an editable entry
Default: traj file where traj file is the name of the loaded trajectory
Description: the value of this widget can not be changed. It just recalls for information
purpose the name of the trajectory file loaded for the analysis.

• Frame selection
Format: string
Default: 1:traj length:1 where traj length is the number of frames of the trajectory.
Description: this widget allows to select the trajectory frames that will be used for the
analysis. This must be a string of the form:

first:last:step

where first is an integer specifying the first frame number to consider, last is an inte-
ger specifying the last frame number to consider and step is an integer specifying the step
number between two frames.

For example,

? 2:10:3 will select the frames 2, 5 and 8.

? 1:5:1 will select the frames 1, 2, 3, 4 and 5.

65



• Subset selection
Format: subset selection string
Default: all
Description: this widget allows the selection of a subset of the system for the analysis.
See Section 4.2.2.1 for more details.

• Deuteration selection
Format: deuteration selection string
Default: no
Description: this widget allows the selection of a subset hydrogen atoms that will take
the atomic parameters of deuterium. See Section 4.2.2.2 for more details.

• Weights
Format: string equal to equal, mass, coherent, incoherent or atomicNumber
Default: equal
Description: this widget allows the selection of the weighting scheme to apply on each
atomic contribution to the ROG . See Section 4.2.1 for more details.

• ROG output file
Format: string
Default: ROG traj file.nc where traj file.nc is the name of the input trajectory
Description: this widget allows to enter the name of the NetCDF output file of the ROG
analysis. A CDL version of the NetCDF output file is also automatically created with
ROG traj file.cdl name.

Output
The results of a ROG analysis are stored in a NetCDF file whose main variables are namely:

• time: the times in ps at which the ROG was evaluated,

• rog: the corresponding ROG in nm.

4.2.4.4 Angular Correlation

Theory and implementation
The angular correlation analysis computes the autocorrelation of a set of vectors describing

the extent of a molecule in three orthogonal directions. This kind of analysis can be useful when
trying to highlight the fact that a molecule is constrainted in a given direction.

For a given triplet of non-colinear atoms g=(a1,a2,a3), one can derive an orthonormal set
of three vectors v1, v2, v3 using the following scheme:

• v1 = n1+n2
||n1+n2|| where n1 and n2 are respectively the normalized vectors along (a1,a2) and

(a1,a3) directions.

• v2 is defined as the clockwise normal vector orthogonal to v1 that belongs to the plane
defined by a1, a2 and a3 atoms

66



• ~v3 = ~v1 × ~v2

Thus, one can define the following autocorrelation functions for the vectors v1, v2 and v3

defined on triplet t :
ACg,i(t) = 〈vt,i(0) · vt,i(t)〉, i = 1, 2, 3 (4.34)

And the angular correlation averaged over all triplets is:

ACi(t) =

Ntriplets∑

g=1

ACg,i(t), i = 1, 2, 3 (4.35)

where Ntriplets is the number of selected triplets.

Parameters
Pressing the Angular Correlation button will pop up the dialog shown on figure 4.38

Figure 4.38: The dialog from where the AC analysis will be set up and run.

The following input fields controls the parameters for the Angular Correlation (AC ) anal-
ysis:

• Trajectory file
Format: string
Default: traj file where traj file is the name of the loaded trajectory
Description: the value of this widget can not be changed. It just recalls for information
purpose the name of the trajectory file loaded for the analysis.

67



• Frame selection
Format: string
Default: 1:traj length:1 where traj length is the number of frames of the trajectory.
Description: this widget allows to select the trajectory frames that will be used for the
analysis. This must be a string of the form:

first:last:step

where first is an integer specifying the first frame number to consider, last is an inte-
ger specifying the last frame number to consider and step is an integer specifying the step
number between two frames.

For example,

? 2:10:3 will select the frames 2, 5 and 8.

? 1:5:1 will select the frames 1, 2, 3, 4 and 5.

• Triplet selection
Format: group selection string
Default: all
Description: this widget allows the selection of the triplets of atoms from which the
analysis will be performed. See Section 4.2.2.3 for more details. Any selection that does
not contain exactly three atoms will be discarded.

• Atom order
Format: string
Default: no
Description: this widget allows to specify the order in which the atoms a1, a2 and a3
should be ordered. By default, the order will be defined by nMOLDYN by ranking for
the atoms of each triplet by their MMTK name. Otherwise, the entered value must have
the following specific format:

MMTK name for a1,MMTK name for a2,MMTK name for a3

• AC output file
Format: string
Default: AC traj file.nc where traj file.nc is the name of the input trajectory
Description: this widget allows to enter the name of the NetCDF output file of the AC
analysis. A CDL version of the NetCDF output file is also automatically created with
AC traj file.cdl name.

68



Output
The results of a AC analysis are stored in a NetCDF file whose main variables are namely:

• time: the times in ps at which the AC was evaluated,

• triplet: the index for each triplet considered in the analysis,

• ac 1 by triplet: the angular correlation of v1 for each triplet according Eq.4.34,

• ac 2 by triplet: the angular correlation of v2 for each triplet according Eq.4.34,

• ac 3 by triplet: the angular correlation of v3 for each triplet according Eq.4.34,

• ac 1: the group-averaged angular correlation for v1 according Eq.4.35,

• ac 2: the group-averaged angular correlation for v2 according Eq.4.35,

• ac 3: the group-averaged angular correlation for v3 according Eq.4.35.

4.2.4.5 Velocity Autocorrelation Function

Theory and implementation
The Velocity AutoCorrelation Function (VACF ) is another interesting property describing

the dynamics of a molecular system. Indeed, it reveals the underlying nature of the forces acting
on the system.

In a molecular system that would be made of non interacting particles, the velocities would
be constant at any time triggering the VACF to be a constant value. Now, if we think about a
system with small interactions such as in a gas-phase, the magnitude and direction of the velocity
of a particle will change gradually over time due to its collision with the other particles of the
molecular system. In such a system, the VACF will be represented by a decaying exponential.

In the case of solid phase, the interaction are much stronger and, as a results, the atoms
are bound to a given position from which they will move backwards and forwards oscillating
between positive and negative values of their velocity. The oscillations will not be of equal
magnitude however, but will decay in time, because there are still perturbative forces acting on
the atoms to disrupt the perfection of their oscillatory motion. So, in that case the VACF will
look like a damped harmonic motion.

Finally, in the case of liquid phase, the atoms have more freedom than in solid phase and
because of the diffusion process, the oscillatory motion seen in solid phase will be cancelled quite
rapidly depending on the density of the system. So, the VACF will just have one very damped
oscillation before decaying to zero. This decaying time can be considered as the average time
for a collision between two atoms to occur before they diffuse away.

Mathematically, the VACF of atom α in an atomic or molecular system is usually defined
as

Cvv;αα(t)
.
=

1

3
〈vα(t0) · vα(t0 + t)〉t0 . (4.36)

In some cases, e.g. for non-isotropic systems, it is useful to define VACF along a given axis,

Cvv;αα(t; n)
.
= 〈vα(t0; n)vα(t0 + t; n)〉t0 , (4.37)

where vα(t; n) is given by
vα(t; n)

.
= n · vα(t). (4.38)

The vector n is a unit vector defining a space-fixed axis.

69



The VACF of the particles in a many body system can be related to the incoherent dynamic
structure factor by the relation:

limq→0
ω2

q2
S(q, ω) = G(ω), (4.39)

where G(ω) is the Density Of States (DOS ). For an isotropic system it reads

G(ω) =
∑

α

b2α,incC̃vv;αα(ω), (4.40)

C̃vv;αα(ω) =
1

2π

∫ +∞

−∞
dt exp[−iωt]Cvv;αα(t). (4.41)

For non-isotropic systems relation (4.39) holds if the DOS is computed from the atomic velocity
autocorrelation functions Cvv;αα(t; nq), where nq is the unit vector in the direction of q.

Parameters
Pressing the Velocity Autocorrelation Function button will pop up the dialog shown on

figure 4.39
The following input fields controls the parameters for the VACF analysis:

• Trajectory file
Format: string
Default: traj file where traj file is the name of the loaded trajectory
Description: the value of this widget can not be changed. It just recalls for information
purpose the name of the trajectory file loaded for the analysis.

• Frame selection
Format: string
Default: 1:traj length:1 where traj length is the number of frames of the trajectory.
Description: this widget allows to select the trajectory frames that will be used for the
analysis. This must be a string of the form:

first:last:step

where first is an integer specifying the first frame number to consider, last is an inte-
ger specifying the last frame number to consider and step is an integer specifying the step
number between two frames.

For example,

? 2:10:3 will select the frames 2, 5 and 8.

? 1:5:1 will select the frames 1, 2, 3, 4 and 5.

• Differentiation order
Format: integer in [0,5]
Default: 0 if velocities are stored in the trajectory file, 1 otherwise
Description: this widget allows to specify the order of the derivation scheme used to get

70



Figure 4.39: The dialog from where the VACF analysis will be set up and run.

the velocities out of the coordinates. If your trajectory NetCDF file already contains the
velocities then just select 0. However, you can still decide to get the velocities out of the
coordinates. In that case, nMOLDYN performs a numerical differentiation of the input
data. To do so, nMOLDYN can perform numerical differentiation from order 1 to order
5. Using order 1, the first time derivative of each point r(ti) is calculated as

ṙ(ti) =
r(ti+1)− r(ti)

∆t
, (4.42)

where ∆t is the time step. Choosing order N with N=2,...,5, nMOLDYN calculates
the first time-derivative of each point r(ti) (r = x, y, z) using the N -order polynomial
interpolating the N+1 points across r(ti), where r(ti) belongs to this set [52].

71



• Project displacement on
Format: string
Default: no
Description: this widget allows to specify a vector along which the VACF will be com-
puted. This vector does not need to be normalized as nMOLDYN will perform the
normalization when processing it. The entered value must have the following format:

vx:vy:vz

where vx, vy and vz are floats that represent respectively the x, y and z coordinates
of the vector.

• Normalize
Format: string equal to yes or no
Default: no
Description: if set to yes normalize to 1 the VACF(t = 0).

• Subset selection
Format: subset selection string
Default: all
Description: this widget allows the selection of a subset of the system for the analysis.
See Section 4.2.2.1 for more details.

• Deuteration selection
Format: deuteration selection string
Default: no
Description: this widget allows the selection of a subset hydrogen atoms that will take
the atomic parameters of deuterium. See Section 4.2.2.2 for more details.

• Weights
Format: string equal to equal, mass, coherent, incoherent or atomicNumber
Default: equal
Description: this widget allows the selection of the weighting scheme to apply on each
atomic contribution to the VACF . See Section 4.2.1 for more details.

• VACF output file
Format: string
Default: VACF traj file.nc where traj file.nc is the name of the input trajectory
Description: this widget allows to enter the name of the NetCDF output file of the
VACF analysis. A CDL version of the NetCDF output file is also automatically created
with VACF traj file.cdl name.

72



Output
The results of a VACF analysis are stored in a NetCDF file whose main variables are namely:

• time: the times in ps at which the VACF was evaluated,

• vacf: the corresponding VACF in nm2s−2.

4.2.4.6 Density Of States

Theory and implementation
nMOLDYN calculates the power spectrum of the VACF , which in case of the mass-weighted

VACF defines the phonon discrete DOS , (see Section 4.2.4.5) defined as:

DOS(n ·∆ν)
.
=

∑

α

ωαC̃vv;αα(n ·∆ν), n = 0 . . . Nt − 1. (4.43)

Nt is the total number of time steps and ∆ν = 1/(2Nt∆t) is the frequency step. DOS(n ·∆ν)
can be computed either for the isotropic case or with respect to a user-defined axis. The
spectrum DOS(n ·∆ν) is computed from the unnormalized VACF , such that DOS(0) gives an
approximate value for the diffusion constant D =

∑
αDα (see Eqs. 4.21 and 4.22). DOS(n ·∆ν)

is smoothed by applying a Gaussian window in the time domain [76] (see Section A). Its width
in the time domain is σt = α/T , where T is the length of the simulation. We remark that the
diffusion constant obtained from DOS is biased due to the spectral smoothing procedure since
the VACF is weighted by this window Gaussian function. nMOLDYN computes the density of
states starting from both atomic velocities and atomic coordinates. In this case the velocities are
computed by numerical differentiation of the coordinate trajectories correcting first for possible
jumps due to periodic boundary conditions.

Parameters
Pressing the Density Of States button will pop up the dialog shown on figure 4.40
The following input fields controls the parameters for the DOS analysis:

• Trajectory file
Format: string
Default: traj file where traj file is the name of the loaded trajectory
Description: the value of this widget can not be changed. It just recalls for information
purpose the name of the trajectory file loaded for the analysis.

• Frame selection
Format: string
Default: 1:traj length:1 where traj length is the number of frames of the trajectory.
Description: this widget allows to select the trajectory frames that will be used for the
analysis. This must be a string of the form:

first:last:step

where first is an integer specifying the first frame number to consider, last is an inte-
ger specifying the last frame number to consider and step is an integer specifying the step
number between two frames.

For example,

73



Figure 4.40: The dialog from where the DOS analysis will be set up and run.

? 2:10:3 will select the frames 2, 5 and 8.

? 1:5:1 will select the frames 1, 2, 3, 4 and 5.

• Differentiation order
Format: integer in [0,5]
Default: 0 if velocities are stored in the trajectory file, 1 otherwise
Description: this widget allows to specify the order of the derivation scheme used to get
the velocities out of the coordinates. If your trajectory NetCDF file already contains the
velocities then just select 0. However, you can still decide to get the velocities out of the
coordinates. In that case, nMOLDYN performs a numerical differentiation of the input
data. To do so, nMOLDYN can perform numerical differentiation from order 1 to order
5. Using order 1, the first time derivative of each point r(ti) is calculated as

ṙ(ti) =
r(ti+1)− r(ti)

∆t
, (4.44)

74



where ∆t is the time step. Choosing order N with N=2,...,5, nMOLDYN calculates
the first time-derivative of each point r(ti) (r = x, y, z) using the N -order polynomial
interpolating the N+1 points across r(ti), where r(ti) belongs to this set [52].

• Project displacement on
Format: string
Default: no
Description: this widget allows to specify a vector along which the DOS will be com-
puted. This vector does not need to be normalized as nMOLDYN will perform the
normalization when processing it. The entered value must have the following format:

vx:vy:vz

where vx, vy and vz are floats that represent respectively the x, y and z coordinates
of the vector.

• FFT window
Format: float in [0.0,100.0]
Default: 10.0
Description: this widget allows to define the width in percentage of the trajectory length
of the Gaussian function to be used in the smoothing procedure for the calculation of the
DOS . See Appendix A for more details.

• Subset selection
Format: subset selection string
Default: all
Description: this widget allows the selection of a subset of the system for the analysis.
See Section 4.2.2.1 for more details.

• Deuteration selection
Format: deuteration selection string
Default: no
Description: this widget allows the selection of a subset hydrogen atoms that will take
the atomic parameters of deuterium. See Section 4.2.2.2 for more details.

• Weights
Format: string equal to equal, mass, coherent, incoherent or atomicNumber
Default: equal
Description: this widget allows the selection of the weighting scheme to apply on each
atomic contribution to the DOS . See Section 4.2.1 for more details.

• DOS Output file
Format: string

75



Default: DOS traj file.nc where traj file.nc is the name of the input trajectory
Description: this widget allows to enter the name of the NetCDF output file of the DOS
analysis. A CDL version of the NetCDF output file is also automatically created with
DOS traj file.cdl name.

Output
The results of a DOS analysis are stored in a NetCDF file whose main variables are namely:

• frequency: the frequencies in THz at which the DOS was evaluated,

• dos: the corresponding DOS .

4.2.4.7 Pass-Band Filtered Trajectory

Theory and implementation
It is often of interest to restrict attention to motions in a specific frequency interval, both

for quantitative analysis and for visualization by animated display. This is particularly use-
ful to study low-frequency motions without being distracted by the high frequency ”noise”.
nMOLDYN can create Pass-Band Filtered Trajectory (PBFT ) by applying a frequency pass-
band filter to the atomic trajectories, either on the whole system or on an user-defined subset.
The result is stored in a new trajectory file that contains only motions in the chosen interval.
Frequency filtering uses a straightforward algorithm:

• take the discrete Fourier transform of each particle trajectory,

• set the Fourier coefficients outside the filtering interval to zero,

• and transform back to the time domain.

This corresponds to applying a rectangular window in the frequency domain.

Parameters
Pressing the Pass-Band Filtered Trajectory button will pop up the dialog shown on figure

4.41
The following input fields controls the parameters for the PBFT analysis:

• Trajectory file
Format: string
Default: traj file where traj file is the name of the loaded trajectory
Description: the value of this widget can not be changed. It just recalls for information
purpose the name of the trajectory file loaded for the analysis.

• Frame selection
Format: string
Default: 1:traj length:1 where traj length is the number of frames of the trajectory.
Description: this widget allows to select the trajectory frames that will be used for the
analysis. This must be a string of the form:

first:last:step

76



Figure 4.41: The dialog from where the PBFT analysis will be set up and run.

where first is an integer specifying the first frame number to consider, last is an inte-
ger specifying the last frame number to consider and step is an integer specifying the step
number between two frames.

For example,

? 2:10:3 will select the frames 2, 5 and 8.

? 1:5:1 will select the frames 1, 2, 3, 4 and 5.

• Pass-band filter
Format: string
Default: 0.0:1000.0
Description: this widget allows to specify respectively the minimum and maximum fre-
quencies for the pass-band filter. The entered value must have the following format:

fmin:fmax

where fmin and fmax are respectively the minimum and maximum frequencies in THz of
the pass-band filter.

77



• Subset selection
Format: subset selection string
Default: all
Description: this widget allows the selection of a subset of the system for the analysis.
See Section 4.2.2.1 for more details.

• PBFT Output file
Format: string
Default: PBFT traj file.nc where traj file.nc is the name of the input trajectory
Description: this widget allows to enter the name of the NetCDF output file of the
PBFT analysis.

Output
The results of a PBFT analysis is a MMTK NetCDF trajectory file containing the pass-band

filtered trajectory.

4.2.4.8 Global Motion Filtered Trajectory

Theory and implementation
It is often of interest to separate global motion from internal motion, both for quantitative

analysis and for visualization by animated display. Obviously, this can be done under the
hypothesis that global and internal motions are decoupled within the length and timescales of
the analysis. nMOLDYN can create Global Motion Filtered Trajectory (GMFT ) by filtering
out global motions (made of the three translational and rotational degrees of freedom), either
on the whole system or on an user-defined subset, by fitting it to a reference structure (usually
the first frame of the MD). Global motion filtering uses a straightforward algorithm:

• for the first frame, find the linear transformation such that the coordinate origin becomes
the center of mass of the system and its principal axes of inertia are parallel to the three
coordinates axes (also called principal axes transformation),

• this provides a reference configuration Cref ,

• for any other frames f, finds and applies the linear transformation that minimizes the
RMS distance between frame f and Cref .

The result is stored in a new trajectory file that contains only internal motions. This analysis
can be useful in case where diffusive motions are not of interest or simply not accessible to the
experiment (time resolution, powder analysis . . . ).

Parameters
Pressing the Global Motion Filtered Trajectory button will pop up the dialog shown on

figure 4.42

78



Figure 4.42: The dialog from where the GMFT analysis will be set up and run.

The following input fields controls the parameters for the GMFT analysis:

• Trajectory file
Format: string
Default: traj file where traj file is the name of the loaded trajectory
Description: the value of this widget can not be changed. It just recalls for information
purpose the name of the trajectory file loaded for the analysis.

• Frame selection
Format: string
Default: 1:traj length:1 where traj length is the number of frames of the trajectory.
Description: this widget allows to select the trajectory frames that will be used for the
analysis. This must be a string of the form:

first:last:step

where first is an integer specifying the first frame number to consider, last is an inte-
ger specifying the last frame number to consider and step is an integer specifying the step
number between two frames.

For example,

? 2:10:3 will select the frames 2, 5 and 8.

? 1:5:1 will select the frames 1, 2, 3, 4 and 5.

79



• Subset selection
Format: subset selection string
Default: all
Description: this widget allows the selection of a subset of the system for the analysis.
See Section 4.2.2.1 for more details.

• GMFT Output file
Format: string
Default: GMFT traj file.nc where traj file.nc is the name of the input trajectory
Description: this widget allows to enter the name of the NetCDF output file of the
GMFT analysis.

Output
The results of a GMFT analysis is a MMTK NetCDF trajectory file containing the trajectory

with the global motion filtered out.

4.2.4.9 Rigid-Body Trajectory

Theory and implementation
To analyze the dynamics of complex molecular systems it is often desirable to consider the

overall motion of molecules or molecular subunits. We will call this motion rigid-body motion
in the following. Rigid-body motions are fully determined by the dynamics of the centroid,
which may be the center-of-mass, and the dynamics of the angular coordinates describing the
orientation of the rigid body. The angular coordinates are the appropriate variables to compute
angular correlation functions of molecular systems in space and time. In most cases, however,
these variables are not directly available from MD simulations since MD algorithms typically
work in cartesian coordinates. Molecules are either treated as flexible, or, if they are treated
as rigid, constraints are taken into account in the framework of cartesian coordinates [54]. In
nMOLDYN, Rigid-Body Trajectory (RBT ) can be defined from a MD trajectory by fitting
rigid reference structures, defining a (sub)molecule, to the corresponding structure in each
time frame of the trajectory. Here ‘fit’ means the optimal superposition of the structures in a
least-squares sense. We will describe now how rigid body motions, i.e. global translations and
rotations of molecules or subunits of complex molecules, can be extracted from a MD trajectory.
A more detailed presentation is given in [55]. We define an optimal rigid-body trajectory in the
following way: for each time frame of the trajectory the atomic positions of a rigid reference
structure, defined by the three cartesian components of its centroid (e.g. the center of mass)
and three angles, are as close as possible to the atomic positions of the corresponding structure
in the MD configuration. Here ‘as close as possible’ means as close as possible in a least-squares
sense.

Optimal superposition. We consider a given time frame in which the atomic positions
of a (sub)molecule are given by xα, α = 1 . . . N . The corresponding positions in the reference

structure are denoted as x
(0)
α , α = 1 . . . N . For both the given structure and the reference

structure we introduce the yet undetermined centroids X and X(0), respectively, and define the
deviation

∆α
.
= D(q)

[
x(0)
α −X(0)

]
− [xα −X] . (4.45)

Here D(q) is a rotation matrix which depends on also yet undetermined angular coordinates
which we chose to be quaternion parameters, abbreviated as vector q = (q0, q1, q2, q3). The

80



quaternion parameters fulfill the normalization condition q · q = 1 [56]. The target function to
be minimized is now defined as

m(q; X,X(0)) =
∑

α

ωα|∆|2α. (4.46)

where ωα are atomic weights (see Section 4.2.1). The minimization with respect to the centroids
is decoupled from the minimization with respect to the quaternion parameters and yields

X =
∑

α

ωα xα, (4.47)

X(0) =
∑

α

ωα x(0)
α . (4.48)

We are now left with a minimization problem for the rotational part which can be written as

m(q) =
∑

α

ωα
[
D(q)r(0)

α − rα
]2 !

= Min. (4.49)

The relative position vectors

rα = xα −X, (4.50)

r(0)
α = x(0)

α −X(0), (4.51)

are fixed and the rotation matrix reads [56]

D(q) =



q2

0 + q2
1 − q2

2 − q2
3 2(−q0q3 + q1q2) 2(q0q2 + q1q3)

2(q0q3 + q1q2) q2
0 + q2

2 − q2
1 − q2

3 2(−q0q1 + q2q3)
2(−q0q2 + q1q3) 2(q0q1 + q2q3) q2

0 + q2
3 − q2

1 − q2
2


 . (4.52)

Quaternions and rotations. The rotational minimization problem can be elegantly
solved by using quaternion algebra. Quaternions are so-called hypercomplex numbers, hav-
ing a real unit, 1, and three imaginary units, I, J, and K. Since IJ = K (cyclic), quaternion
multiplication is not commutative. A possible matrix representation of an arbitrary quaternion,

A = a0 · 1 + a1 · I + a2 · J + a3 ·K, (4.53)

reads

A =




a0 −a1 −a2 −a3

a1 a0 −a3 a2

a2 a3 a0 −a1

a3 −a2 a1 a0


 . (4.54)

The components aν are real numbers. Similarly as normal complex numbers allow one to
represent rotations in a plane, quaternions allow one to represent rotations in space. Consider
the quaternion representation of a vector r, which is given by

R = x · I + y · J + z ·K, (4.55)

and perform the operation
R′ = QRQT , (4.56)

where Q is a normalized quaternion,

‖Q‖2 .
= q2

0 + q2
1 + q2

2 + q2
3 =

1

4
tr{QTQ} = 1. (4.57)

81



The symbol tr stands for ‘trace’. We note that a normalized quaternion is represented by an
orthogonal 4× 4 matrix. R′ may then be written as

R′ = x′ · I + y′ · J + z′ ·K, (4.58)

where the components x′, y′, z′, abbreviated as r′, are given by

r′ = D(q)r. (4.59)

The matrix D(q) is the rotation matrix defined in (4.52).

