
RFC 9770
Notification of Revoked Access Tokens in the
Authentication and Authorization for Constrained
Environments (ACE) Framework

Abstract
This document specifies a method of the Authentication and Authorization for Constrained
Environments (ACE) framework, which allows an authorization server to notify clients and
resource servers (i.e., registered devices) about revoked access tokens. As specified in this
document, the method allows clients and resource servers to access a Token Revocation List
(TRL) on the authorization server by using the Constrained Application Protocol (CoAP), with the
possible additional use of resource observation. Resulting (unsolicited) notifications of revoked
access tokens complement alternative approaches such as token introspection, while not
requiring additional endpoints on clients and resource servers.

Stream: Internet Engineering Task Force (IETF)
RFC: 9770
Category: Standards Track
Published: April 2025
ISSN: 2070-1721
Authors: M. Tiloca

RISE AB
F. Palombini
Ericsson AB

S. Echeverria
CMU SEI

G. Lewis
CMU SEI

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9770

Copyright Notice
Copyright (c) 2025 IETF Trust and the persons identified as the document authors. All rights
reserved.

Tiloca, et al. Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9770
https://www.rfc-editor.org/info/rfc9770

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

1.1. Terminology

2. Protocol Overview

3. Issuing of Access Tokens at the AS

4. Token Hash

4.1. Motivation for the Used Construction

4.1.1. Issuing of the Access Token to the Client

4.1.2. Provisioning of Access Tokens to the RS

4.1.3. Design Rationale

4.2. Hash Input on the Client and the AS

4.2.1. AS-to-Client Response Encoded in CBOR

4.2.2. AS-to-Client Response Encoded in JSON

4.3. HASH_INPUT on the RS

4.3.1. Access Tokens as CWTs

4.3.2. Access Tokens as JWTs

4.4. Computing the Token Hash

5. Token Revocation List (TRL)

5.1. Update of the TRL

6. The TRL Endpoint

6.1. Error Responses with Problem Details

6.2. Supporting Diff Queries

6.2.1. Supporting the "Cursor" Extension

6.3. Query Parameters

4

5

7

9

10

11

11

11

12

13

13

14

15

15

15

16

17

17

17

18

19

20

21

RFC 9770 Notification of Revoked Tokens in ACE April 2025

Tiloca, et al. Standards Track Page 2

https://trustee.ietf.org/license-info

7. Full Query of the TRL

8. Diff Query of the TRL

9. Response Messages when Using the "Cursor" Extension

9.1. Response to Full Query

9.2. Response to Diff Query

9.2.1. Empty Collection

9.2.2. Cursor Not Specified in the Diff Query Request

9.2.3. Cursor Specified in the Diff Query Request

10. Registration at the Authorization Server

11. Notification of Revoked Access Tokens

11.1. Handling of Revoked Access Tokens and Token Hashes

12. ACE Token Revocation List Parameters

13. ACE Token Revocation List Error Identifiers

14. Security Considerations

14.1. Content Retrieval from the TRL

14.2. Size of the TRL

14.3. Communication Patterns

14.4. Request of New Access Tokens

14.5. Vulnerable Time Window at the RS

14.6. Preventing Unnoticed Manipulation of Access Tokens

14.7. Two Token Hashes at the RS Using JWTs

14.8. Additional Security Measures

15. IANA Considerations

15.1. Media Type Registrations

15.2. CoAP Content-Formats Registry

15.3. Custom Problem Detail Keys Registry

15.4. ACE Token Revocation List Parameters Registry

15.5. ACE Token Revocation List Errors

15.6. Expert Review Instructions

23

24

26

26

27

27

27

28

30

31

32

34

35

35

35

36

36

36

37

37

38

38

39

39

40

40

40

41

42

RFC 9770 Notification of Revoked Tokens in ACE April 2025

Tiloca, et al. Standards Track Page 3

16. References

16.1. Normative References

16.2. Informative References

Appendix A. On Using the Series Transfer Pattern

Appendix B. Local Supportive Parameters of the TRL Endpoint

Appendix C. Interaction Examples

C.1. Full Query with Observe

C.2. Diff Query with Observe

C.3. Full Query with Observe Plus Diff Query

C.4. Diff Query with Observe and "Cursor"

C.5. Full Query with Observe Plus Diff Query with "Cursor"

Appendix D. CDDL Model

Acknowledgments

Authors' Addresses

42

42

45

45

46

47

48

50

52

54

56

58

58

58

1. Introduction
Authentication and Authorization for Constrained Environments (ACE) is a
framework that enforces access control on Internet of Things (IoT) devices acting as Resource
Servers (RSs). In order to use ACE, both clients and RSs have to register with an Authorization
Server (AS) and become registered devices. Once registered, a client can send a request to the AS
to obtain an access token for an RS. For a client to access the RS, the client must present the
issued access token at the RS, which then validates it before storing it (see

).

Even though access tokens have expiration times, there are circumstances by which an access
token may need to be revoked before its expiration time, such as when:

a registered device has been compromised or is suspected of being compromised;
a registered device is decommissioned;
there has been a change in the ACE profile for a registered device;
there has been a change in access policies for a registered device; and
there has been a change in the outcome of policy evaluation for a registered device (e.g., if
policy assessment depends on dynamic conditions in the execution environment, the user
context, or the resource utilization).

[RFC9200]

Section 5.10.1.1 of
[RFC9200]

1.
2.
3.
4.
5.

RFC 9770 Notification of Revoked Tokens in ACE April 2025

Tiloca, et al. Standards Track Page 4

https://www.rfc-editor.org/rfc/rfc9200#section-5.10.1.1

As discussed in , only client-initiated revocation is currently specified
 for OAuth 2.0 , based on the assumption that access tokens in OAuth are

issued with a relatively short lifetime. However, this is not expected to be the case for
constrained, intermittently connected devices that need access tokens with relatively long
lifetimes.

This document specifies a method for allowing registered devices to access and possibly
subscribe to a Token Revocation List (TRL) on the AS in order to obtain updated information
about pertaining access tokens that were revoked prior to their expiration. As specified in this
document, the registered devices use the Constrained Application Protocol (CoAP) to
communicate with the AS and with one another and can subscribe to the TRL on the AS by using
resource observation for CoAP . Underlying protocols other than CoAP are not
prohibited from being supported in the future, if they are defined to be used in the ACE
framework for Authentication and Authorization.

Unlike in the case of token introspection (see), a registered device does
not provide an owned access token to the AS for inquiring about its current state. Instead,
registered devices simply obtain updated information about pertaining access tokens that were
revoked prior to their expiration as efficiently identified by corresponding hash values.

The benefits of this method are that it complements token introspection and does not require the
registered devices to support any additional endpoints (see Section 1.1). The only additional
requirements for registered devices are a request/response interaction with the AS to access and
possibly subscribe to the TRL (see Section 2) and the lightweight computation of hash values to
use as access token identifiers (see Section 4).

The process by which access tokens are declared revoked is out of the scope of this document. It
is also out of scope the method by which the AS determines or is notified of revoked access
tokens, according to which the AS consequently updates the TRL as specified in this document.

Section 6.1 of [RFC9200]
[RFC7009] [RFC6749]

[RFC7252]

[RFC7641]

Section 5.9 of [RFC9200]

1.1. Terminology
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

Readers are expected to be familiar with the terms and concepts described in the ACE
framework for Authentication and Authorization , as well as with terms and concepts
related to CBOR Web Tokens (CWTs) and JSON Web Tokens (JWTs) .

The terminology for entities in the considered architecture is defined in OAuth 2.0 . In
particular, this includes client, resource server (RS), and authorization server (AS).

Readers are also expected to be familiar with the terms and concepts related to the Concise Data
Definition Language (CDDL) , Concise Binary Object Representation (CBOR) ,
JSON , CBOR Object Signing and Encryption (COSE) , CoAP , CoAP
Observe , and the use of hash functions to name objects as defined in .

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

[RFC9200]
[RFC8392] [RFC7519]

[RFC6749]

[RFC8610] [RFC8949]
[RFC8259] [RFC9052] [RFC7252]

[RFC7641] [RFC6920]

RFC 9770 Notification of Revoked Tokens in ACE April 2025

Tiloca, et al. Standards Track Page 5

https://www.rfc-editor.org/rfc/rfc9200#section-6.1
https://www.rfc-editor.org/rfc/rfc9200#section-5.9

Token hash:

Token Revocation List (TRL):

TRL endpoint:

Registered device:

Administrator:

Pertaining access token:

Token hash pertaining to a requester:

TRL update pertaining to a requester:

Full query:

Note that the term "endpoint" is used here following its OAuth definition , aimed at
denoting resources such as /token and /introspect at the AS, and /authz-info at the RS. This
document does not use the CoAP definition of "endpoint", which is "An entity participating in the
CoAP protocol."

This specification also uses the following terminology:

identifier of an access token, in binary format encoding. The token hash has no
relation to other access token identifiers possibly used, such as the 'cti' (CWT ID) claim of
CBOR Web Tokens (CWTs) .

a collection of token hashes such that the corresponding access
tokens have been revoked but are not expired yet.

an endpoint at the AS with a TRL as its representation. The default name of the
TRL endpoint in a url-path is '/revoke/trl'. Implementations are not required to use this name
and can define their own instead.

a device registered at the AS, i.e., as a client, an RS, or both. A registered
device acts as a requester towards the TRL endpoint.

an entity that is authorized to get full access to the TRL at the AS and that acts
as a requester towards the TRL endpoint. An administrator is not necessarily a registered
device as defined above, i.e., a client requesting access tokens or an RS consuming access
tokens.

An administrator might also be authorized to perform further administrative operations at
the AS, e.g., through a dedicated admin interface that is out of the scope of this document. By
considering the token hashes retrieved from the TRL together with other information
obtained from the AS, the administrator becomes able to derive additional information, e.g.,
the fact that accesses have been revoked for specific registered devices.

With reference to an administrator, an access token issued by the AS.
With reference to a registered device, an access token intended to be owned by that
device. An access token pertains to a client if the AS has issued the access token for that
client following its request. An access token pertains to an RS if the AS has issued the
access token to be consumed by that RS.

a token hash corresponding to an access token
pertaining to that requester, i.e., an administrator or a registered device.

an update to the TRL through which token hashes
pertaining to that requester have been added to or removed from the TRL.

a type of query to the TRL where the AS returns the token hashes of the revoked
access tokens currently in the TRL and pertaining to the requester. Further details are
specified in Sections 6 and 7.

[RFC6749]

[RFC8392]

•
•

RFC 9770 Notification of Revoked Tokens in ACE April 2025

Tiloca, et al. Standards Track Page 6

Diff query: a type of query to the TRL where the AS returns a list of diff entries, each related to
one update to the TRL and containing a set of token hashes pertaining to the requester.
Further details are specified in Sections 6 and 8.

Examples throughout this document are expressed in CBOR diagnostic notation as defined in
 and . Diagnostic notation comments are often

used to provide a textual representation of the numeric parameter names and values.

In the CBOR diagnostic notation used in this document, constructs of the form e'SOME_NAME'
are replaced by the value assigned to SOME_NAME in the CDDL model shown in Figure 15 of
Appendix D. For example, {e'full_set': [], e'cursor': 3} stands for {0: [], 2: 3}.

Note to RFC Editor: Please delete the paragraph immediately preceding this note. Also, in the
CBOR diagnostic notation used in this document, please replace the constructs of the form
e'SOME_NAME' with the value assigned to SOME_NAME in the CDDL model shown in Figure 15 of
Appendix D. Finally, please delete this note.

Section 8 of [RFC8949] Appendix G of [RFC8610]

2. Protocol Overview
This protocol defines how a CoAP-based authorization server informs clients and resource
servers, i.e., registered devices, about pertaining revoked access tokens. How the relationship
between a registered device and the AS is established is out of the scope of this specification.

At a high level, the steps of this protocol are as follows:

Upon startup, the AS creates a single TRL accessible through the TRL endpoint. At any point
in time, the TRL represents the list of all revoked access tokens issued by the AS that are not
expired yet.
When a device registers at the AS, it also receives the url-path to the TRL endpoint.

At any time after the registration procedure is finished, the registered device can send a GET
request to the TRL endpoint at the AS. When doing so, it can request the following: the
current list of pertaining revoked access tokens (see Section 7) or the most recent updates
that occurred over the list of pertaining revoked access tokens (see Section 8).

In particular, the registered device can rely on Observation for CoAP . In such a
case, the GET request sent to the TRL endpoint includes the CoAP Observe Option set to 0
(register), i.e., it is an Observation Request. By doing so, the registered device effectively
subscribes to the TRL, as interested in receiving notifications about its update. Upon
receiving the Observation Request, the AS adds the registered device to the list of observers
of the TRL endpoint.

When an access token is revoked, the AS adds the corresponding token hash to the TRL.
Also, when a revoked access token eventually expires, the AS removes the corresponding
token hash from the TRL.

In either case, after updating the TRL, the AS sends Observe notifications as per .
That is, an Observe notification is sent to each registered device subscribed to the TRL and to
which the access token pertains.

1.

2.

[RFC7641]

3.

[RFC7641]

RFC 9770 Notification of Revoked Tokens in ACE April 2025

Tiloca, et al. Standards Track Page 7

https://www.rfc-editor.org/rfc/rfc8949#section-8
https://www.rfc-editor.org/rfc/rfc8610#appendix-G

Depending on the specific subscription established through the Observation Request, the
notification provides the current updated list of revoked access tokens in the subset of the
TRL pertaining to that device (see Section 7), or the most recent TRL updates that occurred
over that list of pertaining revoked access tokens (see Section 8).

Further Observe notifications may be sent, consistent with ongoing additional observations
of the TRL endpoint.

An administrator can access and subscribe to the TRL like a registered device while getting
the content of the whole TRL (see Section 7) or the most recent updates to the whole TRL (see
Section 8).

Figure 1 shows a high-level overview of the service provided by this protocol. For the sake of
simplicity, the example shown in the figure considers the simultaneous revocation of the three
access tokens t1, t2, and t3 whose corresponding token hashes are th1, th2, and th3, respectively.
Consequently, the AS adds the three token hashes to the TRL at once and sends Observe
notifications to one administrator and four registered devices. Each dotted line associated with a
pair of registered devices indicates the access token that they both own.

Appendix C provides examples of the protocol flow and message exchanges between the AS and
a registered device.

4.

Figure 1: Protocol Overview

Authorization server

/revoke/trl TRL: (th1,th2,th3)

th1,th2,th3 th1,th2 th1 th3 th2,th3

Administrator Client 1 Resource Client 2 Resource
server 1 server 2

: : : : : :
: : t1 : : t3 : :
: :........: :............: :
: t2 :
:...:

RFC 9770 Notification of Revoked Tokens in ACE April 2025

Tiloca, et al. Standards Track Page 8

3. Issuing of Access Tokens at the AS
An AS that supports the method defined in this document adhere to the following rules
when issuing an access token:

All the intended header parameters in the access token be specified within integrity-
protected fields.
If the access token is a CWT, the following applies:

Any "unprotected" field be empty, i.e., its value be encoded as the empty CBOR
map (0xa0). This applies to the top-level "unprotected" field of the COSE object used for the
CWT, the "unprotected" field of each element of the "signatures" array, and the
"unprotected" field of each element of any "recipients" array (see Sections 2, 3, 4, 5, and 6
of).
Consistent with the specific COSE object used for the CWT, the corresponding tagged
structure in the set COSE_Tagged_Message be used (see). That
is, the CBOR array that encodes the CWT be tagged by using the COSE CBOR tag
corresponding to the used COSE object. Table 1 in specifies the tag
numbers in question.

In turn, the resulting tagged data item be tagged by using the CWT CBOR tag with
tag number 61 (see). After that, the resulting data item
be further tagged.

Encoding of the tag numbers be done using definite lengths, and the length of the
encoded tag numbers be the minimum possible length. This means that tag number
16 is encoded as 0xd0 and not as 0xd810.

The example in Figure 2 shows a CWT that uses the COSE object COSE_Encrypt0 (see
).

If, like for JWTs , the access token relies on a JSON object for encoding its claims,
the following applies:

Consistent with the ACE framework for Authentication and Authorization , this
document specifically considers JWTs, which are always represented using the JSON Web
Signature (JWS) Compact Serialization from or the JSON Web Encryption (JWE)
Compact Serialization from . Consequently, all the header parameters are
specified within integrity-protected fields.

In case alternative access tokens were used, the following applies:

If the access token uses the JWS Compact Serialization from , it
include the JWS Unprotected Header.
If the access token uses the JWE Compact Serialization from , it
include the JWE Shared Unprotected Header and it include the "header"
member in any of the elements of the "recipients" array.

