
RFC 9669
BPF Instruction Set Architecture (ISA)

Abstract
eBPF (which is no longer an acronym for anything), also commonly referred to as BPF, is a
technology with origins in the Linux kernel that can run untrusted programs in a privileged
context such as an operating system kernel. This document specifies the BPF instruction set
architecture (ISA).

Stream:
RFC:
Category:
Published:
ISSN:
Author:

Internet Engineering Task Force (IETF)
9669
Standards Track
October 2024
2070-1721
D. Thaler, Ed.

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9669

Copyright Notice
Copyright (c) 2024 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

Thaler Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9669
https://www.rfc-editor.org/info/rfc9669
https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

2. Documentation Conventions

2.1. Types

2.2. Functions

2.3. Definitions

2.4. Conformance Groups

3. Instruction Encoding

3.1. Basic Instruction Encoding

3.2. Wide Instruction Encoding

3.3. Instruction Classes

4. Arithmetic and Jump Instructions

4.1. Arithmetic Instructions

4.2. Byte Swap Instructions

4.3. Jump Instructions

4.3.1. Helper Functions

4.3.2. Program-Local Functions

5. Load and Store Instructions

5.1. Regular Load and Store Operations

5.2. Sign-Extension Load Operations

5.3. Atomic Operations

5.4. 64-bit Immediate Instructions

5.4.1. Maps

5.4.2. Platform Variables

5.5. Legacy BPF Packet Access Instructions

6. Security Considerations

3

3

4

4

5

5

6

6

7

8

9

9

12

13

15

15

15

16

17

17

18

19

19

20

20

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 2

7. IANA Considerations

7.1. BPF Instruction Conformance Group Registry

7.1.1. BPF Instruction Conformance Group Registration Template

7.2. BPF Instruction Set Registry

7.2.1. BPF Instruction Registration Template

7.3. Adding Instructions

7.4. Deprecating Instructions

7.5. Change Control

7.6. Expert Review Instructions

8. References

8.1. Normative References

8.2. Informative References

Appendix A. Initial BPF Instruction Set Values

Acknowledgements

Author's Address

20

20

21

22

22

23

24

24

25

25

25

25

26

37

38

1. Introduction
eBPF, also commonly referred to as BPF, is a technology with origins in the Linux kernel that can
run untrusted programs in a privileged context such as an operating system kernel. This
document specifies the BPF instruction set architecture (ISA).

As a historical note, BPF originally stood for Berkeley Packet Filter, but now that it can do so
much more than packet filtering, the acronym no longer makes sense. BPF is now considered a
standalone term that does not stand for anything. The original BPF is sometimes referred to as
cBPF (classic BPF) to distinguish it from the now widely deployed eBPF (extended BPF).

2. Documentation Conventions
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are
to be interpreted as described in BCP 14 when, and only when, they appear
in all capitals, as shown here.

[RFC2119] [RFC8174]

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 3

For brevity and consistency, this document refers to families of types using a shorthand syntax
and refers to several expository, mnemonic functions when describing the semantics of
instructions. The range of valid values for those types and the semantics of those functions are
defined in the following subsections.

2.1. Types
This document refers to integer types with the notation SN to specify a type's signedness (S) and
bit width (N), respectively.

S Meaning

u unsigned

s signed

Table 1: Meaning of Signedness Notation

N Bit width

8 8 bits

16 16 bits

32 32 bits

64 64 bits

128 128 bits

Table 2: Meaning of Bit-Width Notation

For example, u32 is a type whose valid values are all the 32-bit unsigned numbers and s16 is a
type whose valid values are all the 16-bit signed numbers.

2.2. Functions
The following byteswap functions are direction-agnostic. That is, the same function is used for
conversion in either direction discussed below.

be16: Takes an unsigned 16-bit number and converts it between host byte order and big-
endian () byte order.
be32: Takes an unsigned 32-bit number and converts it between host byte order and big-
endian byte order.
be64: Takes an unsigned 64-bit number and converts it between host byte order and big-
endian byte order.
bswap16: Takes an unsigned 16-bit number in either big- or little-endian format and returns
the equivalent number with the same bit width but opposite endianness.

•
IEN137 [IEN137]

•

•

•

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 4

bswap32: Takes an unsigned 32-bit number in either big- or little-endian format and returns
the equivalent number with the same bit width but opposite endianness.
bswap64: Takes an unsigned 64-bit number in either big- or little-endian format and returns
the equivalent number with the same bit width but opposite endianness.
le16: Takes an unsigned 16-bit number and converts it between host byte order and little-
endian byte order.
le32: Takes an unsigned 32-bit number and converts it between host byte order and little-
endian byte order.
le64: Takes an unsigned 64-bit number and converts it between host byte order and little-
endian byte order.

•

•

•

•

•

2.3. Definitions

To sign extend an X -bit number, A, to a Y -bit number, B, means to

To sign extend X-bit number, A, to a Y-bit number, B, means to

Copy all X bits from A to the lower X bits of B.
Set the value of the remaining Y - X bits of B to the value of the most-significant bit of A.

Example

Sign extend an 8-bit number A to a 16-bit number B on a big-endian platform:

Sign Extend:

1.
2.

A: 10000110
B: 11111111 10000110

2.4. Conformance Groups
An implementation does not need to support all instructions specified in this document (e.g.,
deprecated instructions). Instead, a number of conformance groups are specified. An
implementation MUST support the base32 conformance group and MAY support additional
conformance groups, where supporting a conformance group means it MUST support all
instructions in that conformance group.

The use of named conformance groups enables interoperability between a runtime that executes
instructions, and tools such as compilers that generate instructions for the runtime. Thus,
capability discovery in terms of conformance groups might be done manually by users or
automatically by tools.

Each conformance group has a short ASCII label (e.g., "base32") that corresponds to a set of
instructions that are mandatory. That is, each instruction has one or more conformance groups
of which it is a member.

This document defines the following conformance groups:

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 5

base32:

base64:

atomic32:

atomic64:

divmul32:

divmul64:

packet:

includes all instructions defined in this specification unless otherwise noted.

includes base32, plus instructions explicitly noted as being in the base64 conformance
group.

includes 32-bit atomic operation instructions (see).

includes atomic32, plus 64-bit atomic operation instructions.

includes 32-bit division, multiplication, and modulo instructions.

includes divmul32, plus 64-bit division, multiplication, and modulo instructions.

deprecated packet access instructions.

Atomic operations (Section 5.3)

3. Instruction Encoding
BPF has two instruction encodings:

the basic instruction encoding, which uses 64 bits to encode an instruction
the wide instruction encoding, which appends a second 64 bits after the basic instruction for
a total of 128 bits.

•
•

3.1. Basic Instruction Encoding
A basic instruction is encoded as follows:

operation to perform, encoded as follows:

The format of these bits varies by instruction class

The instruction class (see)

The source and destination register numbers, encoded as follows on a little-endian host:

+-+
| opcode | regs | offset |
+-+
| imm |
+-+

opcode:

+-+-+-+-+-+-+-+-+
|specific |class|
+-+-+-+-+-+-+-+-+

specific:

class: Instruction classes (Section 3.3)

regs:

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 6

and as follows on a big-endian host:

the source register number (0-10), except where otherwise specified (
 reuse this field for other purposes)

destination register number (0-10), unless otherwise specified (future instructions
might reuse this field for other purposes)

signed integer offset used with pointer arithmetic, except where otherwise specified
(some arithmetic instructions reuse this field for other purposes)

signed integer immediate value

Note that the contents of multi-byte fields ('offset' and 'imm') are stored using big-endian byte
ordering on big-endian hosts and little-endian byte ordering on little-endian hosts.