Solution of the minimization problem. In quaternion algebra, the rotational mini-
mization problem may now be phrased as follows:

m(q) =
∑

α

ωα‖QR(0)
α QT −Rα‖2 !

= Min. (4.60)

Since the matrix Q representing a normalized quaternion is orthogonal this may also be written
as

m(q) =
∑

α

ωα‖QR(0)
α −RαQ‖2. !

= Min. (4.61)

This follows from the simple fact that ‖A‖ = ‖AQ‖, if Q is normalized. Eq. (4.61) shows that
the target function to be minimized can be written as a simple quadratic form in the quaternion
parameters [55],

m(q) = q ·Mq, (4.62)

M =
∑

α

ωαMα. (4.63)

The matrices Mα are positive semi-definite matrices depending on the positions rα and r
(0)
α :

Mα,11 = x2
α + y2

α + z2
α + x2

0α + y2
0α + z2

0α − 2xαx0α − 2yαy0α − 2zαz0α

Mα,12 = 2(yαz0α − zαy0α)
Mα,13 = 2(−xαz0α + zαx0α)
Mα,14 = 2(xαy0α − yαx0α)
Mα,22 = x2

α + y2
α + z2

α + x2
0α + y2

0α + z2
0α − 2xαx0α + 2yαy0α + 2zαz0α

Mα,23 = −2(xαy0α + yαx0α)
Mα,24 = −2(xαz0α + zαx0α)
Mα,33 = x2

α + y2
α + z2

α + x2
0α + y2

0α + z2
0α + 2xαx0α − 2yαy0α + 2zαz0α

Mα,44 = −2(yαz0α + zαy0α)
Mα,44 = x2

α + y2
α + z2

α + x2
0α + y2

0α + z2
0α + 2xαx0α + 2yαy0α − 2zαz0α





(4.64)

The rotational fit is now reduced to the problem of finding the minimum of a quadratic
form with the constraint that the quaternion to be determined must be normalized. Using the
method of Lagrange multipliers to account for the normalization constraint we have

m′(q, λ) = q ·Mq− λ(q · q− 1)
!

= Min. (4.65)

This leads immediately to the eigenvalue problem

Mq = λq, (4.66)

q · q = 1. (4.67)

Now any normalized eigenvector q fulfills the relation λ = q ·Mq ≡ m(q). Therefore the
eigenvector belonging to the smallest eigenvalue, λmin, is the desired solution. At the same
time λmin gives the average error per atom.

The result of RBT analysis is stored in a new trajectory file that contains only RBT motions.

82



Parameters
Pressing the Rigid-Body Trajectory button will pop up the dialog shown on figure 4.43

Figure 4.43: The dialog from where the RBT analysis will be set up and run.

The following input fields controls the parameters for the RBT analysis:

• Trajectory file
Format: string
Default: traj file where traj file is the name of the loaded trajectory
Description: the value of this widget can not be changed. It just recalls for information
purpose the name of the trajectory file loaded for the analysis.

• Frame selection
Format: string
Default: 1:traj length:1 where traj length is the number of frames of the trajectory.
Description: this widget allows to select the trajectory frames that will be used for the
analysis. This must be a string of the form:

first:last:step

where first is an integer specifying the first frame number to consider, last is an inte-

83



ger specifying the last frame number to consider and step is an integer specifying the step
number between two frames.

For example,

? 2:10:3 will select the frames 2, 5 and 8.

? 1:5:1 will select the frames 1, 2, 3, 4 and 5.

• Reference frame
Format: integer in [1,traj length] where traj length is the number of frames of the input
trajectory
Default: 1
Description: this widget allows to specify which frame should be the reference for the
RBT analysis. The value entered should be an integer ranging from 1 to traj length where
traj length is the number of rames of the input trajectory.

• Remove translation
Format: string equal to yes or no
Default: no
Description: if set to yes the translation motion will be removed from the RBT .

• Stepwise RBT
Format: string equal to yes or no
Default: no
Description: if set to yes, each frame f will serve as the reference for the frame f+1
when defining the RBT canceling the value entred in Reference frame entry.

• Group selection
Format: group selection string
Default: all
Description: this widget allows the selection of the groups of atoms that will be defined
as rigid-bodies when performing the RBT . See Section 4.2.2.3 for more details.

• RBT output file
Format: string
Default: RBT traj file.nc where traj file.nc is the name of the input trajectory
Description: this widget allows to enter the name of the NetCDF output file of the RBT
analysis.

Output
The results of a RBT analysis is a MMTK NetCDF trajectory file containing the rigid-body

trajectory. Beside the trajectory, other NetCDF variables are stored in this file namely:

• groupi, i = 1, 2, . . .Ngroups: the MMTK indexes of each atom of groups 1, 2, . . .Ngroups

where Ngroups is the number of groups selected for the analysis,

84



• quaternion: a matrix of dimension (NFrames, Ngroups, 4) where NFrames is the number of
selected frames for the RBT analysis. This matrix contains the quaternions produced by
the RBT analysis at each frame and for each rigid-body,

• cms: a matrix of dimension (NFrames, Ngroups, 3) that contains the coordinates of the
center of mass of each rigid-body for each frame,

• fit: a matrix of dimension (NFrames, Ngroups) that contains the results of the fit produced
by the RBT fitting procedure at each frame and for each rigid-body.

4.2.4.10 Center Of Mass Trajectory

Theory and implementation
The Center Of Mass Trajectory (COMT ) analysis consists in deriving the trajectory of

the respective centers of mass of a set of groups of atoms. In order to produce a visualizable
trajectory, nMOLDYN assigns the centers of mass to pseudo-hydrogen atoms whose mass is
equal to the mass of their associated group. Thus, the produced trajectory can be reused
for other analysis. In that sense, COMT analysis is a practical way to reduce noticeably the
dimensionality of a system.

Parameters
Pressing the Center Of Mass Trajectory button will pop up the dialog shown on figure

4.44

Figure 4.44: The dialog from where the COMT analysis will be set up and run.

The following input fields controls the parameters for the COMT analysis:

• Trajectory file
Format: string

85



Default: traj file where traj file is the name of the loaded trajectory
Description: the value of this widget can not be changed. It just recalls for information
purpose the name of the trajectory file loaded for the analysis.

• Frame selection
Format: string
Default: 1:traj length:1 where traj length is the number of frames of the trajectory.
Description: this widget allows to select the trajectory frames that will be used for the
analysis. This must be a string of the form:

first:last:step

where first is an integer specifying the first frame number to consider, last is an inte-
ger specifying the last frame number to consider and step is an integer specifying the step
number between two frames.

For example,

? 2:10:3 will select the frames 2, 5 and 8.

? 1:5:1 will select the frames 1, 2, 3, 4 and 5.

• Group selection
Format: group selection string
Default: all
Description: this widget allows the selection of the groups of atoms whose trajectories
of their centers of mass will define the COMT . See Section 4.2.2.3 for more details.

• COMT output file
Format: string
Default: COMT traj file.nc where traj file.nc is the name of the input trajectory
Description: this widget allows to enter the name of the NetCDF output file of the
COMT analysis.

Output
The results of a COMT analysis is a MMTK NetCDF trajectory file containing the trajectory

of the centers of mass of each selected group of atoms.

4.2.4.11 Auto-Regressive Analysis

Theory and implementation
The concept of Auto-Regressive Analysis (ARA) analysis is intimitely related to the one of

memory function. Memory functions have been used for a long time in theoretical statistical
physics to describe the time dependence of autocorrelation functions. Nevertheless, the use
of memory functions in the context of MD simulations has been hindered by the lack of a
suitable numerical algorithm for their calculation. Such an algorithm has been published and
is now implemented in nMOLDYN [57]. The key point is that a reliable estimates for memory

86



functions can be obtained by assuming an Auto-Regressive (AR) model for the underlying
stochastic process and not for the memory function itself.

To compute the memory function ξ(t) from a discrete time serie x(n) ≡ x(n∆t) the latter
is modelled by an autoregressive stochastic process of order P [58, 59],

x(t) =
P∑

n=1

a(P )
n x(t− n∆t) + εP (t). (4.68)

Here εP (t) is white noise with zero mean and amplitude σP . The coeffients {a(P )
n } are fitted to

the discrete time serie using Burg’s algorithm [60, 61], and σP is given by

σ2
P = r(0)−

P∑

n=1

a(P )
n (n∆t), (4.69)

where r(t) is the autocorrelation function of x(t)

r(t) := 〈x(t)x(0)〉. (4.70)

In all following calculations nMOLDYN works with a set of coefficients {an} which has been
averaged over all selected atoms and the three Cartesian coordinates.

VACF within the AR model The autocorrelation function r(t) introduced in the pre-
vious Section is here the normalized VACF

V ACF (t) :=
〈v(t)v(0)〉
〈v2(0)〉 (4.71)

hence r(0) = V ACF (0) = 1. Here v(t) is the x-, y-, or z-component of the velocity of a ‘tagged’
atom. The memory function ξ(t) of ψ(t) is defined by the relation

d

dt
VACF (t) = −

∫ t

0
dτ ξ(t− τ)VACF (τ). (4.72)

Eq. (4.72) is called the memory function equation.
Within the AR-model the z-transform of the VACF has the form

VACF(AR)(z) =
1

a
(P )
P

−zPσ2
P∏P

k=1(z − zk)
∏P
l=1(z − z−1

l )
. (4.73)

Here the {zk} are the zeros of

p(z) = zP −
P∑

k=1

a
(P )
k zP−k. (4.74)

We recall that the z-transform of an arbitrary discrete function f(n) is given by F (z) =∑+∞
n=−∞ f(n)z−n, and the inverse transform by f(n) = 1

2πi

∮
C dz z

n−1F (z). Applying the in-
verse z-transform to (4.73) yields

V ACF (AR)(n) =
P∑

j=1

βjz
|n|
j , (4.75)

87



where the coefficients βj are given by

βj =
1

aP

−zP−1
j σ2

P∏P
k=1,k 6=j(zj − zk)

∏P
l=1(zj − z−1

l )
. (4.76)

Note that V ACF (AR)(n) has a multiexponential form, and that the stability criterion

|zj | < 1, j = 1, . . . , P, (4.77)

must be fulfilled. This is guaranteed by the Burg-algorithm [60, 61].

Density of states within the AR model Evaluating VACF(AR)(z) as given by (4.73)
at z = exp(iω∆t) yields the density of states within the AR model:

DOS(AR)(ω) =
∆t

2

kBT

M
VACF(AR) (exp[iω∆t]) . (4.78)

Here M is the mass of the tagged atom, kB is the Boltzmann constant, and T the temperature.
Note that the VACF and the density of states within the AR model are entirely determined by

the coefficients a
(P )
n .

Discrete memory function of the VACF within the AR model Starting from
the memory function equation of the VACF (Eq. 4.72), the first step towards a numerical
computation of the memory function consists in discretizing Eq. 4.72

V ACF (n+ 1)− V ACF (n)

∆t
= −

n−1∑

k=0

∆t ξ(n− k)ψ(k), (4.79)

Eq. (4.79) is now subjected to a one-sided z-transform. Using that

Z> {f(n+ 1)− f(n)} = zF>(z) − zf(0) (4.80)

for any discrete function f(n) whose one-sided z-transform exists, one obtains from (4.79)

Ξ>(z) =
1

∆t2

(
z

VACF>(z)
+ 1− z

)
, (4.81)

using that V ACF (0) = 1. The one-sided z-transform of an arbitrary discrete function f(n) is
defined as F>(z) =

∑∞
n=0 f(n)z−n. Here it has been used that the one-sided z-transform of the

discrete convolution integral is just the product Ξ>(z)VACF>(z). Inserting the definition of
the one-sided z -transform for Ξ>(z) and VACF>(z), this equation can be rewritten as

∞∑

j=0

ξ(j) z−j =
1

∆t2

∑∞
j=0 [V ACF (j)− V ACF (j + 1)] z−j

∑∞
j=0 V ACF (j) z−j

. (4.82)

Note that the term proportional to z cancels out. The time dependent memory function is,
in principle, obtained by comparing the coefficients of the series on the lhs and the rhs of Eq.
(4.82). To construct a numerical method, we replace the series by polynomials of order N,
where t = N∆t defines the time window for the memory function to be computed. After this
first step a polynomial division is performed on the rhs of Eq. (4.82), and after a subsequent

88



multiplication of both sides with z−N one obtains the time dependent memory function, ξ(j),
by comparison of coefficients,

z−N

∆t2

∑N
j=0 [V ACF (j)− V ACF (j + 1)] zN−j

∑N
j=0 V ACF (j) z−j

= z−N




N∑

j=0

cj z
N−j +R




=
N∑

j=0

ξ(j) z−j . (4.83)

Within nMOLDYN V ACF (n) is replaced by the autocorrelation function calculated in the
framework of the autoregressive model, V ACF (AR)(n), as in Eqs. 4.75 and 4.76. The coefficients
cj are obtained by polynomial division and R is a rest which does not contain information on
the memory function within the time interval t ∈ [0, N∆t]. The discrete memory function is
therefore given by ξ(j) = cN−j .

A remark concerning the discretization scheme (4.79) is in place here. The discrete con-
volution sum is effectively a first order approximation of the convolution integral. More so-
phisticated approximations could be used, but they would lead to less convenient expressions
upon z-transformation. Correspondingly, we have chosen a first order approximation for the
differentiation on the left-hand side of (4.72). In this way the first order (integro-)differential
equation (4.72) is transformed into the first order difference equation (4.79).

However, this simple discretization scheme together with the use of the one-sided z -transform
leads to a significant error in ξ(0). It is clear from Eq. (4.72) that due to the symmetry of the
autocorrelation function (ψ(t) = ψ(−t)), the derivative dψ/dt should vanish at t = 0. However,
in the discretized version it is approximated by a forward difference that is always negative.
A higher-order calculation shows that the estimate for ξ(0) that results from the procedure
described above should be doubled.

MSD within the AR model The relation between the VACF and the MSD reads

MSD(t) = 〈[x(t)− x(0)]2〉 = 2

∫ t

0
dτ (t− τ)Cvv(t) (4.84)

By discretizing the above equation one obtains

MSD(n) = 2
n∑

k=0

∆t2(n− k)Cvv(k). (4.85)

Using

f1(n) = Θ(n) · nf2(n) = Θ(n) · Cvv(n) (4.86)

into Eq. 4.85, gives

MSD(n) = 2
+∞∑

k=−∞
∆t2f1(n− k)f2(k) (4.87)

Making use of the one-side z-transform (equivalent to the Laplace transform for discrete func-
tions), we obtain

MSD>(z) = 2F>1 F
>
2 ∆t2, (4.88)

where
F>1 =

z

(z − 1)2
. (4.89)

89



Introducing Eq. 4.89 into Eq. 4.88 yields

MSD>(z) = 2
z∆t2

(z − 1)2
C>vv(z) (4.90)

and its inverse z-transform reads

MSD(n) = 2∆t2 · 1

2πi

∮
dzzn−1 · z

(z − 1)2
· C>vv(z). (4.91)

Using the expression of the non-normalized C
〉
vv(z) obtained in the framework of the AR model

C>vv(z) =
P∑

j=1

βj
z

z − zj
· 〈v2〉 (4.92)

one finds the expression of MSD within the same AR model

MSDAR(n) = 2∆t2〈v2〉
P∑

j=1

βj
1

2πi

∮
dz

zn+1

(z − 1)2
· 1

z − zj
(4.93)

= 2∆t2〈v2〉
P∑

j=1

βj{
n

1− zj
− zj

(1− zj)2
+

zn+1
j

(1− zj)2
}. (4.94)

MSDAR(n)
n→+∞' 2Dn∆t ; D = ∆t〈v2〉

P∑

j=1

βj
1− zj

=
〈v2〉
γ

(4.95)

which allows one to compute the MSD within the AR model from the poles and the βj coeffi-
cients of the non-normalized VACF .

Friction coefficient within the AR model The friction coefficient is defined as the
integral over the memory function. In the discrete case we write

ξ0 :=
∞∑

n=0

∆t ξ(n) = ∆tΞ>(1). (4.96)

As shown in [57], the AR model allows us to express Ψ>(z) as

VACF
(AR)
> (z) =

∞∑

n=0

V ACF (AR)(n)z−n =
P∑

j=1

βj
zj

z − zj
, (4.97)

where the coefficients βj are given by eq. (4.76), and the roots zj must fulfill the stability

criterion (4.77). Inserting (4.97) into (4.81) yields Ξ
(AR)
> (z), the z-transform of the discrete

memory function within the AR model,

Ξ
(AR)
> (z) =

1

∆t2

(
z

VACF
(AR)
> (z)

+ 1− z
)
. (4.98)

Using (4.98) we obtain thus within the AR model

ξ
(AR)
0 =

1

∆t

1
∑P
j=1 βj

1
1−zj

. (4.99)

This shows that ξ0 can be obtained from the zeros zj of the characteristic polynomial p(z),
defined in (4.74).

In the framework of the autoregressive model, nMOLDYN allows one to calculate the VACF ,

the VACF memory function, the DOS , the MSD , and the AR coefficients a
(P )
n of the velocity

trajectory, averaged over all selected atoms and three Cartesian coordinates.

90



Parameters
Pressing the Auto-Regressive Analysis button will pop up the dialog shown on figure 4.45

Figure 4.45: The dialog from where the ARA analysis will be set up and run.

The following input fields controls the parameters for the ARA analysis:

• Trajectory file
Format: string
Default: traj file where traj file is the name of the loaded trajectory
Description: the value of this widget can not be changed. It just recalls for information
purpose the name of the trajectory file loaded for the analysis.

• Frame selection
Format: string
Default: 1:traj length:1 where traj length is the number of frames of the trajectory.

91



Description: this widget allows to select the trajectory frames that will be used for the
analysis. This must be a string of the form:

first:last:step

where first is an integer specifying the first frame number to consider, last is an inte-
ger specifying the last frame number to consider and step is an integer specifying the step
number between two frames.

For example,

? 2:10:3 will select the frames 2, 5 and 8.

? 1:5:1 will select the frames 1, 2, 3, 4 and 5.

• Differentiation order
Format: integer in [0,5]
Default: 0 if velocities are stored in the trajectory file, 1 otherwise
Description: this widget allows to specify the order of the derivation scheme used to get
the velocities out of the coordinates. If your trajectory NetCDF file already contains the
velocities then just select 0. However, you can still decide to get the velocities out of the
coordinates. In that case, nMOLDYN performs a numerical differentiation of the input
data. To do so, nMOLDYN can perform numerical differentiation from order 1 to order
5. Using order 1, the first time derivative of each point r(ti) is calculated as

ṙ(ti) =
r(ti+1)− r(ti)

∆t
, (4.100)

where ∆t is the time step. Choosing order N with N=2,...,5, nMOLDYN calculates
the first time-derivative of each point r(ti) (r = x, y, z) using the N -order polynomial
interpolating the N+1 points across r(ti), where r(ti) belongs to this set [52].

• Project displacement on
Format: string
Default: no
Description: this widget allows to specify a vector along which the ARA will be com-
puted. This vector does not need to be normalized as nMOLDYN will perform the
normalization when processing it. The entered value must have the following format:

vx:vy:vz

where vx, vy and vz are floats that represent respectively the x, y and z coordinates
of the vector.

• Model order
Format: integer in [1,Nframes[ where Nframes is the number of selected frames for the
analysis
Default: 50

92



Description: this widget allows to specify P, the order (= poles number) of the au-
toregressive model. A priori the autocorrelation function and its power spectrum can be
approximated to almost arbitrary precision by increasing the order of the autoregressive
model. In practice it has been proven that reliably computation can be carried out up to
P of the order of 1000 poles.

• Subset selection
Format: subset selection string
Default: all
Description: this widget allows the selection of a subset of the system for the analysis.
See Section 4.2.2.1 for more details.

• Deuteration selection
Format: deuteration selection string
Default: no
Description: this widget allows the selection of a subset hydrogen atoms that will take
the atomic parameters of deuterium. See Section 4.2.2.2 for more details.

• Weights
Format: string equal to equal, mass, coherent, incoherent or atomicNumber
Default: equal
Description: this widget allows the selection of the weighting scheme to apply on each
atomic contribution to the various properties computed through ARA analysis (MSD ,
VACF , DOS ,). See Section 4.2.1 for more details.

• ARA output file
Format: string
Default: ARA traj file.nc where traj file.nc is the name of the input trajectory
Description: this widget allows to enter the name of the NetCDF output file of the ARA
analysis. A CDL version of the NetCDF output file is also automatically created with
ARA traj file.cdl name.

Output
The results of an ARA analysis are stored in a NetCDF file whose main variables are namely:

• time vacf: the times in ps at which the autoregressive VACF was evaluated,

• vacf: the corresponding autoregressive VACF in nm2s−2,

• frequency: the frequencies in THz at which the autoregressive DOS was evaluated,

• dos: the corresponding autoregressive DOS ,

• time msd: the times in ps at which the autoregressive MSD was evaluated,

• msd: the corresponding autoregressive MSD in nm2,

93



• time memory: the times in ps at which the autoregressive VACF memory function was
evaluated,

• memory function: the corresponding autoregressive VACF memory function,

• n: the index for the autoregressive coefficients a
(P )
n ,

• ar coefficients: the autoregressive coefficients a
(P )
n .

4.2.4.12 Quasi Harmonic Analysis

Theory and implementation
Quasi-Harmonic Analysis (QHA) is a method for obtaining effective modes of vibration

from fluctuations calculated by a MD simulation. The underlying principle is that from atomic
fluctuations, an effective force field can be calculated relative to the average dynamic structure
that yields the same fluctuation matrix as that obtained from a normal mode calculation.
Since the fluctuation matrix is inversely proportional to the effective force constant matrix,
they have common eigenvectors which correspond to the quasiharmonic modes of vibration.
Quasiharmonic modes can be analyzed in the same way as normal modes, and comparison
of the results with those from harmonic approximation calculations for the same system is
straightforward.

The way to perform a QHA in nMOLDYN is based on the diagonalization of the fluctuation
matrix that can be easily retrieved from a MD simulation. Indeed, from a MD simulation,
coordinates which define the position of all atoms as a function of time are saved at each step
of the MD. From these coordinates, both the average position 〈x〉 and the covariance matrix of
fluctuations about the average position σ can be calculated the latter being defined as:

σij = 〈(xi − 〈x〉) (xj − 〈x〉)〉 (4.101)

with variances as the diagonal elements and with covariances as the off-diagonal elements.
Once the covariance matrix of fluctuations is obtained, the Quasi-Harmonic modes of vi-

bration ∆x and their corresponding frequencies ω are calculated by solving (diagonalizing) the
equation: (

σ′ − λ′I) η = 0 (4.102)

where I is the identity matrix and

σ′ = M1/2σM1/2 (4.103)

M being the diagonal mass matrix.
The solutions of 4.102 yielding:

ω =
(
kBT/λ

′)1/2 (4.104)

and
∆x = M−1/2η (4.105)

Once the normal modes have been obtained, a great variety of analysis can be performed.
nMOLDYN proposes some of them namely:

• Local and global character indicator

Normal modes of vibration can involve all the atoms of the system, as in the case of
low-frequency global deformation motions, or be localized in one particular part of the

94



molecule. It is useful to have indicators which define the degree of global character or local
character for particular modes of vibration. Since the eigen vectors form an orthonormal
basis

∑3N
j=1 ∆x2

ji = 1 where N is the number of selected atoms, a local character indicator
is given by:

lci =
3N∑

j=1

∆x4
ji (4.106)

which is large for modes i with significant local character. The global character indicator
is given by:

gci =
3N∑

j=1

|∆xji|√
3N

−4

(4.107)

which is large for modes i without significant global character. These indicators are not
invariant with the orientation of the system and are only qualitative indicators of character
because only the sum of the squares is invariant to rotation. If the motion is dominated
by a single component of a single-atom, then ∆xi will be close to unity for that element
and zero for all others. This results in the maximum possible value for the local characteer
indicator of 1 and a maximum for the lack of global character indicator of 9N 2. The other
extreme is represented by a net translation of all atoms in the (1,1,1) direction, where all
elements are the same with a value of

√
3N . In this case the local character indicator has

a minimum value of 3N−1 and the lack of global character indicator will hav a minimum
of 1. Modes with significant mixing of global and local character may have a large local
indicator and a small lack of global character indicator; thus two indicators are needed to
evaluate the character of the motion.