MUST

• MUST

•

◦ MUST MUST

[RFC9052]
◦

MUST Section 2 of [RFC9052]
MUST

Section 2 of [RFC9052]

MUST
Section 6 of [RFC8392] MUST NOT

MUST
MUST

Section 5.2 of [RFC9052]

• [RFC7519]

[RFC9200]

[RFC7515]
[RFC7516]

◦ [RFC7515] MUST NOT

◦ [RFC7516] MUST NOT
MUST NOT

RFC 9770 Notification of Revoked Tokens in ACE April 2025

Tiloca, et al. Standards Track Page 9

https://www.rfc-editor.org/rfc/rfc9052#section-2
https://www.rfc-editor.org/rfc/rfc9052#section-3
https://www.rfc-editor.org/rfc/rfc9052#section-4
https://www.rfc-editor.org/rfc/rfc9052#section-5
https://www.rfc-editor.org/rfc/rfc9052#section-6
https://www.rfc-editor.org/rfc/rfc9052#section-2
https://www.rfc-editor.org/rfc/rfc9052#section-2
https://www.rfc-editor.org/rfc/rfc8392#section-6
https://www.rfc-editor.org/rfc/rfc9052#section-5.2

Section 14.6 discusses how adhering to the rules above neutralizes an attack against the RS
where an active adversary can induce the RS to compute a token hash different from the correct
one.

Figure 2: Example of CWT Using COSE_Encrypt0

/ CWT CBOR tag / 61(
 / COSE_Encrypt0 CBOR tag / 16(
 / COSE_Encrypt0 object / [
 / protected / h'a3010a044c53796d6d65747269633132
 38054d99a0d7846e762c49ffe8a63e0b',
 / unprotected / {},
 / ciphertext / h'b918a11fd81e438b7f973d9e2e119bcb
 22424ba0f38a80f27562f400ee1d0d6c
 0fdb559c02421fd384fc2ebe22d70713
 78b0ea7428fff157444d45f7e6afcda1
 aae5f6495830c58627087fc5b4974f31
 9a8707a635dd643b'
]
)
)

4. Token Hash
This section specifies how token hashes are computed.

First, Section 4.1 provides the motivation for the used construction.

Building on that, the value used as input to compute a token hash is defined in Section 4.2 for the
client and the AS and in Section 4.3 for the RS. Finally, Section 4.4 defines how such an input is
used for computing the token hash.

The process outlined below refers to the base64url encoding and decoding without padding (see
) and denotes as "binary representation" of a text string the corresponding

UTF-8 encoding , which is the implied charset used in JSON (see
).

Consistent with , the term "tag" is used for the entire CBOR data item
consisting of both a tag number and the tag content: the tag content is the CBOR data item that is
being tagged.

Also, "tagged access token" is used to denote nested CBOR tags (possibly a single one), with the
innermost tag content being a CWT.

Section 5 of [RFC4648]
[RFC3629] Section 8.1 of

[RFC8259]

Section 3.4 of [RFC8949]

RFC 9770 Notification of Revoked Tokens in ACE April 2025

Tiloca, et al. Standards Track Page 10

https://www.rfc-editor.org/rfc/rfc4648#section-5
https://www.rfc-editor.org/rfc/rfc8259#section-8.1
https://www.rfc-editor.org/rfc/rfc8949#section-3.4

4.1. Motivation for the Used Construction
An access token can have one among different formats. The most expected formats are CWT

 and JWT , with the former being the default format to use in the ACE
framework for Authentication and Authorization (see). While access
tokens are opaque to clients, an RS is aware of whether access tokens that are issued for it to
consume are either CWTs or JWTs.

[RFC8392] [RFC7519]
Section 3 of [RFC9200]

4.1.1. Issuing of the Access Token to the Client

There are two possible encodings that the AS can use for the AS-to-Client response (see
) where the issued access token is included and provided to the requester

client. The RS may not be aware of which encoding is used for that response to that particular
requester client.

One method of encoding relies on CBOR, which is required if CoAP is used (see
) and is recommended otherwise (see). That is, the AS-to-

Client response has media-type "application/ace+cbor".

This implies that, within the CBOR map specified as message payload, the parameter
'access_token' is a CBOR data item of type CBOR byte string and with a value of BYTES. In
particular:

If the access token is a CWT, then BYTES is the binary representation of the CWT (i.e., of
the CBOR array that encodes the untagged CWT) or of a tagged access token with the CWT
as the innermost tag content.
If the access token is a JWT, then BYTES is the binary representation of the JWT (i.e., of the
text string that encodes the JWT).

An alternative method of encoding relies on JSON. That is, the AS-to-Client response has
media-type "application/ace+json".

This implies that, within the JSON object specified as message payload, the parameter
'access_token' has as a value a text string TEXT. In particular:

If the access token is a JWT, then TEXT is the text string that encodes the JWT.
If the access token is a CWT, then TEXT is the base64url-encoded text string of BYTES,
which is the binary representation of the CWT (i.e., of the CBOR array that encodes the
untagged CWT) or of a tagged access token with the CWT as the innermost tag content.

Section
5.8.2 of [RFC9200]

• Section 5 of
[RFC9200] Section 3 of [RFC9200]

◦

◦

•

◦
◦

4.1.2. Provisioning of Access Tokens to the RS

In accordance with the used transport profile of ACE (e.g., , ,), the
RS receives a piece of token-related information hereafter denoted as TOKEN_INFO.

[RFC9202] [RFC9203] [RFC9431]

RFC 9770 Notification of Revoked Tokens in ACE April 2025

Tiloca, et al. Standards Track Page 11

https://www.rfc-editor.org/rfc/rfc9200#section-3
https://www.rfc-editor.org/rfc/rfc9200#section-5.8.2
https://www.rfc-editor.org/rfc/rfc9200#section-5.8.2
https://www.rfc-editor.org/rfc/rfc9200#section-5
https://www.rfc-editor.org/rfc/rfc9200#section-3

In particular:

If the AS-to-Client response was encoded in CBOR, then TOKEN_INFO is the value of the
CBOR byte string conveyed by the 'access_token' parameter of that response. That is,
TOKEN_INFO is the binary representation of the (tagged) access token.
If the AS-to-Client response was encoded in JSON and the access token is a JWT, then
TOKEN_INFO is the binary representation of the text string conveyed by the 'access_token'
parameter of that response. That is, TOKEN_INFO is the binary representation of the access
token.
If the AS-to-Client response was encoded in JSON and the access token is a CWT, then
TOKEN_INFO is the binary representation of the base64url-encoded text string that encodes
the binary representation of the (tagged) access token. That is, TOKEN_INFO is the binary
representation of the base64url-encoded text string conveyed by the 'access_token'
parameter.

The following overviews how the above specifically applies to the existing transport profiles of
ACE:

The (tagged) access token can be uploaded to the RS by means of a POST request to the /
authz-info endpoint (see), using a CoAP Content-Format or HTTP
media-type that reflects the format of the access token, if available (e.g., "application/cwt"
for CWTs), or "application/octet-stream" otherwise. When doing so (e.g., like in),
TOKEN_INFO is the payload of the POST request.
The (tagged) access token can be uploaded to the RS by means of a POST request to the /
authz-info endpoint, using the media-type "application/ace+cbor". When doing so (e.g., like in

), TOKEN_INFO is the value of the CBOR byte string conveyed by the 'access_token'
parameter, within the CBOR map specified as payload of the POST request.
The (tagged) access token can be uploaded to the RS during a DTLS session establishment,
e.g., like it is defined in . When doing so, TOKEN_INFO is the value
of the 'psk_identity' field of the ClientKeyExchange message (when using DTLS 1.2)
or of the 'identity' field of a PSKIdentity, within the PreSharedKeyExtension of a ClientHello
message (when using DTLS 1.3).
The (tagged) access token can be uploaded to the RS within the MQTT CONNECT packet, e.g.,
like it is defined in . When doing so, TOKEN_INFO is specified
within the 'Authentication Data' field of the MQTT CONNECT packet, following the property
identifier 22 (0x16) and the token length.

•

•

•

•
Section 5.10.1 of [RFC9200]

[RFC9202]

•

[RFC9203]

•
Section 3.2.2 of [RFC9202]

[RFC6347]

[RFC9147]
•

Section 2.2.4.1 of [RFC9431]

4.1.3. Design Rationale

Considering the possible variants discussed above, it must always be ensured that the same
HASH_INPUT value is used as input for generating the token hash of a given access token, by the
AS that has issued the access token and by the registered devices to which the access token
pertains (both client and RS).

RFC 9770 Notification of Revoked Tokens in ACE April 2025

Tiloca, et al. Standards Track Page 12

https://www.rfc-editor.org/rfc/rfc9200#section-5.10.1
https://www.rfc-editor.org/rfc/rfc9202#section-3.2.2
https://www.rfc-editor.org/rfc/rfc9431#section-2.2.4.1

This is achieved by building HASH_INPUT according to the content of the 'access_token'
parameter in the AS-to-Client responses because that is what the AS, the client, and the RS are all
able to see.

4.2. Hash Input on the Client and the AS
The client and the AS consider the content of the 'access_token' parameter in the AS-to-Client
response, in which the (tagged) access token is included and provided to the requester client.

The following defines how the client and the AS determine the HASH_INPUT value to use as
input for computing the token hash of the conveyed access token, depending on the AS-to-Client
response being encoded in CBOR (see Section 4.2.1) or in JSON (see Section 4.2.2).

Once the HASH_INPUT is determined, the client and the AS use it to compute the token hash of
the conveyed access token as defined in Section 4.4.

4.2.1. AS-to-Client Response Encoded in CBOR

If the AS-to-Client response is encoded in CBOR, then HASH_INPUT is defined as follows:

BYTES denotes the value of the CBOR byte string conveyed in the parameter 'access_token'.

With reference to the example in Figure 3, BYTES is the bytes {0xd8 0x3d 0xd0 ... 0x64 0x3b}.

Note that BYTES is the binary representation of the tagged access token if this is a CWT (as
per Section 3) or of the access token if this is a JWT.

HASH_INPUT_TEXT is the base64url-encoded text string that encodes BYTES.
HASH_INPUT is the binary representation of HASH_INPUT_TEXT.

•

•
•

Figure 3: Example of AS-to-Client CoAP Response Using CBOR

Header: Created (Code=2.01)
Content-Format: application/ace+cbor
Max-Age: 85800
Payload:
{
 / access_token / 1 : h'd83dd0835820a3010a044c53796d6d
 6574726963313238054d99a0d7846e
 762c49ffe8a63e0ba05858b918a11f
 d81e438b7f973d9e2e119bcb22424b
 a0f38a80f27562f400ee1d0d6c0fdb
 559c02421fd384fc2ebe22d7071378
 b0ea7428fff157444d45f7e6afcda1
 aae5f6495830c58627087fc5b4974f
 319a8707a635dd643b',
 / token_type / 34 : 2 / PoP /,
 / expires_in / 2 : 86400,
 / ace_profile / 38 : 1 / coap_dtls /,
 / (remainder of the response omitted for brevity) /
}

RFC 9770 Notification of Revoked Tokens in ACE April 2025

Tiloca, et al. Standards Track Page 13

4.2.2. AS-to-Client Response Encoded in JSON

If the AS-to-Client response is encoded in JSON, then HASH_INPUT is the binary representation
of the text string conveyed by the 'access_token' parameter.

With reference to the example in Figure 4, HASH_INPUT is the binary representation of
"eyJh...YFiA". When showing the access token, Figure 4 uses line breaks for display purposes only.

Note that:

If the access token is a JWT, then HASH_INPUT is the binary representation of the JWT.
If the access token is a CWT, then HASH_INPUT is the binary representation of a base64url-
encoded text string, which encodes the binary representation of a tagged access token with
the CWT as the innermost tag content (as per Section 3).

•
•

Figure 4: Example of AS-to-Client HTTP Response Using JSON

HTTP/1.1 200 OK
Content-Type: application/ace+json
Cache-Control: no-store
Pragma: no-cache
Payload:
{
 "access_token" : "eyJhbGciOiJSU0ExXzUiLCJlbmMiOiJB
 MTI4Q0JDLUhTMjU2In0.
 QR1Owv2ug2WyPBnbQrRARTeEk9kDO2w8
 qDcjiHnSJflSdv1iNqhWXaKH4MqAkQtM
 oNfABIPJaZm0HaA415sv3aeuBWnD8J-U
 i7Ah6cWafs3ZwwFKDFUUsWHSK-IPKxLG
 TkND09XyjORj_CHAgOPJ-Sd8ONQRnJvW
 n_hXV1BNMHzUjPyYwEsRhDhzjAD26ima
 sOTsgruobpYGoQcXUwFDn7moXPRfDE8-
 NoQX7N7ZYMmpUDkR-Cx9obNGwJQ3nM52
 YCitxoQVPzjbl7WBuB7AohdBoZOdZ24W
 lN1lVIeh8v1K4krB8xgKvRU8kgFrEn_a
 1rZgN5TiysnmzTROF869lQ.
 AxY8DCtDaGlsbGljb3RoZQ.
 MKOle7UQrG6nSxTLX6Mqwt0orbHvAKeW
 nDYvpIAeZ72deHxz3roJDXQyhxx0wKaM
 HDjUEOKIwrtkHthpqEanSBNYHZgmNOV7
 sln1Eu9g3J8.
 fiK51VwhsxJ-siBMR-YFiA",
 "token_type" : "pop",
 "expires_in" : 86400,
 "ace_profile" : "1"
}

RFC 9770 Notification of Revoked Tokens in ACE April 2025

Tiloca, et al. Standards Track Page 14

4.3. HASH_INPUT on the RS
The following defines how the RS determines the HASH_INPUT value to use as input for
computing the token hash of an access token, depending on the RS using either CWTs (see Section
4.3.1) or JWTs (see Section 4.3.2).

4.3.1. Access Tokens as CWTs

If the RS expects access tokens to be CWTs, then the RS performs the following steps:

The RS receives the token-related information TOKEN_INFO, in accordance with what is
specified by the used profile of ACE (see Section 4.1.2).
The RS assumes that the client received the access token in an AS-to-Client response encoded
in CBOR (see Section 4.2.1). Hence, the RS assumes TOKEN_INFO to be the binary
representation of the tagged access token with the CWT as the innermost tag content (as per
Section 3).
The RS verifies the access token as per . If the verification fails,
then the RS does not discard the access token yet; instead, it moves to step 4.

Otherwise, the RS stores the access token and computes the corresponding token hash as
defined in Section 4.4. In particular, the RS considers HASH_INPUT_TEXT as the base64url-
encoded text string that encodes TOKEN_INFO. Then, HASH_INPUT is the binary
representation of HASH_INPUT_TEXT.

After that, the RS stores the computed token hash as associated with the access token; then,
it terminates this algorithm.

The RS assumes that the client received the access token in an AS-to-Client response encoded
in JSON (see Section 4.2.2). Hence, the RS assumes TOKEN_INFO to be the binary
representation of HASH_INPUT_TEXT. In turn, HASH_INPUT_TEXT is the base64url-encoded
text string that encodes the binary representation of the tagged access token with the CWT
as the innermost tag content (as per Section 3).
The RS performs the base64url decoding of HASH_INPUT_TEXT and considers the result to
be the binary representation of the tagged access token.
The RS verifies the access token as per . If the verification fails,
then the RS terminates this algorithm.

Otherwise, the RS stores the access token and computes the corresponding token hash as
defined in Section 4.4. In particular, HASH_INPUT is TOKEN_INFO.

After that, the RS stores the computed token hash as associated with the access token.

1.

2.

3. Section 5.10.1.1 of [RFC9200]

4.

5.

6. Section 5.10.1.1 of [RFC9200]

4.3.2. Access Tokens as JWTs

If the RS expects access tokens to be JWTs, then the RS performs the following steps:

The RS receives the token-related information TOKEN_INFO, in accordance with what is
specified by the used profile of ACE (see Section 4.1.2).

1.

RFC 9770 Notification of Revoked Tokens in ACE April 2025

Tiloca, et al. Standards Track Page 15

https://www.rfc-editor.org/rfc/rfc9200#section-5.10.1.1
https://www.rfc-editor.org/rfc/rfc9200#section-5.10.1.1

The RS verifies the access token as per . If the verification fails,
then the RS terminates this algorithm. Otherwise, the RS stores the access token.
The RS computes a first token hash associated with the access token as defined in Section 4.4.

In particular, the RS assumes that the client received the access token in an AS-to-Client
response encoded in JSON (see Section 4.2.2). Hence, HASH_INPUT is TOKEN_INFO.