For example:

Note that most instructions do not use all of the fields. Unused fields SHALL be cleared to zero.

+-+-+-+-+-+-+-+-+
|src_reg|dst_reg|
+-+-+-+-+-+-+-+-+

+-+-+-+-+-+-+-+-+
|dst_reg|src_reg|
+-+-+-+-+-+-+-+-+

src_reg: 64-bit
immediate instructions (Section 5.4)

dst_reg:

offset:

imm:

opcode offset imm assembly
 src_reg dst_reg
07 0 1 00 00 44 33 22 11 r1 += 0x11223344 // little
 dst_reg src_reg
07 1 0 00 00 11 22 33 44 r1 += 0x11223344 // big

3.2. Wide Instruction Encoding
Some instructions are defined to use the wide instruction encoding, which uses two 32-bit
immediate values. The 64 bits following the basic instruction format contain a pseudo instruction
with 'opcode', 'dst_reg', 'src_reg', and 'offset' all set to zero.

This is depicted in the following figure:

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 7

operation to perform, encoded as explained above

The source and destination register numbers (unless otherwise specified), encoded as
explained above

signed integer offset used with pointer arithmetic, unless otherwise specified

signed integer immediate value

unused, set to zero

second signed integer immediate value

+-+
| opcode | regs | offset |
+-+
| imm |
+-+
| reserved |
+-+
| next_imm |
+-+

opcode:

regs:

offset:

imm:

reserved:

next_imm:

3.3. Instruction Classes
The three least significant bits of the 'opcode' field store the instruction class:

class value description reference

LD 0x0 non-standard load operations

LDX 0x1 load into register operations

ST 0x2 store from immediate
operations

STX 0x3 store from register operations

ALU 0x4 32-bit arithmetic operations

JMP 0x5 64-bit jump operations

JMP32 0x6 32-bit jump operations

Load and store instructions (Section 5)

Load and store instructions (Section 5)

Load and store instructions (Section 5)

Load and store instructions (Section 5)

Arithmetic and jump instructions
(Section 4)

Arithmetic and jump instructions
(Section 4)

Arithmetic and jump instructions
(Section 4)

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 8

class value description reference

ALU64 0x7 64-bit arithmetic operations

Table 3: Instruction Class

Arithmetic and jump instructions
(Section 4)

4. Arithmetic and Jump Instructions
For arithmetic and jump instructions (ALU, ALU64, JMP and JMP32), the 8-bit 'opcode' field is
divided into three parts:

the operation code, whose meaning varies by instruction class

the source operand location, which unless otherwise specified is one of:

source value description

K 0 use 32-bit 'imm' value as source operand

X 1 use 'src_reg' register value as source operand

Table 4: Source Operand Location

the instruction class (see)

+-+-+-+-+-+-+-+-+
| code |s|class|
+-+-+-+-+-+-+-+-+

code:

s (source):

instruction class: Instruction classes (Section 3.3)

4.1. Arithmetic Instructions
ALU uses 32-bit wide operands while ALU64 uses 64-bit wide operands for otherwise identical
operations. ALU64 instructions belong to the base64 conformance group unless noted otherwise.
The 'code' field encodes the operation as below, where 'src' refers to the the source operand and
'dst' refers to the value of the destination register.

name code offset description

ADD 0x0 0 dst += src

SUB 0x1 0 dst -= src

MUL 0x2 0 dst *= src

DIV 0x3 0 dst = (src != 0) ? (dst / src) : 0

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 9

name code offset description

SDIV 0x3 1 dst = (src != 0) ? (dst s/ src) : 0

OR 0x4 0 dst |= src

AND 0x5 0 dst &= src

LSH 0x6 0 dst <<= (src & mask)

RSH 0x7 0 dst >>= (src & mask)

NEG 0x8 0 dst = -dst

MOD 0x9 0 dst = (src != 0) ? (dst % src) : dst

SMOD 0x9 1 dst = (src != 0) ? (dst s% src) : dst

XOR 0xa 0 dst ^= src

MOV 0xb 0 dst = src

MOVSX 0xb 8/16/32 dst = (s8,s16,s32)src

ARSH 0xc 0 dst >>= (src & mask)

END 0xd 0 byte swap operations (see
below)

Table 5: Arithmetic Instructions

Underflow and overflow are allowed during arithmetic operations, meaning the 64-bit or 32-bit
value will wrap. If BPF program execution would result in division by zero, the destination
register is instead set to zero. If execution would result in modulo by zero, for ALU64 the value of
the destination register is unchanged whereas for ALU the upper 32 bits of the destination
register are zeroed.

{ADD, X, ALU}, where 'code' = ADD, 'source' = X, and 'class' = ALU, means:

where '(u32)' indicates that the upper 32 bits are zeroed.

{ADD, X, ALU64} means:

{XOR, K, ALU} means:

sign extending (Section 2.3)

Byte swap instructions (Section 4.2)

 dst = (u32) ((u32) dst + (u32) src)

 dst = dst + src

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 10

{XOR, K, ALU64} means:

Note that most arithmetic instructions have 'offset' set to 0. Only three instructions (SDIV, SMOD,
MOVSX) have a non-zero 'offset'.

Division, multiplication, and modulo operations for ALU are part of the "divmul32" conformance
group, and division, multiplication, and modulo operations for ALU64 are part of the "divmul64"
conformance group. The division and modulo operations support both unsigned and signed
flavors.

For unsigned operations (DIV and MOD), for ALU, 'imm' is interpreted as a 32-bit unsigned value.
For ALU64, 'imm' is first from 32 to 64 bits, and then interpreted as a
64-bit unsigned value.

For signed operations (SDIV and SMOD), for ALU, 'imm' is interpreted as a 32-bit signed value. For
ALU64, 'imm' is first from 32 to 64 bits, and then interpreted as a 64-bit
signed value.

Note that there are varying definitions of the signed modulo operation when the dividend or
divisor are negative, where implementations often vary by language such that Python, Ruby, etc.
differ from C, Go, Java, etc. This specification requires that signed modulo MUST use truncated
division (where -13 % 3 == -1) as implemented in C, Go, etc.:

The MOVSX instruction does a move operation with sign extension. {MOVSX, X, ALU}
 8-bit and 16-bit operands into 32-bit operands, and zeroes the remaining upper 32

bits. {MOVSX, X, ALU64} 8-bit, 16-bit, and 32-bit operands into 64-bit
operands. Unlike other arithmetic instructions, MOVSX is only defined for register source
operands (X).

{MOV, K, ALU64} means:

{MOV, X, ALU} means:

 dst = (u32) dst ^ (u32) imm

 dst = dst ^ imm

sign extended (Section 2.3)

sign extended (Section 2.3)

 a % n = a - n * trunc(a / n)

sign extends
(Section 2.3)

sign extends (Section 2.3)

 dst = (s64)imm

 dst = (u32)src

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 11

{MOVSX, X, ALU} with 'offset' 8 means:

The NEG instruction is only defined when the source bit is clear (K).

Shift operations use a mask of 0x3F (63) for 64-bit operations and 0x1F (31) for 32-bit operations.

 dst = (u32)(s32)(s8)src

4.2. Byte Swap Instructions
The byte swap instructions use instruction classes of ALU and ALU64 and a 4-bit 'code' field of END.