• Projection of MD trajectories onto normal modes

It is useful to compare normal modes of vibration (or other type of motion) with the MD
simulation. This allows examination of the amplitudes of this type of motion and the
time scales. This is a straightforward procedure in which the effects of solvent damping
may be explored for the * case in which the MD simulation is carried out with explicit
solvent even if the normal mode calculation is carried out in vaccuum. The procedure is
to generate a time series of the projection of the difference of trajectory position and the
average position into a mode of interest given by:

Aa(t) =
3N∑

i=1

∆xaiM
1
2
i (xi(t)− 〈xi〉) (4.108)

This time series can be evaluated with standard procedures to determine correlation func-
tions and spectra. It is also useful in analyzing the results of a QHA analysis to determine
which modes are predominantly vibrational in character and which arise mainly from
jumping between energy substates.

Beside the quantitative analysis described above, one of the best way to understand a normal
mode of vibration is through a visual examination. To do this, a trajectory must be created
which depicts the molecular system as a function of time from a given starting configuration.
For a set of normal modes to view, this trajectory is given by:

x(t) = 〈x〉+
Nmodes∑

i=1

αiM
− 1

2 ∆xicos(ωit) (4.109)

95



where αi and ωi are respectively the amplitude and frequency of the motion associated to normal
mode i and Nmodes is the number of selected normal modes to visualize. nMOLDYN allows the
visualization of normal modes through a specific viewer (see Section 4.3.3).

For more details about QHA and related techniques please refer to Ref. [53]

Parameters
Pressing the Quasi-Harmonic analysis button will pop up the dialog shown on figure 4.46

Figure 4.46: The dialog from where the QHA analysis will be set up and run.

The following input fields controls the parameters for the QHA analysis:

• Trajectory file
Format: string
Default: traj file where traj file is the name of the loaded trajectory
Description: the value of this widget can not be changed. It just recalls for information
purpose the name of the trajectory file loaded for the analysis.

• Frame selection
Format: string
Default: 1:traj length:1 where traj length is the number of frames of the trajectory.
Description: this widget allows to select the trajectory frames that will be used for the
analysis. This must be a string of the form:

first:last:step

96



where first is an integer specifying the first frame number to consider, last is an inte-
ger specifying the last frame number to consider and step is an integer specifying the step
number between two frames.

For example,

? 2:10:3 will select the frames 2, 5 and 8.

? 1:5:1 will select the frames 1, 2, 3, 4 and 5.

• Temperature (in K)
Format: strictly positive float
Default: 1.0
Description: this widget allows to define the temperature factor defined in equation
4.104.

• Subset selection
Format: subset selection string
Default: all
Description: this widget allows the selection of a subset of the system for the analysis.
See Section 4.2.2.1 for more details.

• QHA Output file
Format: string
Default: QHA traj file.nc where traj file.nc is the name of the input trajectory
Description: this widget allows to enter the name of the NetCDF output file of the QHA
analysis.

Output
The results of a QHA analysis are stored in a NetCDF file whose main variables are namely:

• time msd: the times in ps at which the QHA was evaluated,

• omega: the 3N eigen values ω defined in equation 4.104,

• dx: a (3N,3N) matrix giving the eigen vectors, ∆x defined in equation 4.105

• mode: the mode index ranging from 1 to 3N,

• lci: the local character indicator defined in equation 4.106,

• gci: the global character indicator defined in equation 4.107,

• at: a (Nframes, 3N) matrix whereNframes is the number of selected frames for the analysis.
This matrix stores the projection of MD trajectory onto normal modes as defined in
equation 4.108,

• avgstruct: a (N,3) matrix storing the averaged structure 〈x〉.

97



4.2.4.13 Reorientational Correlation Function

Theory and implementation
The molecular reorientational correlation function is defined as the conditional probability to

find a molecule with orientation Ω1 at time t1, given it had the orientation Ω0 at time t0. In the
following this probability will be denoted by p(Ω1, t1|Ω0, t0). Here Ω denotes a set of angular
coordinates, as Euler angles or quaternion parameters. The joint probability p(Ω1, t1; Ω0, t0)
which gives the probablity to find a molecule with orientation Ω0 at time t0 and with orientation
Ω1 at time t1, can be expressed as p(Ω1, t1; Ω0, t0) = p(Ω1, t1|Ω0, t0) · p(Ω0, t0). Here p(Ω0, t0)
is the probability to find a molecule with orientation Ω0 at time t0. If we consider an isotropic
system in thermal equilibrium the reorientational correlation function depends only on the time
difference, t = t1 − t0, and the change in orientation, Ω, i.e. p(Ω1, t1|Ω0, t0) = p(Ω, t|0, 0). In
addition we have p(Ω0, t0) = 1/(8π2), where 8π2 is the volume of the angular space.

The reorientational correlation function may now be expanded in Wigner rotation matrices
[62] which form a complete set of basis functions in Ω [63, 64]:

p(Ω, t|0, 0) =
∑

jmn

2j + 1

8π2
pjmn(t)D∗ jmn(Ω). (4.110)

In the following the coefficients pjmn(t) are called p-coefficients. Using the orthogonality of the
Wigner functions, ∫

dΩD∗ jmn(Ω)Dj′
m′n′(Ω) =

8π2

2j + 1
δjj′δmm′δnn′ , (4.111)

Eq. (4.110) can be inverted to give:

pjmn(t) =

∫
dΩ p(Ω, t|0, 0)Dj

mn(Ω). (4.112)

Writing the reorientational correlation function as

p(Ω, t|0, 0) =
1

N

∑

α

〈δ[Ω−Ωα(t)]〉, (4.113)

where Ωα(t) is the orientation of molecule α with respect to its initial orientation and 〈. . .〉 is
a thermal average, relation (4.112) can be written as

pjmn(t) =
1

N

∑

α

〈Dj
mn(Ωα(t))〉. (4.114)

The p-coefficients can also be expressed as time correlation functions of irreducible tensor com-
ponents. This is convenient for numerical purposes since time correlation functions of discrete
and finite time series can be very efficiently computed by Fast Fourier Transform techniques
(see Section A). Consider the general form of the time correlation function

〈T jm(t1)T ∗ jn (t0)〉 =

∫ ∫
dΩ1dΩ0 p(Ω1, t1; Ω0, t0)T jm(Ω1)T ∗ jn (Ω0), (4.115)

where T jm are the components of an irreducible tensor [63, 64]. From the transformation prop-
erties of irreducible tensors it follows that

T jm(Ω1) =
∑

k

Dj
mk(Ω)T jk (Ω0). (4.116)

98



For an isotropic system in thermal equilibrium we may now write

p(Ω1, t1; Ω0, t0) = p(Ω, t|0, 0) · 1

8π2
. (4.117)

Inserting this in (4.115), performing a change in the integration variables from (Ω1,Ω0) to
(Ω,Ω0), and using the orthogonality of the Wigner functions one can show that

〈T jm(t)T ∗ jn (0)〉 = pjmn(t) · 1

2j + 1

∑

l

|T̂ jl |2, (4.118)

where the components T̂ jl are referred to a convenient reference frame. In practice only tensors
with integer j are relevant. In this case, the well known spherical harmonics [63, 64] may be
used to define irreducible tensors. They are related to the Wigner functions by

Y j
m(α, β) =

√
2j + 1

4π
Dj
m0(α, β, γ), (4.119)

where α, β, γ are Euler angles. Following Rose [65] the Wigner functions can be expressed as
complex polynomials in the quaternion parameters:

Dj
mn(q) =

∑
p(−1)p [(j+m)!(j−m)!(j+n)!(j−n)!]1/2

(j+m−p)!(j−n−p)!p!(p+n−m)!

×(q0 + iq3)j+m−p(q0 − iq3)j−n−p(q2 + iq1)p+n−m(q2 − iq1)p.

(4.120)

Here the quaternion parameters describe the rotation of the space-fixed coordinate system into
the body-fixed coordinate system. The corresponding rotation matrix is given in Eq. (4.52).
According to Eq. (4.119) the spherical harmonics are just special cases of the Wigner functions,

Y j
m(q) =

√
2j+1

4π

∑
p(−1)p [(j+m)!(j−m)!]1/2j!

(j+m−p)!(j−p)!p!(j−m)!

×(q0 + iq3)j+m−p(q0 − iq3)j−p(q2 + iq1)p−m(q2 − iq1)p.

(4.121)

Using the normalization of the spherical harmonics and Eq. (4.118) one arrives at the following
expression for the p-coefficients

pjmn(t) = 4π〈Y j
m[q(t)]Y ∗jn [q(0)]〉. (4.122)

The following relations for the p-coefficients hold:

pjmn(0) = δjmn, (4.123)

p∗jmn(t) = pj−m−n(t) = pjnm(−t). (4.124)

The coefficients δjmn are the components of the (2j+1)×(2j+1) unit matrix. The initial value of
the the p-coefficients is an immediate consequence of definition (4.112) and p(Ω, 0|0, 0) = δ(Ω).
Eq. (4.124) follows from the symmetry of the Wigner functions and the symmetry of classical
time correlation functions.

Since measurable quantities must be real it follows from (4.124) that only p-coefficients with
m = n = 0 can be directly measured. p1

00(t) is measured by infrared spectroscopy (dipole-dipole
correlation function) and p2

00(t) by relaxation NMR experiments. Here one measures in most
cases the integral over p2

00(t).

99



Parameters
Pressing the Reorientational Correlation Function button will pop up the dialog shown

on figure 4.47

Figure 4.47: The dialog from where the RCF analysis will be set up and run.

The following input fields controls the parameters for the Reorientational Correlation Function
(RCF ) analysis:

• Trajectory file
Format: string
Default: traj file where traj file is the name of the loaded trajectory
Description: the value of this widget can not be changed. It just recalls for information
purpose the name of the trajectory file loaded for the analysis.

• Frame selection
Format: string
Default: 1:traj length:1 where traj length is the number of frames of the trajectory.
Description: this widget allows to select the trajectory frames that will be used for the
analysis. This must be a string of the form:

first:last:step

100



where first is an integer specifying the first frame number to consider, last is an inte-
ger specifying the last frame number to consider and step is an integer specifying the step
number between two frames.

For example,

? 2:10:3 will select the frames 2, 5 and 8.

? 1:5:1 will select the frames 1, 2, 3, 4 and 5.

• Reference frame
Format: integer in [1,traj length] where traj length is the number of frames of the input
trajectory
Default: 1
Description: this widget allows to specify which frame should be the reference for the
RCF analysis. The value entered should be an integer ranging from 1 to traj length where
traj length is the number of rames of the input trajectory.

• Stepwise RBT
Format: string equal to yes or no
Default: no
Description: if set to yes, each frame f will serve as the reference for the frame f+1
when defining the RBT canceling the value entred in Reference frame entry.

• Wigner indexes
Format: string
Default: 0,0,0
Description: this widget allows to specify which Wigner triplet (j,m,n) to select for the
RCF analysis. The entered value must have the following specific format:

j:m:n

where j, m,n are positive integers that represent respectively the j, m,n Wigner indexes.

• Group selection
Format: group selection string
Default: all
Description: this widget allows the selection of the groups of atoms that will be defined
as rigid-bodies when performing the RCF . See Section 4.2.2.3 for more details.

• RCF output file
Format: string
Default: RCF traj file.nc where traj file.nc is the name of the input trajectory
Description: this widget allows to enter the name of the NetCDF output file of the RCF
analysis. A CDL version of the NetCDF output file is also automatically created with
RCF traj file.cdl name.

101



Output
The results of a RCF analysis are stored in a NetCDF file whose main variables are namely:

• time: the times in ps at which the RCF was evaluated,

• rcf: the corresponding RCF .

4.2.4.14 Angular Velocity AutoCorrelation Function

Theory and implementation
Similarly to the translational velocity autocorrelation functions introduced in Section 4.2.4.5

one can define angular velocity autocorrelation functions to characterize the angular motion of
molecules. In general the angular velocity is referred to an orthonormal body-fixed coordinate
system. Usually this is the principal axis system in which the tensor of inertia is diagonal.
Depending on its geometry, a molecule will behave differently with respect to rotational mo-
tion about different body-fixed axes. The autocorrelation function for the angular velocity
components ω′i is defined as

Cωω(t; i)
.
= 〈ω′i(0)ω′i(t)〉. (4.125)

The prime indicates a body fixed coordinate system. The components ω ′i are related to the
quaternion parameters describing the orientation of the molecule and their time derivatives
[14, 66]: 



0
ω′x
ω′y
ω′z


 = 2 ·




q0 q1 q2 q3

−q1 q0 q3 −q2

−q2 −q3 q0 q1

−q3 q2 −q1 q0







q̇0

q̇1

q̇2

q̇3


 . (4.126)

Here the quaternion parameters describe the rotation of the space-fixed coordinate system into
the body-fixed coordinate system. The corresponding rotation matrix is explicitly given in Eq.
(4.52).

The components of the angular velocity may be used to define rotation angles describing
rotations about the body-fixed axes [14]:

Φi(t) =

∫ t

0
dτ ω′i(τ). (4.127)

Parameters
Pressing the Angular Velocity Autocorrelation Function button will pop up the dialog

shown on figure 4.48
The following input fields controls the parameters for the Angular Velocity AutoCorrelation

Function (AVACF ) analysis:

• Trajectory file
Format: string
Default: traj file where traj file is the name of the loaded trajectory
Description: the value of this widget can not be changed. It just recalls for information
purpose the name of the trajectory file loaded for the analysis.

• Frame selection
Format: string

102



Figure 4.48: The dialog from where the AVACF analysis will be set up and run.

Default: 1:traj length:1 where traj length is the number of frames of the trajectory.
Description: this widget allows to select the trajectory frames that will be used for the
analysis. This must be a string of the form:

first:last:step

where first is an integer specifying the first frame number to consider, last is an inte-
ger specifying the last frame number to consider and step is an integer specifying the step
number between two frames.

For example,

? 2:10:3 will select the frames 2, 5 and 8.

? 1:5:1 will select the frames 1, 2, 3, 4 and 5.

• Differentiation order
Format: integer in [0,5]
Default: 0 if velocities are stored in the trajectory file, 1 otherwise
Description: this widget allows to specify the order of the derivation scheme used to get

103



the velocities out of the coordinates. If your trajectory NetCDF file already contains the
velocities then just select 0. However, you can still decide to get the velocities out of the
coordinates. In that case, nMOLDYN performs a numerical differentiation of the input
data. To do so, nMOLDYN can perform numerical differentiation from order 1 to order
5. Using order 1, the first time derivative of each point r(ti) is calculated as

ṙ(ti) =
r(ti+1)− r(ti)

∆t
, (4.128)

where ∆t is the time step. Choosing order N with N=2,...,5, nMOLDYN calculates
the first time-derivative of each point r(ti) (r = x, y, z) using the N -order polynomial
interpolating the N+1 points across r(ti), where r(ti) belongs to this set [52].

• Project displacement on
Format: string
Default: no
Description: this widget allows to specify a vector along which the AVACF will be
computed. This vector does not need to be normalized as nMOLDYN will perform the
normalization when processing it. The entered value must have the following format:

vx:vy:vz

where vx, vy and vz are floats that represent respectively the x, y and z coordinates
of the vector.

• Reference frame
Format: integer in [1,traj length] where traj length is the number of frames of the input
trajectory
Default: 1
Description: this widget allows to specify which frame should be the reference for the
AVACF analysis. The value entered should be an integer ranging from 1 to traj length
where traj length is the number of rames of the input trajectory.

• Stepwise RBT
Format: string equal to yes or no
Default: no
Description: if set to yes, each frame f will serve as the reference for the frame f+1
when defining the RBT canceling the value entred in Reference frame entry.

• Group selection
Format: group selection string
Default: all
Description: this widget allows the selection of the groups of atoms that will be defined
as rigid-bodies when performing the AVACF . See Section 4.2.2.3 for more details.

104



• AVACF output file
Format: string
Default: AVACF traj file.nc where traj file.nc is the name of the input trajectory
Description: this widget allows to enter the name of the NetCDF output file of the
AVACF analysis. A CDL version of the NetCDF output file is also automatically created
with AVACF traj file.cdl name.

Output
The results of a AVACF analysis are stored in a NetCDF file whose main variables are namely:

• time: the times in ps at which the AVACF was evaluated,

• avacf: the corresponding AVACF .

4.2.4.15 Angular Density Of States

Theory and implementation
In nMOLDYN, the Angular Density Of States (ADOS) is simply defined as the Fourier

transform of the AVACF .

Parameters
Pressing the Angular Density Of States button will pop up the dialog shown on figure

4.49
The following input fields controls the parameters for the ADOS analysis:

• Trajectory file
Format: string
Default: traj file where traj file is the name of the loaded trajectory
Description: the value of this widget can not be changed. It just recalls for information
purpose the name of the trajectory file loaded for the analysis.

• Frame selection
Format: string
Default: 1:traj length:1 where traj length is the number of frames of the trajectory.
Description: this widget allows to select the trajectory frames that will be used for the
analysis. This must be a string of the form:

first:last:step

where first is an integer specifying the first frame number to consider, last is an inte-
ger specifying the last frame number to consider and step is an integer specifying the step
number between two frames.

For example,

? 2:10:3 will select the frames 2, 5 and 8.

? 1:5:1 will select the frames 1, 2, 3, 4 and 5.

105



Figure 4.49: The dialog from where the ADOS analysis will be set up and run.

• Differentiation order
Format: integer in [0,5]
Default: 0 if velocities are stored in the trajectory file, 1 otherwise
Description: this widget allows to specify the order of the derivation scheme used to get
the velocities out of the coordinates. If your trajectory NetCDF file already contains the
velocities then just select 0. However, you can still decide to get the velocities out of the
coordinates. In that case, nMOLDYN performs a numerical differentiation of the input
data. To do so, nMOLDYN can perform numerical differentiation from order 1 to order
5. Using order 1, the first time derivative of each point r(ti) is calculated as

ṙ(ti) =
r(ti+1)− r(ti)

∆t
, (4.129)

where ∆t is the time step. Choosing order N with N=2,...,5, nMOLDYN calculates
the first time-derivative of each point r(ti) (r = x, y, z) using the N -order polynomial
interpolating the N+1 points across r(ti), where r(ti) belongs to this set [52].

• Project displacement on

106



Format: string
Default: no
Description: this widget allows to specify a vector along which the ADOS will be com-
puted. This vector does not need to be normalized as nMOLDYN will perform the
normalization when processing it. The entered value must have the following format:

vx:vy:vz

where vx, vy and vz are floats that represent respectively the x, y and z coordinates
of the vector.

• Reference frame
Format: integer in [1,traj length] where traj length is the number of frames of the input
trajectory
Default: 1
Description: this widget allows to specify which frame should be the reference for the
ADOS analysis. The value entered should be an integer ranging from 1 to traj length
where traj length is the number of rames of the input trajectory.

• Stepwise RBT
Format: string equal to yes or no
Default: no
Description: if set to yes, each frame f will serve as the reference for the frame f+1
when defining the RBT canceling the value entred in Reference frame entry.

• FFT window
Format: float in [0.0,100.0]
Default: 10.0
Description: this widget allows to define the width in percentage of the trajectory length
of the Gaussian function to be used in the smoothing procedure for the calculation of the
ADOS . See Appendix A for more details.

• Group selection
Format: group selection string
Default: all
Description: this widget allows the selection of the groups of atoms that will be defined
as rigid-bodies when performing the ADOS . See Section 4.2.2.3 for more details.

• ADOS output file
Format: string
Default: ADOS traj file.nc where traj file.nc is the name of the input trajectory
Description: this widget allows to enter the name of the NetCDF output file of the
ADOS analysis. A CDL version of the NetCDF output file is also automatically created
with ADOS traj file.cdl name.

107



Output
The results of a ADOS analysis are stored in a NetCDF file whose main variables are namely:

• frequency: the frequencies in THz at which the ADOS was evaluated,

• ados: the corresponding ADOS .

4.2.5 The Scattering menu

Pressing the button Scattering brings up a menu from which it is possible to choose the
following analysis:

• Dynamic Coherent Structure Factor

• Dynamic Coherent Structure Factor (AR Model)

• Dynamic Incoherent Structure Factor

• Dynamic Incoherent Structure Factor (AR Model)

• Dynamic Incoherent Structure Factor (Gaussian Approximation)

• Elastic Incoherent Structure Factor

• Static Coherent Structure Factor

• Smoothed Static Coherent Structure Factor

Before introducing each of these analysis, a brief introduction about the scattering theory within
the classical framework will be given.

4.2.5.1 Introduction

The quantity of interest in neutron scattering experiments with thermal neutrons is the dynamic
structure factor, S(q, ω), which is closely related to the double differential cross-section [7],
d2σ/dΩdE. The double differential cross section is defined as the number of neutrons which
are scattered per unit time into the solid angle interval [Ω,Ω + dΩ] and into the energy interval
[E,E+dE]. It is normalized to dΩ, dE, and the flux of the incoming neutrons,

d2σ

dΩdE
= N · k

k0
S(q, ω). (4.130)

Here N is the number of atoms, and k ≡ |k| and k0 ≡ |k0| are the wave numbers of scattered
and incident neutrons, respectively. They are related to the corresponding neutron energies by
E = h̄2k2/2m and E0 = h̄2k2

0/2m, where m is the neutron mass. The arguments of the dynamic
structure factor, q and ω, are the momentum and energy transfer in units of h̄, respectively:

q =
k0 − k

h̄
, (4.131)

ω =
E0 −E

h̄
. (4.132)

The modulus of the momentum transfer can be expressed in the scattering angle θ, the energy
transfer, and the energy of the incident neutrons:

q =

√√√√2− h̄ω

E0
− 2 cos θ

√
2− h̄ω

E0
. (4.133)

108



The dynamic structure factor contains information about the structure and dynamics of the
scattering system [67]. It can be written as

S(q, ω) =
1

2π

∫ +∞

−∞
dt exp[−iωt]F(q, t). (4.134)

F(q, t) is called the intermediate scattering function and is defined as

F(q, t) =
∑

α,β

Γαβ〈exp[−iq · R̂α(0)] exp[iq · R̂β(t)]〉, (4.135)

Γαβ =
1

N

[
bα bβ + δαβ(b 2

α − bα
2
)
]
. (4.136)

The operators R̂α(t) in Eq. (4.135) are the position operators of the nuclei in the sample.
The brackets 〈. . .〉 denote a quantum thermal average and the time dependence of the position
operators is defined by the Heisenberg picture. The quantities bα are the scattering lengths of
the nuclei which depend on the isotope and the relative orientation of the spin of the neutron and
the spin of the scattering nucleus. If the spins of the nuclei and the neutron are not prepared in
a special orientation one can assume a random relative orientation and that spin and position of
the nuclei are uncorrelated. The symbol . . . appearing in Γαβ denotes an average over isotopes
and relative spin orientations of neutron and nucleus.