After that, the RS stores the computed token hash as associated with the access token.

The RS computes a second token hash associated with the access token as defined in Section
4.4.

In particular, the RS assumes that the client received the access token in an AS-to-Client
response encoded in CBOR (see Section 4.2.1). Hence, HASH_INPUT is the binary
representation of HASH_INPUT_TEXT, which, in turn, is the base64url-encoded text string
that encodes TOKEN_INFO.

After that, the RS stores the computed token hash as associated with the access token.

The RS skips step 3 only if it is certain that all its pertaining access tokens are provided to any
client by means of AS-to-Client responses encoded as CBOR messages. Otherwise, the RS
perform step 3.

The RS skips step 4 only if it is certain that all its pertaining access tokens are provided to any
client by means of AS-to-Client responses encoded as JSON messages. Otherwise, the RS
perform step 4.

If the RS performs both steps 3 and 4 above, then the RS store, maintain, and rely on both
token hashes as associated with the access token, consistent with what is specified in Section
11.1.

Section 14.7 discusses how computing and storing both token hashes neutralizes an attack
against the RS, where a dishonest client can induce the RS to compute a token hash different
from the correct one.

2. Section 5.10.1.1 of [RFC9200]

3.

4.

MUST

MUST

MUST

4.4. Computing the Token Hash
Once HASH_INPUT is determined as defined in Sections 4.2 and 4.3, a hash value of HASH_INPUT
is generated as per . The resulting output in binary format is used as the
token hash. Note that the used binary format embeds the identifier of the used hash function in
the first byte of the computed token hash.

The specific hash function used be collision resistant on byte strings and be selected
from the "Named Information Hash Algorithm Registry" . Consistent
with the compliance requirements in , the hash function sha-256 as
specified in is mandatory to implement.

The AS specifies the used hash function to registered devices during their registration procedure
(see Section 10).

Section 6 of [RFC6920]

MUST MUST
[IANA.Hash.Algorithms]

Section 2 of [RFC6920]
[SHA-256]

RFC 9770 Notification of Revoked Tokens in ACE April 2025

Tiloca, et al. Standards Track Page 16

https://www.rfc-editor.org/rfc/rfc9200#section-5.10.1.1
https://www.rfc-editor.org/rfc/rfc6920#section-6
https://www.rfc-editor.org/rfc/rfc6920#section-2

5. Token Revocation List (TRL)
Upon startup, the AS creates a single Token Revocation List (TRL) encoded as a CBOR array.

Each element of the array is a CBOR byte string with value the token hash of an access token.
The CBOR array be treated as a set, i.e., the order of its elements has no meaning.

The TRL is initialized as empty, i.e., its initial content be the empty CBOR array. The TRL is
accessible through the TRL endpoint at the AS.

MUST

MUST

5.1. Update of the TRL
The AS updates the TRL in the following two cases:

When a non-expired access token is revoked, the token hash of the access token is added to
the TRL. That is, a CBOR byte string with the token hash as its value is added to the CBOR
array encoding the TRL.
When a revoked access token expires, the token hash of the access token is removed from
the TRL. That is, the CBOR byte string with the token hash as its value is removed from the
CBOR array encoding the TRL.

The AS perform a single update to the TRL such that one or more token hashes are added or
removed at once. For example, this can be the case if multiple access tokens are revoked or
expire at the same time or within an acceptably narrow time frame.

•

•

MAY

6. The TRL Endpoint
Consistent with , all communications between a requester towards the
TRL endpoint and the AS be encrypted, as well as integrity and replay protected.
Furthermore, responses from the AS to the requester be bound to the corresponding
requests.

Following a request to the TRL endpoint, the corresponding success response messages sent by
the AS use Content-Format "application/ace-trl+cbor". Their payload is formatted as a CBOR map,
and the CBOR values used to abbreviate the parameters included therein are defined in Section
12.

The AS implement measures to prevent access to the TRL endpoint by entities other than
registered devices and authorized administrators (see Section 10).

The TRL endpoint supports only the GET method, and allows two types of queries of the TRL:

Full query: the AS returns the token hashes of the revoked access tokens currently in the
TRL and pertaining to the requester.

The AS support this type of query. The processing of a full query and the related
response format are defined in Section 7.

Section 6.5 of [RFC9200]
MUST

MUST

MUST

1.

MUST

RFC 9770 Notification of Revoked Tokens in ACE April 2025

Tiloca, et al. Standards Track Page 17

https://www.rfc-editor.org/rfc/rfc9200#section-6.5

Diff query: the AS returns a list of diff entries. Each diff entry is related to one update to the
TRL, and it contains a set of token hashes pertaining to the requester. In particular, all such
token hashes were added to the TRL or removed from the TRL at the update related to the
diff entry in question.

The AS support this type of query. In such a case, the AS maintains the history of
updates to the TRL as defined in Section 6.2. The processing of a diff query and the related
response format are defined in Section 8.

If it supports diff queries, the AS additionally support its "Cursor" extension, which has two
benefits:

The AS can avoid excessively long messages when several diff entries have to be transferred
by delivering several diff query responses, each containing one adjacent subset of diff
entries at a time.
A requester can retrieve diff entries associated with TRL updates that, even if not the most
recent ones, occurred after a TRL update associated with a diff entry indicated as a
reference point.

If it supports the "Cursor" extension, the AS stores additional information when maintaining the
history of updates to the TRL as defined in Section 6.2.1. Also, the processing of full query
requests and diff query requests, as well as the related response format, are further extended as
defined in Section 9.

Appendix B provides an aggregated overview of the local supportive parameters that the AS
internally uses at its TRL endpoint when supporting diff queries and the "Cursor" extension.

2.

MAY

MAY

1.

2.

6.1. Error Responses with Problem Details
Some error responses from the TRL endpoint at the AS can convey error-specific information
according to the problem-details format defined in . Such error responses have
Content-Format set to "application/concise-problem-details+cbor". The payload of these error
responses be a CBOR map specifying a Concise Problem Details data item (see

). The CBOR map is formatted as follows:

It include the Custom Problem Detail entry 'ace-trl-error' registered in Section 15.3 of
this document. This entry is formatted as a CBOR map, which includes the following fields:

The 'error-id' field be present. The map key used for this field is the CBOR unsigned
integer with a value of 0. The value of this field is a CBOR integer specifying the error that
occurred at the AS. This value is taken from the 'Value' column of the "ACE Token
Revocation List Errors" registry defined in Section 15.5 of this document.
The 'cursor' field be present. The map key used for this field is the CBOR unsigned
integer with a value of 1. The value of this field is a CBOR unsigned integer or the CBOR
simple value null (0xf6). The use of this field is defined in Section 6.3.

The CDDL notation of the 'ace-trl-error' entry is given below:

[RFC9290] MUST

MUST Section 2 of
[RFC9290]

• MUST

◦ MUST

◦ MAY

[RFC8610]

RFC 9770 Notification of Revoked Tokens in ACE April 2025

Tiloca, et al. Standards Track Page 18

https://www.rfc-editor.org/rfc/rfc9290#section-2

It include further Standard Problem Detail entries or Custom Problem Detail entries
(see).

In particular, it can include the Standard Problem Detail entry 'detail' (map key -2), whose
value is a CBOR text string that specifies a human-readable diagnostic description of the
error that occurred at the AS. The diagnostic text is intended for software engineers as well
as for device and network operators in order to aid in debugging and provide context for
possible intervention. The diagnostic message be logged by the AS. The 'detail' entry
is unlikely to be relevant in an unattended setup where human intervention is not expected.

An example of an error response using the problem-details format is shown in Figure 5.

The problem-details format in general and the Custom Problem Detail entry 'ace-trl-error' in
particular are to support for registered devices. A registered device supporting the
entry 'ace-trl-error' and that is able to understand the specified error may use that information
to determine what actions to take next.

 ace-trl-error = {
 0: int, ; error-id
 ? 1: uint / null ; cursor
 }

• MAY
[RFC9290]

SHOULD

Figure 5: Example of Error Response with Problem Details

Header: Bad Request (Code=4.00)
Content-Format: application/concise-problem-details+cbor
Payload:
{
 / title / -1: "Invalid parameter value",
 / detail / -2: "Invalid value for 'cursor': -53",
 / ace-trl-error / e'ace-trl-error': {
 / error-id / 0: 0 / "Invalid parameter value" /,
 / cursor / 1: 42
 }
}

OPTIONAL

6.2. Supporting Diff Queries
If the AS supports diff queries, it is able to transfer a list of diff entries, each of which is related
to one update that occurred to the TRL (see Section 6). That is, when replying to a diff query
performed by a requester, the AS specifies the diff entries related to the most recent TRL updates
pertaining to the requester.

The following defines how the AS builds and maintains an ordered list of diff entries, for each
registered device and administrator, hereafter referred to as "requesters". In particular, a
requester's diff entry associated with a TRL update contains a set of token hashes pertaining to
that requester, each of which was added to the TRL or removed from the TRL at that update.

RFC 9770 Notification of Revoked Tokens in ACE April 2025

Tiloca, et al. Standards Track Page 19

The AS defines the single constant positive integer MAX_N >= 1. For each requester, the AS
maintains an updated collection of maximum MAX_N series items, each of which is a diff entry.
For each requester, the AS keep track of the MAX_N most recent TRL updates pertaining to
the requester. If the AS supports diff queries, the AS provide requesters with the value of
MAX_N upon their registration (see Section 10).

The series of items in the update collection be strictly chronologically ordered. That is, at
any point in time, the first series item would be the one least recently added to the update
collection and still retained by the AS; the last series item would be the one most recently added
to the update collection. The particular method used to achieve this is implementation specific.

Each time the TRL changes, the AS performs the following operations for each requester:

The AS considers the subset of the TRL pertaining to that requester. If the TRL subset is not
affected by this TRL update, the AS stops the processing for that requester. Otherwise, the AS
moves to step 2.
The AS creates two sets "trl_patch" of token hashes, i.e., one "removed" set and one "added"
set, as related to this TRL update.
The AS fills the two sets with the token hashes of the removed and added access tokens,
respectively, from/to the TRL subset considered at step 1.
The AS creates a new series item that includes the two sets from step 3.
If the update collection associated with the requester currently includes MAX_N series
items, the AS delete the oldest series item in the update collection.
The AS adds the series item to the update collection associated with the requester as the last
(most recent) entry.

MUST
MUST

MUST

1.

2.

3.

4.
5.

MUST

6.

6.2.1. Supporting the "Cursor" Extension

If it supports the "Cursor" extension for diff queries, the AS also performs the following actions:

The AS defines the single constant unsigned integer MAX_INDEX <= ((2^64) - 1), where "^" is the
exponentiation operator. The value of MAX_INDEX is to be at least (MAX_N - 1) and is

 to be at least ((2^32) - 1). MAX_INDEX be orders of magnitude greater
than MAX_N.

The following applies separately for each requester's update collection:

Each series item X in the update collection is also associated with an unsigned integer 'index',
whose minimum value is 0 and whose maximum value is MAX_INDEX. The first series item
ever added to the update collection have an 'index' with a value of 0.

If i_X is the value of 'index' associated with a series item X, then the following series item Y
will take 'index' with a value of i_Y = (i_X + 1) % (MAX_INDEX + 1). That is, after having
added a series item whose associated 'index' has a value of MAX_INDEX, the next added
series item will result in a wraparound of the 'index' value; thus, it will take an 'index' with a
value of 0.

REQUIRED
RECOMMENDED SHOULD

•

MUST

RFC 9770 Notification of Revoked Tokens in ACE April 2025

Tiloca, et al. Standards Track Page 20

For example, assuming MAX_N = 3, the values of 'index' in the update collection
chronologically evolve as follows, as new series items are added and old series items are
deleted:

...
(i_A = MAX_INDEX - 2, i_B = MAX_INDEX - 1, i_C = MAX_INDEX)
(i_B = MAX_INDEX - 1, i_C = MAX_INDEX, i_D = 0)
(i_C = MAX_INDEX, i_D = 0, i_E = 1)
(i_D = 0, i_E = 1, i_F = 2)
...

The unsigned integer 'last_index' is also defined, with minimum value 0 and maximum
value MAX_INDEX.

If the update collection is empty (i.e., no series items have been added yet), the value of
'last_index' is not defined. If the update collection is not empty, 'last_index' has the value of
'index' currently associated with the last series item in the update collection.

That is, after having added V series items to the update collection, the last and most recently
added series item has an 'index' with a value of 'last_index' = (V - 1) % (MAX_INDEX + 1).

As long as a wraparound of the 'index' value has not occurred, the value of 'last_index' is the
absolute counter of series items added to that update collection, minus 1.

When processing a diff query using the "Cursor" extension, the values of 'index' are used as
cursor information, as defined in Section 9.2.

For each requester's update collection, the AS also defines a constant positive integer
MAX_DIFF_BATCH <= MAX_N, whose value specifies the maximum number of diff entries to be
included in a single diff query response. The specific value depend on the specific
registered device or administrator associated with the update collection in question. If
supporting the "Cursor" extension, the AS provide registered devices and administrators
with the corresponding value of MAX_DIFF_BATCH upon their registration (see Section 10).

◦
◦
◦
◦
◦
◦

•

MAY

MUST

6.3. Query Parameters
A GET request to the TRL endpoint can include the following query parameters. The AS
silently ignore unknown query parameters.

'diff': if included, perform a diff query of the TRL (see Section 8). Its value be either:

the integer 0, indicating that a (notification) response should include as many diff entries
as the AS can provide in the response; or
a positive integer strictly greater than 0, indicating the maximum number of diff entries
that a (notification) response should include.

If the AS does not support diff queries, it ignores the 'diff' query parameter when present in
the GET request and proceeds like when processing a full query of the TRL (see Section 7).

MUST

• MUST

◦

◦

RFC 9770 Notification of Revoked Tokens in ACE April 2025

Tiloca, et al. Standards Track Page 21

Otherwise, the AS return a 4.00 (Bad Request) response in case the 'diff' query
parameter of the GET request specifies a value that is neither 0 nor a positive integer,
irrespective of the presence of the 'cursor' parameter and its value (see below). The response

 have Content-Format set to "application/concise-problem-details+cbor", and its
payload is formatted as defined in Section 6.1. Within the Custom Problem Detail entry 'ace-
trl-error', the value of the 'error-id' field be set to 0 ("Invalid parameter value"), and
the 'cursor' field be present.

'cursor': if included, perform a diff query of the TRL together with the "Cursor" extension, as
defined in Section 9.2. Its value be either 0 or a positive integer. If the 'cursor' query
parameter is included, then the 'diff' query parameter also be included.

If included, the 'cursor' query parameter specifies an unsigned integer value that was
provided by the AS in a previous response from the TRL endpoint (see Sections 9.1, 9.2.2, and
9.2.3).

If the AS does not support the "Cursor" extension, it ignores the 'cursor' query parameter
when present in the GET request. In such a case, the AS proceeds as specified elsewhere in
this document, that is:

it performs a diff query of the TRL (see Section 8), if it supports diff queries and the 'diff'
query parameter is present in the GET request; or
it performs a full query of the TRL (see Section 7).

If the AS supports both diff queries and the "Cursor" extension, and the GET request
specifies the 'cursor' query parameter, then the AS return a 4.00 (Bad Request)
response in case any of the conditions below holds.

The 4.00 (Bad Request) response have Content-Format set to "application/concise-
problem-details+cbor", and its payload is formatted as defined in Section 6.1.

The GET request does not specify the 'diff' query parameter, irrespective of the value of
the 'cursor' parameter.

Within the Custom Problem Detail entry 'ace-trl-error', the value of the 'error-id' field
be set to 1 ("Invalid set of parameters"), and the 'cursor' field be present.

The 'cursor' query parameter has a value that is neither 0 nor a positive integer;
otherwise, it has a value strictly greater than MAX_INDEX (see Section 6.2.1).

Within the Custom Problem Detail entry 'ace-trl-error', the value of the 'error-id' field
be set to 0 ("Invalid parameter value"). The entry 'ace-trl-error' include the 'cursor'
field, whose value is either:

the CBOR simple value null (0xf6), if the update collection associated with the requester
is empty; or
the corresponding current value of 'last_index'.

All of the following hold: the update collection associated with the requester is not empty;
no wraparound of its 'index' value has occurred; and the 'cursor' query parameter has a
value strictly greater than the current 'last_index' on the update collection (see Section
6.2.1).

MUST

MUST

MUST
MUST NOT

•
MUST

MUST

1.

2.