The byte swap instructions operate on the destination register only and do not use a separate
source register or immediate value.

For ALU, the 1-bit source operand field in the opcode is used to select what byte order the
operation converts from or to. For ALU64, the 1-bit source operand field in the opcode is reserved
and MUST be set to 0.

class source value description

ALU LE 0 convert between host byte order and little endian

ALU BE 1 convert between host byte order and big endian

ALU64 Reserved 0 do byte swap unconditionally

Table 6: Byte Swap Instructions

The 'imm' field encodes the width of the swap operations. The following widths are supported:
16, 32 and 64. Width 64 operations belong to the base64 conformance group and other swap
operations belong to the base32 conformance group.

Examples:

{END, LE, ALU} with 'imm' = 16/32/64 means:

{END, BE, ALU} with 'imm' = 16/32/64 means:

 dst = le16(dst)
 dst = le32(dst)
 dst = le64(dst)

 dst = be16(dst)
 dst = be32(dst)
 dst = be64(dst)

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 12

{END, TO, ALU64} with 'imm' = 16/32/64 means:

 dst = bswap16(dst)
 dst = bswap32(dst)
 dst = bswap64(dst)

4.3. Jump Instructions
JMP32 uses 32-bit wide operands and indicates the base32 conformance group, while JMP uses 64-
bit wide operands for otherwise identical operations, and indicates the base64 conformance
group unless otherwise specified. The 'code' field encodes the operation as below:

code value src_reg description notes

JA 0x0 0x0 PC += offset {JA, K, JMP} only

JA 0x0 0x0 PC += imm {JA, K, JMP32} only

JEQ 0x1 any PC += offset if dst ==
src

JGT 0x2 any PC += offset if dst > src unsigned

JGE 0x3 any PC += offset if dst >=
src

unsigned

JSET 0x4 any PC += offset if dst &
src

JNE 0x5 any PC += offset if dst !=
src

JSGT 0x6 any PC += offset if dst > src signed

JSGE 0x7 any PC += offset if dst >=
src

signed

CALL 0x8 0x0 call helper function
by static ID

{CALL, K, JMP} only, see

CALL 0x8 0x1 call PC += imm {CALL, K, JMP} only, see

CALL 0x8 0x2 call helper function
by BTF ID

{CALL, K, JMP} only, see

EXIT 0x9 0x0 return {CALL, K, JMP} only

Helper
functions (Section 4.3.1)

Program-local
functions (Section 4.3.2)

Helper
functions (Section 4.3.1)

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 13

code value src_reg description notes

JLT 0xa any PC += offset if dst < src unsigned

JLE 0xb any PC += offset if dst <=
src

unsigned

JSLT 0xc any PC += offset if dst < src signed

JSLE 0xd any PC += offset if dst <=
src

signed

Table 7: Jump Instructions

where 'PC' denotes the program counter, and the offset to increment by is in units of 64-bit
instructions relative to the instruction following the jump instruction. Thus 'PC += 1' skips
execution of the next instruction if it's a basic instruction or results in undefined behavior if the
next instruction is a 128-bit wide instruction.

Example:

{JSGE, X, JMP32} means:

where 's>=' indicates a signed '>=' comparison.

{JLE, K, JMP} means:

{JA, K, JMP32} means:

where 'imm' means the branch offset comes from the 'imm' field.

Note that there are two flavors of JA instructions. The JMP class permits a 16-bit jump offset
specified by the 'offset' field, whereas the JMP32 class permits a 32-bit jump offset specified by the
'imm' field. A > 16-bit conditional jump may be converted to a < 16-bit conditional jump plus a 32-
bit unconditional jump.

All CALL and JA instructions belong to the base32 conformance group.

 if (s32)dst s>= (s32)src goto +offset

 if dst <= (u64)(s64)imm goto +offset

 gotol +imm

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 14

4.3.1. Helper Functions

Helper functions are a concept whereby BPF programs can call into a set of function calls
exposed by the underlying platform.

Historically, each helper function was identified by a static ID encoded in the 'imm' field. Further
documentation of helper functions is outside the scope of this document and standardization is
left for future work, but use is widely deployed and more information can be found in platform-
specific documentation (e.g., Linux kernel documentation).

Platforms that support the BPF Type Format (BTF) support identifying a helper function by a BTF
ID encoded in the 'imm' field, where the BTF ID identifies the helper name and type. Further
documentation of BTF is outside the scope of this document and standardization is left for future
work, but use is widely deployed and more information can be found in platform-specific
documentation (e.g., Linux kernel documentation).

4.3.2. Program-Local Functions

Program-local functions are functions exposed by the same BPF program as the caller, and are
referenced by offset from the instruction following the call instruction, similar to JA. The offset is
encoded in the 'imm' field of the call instruction. An EXIT within the program-local function will
return to the caller.

5. Load and Store Instructions
For load and store instructions (LD, LDX, ST, and STX), the 8-bit 'opcode' field is divided as follows:

The mode modifier is one of:

mode
modifier

value description reference

IMM 0 64-bit immediate
instructions

ABS 1 legacy BPF packet access
(absolute)

IND 2 legacy BPF packet access
(indirect)

+-+-+-+-+-+-+-+-+
|mode |sz |class|
+-+-+-+-+-+-+-+-+

mode

64-bit immediate instructions
(Section 5.4)

Legacy BPF Packet access
instructions (Section 5.5)

Legacy BPF Packet access
instructions (Section 5.5)

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 15

mode
modifier

value description reference

MEM 3 regular load and store
operations

MEMSX 4 sign-extension load
operations

ATOMIC 6 atomic operations

Table 8: Mode Modifier

The size modifier is one of:

size value description

W 0 word (4 bytes)

H 1 half word (2 bytes)

B 2 byte

DW 3 double word (8 bytes)

Table 9: Size Modifier

Instructions using DW belong to the base64 conformance group.

The instruction class (see)

Regular load and store operations
(Section 5.1)

Sign-extension load operations
(Section 5.2)

Atomic operations (Section 5.3)

sz (size)

class Instruction classes (Section 3.3)

5.1. Regular Load and Store Operations
The MEM mode modifier is used to encode regular load and store instructions that transfer data
between a register and memory.

{MEM, <size>, STX} means:

{MEM, <size>, ST} means:

{MEM, <size>, LDX} means:

 *(size *) (dst + offset) = src

 *(size *) (dst + offset) = imm

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 16

Where '<size>' is one of: B, H, W, or DW, and 'unsigned size' is one of: u8, u16, u32, or u64.

 dst = *(unsigned size *) (src + offset)

5.2. Sign-Extension Load Operations
The MEMSX mode modifier is used to encode load instructions that
transfer data between a register and memory.

{MEMSX, <size>, LDX} means:

Where '<size>' is one of: B, H, or W, and 'signed size' is one of: s8, s16, or s32.

sign-extension (Section 2.3)

 dst = *(signed size *) (src + offset)

5.3. Atomic Operations
Atomic operations are operations that operate on memory and can not be interrupted or
corrupted by other access to the same memory region by other BPF programs or means outside
of this specification.

All atomic operations supported by BPF are encoded as store operations that use the ATOMIC
mode modifier as follows:

{ATOMIC, W, STX} for 32-bit operations, which are part of the "atomic32" conformance
group.
{ATOMIC, DW, STX} for 64-bit operations, which are part of the "atomic64" conformance
group.
8-bit and 16-bit wide atomic operations are not supported.