Usually one splits the intermediate scattering function and the dynamic structure factor
into their coherent and incoherent parts which describe collective and single particle motions,
respectively. Defining

bα,coh
.
= bα, (4.137)

bα,inc
.
=

√
b 2
α − bα

2
, (4.138)

the coherent and incoherent intermediate scattering functions can be cast in the form

Fcoh(q, t) =
1

N

∑

α,β

bα,coh bβ,coh〈exp[−iq · R̂α(0)] exp[iq · R̂β(t)]〉, (4.139)

Finc(q, t) =
1

N

∑

α

b 2
α,inc〈exp[−iq · R̂α(0)] exp[iq · R̂α(t)]〉. (4.140)

Rewriting these formulas, nMOLDYN introduces the partial terms as:

Fcoh(q, t) =

Nspecies∑

I,J≥I

√
nInJωI,cohωJ,cohFIJ,coh(q, t), (4.141)

Finc(q, t) =

Nspecies∑

I=1

nIωI,incFI,inc(q, t) (4.142)

where:

FIJ,coh(q, t) =
1√
nInJ

nI∑

α

nJ∑

β

〈exp[−iq · R̂α(t0)] exp[iq · R̂β(t0 + t)]〉t0 , (4.143)

FI,inc(q, t) =
1

nI

nI∑

α=1

〈exp[−iq · R̂α(t0)] exp[iq · R̂α(t0 + t)]〉t0 . (4.144)

where nI , nJ , Nspecies, ωI,coh,inc and ωJ,coh,inc are defined in Section 4.2.1.

109



The corresponding dynamic structure factors are obtained by performing the Fourier trans-
formation defined in Eq. 4.134.

An important quantity describing structural properties of liquids is the static structure factor,
which is defined as

S(q)
.
=

∫ +∞

−∞
dω Scoh(q, ω) = Fcoh(q, 0). (4.145)

In the classical framework the intermediate scattering functions are interpreted as classi-
cal time correlation functions. The position operators are replaced by time-dependent vector
functions and quantum thermal averages are replaced by classical ensemble averages. It is well
known that this procedure leads to a loss of the universal detailed balance relation,

S(q, ω) = exp[βh̄ω]S(−q,−ω), (4.146)

and also to a loss of all odd moments

〈ω2n+1〉 .=
∫ +∞

−∞
dω ω2n+1S(q, ω), n = 1, 2, . . . . (4.147)

The odd moments vanish since the classical dynamic structure factor is even in ω, assuming
invariance of the scattering process with respect to reflections in space. The first moment is
also universal. For an atomic liquid, containing only one sort of atoms, it reads

〈ω〉 =
h̄q2

2M
, (4.148)

where M is the mass of the atoms. Formula (4.148) shows that the first moment is given by
the average kinetic energy (in units of h̄) of a particle which receives a momentum transfer
h̄q. Therefore 〈ω〉 is called the recoil moment. A number of ‘recipes’ has been suggested to
correct classical dynamic structure factors for detailed balance and to describe recoil effects in
an approximate way. The most popular one has been suggested by Schofield [68]

S(q, ω) ≈ exp[
βh̄ω

2
]Scl(q, ω). (4.149)

One can easily verify that the resulting dynamic structure factor fulfills the relation of detailed
balance. Formally, the correction (4.149) is correct to first order in h̄. Therefore it cannot be
used for large q-values which correspond to large momentum transfers h̄q. This is actually true
for all correction methods which have suggested so far. For more details we refer to Ref. [9].

4.2.5.2 Dynamic Coherent Structure Factor

Theory and implementation
Please refer to Section 4.2.5.1 for more details about the theoretical background related to the

dynamic coherent structure factor. In this analysis, nMOLDYN proceeds in two steps. First, it
computes the partial and total intermediate coherent scattering function using equation 4.141.
Then, the partial and total dynamic coherent structure factors are obtained by performing the
Fourier Transformation, defined in Eq. 4.134, respectively on the total and partial intermediate
coherent scattering functions.

nMOLDYN computes the coherent intermediate scattering function on a rectangular grid
of equidistantly spaced points along the time-and the q-axis, repectively:

Fcoh(qm, k·∆t) .
=

Nspecies∑

I=1,J≥I

√
nInJωI,comωI,com〈ρI(−q, 0)ρJ (q, k ·∆t)〉q, k = 0 . . . Nt−1, m = 0 . . . Nq−1.

(4.150)

110



where Nt is the number of time steps in the coordinate time series, Nq is a user-defined number
of q-shells, Nspecies is the number of selected species, nI the number of atoms of species I,
ωI the weight for specie I (see Section 4.2.1 for more details) and ρI(q, k · ∆t) is the Fourier
transformed particle density for specie I defined as,

ρI(q, k ·∆t) =
nI∑

α

exp[iq ·Rα(k ·∆t)]. (4.151)

The symbol . . .q in (4.150) denotes an average over q-vectors having approximately the same
modulus qm = qmin + m · ∆q. The particle density must not change if jumps in the particle
trajectories due to periodic boundary conditions occcur. In addition the average particle density,
N/V , must not change. This can be achieved by choosing q-vectors on a lattice which is
reciprocal to the lattice defined by the MD box. Let b1,b2,b3 be the basis vectors which span
the MD cell. Any position vector in the MD cell can be written as

R = x′b1 + y′b2 + z′b3, (4.152)

with x′, y′, z′ having values between 0 and 1. The primes indicate that the coordinates are box
coordinates. A jump due to periodic bounday conditions causes x′, y′, z′ to jump by ±1. The
set of dual basis vectors b1,b2,b3 is defined by the relation

bib
j = δji . (4.153)

If the q-vectors are now chosen as

q = 2π
(
kb1 + lb2 +mb3

)
, (4.154)

where k,l,m are integer numbers, jumps in the particle trajectories produce phase changes of
multiples of 2π in the Fourier transformed particle density, i.e. leave it unchanged. One can
define a grid of q-shells or a grid of q-vectors along a given direction or on a given plane, giving in
addition a tolerance for q. nMOLDYN looks then for q-vectors of the form (4.163) whose moduli
deviate within the prescribed tolerance from the equidistant q-grid. From these q-vectors only a
maximum number per grid-point (called generically q-shell also in the anisotropic case) is kept.

The q-vectors can be generated isotropically, anisotropically or along user-defined directions.
The

√
ωI may be negative if they represent normalized coherent scattering lenghts, i.e.

√
ωI =

bI,coh√∑Nspecies
I=1 nIb2I,coh

. (4.155)

Negative coherent scattering lengths occur in hydrogenous materials since bcoh,H is negative [7].
The density-density correlation is computed via the FCA technique described in Section A.

111



Parameters
Pressing the Dynamic Coherent Structure Factor button will pop up the dialog shown

on figure 4.50

Figure 4.50: The dialog from where the DCSF analysis will be set up and run.

The following input fields controls the parameters for the Dynamic Coherent Structure
Factor (DCSF ) analysis:

• Trajectory file
Format: string
Default: traj file where traj file is the name of the loaded trajectory
Description: the value of this widget can not be changed. It just recalls for information

112



purpose the name of the trajectory file loaded for the analysis.

• Frame selection
Format: string
Default: 1:traj length:1 where traj length is the number of frames of the trajectory.
Description: this widget allows to select the trajectory frames that will be used for the
analysis. This must be a string of the form:

first:last:step

where first is an integer specifying the first frame number to consider, last is an inte-
ger specifying the last frame number to consider and step is an integer specifying the step
number between two frames.

For example,

? 2:10:3 will select the frames 2, 5 and 8.

? 1:5:1 will select the frames 1, 2, 3, 4 and 5.

• Q values (in nm-1)
Format: string
Default: 0:100:1.
Description: this widget allows to select the modulii of the q-vectors. This must be a
string of the form:

qmin : qmax : qstep

In this way, the intermediate scattering function will be calculated for discrete q de-
fined as qm = qmin + m · qstep where qmin is the radius of the smallest q-shell, qstep is
the distance between two consecutive q-shells and with m running from 0 to Nshell where
Nshell is the number of selected q-shells defined as Nshell = E( qmax−qminqstep

) + 1 where qmax
is the radius of the biggest q-shell.

For example,

? 0:10:1 will generate q-shells of radii 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

? 3:12:2 will generate q-shells of radii 3, 5, 7, 9, 11.

• Q shell width (in nm-1)
Format: strictly positive float
Default: 1.0
Description: this widget allows to define the tolerance dq on the q-modulii. So, for
each q-shell of modulus q, nMOLDYN will accept a q-vector to belong to that shell if its
modulus falls in the range [q-dq/2,q+dq/2]. This parameter fix the q-resolution.

113



• Q vectors per shell
Format: strictly positive integer
Default: 50
Description: this widget allows to specify the number of q-vectors , Nq to generate
for each q-shell. Indeed, when generating q-vectors, nMOLDYN will try to generate Nq

q-vectors for each q-shell in order to carry out the averages of Eq. 4.151. For a given
q-shell, if nMOLDYN could generate less q-vectors than Nq, it will only use the number of
generated q-vectors instead of Nq and if nMOLDYN could generate more q-vectors than
Nq, it will pick up randomly Nq q-vectors among the generated q-vectors. The higher this
parameter is the smoother will be the computed intermediate scattering function but at
the cost of a slower analysis.

• Q vectors generator
Format: string equal to 3D isotropic, 2D isotropic or anisotropic
Default: 3D isotropic
Description: this option allows to specify how the q-vectors should be generated:

? 3D isotropic the q-vectors are generated randomly on concentric spheres.

? 2D isotropic the q-vectors are generated randomly on concentric rings in a given
plane.

? anisotropic the q-vectors are generated randomly on one or several defined directions.

• Q vectors direction
Format: string
Default: no
Description: this widget allows to specify one or several preferential directions along
which the q-vectors have to be generated. Depening on the q-vectors generation type, the
entered value will take different values:

? 3D isotropic the default value no must be used.

? 2D isotropic a string of the form

q1x, q1y , q1z; q2x, q2y, q2z

where q1x, q1y, q1z and q2x, q2y, q2z are respectively the x,y,z components of q-vector
q1 and q2, (q1,q2) defining the plane on which the q-vectors will be generated.

? anisotropic a string of the form

q1x, q1y , q1z; q2x, q2y, q2z; . . .

where q1x, q1y, q1z , q2x, q2y, q2z . . . are respectively the x,y,z components of q-vector
q1, q2 . . . , the q-vector generation being performed along each defined direction.

• FFT window
Format: float in [0.0,100.0]

114



Default: 10.0
Description: this widget allows to define the width in percentage of the trajectory length
of the Gaussian function to be used in the smoothing procedure for the calculation of the
coherent structure factor out of the intermediate scattering function. See Appendix A for
more details.

• Subset selection
Format: subset selection string
Default: all
Description: this widget allows the selection of a subset of the system for the analysis.
See Section 4.2.2.1 for more details.

• Deuteration selection
Format: deuteration selection string
Default: no
Description: this widget allows the selection of a subset hydrogen atoms that will take
the atomic parameters of deuterium. See Section 4.2.2.2 for more details.

• Weights
Format: string equal to equal, mass, coherent, incoherent or atomicNumber
Default: coherent
Description: this widget allows the selection of the weighting scheme to apply on each
atomic contribution to the DCSF . See Section 4.2.1 for more details.

• DCSF output file
Format: string
Default: DCSF traj file.nc where traj file.nc is the name of the input trajectory
Description: this widget allows to enter the name of the NetCDF output file of the
DCSF analysis. A CDL version of the NetCDF output file is also automatically created
with DCSF traj file.cdl name.

Output
The results of a DCSF analysis are stored in a NetCDF file whose main variables are namely:

• octan: an array storing the codes for space octan. For example, X+Y+Z+ for the space
octan corresponding to positive X, Y and Z.

• qvectors statistics: array storing the number of q-vectors generated per space octan,

• q: the q-shells radii in nm−1,

• time: the times in ps at which the intermediate coherent scattering function is evaluated,

• Fqt-total: the total intermediate coherent scattering function,

• Fqt-XY: the partial intermediate coherent scattering function for species X and Y,

• frequency: the frequencies in THz at which the coherent structure factor is evaluated,

115



• Sqw-total: the total dynamic coherent structure factor,

• Sqw-XY: the partial dynamic coherent structure factor for species X and Y.

4.2.5.3 Dynamic Coherent Structure Factor (AR Model)

Theory and implementation
Another memory function that can be calculated by nMOLDYN is the memory function

related to the coherent intermediate scattering function. It is defined through the corresponding
memory function equation

∂tFcoh(q, t) = −
∫ t

0
dτ ξ(q, t− τ)Fcoh(q, τ). (4.156)

The memory function ξ(q, t), which depends on time as well as on q, permits the analysis
of memory effects on different length scales. From a numerical point of view the calculation
of the memory function equation relevant to the coherent intermediate scattering function is
completely analogous to the case of the VACF memory function, the discrete time signal being
here

N∑

α=1

bα,coh exp[−iq ·Rα(t)]. (4.157)

See Section 4.2.4.11 for more details about auto-regressive process.
In the framework of the Autoregressive model, nMOLDYN allows the intermediate coherent

scattering function, its Fourier spectrum (the coherent dynamical structure factor) and its
memory function to be computed on a rectangular grid of equidistantly spaced points along the
time- and the q-axis, repectively. The user is referred to Section 4.2.4.11 for more theoretical
details. The dynamical variable of the correlation function under consideration,

Nspecies∑

I

√
nIωI

nI∑

α=1

exp[−iq ·Rα(n∆t)] (4.158)

is considered as a discrete ”signal”, which is modeled by an autoregressive stochastic process of
order P. For each q-values the program calculates the set of the relevant P complex coefficients
{an} of the stochastic process, averaging aver all atoms of the system and over all cartesian
components. The correlation functions and their Fourier spectra are then computed according
to the algorithm described in Section 4.2.4.11. Starting from the discretized memory function
equation, which relates the time evolution of the correlation function to its memory function,
and using the correlation function calculated by the AR model, the program computes for each
q-value the discretized memory function (see Section 4.2.4.11). The program performs the above
calculations isotropically.

116



Parameters
Pressing the Dynamic Coherent Structure Factor (AR Model) button will pop up the

dialog shown on figure 4.51

Figure 4.51: The dialog from where the DCSFAR analysis will be set up and run.

The following input fields controls the parameters for the Dynamic Coherent Structure
Factor using an Auto-Regressive model (DCSFAR) analysis:

• Trajectory file
Format: string
Default: traj file where traj file is the name of the loaded trajectory
Description: the value of this widget can not be changed. It just recalls for information

117



purpose the name of the trajectory file loaded for the analysis.

• Frame selection
Format: string
Default: 1:traj length:1 where traj length is the number of frames of the trajectory.
Description: this widget allows to select the trajectory frames that will be used for the
analysis. This must be a string of the form:

first:last:step

where first is an integer specifying the first frame number to consider, last is an inte-
ger specifying the last frame number to consider and step is an integer specifying the step
number between two frames.

For example,

? 2:10:3 will select the frames 2, 5 and 8.

? 1:5:1 will select the frames 1, 2, 3, 4 and 5.

• Model order
Format: integer in [1,Nframes[ where Nframes is the number of selected frames for the
analysis
Default: 50
Description: this widget allows to specify P, the order (= poles number) of the au-
toregressive model. A priori the autocorrelation function and its power spectrum can be
approximated to almost arbitrary precision by increasing the order of the autoregressive
model. In practice it has been proven that reliably computation can be carried out up to
P of the order of 1000 poles.

• Q values (in nm-1)
Format: string
Default: 0:100:1.
Description: this widget allows to select the modulii of the q-vectors. This must be a
string of the form:

qmin : qmax : qstep

In this way, the intermediate scattering function will be calculated for discrete q de-
fined as qm = qmin + m · qstep where qmin is the radius of the smallest q-shell, qstep is
the distance between two consecutive q-shells and with m running from 0 to Nshell where
Nshell is the number of selected q-shells defined as Nshell = E( qmax−qminqstep

) + 1 where qmax
is the radius of the biggest q-shell.

For example,

? 0:10:1 will generate q-shells of radii 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

? 3:12:2 will generate q-shells of radii 3, 5, 7, 9, 11.

118



• Q shell width (in nm-1)
Format: strictly positive float
Default: 1.0
Description: this widget allows to define the tolerance dq on the q-modulii. So, for
each q-shell of modulus q, nMOLDYN will accept a q-vector to belong to that shell if its
modulus falls in the range [q-dq/2,q+dq/2]. This parameter fix the q-resolution.

• Q vectors per shell
Format: strictly positive integer
Default: 50
Description: this widget allows to specify the number of q-vectors , Nq to generate
for each q-shell. Indeed, when generating q-vectors, nMOLDYN will try to generate Nq

q-vectors for each q-shell in order to carry out the averages of Eq. 4.151. For a given
q-shell, if nMOLDYN could generate less q-vectors than Nq, it will only use the number of
generated q-vectors instead of Nq and if nMOLDYN could generate more q-vectors than
Nq, it will pick up randomly Nq q-vectors among the generated q-vectors. The higher this
parameter is the smoother will be the computed intermediate scattering function but at
the cost of a slower analysis.

• Q vectors generator
Format: string equal to 3D isotropic, 2D isotropic or anisotropic
Default: 3D isotropic
Description: this option allows to specify how the q-vectors should be generated:

? 3D isotropic the q-vectors are generated randomly on concentric spheres.

? 2D isotropic the q-vectors are generated randomly on concentric rings in a given
plane.

? anisotropic the q-vectors are generated randomly on one or several defined directions.

• Q vectors direction
Format: string
Default: no
Description: this widget allows to specify one or several preferential directions along
which the q-vectors have to be generated. Depening on the q-vectors generation type, the
entered value will take different values:

? 3D isotropic the default value no must be used.

? 2D isotropic a string of the form

q1x, q1y , q1z; q2x, q2y, q2z

where q1x, q1y, q1z and q2x, q2y, q2z are respectively the x,y,z components of q-vector
q1 and q2, (q1,q2) defining the plane on which the q-vectors will be generated.

119



? anisotropic a string of the form

q1x, q1y , q1z; q2x, q2y, q2z; . . .

where q1x, q1y, q1z , q2x, q2y, q2z . . . are respectively the x,y,z components of q-vector
q1, q2 . . . , the q-vector generation being performed along each defined direction.

• Subset selection
Format: subset selection string
Default: all
Description: this widget allows the selection of a subset of the system for the analysis.
See Section 4.2.2.1 for more details.

• Deuteration selection
Format: deuteration selection string
Default: no
Description: this widget allows the selection of a subset hydrogen atoms that will take
the atomic parameters of deuterium. See Section 4.2.2.2 for more details.

• Weights
Format: string equal to equal, mass, coherent, incoherent or atomicNumber
Default: coherent
Description: this widget allows the selection of the weighting scheme to apply on each
atomic contribution to the DCSFAR. See Section 4.2.1 for more details.

• DCSFAR output file
Format: string
Default: DCSFAR traj file.nc where traj file.nc is the name of the input trajectory
Description: this widget allows to enter the name of the NetCDF output file of the
DCSFAR analysis. A CDL version of the NetCDF output file is also automatically created
with DCSFAR traj file.cdl name.

Output
The results of a DCSFAR analysis are stored in a NetCDF file whose main variables are

namely:

• octan: an array storing the codes for space octan. For example, X+Y+Z+ for the space
octan corresponding to positive X, Y and Z,

• qvectors statistics: array storing the number of q-vectors generated per space octan,

• q: the q-shells radii in nm−1,

• time: the times in ps at which the intermediate coherent scattering function is evaluated,

• Fqt: the total intermediate coherent scattering function,

120



• frequency: the frequencies in THz at which the coherent structure factor is evaluated,

• Fqt memory function: the corresponding intermediate coherent scattering autoregressive
memory function,

• Sqw: the total dynamic coherent structure factor,

• n: the index for the autoregressive coefficients a
(P )
n ,

• ar coefficients real: the real part of the autoregressive coefficients a
(P )
n ,

• ar coefficients imag: the imaginary part of the autoregressive coefficients a
(P )
n .

4.2.5.4 Dynamic Incoherent Structure Factor

Theory and implementation
Please refer to Section 4.2.5.1 for more details about the theoretical background related to the

dynamic incoherent structure factor. In this analysis, nMOLDYN proceeds in two steps. First,
it computes the partial and total intermediate incoherent scattering function F inc(q, t) using
equation 4.142. Then, the partial and total dynamic incoherent structure factors are obtained
by performing the Fourier Transformation, defined in Eq.4.134, respectively on the total and
partial intermediate incoherent scattering function.

nMOLDYN computes the incoherent intermediate scattering function on a rectangular grid
of equidistantly spaced points along the time-and the q-axis, repectively:

Finc(qm, k·∆t) .
=

Nspecies∑

I=1

nIωI,incFI,inc(qm, k·∆t), k = 0 . . . Nt−1, m = 0 . . . Nq−1. (4.159)

where Nt is the number of time steps in the coordinate time series, Nq is a user-defined number
of q-shells, Nspecies is the number of selected species, nI the number of atoms of species I, ωI,inc

the weight for specie I (see Section 4.2.1 for more details) and FI,inc(qm, k ·∆t) is defined as:

FI,inc,α(qm, k ·∆t) =
nI∑

α=1

〈exp[−iq ·Rα(0)] exp[iq ·Rα(t)]〉q. (4.160)

The symbol . . .q in (4.160) denotes an average over q-vectors having approximately the same
modulus qm = qmin + m · ∆q. The particle density must not change if jumps in the particle
trajectories due to periodic boundary conditions occcur. In addition the average particle density,
N/V , must not change. This can be achieved by choosing q-vectors on a lattice which is
reciprocal to the lattice defined by the MD box. Let b1,b2,b3 be the basis vectors which span
the MD cell. Any position vector in the MD cell can be written as

R = x′b1 + y′b2 + z′b3, (4.161)

with x′, y′, z′ having values between 0 and 1. The primes indicate that the coordinates are box
coordinates. A jump due to periodic bounday conditions causes x′, y′, z′ to jump by ±1. The
set of dual basis vectors b1,b2,b3 is defined by the relation

bib
j = δji . (4.162)

If the q-vectors are now chosen as

q = 2π
(
kb1 + lb2 +mb3

)
, (4.163)

121



where k,l,m are integer numbers, jumps in the particle trajectories produce phase changes of
multiples of 2π in the Fourier transformed particle density, i.e. leave it unchanged. One can
define a grid of q-shells or a grid of q-vectors along a given direction or on a given plane, giving in
addition a tolerance for q. nMOLDYN looks then for q-vectors of the form (4.163) whose moduli
deviate within the prescribed tolerance from the equidistant q-grid. From these q-vectors only a
maximum number per grid-point (called generically q-shell also in the anisotropic case) is kept.

The q-vectors can be generated isotropically, anisotropically or along user-defined directions.
The correlation functions defined in 4.160 are computed via the FCA technique described in

Section A. Although the efficient FCA technique is used to compute the atomic time correlation
functions, the program may consume a considerable amount of CPU-time since the number of
time correlation functions to be computed equals the number of atoms times the total number
of q-vectors. This analysis is actually one of the most time-consuming among all the analysis
available in nMOLDYN.

Parameters
Pressing the Dynamic Incoherent Structure Factor button will pop up the dialog shown

on figure 4.52
The following input fields controls the parameters for the Dynamic Incoherent Structure

Factor (DISF ) analysis:

• Trajectory file
Format: string
Default: traj file where traj file is the name of the loaded trajectory
Description: the value of this widget can not be changed. It just recalls for information
purpose the name of the trajectory file loaded for the analysis.

• Frame selection
Format: string
Default: 1:traj length:1 where traj length is the number of frames of the trajectory.
Description: this widget allows to select the trajectory frames that will be used for the
analysis. This must be a string of the form:

first:last:step

where first is an integer specifying the first frame number to consider, last is an inte-
ger specifying the last frame number to consider and step is an integer specifying the step
number between two frames.

For example,

? 2:10:3 will select the frames 2, 5 and 8.

? 1:5:1 will select the frames 1, 2, 3, 4 and 5.

• Q values (in nm-1)
Format: string
Default: 0:100:1.
Description: this widget allows to select the modulii of the q-vectors. This must be a

122



Figure 4.52: The dialog from where the DISF analysis will be set up and run.

string of the form:

qmin : qmax : qstep

In this way, the intermediate scattering function will be calculated for discrete q de-
fined as qm = qmin + m · qstep where qmin is the radius of the smallest q-shell, qstep is
the distance between two consecutive q-shells and with m running from 0 to Nshell where
Nshell is the number of selected q-shells defined as Nshell = E( qmax−qminqstep

) + 1 where qmax
is the radius of the biggest q-shell.