MUST

MUST

◦

MUST
MUST NOT

◦

MUST
MUST

▪

▪

◦

RFC 9770 Notification of Revoked Tokens in ACE April 2025

Tiloca, et al. Standards Track Page 22

Within the Custom Problem Detail entry 'ace-trl-error', the value of the 'error-id' field
be set to 2 ("Out of bound cursor value"), and the 'cursor' field be present.

MUST
MUST NOT

7. Full Query of the TRL
In order to produce a (notification) response to a GET request asking for a full query of the TRL,
the AS performs the following actions:

From the TRL, the AS builds a set of HASHES such that:

If the requester is a registered device, HASHES specifies the token hashes currently in the
TRL and associated with the access tokens pertaining to that registered device. The AS can
always use the authenticated identity of the registered device to perform the necessary
filtering on the TRL content.
If the requester is an administrator, HASHES specifies all the token hashes currently in the
TRL.

The AS sends a 2.05 (Content) response to the requester. The response have Content-
Format set to "application/ace-trl+cbor". The payload of the response is a CBOR map, which

 be formatted as follows.

The 'full_set' parameter be included and specifies a CBOR array 'full_set_value'. Each
element of 'full_set_value' is a CBOR byte string with a value of one of the token hashes
from the set HASHES. If the set HASHES is empty, the 'full_set' parameter specifies the
empty CBOR array.

The CBOR array be treated as a set, i.e., the order of its elements has no meaning.

The 'cursor' parameter be included if the AS supports both diff queries and the
related "Cursor" extension (see Sections 6.2 and 6.2.1). Its value is set as specified in Section
9.1 and provides the requester with information for performing a follow-up diff query
using the "Cursor" extension (see Section 9.2).

If the AS does not support both diff queries and the "Cursor" extension, this parameter
 be included. In case the requester does not support both diff queries and the

"Cursor" extension, it silently ignore the 'cursor' parameter if present.

Figure 6 provides the CDDL definition of the CBOR array 'full_set_value' specified in
the response from the AS as the value of the 'full_set' parameter.

Figure 7 shows an example response from the AS following a full query request to the TRL
endpoint. In this example, the AS does not support diff queries nor the "Cursor" extension; hence
the 'cursor' parameter is not included in the payload of the response. Also, full token hashes are
omitted for brevity.

1.

◦

◦

2. MUST

MUST

◦ MUST

MUST

◦ MUST

MUST NOT
MUST

[RFC8610]

Figure 6: CDDL Definition of 'full_set_value'

token_hash = bytes
full_set_value = [* token_hash]

RFC 9770 Notification of Revoked Tokens in ACE April 2025

Tiloca, et al. Standards Track Page 23

Figure 7: Example of Response Following a Full Query Request to the TRL Endpoint

Header: Content (Code=2.05)
Content-Format: application/ace-trl+cbor
Payload:
{
 e'full_set' : [
 h'01fa51cc...4819', / elided for brevity /
 h'01748190...223d' / elided for brevity /
]
}

8. Diff Query of the TRL
In order to produce a (notification) response to a GET request asking for a diff query of the TRL,
the AS performs the following actions:

Note that, if the AS supports both diff queries and the related "Cursor" extension, steps 3 and 4
defined below are extended as defined in Section 9.2.

The AS defines the positive integer NUM as follows: if the value N specified in the 'diff' query
parameter in the GET request is equal to 0 or greater than the predefined positive integer
MAX_N (see Section 6.2), then NUM takes the value of MAX_N. Otherwise, NUM takes N.
The AS determines U = min(NUM, SIZE), where SIZE <= MAX_N. In particular, SIZE is the
number of diff entries currently stored in the requester's update collection.
The AS prepares U diff entries. If U is equal to 0 (e.g., because SIZE is equal to 0 at step 2),
then no diff entries are prepared.

The prepared diff entries are related to the U most recent TRL updates pertaining to the
requester, as maintained in the update collection for that requester (see Section 6.2). In
particular, the first diff entry refers to the most recent of such updates, the second diff entry
refers to the second from last of such updates, and so on.

Each diff entry is a CBOR array 'diff_entry', which includes the following two elements:

A 'trl_patch' set of token hashes encoded as a CBOR array 'removed'. Each element of the
array is a CBOR byte string with value the token hash of an access token such that it
pertains to the requester and was removed from the TRL during the update associated
with the diff entry.
A 'trl_patch' set of token hashes encoded as a CBOR array 'added'. Each element of the
array is a CBOR byte string with value the token hash of an access token such that it
pertains to the requester and was added to the TRL during the update associated with the
diff entry.

The CBOR arrays 'removed' and 'added' be treated as sets, i.e., the order of their
elements has no meaning.

1.

2.

3.

a.

b.

MUST

RFC 9770 Notification of Revoked Tokens in ACE April 2025

Tiloca, et al. Standards Track Page 24

The AS prepares a 2.05 (Content) response for the requester. The response have
Content-Format set to "application/ace-trl+cbor". The payload of the response is a CBOR map,
which be formatted as follows:

The 'diff_set' parameter be present and specifies a CBOR array 'diff_set_value' of U
elements. Each element of 'diff_set_value' specifies one of the CBOR arrays 'diff_entry'
prepared above as a diff entry. Note that U might have a value of 0; in this case,
'diff_set_value' is the empty CBOR array.

Within 'diff_set_value', any 'diff_entry' CBOR arrays be sorted to reflect the
corresponding updates to the TRL in reverse chronological order. That is, the first
'diff_entry' element of 'diff_set_value' relates to the most recent TRL update pertaining to
the requester. The second 'diff_entry' element relates to the second-to-last most recent TRL
update pertaining to the requester, and so on.

The 'cursor' parameter and the 'more' parameter be included if the AS supports both
diff queries and the related "Cursor" extension (see Section 6.2.1). Their values are set as
specified in Section 9.2 and provide the requester with information for performing a
follow-up query of the TRL (see Section 9.2).

In case the AS supports diff queries but not the "Cursor" extension, these parameters
 be included, and the AS silently ignore the 'cursor' parameter and the 'more'

parameter if present.

Figure 8 provides the CDDL definition of the CBOR array 'diff_set_value' specified in
the response from the AS, as the value of the 'diff_set' parameter.

Figure 9 shows an example response from the AS following a diff query request to the TRL
endpoint, where U = 3 diff entries are specified. In this example, the AS does not support the
"Cursor" extension; hence, the 'cursor' parameter and the 'more' parameter are not included in
the payload of the response. Also, full token hashes are omitted for brevity.

4. MUST

MUST

◦ MUST

MUST

◦ MUST

MUST
NOT MUST

[RFC8610]

Figure 8: CDDL Definition of 'diff_set_value'

 token_hash = bytes
 trl_patch = [* token_hash]
 diff_entry = [removed: trl_patch, added: trl_patch]
 diff_set_value = [* diff_entry]

RFC 9770 Notification of Revoked Tokens in ACE April 2025

Tiloca, et al. Standards Track Page 25

Appendix A discusses how performing a diff query of the TRL is, in fact, a usage example of the
Series Transfer Pattern defined in .

Figure 9: Example of Response Following a Diff Query Request to the TRL Endpoint

Header: Content (Code=2.05)
Content-Format: application/ace-trl+cbor
Payload:
{
 e'diff_set' : [
 [
 [h'01fa51cc...0f6a', / elided for brevity /
 h'01748190...8bce' / elided for brevity /
],
 [h'01cdf1ca...563d', / elided for brevity /
 h'01be41a6...a057' / elided for brevity /
]
],
 [
 [h'0144dd12...77bc', / elided for brevity /
 h'01231fff...a2ce' / elided for brevity /
],
 []
],
 [
 [],
 [h'01ca986f...ffc1', / elided for brevity /
 h'01fe1a2b...def0' / elided for brevity /
]
]
]
}

[STP]

9. Response Messages when Using the "Cursor" Extension
If the AS supports both diff queries and the "Cursor" extension, it composes a response to a full
query request or diff query request as defined in Sections 9.1 and 9.2, respectively.

The exact format of the response depends on:

the request being a full query or diff query request,
the presence of the 'diff' and 'cursor' query parameters and their values in the diff query
request, and
the current status of the update collection associated with the requester.

Error handling and the possible resulting error responses are as defined in Section 6.3.

•
•

•

9.1. Response to Full Query
When processing a full query request to the TRL endpoint, the AS composes a response as
defined in Section 7.

RFC 9770 Notification of Revoked Tokens in ACE April 2025

Tiloca, et al. Standards Track Page 26

In particular, the 'cursor' parameter included in the CBOR map carried in the response payload
specifies either the CBOR simple value null (0xf6) or a CBOR unsigned integer.

The 'cursor' parameter specify the CBOR simple value null (0xf6) in case there are
currently no TRL updates pertaining to the requester, i.e., the update collection for that
requester is empty. This is the case from when the requester registers at the AS until the first
update pertaining to that requester occurs to the TRL.

Otherwise, the 'cursor' parameter specify a CBOR unsigned integer. This take the
'index' value of the last series item in the update collection associated with the requester (see
Section 6.2.1) as corresponding to the most recent TRL update pertaining to the requester. In
fact, such a value is the current value of 'last_index' for the update collection associated with the
requester.

MUST

MUST MUST

9.2. Response to Diff Query
When processing a diff query request to the TRL endpoint, the AS composes a response as
defined in the following subsections.

9.2.1. Empty Collection

If the update collection associated with the requester has no elements, the AS returns a 2.05
(Content) response. The response have Content-Format set to "application/ace-trl+cbor",
and its payload be a CBOR map formatted as follows:

The 'diff_set' parameter be included and specifies the empty CBOR array.
The 'cursor' parameter be included and specifies the CBOR simple value null (0xf6).
The 'more' parameter be included and specifies the CBOR simple value false (0xf4).

Note that the above applies when the update collection associated with the requester has no
elements, regardless of whether or not the 'cursor' query parameter is included in the diff query
request and irrespective of the specified unsigned integer value if present.

MUST
MUST

• MUST

• MUST

• MUST

9.2.2. Cursor Not Specified in the Diff Query Request

If the update collection associated with the requester is not empty and the diff query request
does not include the 'cursor' query parameter, the AS performs the actions defined in Section 8,
with the following differences:

At step 3, the AS considers the value MAX_DIFF_BATCH (see Section 6.2.1) and prepares L =
min(U, MAX_DIFF_BATCH) diff entries.

If U <= MAX_DIFF_BATCH, the prepared diff entries are the last series items in the update
collection associated with the requester, corresponding to the L most recent TRL updates
pertaining to the requester.

If U > MAX_DIFF_BATCH, the prepared diff entries are the eldest of the last U series items in
the update collection associated with the requester, as corresponding to the first L of the U
most recent TRL updates pertaining to the requester.

•

RFC 9770 Notification of Revoked Tokens in ACE April 2025

Tiloca, et al. Standards Track Page 27

At step 4, the CBOR map to carry in the payload of the 2.05 (Content) response be
formatted as follows:

The 'diff_set' parameter be present and specifies a CBOR array 'diff_set_value' of L
elements. Each element of 'diff_set_value' specifies one of the CBOR arrays 'diff_entry'
prepared as a diff entry.
The 'cursor' parameter be present and specifies a CBOR unsigned integer. This
take the 'index' value of the series item of the update collection included as first diff entry
in the 'diff_set_value' CBOR array, which is specified by the 'diff_set' parameter. That is, the
'cursor' parameter takes the 'index' value of the series item in the update collection
corresponding to the most recent TRL update pertaining to the requester and returned in
this diff query response.

Note that the 'cursor' parameter takes the same 'index' value of the last series item in the
update collection when U <= MAX_DIFF_BATCH.

The 'more' parameter be present and specify the CBOR simple value false
(0xf4) if U <= MAX_DIFF_BATCH or the CBOR simple value true (0xf5) otherwise.

If the 'more' parameter in the payload of the received 2.05 (Content) response has a value of
true, the requester can send a follow-up diff query request including the 'cursor' query
parameter with the same value of the 'cursor' parameter specified in this diff query response. As
defined in Section 9.2.3, this would result in the AS transferring the following subset of series
items as diff entries, thus resuming from where interrupted in the previous transfer.

• MUST

◦ MUST

◦ MUST MUST

◦ MUST MUST

Case A:

9.2.3. Cursor Specified in the Diff Query Request

If the update collection associated with the requester is not empty and the diff query request
includes the 'cursor' query parameter with value P, the AS proceeds as follows, depending on
which of the following two cases hold:

The series item X with 'index' having value P and the series item Y with 'index' having
value (P + 1) % (MAX_INDEX + 1) are both not found in the update collection associated
with the requester. This occurs when the item Y (and possibly further ones after it) has
been previously removed from the update collection for that requester (see step 5 at
Section 6.2).

In this case, the AS returns a 2.05 (Content) response. The response have Content-
Format set to "application/ace-trl+cbor", and its payload be a CBOR map formatted
as follows:

The 'diff_set' parameter be included and specifies the empty CBOR array.
The 'cursor' parameter be included and specifies the CBOR simple value null
(0xf6).
The 'more' parameter be included and specifies the CBOR simple value true
(0xf5).

MUST
MUST

• MUST

• MUST

• MUST

RFC 9770 Notification of Revoked Tokens in ACE April 2025

Tiloca, et al. Standards Track Page 28

Case B:

With the combination ('cursor', 'more') = (null, true), the AS is indicating that the update
collection is, in fact, not empty, but that one or more series items have been lost due to
their removal. These include the item with 'index' value (P + 1) % (MAX_INDEX + 1) that
the requester wished to obtain as the first one following the specified reference point with
'index' value P.

When receiving this diff query response, the requester send a new full query
request to the AS. A successful response provides the requester with the full current
pertaining subset of the TRL as well as a valid value of the 'cursor' parameter (see Section
9.1) to be, possibly, used as query parameter in a following diff query request.

The series item X with 'index' having value P is found in the update collection
associated with the requester or the series item X is not found and the series item Y with
'index' having value (P + 1) % (MAX_INDEX + 1) is found in the update collection
associated with the requester.

In this case, the AS performs the actions defined in Section 8 with the following
differences:

At step 3, the AS considers the value MAX_DIFF_BATCH (see Section 6.2.1) and
prepares L = min(SUB_U, MAX_DIFF_BATCH) diff entries, where SUB_U = min(NUM,
SUB_SIZE) and SUB_SIZE is the number of series items in the update collection
starting from and including the series item added immediately after X. If L is equal to
0 (e.g., because SUB_U is equal to 0), then no diff entries are prepared.

If SUB_U <= MAX_DIFF_BATCH, the prepared diff entries are the last series items in
the update collection associated with the requester, corresponding to the L most
recent TRL updates pertaining to the requester.

If SUB_U > MAX_DIFF_BATCH, the prepared diff entries are the eldest of the last SUB_U
series items in the update collection associated with the requester, corresponding to
the first L of the SUB_U most recent TRL updates pertaining to the requester.

At step 4, the CBOR map to carry in the payload of the 2.05 (Content) response
be formatted as follows:

The 'diff_set' parameter be present and specifies a CBOR array 'diff_set_value'
of L elements. Each element of 'diff_set_value' specifies one of the CBOR arrays
'diff_entry' prepared as a diff entry. Note that L might have value 0, in which case
'diff_set_value' is the empty CBOR array.
The 'cursor' parameter be present and specify a CBOR unsigned integer.
In particular:

If L is equal to 0, i.e., the series item X is the last one in the update collection, then
the 'cursor' parameter take the same 'index' value of the last series item in
the update collection. In fact, such a value is the current value of 'last_index' for
the update collection.

SHOULD

•

• MUST

◦ MUST

◦ MUST MUST

▪
MUST

RFC 9770 Notification of Revoked Tokens in ACE April 2025

Tiloca, et al. Standards Track Page 29

If L is different than 0, then the 'cursor' parameter take the 'index' value of
the series element of the update collection included as first diff entry in the
'diff_set' CBOR array. That is, the 'cursor' parameter takes the 'index' value of the
series item in the update collection corresponding to the most recent TRL update
pertaining to the requester and returned in this diff query response.

Note that the 'cursor' parameter takes the same 'index' value of the last series item
in the update collection when SUB_U <= MAX_DIFF_BATCH.

The 'more' parameter be present and specify the CBOR simple value
false (0xf4) if SUB_U <= MAX_DIFF_BATCH, or the CBOR simple value true (0xf5)
otherwise.

If the 'more' parameter in the payload of the received 2.05 (Content) response has value
true, the requester can send a follow-up diff query request including the 'cursor' query
parameter with the same value of the 'cursor' parameter specified in this diff query
response. This would result in the AS transferring the following subset of series items as
diff entries, thus, resuming from where interrupted in the previous transfer.