The 'imm' field is used to encode the actual atomic operation. Simple atomic operation use a
subset of the values defined to encode arithmetic operations in the 'imm' field to encode the
atomic operation:

imm value description

ADD 0x00 atomic add

OR 0x40 atomic or

AND 0x50 atomic and

XOR 0xa0 atomic xor

Table 10: Simple Atomic Operations

{ATOMIC, W, STX} with 'imm' = ADD means:

•

•

•

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 17

{ATOMIC, DW, STX} with 'imm' = ADD means:

In addition to the simple atomic operations, there also is a modifier and two complex atomic
operations:

imm value description

FETCH 0x01 modifier: return old value

XCHG 0xe0 | FETCH atomic exchange

CMPXCHG 0xf0 | FETCH atomic compare and exchange

Table 11: Complex Atomic Operations

The FETCH modifier is optional for simple atomic operations, and always set for the complex
atomic operations. If the FETCH flag is set, then the operation also overwrites src with the value
that was in memory before it was modified.

The XCHG operation atomically exchanges src with the value addressed by dst + offset.

The CMPXCHG operation atomically compares the value addressed by dst + offset with R0. If
they match, the value addressed by dst + offset is replaced with src. In either case, the value
that was at dst + offset before the operation is zero-extended and loaded back to R0.

 *(u32 *)(dst + offset) += src

 *(u64 *)(dst + offset) += src

5.4. 64-bit Immediate Instructions
Instructions with the IMM 'mode' modifier use the wide instruction encoding defined in

, and use the 'src_reg' field of the basic instruction to hold an
opcode subtype.

The following table defines a set of {IMM, DW, LD} instructions with opcode subtypes in the
'src_reg' field, using new terms such as "map" defined further below:

src_reg pseudocode imm type dst type

0x0 dst = (next_imm << 32) | imm integer integer

0x1 dst = map_by_fd(imm) map fd map

0x2 dst = map_val(map_by_fd(imm)) + next_imm map fd data address

Instruction encoding (Section 3)

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 18

src_reg pseudocode imm type dst type

0x3 dst = var_addr(imm) variable id data address

0x4 dst = code_addr(imm) integer code address

0x5 dst = map_by_idx(imm) map index map

0x6 dst = map_val(map_by_idx(imm)) + next_imm map index data address

Table 12: 64-bit Immediate Instructions

where

map_by_fd(imm) means to convert a 32-bit file descriptor into an address of a map (see
)

map_by_idx(imm) means to convert a 32-bit index into an address of a map
map_val(map) gets the address of the first value in a given map
var_addr(imm) gets the address of a platform variable (see)
with a given id
code_addr(imm) gets the address of the instruction at a specified relative offset in number of
(64-bit) instructions
the 'imm type' can be used by disassemblers for display
the 'dst type' can be used for verification and JIT compilation purposes

• Maps
(Section 5.4.1)

•
•
• Platform Variables (Section 5.4.2)

•

•
•

5.4.1. Maps

Maps are shared memory regions accessible by BPF programs on some platforms. A map can
have various semantics as defined in a separate document, and may or may not have a single
contiguous memory region, but the 'map_val(map)' is currently only defined for maps that do
have a single contiguous memory region.

Each map can have a file descriptor (fd) if supported by the platform, where 'map_by_fd(imm)'
means to get the map with the specified file descriptor. Each BPF program can also be defined to
use a set of maps associated with the program at load time, and 'map_by_idx(imm)' means to get
the map with the given index in the set associated with the BPF program containing the
instruction.

5.4.2. Platform Variables

Platform variables are memory regions, identified by integer ids, exposed by the runtime and
accessible by BPF programs on some platforms. The 'var_addr(imm)' operation means to get the
address of the memory region identified by the given id.

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 19

5.5. Legacy BPF Packet Access Instructions
BPF previously introduced special instructions for access to packet data that were carried over
from classic BPF. These instructions used an instruction class of LD, a size modifier of W, H, or B,
and a mode modifier of ABS or IND. The 'dst_reg' and 'offset' fields were set to zero, and 'src_reg'
was set to zero for ABS. However, these instructions are deprecated and SHOULD no longer be
used. All legacy packet access instructions belong to the "packet" conformance group.

6. Security Considerations
BPF programs could use BPF instructions to do malicious things with memory, CPU, networking,
or other system resources. This is not fundamentally different from any other type of software
that may run on a device. Execution environments should be carefully designed to only run BPF
programs that are trusted and verified, and sandboxing and privilege level separation are key
strategies for limiting security and abuse impact. For example, BPF verifiers are well-known and
widely deployed and are responsible for ensuring that BPF programs will terminate within a
reasonable time, only interact with memory in safe ways, adhere to platform-specified API
contracts, and don't use instructions with undefined behavior. This level of verification can often
provide a stronger level of security assurance than for other software and operating system code.
While the details are out of scope of this document, and do
provide many details. Future IETF work will document verifier expectations and building blocks
for allowing safe execution of untrusted BPF programs.

Executing programs using the BPF instruction set also requires either an interpreter or a
compiler to translate them to hardware processor native instructions. In general, interpreters
are considered a source of insecurity (e.g., gadgets susceptible to side-channel attacks due to
speculative execution) whenever one is used in the same memory address space as data with
confidentiality concerns. As such, use of a compiler is recommended instead. Compilers should
be audited carefully for vulnerabilities to ensure that compilation of a trusted and verified BPF
program to native processor instructions does not introduce vulnerabilities.

Exposing functionality via BPF extends the interface between the component executing the BPF
program and the component submitting it. Careful consideration of what functionality is exposed
and how that impacts the security properties desired is required.

Linux [LINUX] PREVAIL [PREVAIL]

7. IANA Considerations
This document defines two registries.

7.1. BPF Instruction Conformance Group Registry
This document defines an IANA registry for BPF instruction conformance groups, as follows:

Name of the registry: BPF Instruction Conformance Groups
Name of the registry group: BPF Instructions

•
•

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 20

Required information for registrations: See

Syntax of registry entries: Each entry has the following fields: name, description, includes,
excludes, status, and reference. See

 for more details.
Registration policy (see for details):

Permanent: Standards action or IESG Approval
Provisional: Specification required
Historical: Specification required

Initial entries in this registry are as follows:

Name Description Includes Excludes Status Reference

atomic32 32-bit atomic
instructions

- - Permanent RFC 9669,
Section 5.3

atomic64 64-bit atomic
instructions

atomic32 - Permanent RFC 9669,
Section 5.3

base32 32-bit base
instructions

- - Permanent RFC 9669

base64 64-bit base
instructions

base32 - Permanent RFC 9669

divmul32 32-bit division and
modulo

- - Permanent RFC 9669,
Section 4.1

divmul64 64-bit division and
modulo

divmul32 - Permanent RFC 9669,
Section 4.1

packet Legacy packet
instructions

- - Historical RFC 9669,
Section 5.5

Table 13: Initial Conformance Groups

• BPF Instruction Conformance Group Registration
Template (Section 7.1.1)

•
BPF Instruction Conformance Group Registration

Template (Section 7.1.1)
• Section 4 of [RFC8126]

◦
◦
◦

7.1.1. BPF Instruction Conformance Group Registration Template

This template describes the fields that must be supplied in a registration request:

Alphanumeric label indicating the name of the conformance group.

Brief description of the conformance group.

Any other conformance groups that are included by this group.

Any other conformance groups that are excluded by this group.

Name:

Description:

Includes:

Excludes:

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 21

https://www.rfc-editor.org/rfc/rfc8126#section-4

This reflects the status requested and must be one of 'Permanent', 'Provisional', or
'Historical'.