For example,

123



? 0:10:1 will generate q-shells of radii 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

? 3:12:2 will generate q-shells of radii 3, 5, 7, 9, 11.

• Q shell width (in nm-1)
Format: strictly positive float
Default: 1.0
Description: this widget allows to define the tolerance dq on the q-modulii. So, for
each q-shell of modulus q, nMOLDYN will accept a q-vector to belong to that shell if its
modulus falls in the range [q-dq/2,q+dq/2]. This parameter fix the q-resolution.

• Q vectors per shell
Format: strictly positive integer
Default: 50
Description: this widget allows to specify the number of q-vectors , Nq to generate
for each q-shell. Indeed, when generating q-vectors, nMOLDYN will try to generate Nq

q-vectors for each q-shell in order to carry out the averages of Eq. 4.151. For a given
q-shell, if nMOLDYN could generate less q-vectors than Nq, it will only use the number of
generated q-vectors instead of Nq and if nMOLDYN could generate more q-vectors than
Nq, it will pick up randomly Nq q-vectors among the generated q-vectors. The higher this
parameter is the smoother will be the computed intermediate scattering function but at
the cost of a slower analysis.

• Q vectors generator
Format: string equal to 3D isotropic, 2D isotropic or anisotropic
Default: 3D isotropic
Description: this option allows to specify how the q-vectors should be generated:

? 3D isotropic the q-vectors are generated randomly on concentric spheres.

? 2D isotropic the q-vectors are generated randomly on concentric rings in a given
plane.

? anisotropic the q-vectors are generated randomly on one or several defined directions.

• Q vectors direction
Format: string
Default: no
Description: this widget allows to specify one or several preferential directions along
which the q-vectors have to be generated. Depening on the q-vectors generation type, the
entered value will take different values:

? 3D isotropic the default value no must be used.

? 2D isotropic a string of the form

q1x, q1y , q1z; q2x, q2y, q2z

124



where q1x, q1y, q1z and q2x, q2y, q2z are respectively the x,y,z components of q-vector
q1 and q2, (q1,q2) defining the plane on which the q-vectors will be generated.

? anisotropic a string of the form

q1x, q1y , q1z; q2x, q2y, q2z; . . .

where q1x, q1y, q1z , q2x, q2y, q2z . . . are respectively the x,y,z components of q-vector
q1, q2 . . . , the q-vector generation being performed along each defined direction.

• FFT window
Format: float in [0.0,100.0]
Default: 10.0
Description: this widget allows to define the width in percentage of the trajectory length
of the Gaussian function to be used in the smoothing procedure for the calculation of the
coherent structure factor out of the intermediate scattering function. See Appendix A for
more details.

• Subset selection
Format: subset selection string
Default: all
Description: this widget allows the selection of a subset of the system for the analysis.
See Section 4.2.2.1 for more details.

• Deuteration selection
Format: deuteration selection string
Default: no
Description: this widget allows the selection of a subset hydrogen atoms that will take
the atomic parameters of deuterium. See Section 4.2.2.2 for more details.

• Weights
Format: string equal to equal, mass, coherent, incoherent or atomicNumber
Default: incoherent
Description: this widget allows the selection of the weighting scheme to apply on each
atomic contribution to the DISF . See Section 4.2.1 for more details.

• DISF output file
Format: string
Default: DISF traj file.nc where traj file.nc is the name of the input trajectory
Description: this widget allows to enter the name of the NetCDF output file of the
DISF analysis. A CDL version of the NetCDF output file is also automatically created
with DISF traj file.cdl name.

125



Output
The results of a DISF analysis are stored in a NetCDF file whose main variables are namely:

• octan: an array storing the codes for space octan. For example, X+Y+Z+ for the space
octan corresponding to positive X, Y and Z,

• qvectors statistics: array storing the number of q-vectors generated per space octan,

• q: the q-shells radii in nm−1,

• time: the times in ps at which the intermediate incoherent scattering function is evaluated,

• Fqt-total: the total intermediate incoherent scattering function,

• Fqt-X: the partial intermediate incoherent scattering function for specie X,

• frequency: the frequencies in THz at which the in coherent structure factor is evaluated,

• Sqw-total: the total dynamic incoherent structure factor,

• Sqw-X: the partial dynamic incoherent structure factor for specie X.

4.2.5.5 Dynamic Incoherent Structure Factor (AR Model)

Theory and implementation
nMOLDYN allows one to calculate the memory function related to the incoherent interme-

diate scattering function as well. It is defined through the corresponding memory function
equation

∂tFinc(q, t) = −
∫ t

0
dτ ξ(q, t− τ)Finc(q, τ). (4.164)

The memory function ξ(q, t), which depends on q as well as on time, permits the analysis of
memory effects on different length scales. As in the previuos cases, the numerical calculation
of the memory function equation relevant to the incoherent intermediate scattering function is
based on the Autoregressive model, the discrete time signal being here

N∑

α=1

bα,inc exp[−iq ·Rα(t)]. (4.165)

See Section 4.2.4.11 for more details about auto-regressive process.
In the framework of the Autoregressive model nMOLDYN allows the intermediate coherent

scattering function, its Fourier spectrum (the incoherent dynamical structure factor) and its
memory function to be computed on a rectangular grid of equidistantly spaced points along the
time- and the q-axis, repectively. The user is referred to Section 4.2.4.11 for more theoretical
details. The dynamical variable of the correlation function under consideration

Nspecies∑

I=1

nIωI

nI∑

α=1

exp[−iq ·Rα(n∆t)] (4.166)

is considered as a discrete ”signal”, which is modeled by an autoregressive stochastic process of
order P. For each q-values the program calculates a set of P complex coefficients an for the AR
model averaging aver all atoms of the system and over all cartesian components. The correlation
functions and their Fourier spectra are then computed according to the algorithm described in
Section 4.2.4.11. Starting from the discretized memory function equation, whitch relates the
time evolution of the correlation function to its memory function (see Section 4.2.4.11), and using
the correlation function calculated by the AR model, the program computes for each q-value
the discretized memory function. The program performs the above calculations isotropically.

126



Parameters
Pressing the Dynamic Incoherent Structure Factor (AR Model) button will pop up

the dialog shown on figure 4.53

Figure 4.53: The dialog from where the DISFAR analysis will be set up and run.

The following input fields controls the parameters for the Dynamic Incoherent Structure
Factor using an Auto-Regressive model (DISFAR) analysis:

• Trajectory file
Format: string
Default: traj file where traj file is the name of the loaded trajectory
Description: the value of this widget can not be changed. It just recalls for information

127



purpose the name of the trajectory file loaded for the analysis.

• Frame selection
Format: string
Default: 1:traj length:1 where traj length is the number of frames of the trajectory.
Description: this widget allows to select the trajectory frames that will be used for the
analysis. This must be a string of the form:

first:last:step

where first is an integer specifying the first frame number to consider, last is an inte-
ger specifying the last frame number to consider and step is an integer specifying the step
number between two frames.

For example,

? 2:10:3 will select the frames 2, 5 and 8.

? 1:5:1 will select the frames 1, 2, 3, 4 and 5.

• Model order
Format: integer in [1,Nframes[ where Nframes is the number of selected frames for the
analysis
Default: 50
Description: this widget allows to specify P, the order (= poles number) of the au-
toregressive model. A priori the autocorrelation function and its power spectrum can be
approximated to almost arbitrary precision by increasing the order of the autoregressive
model. In practice it has been proven that reliably computation can be carried out up to
P of the order of 1000 poles.

• Q values (in nm-1)
Format: string
Default: 0:100:1.
Description: this widget allows to select the modulii of the q-vectors. This must be a
string of the form:

qmin : qmax : qstep

In this way, the intermediate scattering function will be calculated for discrete q de-
fined as qm = qmin + m · qstep where qmin is the radius of the smallest q-shell, qstep is
the distance between two consecutive q-shells and with m running from 0 to Nshell where
Nshell is the number of selected q-shells defined as Nshell = E( qmax−qminqstep

) + 1 where qmax
is the radius of the biggest q-shell.

For example,

? 0:10:1 will generate q-shells of radii 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

? 3:12:2 will generate q-shells of radii 3, 5, 7, 9, 11.

128



• Q shell width (in nm-1)
Format: strictly positive float
Default: 1.0
Description: this widget allows to define the tolerance dq on the q-modulii. So, for
each q-shell of modulus q, nMOLDYN will accept a q-vector to belong to that shell if its
modulus falls in the range [q-dq/2,q+dq/2]. This parameter fix the q-resolution.

• Q vectors per shell
Format: strictly positive integer
Default: 50
Description: this widget allows to specify the number of q-vectors , Nq to generate
for each q-shell. Indeed, when generating q-vectors, nMOLDYN will try to generate Nq

q-vectors for each q-shell in order to carry out the averages of Eq. 4.151. For a given
q-shell, if nMOLDYN could generate less q-vectors than Nq, it will only use the number of
generated q-vectors instead of Nq and if nMOLDYN could generate more q-vectors than
Nq, it will pick up randomly Nq q-vectors among the generated q-vectors. The higher this
parameter is the smoother will be the computed intermediate scattering function but at
the cost of a slower analysis.

• Q vectors generator
Format: string equal to 3D isotropic, 2D isotropic or anisotropic
Default: 3D isotropic
Description: this option allows to specify how the q-vectors should be generated:

? 3D isotropic the q-vectors are generated randomly on concentric spheres.

? 2D isotropic the q-vectors are generated randomly on concentric rings in a given
plane.

? anisotropic the q-vectors are generated randomly on one or several defined directions.

• Q vectors direction
Format: string
Default: no
Description: this widget allows to specify one or several preferential directions along
which the q-vectors have to be generated. Depening on the q-vectors generation type, the
entered value will take different values:

? 3D isotropic the default value no must be used.

? 2D isotropic a string of the form

q1x, q1y , q1z; q2x, q2y, q2z

where q1x, q1y, q1z and q2x, q2y, q2z are respectively the x,y,z components of q-vector
q1 and q2, (q1,q2) defining the plane on which the q-vectors will be generated.

129



? anisotropic a string of the form

q1x, q1y , q1z; q2x, q2y, q2z; . . .

where q1x, q1y, q1z , q2x, q2y, q2z . . . are respectively the x,y,z components of q-vector
q1, q2 . . . , the q-vector generation being performed along each defined direction.

• Subset selection
Format: subset selection string
Default: all
Description: this widget allows the selection of a subset of the system for the analysis.
See Section 4.2.2.1 for more details.

• Deuteration selection
Format: deuteration selection string
Default: no
Description: this widget allows the selection of a subset hydrogen atoms that will take
the atomic parameters of deuterium. See Section 4.2.2.2 for more details.

• Weights
Format: string equal to equal, mass, coherent, incoherent or atomicNumber
Default: incoherent
Description: this widget allows the selection of the weighting scheme to apply on each
atomic contribution to the DISFAR. See Section 4.2.1 for more details.

• DISFAR output file
Format: string
Default: DISFAR traj file.nc where traj file.nc is the name of the input trajectory
Description: this widget allows to enter the name of the NetCDF output file of the
DISFAR analysis. A CDL version of the NetCDF output file is also automatically created
with DISFAR traj file.cdl name.

Output
The results of a DISFAR analysis are stored in a NetCDF file whose main variables are

namely:

• octan: an array storing the codes for space octan. For example, X+Y+Z+ for the space
octan corresponding to positive X, Y and Z,

• qvectors statistics: array storing the number of q-vectors generated per space octan,

• q: the q-shells radii in nm−1,

• time: the times in ps at which the intermediate coherent scattering function is evaluated,

• Fqt: the total intermediate coherent scattering function,

130



• frequency: the frequencies in THz at which the coherent structure factor is evaluated,

• Fqt memory function: the corresponding intermediate coherent scattering autoregressive
memory function,

• Sqw: the total dynamic coherent structure factor,

• n: the index for the autoregressive coefficients a
(P )
n ,

• ar coefficients real: the real part of the autoregressive coefficients a
(P )
n ,

• ar coefficients imag: the imaginary part of the autoregressive coefficients a
(P )
n .

4.2.5.6 Dynamic Incoherent Structure Factor (Gaussian Approximation)

Theory and implementation
The MSD can be related to the incoherent intermediate scattering function via the cumulant

expansion [49, 50]

Fginc(q, t) =

Nspecies∑

I=1

nIωI,incFgI,inc(q, t) (4.167)

where Nspecies is the number of selected species, nI the number of atoms of species I, ωI,inc the
weight for specie I (see Section 4.2.1 for more details) and

FgI,inc(q, t) =
1

nI

nI∑

α

exp[−q2ρα,1(t) + q4ρα,2(t)∓ . . .]. (4.168)

The cumulants ρα,k(t) are defined as

ρα,1(t) =
1

2!
〈d2
α(t; nq)〉 (4.169)

ρα,2(t) =
1

4!

[
〈d4
α(t; nq)〉 − 3〈d2

α(t; nq)〉2
]

(4.170)

...

The vector nq is the unit vector in the direction of q. In the Gaussian approximation the
above expansion is truncated after the q2-term. For certain model systems like the ideal gas,
the harmonic oscillator, and a particle undergoing Einstein diffusion, this is exact. For these
systems the incoherent intermediate scattering function is completely determined by the MSD.

nMOLDYN allows one to compute the total and partial incoherent intermediate scattering
function in the Gaussian approximation by discretizing equation 4.167:

Fginc(qm, k·∆t)
.
=

Nspecies∑

I=1

nIωI,incF
g
I,inc(qm, k·∆t), k = 0 . . . Nt−1, m = 0 . . . Nq−1. (4.171)

with for each specie the following expression for the intermediate scattering function:

F gI,α,inc(qm, k ·∆t) =
1

nI

nI∑

α

exp

[
−(qm)2

6
∆2
α(k ·∆t)

]
isotropic system, (4.172)

F gI,α,inc(qm, k ·∆t) =
1

nI

nI∑

α

exp

[
−(qm)2

2
∆2
α(k ·∆t; n)

]
non-isotropic system.(4.173)

131



Nt is the total number of time steps in the coordinate time series andNq is a user-defined number
of q-shells. The (q, t)-grid is the same as for the calculation of the intermediate incoherent
scatering function (see Section 4.2.5.4). The quantities ∆2

α(t) and ∆2
α(t; n) are the mean-square

displacements, defined in Equations (4.16) and (4.17), respectively. They are computed by using
the algorithm described in Section 4.2.4.1. nMOLDYN corrects the atomic input trajectories
for jumps due to periodic boundary conditions. It should be noted that the computation of
the intermediate scattering function in the Gaussian approximation is much ‘cheaper’ than
the computation of the full intermediate scattering function, Finc(q, t), since no averaging over
different q-vectors needs to be performed. It is sufficient to compute a single mean-square
displacement per atom.

Parameters
Pressing the Dynamic Incoherent Structure Factor (Gaussian Approximation) but-

ton will pop up the dialog shown on figure 4.54

Figure 4.54: The dialog from where the DISFG analysis will be set up and run.

The following input fields controls the parameters for the Dynamic Incoherent Structure
Factor using an Gaussian approximation (DISFG) analysis:

132



• Trajectory file
Format: string
Default: traj file where traj file is the name of the loaded trajectory
Description: the value of this widget can not be changed. It just recalls for information
purpose the name of the trajectory file loaded for the analysis.

• Frame selection
Format: string
Default: 1:traj length:1 where traj length is the number of frames of the trajectory.
Description: this widget allows to select the trajectory frames that will be used for the
analysis. This must be a string of the form:

first:last:step

where first is an integer specifying the first frame number to consider, last is an inte-
ger specifying the last frame number to consider and step is an integer specifying the step
number between two frames.

For example,

? 2:10:3 will select the frames 2, 5 and 8.

? 1:5:1 will select the frames 1, 2, 3, 4 and 5.

• Q values (in nm-1)
Format: string
Default: 0:100:1.
Description: this widget allows to select the modulii of the q-vectors. This must be a
string of the form:

qmin : qmax : qstep

In this way, the intermediate scattering function will be calculated for discrete q de-
fined as qm = qmin + m · qstep where qmin is the radius of the smallest q-shell, qstep is
the distance between two consecutive q-shells and with m running from 0 to Nshell where
Nshell is the number of selected q-shells defined as Nshell = E( qmax−qminqstep

) + 1 where qmax
is the radius of the biggest q-shell.

For example,

? 0:10:1 will generate q-shells of radii 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

? 3:12:2 will generate q-shells of radii 3, 5, 7, 9, 11.

• FFT window
Format: float in [0.0,100.0]
Default: 10.0
Description: this widget allows to define the width in percentage of the trajectory length
of the Gaussian function to be used in the smoothing procedure for the calculation of the

133



coherent structure factor out of the intermediate scattering function. See Appendix A for
more details.

• Subset selection
Format: subset selection string
Default: all
Description: this widget allows the selection of a subset of the system for the analysis.
See Section 4.2.2.1 for more details.

• Deuteration selection
Format: deuteration selection string
Default: no
Description: this widget allows the selection of a subset hydrogen atoms that will take
the atomic parameters of deuterium. See Section 4.2.2.2 for more details.

• Weights
Format: string equal to equal, mass, coherent, incoherent or atomicNumber
Default: incoherent
Description: this widget allows the selection of the weighting scheme to apply on each
atomic contribution to the DISFG . See Section 4.2.1 for more details.

• DISFG output file
Format: string
Default: DISFG traj file.nc where traj file.nc is the name of the input trajectory
Description: this widget allows to enter the name of the NetCDF output file of the
DISFG analysis. A CDL version of the NetCDF output file is also automatically created
with DISFG traj file.cdl name.

Output
The results of a DISFG analysis are stored in a NetCDF file whose main variables are namely:

• q: the q-shells radii in nm−1,

• time: the times in ps at which the intermediate incoherent scattering function is evaluated,

• Fqt-total: the total intermediate incoherent scattering function,

• Fqt-X: the partial intermediate incoherent scattering function for specie X,

• frequency: the frequencies in THz at which the in coherent structure factor is evaluated,

• Sqw-total: the total dynamic incoherent structure factor,

• Sqw-X: the partial dynamic incoherent structure factor for specie X.

134



4.2.5.7 Elastic Incoherent Structure Factor

Theory and implementation
The Elastic Incoherent Structure Factor (EISF ) is defined as the limit of the incoherent

intermediate scattering function for infinite time,

EISF (q)
.
= lim

t→∞
Finc(q, t). (4.174)

Using the above definition of the EISF one can decompose the incoherent intermediate scattering
function as follows:

Finc(q, t) = EISF (q) + F ′inc(q, t), (4.175)

where F ′inc(q, t) decays to zero for infinite time. Taking now the Fourier transform it follows
immediately that

Sinc(q, ω) = EISF (q)δ(ω) + S ′inc(q, ω). (4.176)

The EISF appears as the amplitude of the elastic line in the neutron scattering spectrum.
Elastic scattering is only present for sytems in which the atomic motion is confined in space, as
for solids. To understand which information is contained in the EISF we consider for simplicity
a system where only one sort of atoms is visible to the neutrons. To a very good approximation
this is the case for all systems containing a large amount of hydrogen atoms, as biological
systems. Incoherent scattering from hydrogen dominates by far all other contributions. Using
the definition of the van Hove self-correlation function Gs(r, t) [7],

b2incGs(r, t)
.
=

1

2π3

∫
d3q exp[−iq · r]Finc(q, t), (4.177)

which can be interpreted as the conditional probability to find a tagged particle at the position
r at time t, given it started at r = 0, one can write:

EISF (q) = b2
inc

∫
d3r exp[iq · r]Gs(r, t =∞). (4.178)

The EISF gives the sampling distribution of the points in space in the limit of infinite time.
In a real experiment this means times longer than the time which is observable with a given
instrument. The EISF vanishes for all systems in which the particles can access an infinite
volume since Gs(r, t) approaches 1/V for large times. This is the case for molecules in liquids
and gases.

For computational purposes it is convenient to use the following representation of the EISF
[14]:

EISF (q) =

Nspecies∑

I=1

nIωI,incEISFI(q) (4.179)

where Nspecies is the number of selected species, nI the number of atoms of species I, ωI,inc

the weight for specie I (see Section 4.2.1 for more details) and for each specie the following
expression for the elastic incoherent scattering function is

EISFI(q) =
1

nI

nI∑

α

〈| exp[iq ·Rα]|2〉. (4.180)

This expression is derived from definition (4.174) of the EISF and expression (4.142) for the
intermediate scattering function, using that for infinite time the relation

〈exp[−iq ·Rα(0)] exp[iq ·Rα(t)]〉 = 〈| exp[iq ·Rα]|2〉 (4.181)

135



holds. In this way the computation of the EISF is reduced to the computation of a static
thermal average. We remark at this point that the length of the MD trajectory from which
the EISF is computed should be long enough to allow for a representative sampling of the
conformational space.

nMOLDYN allows one to compute the elastic incoherent structure factor on a grid of equidis-
tantly spaced points along the q-axis:

EISF (qm)
.
=

Nspecies∑

I=1

nIωIEISFI(qm),m = 0 . . . Nq − 1. (4.182)

where Nq is a user-defined number of q-shells, the values for qm are defined as qm = qmin+m·∆q,
and for each specie the following expression for the elastic incoherent scattering function is:

EISFI(qm) =
1

nI

nI∑

α

〈| exp[iq ·Rα]|2〉q. (4.183)

Here the symbol . . .q denotes an average over the q-vectors having the same modulus qm. The
program corrects the atomic input trajectories for jumps due to periodic boundary conditions.

Parameters
Pressing the Elastic Incoherent Structure Factor button will pop up the dialog shown

on figure 4.55
The following input fields controls the parameters for the EISF analysis:

• Trajectory file
Format: string
Default: traj file where traj file is the name of the loaded trajectory
Description: the value of this widget can not be changed. It just recalls for information
purpose the name of the trajectory file loaded for the analysis.

• Frame selection
Format: string
Default: 1:traj length:1 where traj length is the number of frames of the trajectory.
Description: this widget allows to select the trajectory frames that will be used for the
analysis. This must be a string of the form:

first:last:step

where first is an integer specifying the first frame number to consider, last is an inte-
ger specifying the last frame number to consider and step is an integer specifying the step
number between two frames.

For example,

? 2:10:3 will select the frames 2, 5 and 8.

? 1:5:1 will select the frames 1, 2, 3, 4 and 5.

136



Figure 4.55: The dialog from where the EISF analysis will be set up and run.

• Q values (in nm-1)
Format: string
Default: 0:100:1.
Description: this widget allows to select the modulii of the q-vectors. This must be a
string of the form:

qmin : qmax : qstep

In this way, the intermediate scattering function will be calculated for discrete q de-
fined as qm = qmin + m · qstep where qmin is the radius of the smallest q-shell, qstep is
the distance between two consecutive q-shells and with m running from 0 to Nshell where
Nshell is the number of selected q-shells defined as Nshell = E( qmax−qminqstep

) + 1 where qmax

137



is the radius of the biggest q-shell.

For example,

? 0:10:1 will generate q-shells of radii 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

? 3:12:2 will generate q-shells of radii 3, 5, 7, 9, 11.

• Q shell width (in nm-1)
Format: strictly positive float
Default: 1.0
Description: this widget allows to define the tolerance dq on the q-modulii. So, for
each q-shell of modulus q, nMOLDYN will accept a q-vector to belong to that shell if its
modulus falls in the range [q-dq/2,q+dq/2]. This parameter fix the q-resolution.

• Q vectors per shell
Format: strictly positive integer
Default: 50
Description: this widget allows to specify the number of q-vectors , Nq to generate
for each q-shell. Indeed, when generating q-vectors, nMOLDYN will try to generate Nq

q-vectors for each q-shell in order to carry out the averages of Eq. 4.151. For a given
q-shell, if nMOLDYN could generate less q-vectors than Nq, it will only use the number of
generated q-vectors instead of Nq and if nMOLDYN could generate more q-vectors than
Nq, it will pick up randomly Nq q-vectors among the generated q-vectors. The higher this
parameter is the smoother will be the computed intermediate scattering function but at
the cost of a slower analysis.

• Q vectors generator
Format: string equal to 3D isotropic, 2D isotropic or anisotropic
Default: 3D isotropic
Description: this option allows to specify how the q-vectors should be generated:

? 3D isotropic the q-vectors are generated randomly on concentric spheres.