▪ MUST

◦ MUST MUST

10. Registration at the Authorization Server
During the registration process at the AS, an administrator or a registered device receives the
following information as part of the registration response:

The url-path to the TRL endpoint at the AS.
The hash function used to compute token hashes. This is specified by identifying an entry in
the "Named Information Hash Algorithm Registry" . The specific
means for this is outside the scope of this document.
A positive integer MAX_N, if the AS supports diff queries of the TRL (see Sections 6.2 and 8).
A positive integer MAX_DIFF_BATCH, if the AS supports diff queries of the TRL as well as the
related "Cursor" extension (see Sections 6.2.1 and 9).

Once the registration process is completed, the AS maintains the registration and related
information until a possible deregistration occurs, hence, keeping track of active administrators
and registered devices. The particular way to achieve this is implementation specific. In any
case, such a mechanism to maintain registrations is enforced at the AS in order to ensure that
requests sent by clients to the /token endpoint (see) and by RSs to the /
introspect endpoint (see) are processed as intended.

When communicating with one another, the registered devices and the AS have to use a secure
communication association and be mutually authenticated (see).

In the same spirit, communications between the AS and an administrator be ensured to be
mutually authenticated, encrypted, and integrity protected as well as protected against message
replay.

•
•

[IANA.Hash.Algorithms]

•
•

Section 5.8 of [RFC9200]
Section 5.9 of [RFC9200]

Section 5 of [RFC9200]

MUST

RFC 9770 Notification of Revoked Tokens in ACE April 2025

Tiloca, et al. Standards Track Page 30

https://www.rfc-editor.org/rfc/rfc9200#section-5.8
https://www.rfc-editor.org/rfc/rfc9200#section-5.9
https://www.rfc-editor.org/rfc/rfc9200#section-5

Before starting its registration process at the AS, an administrator has to establish such a secure
communication association with the AS, if they do not share one already. In particular, mutual
authentication is during the establishment of the secure association. To this end, the
administrator and the AS can rely, e.g., on establishing a TLS or DTLS secure session with mutual
authentication (see and) or an Object Security for Constrained RESTful
Environments (OSCORE) Security Context by running the authenticated key exchange
protocol EDHOC .

When receiving authenticated requests from the administrator for accessing the TRL endpoint,
the AS can always check whether the requester is authorized to take such a role, i.e., to access
the content of the whole TRL.

To this end, the AS may rely on a local access control list or similar, which specifies the
authentication credentials of trusted, authorized administrators. In particular, the AS verifies
the requester to the TRL endpoint as an authorized administrator only if the access control list
includes the same authentication credential used by the requester when establishing the
mutually authenticated secure communication association with the AS.

Further details about the registration process at the AS are out of scope for this specification.
Note that the registration process is also out of the scope of the ACE framework for
Authentication and Authorization (see).

REQUIRED

[RFC8446] [RFC9147]
[RFC8613]

[RFC9528]

Section 5.5 of [RFC9200]

11. Notification of Revoked Access Tokens
Once registered at the AS, the administrator or registered device can send a GET request to the
TRL endpoint at the AS. The request can express the wish for a full query (see Section 7) or a diff
query (see Section 8) of the TRL. Also, the request can include the CoAP Observe Option set to 0
(register) in order to start an observation of the TRL endpoint as per .

In case the request is successfully processed, the AS replies with a response specifying the CoAP
response code 2.05 (Content). In particular, if the AS supports diff queries but not the "Cursor"
extension (see Sections 6.2 and 6.2.1), then the payload of the response is formatted as defined in
Sections 7 or 8, in case the GET request has yielded the execution of a full query or of a diff
query of the TRL, respectively. Instead, if the AS supports both diff queries and the related
"Cursor" extension, then the payload of the response is formatted as defined in Section 9.

In case a requester does not receive a response from the TRL endpoint or it receives an error
response from the TRL endpoint, the requester does not make any assumptions or draw any
conclusions regarding the revocation or expiration of its pertaining access tokens. The requester

 try again by sending a new request to the TRL endpoint.

When the TRL is updated (see Section 5.1), the AS sends Observe notifications to the observers
whose pertaining subset of the TRL has changed. Observe notifications are sent as per

. If supported by the AS, an observer may configure the behavior according to
which the AS sends those Observe notifications. To this end, a possible way relies on the
conditional control attribute "c.pmax" defined in , which can be included as

Section 3.1 of [RFC7641]

MAY

Section 4.2
of [RFC7641]

[CoRE-ATTRIBUTES]

RFC 9770 Notification of Revoked Tokens in ACE April 2025

Tiloca, et al. Standards Track Page 31

https://www.rfc-editor.org/rfc/rfc9200#section-5.5
https://www.rfc-editor.org/rfc/rfc7641#section-3.1
https://www.rfc-editor.org/rfc/rfc7641#section-4.2

a "name=value" query parameter in an Observation Request. This ensures that no more than
c.pmax seconds elapse between two consecutive notifications sent to that observer, regardless of
whether or not the TRL has changed.

Following a first exchange with the AS, an administrator or a registered device can send
additional GET (Observation) requests to the TRL endpoint at any time, analogously to what is
defined above. When doing so, the requester towards the TRL endpoint can perform a full query
(see Section 7) or a diff query (see Section 8) of the TRL. In the latter case, the requester can
additionally rely on the "Cursor" extension (see Sections 6.3 and 9.2).

As specified in Section 6.2, an AS supporting diff queries maintains an update collection of
maximum MAX_N series items for each administrator or registered device, hereafter referred to
as a "requester". In particular, if an update collection includes MAX_N series items, adding a
further series item to that update collection results in deleting the oldest series item from that
update collection.

From then on, the requester associated with the update collection will not be able to retrieve the
deleted series item when sending a new diff query request to the TRL endpoint. If that series
item reflected the revocation of an access token pertaining to the requester, then the requester
will not learn about that when receiving the corresponding diff query response from the AS.

Sending a diff query request specifically as an Observation Request, and, thus, relying on
Observe notifications, largely reduces the chances for a requester to miss updates to its
associated update collection. In turn, this relies on the requester successfully receiving the
Observe notification responses from the TRL (see also Section 14.3).

In order to limit the amount of time during which the requester is unaware of pertaining access
tokens that have been revoked but are not expired yet, a requester rely solely on
diff query requests. In particular, a requester also regularly send a full query request to
the TRL endpoint according to a related application policy.

SHOULD NOT
SHOULD

11.1. Handling of Revoked Access Tokens and Token Hashes
When receiving a response from the TRL endpoint, a registered device expunge every
stored access token associated with a token hash specified in the response. In case the registered
device is an RS, it delete the stored token hash after having expunged the associated
access token.

If an RS uses the method defined in this document with the AS that has issued an access token,
then the RS accept and store that access token if any of the following holds.

The token hash corresponding to the access token is among the currently stored ones.
The access token is a CWT and any of the following holds:

The access token includes a non-empty "unprotected" field, i.e., the value of the field is not
encoded as the empty CBOR map (0xa0). This applies to the top-level "unprotected" field of
the COSE object used for the CWT, the "unprotected" field of each element of the
"signatures" array, and the "unprotected" field of each element of any "recipients" array.

MUST

MUST NOT

MUST NOT

•
•

◦

RFC 9770 Notification of Revoked Tokens in ACE April 2025

Tiloca, et al. Standards Track Page 32

The received CBOR data item that embodies the access token does not comply with what is
defined in Section 3. This concerns:

the use of exactly two nested CBOR tags, where the outer tag is the CWT CBOR tag and
the inner tag is one of the COSE CBOR tags;
the tag numbers encoded with the minimum possible length; and
the access token being the innermost tag content of the received CBOR data item.

In the received CBOR data item that embodies the access token, the inner tag has a tag
number that is not consistent with the actual COSE data item to process. For instance, the
inner tag number is 16 (COSE_Encrypt0) but the CWT is actually a COSE_Sign data item.

The access token relies on a JSON object for encoding its claims, but it is not a JWT
and any of the following holds:

The access token uses the JWS JSON Serialization from and includes the JWS
Unprotected Header.
The access token uses the JWE JSON Serialization from and includes the JWE
Shared Unprotected Header and/or includes the "header" member in any of the elements
of the "recipients" array.

An RS store the token hash th1 corresponding to an access token t1 until both the
following conditions hold:

The RS has received and seen t1, irrespective of having accepted and stored it.
The RS has gained knowledge that t1 has expired. This can be achieved, e.g., through the
following means:

A response from the TRL endpoint indicating that t1 has expired after its earlier
revocation, i.e., the token hash th1 has been removed from the TRL. This can be indicated,
for instance, in a response from the TRL endpoint following a diff query of the TRL (see
Section 8).
The value of the 'exp' claim specified in t1 indicates that t1 has expired.
The locally determined expiration time for t1 has passed, based on the time at the RS
when t1 was first accepted and on the value of its 'exi' claim.
The result of token introspection performed on t1 (see), if
supported by both the RS and the AS.

The RS delete the stored token hashes whose corresponding access tokens do not
fulfill both the two conditions above, unless it becomes necessary due to memory limitations. In
such a case, the RS delete the earliest stored token hashes first.

Retaining the stored token hashes as specified above limits the impact from a (dishonest) client
whose pertaining access token:

specifies the 'exi' claim,
is uploaded at the RS for the first time after it has been revoked and later expired, and

◦

▪

▪
▪

◦

• [RFC7519]

◦ [RFC7515]

◦ [RFC7516]

MUST

•
•

◦

◦
◦

◦ Section 5.9 of [RFC9200]

MUST NOT

MUST

1.
2.

RFC 9770 Notification of Revoked Tokens in ACE April 2025

Tiloca, et al. Standards Track Page 33

https://www.rfc-editor.org/rfc/rfc9200#section-5.9

has the sequence number encoded in the 'cti' claim (for CWTs) or in the 'jti' claim (for JWTs)
greater than the highest sequence number among the expired access tokens specifying the
'exi' claim for the RS (see). That is, the RS would not accept such a
revoked and expired access token as long as it stores the corresponding token hash.

In order to further limit such a risk, when receiving an access token that specifies the 'exi' claim
and for which a corresponding token hash is not stored, the RS can introspect the access token
(see), if token introspection is implemented by both the RS and the AS.

When, due to the stored and corresponding token hash th2, an access token t2 that includes the
'exi' claim is expunged or is not accepted upon its upload, the RS retrieves the sequence number
sn2 encoded in the 'cti' claim (for CWTs) or in the 'jti' claim (for JWTs) (see

). Then, the RS stores sn2 as associated with th2. If expunging or not accepting t2 yields
the deletion of th2, then the RS associate sn2 with th2 before continuing with the deletion
of th2.

When deleting any token hash, the RS checks whether the token hash is associated with a
sequence number sn_th. In such a case, the RS checks whether sn_th is greater than the highest
sequence number sn* among the expired access tokens specifying the 'exi' claim for the RS. If
that is the case, sn* take the value of sn_th.

By virtue of what is defined in , this ensures that, following the
deletion of the token hash associated with an access token specifying the 'exi' claim and
uploaded for the first time after it has been revoked and later expired, the RS will not accept the
access token at that point in time or in the future.

3.

Section 5.10.3 of [RFC9200]

Section 5.9 of [RFC9200]

Section 5.10.3 of
[RFC9200]

MUST

MUST

Section 5.10.3 of [RFC9200]

12. ACE Token Revocation List Parameters
This specification defines a number of parameters that can be transported in the response from
the TRL endpoint, when the response payload is a CBOR map. Note that such a response
use the Content-Format "application/ace-trl+cbor" defined in Section 15.2 of this specification.

The table below summarizes the parameters. For each of them, it specifies the value to use as
CBOR key, i.e., as abbreviation in the key of the map pair for the parameter, instead of the
parameter's name as a text string.

MUST

Name CBOR Key CBOR Type

full_set 0 array

diff_set 1 array

cursor 2 Null or unsigned integer

more 3 True or False

Table 1: CBOR Abbreviations for the ACE Token
Revocation List Parameters

RFC 9770 Notification of Revoked Tokens in ACE April 2025

Tiloca, et al. Standards Track Page 34

https://www.rfc-editor.org/rfc/rfc9200#section-5.10.3
https://www.rfc-editor.org/rfc/rfc9200#section-5.9
https://www.rfc-editor.org/rfc/rfc9200#section-5.10.3
https://www.rfc-editor.org/rfc/rfc9200#section-5.10.3

13. ACE Token Revocation List Error Identifiers
This specification defines a number of values that the AS can use as error identifiers. These are
used in error responses with Content-Format "application/concise-problem-details+cbor", as
values of the 'error-id' field within the Custom Problem Detail entry 'ace-trl-error' (see Section
6.1).

Value Description

0 Invalid parameter value

1 Invalid set of parameters

2 Out of bound cursor value

Table 2: ACE Token Revocation List Error
Identifiers

14. Security Considerations
The protocol defined in this document inherits the security considerations from the ACE
framework for Authentication and Authorization , the usage of CWTs from ,
the usage of JWTs from and , the usage of CoAP Observe from ,
and computation of the token hashes from . The following considerations also apply.

[RFC9200] [RFC8392]
[RFC7519] [RFC8725] [RFC7641]

[RFC6920]

14.1. Content Retrieval from the TRL
The AS ensure that each registered device can access and retrieve only its pertaining
subset of the TRL. To this end, the AS can always perform the required filtering based on the
authenticated identity of the registered device, i.e., a (non-public) identifier that the AS can
securely relate to the registered device and the secure association that they use to communicate.

The AS ensure that, other than registered devices accessing their own pertaining subset of
the TRL, only authorized and authenticated administrators can access the content of the whole
TRL (see Section 10).

Note that the TRL endpoint supports only the GET method (see Section 6). Therefore, as detailed
in Sections 7 and 8, access to the TRL endpoint is performed only by means of protected and
authenticated GET requests, which, by definition, are safe in the REST sense and do not alter the
content of the TRL. That is, registered devices and administrators can perform exclusively read-
only operations when accessing the TRL endpoint.

In the two circumstances described in Section 5.1, the content of the TRL can be updated only
internally by the AS. Therefore, an adversary that is not in control of the AS cannot manipulate
the content of the TRL, e.g., by removing a token hash and thereby fraudulently allowing a client

MUST

MUST

RFC 9770 Notification of Revoked Tokens in ACE April 2025

Tiloca, et al. Standards Track Page 35

to access protected resources in spite of a revoked access token or by adding a token hash and
thereby fraudulently stopping a client from accessing protected resources in spite of an access
token being still valid.

14.2. Size of the TRL
If many non-expired access tokens associated with a registered device are revoked, the
pertaining subset of the TRL could grow to a size bigger than what the registered device is
prepared to handle upon reception of a response from the TRL endpoint, especially if relying on
a full query of the TRL (see Section 7).

This could be exploited by attackers to negatively affect the behavior of a registered device.
Therefore, in order to help reduce the size of the TRL, the AS refrain from issuing access
tokens with an excessively long expiration time.

SHOULD

14.3. Communication Patterns
The communication about revoked access tokens presented in this specification is expected to
especially rely on CoAP Observe notifications sent from the AS to a requester (i.e., an
administrator or a registered device). The suppression of those notifications by an external
attacker that has access to the network would prevent requesters from ever knowing that their
pertaining access tokens have been revoked.

In order to avoid this, a requester rely solely on the CoAP Observe notifications. In
particular, a requester also regularly poll the AS for the most current information about
revoked access tokens by sending GET requests to the TRL endpoint. Specific strategies and
schedules for polling the AS are to be defined by a related application policy and by taking into
account the expected operational and availability patterns adopted by the requester (e.g., in the
interest of energy saving and other optimizations).

SHOULD NOT
SHOULD

14.4. Request of New Access Tokens
If a client stores an access token that it still believes to be valid, and it accordingly attempts to
access a protected resource at the RS, the client may receive an unprotected 4.01 (Unauthorized)
response from the RS.

This can be due to a number of causes, for example:

the access token has been revoked, the RS has become aware of it, and the RS has expunged
the access token, but the client is not aware of this (yet).
the access token is still valid, but an on-path active adversary might have injected a forged
4.01 (Unauthorized) response or the RS might have deleted the access token from its local
storage due to its dedicated storage space being all consumed.

In either case, if the client believes that the access token is still valid, it
immediately ask for a new access token to the authorization server upon receiving a 4.01
(Unauthorized) response from the RS. Instead, the client send a request to the TRL

•

•

SHOULD NOT

SHOULD

RFC 9770 Notification of Revoked Tokens in ACE April 2025

Tiloca, et al. Standards Track Page 36

endpoint at the AS. If the client gains knowledge that the access token is not valid anymore, the
client expunges the access token and can ask for a new one. Otherwise, the client can try again
to upload the same access token to the RS or request a new one.