Person (including contact information) to contact for further information.

Organization or person (often the author), including contact information,
authorized to change this.

A reference to the defining specification. Include full citations for all referenced
documents. Registration requests for 'Provisional' registration can be included in an Internet-
Draft; when the documents are approved for publication as an RFC, the registration will be
updated.

Status:

Contact:

Change controller:

Reference:

7.2. BPF Instruction Set Registry
This document proposes a new IANA registry for BPF instructions, as follows:

Name of the registry: BPF Instruction Set
Name of the registry group: BPF Instructions
Required information for registrations: See

Syntax of registry entries: Each entry has the following fields: opcode, src, imm, offset,
description, groups, and reference. See
for more details.
Registration policy: New instructions require a new entry in the conformance group registry
and the same registration policies apply.
Initial registrations: See the Appendix. Instructions other than those listed as deprecated are
Permanent. Any listed as deprecated are Historical.

•
•
• BPF Instruction Registration Template (Section

7.2.1)
•

BPF Instruction Registration Template (Section 7.2.1)

•

•

7.2.1. BPF Instruction Registration Template

This template describes the fields that must be supplied in a registration request:

A 1-byte value in hex format indicating the value of the opcode field

Either a numeric value indicating the value of the src field, or "any"

Either a value indicating the value of the imm field, or "any"

Either a numeric value indicating the value of the offset field, or "any"

Description of what the instruction does, typically in pseudocode

A list of one or more comma-separated conformance groups to which the instruction
belongs

Person (including contact information) to contact for further information.

Opcode:

Src:

Imm:

Offset:

Description:

Groups:

Contact:

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 22

Organization or person (often the author), including contact information,
authorized to change this.

A reference to the defining specification. Include full citations for all referenced
documents. Registration requests for 'Provisional' registration can be included in an Internet-
Draft; when the documents are approved for publication as an RFC, the registration will be
updated.

Change controller:

Reference:

7.3. Adding Instructions
A specification may add additional instructions to the BPF Instruction Set registry. Once a
conformance group is registered with a set of instructions, no further instructions can be added
to that conformance group. A specification should instead create a new conformance group that
includes the original conformance group, plus any newly added instructions. Inclusion of the
original conformance group is done via the "includes" column of the BPF Instruction
Conformance Group Registry, and inclusion of newly added instructions is done via the "groups"
column of the BPF Instruction Set Registry.

For example, consider an existing hypothetical group called "example" with two instructions in
it. One might add two more instructions by first adding an "examplev2" group to the BPF
Instruction Conformance Group Registry as follows:

name description includes excludes status

example Original example instructions - - Permanent

examplev2 Newer set of example instructions example - Permanent

Table 14: Conformance Group Example for Addition

And then adding the new instructions into the BPF Instruction Set Registry as follows:

opcode ... description groups

aaa ... Original example instruction 1 example

bbb ... Original example instruction 2 example

ccc ... Added example instruction 3 examplev2

ddd ... Added example instruction 4 examplev2

Table 15: Instruction Addition Example

Supporting the "examplev2" group thus requires supporting all four example instructions.

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 23

7.4. Deprecating Instructions
Deprecating instructions that are part of an existing conformance group can be done by defining
a new conformance group for the newly deprecated instructions, and defining a new
conformance group that supersedes the existing conformance group containing the instructions,
where the new conformance group includes the existing one and excludes the deprecated
instruction group.

For example, if deprecating an instruction in an existing hypothetical group called "example",
two new groups ("legacyexample" and "examplev2") might be registered in the BPF Instruction
Conformance Group Registry as follows:

name description includes excludes status

example Original example instructions - - Permanent

legacyexample Legacy example instructions - - Historical

examplev2 Example instructions example legacyexample Permanent

Table 16: Conformance Group Example for Deprecation

The BPF Instruction Set registry entries for the deprecated instructions would then be updated to
add "legacyexample" to the set of groups for those instructions, as follows:

opcode ... description groups

aaa ... Good original instruction 1 example

bbb ... Good original instruction 2 example

ccc ... Bad original instruction 3 example, legacyexample

ddd ... Bad original instruction 4 example, legacyexample

Table 17: Instruction Deprecation Example

Finally, updated implementations that dropped support for the deprecated instructions would
then be able to claim conformance to "examplev2" rather than "example".

7.5. Change Control
Registrations can be updated in a registry by the same mechanism as required for an initial
registration. In cases where the original definition of an entry is contained in an IESG-approved
document, update of the specification also requires IESG approval.

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 24

[IEN137]

[RFC2119]

[RFC8126]

[RFC8174]

[LINUX]

8. References

8.1. Normative References

, , , April 1980.

, , ,
, , March 1997,
.

, , and ,
, , , , June

2017, .

, ,
, , , May 2017,

.

8.2. Informative References

, .

'Provisional' registrations can be updated by the change controller designated in the existing
registration. In addition, the IESG can reassign responsibility for a 'Provisional' registration or
can request specific changes to an entry. This will enable changes to be made to entries where
the original registrant is out of contact or unwilling or unable to make changes.

Transition from 'Provisional' to 'Permanent' status can be requested and approved in the same
manner as a new 'Permanent' registration. Transition from 'Permanent' to 'Historical' status
requires IESG approval. Transition from 'Provisional' to 'Historical' can be requested by anyone
authorized to update the 'Provisional' registration.

7.6. Expert Review Instructions
The IANA registries established by this document are informed by written specifications, which
themselves are facilitated and approved by an Expert Review process.

Designated Experts are expected to consult with the active BPF working group (e.g., via email to
the working group's mailing list) if it exists, as well as other interested parties (e.g., via email to
one or more active mailing list(s) for relevant BPF communities and platforms). The Designed
Expert is expected to verify that the encoding and semantics for any new instructions are
properly documented in a public-facing specification. In the event of future RFC documents for
ISA extensions, experts may permit early assignment before the RFC document is available, as
long as a specification exists which satisfies the above requirements.

Section 5.3 of [RFC8126]

Cohen, D. "On Holy Wars and a Plea for Peace" IEN 137

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Cotton, M. Leiba, B. T. Narten "Guidelines for Writing an IANA
Considerations Section in RFCs" BCP 26 RFC 8126 DOI 10.17487/RFC8126

<https://www.rfc-editor.org/info/rfc8126>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

"eBPF verifier" <https://www.kernel.org/doc/html/latest/bpf/verifier.html>

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 25

https://www.rfc-editor.org/rfc/rfc8126#section-5.3
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.kernel.org/doc/html/latest/bpf/verifier.html

[PREVAIL] , , , , , ,
, and ,

, , June 2019,
.

Gershuni, E. Amit, N. Gurfinkel, A. Narodytska, N. Navas, J. Rinetzky, N.
Ryzhyk, L. M. Sagiv "Simple and Precise Static Analysis of Untrusted Linux
Kernel Extensions" DOI 10.1145/3314221.3314590 <https://doi.org/
10.1145/3314221.3314590>

Appendix A. Initial BPF Instruction Set Values
Initial values for the BPF Instruction Set registry are given below. The descriptions in this table
are informative. In case of any discrepancy, the reference is authoritative.