? 2D isotropic the q-vectors are generated randomly on concentric rings in a given
plane.

? anisotropic the q-vectors are generated randomly on one or several defined directions.

• Q vectors direction
Format: string
Default: no
Description: this widget allows to specify one or several preferential directions along
which the q-vectors have to be generated. Depening on the q-vectors generation type, the
entered value will take different values:

? 3D isotropic the default value no must be used.

138



? 2D isotropic a string of the form

q1x, q1y , q1z; q2x, q2y, q2z

where q1x, q1y, q1z and q2x, q2y, q2z are respectively the x,y,z components of q-vector
q1 and q2, (q1,q2) defining the plane on which the q-vectors will be generated.

? anisotropic a string of the form

q1x, q1y , q1z; q2x, q2y, q2z; . . .

where q1x, q1y, q1z , q2x, q2y, q2z . . . are respectively the x,y,z components of q-vector
q1, q2 . . . , the q-vector generation being performed along each defined direction.

• FFT window
Format: float in [0.0,100.0]
Default: 10.0
Description: this widget allows to define the width in percentage of the trajectory length
of the Gaussian function to be used in the smoothing procedure for the calculation of the
coherent structure factor out of the intermediate scattering function. See Appendix A for
more details.

• Subset selection
Format: subset selection string
Default: all
Description: this widget allows the selection of a subset of the system for the analysis.
See Section 4.2.2.1 for more details.

• Deuteration selection
Format: deuteration selection string
Default: no
Description: this widget allows the selection of a subset hydrogen atoms that will take
the atomic parameters of deuterium. See Section 4.2.2.2 for more details.

• Weights
Format: string equal to equal, mass, coherent, incoherent or atomicNumber
Default: incoherent
Description: this widget allows the selection of the weighting scheme to apply on each
atomic contribution to the DISF . See Section 4.2.1 for more details.

• EISF output file
Format: string
Default: EISF traj file.nc where traj file.nc is the name of the input trajectory
Description: this widget allows to enter the name of the NetCDF output file of the
EISF analysis. A CDL version of the NetCDF output file is also automatically created
with EISF traj file.cdl name.

139



Output
The results of a EISF analysis are stored in a NetCDF file whose main variables are namely:

• octan: an array storing the codes for space octan. For example, X+Y+Z+ for the space
octan corresponding to positive X, Y and Z,

• qvectors statistics: array storing the number of q-vectors generated per space octan,

• q: the q-shells radii in nm−1,

• eisf-total: the total dynamic incoherent structure factor,

• eisf-X: the partial dynamic incoherent structure factor for specie X.

4.2.5.8 Static Coherent Structure Factor

Theory and implementation
This analysis is a shortcut to obtain the static coherent structure factor defined as S(q) =

Fcoh(q, t = 0). It uses exactly the same procedure as the one defined in Section 4.2.5.2.

Parameters
Pressing the Static Coherent Structure Factor button will pop up the dialog shown on

figure 4.56
The following input fields controls the parameters for the Static Coherent Structure Factor

(SCSF ) analysis:

• Trajectory file
Format: string
Default: traj file where traj file is the name of the loaded trajectory
Description: the value of this widget can not be changed. It just recalls for information
purpose the name of the trajectory file loaded for the analysis.

• Frame selection
Format: string
Default: 1:traj length:1 where traj length is the number of frames of the trajectory.
Description: this widget allows to select the trajectory frames that will be used for the
analysis. This must be a string of the form:

first:last:step

where first is an integer specifying the first frame number to consider, last is an inte-
ger specifying the last frame number to consider and step is an integer specifying the step
number between two frames.

For example,

? 2:10:3 will select the frames 2, 5 and 8.

? 1:5:1 will select the frames 1, 2, 3, 4 and 5.

140



Figure 4.56: The dialog from where the SCSF analysis will be set up and run.

• Q values (in nm-1)
Format: string
Default: 0:100:1.
Description: this widget allows to select the modulii of the q-vectors. This must be a
string of the form:

qmin : qmax : qstep

In this way, the intermediate scattering function will be calculated for discrete q de-
fined as qm = qmin + m · qstep where qmin is the radius of the smallest q-shell, qstep is
the distance between two consecutive q-shells and with m running from 0 to Nshell where
Nshell is the number of selected q-shells defined as Nshell = E( qmax−qminqstep

) + 1 where qmax

141



is the radius of the biggest q-shell.

For example,

? 0:10:1 will generate q-shells of radii 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

? 3:12:2 will generate q-shells of radii 3, 5, 7, 9, 11.

• Q shell width (in nm-1)
Format: strictly positive float
Default: 1.0
Description: this widget allows to define the tolerance dq on the q-modulii. So, for
each q-shell of modulus q, nMOLDYN will accept a q-vector to belong to that shell if its
modulus falls in the range [q-dq/2,q+dq/2]. This parameter fix the q-resolution.

• Q vectors per shell
Format: strictly positive integer
Default: 50
Description: this widget allows to specify the number of q-vectors , Nq to generate
for each q-shell. Indeed, when generating q-vectors, nMOLDYN will try to generate Nq

q-vectors for each q-shell in order to carry out the averages of Eq. 4.151. For a given
q-shell, if nMOLDYN could generate less q-vectors than Nq, it will only use the number of
generated q-vectors instead of Nq and if nMOLDYN could generate more q-vectors than
Nq, it will pick up randomly Nq q-vectors among the generated q-vectors. The higher this
parameter is the smoother will be the computed intermediate scattering function but at
the cost of a slower analysis.

• Q vectors generator
Format: string equal to 3D isotropic, 2D isotropic or anisotropic
Default: 3D isotropic
Description: this option allows to specify how the q-vectors should be generated:

? 3D isotropic the q-vectors are generated randomly on concentric spheres.

? 2D isotropic the q-vectors are generated randomly on concentric rings in a given
plane.

? anisotropic the q-vectors are generated randomly on one or several defined directions.

• Q vectors direction
Format: string
Default: no
Description: this widget allows to specify one or several preferential directions along
which the q-vectors have to be generated. Depening on the q-vectors generation type, the
entered value will take different values:

? 3D isotropic the default value no must be used.

142



? 2D isotropic a string of the form

q1x, q1y , q1z; q2x, q2y, q2z

where q1x, q1y, q1z and q2x, q2y, q2z are respectively the x,y,z components of q-vector
q1 and q2, (q1,q2) defining the plane on which the q-vectors will be generated.

? anisotropic a string of the form

q1x, q1y , q1z; q2x, q2y, q2z; . . .

where q1x, q1y, q1z , q2x, q2y, q2z . . . are respectively the x,y,z components of q-vector
q1, q2 . . . , the q-vector generation being performed along each defined direction.

• FFT window
Format: float in [0.0,100.0]
Default: 10.0
Description: this widget allows to define the width in percentage of the trajectory length
of the Gaussian function to be used in the smoothing procedure for the calculation of the
coherent structure factor out of the intermediate scattering function. See Appendix A for
more details.

• Subset selection
Format: subset selection string
Default: all
Description: this widget allows the selection of a subset of the system for the analysis.
See Section 4.2.2.1 for more details.

• Deuteration selection
Format: deuteration selection string
Default: no
Description: this widget allows the selection of a subset hydrogen atoms that will take
the atomic parameters of deuterium. See Section 4.2.2.2 for more details.

• Weights
Format: string equal to equal, mass, coherent, incoherent or atomicNumber
Default: coherent
Description: this widget allows the selection of the weighting scheme to apply on each
atomic contribution to the SCSF . See Section 4.2.1 for more details.

• SCSF output file
Format: string
Default: SCSF traj file.nc where traj file.nc is the name of the input trajectory
Description: this widget allows to enter the name of the NetCDF output file of the
SCSF analysis. A CDL version of the NetCDF output file is also automatically created
with SCSF traj file.cdl name.

143



Output
The results of a SCSF analysis are stored in a NetCDF file whose main variables are namely:

• octan: an array storing the codes for space octan. For example, X+Y+Z+ for the space
octan corresponding to positive X, Y and Z.

• qvectors statistics: array storing the number of q-vectors generated per space octan,

• q: the q-shells radii in nm−1,

• time: the times in ps at which the intermediate coherent scattering function is evaluated,

• frequency: the frequencies in THz at which the coherent structure factor is evaluated,

• Sqw-total: the total dynamic coherent structure factor,

• Sqw-XY: the partial dynamic coherent structure factor for species X and Y.

4.2.5.9 Smoothed Static Coherent Structure Factor

Theory and implementation
This analysis differs from most of the other scattering-related analysis available in nMOLDYN

in the sense that it does not use a discrete q-vectors generation but results from a integration
over all the q-vectors for a given q-shell. In that context, the static coherent structure factor is
defined as:

Scoh(q) =

Nspecies∑

I,J≥I

√
nInJωI,cohωJ,cohSIJ(q) (4.184)

where Nspecies is the number of selected species, nI , nJ are respectively the number of atoms of
species I and J, ωI,coh and ωJ,coh are respectively the weights for species I and J (see Section
4.2.1 for more details) and:

SIJ,coh = δIJ +
1√
nInI

〈nI ,nJ∑

α,β 6=α

sin(qrαβ)

qrαβ

〉
(4.185)

where q is the radius of the q-shell under process, and rαβ is the distance between atoms α
and β. For more detials about Smoothed Static Coherent Structure Factor (SSCSF ) analysis
please refer to Ref. [69]

Parameters
Pressing the Smoothed Static Coherent Structure Factor button will pop up the dialog

shown on figure 4.57
The following input fields controls the parameters for the SSCSF analysis:

• Trajectory file
Format: string
Default: traj file where traj file is the name of the loaded trajectory
Description: the value of this widget can not be changed. It just recalls for information
purpose the name of the trajectory file loaded for the analysis.

144



Figure 4.57: The dialog from where the SSCSF analysis will be set up and run.

• Frame selection
Format: string
Default: 1:traj length:1 where traj length is the number of frames of the trajectory.
Description: this widget allows to select the trajectory frames that will be used for the
analysis. This must be a string of the form:

first:last:step

where first is an integer specifying the first frame number to consider, last is an inte-
ger specifying the last frame number to consider and step is an integer specifying the step
number between two frames.

For example,

? 2:10:3 will select the frames 2, 5 and 8.

? 1:5:1 will select the frames 1, 2, 3, 4 and 5.

• Q values (in nm-1)
Format: string

145



Default: 0:100:1.
Description: this widget allows to select the modulii of the q-vectors. This must be a
string of the form:

qmin : qmax : qstep

In this way, the intermediate scattering function will be calculated for discrete q de-
fined as qm = qmin + m · qstep where qmin is the radius of the smallest q-shell, qstep is
the distance between two consecutive q-shells and with m running from 0 to Nshell where
Nshell is the number of selected q-shells defined as Nshell = E( qmax−qminqstep

) + 1 where qmax
is the radius of the biggest q-shell.

For example,

? 0:10:1 will generate q-shells of radii 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

? 3:12:2 will generate q-shells of radii 3, 5, 7, 9, 11.

• Subset selection
Format: subset selection string
Default: all
Description: this widget allows the selection of a subset of the system for the analysis.
See Section 4.2.2.1 for more details.

• Deuteration selection
Format: deuteration selection string
Default: no
Description: this widget allows the selection of a subset hydrogen atoms that will take
the atomic parameters of deuterium. See Section 4.2.2.2 for more details.

• Weights
Format: string equal to equal, mass, coherent, incoherent or atomicNumber
Default: coherent
Description: this widget allows the selection of the weighting scheme to apply on each
atomic contribution to the SSCSF . See Section 4.2.1 for more details.

• SSCSF output file
Format: string
Default: SSCSF traj file.nc where traj file.nc is the name of the input trajectory
Description: this widget allows to enter the name of the NetCDF output file of the
SSCSF analysis. A CDL version of the NetCDF output file is also automatically created
with SSCSF traj file.cdl name.

Output
The results of a SSCSF analysis are stored in a NetCDF file whose main variables are namely:

• q: the q-shells radii in nm−1

146



• Sq-total: the total dynamic coherent structure factor

• Sq-XY: the partial dynamic coherent structure factor for species X and Y

4.2.6 The Structure menu

Pressing the button Structure brings up a menu from which it is possible to choose the following
analysis:

• Pair Distribution Function

• Coordination Number

• Spatial Density

• ScrewFit Analysis

4.2.6.1 Pair Distribution Function

Theory and implementation
The Pair-Distribution Function (PDF ) is an example of a pair correlation function, which

describes how, on average, the atoms in a system are radially packed around each other. This
proves to be a particularly effective way of describing the average structure of disordered molec-
ular systems such as liquids. Also in systems like liquids, where there is continual movement
of the atoms and a single snapshot of the system shows only the instantaneous disorder, it is
extremely useful to be able to deal with the average structure.

The PDF is useful in other ways. For example, it is something that can be deduced experi-
mentally from x-ray or neutron diffraction studies, thus providing a direct comparison between
experiment and simulation. It can also be used in conjunction with the interatomic pair poten-
tial function to calculate the internal energy of the system, usually quite accurately.

Mathematically, the PDF can be computed using the following formula:

PDF (r) =

Nspecies∑

I=1,J≥I
nInJωIωJgIJ(r) (4.186)

where Nspecies is the number of selected species, nI and nJ are respectively the numbers of
atoms of species I and J, ωI and ωJ respectively the weights for species I and J (see Section
4.2.1 for more details) and PDFαβ(r) is the partial PDF for I and J species that can be defined
as:

PDFIJ(r) =
〈∑nI

α=1 nαJ(r)〉
nIρJ4πr2dr

(4.187)

where ρJ is the density of atom of specie J and nαJ(r) is the mean number of atoms of specie
J in a shell of width dr at distance r of the atom α of specie I.

From the computation of PDF , two related quantities are computed in nMOLDYN, the
Radial-Distribution Function (RDF ) defined as:

RDF (r) = 4πr2ρ0PDF (r) (4.188)

and the Total-Correlation Function (TCF ) defined as:

TCF (r) = 4πrρ0(PDF (r)− 1.0) (4.189)

147



where ρ0 is the average atomic density defined as:

ρ0 =
N

V
(4.190)

where N is the total number of atoms of the system and V the volume of the simulation box.
In nMOLDYN, the PDF , the RDF and the TCF are further splitted into an intra-and

inter-molecular parts which added together give respectively the total PDF , RDF and TCF .

Parameters
Pressing the Pair Distribution Function button will pop up the dialog shown on figure

4.58

Figure 4.58: The dialog from where the PDF analysis will be set up and run.

The following input fields controls the parameters for the PDF analysis:

• Trajectory file
Format: string
Default: traj file where traj file is the name of the loaded trajectory
Description: the value of this widget can not be changed. It just recalls for information
purpose the name of the trajectory file loaded for the analysis.

148



• Frame selection
Format: string
Default: 1:traj length:1 where traj length is the number of frames of the trajectory.
Description: this widget allows to select the trajectory frames that will be used for the
analysis. This must be a string of the form:

first:last:step

where first is an integer specifying the first frame number to consider, last is an inte-
ger specifying the last frame number to consider and step is an integer specifying the step
number between two frames.

For example,

? 2:10:3 will select the frames 2, 5 and 8.

? 1:5:1 will select the frames 1, 2, 3, 4 and 5.

• Distances (in nm)
Format: string
Default: 0.0:1.0:0.1.
Description: this widget allows to select distances in nm at which the PDF will be
computed. This must be a string of the form:

rmin : rmax : rstep

In this way, the PDF , the RDF and the TCF will be calculated for discrete r defined
as rm = rmin + m · rstep where rmin is the smallest r , rstep is the distance between two
consecutive r values and with m running from 0 to Nrvalues where Nrvalues is the number
of selected r values defined as Nrvalues = E( rmax−rminrstep

) + 1 where rmax is the radius of the
biggest r value .

For example,

? 0:10:1 will compute PDF for r = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 nm.

? 3:7:1.2 will compute PDF for r = 3, 4.2, 5.4, 6.6 nm.

• Subset selection
Format: subset selection string
Default: all
Description: this widget allows the selection of a subset of the system for the analysis.
See Section 4.2.2.1 for more details.

• Deuteration selection
Format: deuteration selection string
Default: no
Description: this widget allows the selection of a subset hydrogen atoms that will take
the atomic parameters of deuterium. See Section 4.2.2.2 for more details.

149



• Weights
Format: string equal to equal, mass, coherent, incoherent or atomicNumber
Default: equal
Description: this widget allows the selection of the weighting scheme to apply on each
atomic contribution to the PDF . See Section 4.2.1 for more details.

• PDF output file
Format: string
Default: PDF traj file.nc where traj file.nc is the name of the input trajectory
Description: this widget allows to enter the name of the NetCDF output file of the PDF
analysis. A CDL version of the NetCDF output file is also automatically created with
PDF traj file.cdl name.

Output
The results of a PDF analysis are stored in a NetCDF file whose main variables are namely:

• r: the distances in nm at which the PDF , the RDF and the TCF are computed,

• pdf-XY-intra: the intramolecular partial PDF for species X and Y,

• pdf-XY-inter: the intermolecular partial PDF for species X and Y,

• pdf-XY: the partial PDF for species X and Y (intramolecular and intermolecular),

• rdf-XY-intra: the intramolecular partial RDF for species X and Y,

• rdf-XY-inter: the intermolecular partial RDF for species X and Y,

• rdf-XY: the partial RDF for species X and Y (intramolecular and intermolecular),

• tcf-XY-intra: the intramolecular partial TCF for species X and Y,

• tcf-XY-inter: the intermolecular partial TCF for species X and Y,

• tcf-XY: the partial TCF for species X and Y (intramolecular and intermolecular).

4.2.6.2 Coordination number

Theory and implementation
In chemistry, the Coordination Number (CN ) is the total number of neighbours of a central

atom in a molecule or ion. The definition used in nMOLDYN is somewhat different and can be
seen as an extension of as the former definition. Indeed, in nMOLDYN, the CN is not defined
over one defined central atom but around the centers of gravity of a set of group of atoms. So,
if only one group made of only atom is selected for the analysis, then, the definition is the same
as the original definition. In that context, the CN is defined as:

n(r, r + dr) =
1

NG

NG∑

g=1

Nspecies∑

I=1

ngI(r, r + dr) (4.191)

where NG is the number of groups of atoms, Nspecies is the number of species found in the
system and ngI(r) is the CN defined for specie I defined as the number of atoms of species I
found in a shell of width dr at a distance r of the center of gravity of the group of atom g.

150



nMOLDYN allows one to compute the CN on a set of equidistantly spaced distances at
different times:

CN(rm)
.
=

1

Nframes

1

NG

Nframes∑

f=1

NG∑

g=1

Nspecies∑

I=1

CNgI(rm, tf ), m = 0 . . . Nr−1, n = 0 . . . Nframes−1.

(4.192)
where Nr and Nframes are respectively the number of distances and times at which the CN is
evaluated and

CNgI(rm, tf ) = ngI(rm, tf ), (4.193)

is the number of atoms of specie I found within [rm, rm + dr] at frame f from the center of
gravity of group g.

From these expression, several remarks can be done. Firstly, the Eqs 4.192 and 4.193 can be
restricted to intramolecular and intermolecular distances only. Secondly, these equations can
be averaged over the selected frames providing a time averaged intra and intermolecular CN .
Finally, the same equations (time-dependent and time-averaged) can be integrated over r to
provide a cumulative CN . nMOLDYN computes all these variations.

The concept of CN is useful for structure-related analysis. It can reveal for instance some
packing effects that may have occured during the simulation.

Parameters
Pressing the Coordination Number button will pop up the dialog shown on figure 4.59
The following input fields controls the parameters for the CN analysis:

• Trajectory file
Format: string
Default: traj file where traj file is the name of the loaded trajectory
Description: the value of this widget can not be changed. It just recalls for information
purpose the name of the trajectory file loaded for the analysis.

• Frame selection
Format: string
Default: 1:traj length:1 where traj length is the number of frames of the trajectory.
Description: this widget allows to select the trajectory frames that will be used for the
analysis. This must be a string of the form:

first:last:step

where first is an integer specifying the first frame number to consider, last is an inte-
ger specifying the last frame number to consider and step is an integer specifying the step
number between two frames.

For example,

? 2:10:3 will select the frames 2, 5 and 8.

? 1:5:1 will select the frames 1, 2, 3, 4 and 5.

151



Figure 4.59: The dialog from where the CN analysis will be set up and run.

• Distances (in nm)
Format: string
Default: 0.0:1.0:0.1.
Description: this widget allows to select distances in nm at which the CN will be com-
puted. This must be a string of the form:

rmin : rmax : rstep

In this way, the CN will be calculated for discrete r defined as rm = rmin + m · rstep
where rmin is the smallest r , rstep is the distance between two consecutive r values and
with m running from 0 to Nrvalues where Nrvalues is the number of selected r values defined
as Nrvalues = E( rmax−rminrstep

) + 1 where rmax is the radius of the biggest r value .

For example,

? 0:10:1 will compute PDF for r = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 nm.

? 3:7:1.2 will compute PDF for r = 3, 4.2, 5.4, 6.6 nm.

152



• Group selection
Format: group selection string
Default: all
Description: this widget allows the selection of the groups of atoms whose centers of
gravity will be used to compute the CN (see Section 4.2.6.2). See Section 4.2.2.3 for more
details about group selection.

• Subset selection
Format: subset selection string
Default: all
Description: this widget allows the selection of a subset of the system for the analysis.
Only the atoms of this subset will be considered when looking around the centers of
gravity of the selected groups of atoms. See Section 4.2.2.1 for more details about subset
selection.

• Deuteration selection
Format: deuteration selection string
Default: no
Description: this widget allows the selection of a subset of hydrogen atoms that will be
considered as deuterium atoms. See Section 4.2.2.2 for more details about deuteration
selection.

• CN output file
Format: string
Default: CN traj file.nc where traj file.nc is the name of the input trajectory
Description: this widget allows to enter the name of the NetCDF output file of the CN
analysis. A CDL version of the NetCDF output file is also automatically created with
CN traj file.cdl name.

Output
The results of a CN analysis are stored in a NetCDF file whose main variables are namely:

• r: the distances in nm at which all the CN variants are computed,

• time: the times in ps at which all the time-dependant CN variants are computed,

• cn-X-intra: the intramolecular time-dependent partial CN for specie X,

• cn-X-inter: the intermolecular time-dependent partial CN for specie X,

• cn-X: the intramolecular plus intermolecular time-dependent partial CN for specie X,

• cn-cumul-X-intra: the intramolecular time-dependent partial cumulative CN for specie
X,

• cn-cumul-X-inter: the intermolecular time-dependent partial cumulative CN for specie X,

153



• cn-cumul-X: the intramolecular plus intermolecular time-dependent partial cumulative
CN for specie X,

• cn-timeavg-X-intra: the intramolecular time-avergaed partial CN for specie X,

• cn-timeavg-X-inter: the intermolecular time-averaged partial CN for specie X,

• cn-timeavg-X: the intramolecular plus intermolecular time-averaged partial CN for specie
X,

• cn-timeavg-cumul-X-intra: the intramolecular time-averaged partial cumulative CN for
specie X,

• cn-timeavg-cumul-X-inter: the intermolecular time-averaged partial cumulative CN for
specie X,

• cn-timeavg-cumul-X: the intramolecular plus intermolecular time-averaged partial cumu-
lative CN for specie X,

• cn-timeavg: the time-averaged total CN ,

• cn-timeavg-cumul: the time-averaged total cumulative CN .

4.2.6.3 Spatial Density

Theory and implementation
The Spatial Density (SD) can be seen as an generalization of the pair distribution function.

Indeed, pair distribution functions are defined as orientionally averaged distribution functions.
are in the sense that, Altough these correlation functions reflects many key features of the
short-range order in molecular systems, it should be realized that an average spatial assembly of
non-spherical particles can not be uniquely characterized from these one-dimensionals functions.
So, structural models postulated for the molecular ordering in nonsimple systems based only
on one-dimensional PDF will always be somewhat ambiguous. The goal of SD analysis is to
provide greater clarity in the structual analysis of molecular systems by utilizing distribution
function which span both the radial and angular coordinates of the separation vector. This can
provide useful information about the average local structure in a complex system.

nMOLDYN allows one to compute the SD in spherical coordinates on a set of concentrics
shells surrounding the centers of mass of selected triplets of atoms using the formula:

SD(rl, θm, φn)
.
=

1

NtripletsNgroups

Ntriplets∑

t=1

Ngroups∑

g=1

〈ntg(rl, θm, φn)〉 , l = 0 . . . Nr−1,m = 0 . . . Nθ−1, n = 0 . . . Nφ−1.