14.5. Vulnerable Time Window at the RS
A client may attempt to access a protected resource at an RS after the access token allowing such
an access has been revoked but before the RS is aware of the revocation.

In such a case, if the RS is still storing the access token, the client will be able to access the
protected resource even though it should not. Such access is a security violation, even if the
client is not attempting to be malicious.

In order to minimize such a risk, if an RS relies solely on polling through individual requests to
the TRL endpoint to learn of revoked access tokens, the RS implement an adequate
trade-off between the polling frequency and the maximum length of the vulnerable time
window.

SHOULD

14.6. Preventing Unnoticed Manipulation of Access Tokens
As defined in Section 3, issued access tokens rely on unprotected headers to specify
information as header parameters. Also, when issued access tokens are CWTs, they be
tagged by using the COSE CBOR tag corresponding to the used COSE object. Further, the result

 be tagged using the CWT CBOR tag; no further tagging is performed.

This ensures that the RS always computes the correct token hash corresponding to an access
token, i.e., the same token hash computed by the AS and C for that access token.

By construction, the rules defined in Section 3 prevent an active adversary from successfully
performing an attack against the RS, which would otherwise be possible in case the access token
is uploaded to the RS over an unprotected communication channel.

In such an attack, the adversary intercepts the access token en route to the RS. Then, the
adversary manipulates the access token in a way that is going to be unnoticed by the RS but
without preventing the successful cryptographic validation of the access token at the RS. To this
end, the adversary has two possible options:

Adding and/or removing fields within the unprotected header(s) of the access token, as long
as those fields do not play a role in the cryptographic validation of the access token.
Specifically when the access token is a CWT, adding, removing, or manipulating possible
CBOR tags enclosing the access token.

After that, the adversary sends the manipulated access token to the RS.

After having successfully validated the manipulated access token, the RS computes a
corresponding token hash different from the one computed and stored by C and the AS. Finally,
the RS stores the manipulated access token and the corresponding wrong token hash.

MUST NOT
MUST

MUST

•

•

RFC 9770 Notification of Revoked Tokens in ACE April 2025

Tiloca, et al. Standards Track Page 37

Later on, if the access token is revoked and the AS provides the RS with the corresponding
correct token hash, the RS does not recognize the received token hash among the stored ones;
therefore, it does not delete the revoked access token.

14.7. Two Token Hashes at the RS Using JWTs
Section 4.3.2 states that an RS using JWTs as access tokens has to compute and store two token
hashes associated with the same access token. This is because, when using JWTs, the RS does not
know for sure if the AS provided the access token to the client by means of an AS-to-Client
response encoded in CBOR or in JSON.

Taking advantage of that, a dishonest client can attempt to perform an attack against the RS.
That is, the client can first receive the JWT in an AS-to-Client response encoded in CBOR (JSON).
Then, the client can upload the JWT to the RS in a way that makes the RS believe that the client
instead received the JWT in an AS-to-Client response encoded in JSON (CBOR).

Consequently, the RS considers a HASH_INPUT different from the one considered by the AS and
the client (see Section 4.2). Hence, the RS computes a token hash h' different from the token hash
h computed by the AS and the client. It follows that, if the AS revokes the access token and
advertises the right token hash h, then the RS will not learn about the access token revocation;
thus, it will not delete the access token.

Fundamentally, this would happen because the HASH_INPUT used to compute the token hash of
a JWT depends on whether the AS-to-Client response is encoded in CBOR or in JSON. This makes
the RS vulnerable to the attack described above when JWTs are used as access tokens. However,
this is not a problem if the access token is a CWT since the HASH_INPUT used to compute the
token hash of a CWT does not depend on whether the AS-to-Client response is encoded in CBOR
or in JSON.

While this asymmetry cannot be avoided altogether, the method defined for the AS and the
client in Section 4.2 deliberately penalizes the case where the RS uses JWTs as access tokens. In
such a case, the RS effectively neutralizes the attack described above by computing and storing
two token hashes associated with the same access token (see Section 4.3.2).

Conversely, this design deliberately favors the case where the RS uses CWTs as access tokens,
which is a preferable option for resource-constrained RSs as well as the default case in the ACE
framework for Authentication and Authorization (see). That is, if an RS
uses CWTs as access tokens, then the RS is not exposed to the attack described above; thus, it
safely computes and stores only one token hash per access token (see Section 4.3.1).

Section 3 of [RFC9200]

14.8. Additional Security Measures
By accessing the TRL at the AS, registered devices and administrators are able to learn that their
pertaining access tokens have been revoked. However, they cannot learn the reason why,
including when that reason is the compromise, misbehavior, or decommissioning of a registered
device.

RFC 9770 Notification of Revoked Tokens in ACE April 2025

Tiloca, et al. Standards Track Page 38

https://www.rfc-editor.org/rfc/rfc9200#section-3

In fact, even the AS might not know that a registered device to which a revoked access token
pertains has been specifically compromised, misbehaving, or decommissioned. At the same time,
it might not be acceptable to only revoke the access tokens pertaining to such a registered device.

Therefore, in order to preserve the security of the system and application, the entity that
authoritatively declares a registered device to be compromised, misbehaving, or
decommissioned should also promptly trigger the execution of additional revocation processes
as deemed appropriate. These include, for instance:

The de-registration of the registered device from the AS so that the AS does not issue further
access tokens pertaining to that device.
If applicable, the revocation of the public authentication credential associated with the
registered device (e.g., its public key certificate).

The methods by which these processes are triggered and carried out are out of the scope of this
document.

•

•

15. IANA Considerations
The IANA actions for this document are described in the following subsections.

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Applications that use this media type:

Fragment identifier considerations:

15.1. Media Type Registrations
IANA has registered the media type "application/ace-trl+cbor" for messages of the protocol
defined in this document encoded in CBOR. This registration follows the procedures specified in

.

application

ace-trl+cbor

N/A

N/A

Must be encoded as a CBOR map containing the protocol parameters
defined in RFC 9770.

See Section 14 of this document.

N/A

RFC 9770

The type is used by authorization servers, clients, and
resource servers that support the notification of revoked access tokens according to a Token
Revocation List maintained by the authorization server as specified in RFC 9770.

N/A

[RFC6838]

RFC 9770 Notification of Revoked Tokens in ACE April 2025

Tiloca, et al. Standards Track Page 39

Additional information:

Person & email address to contact for further information:

Intended usage:

Restrictions on usage:

Author/Change controller:

N/A

ACE WG mailing list (ace@ietf.org)
or IETF Applications and Real-Time Area (art@ietf.org)

COMMON

None

IETF

Content Type:
Content Coding:
ID:
Reference:

15.2. CoAP Content-Formats Registry
IANA has added the following entry to the "CoAP Content-Formats" registry within the
"Constrained RESTful Environments (CoRE) Parameters" registry group.

application/ace-trl+cbor
-

262
RFC 9770

Key Value:
Name:
Brief Description:
Change Controller:
Reference:

15.3. Custom Problem Detail Keys Registry
IANA has registered the following entry in the "Custom Problem Detail Keys" registry within the
"Constrained RESTful Environments (CoRE) Parameters" registry group.

1
ace-trl-error

Carry RFC 9770 problem details in a Concise Problem Details data item.
IETF

Section 6.1 of RFC 9770

15.4. ACE Token Revocation List Parameters Registry
IANA has established the "ACE Token Revocation List Parameters" registry within the
"Authentication and Authorization for Constrained Environments (ACE)" registry group.

One of the following registration policies is used: "Standards Action with Expert Review",
"Specification Required" per , or "Expert Review" per

. Expert Review guidelines are provided in Section 15.6.

All assignments according to "Standards Action with Expert Review" are made on a "Standards
Action" basis per with Expert Review additionally required per

. The procedure for early IANA allocation of Standards Track code points
defined in also applies. When such a procedure is used, IANA will ask the designated
expert(s) to approve the early allocation before registration. In addition, WG chairs are
encouraged to consult the expert(s) early during the process outlined in .

Section 4.6 of [RFC8126] Section 4.5 of
[RFC8126]

Section 4.9 of [RFC8126] Section
4.5 of [RFC8126]

[RFC7120]

Section 3.1 of [RFC7120]

RFC 9770 Notification of Revoked Tokens in ACE April 2025

Tiloca, et al. Standards Track Page 40

https://www.rfc-editor.org/rfc/rfc8126#section-4.6
https://www.rfc-editor.org/rfc/rfc8126#section-4.5
https://www.rfc-editor.org/rfc/rfc8126#section-4.9
https://www.rfc-editor.org/rfc/rfc8126#section-4.5
https://www.rfc-editor.org/rfc/rfc8126#section-4.5
https://www.rfc-editor.org/rfc/rfc7120#section-3.1

The columns of this registry are as follows:

Name: This field contains a descriptive name that enables easier reference to the item. The
name be unique, and it is not used in the encoding.
CBOR Key: This field contains the value used as CBOR map key of the item. The value
be unique. The value is an unsigned integer or a negative integer. Different ranges of values
use different registration policies . Integer values from -256 to 255 are designated
as "Standards Action With Expert Review". Integer values from -65536 to -257 and from 256
to 65535 are designated as "Specification Required". Integer values greater than 65535 are
designated as "Expert Review". Integer values less than -65536 are marked as "Private Use".
CBOR Type: This field contains the allowable CBOR data types for values of this item or a
pointer to the registry that defines its type, when that depends on another item.
Reference: This field contains a pointer to the public specification for the item.

This registry has been initially populated by the values in Section 12. The "Reference" column for
all of these entries refers to this document.

•
MUST

• MUST

[RFC8126]

•

•

15.5. ACE Token Revocation List Errors
IANA has established the "ACE Token Revocation List Errors" registry within the "Authentication
and Authorization for Constrained Environments (ACE)" registry group.

One of the following registration policies is used: "Standards Action with Expert Review",
"Specification Required" per , or "Expert Review" per

. Expert Review guidelines are provided in Section 15.6.

All assignments according to "Standards Action with Expert Review" are made on a "Standards
Action" basis per with Expert Review additionally required per

. The procedure for early IANA allocation of Standards Track code points
defined in also applies. When such a procedure is used, IANA will ask the designated
expert(s) to approve the early allocation before registration. In addition, WG chairs are
encouraged to consult the expert(s) early during the process outlined in .

The columns of this registry are as follows:

Value: The field contains the value to be used to identify the error. The value be
unique. The value is an unsigned integer or a negative integer. Different ranges of values
use different registration policies . Integer values from -256 to 255 are designated
as "Standards Action With Expert Review". Integer values from -65536 to -257 and from 256
to 65535 are designated as "Specification Required". Integer values greater than 65535 are
designated as "Expert Review". Integer values less than -65536 are marked as "Private Use".
Description: This field contains a brief description of the error.
Reference: This field contains a pointer to the public specification defining the error, if one
exists.

This registry has been initially populated by the values in Section 13. The "Reference" column for
all of these entries refers to this document.

Section 4.6 of [RFC8126] Section 4.5 of
[RFC8126]

Section 4.9 of [RFC8126] Section
4.5 of [RFC8126]

[RFC7120]

Section 3.1 of [RFC7120]

• MUST

[RFC8126]

•
•

RFC 9770 Notification of Revoked Tokens in ACE April 2025

Tiloca, et al. Standards Track Page 41

https://www.rfc-editor.org/rfc/rfc8126#section-4.6
https://www.rfc-editor.org/rfc/rfc8126#section-4.5
https://www.rfc-editor.org/rfc/rfc8126#section-4.9
https://www.rfc-editor.org/rfc/rfc8126#section-4.5
https://www.rfc-editor.org/rfc/rfc8126#section-4.5
https://www.rfc-editor.org/rfc/rfc7120#section-3.1

[IANA.Hash.Algorithms]

[RFC2119]

[RFC3629]

16. References

16.1. Normative References

, ,
.

, , ,
, , March 1997,
.

, , , ,
, November 2003,

.

15.6. Expert Review Instructions
The IANA registries established by this document use "Standards Action with Expert Review",
"Specification Required", or "Expert Review" registration procedures depending on the range of
values for which an assignment is requested. This section gives some general guidelines for what
the experts should be looking for, but they are being designated as experts for a reason, so they
should be given substantial latitude.

Expert reviewers should take into consideration the following points:

Point squatting should be discouraged. Reviewers are encouraged to get sufficient
information for registration requests to ensure that the usage is not going to duplicate one
that is already registered and that the point is likely to be used in deployments. The zones
tagged as Private Use are intended for testing purposes and closed environments. Code
points in other ranges should not be assigned for testing.
Specifications are required for the "Standards Action With Expert Review" range of point
assignment. Specifications should exist for "Specification Required" ranges, but early
assignment before a specification is available is considered to be permissible. For the "Expert
Review" range of point assignment, specifications are recommended and are needed if they
are expected to be used outside of closed environments in an interoperable way. When
specifications are not provided, the description provided needs to have sufficient
information to identify what the point is being used for.
Experts should take into account the expected usage of fields when approving point
assignment. The fact that there is a range for Standards Track documents does not mean
that a Standards Track document cannot have points assigned outside of that range. The
length of the encoded value should be weighed against how many code points of that length
are left, the size of device it will be used on, and the number of code points left that encode
to that size.

•

•

•

IANA "Named Information Hash Algorithm Registry" <https://
www.iana.org/assignments/named-information>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Yergeau, F. "UTF-8, a transformation format of ISO 10646" STD 63 RFC 3629
DOI 10.17487/RFC3629 <https://www.rfc-editor.org/info/
rfc3629>

RFC 9770 Notification of Revoked Tokens in ACE April 2025

Tiloca, et al. Standards Track Page 42

https://www.iana.org/assignments/named-information
https://www.iana.org/assignments/named-information
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3629
https://www.rfc-editor.org/info/rfc3629

[RFC4648]

[RFC6347]

[RFC6749]

[RFC6838]

[RFC6920]

[RFC7120]

[RFC7252]

[RFC7515]

[RFC7516]

[RFC7519]

[RFC7641]

[RFC8126]

[RFC8174]

[RFC8259]

, , ,
, October 2006, .

 and , ,
, , January 2012,
.

, , ,
, October 2012, .

, , and ,
, , , , January

2013, .

, , , , , and
, , , , April

2013, .

, , ,
, , January 2014,

.

, , and ,
, , , June 2014,

.

, , and , , ,
, May 2015, .

 and , , ,
, May 2015, .

, , and , , ,
, May 2015, .

,
, , , September 2015,

.

, , and ,
, , , , June

2017, .

, ,
, , , May 2017,

.

, ,
, , , December 2017,

.

Josefsson, S. "The Base16, Base32, and Base64 Data Encodings" RFC 4648 DOI
10.17487/RFC4648 <https://www.rfc-editor.org/info/rfc4648>

Rescorla, E. N. Modadugu "Datagram Transport Layer Security Version 1.2"
RFC 6347 DOI 10.17487/RFC6347 <https://www.rfc-editor.org/info/
rfc6347>

Hardt, D., Ed. "The OAuth 2.0 Authorization Framework" RFC 6749 DOI
10.17487/RFC6749 <https://www.rfc-editor.org/info/rfc6749>

Freed, N. Klensin, J. T. Hansen "Media Type Specifications and
Registration Procedures" BCP 13 RFC 6838 DOI 10.17487/RFC6838

<https://www.rfc-editor.org/info/rfc6838>

Farrell, S. Kutscher, D. Dannewitz, C. Ohlman, B. Keranen, A. P. Hallam-
Baker "Naming Things with Hashes" RFC 6920 DOI 10.17487/RFC6920

<https://www.rfc-editor.org/info/rfc6920>

Cotton, M. "Early IANA Allocation of Standards Track Code Points" BCP 100 RFC
7120 DOI 10.17487/RFC7120 <https://www.rfc-editor.org/info/
rfc7120>

Shelby, Z. Hartke, K. C. Bormann "The Constrained Application Protocol
(CoAP)" RFC 7252 DOI 10.17487/RFC7252 <https://www.rfc-
editor.org/info/rfc7252>

Jones, M. Bradley, J. N. Sakimura "JSON Web Signature (JWS)" RFC 7515
DOI 10.17487/RFC7515 <https://www.rfc-editor.org/info/rfc7515>

Jones, M. J. Hildebrand "JSON Web Encryption (JWE)" RFC 7516 DOI
10.17487/RFC7516 <https://www.rfc-editor.org/info/rfc7516>

Jones, M. Bradley, J. N. Sakimura "JSON Web Token (JWT)" RFC 7519 DOI
10.17487/RFC7519 <https://www.rfc-editor.org/info/rfc7519>

Hartke, K. "Observing Resources in the Constrained Application Protocol
(CoAP)" RFC 7641 DOI 10.17487/RFC7641 <https://www.rfc-
editor.org/info/rfc7641>

Cotton, M. Leiba, B. T. Narten "Guidelines for Writing an IANA
Considerations Section in RFCs" BCP 26 RFC 8126 DOI 10.17487/RFC8126

<https://www.rfc-editor.org/info/rfc8126>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Bray, T., Ed. "The JavaScript Object Notation (JSON) Data Interchange Format"
STD 90 RFC 8259 DOI 10.17487/RFC8259 <https://www.rfc-
editor.org/info/rfc8259>

RFC 9770 Notification of Revoked Tokens in ACE April 2025

Tiloca, et al. Standards Track Page 43

https://www.rfc-editor.org/info/rfc4648
https://www.rfc-editor.org/info/rfc6347
https://www.rfc-editor.org/info/rfc6347
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6838
https://www.rfc-editor.org/info/rfc6920
https://www.rfc-editor.org/info/rfc7120
https://www.rfc-editor.org/info/rfc7120
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7515
https://www.rfc-editor.org/info/rfc7516
https://www.rfc-editor.org/info/rfc7519
https://www.rfc-editor.org/info/rfc7641
https://www.rfc-editor.org/info/rfc7641
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259

[RFC8392]

[RFC8446]

[RFC8610]

[RFC8613]

[RFC8725]

[RFC8949]

[RFC9052]

[RFC9147]

[RFC9200]

[RFC9202]

[RFC9203]

[RFC9290]

, , , and ,
, , , May 2018,

.