Opcode src_reg Off-
set

imm Description Groups Ref

0x00 0x0 0 any (additional immediate
value)

base64 RFC 9669,
Section 5.4

0x04 0x0 0 any dst = (u32)((u32)dst +
(u32)imm)

base32 RFC 9669,
Section 4.1

0x05 0x0 any 0x00 goto +offset base32 RFC 9669,
Section 4.3

0x06 0x0 0 any goto +imm base32 RFC 9669,
Section 4.3

0x07 0x0 0 any dst += imm base64 RFC 9669,
Section 4.1

0x0c any 0 0x00 dst = (u32)((u32)dst +
(u32)src)

base32 RFC 9669,
Section 4.1

0x0f any 0 0x00 dst += src base64 RFC 9669,
Section 4.1

0x14 0x0 0 any dst = (u32)((u32)dst -
(u32)imm)

base32 RFC 9669,
Section 4.1

0x15 0x0 any any if dst == imm goto +offset base64 RFC 9669,
Section 4.3

0x16 0x0 any any if (u32)dst == imm goto
+offset

base32 RFC 9669,
Section 4.3

0x17 0x0 0 any dst -= imm base64 RFC 9669,
Section 4.1

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 26

https://doi.org/10.1145/3314221.3314590
https://doi.org/10.1145/3314221.3314590

Opcode src_reg Off-
set

imm Description Groups Ref

0x18 0x0 0 any dst = (next_imm << 32) |
imm

base64 RFC 9669,
Section 5.4

0x18 0x1 0 any dst = map_by_fd(imm) base64 RFC 9669,
Section 5.4

0x18 0x2 0 any dst =
map_val(map_by_fd(imm))
+ next_imm

base64 RFC 9669,
Section 5.4

0x18 0x3 0 any dst = var_addr(imm) base64 RFC 9669,
Section 5.4

0x18 0x4 0 any dst = code_addr(imm) base64 RFC 9669,
Section 5.4

0x18 0x5 0 any dst = map_by_idx(imm) base64 RFC 9669,
Section 5.4

0x18 0x6 0 any dst =
map_val(map_by_idx(imm))
+ next_imm

base64 RFC 9669,
Section 5.4

0x1c any 0 0x00 dst = (u32)((u32)dst -
(u32)src)

base32 RFC 9669,
Section 4.1

0x1d any any 0x00 if dst == src goto +offset base64 RFC 9669,
Section 4.3

0x1e any any 0x00 if (u32)dst == (u32)src goto
+offset

base32 RFC 9669,
Section 4.3

0x1f any 0 0x00 dst -= src base64 RFC 9669,
Section 4.1

0x20 0x0 0 any (deprecated,
implementation-specific)

packet RFC 9669,
Section 5.5

0x24 0x0 0 any dst = (u32)(dst * imm) divmul32 RFC 9669,
Section 4.1

0x25 0x0 any any if dst > imm goto +offset base64 RFC 9669,
Section 4.3

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 27

Opcode src_reg Off-
set

imm Description Groups Ref

0x26 0x0 any any if (u32)dst > imm goto
+offset

base32 RFC 9669,
Section 4.3

0x27 0x0 0 any dst *= imm divmul64 RFC 9669,
Section 4.1

0x28 0x0 0 any (deprecated,
implementation-specific)

packet RFC 9669,
Section 5.5

0x2c any 0 0x00 dst = (u32)(dst * src) divmul32 RFC 9669,
Section 4.1

0x2d any any 0x00 if dst > src goto +offset base64 RFC 9669,
Section 4.3

0x2e any any 0x00 if (u32)dst > (u32)src goto
+offset

base32 RFC 9669,
Section 4.3

0x2f any 0 0x00 dst *= src divmul64 RFC 9669,
Section 4.1

0x30 0x0 0 any (deprecated,
implementation-specific)

packet RFC 9669,
Section 5.5

0x34 0x0 0 any dst = (u32)((imm != 0) ?
((u32)dst / (u32)imm) : 0)

divmul32 RFC 9669,
Section 4.1

0x34 0x0 1 any dst = (u32)((imm != 0) ?
((s32)dst s/ imm) : 0)

divmul32 RFC 9669,
Section 4.1

0x35 0x0 any any if dst >= imm goto +offset base64 RFC 9669,
Section 4.3

0x36 0x0 any any if (u32)dst >= imm goto
+offset

base32 RFC 9669,
Section 4.3

0x37 0x0 0 any dst = (imm != 0) ? (dst /
(u32)imm) : 0

divmul64 RFC 9669,
Section 4.1

0x37 0x0 1 any dst = (imm != 0) ? (dst s/
imm) : 0

divmul64 RFC 9669,
Section 4.1

0x3c any 0 0x00 dst = (u32)((src != 0) ?
((u32)dst / (u32)src) : 0)

divmul32 RFC 9669,
Section 4.1

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 28

Opcode src_reg Off-
set

imm Description Groups Ref

0x3c any 1 0x00 dst = (u32)((src != 0) ?
((s32)dst s/(s32)src) : 0)

divmul32 RFC 9669,
Section 4.1

0x3d any any 0x00 if dst >= src goto +offset base64 RFC 9669,
Section 4.3

0x3e any any 0x00 if (u32)dst >= (u32)src goto
+offset

base32 RFC 9669,
Section 4.3

0x3f any 0 0x00 dst = (src != 0) ? (dst / src) : 0 divmul64 RFC 9669,
Section 4.1

0x3f any 1 0x00 dst = (src != 0) ? (dst s/ src) :
0

divmul64 RFC 9669,
Section 4.1

0x40 any 0 any (deprecated,
implementation-specific)

packet RFC 9669,
Section 5.5

0x44 0x0 0 any dst = (u32)(dst | imm) base32 RFC 9669,
Section 4.1

0x45 0x0 any any if dst & imm goto +offset base64 RFC 9669,
Section 4.3

0x46 0x0 any any if (u32)dst & imm goto
+offset

base32 RFC 9669,
Section 4.3

0x47 0x0 0 any dst |= imm base64 RFC 9669,
Section 4.1

0x48 any 0 any (deprecated,
implementation-specific)

packet RFC 9669,
Section 5.5

0x4c any 0 0x00 dst = (u32)(dst | src) base32 RFC 9669,
Section 4.1

0x4d any any 0x00 if dst & src goto +offset base64 RFC 9669,
Section 4.3

0x4e any any 0x00 if (u32)dst & (u32)src goto
+offset

base32 RFC 9669,
Section 4.3

0x4f any 0 0x00 dst |= src base64 RFC 9669,
Section 4.1

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 29

Opcode src_reg Off-
set

imm Description Groups Ref

0x50 any 0 any (deprecated,
implementation-specific)