(4.194)
where Ntriplets and Ngroups are respectively the number of triplets and groups, rl, θm and φn
are the spherical coordinates at which the SD is evaluated, Nr, Nθ and Nφ are respectively the
number of discrete r, θ and φ values and ntg(rl, θm, φn) is the number of group of atoms of type
g whose centers of mass is found to be in the volume element defined by [r, r + dr], [θ, θ + dθ]
and [φ, φ+ dφ] in the spherical coordinates basis centered on the center of mass of triplet t.

So technically, nMOLDYN proceeds more or less on the following way:

• defines the center of mass cti i = 1, 2 . . . Ntriplets for each triplet of atoms,

• defines the center of mass cgi i = 1, 2 . . . Ngroups for each group of atoms,

154



• constructs an oriented orthonormal basis Rt
ii = 1, 2 . . . Ntriplets centered on each ct, this

basis is defined from the three vectors v1, v2, v3,

? v1 = n1+n2
||n1+n2|| where n1 and n2 are respectively the normalized vectors in (a1,a2)

and (a1,a3) directions where (a1,a2,a3) are the three atoms of the triplet t,

? v2 is defined as the clockwise normal vector orthogonal to v1 that belongs to the
plane defined by a1, a2 and a3 atoms,

? ~v3 = ~v1 × ~v2

• expresses the cartesian coordinates of each cg in each Rt,

• transforms these coordinates in spherical coordinates,

• discretizes the spherical coordinates in rl, θm and φn,

• does ntg(rl, θm, φn) = ntg(rl, θm, φn) + 1.

Parameters
Pressing the Spatial Density button will pop up the dialog shown on figure 4.60
The following input fields controls the parameters for the SD analysis:

• Trajectory file
Format: string
Default: traj file where traj file is the name of the loaded trajectory
Description: the value of this widget can not be changed. It just recalls for information
purpose the name of the trajectory file loaded for the analysis.

• Frame selection
Format: string
Default: 1:traj length:1 where traj length is the number of frames of the trajectory.
Description: this widget allows to select the trajectory frames that will be used for the
analysis. This must be a string of the form:

first:last:step

where first is an integer specifying the first frame number to consider, last is an inte-
ger specifying the last frame number to consider and step is an integer specifying the step
number between two frames.

For example,

? 2:10:3 will select the frames 2, 5 and 8.

? 1:5:1 will select the frames 1, 2, 3, 4 and 5.

• Distances (in nm)
Format: string
Default: 0.0:1.0:0.1.

155



Figure 4.60: The dialog from where the SD analysis will be set up and run.

Description: this widget allows to select distances in nm at which the CN will be com-
puted. This must be a string of the form:

rmin : rmax : rstep

In this way, the CN will be calculated for discrete r defined as rm = rmin + m · rstep
where rmin is the smallest r , rstep is the distance between two consecutive r values and
with m running from 0 to Nrvalues where Nrvalues is the number of selected r values defined
as Nrvalues = E( rmax−rminrstep

) + 1 where rmax is the radius of the biggest r value .

For example,

? 0:10:1 will compute PDF for r = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 nm.

? 3:7:1.2 will compute PDF for r = 3, 4.2, 5.4, 6.6 nm.

156



• Theta values (in deg)
Format: string
Default: 0.0:180.0:10.0.
Description: this widget allows to select the spherical θ angle in deg at which the SD
will be computed. This must be a string of the form:

θmin : θmax : θstep

In this way, the SD will be calculated for discrete θ values defined as θm = θmin+m · θstep
where θmin is the minimum θ value, θstep is the step between two consecutive θ values
and with m running from 0 to Nθ where Nθ is the number of selected θ values defined as
Nθ = E( θmax−θminθstep

) + 1 where θmax is the maximum θ value.

• Phi values (in deg)
Format: string
Default: -180.0:180.0:10.0.
Description: this widget allows to select the spherical φ angle in deg at which the SD
will be computed. This must be a string of the form:

φmin : φmax : φstep

In this way, the SD will be calculated for discrete φ values defined as φm = φmin+m ·φstep
where φmin is the minimum φ value, φstep is the step between two consecutive φ values
and with m running from 0 to Nφ where Nφ is the number of selected φ values defined as

Nφ = E(φmax−φminφstep
) + 1 where φmax is the maximum φ value.

• Triplet selection
Format: group selection string
Default: all
Description: this widget allows the selection of the triplets of atoms from which the
analysis will be performed. See Section 4.2.2.3 for more details about this kind of selection.
Any selection that does not contain exactly three atoms will be discarded.

• Atom order
Format: string
Default: no
Description: this widget allows to specify the order in which the atoms a1, a2 and a3
should be ordered. By default, the order will be defined by nMOLDYN by ranking for
the atoms of each triplet by their MMTK name. Otherwise, the entered value must have
the following specific format:

MMTK name for a1,MMTK name for a2,MMTK name for a3

157



• Group selection
Format: group selection string
Default: all
Description: this widget allows the selection of the group of atoms to consider in the
analysis (see Section 4.2.6.3). See Section 4.2.2.3 for more details about group selection.

• SD output file
Format: string
Default: SD traj file.nc where traj file.nc is the name of the input trajectory
Description: this widget allows to enter the name of the NetCDF output file of the SD
analysis. A CDL version of the NetCDF output file is also automatically created with
SD traj file.cdl name.

Output
The results of a SD analysis are stored in a NetCDF file whose main variables are namely:

• theta: the spherical θ angles in deg at which all the SD is computed,

• phi: the spherical φ angles in deg at which all the SD is computed,

• sd rvalnm: the SD defined for the shell of radius r=val.

4.2.6.4 ScrewFit analysis

Theory and implementation
The ScrewFit Analysis (SFA) is based on the superposition of molecular structures, defined

by atomic coordinates, combining quaternionic representation of rotation matrices and Chasles’
theorem on rigid-body displacements. When applied to subsequent peptide planes in protein
structures, SFA gives local helical parameters of the protein backbone winding.

SFA takes into consideration three structural parameters: the orientational distance, the
helix radius of screw motion, and the straightness. The orientational distance, ∆, refers to
the relative orientation of two subsequent peptide planes. The radius of screw motion, ρ, is
related to the distances between the C-atoms, in the reference and target peptide planes, and
the local axis of screwmotion. The radius ρ is a measure of the local curling of the backbone
conformation. In a flat backbone conformation, like an extended β-strand, ρ is close to zero
; when the local backbone conformation is curled, as in the case of α-helices and β-turns, ρ
increases. The maximum observed values usually do not exceed 0.3. Straightness, σ, is the
scalar product between the unit vectors of the axis of screwmotion, relative to four consecutive
peptide planes, it gives information about local curvatures or kinks of a protein backbone tract.
For each pair of consecutive peptide planes represented by their atoms C, O, N, ScrewFit defines
these three parameters indicating their relative orientation and distance from a common axis
of rotation (the axis of screw motion)

Given the definition of SFA your system must contain at least one protein to perform this
analysis.

For more detailed and technical information about this analysis please refers to the original
paper [38].

158



Parameters
Pressing the ScrewFit Analysis button will pop up the dialog shown on figure 4.61

Figure 4.61: The dialog from where the SFA analysis will be set up and run.

The following input fields controls the parameters for the SFA analysis:

• Trajectory file
Format: string
Default: traj file where traj file is the name of the loaded trajectory
Description: the value of this widget can not be changed. It just recalls for information
purpose the name of the trajectory file loaded for the analysis.

• Frame selection
Format: string
Default: 1:traj length:1 where traj length is the number of frames of the trajectory.
Description: this widget allows to select the trajectory frames that will be used for the
analysis. This must be a string of the form:

first:last:step

where first is an integer specifying the first frame number to consider, last is an inte-
ger specifying the last frame number to consider and step is an integer specifying the step
number between two frames.

For example,

? 2:10:3 will select the frames 2, 5 and 8.

? 1:5:1 will select the frames 1, 2, 3, 4 and 5.

159



• SFA output file
Format: string
Default: SFA traj file.nc where traj file.nc is the name of the input trajectory
Description: this widget allows to enter the name of the NetCDF output file of the SFA
analysis. A CDL version of the NetCDF output file is also automatically created with
SFA traj file.cdl name.

Output
The results of a SD analysis are stored in a NetCDF file whose main variables are namely:

• time: the times in ps at which all the time-dependant SFA is computed,

and for each protein chain name found in the protein

• name straightness y: variables equals to the length of chain name - 4,

• name helixradius y: variables equals to the length of chain name - 3,

• name orientdist y: variables equals to the length of chain name - 1,

• name straightness: the straightness,

• name helixradius: the helix radius,

• name orientdist: the orientional distance.

4.2.7 The NMR menu

Pressing the button NMR brings up a menu from which it is possible to choose the following
analysis:

• Order Parameter

• Order Parameter (Contact Model)

4.2.7.1 Order Parameter

Theory and implementation
Adequate and accurate cross comparison of the NMR and MD simulation data is of crucial

importance in versatile studies conformational dynamics of proteins. NMR relaxation spec-
troscopy has proven to be a unique approach for a site-specific investigation of both global
tumbling and internal motions of proteins. The molecular motions modulate the magnetic in-
teractions between the nuclear spins and lead for each nuclear spin to a relaxation behavior
which reflects its environment. Since its first applications to the study of protein dynamics, a
wide variety of experiments has been proposed to investigate backbone as well as side chain dy-
namics. Among them, the heteronuclear relaxation measurement of amide backbone 15N nuclei
is one of the most widespread techniques. The relationship between microscopic motions and
measured spin relaxation rates is given by Redfield’s theory [70]. Under the hypothesis that
15N relaxation occurs through dipole-dipole interactions with the directly bonded 1H atom and
chemical shift anisotropy (CSA), and assuming that the tensor describing the CSA is axially
symmetric with its axis parallel to the N-H bond, the relaxation rates of the 15N nuclei are
determined by a time correlation function,

Cii(t) = 〈P2(µi(0) · µi(t))〉 (4.195)

160



which describes the dynamics of a unit vector µi(t) pointing along the 15N-1H bond of the residue
i in the laboratory frame. Here P2(.) is the second order Legendre polynomial. The Redfield
theory shows that relaxation measurements probe the relaxation dynamics of a selected nuclear
spin only at a few frequencies. Moreover, only a limited number of independent observables
are accessible. Hence, to relate relaxation data to protein dynamics one has to postulate either
a dynamical model for molecular motions or a functional form for Cii(t), yet depending on a
limited number of adjustable parameters. Usually, the tumbling motion of proteins in solution
is assumed isotropic and uncorrelated with the internal motions, such that:

Cii(t) = CG(t) · CI
ii(t) (4.196)

where CG(t) and CI
ii(t) denote the global and the internal time correlation function, respectively.

Within the so-called model free approach [71, 72] the internal correlation function is modeled
by an exponential,

CIii(t) = S2
i + (1− S2

i )exp

(
− t

τeff,i

)
(4.197)

Here the asymptotic value S2
i = Cii(+∞) is the so-called generalized order parameter, which

indicates the degree of spatial restriction of the internal motions of a bond vector, while the
characteristic time τeff,i is an effective correlation time, setting the time scale of the internal
relaxation processes. S2

i can adopt values ranging from 0 (completely disordered) to 1 (fully
ordered). So, S2

i is the appropriate indicator of protein backbone motions in computation-
ally feasible timescales as it describes the spatial aspects of the reorientational motion of N-H
peptidic bonds vector.

When performing Order Parameter analysis, nMOLDYN computes for each residue i both
Cii(t) and S2

i . It also computes a correlation function averaged over all the selected bondsdefined
as:

CI(t) =
Nbonds∑

i=1

CIii(t) (4.198)

where Nbonds is the number of selected bonds for the analysis.

Parameters
Pressing the Order Parameter button will pop up the dialog shown on figure 4.62
The following input fields controls the parameters for the Order Parameter (OP) analysis:

• Trajectory file
Format: string
Default: traj file where traj file is the name of the loaded trajectory
Description: the value of this widget can not be changed. It just recalls for information
purpose the name of the trajectory file loaded for the analysis.

• Frame selection
Format: string
Default: 1:traj length:1 where traj length is the number of frames of the trajectory.
Description: this widget allows to select the trajectory frames that will be used for the
analysis. This must be a string of the form:

first:last:step

161



Figure 4.62: The dialog from where the OP analysis will be set up and run.

where first is an integer specifying the first frame number to consider, last is an inte-
ger specifying the last frame number to consider and step is an integer specifying the step
number between two frames.

For example,

? 2:10:3 will select the frames 2, 5 and 8.

? 1:5:1 will select the frames 1, 2, 3, 4 and 5.

• Bond selection
Format: string
Default: all
Description: this widget allows the selection of the pairs of atoms from which Eq. 4.195
will be computed. See Section 4.2.2.3 for more details. Any selection that does not contain
exactly two atoms will be discarded.

• Atom order
Format: string
Default: no
Description: this widget allows to specify the order in which the atoms a1, a2 should be
ordered. By default, the order will be defined by nMOLDYN by ranking for the atoms of
each bond by their MMTK name. Otherwise, the entered value must have the following

162



specific format:

MMTK name for a1,MMTK name for a2

• OP output file
Format: string
Default: OP traj file.nc where traj file.nc is the name of the input trajectory
Description: this widget allows to enter the name of the NetCDF output file of the OP
analysis. A CDL version of the NetCDF output file is also automatically created with
OP traj file.cdl name.

Output
The results of an OP analysis are stored in a NetCDF file whose main variables are namely:

• time: the times in ps at which all the time-dependent OP is computed,

• bond: the index of the bonds selected for the analysis. In case where the system under
study is the a protein or a peptide chain, this index is simply the sequence number of the
first atom forming the bond, otherwise it is just an integer ranging from 1 to Nbonds where
Nbonds is the number of selected bonds,

• p2: the order parameter P2 defined in Eq. 4.195,

• p2-bondavg: the bond-averaged P2 defined in Eq. 4.198,

• s2: the generalized order parameter defined above in Section 4.2.7.1.

4.2.7.2 Order Parameter (Contact Model)

Theory and implementation
This analysis is based on an analytical relationship for the estimation of the generalized order

parameter S2
i (see Section 4.2.7.1) of N-H vectors of the protein backbone. It related S2

i of the
N-H vector of residue i to close contact experienced by the H atom and the carbonyl oxygen of
the preceeding residue i-1 with heavy atoms k using the formula:

S2
i (t) = tanh

(
2.656

∑

k

(
(exp(−rOi−1,k(t)))) + 0.8exp(−rHi,k(t))

))
+ b (4.199)

where rOi−1,k is the distance between the carbonyl oxygen of residue i-1 and heavy atom k and

rHi,k is the distance between the amide proton of residue i and heavy atom k. The parameter b
is set to -0.1 which takes into account that order parameters of rigid protein regions typically
lie around 0.9. The sum ranges over all heavy atoms k that do not belong to amino acids i and
i-1. For more details about this method, please refer to Ref. [73]

Beside the time-dependent S2
i (t) defined in Eq; 4.199, nMOLDYN also provide a time-

averaged S2
i defined as:

S2
i =

1

Nframes

Nframes∑

i=1

S2
i (ti) (4.200)

where Nframes is the number of selected frames for the analysis.

163



Parameters
Pressing the Order Parameter (Contact Model) button will pop up the dialog shown on

figure 4.63

Figure 4.63: The dialog from where the OPCM analysis will be set up and run.

The following input fields controls the parameters for the Order Parameter using Contact
Model (OPCM ) analysis:

• Trajectory file
Format: string
Default: traj file where traj file is the name of the loaded trajectory
Description: the value of this widget can not be changed. It just recalls for information
purpose the name of the trajectory file loaded for the analysis.

• Frame selection
Format: string
Default: 1:traj length:1 where traj length is the number of frames of the trajectory.
Description: this widget allows to select the trajectory frames that will be used for the
analysis. This must be a string of the form:

first:last:step

where first is an integer specifying the first frame number to consider, last is an inte-
ger specifying the last frame number to consider and step is an integer specifying the step
number between two frames.

For example,

? 2:10:3 will select the frames 2, 5 and 8.

? 1:5:1 will select the frames 1, 2, 3, 4 and 5.

164



• OPCM output file
Format: string
Default: OPCM traj file.nc where traj file.nc is the name of the input trajectory
Description: this widget allows to enter the name of the NetCDF output file of the
OPCM analysis. A CDL version of the NetCDF output file is also automatically created
with OPCM traj file.cdl name.

Output
The results of an OPCM analysis are stored in a NetCDF file whose main variables are

namely:

• time: the times in ps at which all the time-dependent OPCM defined in Eq. 4.199 is
computed,

and for each protein chain name found in the system

• name sequence: the residue numbers of the chain name,

• name s2: the time-dependent generalized order parameter defined for each residue of chain
name as defined in Eq. 4.199,

• name s2 timeavg: the time-averaged generalized order parameter defined for each residue
of chain name as defined in Eq. 4.200.

4.3 The View menu

Pressing the button View brings up a menu from which it is possible to choose the following
options:

• Plot

• Animation

• Effective Mode

All of these functions will be descrived below.

4.3.1 Plot

This option allows one to plot the results of almost any nMOLDYN analysis.
Pressing the Plot button will pop up the dialog shown on figure 4.64
The following input fields controls the parameters used to plot variables coming from a

NetCDF file:

• NetCDF input file
Format: string
Default: the loaded NetCDF filename if one is already currently loaded. Nothing other-
wise
Description: this widget allows to specify the name of the NetCDF file whose contents
should be plotted.

165



Figure 4.64: The dialog from where the results of nMOLDYN analysis can be plotted.

• Variables
Format: not an editable etry
Default: no variable selected
Description: this widget allows to specify the NetCDF variables that should be plotted.
When loading the NetCDF file, nMOLDYN distinguish between 1D and 2D arrays. The
1D arrays are stored as X and Y variables and displayed into their corresponding X and
Y variables listboxes. The 2D arrays are stored as Z variables and displayed into their
corresponding Z variables listbox. In order to select for plotting a set of NetCDF variables,
click first on the X variable, then on the Y variable and eventually on the Z variable you
want to plot.

• Plot
Format: not an editable etry
Default: no plot displayed
Description: this widget contain the space allocated to display the plots. The plots are
generated using matplotlib python graphical library. At the botton of the widget, there
are seven buttons that allows to perform various actions on the displayed plot. These

166



buttons are the following:

? takes you to the first view.

? the Back is akin to the web browser Back button. It is used to navigate back
between previously defined views. It has no meaning unless, the Pan/Zoom and Zoom

to rect mode modes, defined below, have been used. This is analogous to trying to
click Back on your web browser before visiting a new page. Nothng happens.

? the Forward is akin to the web browser Forward button. It is used to navigate
forward between previously defined views. It has no meaning unless, the Pan/Zoom

and Zoom to rect mode modes, defined below, have been used. This is analogous
to trying to click Forward on your web browser before visiting a new page. Nothing
happens.

? activates the Pan/Zoom mode. The Pan/Zoom button has two modes: pan and
zoom. Then put your mouse somewhere over an axes.

∗ Pan mode: press the left mouse button and hold it, dragging it to a new position.
When you release it, the data under the point where you pressed will be moved
to the point where you released. If you press ’x’ or ’y’ while panning, the motion
will be constrained to the x or y axis, respectively.

∗ Zoom mode: press the right mouse button, dragging it to a new position. The
x axis will be zoomed in proportionate to the rightward movement and zoomed
out proportionate to the leftward movement. Ditto for the y axis and up/down
motions. The point under your mouse when you begin the zoom should remain
in place, allowing you to zoom to an arbitrary point in the figure. You can use
the modifier keys ’x’ and ’y’ or ’CONTROL’ to constrain the zoom to the x axis,
y axis, or aspect ratio preserve, respectively.

? activates the Zoom to rect mode. Put your mouse somewhere over the plot
and press the left mouse button. Drag the mouse while holding the button to a
new location and release. The plots limits will be zoomed to the rectangle you have
defined. There is also a ’zoom out to rectangle’ in this mode with the right button,
which will place your entire plot in the region defined by the rectangle you have
defined.

? pops up a dialog from which you can adjust some basic positional plot param-
eters.

? pops up a file browser from which you can save the plot to a file. You can
save your plot to the following format:

∗ Portable Networks Graphics (.png)

∗ Enhance Metafile (.emf)

∗ Encapsulated Postscript (.eps)

167



∗ Portable Document Format (.pdf)

∗ Postscript (.ps)

∗ Raw RGBA bitmap (.raw,.rgba)

∗ Scalable Vector Graphics (.svg)

Pressing Return or clicking on the OK button will display the plot for the selected
NetCDF variables. Once a plot is displayed, you can change some plot settings by clicking
on Settings button that will pop up the dialog shown in figure 4.65.

Figure 4.65: The dialog from which the plot settings are defined.

From this dialog you can change many plot parameters such as the plot title, the x and y
labels, the x and y ticks size, the x and y scales, the line colors, the line width . . .

168



You can also export the curent plot to an ASCII file by clicking on Export plot. This
will pop up the dialog shown in figure 4.66.

Figure 4.66: The dialog from which the current plot can be exported to an ASCII file.

From this dialog, you will be asked for the range of values to export and a file name for
the output ASCII file.

Finally, pressing the Cancel button will close the plot dialog.

4.3.2 Animation

This option allows one to view an animation of a trajectory using Visual Molecular Dynamics
(VMD). To do so, VMD must be installed and the preferences variables vmd path storing the
path for VMD reader executable must be correctly set.

Pressing the Animation button will pop up the dialog shown on figure 4.67

Figure 4.67: The dialog from where a trajectory can be animated using VMD

The following input fields controls the parameters to visualize an animation of a trajectory
through VMD:

169



• MMTK Trajectory file
Format: string
Default: the loaded trajectory filename if one trajectory is currently loaded. Nothing
otherwise
Description: this widget allows to specify the name of the trajectory animation to
visualize.

• First step
Format: integer in [1,traj length] where traj length is the number of frames of the input
trajectory
Default: 1 if one trajectory is currently loaded.or nothing otherwise.
Description: this widget allows to specify the first step of the trajectory to visualize.

• Last step
Format: integer in [1,traj length] where traj length is the number of frames of the input
trajectory
Default: the trajectory last step if one trajectory is currently loaded or nothing otherwise.
Description: this widget allows to specify the last step of the trajectory to visualize.
Depending on the trajectory, calling VMD from nMOLDYN is quite time-consuming, the
entered value should not be too high.

• Skip step
Format: integer in [1,traj length[ where traj length is the number of frames of the input
trajectory
Default: 1 if one trajectory is currently loaded.or nothing otherwise.
Description: this widget allows to specify the number of trajectory steps to skip between
each step to visualize.

Pressing the OK button will run the animation, pressing the Cancel button will close the
dialog.

4.3.3 Effective mode

This option allows one to visualize the results of a QHA analysis (see Section 4.2.4.12) as an
animation of a selected effective mode coming out the analysis using VMD. To do so, VMD
must be installed and the preferences variables vmd path storing the path for VMD reader
executable must be correctly set.

Pressing the Effective mode viewer button will pop up the dialog shown on figure 4.68
The following input fields controls the parameters necessary to visualize the animation

through VMD:

• QHA input file
Format: string
Default: the name of the QHA analysis output file if one such file is already currently
loaded. Nothing otherwise
Description: this widget allows to select the name of the QHA analysis output file to
visualize.

170



Figure 4.68: The dialog from where a the pseudo-trajectory associated to a selected effective
can be animated using VMD

• Quasi-Harmonic mode
Format: not an editable entry
Default: no effective mode selected
Description: this widget allows to select which combination of effective modes to visu-
alize.

• Number of frames
Format: strictly positive integer
Default: 10 if one QHA file is currently loaded. Nothing otherwise
Description: this widget allows to specify the number of frames the pseudo-trajectory
should contain. Calling VMD from nMOLDYN is quite time-consuming, the entered value
should not be too high.