, , ,
, August 2018, .

, , and ,

, ,
, June 2019, .

, , , and ,
, ,

, July 2019, .

, , and , ,
, , , February 2020,

.

 and , ,
, , , December 2020,

.

,
, , , , August 2022,

.

, , and ,
, , , April

2022, .

, , , , and ,

, , , August
2022, .

, , , , and ,

, , , August
2022, .

, , , and ,

, ,
, August 2022, .

 and ,
, , , October

2022, .

Jones, M. Wahlstroem, E. Erdtman, S. H. Tschofenig "CBOR Web Token
(CWT)" RFC 8392 DOI 10.17487/RFC8392 <https://www.rfc-editor.org/
info/rfc8392>

Rescorla, E. "The Transport Layer Security (TLS) Protocol Version 1.3" RFC 8446
DOI 10.17487/RFC8446 <https://www.rfc-editor.org/info/rfc8446>

Birkholz, H. Vigano, C. C. Bormann "Concise Data Definition Language
(CDDL): A Notational Convention to Express Concise Binary Object
Representation (CBOR) and JSON Data Structures" RFC 8610 DOI 10.17487/
RFC8610 <https://www.rfc-editor.org/info/rfc8610>

Selander, G. Mattsson, J. Palombini, F. L. Seitz "Object Security for
Constrained RESTful Environments (OSCORE)" RFC 8613 DOI 10.17487/
RFC8613 <https://www.rfc-editor.org/info/rfc8613>

Sheffer, Y. Hardt, D. M. Jones "JSON Web Token Best Current Practices"
BCP 225 RFC 8725 DOI 10.17487/RFC8725 <https://www.rfc-
editor.org/info/rfc8725>

Bormann, C. P. Hoffman "Concise Binary Object Representation (CBOR)"
STD 94 RFC 8949 DOI 10.17487/RFC8949 <https://www.rfc-
editor.org/info/rfc8949>

Schaad, J. "CBOR Object Signing and Encryption (COSE): Structures and
Process" STD 96 RFC 9052 DOI 10.17487/RFC9052 <https://
www.rfc-editor.org/info/rfc9052>

Rescorla, E. Tschofenig, H. N. Modadugu "The Datagram Transport Layer
Security (DTLS) Protocol Version 1.3" RFC 9147 DOI 10.17487/RFC9147

<https://www.rfc-editor.org/info/rfc9147>

Seitz, L. Selander, G. Wahlstroem, E. Erdtman, S. H. Tschofenig
"Authentication and Authorization for Constrained Environments Using the
OAuth 2.0 Framework (ACE-OAuth)" RFC 9200 DOI 10.17487/RFC9200

<https://www.rfc-editor.org/info/rfc9200>

Gerdes, S. Bergmann, O. Bormann, C. Selander, G. L. Seitz "Datagram
Transport Layer Security (DTLS) Profile for Authentication and Authorization
for Constrained Environments (ACE)" RFC 9202 DOI 10.17487/RFC9202

<https://www.rfc-editor.org/info/rfc9202>

Palombini, F. Seitz, L. Selander, G. M. Gunnarsson "The Object Security
for Constrained RESTful Environments (OSCORE) Profile of the Authentication
and Authorization for Constrained Environments (ACE) Framework" RFC 9203
DOI 10.17487/RFC9203 <https://www.rfc-editor.org/info/rfc9203>

Fossati, T. C. Bormann "Concise Problem Details for Constrained
Application Protocol (CoAP) APIs" RFC 9290 DOI 10.17487/RFC9290

<https://www.rfc-editor.org/info/rfc9290>

RFC 9770 Notification of Revoked Tokens in ACE April 2025

Tiloca, et al. Standards Track Page 44

https://www.rfc-editor.org/info/rfc8392
https://www.rfc-editor.org/info/rfc8392
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8610
https://www.rfc-editor.org/info/rfc8613
https://www.rfc-editor.org/info/rfc8725
https://www.rfc-editor.org/info/rfc8725
https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc9052
https://www.rfc-editor.org/info/rfc9052
https://www.rfc-editor.org/info/rfc9147
https://www.rfc-editor.org/info/rfc9200
https://www.rfc-editor.org/info/rfc9202
https://www.rfc-editor.org/info/rfc9203
https://www.rfc-editor.org/info/rfc9290

[RFC9431]

[RFC9528]

[SHA-256]

[CoRE-ATTRIBUTES]

[RFC7009]

[STP]

 and ,

, , ,
July 2023, .

, , and ,
, , , March 2024,

.

, , ,
, August 2015, .

16.2. Informative References

, , and ,
, ,

, 16 March 2025,
.

, , and , ,
, , August 2013,
.

 and , ,
, , 7 April 2020,

.

Sengul, C. A. Kirby "Message Queuing Telemetry Transport (MQTT) and
Transport Layer Security (TLS) Profile of Authentication and Authorization for
Constrained Environments (ACE) Framework" RFC 9431 DOI 10.17487/RFC9431

<https://www.rfc-editor.org/info/rfc9431>

Selander, G. Preuß Mattsson, J. F. Palombini "Ephemeral Diffie-Hellman
Over COSE (EDHOC)" RFC 9528 DOI 10.17487/RFC9528 <https://
www.rfc-editor.org/info/rfc9528>

NIST "Secure Hash Standard" NIST FIPS PUB 180-4 DOI 10.6028/NIST.FIPS.
180-4 <https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf>

Silverajan, B. Koster, M. A. Soloway "Conditional Query Parameters
for CoAP Observe" Work in Progress Internet-Draft, draft-ietf-core-conditional-
attributes-11 <https://datatracker.ietf.org/doc/html/draft-ietf-
core-conditional-attributes-11>

Lodderstedt, T., Ed. Dronia, S. M. Scurtescu "OAuth 2.0 Token Revocation"
RFC 7009 DOI 10.17487/RFC7009 <https://www.rfc-editor.org/info/
rfc7009>

Bormann, C. K. Hartke "The Series Transfer Pattern (STP)" Work in
Progress Internet-Draft, draft-bormann-t2trg-stp-03 <https://
datatracker.ietf.org/doc/html/draft-bormann-t2trg-stp-03>

Appendix A. On Using the Series Transfer Pattern
Performing a diff query of the TRL as specified in Section 8 is, in fact, a usage example of the
Series Transfer Pattern defined in .

That is, a diff query enables the transfer of a series of diff entries with the AS specifying U <=
MAX_N diff entries as related to the U most recent TRL updates pertaining to a requester, i.e., a
registered device or an administrator.

When responding to a diff query request from a requester (see Section 8), 'diff_set' is a subset of
the update collection associated with the requester where each 'diff_entry' record is a series item
from that update collection. Note that 'diff_set' specifies the whole current update collection
when the value of U is equal to SIZE, i.e., the current number of series items in the update
collection.

The value N of the 'diff' query parameter in the GET request allows the requester and the AS to
trade the amount of provided information with the latency of the information transfer.

[STP]

RFC 9770 Notification of Revoked Tokens in ACE April 2025

Tiloca, et al. Standards Track Page 45

https://www.rfc-editor.org/info/rfc9431
https://www.rfc-editor.org/info/rfc9528
https://www.rfc-editor.org/info/rfc9528
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://datatracker.ietf.org/doc/html/draft-ietf-core-conditional-attributes-11
https://datatracker.ietf.org/doc/html/draft-ietf-core-conditional-attributes-11
https://www.rfc-editor.org/info/rfc7009
https://www.rfc-editor.org/info/rfc7009
https://datatracker.ietf.org/doc/html/draft-bormann-t2trg-stp-03
https://datatracker.ietf.org/doc/html/draft-bormann-t2trg-stp-03

Since the update collection associated with each requester includes up to MAX_N series items,
the AS deletes the oldest series item when a new one is generated and added to the end of the
update collection, due to a new TRL update pertaining to that requester (see Section 6.2). This
addresses the question "When can the server decide to no longer retain older items?" raised in

.

Furthermore, performing a diff query of the TRL together with the "Cursor" extension, as
specified in Section 9, in fact, relies on the "Cursor" pattern of the STP (see).

Section 3.2 of [STP]

Section 3.3 of [STP]

Name:

Single instance:

Description:

Values:

Appendix B. Local Supportive Parameters of the TRL Endpoint
Table 3 provides an aggregated overview of the local supportive parameters that the AS
internally uses at its TRL endpoint when supporting diff queries (see Section 6) and the "Cursor"
extension (see Section 6.2.1).

Except for MAX_N defined in Section 6.2, all the other parameters are defined in Section 6.2.1
and are used only if the AS supports the "Cursor" extension.

For each parameter, the columns of the table specify the following information. Both a
registered device and an administrator are referred to as "requester".

The parameter name. A name with letters in uppercase denotes a parameter whose
value does not change after its initialization.

"Y" if there is a single parameter instance associated with the TRL or "N" if
there is one parameter instance per update collection (i.e., per requester).

A short description of the parameter.

The unsigned integer values that the parameter can assume, where LB and UB denote
the inclusive lower bound and upper bound, respectively, and "^" is the exponentiation
operator.

Name Single
instance

Description Values

MAX_N Y Max number of series items in the
update collection of each requester

LB = 1

If supporting
"Cursor", then
UB =
MAX_INDEX+1

MAX_DIFF_BATCH N Max number of diff entries included
in a diff query response when using
"Cursor"

LB = 1

UB = MAX_N

RFC 9770 Notification of Revoked Tokens in ACE April 2025

Tiloca, et al. Standards Track Page 46

https://datatracker.ietf.org/doc/html/draft-bormann-t2trg-stp-03#section-3.2
https://datatracker.ietf.org/doc/html/draft-bormann-t2trg-stp-03#section-3.3

Name Single
instance

Description Values

MAX_INDEX Y Max value of each instance of the
'index' parameter

LB = MAX_N-1

UB = (2^64)-1

index N Value associated with a series item of
an update collection

LB = 0

UB =
MAX_INDEX

last_index N The 'index' value of the most
recently added series item in an
update collection

LB = 0

UB =
MAX_INDEX

Table 3: Local Supportive Parameters of the TRL Endpoint

Appendix C. Interaction Examples
This section provides examples of interactions between an RS as a registered device and an AS.
In the examples, all the access tokens issued by the AS are intended to be consumed by the
considered RS.

The AS supports both full queries and diff queries of the TRL, as defined in Sections 7 and 8,
respectively.

Registration is assumed to be done by the RS sending a POST request with an unspecified
payload to the AS, which replies with a 2.01 (Created) response. The payload of the registration
response is assumed to be a CBOR map, which, in turn, is assumed to include the following
entries:

a 'trl_path' parameter specifying the path of the TRL endpoint;
a 'trl_hash' parameter specifying the "Hash Name String" of the hash function used to
compute token hashes as defined in Section 4;
a 'max_n' parameter specifying the value of MAX_N, i.e., the maximum number of series
items that the AS retains in the update collection associated with a registered device (see
Section 8);
possible further parameters related to the registration process.

Furthermore, 'h(x)' refers to the hash function used to compute the token hashes, as defined in
Section 4 of this specification and according to . Assuming the usage of CWTs
transported in AS-to-Client responses encoded in CBOR (see Section 4.2.1), 'bstr.h(t1)' and
'bstr.h(t2)' denote the CBOR byte strings with value the token hashes of the access tokens t1 and
t2, respectively.

•
•

•

•

[RFC6920]

RFC 9770 Notification of Revoked Tokens in ACE April 2025

Tiloca, et al. Standards Track Page 47

C.1. Full Query with Observe
Figure 10 shows an interaction example considering a CoAP observation and a full query of the
TRL.

In this example, the AS does not support the "Cursor" extension. Hence, the 'cursor' parameter is
not included in the payload of the responses to a full query request.

RFC 9770 Notification of Revoked Tokens in ACE April 2025

Tiloca, et al. Standards Track Page 48

RS AS

Registration: POST

2.01 Created
Payload: {
/ ... /
"trl_path" : "/revoke/trl",
"trl_hash" : "sha-256",

"max_n" : 10
}

GET coap://as.example.com/revoke/trl/
Observe: 0

2.05 Content
Observe: 42
Content-Format: application/ace-trl+cbor
Payload: {

e'full_set' : []
}

...

(Access tokens t1 and t2 issued
and successfully submitted to RS)

...

(Access token t1 is revoked)

2.05 Content
Observe: 53
Content-Format: application/ace-trl+cbor
Payload: {

e'full_set' : [bstr.h(t1)]
}

...

(Access token t2 is revoked)

2.05 Content
Observe: 64
Content-Format: application/ace-trl+cbor
Payload: {

e'full_set' : [bstr.h(t1), bstr.h(t2)]
}

...

(Access token t1 expires)

2.05 Content
Observe: 75
Content-Format: application/ace-trl+cbor
Payload: {

e'full_set' : [bstr.h(t2)]
}

...

(Access token t2 expires)

2.05 Content
Observe: 86
Content-Format: application/ace-trl+cbor
Payload: {

e'full_set' : []
}

RFC 9770 Notification of Revoked Tokens in ACE April 2025

Tiloca, et al. Standards Track Page 49

Figure 10: Interaction for Full Query with Observe

C.2. Diff Query with Observe
Figure 11 shows an interaction example of a CoAP observation and a diff query of the TRL.

The RS indicates N = 3 as the value of the 'diff' query parameter, i.e., as the maximum number of
diff entries to be specified in a response from the AS.

In this example, the AS does not support the "Cursor" extension. Hence, the 'cursor' parameter
and the 'more' parameter are not included in the payload of the responses to a diff query request.

RFC 9770 Notification of Revoked Tokens in ACE April 2025

Tiloca, et al. Standards Track Page 50

RS AS

Registration: POST

2.01 Created
Payload: {
/ ... /
"trl_path" : "/revoke/trl",
"trl_hash" : "sha-256",

"max_n" : 10
}

GET coap://as.example.com/revoke/trl?diff=3
Observe: 0

2.05 Content
Observe: 42
Content-Format: application/ace-trl+cbor
Payload: {

e'diff_set' : []
}

...

(Access tokens t1 and t2 issued
and successfully submitted to RS)

...

(Access token t1 is revoked)

2.05 Content
Observe: 53
Content-Format: application/ace-trl+cbor
Payload: {

e'diff_set' : [
[[], [bstr.h(t1)]]

]
}

...

(Access token t2 is revoked)

2.05 Content
Observe: 64
Content-Format: application/ace-trl+cbor
Payload: {

e'diff_set' : [
[[], [bstr.h(t2)]],
[[], [bstr.h(t1)]]

]
}

...

(Access token t1 expires)

2.05 Content
Observe: 75
Content-Format: application/ace-trl+cbor
Payload: {

e'diff_set' : [
[[bstr.h(t1)], []],
[[], [bstr.h(t2)]],
[[], [bstr.h(t1)]]

]
}

...