packet RFC 9669,
Section 5.5

0x54 0x0 0 any dst = (u32)(dst & imm) base32 RFC 9669,
Section 4.1

0x55 0x0 any any if dst != imm goto +offset base64 RFC 9669,
Section 4.3

0x56 0x0 any any if (u32)dst != imm goto
+offset

base32 RFC 9669,
Section 4.3

0x57 0x0 0 any dst &= imm base64 RFC 9669,
Section 4.1

0x5c any 0 0x00 dst = (u32)(dst & src) base32 RFC 9669,
Section 4.1

0x5d any any 0x00 if dst != src goto +offset base64 RFC 9669,
Section 4.3

0x5e any any 0x00 if (u32)dst != (u32)src goto
+offset

base32 RFC 9669,
Section 4.3

0x5f any 0 0x00 dst &= src base64 RFC 9669,
Section 4.1

0x61 any any 0x00 dst = *(u32 *)(src + offset) base32 RFC 9669,
Section 5

0x62 0x0 any any *(u32 *)(dst + offset) = imm base32 RFC 9669,
Section 5

0x63 any any 0x00 *(u32 *)(dst + offset) = src base32 RFC 9669,
Section 5

0x64 0x0 0 any dst = (u32)(dst << imm) base32 RFC 9669,
Section 4.1

0x65 0x0 any any if dst s> imm goto +offset base64 RFC 9669,
Section 4.3

0x66 0x0 any any if (s32)dst s> (s32)imm goto
+offset

base32 RFC 9669,
Section 4.3

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 30

Opcode src_reg Off-
set

imm Description Groups Ref

0x67 0x0 0 any dst <<= imm base64 RFC 9669,
Section 4.1

0x69 any any 0x00 dst = *(u16 *)(src + offset) base32 RFC 9669,
Section 5

0x6a 0x0 any any *(u16 *)(dst + offset) = imm base32 RFC 9669,
Section 5

0x6b any any 0x00 *(u16 *)(dst + offset) = src base32 RFC 9669,
Section 5

0x6c any 0 0x00 dst = (u32)(dst << src) base32 RFC 9669,
Section 4.1

0x6d any any 0x00 if dst s> src goto +offset base64 RFC 9669,
Section 4.3

0x6e any any 0x00 if (s32)dst s> (s32)src goto
+offset

base32 RFC 9669,
Section 4.3

0x6f any 0 0x00 dst <<= src base64 RFC 9669,
Section 4.1

0x71 any any 0x00 dst = *(u8 *)(src + offset) base32 RFC 9669,
Section 5

0x72 0x0 any any *(u8 *)(dst + offset) = imm base32 RFC 9669,
Section 5

0x73 any any 0x00 *(u8 *)(dst + offset) = src base32 RFC 9669,
Section 5

0x74 0x0 0 any dst = (u32)(dst >> imm) base32 RFC 9669,
Section 4.1

0x75 0x0 any any if dst s>= imm goto +offset base64 RFC 9669,
Section 4.3

0x76 0x0 any any if (s32)dst s>= (s32)imm goto
+offset

base32 RFC 9669,
Section 4.3

0x77 0x0 0 any dst >>= imm base64 RFC 9669,
Section 4.1

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 31

Opcode src_reg Off-
set

imm Description Groups Ref

0x79 any any 0x00 dst = *(u64 *)(src + offset) base64 RFC 9669,
Section 5

0x7a 0x0 any any *(u64 *)(dst + offset) = imm base64 RFC 9669,
Section 5

0x7b any any 0x00 *(u64 *)(dst + offset) = src base64 RFC 9669,
Section 5

0x7c any 0 0x00 dst = (u32)(dst >> src) base32 RFC 9669,
Section 4.1

0x7d any any 0x00 if dst s>= src goto +offset base64 RFC 9669,
Section 4.3

0x7e any any 0x00 if (s32)dst s>= (s32)src goto
+offset

base32 RFC 9669,
Section 4.3

0x7f any 0 0x00 dst >>= src base64 RFC 9669,
Section 4.1

0x84 0x0 0 0x00 dst = (u32)-dst base32 RFC 9669,
Section 4.1

0x85 0x0 0 any call helper function by
static ID

base32 RFC 9669,
Section 4.3.1

0x85 0x1 0 any call PC += imm base32 RFC 9669,
Section 4.3.2

0x85 0x2 0 any call helper function by BTF
ID

base32 RFC 9669,
Section 4.3.1

0x87 0x0 0 0x00 dst = -dst base64 RFC 9669,
Section 4.1

0x94 0x0 0 any dst = (u32)((imm != 0)?
((u32)dst % (u32)imm) : dst)

divmul32 RFC 9669,
Section 4.1

0x94 0x0 1 any dst = (u32)((imm != 0) ?
((s32)dst s% imm) : dst)

divmul32 RFC 9669,
Section 4.1

0x95 0x0 0 0x00 return base32 RFC 9669,
Section 4.3

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 32

Opcode src_reg Off-
set

imm Description Groups Ref

0x97 0x0 0 any dst = (imm != 0) ? (dst %
(u32)imm) : dst

divmul64 RFC 9669,
Section 4.1

0x97 0x0 1 any dst = (imm != 0) ? (dst s%
imm) : dst

divmul64 RFC 9669,
Section 4.1

0x9c any 0 0x00 dst = (u32)((src != 0)?
((u32)dst % (u32)src) : dst)

divmul32 RFC 9669,
Section 4.1

0x9c any 1 0x00 dst = (u32)((src != 0)?
((s32)dst s% (s32)src) :dst)

divmul32 RFC 9669,
Section 4.1

0x9f any 0 0x00 dst = (src != 0) ? (dst % src) :
dst

divmul64 RFC 9669,
Section 4.1

0x9f any 1 0x00 dst = (src != 0) ? (dst s% src)
: dst

divmul64 RFC 9669,
Section 4.1

0xa4 0x0 0 any dst = (u32)(dst ^ imm) base32 RFC 9669,
Section 4.1

0xa5 0x0 any any if dst < imm goto +offset base64 RFC 9669,
Section 4.3

0xa6 0x0 any any if (u32)dst < imm goto
+offset

base32 RFC 9669,
Section 4.3

0xa7 0x0 0 any dst ^= imm base64 RFC 9669,
Section 4.1

0xac any 0 0x00 dst = (u32)(dst ^ src) base32 RFC 9669,
Section 4.1

0xad any any 0x00 if dst < src goto +offset base64 RFC 9669,
Section 4.3

0xae any any 0x00 if (u32)dst < (u32)src goto
+offset

base32 RFC 9669,
Section 4.3

0xaf any 0 0x00 dst ^= src base64 RFC 9669,
Section 4.1

0xb4 0x0 0 any dst = (u32) imm base32 RFC 9669,
Section 4.1

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 33

Opcode src_reg Off-
set

imm Description Groups Ref

0xb5 0x0 any any if dst <= imm goto +offset base64 RFC 9669,
Section 4.3

0xb6 0x0 any any if (u32)dst <= imm goto
+offset

base32 RFC 9669,
Section 4.3

0xb7 0x0 0 any dst = imm base64 RFC 9669,
Section 4.1

0xbc any 0 0x00 dst = (u32) src base32 RFC 9669,
Section 4.1

0xbc any 8 0x00 dst = (u32) (s32) (s8) src base32 RFC 9669,
Section 4.1

0xbc any 16 0x00 dst = (u32) (s32) (s16) src base32 RFC 9669,
Section 4.1

0xbd any any 0x00 if dst <= src goto +offset base64 RFC 9669,
Section 4.3

0xbe any any 0x00 if (u32)dst <= (u32)src goto
+offset

base32 RFC 9669,
Section 4.3

0xbf any 0 0x00 dst = src base64 RFC 9669,
Section 4.1

0xbf any 8 0x00 dst = (s64) (s8) src base64 RFC 9669,
Section 4.1

0xbf any 16 0x00 dst = (s64) (s16) src base64 RFC 9669,
Section 4.1

0xbf any 32 0x00 dst = (s64) (s32) src base64 RFC 9669,
Section 4.1

0xc3 any any 0x00 lock *(u32 *)(dst + offset) +=
src

atomic32 RFC 9669,
Section 5.3

0xc3 any any 0x01 src =
atomic_fetch_add_32((u32 *)
(dst + offset), src)

atomic32 RFC 9669,
Section 5.3

0xc3 any any 0x40 lock *(u32 *)(dst + offset) |=
src

atomic32 RFC 9669,
Section 5.3

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 34

Opcode src_reg Off-
set

imm Description Groups Ref

0xc3 any any 0x41 src =
atomic_fetch_or_32((u32 *)
(dst + offset), src)