• Amplitude
Format: strictly positive float
Default: 0.1 if one QHA file is currently loaded. Nothing otherwise
Description: this widget allows to specify the amplitude in nm of the motion associated
to the selected effective mode (see Eq. 4.109).

Pressing the OK button will run the animation, pressing the Cancel button will close the
dialog.

171



4.4 The Help menu

Pressing the button Help brings up a menu from which it is possible to choose the following
options:

• Documentation

• Mailing List

• API

• Analysis benchmark

• About nMOLDYN

All of these functions will be descrived below.

4.4.1 Documentation

Pressing the Documentation button will pop up the nMOLDYN users guide. Depending on
the value of the preferences variable documentation style (see Section 4.1.6), the users guide
will be displayed either in HTML format on a webbrowser selected by default by Python either
in PDF format on acrobat reader. In the later case, the preferences variables acroread path
storing the path for acrobat reader executable must also be correctly set.

4.4.2 Mailing List

Pressing the Mailing List button will open the nMOLDYN mailing list webpage

http://sourcesup.cru.fr/forum/?group id=194

in a web browser selected by default by python.

4.4.3 API

Pressing the API button will open the nMOLDYN API in a web browser selected by default
by python.

4.4.4 Analysis benchmark

The purpose of this option is to test the stability of most of the analysis provided by the running
version of nMOLDYN versus the results produced by the intensively tested version 2.2.5. As
nMOLDYN is an open source program, this option can be interesting for experienced users
that may have brought some changes in a given analysis and that would like to insure that its
scientific contents is still valid.

172



Pressing the Analysis benchmark button will pop up the dialog shown on figure 4.69

Figure 4.69: The dialog from where the analysis benchmarks can be run.

From this dialog, one can select on the left panel one or many analysis benchmarks. If
you want more information about the contents of a given benchmark, right-click on one of the
benchmark. This will pop up a small informative dialog. Pressing the OK button will run the
benchmark. Depending on the selected analysis, you may wait a little bit before the results will
be displayed on the right panel with a detailed statistics about the tests that have been run
and the results obtained (e.g. number of tests run, percentage of success, time taken for the
benchmark . . . ). For the tests that failed, clicking on the test number will pop up a window
where the settings for the current version and the reference version are displayed for comparison.

The currently available benchmarks are:

• ARA for ARA analysis,

• AVACF for AVACF analysis,

• DCSF for DCSF analysis,

• DOS for DOS analysis,

• EISF for EISF analysis,

• DISF for DISF analysis,

• DISFG for DISFG analysis,

• MSD for MSD analysis,

• VACF for VACF analysis,

173



4.4.5 About nMOLDYN

Pressing the About nMOLDYN button will just pop up the dialog showed in figure 4.70
from which general information about nMOLDYN are displayed (e.g. authors, nMOLDYN and
MMTK webpages . . . ).

Figure 4.70: The dialog from which general information about nMOLDYN are displayed.

174



5. Using nMOLDYN from the
command-line interface

In some situations a graphical interface cannot be used for technical reasons (e.g., text-mode
connection to remote machines or Tk not available) or it is not the most convenient solution.
This occurs typically when one needs to perform a large number of similar calculations or when
the subset, deuteration or group selections that are to be used for a given analysis requires
more flexibility than the nMOLDYN GUI selection dialogs can offer. For these situations,
nMOLDYN provides a command-line interface that reads all input information from a single
input file. There is two formats for nMOLDYN input files: nMOLDYN autostart files and
nMOLDYN input files.

5.1 nMOLDYN autostart files

The nMOLDYN autostart files (extension .py) are Python scripts that can be direclty run
without an explicit call to nMOLDYN. To run such a file, just type:

./file.py on unix

or

file.py on Windows

where file.py is the name of the nMOLDYN autostart file.
A nMOLDYN autostart file must have the following format:

1. #!path to your python executable

2. from nMOLDYN.Analysis.Template import analysis name

3. parameters = {}

4. parameters["version"] = "nmoldyn version"

5. parameters["estimate"] = "no"

6. parameters["name1"] = value1

...

7. parameters["nameN"] = valueN

8. analysis = analysis name (parameters)

9. analysis.runAnalysis()

175



some explanations are necessary about the structure of this file:

• Line 1.: path to your python executable is the path to the Python executable of the Python
distribution where nMOLDYN is installed. This line is optional on Windows.

• Line 2.: analysis name is the nMOLDYN internal name of the analysis to run. A com-
prehensive list of the nMOLDYN analysis internal names associated to each analysis is
showed in Tab. 5.1.

• Line 3.: this line initalizes the dictionnary that will stores the analysis input parameters.

• Line 4.: nmoldyn version is the version number of nMOLDYN. This line is optional.

• Line 5.: if set to ”yes” instead of ”no”. the analysis will be run in estimate mode (see
Section 4.2.3 for details). If ”no” the full analysis will be run. If this parameter is omitted,
the full analysis will be run.

• Line 6.: name1 is the name in lower case of the first parameters of the analysis with
value equal to value1. Idem for Line 7.. The order in which the parameters appear is not
relevant. A comprehensive list of the parameters names and expected values associated
to each analysis can be found using the right column of Tab. 5.1.

• Line 8.: analysis name is the same that in Line 2..

• Line 9.: this line runs the analysis.

The figure 5.1 shows an example of an autostart file for the MSD analysis. It was direclty
generated from nMOLDYN GUI . Saving an autostart file from the GUI (see Section 4.2.3) is
often the easiest way to get such file. This file providing then a convenient starting point for
customization.

Figure 5.1: Example of a nMOLDYN autostart file derived for a MSD analysis.

176



Analysis nMOLDYN internal name Section

Mean-Square Displacement MeanSquareDisplacement serial 4.2.4.1

Root Mean-Square Deviation RootMeanSquareDeviation serial 4.2.4.2

Radius of gyration RadiusOfGyration serial 4.2.4.3

Angular Correlation AngularCorrelation serial 4.2.4.4

Velocity Autocorrelation Function CartesianVelocityAutoCorrelationFunction serial 4.2.4.5

Density Of States CartesianDensityOfStates serial 4.2.4.6

Pass-Band Filtered Trajectory PassBandFilteredTrajectory serial 4.2.4.7

Global Motion Filtered Trajectory GlobalMotionFilteredTrajectory serial 4.2.4.8

Rigid-Body Trajectory RigidBodyTrajectory serial 4.2.4.9

Center Of Mass Trajectory CenterOfMassTrajectory serial 4.2.4.10

Auto-Regressive Analysis AutoRegressiveAnalysis serial 4.2.4.11

Quasi Harmonic Analysis QuasiHarmonicAnalysis serial 4.2.4.12

Reorientational Correlation Func-
tion

ReorientationalCorrelationFunction serial 4.2.4.13

Angular Velocity AutoCorrelation
Function

AngularVelocityAutoCorrelationFunction serial 4.2.4.14

Angular Density Of States AngularDensityOfStates serial 4.2.4.15

Dynamic Coherent Structure Factor DynamicCoherentStructureFactor serial 4.2.5.2

Dynamic Coherent Structure Factor
(AR Model)

DynamicCoherentStructureFactorAR serial 4.2.5.3

Dynamic Incoherent Structure Fac-
tor

DynamicIncoherentStructureFactor serial 4.2.5.4

Dynamic Incoherent Structure Fac-
tor (AR Model)

DynamicIncoherentStructureFactorAR serial 4.2.5.5

Dynamic Incoherent Structure Fac-
tor (Gaussian Approximation)

DynamicIncoherentStructureFactorGaussian serial 4.2.5.6

Elastic Incoherent Structure Factor ElasticIncoherentStructureFactor serial 4.2.5.7

Static Coherent Structure Factor StaticCoherentStructureFactor serial 4.2.5.8

Smoothed Static Coherent Struc-
ture Factor

SmoothedStaticCoherentStructureFactor serial 4.2.5.9

Pair Distribution Function PairDistributionFunction serial 4.2.6.1

Coordination number CoordinationNumber serial 4.2.6.2

Spatial Density SpatialDensity serial 4.2.6.3

ScrewFit analysis ScrewFitAnalysis serial 4.2.6.4

Order Parameter OrderParameter serial 4.2.7.1

Order Parameter (Contact Model) OrderParameterContactModel serial 4.2.7.2

Table 5.1: List of the nMOLDYN analysis internal names.

177



5.2 nMOLDYN input files

The nMOLDYN input files (extension .nmi) are ASCII files that must be run through nMOLDYN.
To run such a file, just type:

./nMOLDYNStart.py -i file.py on unix

or

nMOLDYNStart.py file.py on Windows

where file.py is the name of the nMOLDYN input file.
An nMOLDYN input file must have the following format:

1. analysis = analysis name

2. version = "nmoldyn version"

3. estimate = "no"

4. name1 = value1

...

5. nameN = valueN

some explanations are necessary about the structure of this file:

• Line 1.: analysis name is the nMOLDYN internal name of the analysis to run. A com-
prehensive list of the nMOLDYN analysis internal names associated to each analysis is
showed in Tab. 5.1.

• Line 2.: nmoldyn version is the version number of nMOLDYN. This line is optional.

• Line 3.: if set to ”yes” instead of ”no”. the analysis will be run in estimate mode (see
Section 4.2.3 for details). If ”no” the full analysis will be run. If this parameter is omitted,
the full analysis will be run.

• Line 4.: name1 is the name in lower case of the first parameters of the analysis with
value equal to value1. Idem for Line 5.. The order in which the parameters appear is not
relevant. A comprehensive list of the parameters names and expected values associated
to each analysis can be found using the right column of Tab. 5.1.

178



The figure 5.2 shows an example of a nMOLDYN input file for the MSD analysis. It was
direclty generated from nMOLDYN GUI . Saving an input file from the GUI (see Section 4.2.3)
is often the easiest way to get such file. This file providing then a convenient starting point for
customization.

Figure 5.2: Example of a nMOLDYN input file derived for a MSD analysis.

For those familiar with nMOLDYN 2, the nMOLDYN input files are the equivalent of the
input file through pMOLDYN. They have been kept in nMOLDYN 3 for historical reasons even
if the authors think that the nMOLDYN autostart are a little bit more convenient.

179



Bibliography

[1] Rog, T.; Murzin, K.; Hinsen, K.; Kneller, G.R. J. Comp. Chem. 2002, 24, 657-667.

[2] Kneller, G.R.; Keiner, V.; Kneller, M.; Schiller, M. Comp. Phys. Comm. 1995, 91, 191-214.

[3] Hinsen, K. J.Comp.Chem 2000, 21, 79-85.

[4] http://sourcesup.cru.fr/projects/mmtk/

[5] http://www.unidata.ucar.edu/software/netcdf/

[6] Rew, R.; Davis, G.; Emmerson, S.; Davies, H. NetcdfUser’sGuide for c, an interface for
Data Access, version 3. http://www.unidata.ucar.edu/packages/netcdf/guidec, 1997.

[7] Lovesey, S.W. Theory of Neutron Scattering from Condensed Matter, Vol. 1 ; Clarendon
Press, Oxford, 1984.

[8] Bee, M. Quasielastic Neutron Scattering: Principles and Applications in Solid State Chem-
istry, Biology, and Materials Science; Adam Hilger, Bristol, 1988.

[9] Kneller, G.R. Molecular Physics 1994, 83 (1), 63-87.

[10] Kneller, G.R.; Geiger, A. Molecular Physics 1989, 68 (2), 487-498.

[11] Kneller, G.R.; Geiger, A. Molecular Physics 1990, 70 (3), 465-483.

[12] Boehm H.J.; Ahlrichs, R. Mol. Phys. 1985, 54 (6), 1261-1274.

[13] Anderson, J.; Ullo, J.J.; Yip, S. J. Chem. Phys. 1987, 86 (7), 4078-4089.

[14] Kneller, G.R; Doster, W.; Settles, M.; Cusack, S.; Smith, J.C. J. Chem. Phys., 1992,
97 (12), 8864-8879.

[15] Dianoux, A.J.; Kneller, G.R.; Sauvageol, J.L.; Smith, J.C. J. Chem. Phys., 1993, 99 (7),
5586-5596.

[16] van Rossum, G. The Python web site, http://www.python.org/.

[17] http://www.python.org/download/

[18] http://numpy.scipy.org/

[19] http://pyro.sourceforge.net/

[20] Hinsen, K. ScientificPython. http://dirac.cnrs-orleans.fr

[21] http://sourcesup.cru.fr/projects/scientific-py/

180



[22] OpenSource web site. http://www.opensource.org, 1997.

[23] http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/

[24] http://wiki.python.org/moin/TkInter

[25] http://matplotlib.sourceforge.net/

[26] http://www.ambermd.org

[27] http://www.charmm.org/

[28] http://www.cse.scitech.ac.uk/ccg/software/DL POLY

[29] http://www.accelrys.com/products/materials-studio

[30] http://www.accelrys.com/products/materials-studio/modules/discover.html

[31] http://www.accelrys.com/products/materials-studio/modules/forcite.html

[32] http://www.ks.uiuc.edu/Research/namd

[33] http://www.ks.uiuc.edu/Research/vmd

[34] http://cms.mpi.univie.ac.at/vasp

[35] http://cns-online.org/v1.21

[36] http://www.unidata.ucar.edu/software/netcdf/ncdump-man-1.html

[37] http://www.unidata.ucar.edu/software/netcdf/ncgen-man-1.html

[38] Kneller, G.R.; Calligari, P. Acta Crystallographica 2006, D62 302-311.

[39] http://sourcesup.cru.fr/projects/nmoldyn/

[40] http://dirac.cnrs-orleans.fr/plone/software/nmoldyn

[41] http://www.cecill.info/

[42] http://sourceforge.net/projects/pywin32/

[43] http://www.ucar.edu/

[44] http://my.unidata.ucar.edu/content/software/netcdf/software.html

[45] http://www.rcsb.org/pdb/

[46] http://docs.python.org/library/configparser.html

[47] http://dirac.cnrs-orleans.fr/Manuals/MMTK/MMTK 37.html

[48] http://www.compsoc.man.ac.uk/ lucky/Democritus/

[49] Rahman, A.; Singwi, K.S.; Sjölander, A. Phys. Rev. 1962, 126, 986-996.

[50] Boon, J.P.; Yip, S. Molecular Hydrodynamics; McGraw-Hill, New York, 1980.

[51] Kneller, G.R. Technical Report Jül 2215, Forschungszentrum Jülich (ISSN 0366-0885), ZB
Forschungszentrum Jülich, D-52425 Jülich, Germany.

181



[52] Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions; Dover, New York,
1972.

[53] Brooks, B.R.; Janezic, D.; Karplus, M. J. Comp. Chem. 1995, 16 (12), 1522-1542.

[54] Ryckaert, J.P.; Ciccotti, G.; Berendsen, H.J.C J. Comput. Phys. 1977, 23, 327-341.

[55] Kneller, G.R. Molecular Simulation 1991, 7, 113-119.

[56] Altmann, S.L. Rotations, Quaternions, and Double Groups; Clarendon Press, Oxford, 1986.

[57] Kneller, G.R.; Hinsen, K. J. Chem. Phys. 2001, 115, 11097-11105.

[58] Papoulis, A. Probability, random variables, and Stochastic Processe;3rd ed ; McGraw-Hill,
New York, 1991.

[59] Makhoul, J. J. Proc. IEEE 1975, 63 561-580.

[60] Burg, J. Maximum Entropy Spectral Analysis; PhD thesis, Stanford University, Stanford,
CA, 1975.

[61] Makhoul, J. J. IEEE Transactions on Acoustics, Speech, and Signal Processing 1977, 25,
423-428.

[62] Lynden-Bell, R.M.; Stone, A.J. Molecular Simulation 1989, 3, 271-281.

[63] Edmonds, A.R. Angular momentum in Quantum Mechanics; Princeton University Press,
Princeton, New Jersey, 1957.

[64] Brink, D.M.; Satchler, G.R. Angular Momentum; Clarendon Press, Oxford, 1968.

[65] Rose, M.E. Elementary Theory of Angular Momentum; John Wiley, New York, 1957.

[66] Allen, M.P.; Tildesley, D.J. Computer Simulation of Liquids; Oxford University Press,
Oxford, 1987

[67] van Hove, L. Phys. Rev. 1954, 95 (1), 249-262.

[68] Schofield, P. Phys. Rev. Letters 1960, 4 (5), 239-240.

[69] Fischer, H.E.; Barnes, A.C.; Salmon, P.S. Rep. Prog. Phys. 2006, 69 (1), 233-299.

[70] Refield, A. IBM J. Res. & Dev. 1957, 1, 19-31.

[71] Lipari, G.; Szabo, A. J. Am. Chem. Soc. 1982, 104, 4546-4559.

[72] Lipari, G.; Szabo, A. J. Am. Chem. Soc. 1982, 104, 4559-4570.

[73] F. Zhang and R. Bruschweiler. J. Am. Chem. Soc. 2002, 124, 12654-12655.

[74] Brigham, E.O. The Fast Fourier Transfrom; Prentice Hall, Englewood Cliffs (NJ) USA,
1974.

[75] Papoulis, A. Signal Analysis, McGraw-Hill, Singapore, 1984.

[76] Harris, F.J. Proc. IEEE 1978, 66 (1), 51-83.

[77] http://www.unidata.ucar.edu/software/netcdf/guide 12.html

[78] http://www.tcl.tk/software/tcltk/

182



Appendices

183



A. The FCA algorithm

Most of the quantities which can be extracted from MD simulations are time correlation
functions. Correlation functions of discrete time series can be efficiently calculated by using the
Fast Fourier Transform (FFT) [74]. The FCA allows the number of multiplications (complexity)
to be reduced from ∝ N 2

t to ∝ Nt log2(Nt). In nMOLDYN all time correlation functions are
computed using the FCA method which will be outlined in the following. We will also briefly
comment on spectral smoothing of Fourier transformed correlation functions.

We consider two time series

a(k ·∆t), b(k ·∆t), k = 0 . . . Nt − 1, (A.1)

of length T = (Nt− 1) ·∆t which are to be correlated. In the following the shorthands a(k) and
b(k) will be used. The discrete correlation function of a(k) and b(k) is defined as

cab(m)
.
=





1
Nt−m

∑Nt−m−1
k=0 a∗(k)b(k +m), m = 0 . . . Nt − 1,

1
Nt−|m|

∑Nt−1
k=|m| a

∗(k)b(k − |m|), m = −(Nt − 1) . . . − 1.

(A.2)

The prefactors in front of the sums ensure the proper normalization of the individual channels,
m = −(Nt−1) . . . Nt−1. The asterisk denotes a complex conjugate. According to (A.2), cab(m)
has 2Nt − 1 data points and obeys the symmetry relation

cab(m) = c∗ba(−m). (A.3)

In case that a(k) and b(k) are identical, the corresponding correlation function caa(m) is called
an autocorrelation function. We define now the extended, periodic time series

A(k) =

{
a(k) k = 0 . . . Nt − 1
0 k = Nt . . . 2Nt − 1

, (A.4)

B(k) =

{
b(k) k = 0 . . . Nt − 1
0 k = Nt . . . 2Nt − 1

, (A.5)

which have the period 2Nt,

A(k) = A(k +m · 2Nt), B(k) = B(k +m · 2Nt), m = 0,±1,±2, . . . . (A.6)

The discrete, cyclic correlation of A(k) and B(k) is defined as

SAB(m) =
2Nt−1∑

k=0

A∗(k)B(k +m). (A.7)

It is easy to see that

cab(m) =
1

Nt − |m|
SAB(m), −(Nt − 1) ≤ m ≤ Nt − 1. (A.8)

Using the correlation theorem of discrete periodic functions [74], SAB(m) can be written as

SAB(m) =
1

2Nt

2Nt−1∑

n=0

exp

[
2πi

(
mn

2Nt

)]
Ã∗
(

n

2Nt

)
B̃

(
n

2Nt

)
(A.9)

184



where Ã
(

n
2Nt

)
and B̃

(
n

2Nt

)
are the discrete Fourier transforms of A(k) and B(k), respectively:

Ã

(
n

2Nt

)
=

2Nt−1∑

k=0

exp

[
−2πi

(
nk

2Nt

)]
A(k), (A.10)

B̃

(
n

2Nt

)
=

2Nt−1∑

k=0

exp

[
−2πi

(
nk

2Nt

)]
B(k). (A.11)

If the Fourier transforms of the signals A(k) and B(k) as well as the inverse transform in
(A.9) are computed by FFT, SAB(m) can be computed by ∝ Nt log2(Nt) instead of ∝ N 2

t

multiplications. It is sometimes said that the FFT method induces spurious correlations. We
emphasize that this is only the case if the time series a(k) and b(k) are not properly extended,
as indicated in Eqs. (A.4) and (A.5). The FFT method and the direct scheme (A.2) give, apart
from round-off errors, identical results.

In many cases not only the computation of a correlation function is required, but also the

computation of its Fourier spectrum. In principle one could use the product Ã∗
(

n
2Nt

)
B̃
(

n
2Nt

)

which is already available as an intermediate step in the computation of SAB(m) according
to (A.9). This would, however, not be a good estimate for the spectrum of cab(m) [75]. In
nMOLDYN all spectra are smoothed by applying a window in the time domain [75]:

Pab

(
n

2Nt

)
= ∆t ·

Nt−1∑

m=−(Nt−1)

exp

[
−2πi

(
nm

2Nt

)]
W (m)

1

N − |m|SAB(m). (A.12)

The time step ∆t in front of the sum yields the proper normalization of the spectrum. In
nMOLDYN a Gaussian window [76] is used:

W (m) = exp

[
−1

2

(
α
|m|

Nt − 1

)2
]
, m = −(Nt − 1) . . . Nt − 1. (A.13)

Its widths in the time and frequency domain are σt = α/T and σν = 1/(2πσt), respectively. We
recall that T = (Nt− 1) ·∆t is the length of the simulation. σν corresponds to the width of the
resolution function of the Fourier spectrum.

185


	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	New features in version 3.0
	User feedback

	Installing nMOLDYN
	Unix users
	Windows users

	Input and output files
	NetCDF file format
	PDB file format
	nMOLDYN preference file
	nMOLDYN selection files
	nMOLDYN autostart files
	nMOLDYN input files

	Using nMOLDYNfrom the Graphical User Interface
	The File menu
	Load NetCDF file
	Trajectory conversion
	Amber to MMTK
	CHARMM/X-PLOR to MMTK
	DL_POLY to MMTK
	Discover to MMTK
	Forcite to MMTK
	NAMD to MMTK
	VASP to MMTK

	Frame snapshot
	Convert NetCDF to ASCII
	Convert ASCII to NetCDF
	Preferences
	Quit

	The Analysis menu
	Weighting scheme
	Atom selection
	Subset selection
	Deuteration selection
	Group selection

	Running modes
	The Dynamics menu
	Mean-Square Displacement
	Root Mean-Square Deviation
	Radius of gyration
	Angular Correlation
	Velocity Autocorrelation Function
	Density Of States
	Pass-Band Filtered Trajectory
	Global Motion Filtered Trajectory
	Rigid-Body Trajectory
	Center Of Mass Trajectory
	Auto-Regressive Analysis
	Quasi Harmonic Analysis
	Reorientational Correlation Function
	Angular Velocity AutoCorrelation Function
	Angular Density Of States

	The Scattering menu
	Introduction
	Dynamic Coherent Structure Factor
	Dynamic Coherent Structure Factor (AR Model)
	Dynamic Incoherent Structure Factor
	Dynamic Incoherent Structure Factor (AR Model)
	Dynamic Incoherent Structure Factor (Gaussian Approximation)
	Elastic Incoherent Structure Factor
	Static Coherent Structure Factor
	Smoothed Static Coherent Structure Factor

	The Structure menu
	Pair Distribution Function
	Coordination number
	Spatial Density
	ScrewFit analysis

	The NMR menu
	Order Parameter
	Order Parameter (Contact Model)


	The View menu
	Plot
	Animation
	Effective mode

	The Help menu
	Documentation
	Mailing List
	API
	Analysis benchmark
	About nMOLDYN


	Using nMOLDYN from the command-line interface
	nMOLDYN autostart files
	nMOLDYN input files

	References
	Appendices
	Appendix The FCA algorithm