(Access token t2 expires)

2.05 Content
Observe: 86
Content-Format: application/ace-trl+cbor
Payload: {

e'diff_set' : [
[[bstr.h(t2)], []],
[[bstr.h(t1)], []],
[[], [bstr.h(t2)]]

]
}

RFC 9770 Notification of Revoked Tokens in ACE April 2025

Tiloca, et al. Standards Track Page 51

Figure 11: Interaction for Diff Query with Observe

C.3. Full Query with Observe Plus Diff Query
Figure 12 shows an interaction example of a CoAP observation and a full query of the TRL.

The example also shows one of the notifications from the AS getting lost in transmission; thus, it
does not reach the RS.

When this happens, and after a waiting time defined by the application has elapsed, the RS
sends a GET request with no Observe Option to the AS to perform a diff query of the TRL. The RS
indicates N = 8 as the value of the 'diff' query parameter, i.e., as the maximum number of diff
entries to be specified in a response from the AS.

In this example, the AS does not support the "Cursor" extension. Hence, the 'cursor' parameter is
not included in the payload of the responses to a full query request. Also, the 'cursor' parameter
and the 'more' parameter are not included in the payload of the responses to a diff query request.

RFC 9770 Notification of Revoked Tokens in ACE April 2025

Tiloca, et al. Standards Track Page 52

RS AS

Registration: POST

2.01 Created
Payload: {
/ ... /
"trl_path" : "/revoke/trl",
"trl_hash" : "sha-256",

"max_n" : 10
}

GET coap://as.example.com/revoke/trl/
Observe: 0

2.05 Content
Observe: 42
Content-Format: application/ace-trl+cbor
Payload: {

e'full_set' : []
}

...

(Access tokens t1 and t2 issued
and successfully submitted to RS)

...

(Access token t1 is revoked)

2.05 Content
Observe: 53
Content-Format: application/ace-trl+cbor
Payload: {

e'full_set' : [bstr.h(t1)]
}

...

(Access token t2 is revoked)

2.05 Content
Observe: 64
Content-Format: application/ace-trl+cbor
Payload: {

e'full_set' : [bstr.h(t1), bstr.h(t2)]
}

...

(Access token t1 expires)

2.05 Content
Observe: 75
Content-Format: application/ace-trl+cbor
Payload: {

e'full_set' : [bstr.h(t2)]
}

...

(Access token t2 expires)

Lost X
2.05 Content

Observe: 86
Content-Format: application/ace-trl+cbor
Payload: {

e'full_set' : []
}

...

(Enough time has passed since
the latest received notification)

GET coap://as.example.com/revoke/trl?diff=8

2.05 Content
Content-Format: application/ace-trl+cbor
Payload: {

e'diff_set' : [
[[bstr.h(t2)], []],
[[bstr.h(t1)], []],
[[], [bstr.h(t2)]],
[[], [bstr.h(t1)]]

]
}

RFC 9770 Notification of Revoked Tokens in ACE April 2025

Tiloca, et al. Standards Track Page 53

Figure 12: Interaction for Full Query with Observe Plus Diff Query

C.4. Diff Query with Observe and "Cursor"
In this example, the AS supports the "Cursor" extension. Hence, the CBOR map conveyed as
payload of the registration response additionally includes a "max_diff_batch" parameter. This
specifies the value of MAX_DIFF_BATCH, i.e., the maximum number of diff entries that can be
included in a response to a diff query request from this RS.

Figure 13 shows an interaction example of a CoAP observation and a diff query of the TRL.

The RS specifies the query parameter 'diff' with a value of 3, i.e., the maximum number of diff
entries to be specified in a response from the AS.

If the RS has not received a notification from the AS after a waiting time defined by the
application, the RS sends a GET request with no Observe Option to the AS to perform a diff query
of the TRL.

This is followed up by a further diff query request that specifies the query parameter 'cursor'.
Note that the payload of the corresponding response differs from the payload of the response to
the previous diff query request.

RFC 9770 Notification of Revoked Tokens in ACE April 2025

Tiloca, et al. Standards Track Page 54

RS AS

Registration: POST

2.01 Created
Payload: {

/ ... /
"trl_path" : "/revoke/trl",
"trl_hash" : "sha-256",

"max_n" : 10,
"max_diff_batch": 5

}

GET coap://as.example.com/revoke/trl?diff=3
Observe: 0

2.05 Content
Observe: 42
Content-Format: application/ace-trl+cbor
Payload: {

e'diff_set' : [],
e'cursor' : null,

e'more' : false
}

...

(Access tokens t1 and t2 issued
and successfully submitted to RS)

...

(Access token t1 is revoked)

2.05 Content
Observe: 53
Content-Format: application/ace-trl+cbor
Payload: {

e'diff_set' : [
[[], [bstr.h(t1)]]

],
e'cursor' : 0,

e'more' : false
}

...

(Access token t2 is revoked)

2.05 Content
Observe: 64
Content-Format: application/ace-trl+cbor
Payload: {

e'diff_set' : [
[[], [bstr.h(t2)]],
[[], [bstr.h(t1)]]

],
e'cursor' : 1,

e'more' : false
}

...

(Access token t1 expires)

2.05 Content
Observe: 75
Content-Format: application/ace-trl+cbor
Payload: {

e'diff_set' : [
[[bstr.h(t1)], []],
[[], [bstr.h(t2)]],
[[], [bstr.h(t1)]]

],
e'cursor' : 2,

e'more' : false
}

...

(Access token t2 expires)

2.05 Content
Observe: 86
Content-Format: application/ace-trl+cbor
Payload: {

e'diff_set' : [
[[bstr.h(t2)], []],
[[bstr.h(t1)], []],
[[], [bstr.h(t2)]]

],
e'cursor' : 3,

e'more' : false
}

...

(Enough time has passed since
the latest received notification)

GET coap://as.example.com/revoke/trl?diff=3

2.05 Content
Content-Format: application/ace-trl+cbor
Payload: {

e'diff_set' : [
[[bstr.h(t2)], []],
[[bstr.h(t1)], []],
[[], [bstr.h(t2)]]

],
e'cursor' : 3,

e'more' : false
}

GET coap://as.example.com/revoke/trl?diff=3&cursor=3

2.05 Content
Content-Format: application/ace-trl+cbor
Payload: {

e'diff_set' : [],
e'cursor' : 3,

e'more' : false
}

RFC 9770 Notification of Revoked Tokens in ACE April 2025

Tiloca, et al. Standards Track Page 55

Figure 13: Interaction for Diff Query with Observe and "Cursor"

C.5. Full Query with Observe Plus Diff Query with "Cursor"
In this example, the AS supports the "Cursor" extension. Hence, the CBOR map conveyed as
payload of the registration response additionally includes a "max_diff_batch" parameter. This
specifies the value of MAX_DIFF_BATCH, i.e., the maximum number of diff entries that can be
included in a response to a diff query request from this RS.

Figure 14 shows an interaction example of a CoAP observation and a full query of the TRL.

The example also shows some of the notifications from the AS getting lost in transmission; thus,
they do not reach the RS.

When this happens, and after a waiting time defined by the application has elapsed, the RS
sends a GET request with no Observe Option to the AS, to perform a diff query of the TRL. In
particular, the RS specifies:

The query parameter 'diff' with a value of 8, i.e., the maximum number of diff entries to be
specified in a response from the AS.
The query parameter 'cursor' with a value of 2, thus requesting from the update collection
the series items following the one with the 'index' value equal to 2 (i.e., following the last
series item that the RS successfully received in an earlier notification response).

The response from the AS conveys a first batch of MAX_DIFF_BATCH = 5 series items from the
update collection corresponding to the RS. The AS indicates that further series items are actually
available in the update collection by setting the 'more' parameter of the response to true. Also,
the 'cursor' parameter of the response is set to 7, i.e., to the 'index' value of the most recent series
item included in the response.

After that, the RS follows up with a further diff query request specifying the query parameter
'cursor' with a value of 7 in order to retrieve the next and last batch of series items from the
update collection.

•

•

RFC 9770 Notification of Revoked Tokens in ACE April 2025

Tiloca, et al. Standards Track Page 56

RS AS

Registration: POST

2.01 Created
Payload: {

/ ... /
"trl_path" : "/revoke/trl",
"trl_hash" : "sha-256",

"max_n" : 10,
"max_diff_batch": 5

}

GET coap://as.example.com/revoke/trl/
Observe: 0

2.05 Content
Observe: 42
Content-Format: application/ace-trl+cbor
Payload: {

e'full_set' : [],
e'cursor' : null

}

...

(Access tokens t1, t2, t3 issued
and successfully submitted to RS)

...

(Access tokens t4, t5, t6 issued
and successfully submitted to RS)

...

(Access token t1 is revoked)

2.05 Content
Observe: 53
Content-Format: application/ace-trl+cbor
Payload: {

e'full_set' : [bstr.h(t1)],
e'cursor' : 0

}

...

(Access token t2 is revoked)

2.05 Content
Observe: 64
Content-Format: application/ace-trl+cbor
Payload: {

e'full_set' : [bstr.h(t1), bstr.h(t2)],
e'cursor' : 1

}

...

(Access token t1 expires)

2.05 Content
Observe: 75
Content-Format: application/ace-trl+cbor
Payload: {

e'full_set' : [bstr.h(t2)],
e'cursor' : 2

}

...

(Access token t2 expires)

Lost X
2.05 Content

Observe: 86
Content-Format: application/ace-trl+cbor
Payload: {

e'full_set' : [],
e'cursor' : 3

}

...

(Access token t3 is revoked)

Lost X
2.05 Content

Observe: 88
Content-Format: application/ace-trl+cbor
Payload: {

e'full_set' : [bstr.h(t3)],
e'cursor' : 4

}

...

(Access token t4 is revoked)

Lost X
2.05 Content

Observe: 89
Content-Format: application/ace-trl+cbor
Payload: {

e'full_set' : [bstr.h(t3), bstr.h(t4)],
e'cursor' : 5

}

...

(Access token t3 expires)

Lost X
2.05 Content

Observe: 90
Content-Format: application/ace-trl+cbor
Payload: {

e'full_set' : [bstr.h(t4)],
e'cursor' : 6

}

...

(Access token t4 expires)

Lost X
2.05 Content

Observe: 91
Content-Format: application/ace-trl+cbor
Payload: {

e'full_set' : [],
e'cursor' : 7

}

...

(Access tokens t5 and t6 are revoked)

Lost X
2.05 Content

Observe: 92
Content-Format: application/ace-trl+cbor
Payload: {

e'full_set' : [bstr.h(t5), bstr.h(t6)],
e'cursor' : 8

}

...

(Access token t5 expires)

Lost X
2.05 Content

Observe: 93
Content-Format: application/ace-trl+cbor
Payload: {

e'full_set' : [bstr.h(t6)],
e'cursor' : 9

}

...

(Access token t6 expires)

Lost X
2.05 Content

Observe: 94
Content-Format: application/ace-trl+cbor
Payload: {

e'full_set' : [],
e'cursor' : 10

}

...

(Enough time has passed since
the latest received notification)

GET coap://as.example.com/revoke/trl?diff=8&cursor=2

2.05 Content
Content-Format: application/ace-trl+cbor
Payload: {

e'diff_set' : [
[[bstr.h(t4)], []],
[[bstr.h(t3)], []],
[[], [bstr.h(t4)]],
[[], [bstr.h(t3)]],
[[bstr.h(t2)], []]

],
e'cursor' : 7,

e'more' : true
}

GET coap://as.example.com/revoke/trl?diff=8&cursor=7

2.05 Content
Content-Format: application/ace-trl+cbor
Payload: {

e'diff_set' : [
[[bstr.h(t6)], []],
[[bstr.h(t5)], []],
[[], [bstr.h(t5), bstr.h(t6)]]

],
e'cursor' : 10,

e'more' : false
}

RFC 9770 Notification of Revoked Tokens in ACE April 2025

Tiloca, et al. Standards Track Page 57

Figure 14: Interaction for Full Query with Observe Plus Diff Query with "Cursor"

Appendix D. CDDL Model

Figure 15: CDDL Model

full_set = 0
diff_set = 1
cursor = 2
more = 3

ace-trl-error = 1

Acknowledgments
 contributed as a coauthor of initial versions of this document.

The authors sincerely thank , , , ,
, , , , , ,

, , , , ,
, , , , , and for their

comments and feedback.

The work on this document has been partly supported by the Sweden's Innovation Agency
VINNOVA and the Celtic-Next projects CRITISEC and CYPRESS; and by the H2020 project SIFIS-
Home (Grant agreement 952652).

Ludwig Seitz

Christian Amsüss Carsten Bormann Deb Cooley Roman Danyliw
Dhruv Dhody Rikard Höglund Benjamin Kaduk David Navarro Joerg Ott Marco Rasori
Michael Richardson Kyle Rose Zaheduzzaman Sarker Jim Schaad Göran Selander Travis
Spencer Orie Steele Éric Vyncke Niklas Widell Dale Worley Paul Wouters

Authors' Addresses
Marco Tiloca
RISE AB
Isafjordsgatan 22
SE-16440 Kista
Sweden

marco.tiloca@ri.seEmail:

Francesca Palombini
Ericsson AB
Torshamnsgatan 23
SE-16440 Kista
Sweden

francesca.palombini@ericsson.comEmail:

RFC 9770 Notification of Revoked Tokens in ACE April 2025

Tiloca, et al. Standards Track Page 58

mailto:marco.tiloca@ri.se
mailto:francesca.palombini@ericsson.com

Sebastian Echeverria
CMU SEI
4500 Fifth Avenue

, Pittsburgh PA 15213-2612
United States of America

secheverria@sei.cmu.eduEmail:

Grace Lewis
CMU SEI
4500 Fifth Avenue

, Pittsburgh PA 15213-2612
United States of America

glewis@sei.cmu.eduEmail:

RFC 9770 Notification of Revoked Tokens in ACE April 2025

Tiloca, et al. Standards Track Page 59

mailto:secheverria@sei.cmu.edu
mailto:glewis@sei.cmu.edu

	RFC 9770
	Notification of Revoked Access Tokens in the Authentication and Authorization for Constrained Environments (ACE) Framework
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology

	2. Protocol Overview
	3. Issuing of Access Tokens at the AS
	4. Token Hash
	4.1. Motivation for the Used Construction
	4.1.1. Issuing of the Access Token to the Client
	4.1.2. Provisioning of Access Tokens to the RS
	4.1.3. Design Rationale

	4.2. Hash Input on the Client and the AS
	4.2.1. AS-to-Client Response Encoded in CBOR
	4.2.2. AS-to-Client Response Encoded in JSON

	4.3. HASH_INPUT on the RS
	4.3.1. Access Tokens as CWTs
	4.3.2. Access Tokens as JWTs

	4.4. Computing the Token Hash

	5. Token Revocation List (TRL)
	5.1. Update of the TRL

	6. The TRL Endpoint
	6.1. Error Responses with Problem Details
	6.2. Supporting Diff Queries
	6.2.1. Supporting the "Cursor" Extension

	6.3. Query Parameters

	7. Full Query of the TRL
	8. Diff Query of the TRL
	9. Response Messages when Using the "Cursor" Extension
	9.1. Response to Full Query
	9.2. Response to Diff Query
	9.2.1. Empty Collection
	9.2.2. Cursor Not Specified in the Diff Query Request
	9.2.3. Cursor Specified in the Diff Query Request

	10. Registration at the Authorization Server
	11. Notification of Revoked Access Tokens
	11.1. Handling of Revoked Access Tokens and Token Hashes

	12. ACE Token Revocation List Parameters
	13. ACE Token Revocation List Error Identifiers
	14. Security Considerations
	14.1. Content Retrieval from the TRL
	14.2. Size of the TRL
	14.3. Communication Patterns
	14.4. Request of New Access Tokens
	14.5. Vulnerable Time Window at the RS
	14.6. Preventing Unnoticed Manipulation of Access Tokens
	14.7. Two Token Hashes at the RS Using JWTs
	14.8. Additional Security Measures

	15. IANA Considerations
	15.1. Media Type Registrations
	15.2. CoAP Content-Formats Registry
	15.3. Custom Problem Detail Keys Registry
	15.4. ACE Token Revocation List Parameters Registry
	15.5. ACE Token Revocation List Errors
	15.6. Expert Review Instructions

	16. References
	16.1. Normative References
	16.2. Informative References

	Appendix A. On Using the Series Transfer Pattern
	Appendix B. Local Supportive Parameters of the TRL Endpoint
	Appendix C. Interaction Examples
	C.1. Full Query with Observe
	C.2. Diff Query with Observe
	C.3. Full Query with Observe Plus Diff Query
	C.4. Diff Query with Observe and "Cursor"
	C.5. Full Query with Observe Plus Diff Query with "Cursor"

	Appendix D. CDDL Model
	Acknowledgments
	Authors' Addresses