atomic32 RFC 9669,
Section 5.3

0xc3 any any 0x50 lock *(u32 *)(dst + offset) &=
src

atomic32 RFC 9669,
Section 5.3

0xc3 any any 0x51 src =
atomic_fetch_and_32((u32 *)
(dst + offset), src)

atomic32 RFC 9669,
Section 5.3

0xc3 any any 0xa0 lock *(u32 *)(dst + offset) ^=
src

atomic32 RFC 9669,
Section 5.3

0xc3 any any 0xa1 src =
atomic_fetch_xor_32((u32 *)
(dst + offset), src)

atomic32 RFC 9669,
Section 5.3

0xc3 any any 0xe1 src = xchg_32((u32 *)(dst +
offset), src)

atomic32 RFC 9669,
Section 5.3

0xc3 any any 0xf1 r0 = cmpxchg_32((u32 *)(dst
+ offset), r0, src)

atomic32 RFC 9669,
Section 5.3

0xc4 0x0 0 any dst = (u32)(dst s>> imm) base32 RFC 9669,
Section 4.1

0xc5 0x0 any any if dst s< imm goto +offset base64 RFC 9669,
Section 4.3

0xc6 0x0 any any if (s32)dst s< (s32)imm goto
+offset

base32 RFC 9669,
Section 4.3

0xc7 0x0 0 any dst s>>= imm base64 RFC 9669,
Section 4.1

0xcc any 0 0x00 dst = (u32)(dst s>> src) base32 RFC 9669,
Section 4.1

0xcd any any 0x00 if dst s< src goto +offset base64 RFC 9669,
Section 4.3

0xce any any 0x00 if (s32)dst s< (s32)src goto
+offset

base32 RFC 9669,
Section 4.3

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 35

Opcode src_reg Off-
set

imm Description Groups Ref

0xcf any 0 0x00 dst s>>= src base64 RFC 9669,
Section 4.1

0xd4 0x0 0 0x10 dst = htole16(dst) base32 RFC 9669,
Section 4.2

0xd4 0x0 0 0x20 dst = htole32(dst) base32 RFC 9669,
Section 4.2

0xd4 0x0 0 0x40 dst = htole64(dst) base64 RFC 9669,
Section 4.2

0xd5 0x0 any any if dst s<= imm goto +offset base64 RFC 9669,
Section 4.3

0xd6 0x0 any any if (s32)dst s<= (s32)imm goto
+offset

base32 RFC 9669,
Section 4.3

0xd7 0x0 0 0x10 dst = bswap16(dst) base32 RFC 9669,
Section 4.2

0xd7 0x0 0 0x20 dst = bswap32(dst) base32 RFC 9669,
Section 4.2

0xd7 0x0 0 0x40 dst = bswap64(dst) base64 RFC 9669,
Section 4.2

0xdb any any 0x00 lock *(u64 *)(dst + offset) +=
src

atomic64 RFC 9669,
Section 5.3

0xdb any any 0x01 src =
atomic_fetch_add_64((u64 *)
(dst + offset), src)

atomic64 RFC 9669,
Section 5.3

0xdb any any 0x40 lock *(u64 *)(dst + offset) |=
src

atomic64 RFC 9669,
Section 5.3

0xdb any any 0x41 src =
atomic_fetch_or_64((u64 *)
(dst + offset), src)

atomic64 RFC 9669,
Section 5.3

0xdb any any 0x50 lock *(u64 *)(dst + offset) &=
src

atomic64 RFC 9669,
Section 5.3

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 36

Opcode src_reg Off-
set

imm Description Groups Ref

0xdb any any 0x51 src =
atomic_fetch_and_64((u64 *)
(dst + offset), src)

atomic64 RFC 9669,
Section 5.3

0xdb any any 0xa0 lock *(u64 *)(dst + offset) ^=
src

atomic64 RFC 9669,
Section 5.3

0xdb any any 0xa1 src =
atomic_fetch_xor_64((u64 *)
(dst + offset), src)

atomic64 RFC 9669,
Section 5.3

0xdb any any 0xe1 src = xchg_64((u64 *)(dst +
offset), src)

atomic64 RFC 9669,
Section 5.3

0xdb any any 0xf1 r0 = cmpxchg_64((u64 *)(dst
+ offset), r0, src)

atomic64 RFC 9669,
Section 5.3

0xdc 0x0 0 0x10 dst = htobe16(dst) base32 RFC 9669,
Section 4.2

0xdc 0x0 0 0x20 dst = htobe32(dst) base32 RFC 9669,
Section 4.2

0xdc 0x0 0 0x40 dst = htobe64(dst) base64 RFC 9669,
Section 4.2

0xdd any any 0x00 if dst s<= src goto +offset base64 RFC 9669,
Section 4.3

0xde any any 0x00 if (s32)dst s<= (s32)src goto
+offset

base32 RFC 9669,
Section 4.3

Table 18: Initial BPF Instruction Set Values

Acknowledgements
This draft was generated from instruction-set.rst in the Linux kernel repository, to which a
number of other individuals have authored contributions over time, including Akhil Raj, Alexei
Starovoitov, Brendan Jackman, Christoph Hellwig, Daniel Borkmann, Ilya Leoshkevich, Jiong
Wang, Jose E. Marchesi, Kosuke Fujimoto, Shahab Vahedi, Tiezhu Yang, Will Hawkins, and Zheng
Yejian, with review and suggestions by many others including Alan Jowett, Andrii Nakryiko,
David Vernet, Jim Harris, Quentin Monnet, Song Liu, Shung-Hsi Yu, Stanislav Fomichev, Watson
Ladd, and Yonghong Song.

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 37

Author's Address
Dave Thaler ()editor

, Redmond WA 98052
United States of America

dave.thaler.ietf@gmail.comEmail:

RFC 9669 BPF ISA October 2024

Thaler Standards Track Page 38

mailto:dave.thaler.ietf@gmail.com

	RFC 9669
	BPF Instruction Set Architecture (ISA)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Documentation Conventions
	2.1. Types
	2.2. Functions
	2.3. Definitions
	2.4. Conformance Groups

	3. Instruction Encoding
	3.1. Basic Instruction Encoding
	3.2. Wide Instruction Encoding
	3.3. Instruction Classes

	4. Arithmetic and Jump Instructions
	4.1. Arithmetic Instructions
	4.2. Byte Swap Instructions
	4.3. Jump Instructions
	4.3.1. Helper Functions
	4.3.2. Program-Local Functions

	5. Load and Store Instructions
	5.1. Regular Load and Store Operations
	5.2. Sign-Extension Load Operations
	5.3. Atomic Operations
	5.4. 64-bit Immediate Instructions
	5.4.1. Maps
	5.4.2. Platform Variables

	5.5. Legacy BPF Packet Access Instructions

	6. Security Considerations
	7. IANA Considerations
	7.1. BPF Instruction Conformance Group Registry
	7.1.1. BPF Instruction Conformance Group Registration Template

	7.2. BPF Instruction Set Registry
	7.2.1. BPF Instruction Registration Template

	7.3. Adding Instructions
	7.4. Deprecating Instructions
	7.5. Change Control
	7.6. Expert Review Instructions

	8. References
	8.1. Normative References
	8.2. Informative References

	Appendix A. Initial BPF Instruction Set Values
	Acknowledgements
	Author's Address

